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Foreword

During the past decades the geophysical methods using the magnetotelluric field
passed through a phase of fast development. Geophysical journals were overflown
with papers dedicated to different facets of industrial and academic magnetotel-
lurics. When writing the book, we tried to systemize this disembodied knowledge
and reduce it to all-sufficient and self-consistent philosophy that can provide the
best way to the efficient interpretation of magnetotelluric and magnetovariational
soundings.

This book may be regarded as a continuation of Berdichevsky-Dmitriev’s mono-
graph (Berdichevsky and Dmitriev, 2002), which presents the foundations of the
one-dimensional magnetotellurics. The subject matter of the present book is the
two-dimensional and three-dimensional magnetotellurics. We discuss the methods
of integrated interpretations of magnetotelluric and magnetovariational soundings
and show that a rational use of the magnetovariational data is the key ingredient of
progress in magnetotellurics.

The book is arranged in three parts.
In Part I we consider a model of the inhomogeneous Earth with plane-wave pri-

mary field and establish the deterministic nature of the magnetotelluric and mag-
netovariational response functions – the impedance tensor, telluric and magnetic
tensors, phase tensor, tipper vector. On this basis we examine the properties of the
response functions and describe the methods of their analysis.

Part II presents a set of basic two-dimensional and three-dimensional models that
demonstrate the magnetotelluric anomalies caused by typical near-surface and deep
geoelectric structures. Analyzing these models, we estimate the informativeness of
the magnetotelluric and magnetovariational data.

Part III introduces the reader to a broad range of approaches to the mag-
netotelluric and magnetovariational interpretation. Using synthetic and experimen-
tal data, we show that the most meaningful and complete solution to the ill-posed
multicriterion inverse problem may be obtained in the interactive mode including
the hypotheses test and successive partial inversions with magnetovariational and
impedance phase priority, which keeps out the destructive effects of near-surface
inhomogeneities.

Some semantic and terminological remarks need to be made:
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viii Foreword

(1) All formulas in the book are given in SI units.
(2) Throughout the book, we use the time-factor e−iωt and a default plane model

of the Earth excited by a vertically propagating plane monochromatic electro-
magnetic wave impinging on the Earth’s surface. The Earth is supposed to be
nonmagnetic with vacuum permeability μo = 4π ·10−7henry/m.

(3) In describing the magnetotelluric field, we follow the tradition of Russian
magnetotelluric school and use the magnetic field H instead of B.

(4) Geophysicists vary somewhat in their terminology concerning geoelectric
studies based on observation of geomagnetic variations. Two terms are em-
bedded in the geophysical literature: geomagnetic sounding, and magneto-
variational sounding. In our book preference is given to more adequate term
“magnetovariational sounding”.

Our work has been initiated and supported by the Institute of Geophysics of
Polish Academy of Sciences. It is a great pleasure for us to thank prof. J. Jankovsky,
the former director of this Institute, for friendly discussions which helped to build
a scenario of the book and formulate its basic statements. We wish gratefully
acknowledge the exceptional efforts of A. Dziembowska, the chief of the in-
formation department of the IGF, for correcting our English and preparing the
manuscript for publication. We are deeply indebted to our colleagues from Moscow
State University and Geophysical Company North-West and particularly to
V. Khmelevskoy, A. Bulychev and A. Jakovlev for creating a climate which fa-
vored our work. We cordially thank all our colleagues, both those in the Russian
geoelectric community and those from abroad, whose interest has stimulated our
work on the book. Our special gratitude is to L. Vanyan, U. Schmucker, P. Weidelt,
and M. Zhdanov for encouraging talks on difficulties that emerged in the course
of our work. We are indebted to N. Golubtsova, P. Pushkarev, V. Kuznetsov, and
D. Jakovlev for assistance in computer work and drawing graphical illustrations.
Grants 05-05-65082, 07-05-00523, 08-05-00345 from Russian Foundation of Basic
Researches are gratefully acknowledged.

Moscow Mark Berdichevsky
Vladimir Dmitriev
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Basic Notations

ā complex conjugate of scalar a
Ā complex conjugate of vector A
[A] conjugate of matrix [A]
[A]T transpose of matrix [A]
1x, 1y, 1z unit vectors of Cartesian basis
E(Ex, Ey, Ez) electric field
H(Hx, Hy, Hz) magnetic field
Eτ(Ex,Ey) horizontal electric field
Hτ(Hx,Hy) horizontal magnetic field
EN,HN normal field
EA, HA anomalous field
[GE], [GH] electric and magnetic Green tensors
J, j electric current, current density
ρ, σ electric resistivity, electric conductivity
μo magnetic permeability of free space
Z Tikhonov-Cagniard impedance
ZN normal impedance
Zn locally normal impedance
Zeff effective impedance
Zbrd Berdichevsky impedance
Zrms root-mean-square impedance
[Z] impedance tensor[↔
Z

]
Adam impedance tensor

det [Z] determinant of matrix [Z]
tr [Z] trace of matrix [Z]
[Y] admittance tensor
ρA apparent resistivity
ρN normal apparent resistivity
ρn locally normal apparent resistivity
ρxy, ρyx apparent resistivities oriented in x- and y-directions
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ρ‖, ρ⊥ longitudinal and transverse apparent resistivity
ρeff effective apparent resistivity
ρbrd Berdichevsky apparent resistivity
ρ rms root-mean-square apparent resistivity
S conductance (integral conductivity)
R resistance (integral resistivity)
h thickness of a layer
heff effective penetration depth
k wave number of a medium
λ electromagnetic wave length
δ skin-depth
T, ω period, cyclic frequency
[D] Doll tensor
[M] horizontal magnetic tensor
[ΦΦΦ] phase tensor, Tikhonov functional
[S] Schmucker tensor
[Sτ ] horizontal Schmucker tensor
[W] Wiese-Parkinson matrix
[Sz] Schmucker matrix
ε ellipticity
P polarization ratio
[R(α)] rotation matrix
[I] identity matrix, misfit functional
[ΩΩΩ] stabilizing functional
skewS Swift skew
skewB Bahr skew
skewCBB Caldwell-Bibby-Brown skew
skewmv magnetovariational skew
Nmt magnetotelluric inhomogeneity parameter
Nmv magnetovariational inhomogeneity parameter
W Wiese-Parkinson tipper
V Vozoff tipper
Sz Schmucker tipper
pv principal value of an integral in the Cauchy sense
mod modulo
δ skin-depth
[F ]S jump of a function F at the boundary S
Δ Laplace operator
‖u‖C norm of the function u in the space C
‖u‖L 2

norm of the function u in the space L2

‖u‖R norm of the function u in the space R



Introduction

We address this book to those readers
who not only want to know “how”
but who also want to understand “why”.

Modern magnetotellurics consists of two interwoven branches: (1) the magnetotel-
luric sounding, MT sounding, MTS, based on simultaneous measurements of time
variations in the electric (telluric) and magnetic (geomagnetic) fields of the Earth,
and (2) the magnetovariational sounding, MV sounding, MVS, (sometimes referred
to as geomagnetic depth sounding, GDS) which is restricted to measurements of
time variations only in the magnetic field.

Behind the MT and MV soundings we have a common model with a plane
electromagnetic wave vertically incident on a plane horizontally inhomogeneous
Earth (Berdichevsky and Zhdanov, 1984). The electromagnetic field Eτ (Ex, Ey)
and H(Hx, Hy,Hz) observed at the Earth’s surface z = 0 is divided into the nor-
mal and anomalous parts. The normal field EN

τ (EN
x , EN

y ), HN
τ (HN

x , HN
y ) reflects the

horizontally homogeneous layered background. The anomalous field EA
τ (EA

x , EA
y ),

HA(HA
x , HA

y , HA
z ) arises due to horizontally inhomogeneous structures.

The basic response functions in MTS are the impedance tensor

[Z] =
[

Zxx Zxy

Zyx Zyy

]

defined from relations between the horizontal components of the electric and mag-
netic fields at an observation site (Berdichevsky and Zhdanov, 1984):

Ex(r) = ZxxHx(r)+ZxyHy(r),
Ey(r) = ZyxHx(r)+ZyyHy(r),

and the apparent resistivities

ρxy =
∣∣Zxy

∣∣2
/ωμo ρyx =

∣∣Zyx
∣∣2

/ωμo

calculated from the components Zxy,Zyx of the secondary diagonal of the impedance
tensor [Z].

xvii
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The basic response functions in MVS are the tipper vector (the Wiese–Parkinson
vector)

W = Wzx1x +Wzy1y

defined from relations between the vertical component of the magnetic field and its
horizontal components at an observation site (Parkinson, 1983):

Hz(r) = HA
z (r) = WzxHx(r)+WzyHy(r)

and the magnetic tensor

[M] =
[

Mxx Mxy

Myx Myy

]

defined from relations between the horizontal components of magnetic fields at an
observation site and at a base (reference) observation site, B (Berdichevsky and
Zhdanov, 1984):

Hx(r) = MxxHx(rB)+MxyHy(rB),
Hy(r) = MyxHx(rB)+MyyHy(rB).

Using Schmucker’s concept (Schmucker, 1970), the magnetic tensor [M] and the
tipper vector W are represented as the perturbation tensor

[S] =

⎡
⎣

Sxx Sxy

Syx Syy

Szx Szy

⎤
⎦

transforming the normal magnetic field HN = H(rB) observed at a base site, B, into
the anomalous field HA(r) = H(r)−HN(rB) observed at an observation site:

HA
x (r) = SxxHN

x (rB)+SxyHN
y (rB),

HA
y (r) = SyxHN

x (rB)+SyyHN
y (rB),

HA
z (r) = SzxHN

x (rB)+SzyHN
y (rB),

where
Sxx = Mxx −1, Sxy = Mxy, Syx = Myx, Syy = Myy −1,

Szx = WzxMxx +WzyMyx, Szy = WzxMxy +WzyMyy.

The MTS method has its origin in famous papers by Tikhonov (1950), Cagniard
(1953) and Weidelt (1972). The MVS method came into being due to works
by Parkinson (1959), Wiese (1965), Schmucker (1970), Jankovski (1972), Vozoff
(1972), Rokityansky (1975, 1982).

In the traditional scheme of electromagnetic sounding applying magnetotelluric
field, the MTS method plays a leading part (stratification of the medium, geoelectric
zoning, mapping of underground topography, detection of conductive zones in the
Earth crust and upper mantle, recognition of deep faults), whereas the MVS method
helps in tracing horizontal conductivity gradients, localizing geoelectric structures,
determining their strike. Such a partition of MT and MV methods is reflected even
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in the magnetotelluric nomenclature: if the MT studies are referred to as magne-
totelluric soundings, the MV studies are consider as magnetovariational profiling
(Rokityansky, 1982).

This scheme is widely and rather successfully applied throughout the world.
It provides an unique information on the Earth’s interior (porosity, permeability,
graphitization, sulfidizing, dehydration, melting, fluid regime, ground-water miner-
alization, reological characteristics, thermodynamic and geodynamic processes).

Let us make a retrospective journey into the history of the MTS method treated
customarily as a basic method of magnetotellurics.

Following a common practice for geoelectric surveys, Tikhonov and Cagniard
(Tikhonov, 1950; Cagniard, 1953) designed the magnetotelluric sounding as a
method for studying the vertical variations in the electrical conductivity of the
Earth. In their initial studies, they did not go beyond the one-dimensional model
(Tikhonov–Cagniard model) charactertized by the scalar impedance Z = Zxy =
−Zyx, Zxx = Zyy = 0 and rotationally invariant apparent resistivity ρA = ρxy = ρyx.
Alas, the very first experiments showed that horizontal geoelectric inhomogeneities
might drastically distort the results of MT-sounding (Tikhonov and Berdichevsky,
1966). Neglecting these distortions, we impair the accuracy of magnetotelluric in-
terpretation – the essential information on the Earth’s interior may be lost and
even false geoelectric layers and structures may appear. It was just in the early
1960s when it became evident that magnetotellurics dramatically needs a theory
considering the electromagnetic field within the horizontally inhomogeneous (two-
dimensional, three-dimensional) Earth. In the Russian magnetotelluric school this
theory received the name the theory of distortions.

The first results in the distortion theory came from the pioneering papers of
Berdichevsky (1961), Obukhov (1962), D’Erceville and Kunetz (1962), Mann
(1964), Kaufman and Taborovsky (1969). A groundwork for the distortion the-
ory was laid by the Tikhonov–Dmitriev paper (1969), which exposed physical
mechanisms of the field distortions and suggested criteria to estimate their inten-
sity. Starting from the concepts of excess charges and excess currents appearing in
the inhomogeneous medium (Kaufman, 1961, 1974), the electromagnetic anomalies
are divided into two parts: the galvanic (Coulomb’s) part generated by the excess
charges and the induction (Faraday’s) part which reflects the inductive interaction
between the excess currents. The galvanic and induction parts of the anomalous
field are responsible for galvanic and induction distortions of the MTS data. The
main difference between galvanic and induction distortions is that the galvanic dis-
tortions (even caused by near-surface inhomogeneities) manifest themselves over a
wide frequency range and do not vanish with lowering frequency, while the induc-
tion distortions appear at high frequencies and vanish at low frequencies.

The last decades of XX century were marked by rapid progress in comput-
ing electrodynamics (Dmitriev and Zakharov, 1970; Vasseur and Weidelt, 1973;
Weidelt, 1975; Hohmann, 1975; Tikhonov et al., 1977; Fainberg and Singer, 1980;
Ting and Hohmann, 1981; Singer and Fainberg, 1985; Wannamaker et al., 1987;
Weaver, 1994; Mackie et al., 1994; Avdeev et al., 1997; Spichak, 1999). Advances
in mathematics opened the way to systematic studies in the distortion theory. Many
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geophysicists from the world geoelectric community participated in this work.
Nowadays we have a comprehensive idea of the two-dimensional distortions and
greatly proceeded in understanding of the three-dimensional distortions. Using cri-
teria of the distortion theory, we could recognize the lateral effects and (if possible)
present the results of MT soundings in a form that allows for one-dimensional in-
terpretation. The most spectacular result of that kind has been obtained by Russian
geophysicists in Western Siberia, in the vicinity of the Urengoy fur-trading station
(Fig. 1). Here, the vast Purovsky uplift of the Paleozoic basement (indicated by the
arrow) was outlined by one-dimensional interpretation of MTS data and this stimu-
lated the discovery of the Urengoy gas field, one of the largest gas field in the World.
However, such a one-dimensional normalization of MTS data is not always reliable
and nearly always leads to the loss of some part of information.

The challenging problem of present-day magnetotellurics is the two and three-
dimensional interpretation of MTS data. This trend of development can be found
in the works by Adam (1964), Jupp and Vozoff (1977), Dmitriev (1987), Barashkov
and Dmitriev (1987, 1990), deGroot-Hedlin and Constable (1990), Smith and
Booker (1991), Mackie and Madden (1993), Oldenburg and Ellis (1993), Golubev
and Varentsov (1994), Berdichevsky et al. (1998), Varentsov (1999), Siripunvaraporn
and Egbert (2000), Novozhynski and Pushkarev (2001), Zhdanov (2002).

Considerable progress has been made in the two-dimensional interpretation.
Nowadays we have at hand effective fast programs for 2D inversion of MTS data in
the classes of smooth inhomogeneous and piece-wise homogeneous (blocky) me-
dia with fixed geometry of blocks. In modern geophysical journals we find varied
examples of successful 2D interpretation of MT soundings carried out in geologi-
cal provinces with rather complex geoelectric structure. Let us show, for instance,
the European-Asiatic map of the crustal conductivity reproduced by Zhamaletdinov
(1996) from data of 1D and 2D interpretation (Fig. 2). The map covers vast expanses
of eastern Europe and northern Asia. It depicts numerous linear zones and large ar-
eas of high conductivity in the Earth’s crust. The well-known arc-shaped Carpathian
anomaly (13) borders the Pannonian Basin. Its nature up to now remains a subject of
discussion (fluid? graphites?). Remarkable is the linear Kirovograd anomaly (10),
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Fig. 1 Magnetotelluric soundings along the profile Salekhard-Urengoy; one-dimensional interpre-
tation; 1 – conductance of the Mesozoic–Cenozoic sediments, 2 – relief of the Paleozoic basement
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Fig. 2 Map of crustal conductivity anomalies over the territory of the former Soviet Union. Crustal
anomalies of the presumably electron-conduction origin: (A) linear high-conductive zones, (B) vast
high-conductive areas. Crustal anomalies of presumably fluid origin: (C) linear conductive zones,
(D) conductive areas. Names of anomalies (arabic numbers): (1) Pechenga-Varguza, (1a) Lapland,
(2) Keivskaya, (3) Tiksheozerskaya, (4) Onega, (5) Ladoga, (5a) Bothnian, (6) Chudskaya,
(7) Baltic, (8) Vologda, (9) Tambov, (10) Kirovograd, (11) Kursk, (12) Vorontsovskaya,
(13) Carpathian, (14) Timano-Pechorskaya, (15) Frolovskaya, (16) Tien Shan, (17) Fergana,
(18) Anabar, (19) Bodaibinskaya, (20) Siberian, (21) Kamchatka, (22) Sakhalin, (23) Viluis,
(24) Minusinskaya, (25) Khatanga, (26) Izmail-Poltava, (27) North-German, (28) Pannonian,
(29) Donbass, (30) East-Siberian, (31) Norilsk, (32) Undino-Baleiskaya, (33) Kurunzulaiskaya,
(34) Mongolia-Okhotskaya, (35) Urals, (36) Kopet Dagh, (37) Tungusskaya (Zhamaletdinov,
1996)

which can be traced for 600 km from the Crimea to the Moscow syneclise. It is
interpreted as a belt of graphitization and/or dehydration caused by recent tectonic
activity. Considerable attention should be given to the concept, which attributes the
Kirovograd anomaly to the early stage of the continental rifting (Gordienko, 2002).
One of the most intensive anomalies is the Tien-Shan anomaly (16), caused by
graphite-bearing formations. High crustal conductivity can be observed within the
Baikal rift zone, the Tungus syneclise, and the Vilyuis syneclise. This is the Siberian
anomaly (20), which is assigned to crustal fluids forming a deep hydrosphere. Ev-
idently, the information on the deep electric conductivity may give a good grounds
for regional prognoses of the mineral resources.

Let us show an instructive result obtained on profiles crossing the Carpathian
anomaly. Figure 3 displays the Vp−velocity section along the seismic CELO5 Pro-
file and the resistivity section along the magnetotelluric PREPAN Profile. One
can see here an astonishingly good correlation of the high conductive zone in the
Carpathian arc (ρ = 4÷7 Ohm ·m) and low velocities zone (Vp = 5.2 km/s). Geo-
electric and seismic indications nicely supplement each other. Correlation of low
resistivities and low velocities testifies that the Carpathian anomaly has the fluid
nature (Jankowski et al., 2005).
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Fig. 3 Geoelectric and seismic models supplement each other (Jankovski et al., 2005)

We close our review of magnetotelluric developments by mentioning the suc-
cesses of surveys carried out in continental and global scale (Schultz et al. 1998;
Semenov 1998). We associate the progress in the three-dimensional interpretation
with development of methods of fast 3D modelling and application of quasi-one-
dimensional approaches reducing the three-dimensional inversion to an iterative se-
quence of one-dimensional inversions corrected by the 3D misfit. Nowadays due to
the promising results obtained by Zhdanov (2002) we are looking forward to the
elaborating of new mehods providing immediate three-dimensional inversion.

The weak point of the electromagnetic sounding with MTS priority is that
inhomogeneities in the uppermost layers may severely distort the electric field
and consequently the impedance tensor along with the apparent resistivities. The
distortions are of galvanic nature – they extend over the whole range of low
frequencies, causing static (“conformal”) shifts of the apparent resistivity curves.
The near-surface inhomogeneities affect the apparent resistivities, no matter how
low the frequency is. They can destroy the information on the deep conducti-
vity. There is a plethora of techniques for correcting these distortions (Bahr, 1988;



Introduction xxiii

Jones, 1988; Groom and Bailey, 1989; Vozoff, 1991; Singer, 1992; Berdichevsky
et al., 1998). But all these techniques are fraught with rough approximations
(with information losses) or even with subjective (sometimes erroneous) decisions
resulting in false structures.

We can considerably improve the MT ÷ MV complex by realising in full mea-
sure the potentials of the magnetovariational sounding. An advantage of MVS is that
at lower frequencies the induced currents penetrate deeper and deeper into the Earth,
so that their magnetic field and consequently the tipper and magnetic tensor are less
and less distorted by near-surface inhomogeneities. This remarkable property of the
magnetic field gives us the chance to save the electromagnetic sounding from the
static-shift problem (no electric field is measured). But excluding the electric field,
we face the problem of informativeness of the MV sounding. And here we hit upon
one of the most dramatic magnetotelluric delusion. It is commonly supposed that
“MV studies determine only horizontal conductivity gradients, while the vertical
conductivity distribution is not resolved” (Simpson and Bahr, 2005). Is it true? It is
true if MV studies are carried out in the narrow frequency range (in the profiling
mode) and it is not true in the case of MV studies carried out in the broad frequency
range (in the sounding mode). Let us consider a two-dimensional model with an
inclusion of higher conductivity in the upper layer resting on the resistive strata and
the conductive basement (Fig. 4). A depth to the conductive basement changes from
25 to 150 km. Compare the longitudinal apparent-resistivity curves ρxy, measured
outside the inclusion (site O1), with the real-tipper curves

∣∣ReWzy
∣∣,measured at the

same site O1, and with the magnetic-perturbation curves
∣∣Syy

∣∣, measured over the

Fig. 4 Illustrating the resolution of magnetotelluric and magnetovariational soundings. Model pa-
rameters: ρ′

1 = 100 Ohm ·m, ρ′′
1 = 10 Ohm ·m, v = 8 km, h1 = 1 km, ρ2 = 10,000 Ohm ·m, h2 =

24,49,99,149 km, ρ3 = 1 Ohm ·m. The ρxy-curves and |ReWzy|-curves are measured at a site
O1(y = −9), the

∣∣Syy
∣∣-curves are measured at a site O2(y = 0). Curve parameter: h = h1+h2
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inclusion (site O2). In the model under consideration the bell-shaped magnetovari-
ational curves of

∣∣ReWzy
∣∣ and

∣∣Syy
∣∣ quite distinctly resolve the vertical distribution

of conductivity (in the same way as the customary apparent-resistivity curves of
ρxy!). Proceeding from this model, we should correct statement from (Simpson and
Bahr, 2005) and say that the MV sounding reveals not only horizontal variations in
the Earth’s conductivity but the vertical variations as well. The physical meaning
of this unexpected result is rather simple. Naturally, the MV sounding of horizon-
tally homogeneous media with zero magnetovariational anomalies makes no sense.
But in the case of the horizontally inhomogeneous medium we observe the anoma-
lous magnetic field, which reflects the distribution of the excess currents. It hardly
needs proving that intensity of the excess currents is defined by the electric field
depending on the conductivity distribution σ(x,y,z). It follows from these relations
that magnetovariational response functions contain information on σ(x,y,z). So, the
MV sounding can be considered as a common frequency sounding using the mag-
netic field of excess currents distributed within a local horizontal inhomogeneity,
which plays a role of the buried source.

Studies in the integrated interpretation of MTS and MVS data are conducted
along two lines.

Firstly, methods for transforming the magnetic field into synthetic electric field
slightly distorted by near-surface inhomogeneities are elaborated. The idea of such
a transformation was proposed by Vanyan (Osipova et al., 1982). The first exper-
iments in this direction were carried out in the early 1980s (Osipova et al., 1982;
Burjanov et al., 1983). Recently Vanyan et al. (1997, 1998) suggested the algorithms
and computing programs for the two-dimensional transformation of the magnetic
field and successfully applied this approach for interpretation of MVS data obtained
in the Juan de Fuca subduction zone (western coast of the USA). These studies
played a vital role in the history of the experiment EMSLAB (Wannamaker et al.,
1989a, b), since they confirmed the existence of the continental asthenosphere.

Secondly, a strategy of straightforward MV inversion based on the minimization
of the tipper and magnetic tensor misfit in a wide frequency range is elaborated.
This approach goes back to the magnetotelluric experiments that were carried
out in 1988–1990 in the Kirghiz Tien Shan by geophysical teams of the Institute
of High Temperatures, Russian Academy of Sciences (Trapeznikov et al., 1997;
Berdichevsky and Dmitriev, 2002). These measurements were made on a profile
characterized by strong local and regional distortions of apparent resistivities that
dramatically complicated the interpretation of observation data. The situation has
been resolved only with MV soundings. Figure 5 shows the real tippers, Re Wzy,
and the geoelectric model fitting these observation data. The model contains an in-
homogeneous crustal conductive layer (a depth interval of 25÷55 km) and vertical
conductive zones connected with the known faults, the Nikolaev line (NL) and the
Atbashi-Inylchik faults (AIF). The figure also presents the model constructed from
seismic tomography data. The geoelectric model coincides remarkably well with
the seismic model. Low resistivities are reliably correlated with lower velocities.
This correlation confirms the validity of geoelectric reconstructions based on MVS
data. The studies in the mountains of Tien Shan indicate that MVS not only out-
lines crustal conductive zones but also stratifies the lithosphere. Developing this
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Fig. 5 Magnetovariational sounding in the Kirghiz Tien Shan Mountains. (A) Real tipper Re Wzy

along a profile crossing the Kirghiz Tien Shan. (B) The resistivity section from magnetovariational
data (Trapeznikov et al., 1997); NL – Nikolaev line, AIF – Atbashi-Inylchek faults; the resistivity
values in Ohm·m are given within blocks; the lower-resistivity crustal zones (ρ ≤ 50 Ohm ·m) are
shaded. (C) The velocity section from seismic tomography data (Roecker et al., 1993); values of
P-wave velocities in km/s are gven within blocks; the low-velocity crustal zones (VP ≤ 6.2 km/s)
are shaded

inference, one can propose a new scheme of electromagnetic sounding in which
MVS yields a basic reliable information on the Earth’s interior, whereas MTS is
applied for editing and extending the MVS results. Studies in this field are fa-
vored by appearance of programs combining MT and MV automatized inversions
(Golubev and Varentsov, 1994; Varentsov, 1999; Siripunvaraporn and Egbert, 2000;
Novozhynski and Pushkarev, 2001). The main virtue of such a strategy is that dif-
ficulties caused by near-surface distorting effects may arise only at the MTS stage
and we can constraint these distortions using reliable low-frequency references de-
rived from the inversion of MVS data. Here we would like to stress that Dmitriev
has proved the uniqueness theorem for two-dimensional inverse magnetovariational
problem (Berdichevsky et al., 2000, 2003) and this encouraging result determines
the future prospect of the electromagnetic sounding with MVS priority.

We believe that magnetovariational sounding with its rather high sensitivity
to horizontal and vertical conductivity variations and rather high immunity to
near-surface galvanic distortion should be considered as an efficient tool of the
modern geoelectrics. Geophysicists have every reason for developing new interpre-
tation technique that would realize the potentials of the magnetic field, especially in
the deep geoelectric studies.
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Chapter 1
The Magnetotelluric Response Functions

1.1 On the Deterministic Nature of the Impedadance Tensor

At the heart of the magnetotelluric sounding is a one-dimensional model named
after Tikhonov and Cagniard. The Tikhonov–Cagniard model is very simple
(Tikhonov, 1950; Cagniard, 1953). A plane vertically incident monochromatic elec-
tromagnetic wave illuminates the plane Earth consisting of homogeneous isotropic
layers with horizontal boundaries. Introduce a standard reference frame with hori-
zontal axes x, y directed northwards and eastwards respectively, and vertical axis
z directed downwards. On the Earth’s surface

E� =
[

0 Z
−Z 0

]
H� = Z

[
0 1

−1 0

]
H�, (1.1)

where

E� =
[

Ex

Ey

]
, H� =

[
Hx

Hy

]

are the horizontal components of the magnetotelluric field and Z is the scalar
complex-valued Tikhonov–Cagniard impedance. In expanded form

Ex = Z Hy, Ey = −Z Hx , Z = Ex

Hy
= − Ey

Hx
. (1.2)

Here the complex electric and magnetic vectors, E� and H�, are linearly polarized
in the mutually perpendicular directions.

The rotationally invariant impedance Z is a functional of the Earth’s resistiv-
ity �. The reciprocals of Z and � are the admittance Y = 1/Z and the conductiv-
ity � = 1/�. The inverse MTS problem reduces to reconstruction of �(z) or �(z)
from the parametric dependence of the impedance Z(z = 0, �) or the admittance
Y(z = 0, �) upon the frequency �.

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 3
DOI 10.1007/978-3-540-77814-1 1, C© Springer-Verlag Berlin Heidelberg 2008
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The question of physical validity of the Tikhonov–Cagniard model seemed to be
the controversial one. The discussion was opened by Wait (1954, 1962) and Price
(1962, 1967). They referred to the strong horizontal nonuniformity of the external
magnetic field and pointed to the necessity of serious limitations for MT sound-
ing. These limitations have been removed by Dmitriev and Berdichevsky (1979)
and Berdichevsky and Dmitriev (2002). They showed that the Tikhonov–Cagniard
model covers a broad class of magnetotelluric fields with anyhow fast but quasi-
linear variations of H� over distances comparable to the threefold field-penetration
depth. This considerably extends the boundaries of practical applicability of
the MT sounding. Moreover, in that class of fields the Tikhonov–Cagniard
impedance may be determined by the gradient magnetovariational sounding
(Berdichevsky et al., 1969; Schmucker, 1970; Weidelt, 1978; Berdichevsky and
Dmitriev, 2002):

Z = −i��o
Hz

�Hx/�x + �Hy/�y
. (1.3)

The experiments carried out in the late 1950s showed that the real magnetotel-
luric field may dramatically differ from (1.2). The impedance Z was being deter-
mined with large (occasionally very large!) scatter. What’s more, it depended on the
direction of the measurement axes x, y.

Berdichevsky (1960, 1963) and Cantwell (1960) attributed these effects to the
influence of lateral inhomogeneity of the Earth’s layers and went from the scalar
impedance measurements to the tensor ones. The validity of the tensor approach
has been confirmed by extensive magnetotelluric observations over many years.

Behind the tensor approach is the long-standing question on the existence and
nature of linear algebraic relations between horizontal components of the elec-
tromagnetic field in inhomogeneous media. Would we have to consider the mag-
netotelluric linear relationships as a postulate verified by statistics of numerous
observations? Or, more properly, can we turn to the common principles of clas-
sic electrodynamics and derive the linear relations directly from the Maxwell
equations?

The general theory of this question has been suggested by Berdichevsky and
Zhdanov (1984). They proved that the existence of invariant linear relationships with
coefficients reflecting the Earth’s conductivity is a special property of the electro-
magnetic field stemming from the structure of its generators. Electromagnetic fields
having this property are said to be fields of algebraic type. Considering fields of
algebraic type we can deduce the linear relationships between the field components
directly from the equations of Maxwell’s electrodynamics. The form of these rela-
tionships depends on the number of degrees of freedom characterizing the primary
field.

In our book we will follow the work by Berdichevsky and Dmitriev (1997) and
use a field excited by a primary plane wave propagating vertically from the iono-
sphere. This is the simplest field of algebraic type having two degrees of freedom
corresponding to two different polarizations of the primary plane. We are going to
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start from the Maxwell equations and construct a model with a functionally deter-
ministic magnetotelluric impedance tensor.

Let a plane elliptically polarized monochromatic wave with the components
Ex , Ey and Hx , Hy be incident vertically on the Earth’s surface z = 0 (Fig. 1.1) The
air is an ideal insulator. The Earth with magnetic permittivity �o of vacuum con-
sists of horizontally homogeneous isotropic layers with normal conductivity �N(z)
and contains a bounded inhomogeneous domain V with excess electric conductiv-
ity ��(x, y, z) = �(x, y, z) − �N(z). The problem is solved in a quasi-stationary
approximation.

The electromagnetic field within the Earth meets the equations

curl H = �E = �NE + j

curl E = i��oH ,
(1.4)

where j = �� E is the density of excess currents distributed within inhomogeneous
domain V.

We will represent E, H as the sum of the normal field EN, HN, and the anomalous
field EA, HA:

E = EN + EA, H = HN + HA.

The normal field EN(EN
x , EN

y , 0), HN(H N
x , H N

y , 0) is a horizontally uniform field
observed within the host Earth in the absence of the inhomogeneities. It satisfies the
equations

curl HN = �NEN,

curl EN = i��oHN .
(1.5)

Fig. 1.1 A layered model
with an inhomogeneous
three-dimensional domain V

V
σN + Δσ

σN µ0

x

y

z

Ex, Hx

Ey, Hy

air

earth
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In the presence of lateral inhomogeneities, the anomalous field
EA(EA

x , EA
y , EA

z ), HA(H A
x , H A

y , H A
z ), EA

z

∣∣
z=0 = 0 appears. Subtracting (I.5)

of (I.4), we arrive at equations for the anomalous field:

curl HA = �NEA + j,

curl EA = i��oHA.
(1.6)

From these equations we deduce the integral representations for the anomalous
field:

EA(r) =
∫∫∫

V

[
GE(r|rv)

]
j (rv) dV ,

HA(r) =
∫∫∫

V

[
GH(r|rv)

]
j (rv) dV,

(1.7)

where [GE] and [GH] are the electric and magnetic Green tensors for horizontally
layered medium:

[GE] =

⎡
⎢⎢⎢⎢⎢⎣

GE
xx GE

xy GE
xz

GE
yx GE

yy GE
yz

GE
zx GE

zy GE
zz

⎤
⎥⎥⎥⎥⎥⎦
, [GH] =

⎡
⎢⎢⎢⎢⎣

GH
xx GH

xy GH
xz

GH
yx GH

yy GH
yz

GH
zx GH

zy GH
zz

⎤
⎥⎥⎥⎥⎦. (1.8)

The Green tensors satisfy the equations

curl[GH(r|rv) ] = �N [GE(r|rv) ] + [� (r − rv)],

curl[GE(r|rv) ] = iω�o [GH(r|rv) ],
(1.9)

where [�] is the diagonal matrix consisting of the scalar Dirac 	-functions:

[� (r − rv)] =

⎡
⎢⎢⎢⎣

	 (r − rv) 0 0

0 	(r − rv) 0

0 0 	(r − rv)

⎤
⎥⎥⎥⎦ .

Here we should clarify how the curl of Green’s tensor is calculated. Let us write
[G] in the form

[G] = [Gx Gy Gz] ,
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where

Gx=

⎡
⎢⎢⎢⎣

Gxx

G yx

Gzx

⎤
⎥⎥⎥⎦ , Gy=

⎡
⎢⎢⎢⎣

Gxy

G yy

Gzy

⎤
⎥⎥⎥⎦ , Gz =

⎡
⎢⎢⎢⎣

Gxz

G yz

Gzz

⎤
⎥⎥⎥⎦ .

Then

curl [G] = [curl Gx curl Gy curl Gz]

=

⎡
⎢⎢⎢⎣

curlx Gx curlx Gy curlx Gz

curlyGx curlyGy curlyGz

curlzGx curlzGy curlzGz

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�Gzx

�y
− �G yx

�z

�Gzy

�y
− �G yy

�z

�Gzz

�y
− �G yz

�z

�Gxx

�z
− �Gzx

�x

�Gxy

�z
− �Gzy

�x

�Gxz

�z
− �Gzx

�x

�G yx

�x
− �Gxx

�y

�G yy

�x
− �Gxy

�y

�G yz

�x
− �Gxz

�y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.10)

Now let us divide the normal field EN,HN into two partial waves linearly polar-
ized in orthogonal directions.

The first polarization offers the wave with components EN
x , H N

y . Normalizing
this wave to magnetic field on the Earth’s surface, we get:

�

E x
N(z) = EN

x (z)

H N
y (0)

,
�

H y
N(z) = H N

y (z)

H N
y (0)

.

The second polarization offers the wave with components EN
y , H N

x . Normalizing
this wave to magnetic field on the Earth’s surface, we get:

�

E y
N(z) = EN

y (z)

H N
x (0)

,
�

H x
N(z) = H N

x (z)

H N
x (0)

.

The normal fields satisfy (1.2). Thus, on the Earth’s surface:

�

E x
N(0) = ZN

�

H y
N(0) = 1

�

E y
N(0) = −ZN

�

H x
N(0) = 1 ,

(1.11)
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where ZN is the normal impedance, that is, the Tikhonov–Cagniard impedance of
the horizontally layered host medium. Within the inhomogeneous domain V, the

normalized field
�

EN,
�

HN excites the excess currents with densities j1 (the first polar-
ization) and j2 (the second polarization).

Consider a normal field with arbitrary magnetic components Hxo = H N
x (0) and

Hyo = H N
y (0) on the Earth’s surface. Using the principle of superposition and sum-

ming the effects of excess currents, we determine the associated anomalous field.
According to (1.7):

EA(r) = Hxo

∫∫∫
V

[
GE( r|rv)

]
j2(rv)dV + Hyo

∫∫∫
V

[
GE( r|rv)

]
j1(rv)dV,

HA(r) = Hxo

∫∫∫
V

[
GH( r|rv)

]
j2(rv)dV + Hyo

∫∫∫
V

[
GH( r|rv)

]
j1(rv)dV .

In compact form

EA(r) = HxoJE2(r) + HyoJE1(r),

HA(r) = HxoJH2(r) + HyoJH1(r),
(1.12)

where

JF λ(r) =
∫∫∫

V

[
GF( r|rv)

]
jλ(rv)dV

with F(field) = E, H and 
 (polarization) = 1, 2.
And finally, taking into account (1.11), we get

Ex = EN
x + EA

x = Hxo J E2
x + Hyo

(
ZN + J E1

x

)
a

Ey = EN
y + EA

y = Hxo
(−ZN + J E2

y

) + Hyo J E1
y b

Hx = H N
x + H A

x = Hxo
(
1 + J H 2

x

) + Hyo J H1
x c

Hy = H N
y + H A

y = Hxo J H2
y + Hyo

(
1 + J H1

y

)
d

(1.13)

Eliminating Hxo, Hyo from (1.13c, d) and substituting these values in (1.13a, b),
we establish:

Ex = Zxx Hx + Zxy Hy,

Ey = Z yx Hx + Z yy Hy,
(1.14)

where
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Zxx = J E2
x − ZN J H2

y + (
J E2

x J H1
y − J E1

x J H2
y

)
1 + J H2

x + J H1
y + (

J H2
x J H1

y − J H1
x J H2

y

) ,

Zxy = ZN

(
1 + J H2

x

) + J E1
x + (

J E1
x J H2

x − J E2
x J H1

x

)
1 + J H2

x + J H1
y + (

J H2
x J H1

y − J H1
x J H2

y

) ,

Z yx = −ZN

(
1 + J H1

y

) + J E2
y + (

J E2
y J H1

y − J E1
y J H2

y

)
1 + J H2

x + J H1
y + (

J H2
x J H1

y − J H1
x J H2

y

) ,

Z yy = J E1
y + ZN J H1

x + (
J E1

y J H2
x − J E2

y J H1
x

)
1 + J H2

x + J H1
y + (

J H2
x J H1

y − J H1
x J H2

y

) .

Thus, we have deduced the complex-valued impedance tensor [Z] that transforms
the horizontal magnetic field H� into the horizontal electric field E�:

E� = [Z] H� , (1.15)

where

E� =
[

Ex

Ey

]
, [Z] =

⎡
⎣ Zxx Zxy

Z yx Z yy

⎤
⎦, H� =

⎡
⎣ Hx

Hy

⎤
⎦ .

The impedance tensor is functionally deterministic, being independent of the nor-
mal field intensity and polarization. It reflects the electrical structure of the Earth.

Now we can explain why the earliest magnetotelluric experiments were doomed
to failure. Applying the Tikhonov–Cagniard relations (1.1), (1.2) to the field
observed over the horizontally inhomogeneous Earth, we get a pseudoimpedance

Zpseudo =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ex

Hy
= Zxy + Zxx

Hx

Hy

− Ey

Hx
= −Z yx − Z yy

Hy

Hx

that depends on an arbitrary ratio between magnetic components. With unstable
field polarization, Zpseudo may dramatically change.

The impedance tensor [Z] has a second-order square matrix with Zxx , Z yy on
the principal diagonal (on the “diagonal”) and Zxy, Z yx on the secondary diagonal
(on the “antidiagonal”). By virtue of (1.14) these response functions depend on the
normal impedance ZN characterizing the one-dimensional layered background and
on the three-dimensional integrals J summing the effects of excess currents arising
within inhomogeneities. Clearly Zxx , Z yy and Zxy, Z yx carry the information on
vertical and horizontal variations in the Earth’s conductivity. Note, however, that
the basic information on the vertical distribution of the conductivity is given by
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the components Zxy and Z yx on the secondary diagonal, while the components
Zxx and Z yy on the principal diagonal indicate the geoelectric asymmetry of the
medium. By way of example consider (1.1) and (1.2) describing the horizontally
homogeneous layered model. Here Zxy = −Z yx = Z and Zxx = Z yx = 0. No wonder
that Zxy and Z yx are sometimes said to be principal impedances, whereas Zxx and
Z yy are referred to as secondary impedances. Such a paradoxical peculiarity of the
impedance tensor [Z] can be easily removed by rotating the magnetic field through
�/2 (Adam, 1964) and writing the impedance relation as

E� = [Z] H� = [Z][R(−�/2)[R(�/2)] H� = [
↔
Z]

↔
H� , (1.16)

where

[R(�)] =
[

cos � sin �

−sin � cos �

]

↔
H� = [R(�/2)] H� =

[
0 1

−1 0

] [
Hx

Hy

]
=
[

Hy

−Hx

]
=

⎡
⎢⎣

↔
H x

↔
H y

⎤
⎥⎦

and:

[
↔
Z] = [Z][R(−�/2)] =

[
Zxx Zxy

Z yx Z yy

] [
0 −1

1 0

]
=
[

Zxy −Zxx

Z yy −Z yx

]
=

⎡
⎣

↔
Z xx

↔
Z xy

↔
Z yx

↔
Z yy

⎤
⎦ .

Here [
↔
Z] is the Adam impedance tensor. In this representation, the basic information

on the vertical distribution of the conductivity is given by the components
↔
Z xx =

Zxy and
↔
Z yy = −Z yx on the principal diagonal, while the components

↔
Z xy = −Zxx

and
↔
Z yx = Z yy on the secondary diagonal indicate the geoelectric asymmetry of the

medium. Turning back to the horizontally homogeneous model described by (1.1)

and (1.2), we see that in the representation E� = [
↔
Z]

↔
H� the electric and magnetic

fields are collinear.
The components of the impedance tensor [Z] can be transformed into apparent

resistivities. In the horizontally homogeneous model the transform �A = |Z |2 /��o

gives a vivid qualitative picture of vertical resistivity profile. This useful property
of the one-dimensional impedance is inherited by components Zxy , Z yx of the
impedance tensor (though with some distortions) and hardly by components Zxx ,
Z yy . So, it would appear natural to calculate the amplitude and phase MT-curves
related to x, y-axes as

�xy =
∣∣Zxy

∣∣2
��o

�yx =
∣∣Z yx

∣∣2
��o

xy = Arg Zxy yx = Arg Z yx .

(1.17)
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Along with the impedance tensor [Z] we can introduce its inverse

[Y] = [Z]−1, (1.18)

which is the admittance tensor transforming the horizontal electric field E� into the
horizontal magnetic field H� = [Y] E�.

In the matrix form

[Y] =
[

Yxx Yxy

Yyx Yyy

]
, (1.19)

where

Yxx = Z yy

Zxx Z yy − Zxy Z yx
, Yxy = − Zxy

Zxx Z yy − Zxy Z yx
,

Yyx = − Z yx

Zxx Z yy − Zxy Z yx
, Yyy = Zxx

Zxx Z yy − Zxy Z yx
,

and

Hx = Yxx Ex + Yxy Ey,

Hy = Yyx Ex + Yyy Ey .

The impedance and admittance tensors carry the same information about the geo-
electric structure of the Earth, and from this point of view, it makes no difference
which of them is used as fundamental. Cagniard chose the impedance and appar-
ent resistivity, and this suited geophysicists who got accustomed to the apparent
resistivity measured with the DC vertical sounding method. There is little point in
abandoning this tradition, though we have to realize that the layered Earth consti-
tutes a system consisting of parallel-connected conductors (the Earth’s layers), and
the most natural way of characterizing such a system would seem to be as an admit-
tance, and therefore, as an apparent conductivity. It is not an accident that in many
magnetotelluric problems, it is easier to deal with the admittance (Berdichevsky
and Dmitriev, 2002). Consider, for instance, a one-dimensional model where the
admittance constitutes the weighted complex conductance :

Y =
∞∫

0

�(z)e
i��0

z∫
0

Y (z) d z
d z.

In concluding we note that model under consideration offers the linear relation-
ships between the electric fields measured at different sites of the Earth’s surface.
Let us consider horizontal electric fields E� at two sites: at an observation site and
at a base (reference) site B. According to (1.13)
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Ex (r) = EN
x + EA

x (r) = Hxo J E2
x (r) + Hyo

[
ZN + J E1

x (r)
]

,

Ey(r) = EN
y + EA

y (r) = Hxo
[−ZN + J E2

y (r)
] + Hyo J E1

y (r) ,
(1.20)

Ex (rB) = EN
x + EA

x (rB) = Hxo J E2
x (rB) + Hyo

[
ZN + J E1

x (rB)
]
,

Ey(rB) = EN
y + EA

y (rB) = Hxo
[−ZN + J E2

y (rB)
] + Hyo J E1

y (rB).
(1.21)

Eliminating Hxo, Hyo from (1.20) and (1.21), we get

E�(r) = [D (r|rB)] E�(rB), (1.22)

where

E�(r) =
[

Ex (r)

Ey(r)

]
, E�(rB) =

[
Ex (rB)

Ey(rB)

]

and

[D (r|rB)] =
[

Dxx (r|rB) Dxy(r|rB)

Dyx (r|rB) Dyy(r|rB)

]

=
[

J E2
x (r) ZN + J E1

x (r)

−ZN + J E2
y (r) J E1

y (r)

] [
J E2

x (rB) ZN + J E1
x (rB)

−ZN + J E2
y (rB) J E1

y (rB)

]−1

.

Recall that the tensor [D ( r|rB)] was introduced by Doll into the telluric current
method about 70 years ago. We will refer it as the Doll tensor. The basic result
of a telluric prospecting was given in a map showing effective electric intensity
defined as

Deff =
√

|det[D ( r|rB)] | . (1.23)

Summing up, we should say some words about stability of the impedance rela-
tions. The experience of manifold MTS-soundings carried out at the middle and
low latitudes in the frequency range from 102 to 10–4 Hz suggests that modern
noise-suppressing methods of MT-date processing (mathematical filtration, admit-
tance control, remote reference magnetotellurics, robust statistics, monitoring of
impedance scattering) may provide the impedance estimation with a scattering of
2–3% in modulus and 2–3◦ in phase (Gamble et al., 1979; Chave et al.,1987; Jones
et al., 1989; Berdichevsky et al., 1989a; Larsen, 1989; Larsen et al., 1996). The
most reliable and stable result can be obtained using the MT-data processing which
reinforces the remote reference magnetotellurics with robust statistics.
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Ex

H

D

12 mV/km

12 nT

DIFFERENCE 

PREDICTED 

RECORDED

Ex

Fig. 1.2 Comparison between recorded and predicted variations in the Ex -component (Wielondek
and Ernst, 1977)

Let us exemplify the stability of the impedance relation by experiments carried
out on the southeast of Poland (Wielondek and Ernst, 1977). Figure 1.2 shows the
observed variations in the Ex -component of electric field and the same variations
predicted from the variations in H- and D-components of magnetic field convolved
with the previously determined impedance [Z]. The predicted variations look like a
replica of the recorded variations including small details.

1.2 Rotation of the Impedance Tensor

Let us orient the components Zxx , Zxy, Z yx , Z yy of the impedance tensor [Z] in the
direction corresponding to their first subscript. It means that Zxx , Zxy are oriented in
the x-direction, and Z yx , Z yy are oriented in the y-direction. The orientation of the
impedance components complies with the orientation of the corresponding electric
field components.

How do the components of the impedance tensor [Z] change as a frame of refer-
ence rotates? Let � be a clockwise rotation angle (Fig. 1.3). Consider the transition
from the old axes x, y to the new axes x ′, y′ and conversely.

The direct and converse rotation matrices are

[R(�)] =
[

cos � sin �

− sin � cos �

]
, [R(�) ] −1 =

[
cos � −sin �

sin � cos �

]
. (1.24)
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Fig. 1.3 Rotation of a
reference frame

Thus,

E�(�) = [R(�)]E� = [R(�)][Z] H� = [R(�)][Z] [R(�)]−1[R(�)]H�

= [Z(�)] H�(�),

where

[Z(�)] = [R(�)][Z][R(�) ]−1. (1.25)

In full form, we have

Zxx (�) = Zxx cos2 � + Z yy sin2 � + ( Zxy + Z yx )sin � cos �

Zxy (�) = Zxy cos2 � − Z yx sin2 � − ( Zxx − Z yy )sin � cos �

Z yx (�) = Z yx cos2 � − Zxy sin2 � − ( Zxx − Z yy )sin � cos �

Z yy (�) = Z yy cos2 � + Zxx sin2 � − ( Zxy + Z yx )sin � cos �

(1.26)

or

Zxx (�) = Z2 + Z3 sin 2� + Z4 cos 2�

Zxy(�) = Z1 + Z3 cos 2� − Z4 sin 2�

Z yx (�) = − Z1 + Z3 cos 2� − Z4 sin 2�

Z yy(�) = Z2 − Z3 sin 2� − Z4 cos 2� ,

(1.27)

where

Z1 = Zxy − Z yx

2
Z2 = Zxx + Z yy

2

Z3 = Zxy + Z yx

2
Z4 = Zxx − Z yy

2
.

One can readily see that

Zxx (�) = Zxx (� + �) = Z yy (� + �/2)

Zxy(�) = Zxy (� + �) = − Z yx (� + �/2)

Z yx (�) = Z yx (� + �) = − Zxy(� + �/2)

Z yy(�) = Z yy(� + �) = Zxx (� + �/2).

(1.28)
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The principal rotational invariants of the magnetotelluric impedance tensor are
(Berdichevsky, 1968; Sharka and Menvielle, 1997):

I1 = tr [Z] = Zxx + Z yy a

I2 = det [Z] = Zxx Z yy − Zxy Z yx b

I3 = tr [
↔
Z] = tr [Z][R(−�/2)] = ↔

Zxx + ↔
Z yy = Z xy − Z yx , c

(1.29)

where tr [Z] and det [Z] are the trace and determinant of the impedance tensor [Z],

while tr [
↔
Z] is the trace of the Adam impedance tensor [

↔
Z].

Using (1.29), we introduce the effective impedance Zeff and the Berdichevsky
impedance Zbrd:

Zeff = √
Zxx Z yy − Zxy Z yx ,

Zbrd = Z1 = Zxy − Z yx

2
.

(1.30)

These three independent invariants can be supplemented with the quadratic
invariant derived from (1.29):

I4 = I2
1 + I2

3 − 2I2 = tr [C] = Z2
xx + Z2

xy + Z2
yx + Z2

yy , (1.31)

where tr [C] is the trace of the tensor [C] = [Z][Z]T, T denotes the transposition.
Since [Z] is determined by eight independent real-valued elements, the num-

ber of independent real rotational invariants should be less than eight. Sharka and
Menvielle (1997) proved that the maximum number of the real independent invari-
ants is equal to seven. They suggested the following standard set of independent
rotational invariants:

J1 = 2Re Zbrd = Re I3 = Re Zxy − Re Z yx a

J2 = 2Im Zbrd = Im I3 = Im Zxy − Im Z yx b

J3 = tr [Re Z] = Re I1 = Re Zxx + Re Z yy c

J4 = tr [Im Z] = Im I1 = Im Zxx + Im Z yy d

J5 = det [Re Z] = Re Zxx Re Z yy − Re ZxyRe Z yx e

J6 = det [Im Z] = Im Zxx Im Z yy − Im ZxyIm Z yx f

J7 = Im det [Z] = Im ( Zxx Z yy − Zxy Z yx ) , g

(1.32)

where

[Re Z] =
[

Re Z xx Re Z xy

Re Z yx Re Z yy

]
, [Im Z] =

[
Im Z xx Im Z xy

Im Z yx Im Z yy

]
.
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From (1.29) and (1.32) we can derive another real-valued invariants:

J8 = J5 − J6 = det [Re Z] − det [Im Z] = Re det [Z] a

J9 =
√

Re2 I3 + Re2 I1 −2 J5

=
√

Re2 Zxx + Re2 Zxy + Re2 Z yx + Re2 Z yy = ‖Re Z‖ b

J10 =
√

Im2 I3 + Im2 I1 −2 J6

=
√

Im2 Zxx + Im2 Zxy + Im2 Z yx + Im2 Z yy = ‖Im Z‖ c

J11 =
√

|I1|2 + |I3|2 − 2(J5 + J6)

=
√

|Zxx |2 + | Zxy |2 + | Z yx |2 + | Z yy |2 = ‖Z‖ , d

(1.33)

where ‖Re Z‖, ‖Im Z‖, ‖Z‖ are the Euclidean norms of the matrices [Re Z],
[Im Z], [Z] respectively.

Two more real-valued rotational invariant are

J12 = Im (Zxy Z̄ yy + Zxx Z̄ yx ), (1.34)

J13 = Im (Zxx Z̄ xy + Z yx Z̄ yy), (1.35)

where the bars denote the complex conjugation.
With all these invariants one can construct a standard set of parameters that help

to reveal and classify the geoelectric structures of the Earth.

1.3 Dimensionality of the Impedance Tensor

The general properties of the impedance tensor depend on the dimensionality D of
the magnetotelluric model, that is, on the number of coordinates required for its
description.

We deal with one-dimensional (1D), two-dimensional (2D) and three-
dimensional (3D) models as well as with superimposition (2D + 3D, 3D + 3D,
2D + 2D) models. Respectively, we consider the one-dimensional, two-dimensional
and three-dimensional impedance tensors as well as the superimposition impedance
tensor.

The number n of real quantities which determine the complex-valued impedance
tensor are considered as a number of degrees of its freedom. A simple relation holds
between n and D:

n = 2D. (1.36)
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1.3.1 The One-Dimensional Impedance Tensor

In the 1D-model the conductivity �(z) varies only with depth z. Here D = 1 and
n = 2. The one-dimensional impedance tensor assumes the form

[Z] = Z

[
0 1

−1 0

]
= Re Z

[
0 1

−1 0

]
+ iIm Z

[
0 1

−1 0

]
, (1.37)

where scalar Z is the Tikhonov–Cagniard impedance (no mater how axes x, y are
directed):

Z = i��o
Ex

d Ex/dz
= i��o

Ey

d Ey/dz
= − 1

�

d Hy/dz

Hy
= − 1

�

d Hx/dz

Hx
. (1.38)

The necessary condition for the one-dimensionality is

Zxx = Z yy = 0, Zxy = −Z yx . (1.39)

This is the simplest magnetotelluric model. The one-dimensional impedance Z
and admittance Y = 1/Z meet the Riccati equations

d Z

dz
− �Z2 = i��o,

dY

dz
+ i��oY 2 = −�, (1.40)

where Re Z ≥ 0 and Im Y ≥ 0, while 0 ≤ arg Z ≤ −π/2 and 0 ≥ arg Y ≤ π/2.
When lowering frequency, the impedance module, |Z |, monotonically descends.

The apparent resistivity is

�A = |Z |2
��o

= 1

��o |Y |2 . (1.41)

The slope of apparent-resistivity curves plotted on log–log scale is bounded by
± arctan 2.

From (1.38) we readily derive

|Ex (z)| = |Ex (0)| exp

(
−��o

z∫
0

Im Y (z) dz

)
,

∣∣Hy(z)
∣∣ = ∣∣Hy(0)

∣∣ exp

(
−

z∫
0

�(z)Re Z (z) dz

)
,

(1.42)

where Hy(0) = 2 H p(0) is the double primary magnetic field H p(0) impinging
on the Earth’s surface z = 0. Analysis of (1.42) shows that in any layered one-
dimensional model, electric and magnetic fields descend monotonically with depth
and the faster, the higher the frequency is.
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Let us consider a three-layered K-type model with �2 >> �1, h2 >> h1, �3 = 0.

This generalized model characterizes the typical geoelectric structure of the upper
Earth’s layers. The first layer represents conductive sedimentary strata, the second
layer relates to the resistive lithosphere, and the third layer simulates the highly
conductive mantle.

Solving the Riccati equation, we get

Z = Ex

Hy

= − Ey

Hx

= −��o

k1
tan h

{
ik1h1 + tan h−1 k1

k2
tan hik2h2

}
, (1.43)

where k1 = √
i��o/�1 and k2 = √

i��o/�2, Im k > 0 (Berdichevsky and Dmitriev,
2002). The apparent-resistivity and impedance-phase curves, �A and , calculated
for �1 = 10 Ohm·m, h1 = 1 km, �2 = 10000 Ohm·m, h2 = 49 km, �3 = 0 are shown
in Fig. 1.4. Examine the informativeness of different portions of these curves.

The low-frequency asymptotics of the impedance Z gives

Z = − i��oh

1 − i��oS1h2
, when �2 >> �1, h 2 >> h 1 and � <<

1

�oS1h1
, (1.44)

where S1 = h1/�1 and h = h1 + h2. Here two frequency intervals are of specific
interest.

If ��oS1h2 >> 1, then

Z = 1

S1
. (1.45)

This frequency interval corresponds to the ascending branch of the �A-curve. It con-
tains information on the conductance S1 of the upper layer. Its title is the S1-interval.
Within the S1-interval the �A-curve merges with the S1-line, while the impedance
phase nears to zero. According to (1.45), equation for the S1-line is

�A = (
√

T )2

2��oS2
1

.

In bilogarithmic coordinates, this is

log �A = 2log
√

T − log2��oS2
1 .

Evidently, the S1-line is tilted at an angle of arctan 2 = 63.43o to the axis of
√

T .
It intersects the line �A = 1 Ohm · m at

√
TS1 , from which we can determine

S1 = 1√
2��o

√
TS1 or S1(siemens) = 356

√
TS1 (second).
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Fig. 1.4 Three-layered
apparent-resistivity and
impedance-phase curves
characterizing the geoelectric
structure of the
tectonosphere. Model
parameters: �1 = 10 Ohm·m,

h1 = 1 km,

�2 = 10 000 Ohm·m
h 2 = 49 km, �3 = 0

If ��0S1h2 << 1, then

Z = −i��oh. (1.46)

This frequency interval corresponds to the descending branch of the �A-curve. It
contains information on the total thickness h of the layers underlaid with conductive
basement. Its title is the h-interval. Within the h-interval the �A-curve merges with
the h-line, while the impedance phase nears to −�/2. According to (1.46), equation
for the h-line is

�A = 2��oh2
1

(
√

T )2
.
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In bilogarithmic coordinates, we have

log �A = −2log
√

T + log2��oh2
1.

Evidently, the h-line is tilted at an angle of -arctan 2 = −63.43o to the axis of√
T . It intersects the line �A = 1 Ohm · m at

√
Th , from which we can determine

h = 1√
2��o

√
Th or h(kilometer) = 0.356

√
Th(second).

The remarkable property of the h-interval is that the depth h to the perfect con-
ductor can be obtained immediately from the impedance, h = |Z | /��o, without
any additional information. Applying this formula for an arbitrary layered medium,
we get at any frequency so-called effective penetration depth heff. Following Weidelt
(1972), we draw analogy with a center of masses and consider heff as the depth to
the center of currents induced in the Earth:

heff = |Z |
��o

=
√

�A

��o
= 1

��o

∣∣∣∣ Ex (0)

Hy(0)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∞∫
0

Hy dz

∞∫
0

jx dz

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∞∫
0

z d Hy

dz dz

∞∫
0

jx dz

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∞∫
0

z jx dz

∞∫
0

jx dz

∣∣∣∣∣∣∣∣∣
.

(1.47)

Note that in the homogeneous half-space of resitivity � the effective penetration
depth heff is proportional to the skin-depth 	:

heff = 1√
2

	 =
√

�

��o
,

where

	 =
√

2�

��o
.

The h-interval is separated from the S1-interval by a transition zone embracing
the maximum of the �A-curve. The position of the maximum can be defined from
the approximate equation �max�0S1h2 ≈ 1 whence

Tmax ≈ 2��oS1h2. (1.48)

Thus, with T << Tmax we obtain information on S1 and with T >> Tmax we
obtain information on h. The informativeness of apparent resistivities depends on
parameter ��oS1h2. Note that this parameter reflects the distribution of current
induced in the Earth. With some work it is shown that



1.3 Dimensionality of the Impedance Tensor 21

��oS1h2 ≈
∣∣∣∣ J1

J3

∣∣∣∣ , (1.49)

where J1 and J3 are currents induced in the upper layer and in the conductive base-
ment (Berdichevsky and Dmitriev, 2002).

More detailed consideration of the one-dimensional model can be found in the
basic works by Weidelt (1972, 1978) and Weidelt and Kaikkonen (1994) as well
as in the books by Kaufman and Keller (1981), Whittall and Oldenburg (1992) and
Berdichevsky and Dmitriev (2002).

1.3.2 The Two-Dimensional Impedance Tensor

In the 2D-model the conductivity varies along the vertical axis z and one of the
horizontal axes, x or y, perpendicular to the model strike. The magnetotelluric
field splits into two independent modes: (1) the TM-mode (transverse magnetic
mode – the magnetic field is transverse to vertical direction), and (2) the TE-mode
(transverse electric mode – the electric field is transverse to vertical direction). The
TM- and TE-modes are frequently referred to as the H-polarization (the magnetic
field is polarized along the model strike) and the E-polarization (the electric field is
polarized along the model strike).

Let the x-axis run along the strike. Then the TM-mode is presented by compo-
nents Ey, Ez, Hx , where Hx obeys the equation

div

(
1

�
grad Hx

)
+ i��o Hx = 0 (1.50)

and

Ey = 1

�

�Hx

�z
, Ez = − 1

�

�Hx

�y
, (1.51)

while the TE-mode is presented by components Ex , Hy, Hz , where Ex obeys the
equation

div grad Ex + i��o�Ex = � Ex + i��o�Ex = 0 (1.52)

and

Hy = 1

i��o

�Ex

�z
, Hz = − 1

i��o

�Ex

�y
. (1.53)

It is common for the magnetotelluric theory to ignore galvanic coupling between
the ionosphere and the Earth and accept that the electric conductivity of the air
is zero (Berdichevsky and Dmitriev, 2002). If this is the case, we assume that
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on the lower side of the Earth’s surface Ez = 0 and, according to (1.51), get a
simple boundary condition, for the TM-mode, Hx |z=0 = const . The constant is
taken as double primary magnetic field 2H p and thus it fits with the normal (one-
dimensional) magnetic field observed at a great distance from the inhomogeneous
region.

The horizontal directions along and across the strike of the 2D-model are labeled
as the longitudinal direction (notation “||” ) and the transverse direction (notation
“⊥” ). It is plain that any transverse vertical plane is a plane of the mirror symmetry.
Then, J E1

y , J E2
x , J H1

x , J H2
y and according to (1.14),

[Z] =
⎡
⎣ 0 Zxy

Z yx 0

⎤
⎦ =

⎡
⎣ 0 Z‖

−Z⊥ 0

⎤
⎦=

⎡
⎣ 0 Re Z‖

−Re Z⊥ 0

⎤
⎦ + i

⎡
⎣ 0 Im Z‖

−Im Z⊥ 0

⎤
⎦,

(1.54)

where Z‖ = Zxy is the longitudinal impedances (TE-impedance) and Z⊥ = −Z yx

is the transverse impedance (TM-impedance):

Z‖ = ZN + J E1
x

1 + J H1
y

, Z⊥ = ZN − J E2
y

1 + J H2
x

.

Here, D = 2 and n = 4.
Considering longitudinal and transverse impedances, we can calculate the longi-

tudinal and transverse apparent resistivities and phases:

�‖ =
∣∣Z‖∣∣2
��o

�⊥ =
∣∣Z⊥∣∣2
��o

‖ = arg Z‖ ⊥ = arg Z⊥.

(1.55)

Now rotate axes x, y clockwise through an angle �. With (1.27) we obtain

Zxx (�) = Z‖ − Z⊥

2
sin 2�

Z xy(�) = Z‖ + Z⊥

2
+ Z‖ − Z⊥

2
cos 2�

Z yx (�) = − Z‖ + Z⊥

2
+ Z‖ − Z⊥

2
cos 2�

Z yy(�) = − Z‖ − Z⊥

2
sin 2�,

(1.56)

whence, with account for (1.29a),

Z xx (�) + Z yy(�) = tr [Z] = I1 = 0, (1.57)
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and

tan 2� = Zxx (�) − Z yy(�)

Zxy(�) + Z yx (�)
. (1.58)

One can see that the 2D-impedance has zero trace. But it should meet an addi-
tional condition

Im
Zxx (�) − Z yy(�)

Zxy(�) + Z yx (�)
= 0

to ensure � to be real. On rearrangement with account for (1.57), this condition can
be written as

Im (Zxy Z̄ yy + Zxx Z̄ yx ) = J12 = 0, (1.59)

where J12 is a rotational invariant defined by (1.34).
Generally the invariants I1 and J12 characterize the geoelectric asymmetry (the

skewness ) of the medium. If I1 = 0 and J12 = 0, then a model has a vertical plane of
mirror symmetry of �(x, y, z) that passes through the observation point. Following
Swift (1967) and Bahr (1988), we use these asymmetry parameters in normalized
form. The Swift skew is

skewS =
∣∣∣∣ I1

I3

∣∣∣∣ =
∣∣∣∣ Zxx + Z yy

Zxy − Z yx

∣∣∣∣ (1.60)

and the Bahr skew is

skewB =
√ |J12|

|I3| =
√∣∣Im (Zxy Z̄ yy + Zxx Z̄ yx )

∣∣∣∣ Zxy − Z yx

∣∣ . (1.61)

Note that the parameter skewB differs from the asymmetry parameter η initially
introduced by Bahr. We have skewB = η/

√
2.

In the 2D-model, asymmetry parameters skewS and skewB are equal to zero:

skewS = 0, skewB = 0 . (1.62)

This is the necessary condition for the two-dimensionality. With this condition,
we can turn to (1.58) and determine an angle � defining the strike of the two-
dimensional structure (modulo �/2). Rotating the reference frame counterclock-
wise through the angle �, we obtain the impedance tensor (1.54) with components
Z‖, Z⊥ on the secondary diagonal. Such a tensor with zero principal diagonal and
nonzero secondary diagonal will be specified as an antidiagonal tensor.
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1.3.3 The Three-Dimensional Impedance Tensor

In the 3D-model the conductivity varies in all three directions, that is, along the
x, y, z-axes. Here D = 3 and n = 8.

Generally

[Z] =
[

Zxx Zxy

Z yx Z yy

]
=
[

Re Z xx Re Z xy

Re Z yx Re Z yy

]
+ i

[
Im Z xx Im Z xy

Im Z yx Im Z yy

]
. (1.63)

Let skewS = 0 and skewB = 0. This indicates that the three-dimensional medium
has no vertical plane of mirror symmetry.

From the variety of 3D-models we set off the symmetric models with a vertical
plane of mirror symmetry. If the observation point is on this symmetry plane, then,
in line with (1.62), skewS = 0 and skewB = 0. Here we have the impedance tensor
[Z] that can be reduced to the antidiagonal form.

Among three-dimensional symmetric models we identify the axisymmetric mod-
els, with a vertical axis of symmetry. Here skewS and skewB are everywhere equal
to zero, and the tensor [Z] can be reduced to the antidiagonal form at any obser-
vation point. Considering an axisymmetric model, we establish two characteristic
directions: the radial direction (notation “r”) and the tangential direction (notation
“t”). Let the x-axis run in the radial direction. Then we have a tensor [Z] with
Zxx = 0, Zxy = Zr , Z yx = −Zt , Z yy = 0 where Zr and Zt are the radial and
tangential impedances which yield the radial and tangential apparent resistivities
and phases:

�r = |Zr |2
��o

�t = |Zt |2
��o

r = arg Zr t = arg Zt .

(1.64)

We see that (1.62) is also the necessary condition for the axisymmetric three-
dimensionality.

In the special case that observation point lies on the axis of symmetry, the
impedance tensor assumes the same form as in the 1D-model:

[Z] = Zc

[
0 1

−1 0

]
= Re Zc

[
0 1

−1 0

]
+ iIm Zc

[
0 1

−1 0

]
, (1.65)

where scalar Zc is the central impedance.
We have examined some simple effects concerned with symmetry of the 2D and

3D-medium. It is believed that in the 3D-models we may observe more complicated
effects, for instance, the quasi-symmetry effect indicated by zero skewS and nonzero
skewB:

skewS = 0, skewB = 0 . (1.66)
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1.3.4 The Superimposition Impedance Tensor

Let the host horizontally homogeneous layered medium contain local near-
surface two- or three-dimensional inhomogeneities over a regional two- or three-
dimensional structure. This model will be referred to as the superimposition
model. It simulates conditions encountered in many provinces of our planet where
small-scale (local) near-surface inhomogeneities are superimposed on large-scale
(regional) structures.

Following Wannamaker et al. (1984) and Zhang et al. (1987), we look for rela-
tionships between fields ES

� , HS
� and impedance [ZS], observed in the superimposi-

tion model, and fields ER
� , HR

� and impedance [ZR], observed in the regional model
(Fig. 1.5). The superimposition model contains local inhomogeneities Vloc and a
regional structure Vreg, while the regional model contains only the regional struc-
ture Vreg.

Let the superimposition and regional models be excited by the same elliptically
polarized plane monochromatic wave with components Hxo, Hyo on the Earth’s
surface. By virtue of (1.12)

ER
x = EN

x + EAR

x = Hxo J E R2
x + Hyo

(
ZN + J ER1

x

)
a

ER
y = EN

y + EAR

y = Hxo

(
−ZN + J E R2

y

)
+ Hyo J E R1

y b

ES
x = EN

x + EAS

x = Hxo J E S2
x + Hyo

(
ZN + J E S1

x

)
c

ES
y = EN

y + EAS

y = Hxo

(
−ZN + J E S2

y

)
+ Hyo J E S1

y d

H S
x − H R

x = H AS

x − H AR

x = Hxo

(
J HS2

x − J HR2
x

)
+ Hyo

(
J HS1

x − J HR1
x

)
e

H S
y − H R

y = H AS

y − H AR

y = Hxo

(
J HS2

y − J HR2
y

)
+ Hyo

(
J HS1

y − J HR1
y

)
, f

(1.67)

Vreg Vreg

σN σN

Ex, Hx Ex, Hx

Ey, Hy Ey, Hy

superimposition model

Vloc Vloc

regional model

Fig. 1.5 Superimposition model and regional model
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where ZN is the normal impedance of the horizontally layered host medium and
JF M λ are convolutions

JF M λ(r) =
∫∫∫

VM

[
GF (r|rv )

]
jλ(rv)dV

with F (field) = E, H , M (model) = S (superimposition), R (regional), 
 (polariza-
tion) = 1, 2.

Eliminating Hxo, Hyo from (1.67a,b) and substituting these values into (1.67 c,d
and e, f), we obtain

ES
� = [e] ER

� HS
� = HR

� + [h̃]ER
� = {[I] + [h̃] [ZR]}HR

� = [h] HR
� , (1.68)

where [I] is the identity matrix

[I] =
[

1 0
0 1

]

and [e], [h̃], [h] are matrices of electric and magnetic distortions caused by local
near-surface inhomogeneities:

[e] =
[

exx exy

eyx eyy

]
, [h̃] =

[
h̃xx h̃xy

h̃ yx h̃ yy

]
(1.69)

and

[h] = [I] + [h̃][ZR] =
[

1 + h̃xx ZR
xx + h̃xy ZR

yx h̃xx ZR
xy + h̃xy ZR

yy

h̃ yx ZR
xx + h̃ yy ZR

yx 1 + h̃ yx ZR
xy + h̃ yy ZR

yy

]
. (1.70)

The components of distortion matrices [e] and [h̃] are

exx =
Z2

N + ZN

(
J ES1

x − J ER2
y

)
+ J ES2

x J ER1
y − J ES1

x J ER2
y

Z2
N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

exy =
ZN

(
J ER2

x − J ES2
x

)
+ J ER2

x J ES1
x − J ES2

x J ER1
x

Z2
N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

eyx =
ZN

(
J ES1

y − J ER1
y

)
+ J ER1

y J ES2
y − J ES1

y J ER2
y

Z2
N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

eyy =
Z2

N + ZN

(
J ER1

x − J ES2
y

)
+ J ER 2

x J ES1
y − J ER1

x J ES2
y

Z2
N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

(1.71)
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and

h̃xx =
(

ZN − J ER2
y

) (
J HS1

x − J HR1
x

)
+ J ER1

y

(
J HS2

x − J HR2
x

)
Z2

N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

h̃xy =
(

ZN + J ER1
x

) (
J HR2

x − J HS2
x

)
+ J ER2

x

(
J HS1

x − J HR1
x

)
Z2

N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

h̃ yx =
(

ZN − J ER2
y

) (
J HS1

y − J HR1
y

)
+ J ER1

y

(
J HS2

y − J HR2
y

)
Z2

N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

h̃ yy =
(

ZN + J ER1
x

) (
J HR2

y − J HS2
y

)
+ J ER2

x

(
J HS1

y − J HR1
y

)
Z2

N + ZN

(
J ER1

x − J ER2
y

) + J ER2
x J ER1

y − J ER1
x J ER2

y

.

(1.72)

Now we can derive relation between the superimposition impedance, [ZS], and
the regional impedance, [ZR]. Following Zhang et al. (1987), we write:

ES
� = [e] ER

� = [e] [ZR] HR
� = [e] [ZR] [h]−1HS

� = [ZS] HS
� , (1.73)

where

[ZS] = [e] [ZR] [h]−1. (1.74)

Thus we expand the superimposition impedance, [ZS], in components of the
regional impedance, [ZR]. This decomposition reduces to the left and right-
multiplication of the regional impedance [ZR] by the matrices [e] and [h]−1 reflect-
ing electrical and magnetic anomalies caused by local inhomogeneities. It will be
referred to as the local-regional decomposition, LR-decomposition.

Chave and Smith (1994) considered the local-regional decomposition in terms of
the localized Born approximation (Habashy et al., 1993). They believe that the local-
regional decomposition is valid if the regional field is uniform across the distorting
local inhomogeneity. However, in our consideration the regional field does not need
any restriction. Thus, the local-regional decomposition can be applied to rather wide
class of superimposition models.

An important point is that at low frequencies the local-regional decomposition
can be significantly simplified (Bahr, 1985). If the skin-depth is much larger than
dimensions of near-surface inhomogeneities, we can neglect the local induction and
take into account only quasi-static effects caused by excess charges. With this sim-
plification, the electric and magnetic distortion matrices, [e] and [h̃], are treated as
real-valued and frequency-independent. Furthermore, we can assume that [ZR] → 0
and [h] → [I] as � → 0. Hence, the magnetic anomalies caused by small-scale
near-surface inhomogeneities decay and the low-frequency local-regional decom-
position may be written in the truncated form
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[ZS] = [e] [ZR]. (1.75)

It would be instructive to evaluate, at least roughly, the frequencies that allow
for truncating the LR-decomposition. Let us consider a three-layered K-type
model describing a one-dimensional normal background with �2 >> �1, h 2 >> h 1

�3 = 0. According to (1.45) and (1.46),

Z = Ex

Hy
≈

⎧⎪⎨
⎪⎩

1

S1
in the S1 − interval

−i��oh in the h − interval ,

(1.76)

whence

Ex S1

Hy
= J1

Hy
= �

J 1 ≈
{

1 in the S1 − interval
−i��oS1h2 in the h − interval ,

(1.77)

where J1 = Ex S1 is the current induced in the upper layer and
�

J 1 is its normalized
value. From (1.77), taking into account (1.48), we get

∣∣∣∣∣
�

J 1(h − interval)
�

J 1(S1 − interval)

∣∣∣∣∣ ≈ Tmax

T
, (1.78)

where Tmax is a period of the maximum of the apparent resistivity curve. To esti-
mate the magnetic anomalies caused by a near-surface inhomogeneity, we assume

that their intensity varies proportionally with the normalized current
�

J 1 induced
in the first layer. Within the S1-interval, anomalies in horizontal components of
the magnetic field do not usually exceed 25 ÷ 50%. Thus, according to (1.78), at
T > 10Tmax we observe negligibly small magnetic anomalies (2.5 ÷ 5%) allowing
for the truncated decomposition.

For more precise estimates we have to examine the superimposition models
numerically. To this end, an approximate hybrid method suggested by Berdichevsky
and Dmitriev (1976) can be used.

Let us examine a (3D + 2D)-superimposition model shown in Fig. 1.6. It consists
of three layers: conductive sediments (�1), resistive lithosphere (�2) and highly con-
ductive mantle (�3). The model contains a local three-dimensional inhomogeneous
inclusion L of width w in the sediments and a regional two-dimensional homoge-
neous prism R of width wR in the lithosphere, the strike of the prism being along the
x−axis. Here wL << wR so that the regional field can be assumed uniform in the
area of the local inclusion.

The problem is solved in three stages.
At the first stage, we solve the two-dimensional problem for the prism R in the

absence of the inclusion L and over the middle of the prism determine the regional
impedance with longitudinal and transverse antidiagonal components:
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Fig. 1.6 Illustrating the
construction of a
(3D + 2D)-superimposition
model by
Berdichevsky–Dmitriev’s
hybrid method

[ZR] =
[

0 Z‖

−Z⊥ 0

]
. (1.79)

At the second stage, we determine the electric and magnetic distortion tensors [e]
and [h], solving the three-dimensional problem for the inclusion L and the prism R
with wR → ∞. Using the low-frequency thin-sheet approximation, we find

[e] =
[

exx exy

eyx eyy

]
. (1.80)

To find the magnetic distortion tensor, we evaluate the excess current in the sed-
iments:

J = S ES
� − S1ER

�

S =
{

S1 = h1/�1

SL = h1/�L

outside L
inside L

(1.81)

and calculate the anomalous magnetic field from conditions of its discontinuity at
the current layer:
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HA
� = 1

2
[R(−π/2)] J = 1

2
[R(−π/2)]

(
S ES

� − S1ER
�

)

= 1

2
[R(−π/2)] (S [e] − S1[I] )ER

� = [h̃] ER
� ,

(1.82)

where

[h̃] = 1

2
[R(−�/2)] (S [e] − S1[I] )

and [R], [I] are rotationl and identity matrices:

[R(−�/2)] =
[

0 −1

1 0

]
, [I] =

[
1 0

0 0

]
.

Finally, with account for (1.68) and (1.70), we write

HS
� = [h] HR

� , (1.83)

where

[h] = [I] + [h̃] [ZR]. (1.84)

The components of magnetic distortion tensor [h] are

hxx = 1 + 1

2
(S eyy − S1)Z⊥ hxy = −1

2
S eyx Z‖

hyx = −1

2
S exy Z⊥ hyy = 1 + 1

2
(S exx − S1) Z‖ .

(1.85)

At the final stage, we go to (1.74) with (1.79), (1.80), (1.84) and synthesize the
LR-decomposition:

[ZS] = [e] [ZR] [h]−1.

The truncated decomposition, [ZS] = [e] [ZR] , is admissible if

1

2

∣∣(S eyy − S1)
∣∣ ∣∣Z⊥∣∣<<1

1

2
S
∣∣eyx Z‖∣∣<<1

1

2

∣∣(S exx − S1)
∣∣ ∣∣Z‖∣∣<<1

1

2
S
∣∣exy Z⊥∣∣<<1.

(1.86)

The arithmetic suggests that near-surface magnetic anomalies can be neglected
in the period range T > 100 s providing S ≤ 300S and �2 ≥ 1000 Ohm ·m,

h2 ≤ 100 km, �3 ≤ 100 Ohm·m.
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1.4 Impedance Polar Diagrams

The dependence of the impedances upon orientation of the measurement axes may
be displayed graphically by polar diagrams. No structural or frequency limitations
are required in constructing the impedance polar diagrams.

1.4.1 Polar Diagrams of the Impedance Tensor

This techniques has been suggested in (Berdichevsky, 1968; Berdichevsky et al.,
1993).

Let the tensor [Z] be obtained on the measurement axes x, y. We will introduce
new axes x ′, y′ rotated through a clockwise angle �. In view of (1.27), (128)

|Zxx (�)| = ∣∣Z yy(� + �/2)
∣∣ = | Z2 + Z3 sin 2� + Z4 cos 2� | ,

∣∣Zxy (�)
∣∣ = ∣∣Z yx (� + �/2)

∣∣ = | Z1+Z3 cos 2�−Z4 sin 2 � | ,
∣∣arg Zxy(�)

∣∣ = ∣∣arg Z yx (� + �/2)
∣∣ =

∣∣∣∣arctan
Im (Z1 + Z3 cos 2a − Z4 sin 2a)

Re (Z1 + Z3 cos 2a − Z4 sin 2a)

∣∣∣∣ .
(1.87)

Plot these values on the x ′-axis. As � changes from 0 to 2�, the resultant points
describe closed curves known under the name of impedance polar diagrams. The
diagrams of

∣∣Zxx

∣∣, ∣∣Zxy

∣∣ are amplitude polar diagrams. The diagram of
∣∣arg Zxy

∣∣
is a phase polar diagram. One can see from (1.28) that the amplitude and phase
polar diagrams are antisymmetric about any straight line passing through the
origin.

The conditions for extrema of polar diagram radii are

d |Zxx (�)|
d�

= 0,
d
∣∣Zxy(�)

∣∣
d�

= 0,
d
∣∣arg Zxy(�)

∣∣
d�

= 0.

This yields equations of degree 4 in tan �. Therefore, the interval 0 ≤ � ≤ 2�
can contain four maxima and four minima of | Zxx |, | Zxy |, ∣∣arg Zxy

∣∣. Clearly, the
impedance polar diagrams may have, at most, four petals.

Examples of impedance polar diagrams for 1D, 2D and 3D-models are shown in
Fig. 1.7. Configuration of the impedance polar diagrams is a good indicator of the
dimensionality of geoelectric structures.

In the 1-D model the diagram of |Zxx | degenerates into a point, while the dia-
grams of | Zxy | and

∣∣ arg Zxy

∣∣ are circles of radii |Z | and |arg Z |, where Z is
Tikhonov–Cagniard’s impedance.
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Fig. 1.7 Polar diagrams of the impedance tensor

1D: Z = 4 − 2i

2D: [Z] =
[

0 4 − 2i
−1 + 2i 0

]
,

skewS = 0
skewB = 0

3D: a) [Z] =
[−0.5 − 3i 4 − 2i

−1 + 2i 0.5 − 3i

]
,

skewS = 0
skewB = 0.47

b) [Z] =
[−0.5 − 3i 4 − 2i

−1 + 2i 0.1 − i

]
,

skewS = 0.63
skewB = 0.44

Consider the 2D-model (skewS = 0, skewB = 0) striking along the x-axis.
According to (1.49) and (1.87),

| Zxx (�)| = ∣∣(Z‖ − Z⊥) sin � cos �
∣∣ ,

| Zxy (�)| = ∣∣ Z‖ cos 2� + Z⊥ sin2 �
∣∣ ,

∣∣arg Zxy(�)
∣∣ =

∣∣∣∣∣ arctan
Im (Z‖ cos2 � + Z⊥ sin2 �)

Re (Z‖ cos2 � + Z⊥ sin2 �)

∣∣∣∣∣ ,

(1.88)

where Z‖ and Z⊥ are the longitudinal and transverse impedances. The diagram of
|Zxx | looks like a flower with four identical petals. The lines bisecting the angles
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between these petals are oriented in the longitudinal and transverse directions. The
diagrams of

∣∣Zxy

∣∣ and
∣∣arg Zxy

∣∣ have the form of a regular oval. Their principal
diameters 2

∣∣Z‖∣∣, 2
∣∣Z⊥∣∣ and 2

∣∣arg Z‖∣∣, 2
∣∣arg Z⊥∣∣ are oriented in the longitudinal

and transverse directions.
Similar form of the impedance polar diagrams would be found in the axially

symmetric 3D-models (skewS = 0, skewB = 0). Here bisectrices of diagram of
|Zxx | and principal diameters 2 |Zr |, 2 |Zt | and 2 |arg Zr |, 2 |arg Zt |of diagrams of∣∣Zxy

∣∣ and
∣∣arg Zxy

∣∣ are oriented in the radial and tangential directions.
If the 3D-model is asymmetric, the regular form of polar diagrams is violated,

and they can take rather whimsical form. But in the special case of quasi-symmetry
(3D,a), when skewS = 0 and skewB = 0, the |Zxx |-diagram is cross-shaped, while
diagrams of

∣∣Zxy

∣∣ and
∣∣arg Zxy

∣∣ are shaped into oblique figures eight with or with-
out small petals. In the general event (3D,b) that skewS = 0 and skewB = 0, all
diagrams look like oblique figure eight with more or less narrow waist.

1.4.2 Polar Diagrams of H- and E-Polarized Impedances

This technique has been advanced in (Berdichevsky and Logunovich, 2005). It is
based on the decomposition of the electromagnetic field in conjugate and associate
directions suggested by Counil et al. (1986).

The Counil-Le Mouel-Menvielle decomposition is associated with so called
“induction intensity” and “current intensity”. But this terminology is vulnerable to
criticism. The electric current and electromagnetic induction are interconnected via
the Ampere, Faraday, and Ohm laws. An electric current generates a magnetic field
that in turn induces an electric field producing an electric current. The intensity of
electromagnetic induction depends on the intensity of the inducing current, and the
intensity of the induced current depends on the intensity of electromagnetic induc-
tion. The separation of these phenomena is scarcely constructive and only compli-
cates their mathematical description. The formulation of the problem is significantly
simplified if the construction of polar diagrams involves the formal terminology,
reflecting the mathematical meaning of the values to be determined.

Following Yee and Paulson (1987), we introduce a scalar indicator defined as the
ratio between the Euclidean norms ‖E�‖ and ‖H�‖ of electric and magnetic fields
E�(Ex , Ey) and H�(Hx , Hy),the magnetic field being linearly polarized at an angle
�H to the original x axis:

ZH(�H) = ‖E�‖
‖H�‖ =

√
E� · E�

H� · H�
=
√

Ex Ēx + Ey Ēy

Hx H̄x + Hy H̄y
=
√√√√ |Ex |2 + ∣∣Ey

∣∣2
|Hx |2 + ∣∣Hy

∣∣2

=
√√√√

∣∣Zxx Hx + Zxy Hy

∣∣2 + ∣∣Z yx Hx + Z yy Hy

∣∣2
|Hx |2 + ∣∣Hy

∣∣2
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=
√∣∣Zxx + Zxy tan �H

∣∣2 + ∣∣Z yx + Z yy tan �H

∣∣2
1 + tan2 �H

=
√

k1 tan2 �H + k2 tan �H + k3

1 + tan2 �H

=
√

k1 sin2 �H + k2 sin �H cos �H + k3 cos2 �H,

(1.89)

where

k1 = ∣∣Zxy

∣∣2+∣∣Z yy

∣∣2 , k2 = 2Re
(
Zxx Z̄xy + Z yx Z̄ yy

)
, k3 = |Zxx |2+

∣∣Z yx

∣∣2 .

The scalar indicator ZH can be naturally called a H-polarized impedance. It is
a function of the angle �H defining the direction of the magnetic field polarization
axis.

Determine �H, at which the H-polarized impedance has a maximum and mini-
mum. The condition

d ZH

d�H

= 0

gives the equation

tan 2�H = k2

k3 − k1
, (1.90)

which has two solutions, �max
H and �min

H , differing by �/2.
Similar to the H-polarized impedance ZH, we introduce a scalar indicator ZE

defined as the ratio between the Euclidean norms ‖E�‖ and ‖H�‖ of electric and
magnetic fields E�(Ex , Ey) and H�(Hx , Hy),the electric field being linearly polar-
ized at an angle �E to the original x axis:

ZE(�E) = ‖E�‖
‖H�‖ =

√
E� · E�

H� · H�
=
√

Ex Ēx + Ey Ēy

Hx H̄x + Hy H̄y
=
√√√√ |Ex |2 + ∣∣Ey

∣∣2
|Hx |2 + ∣∣Hy

∣∣2

=
√√√√ |Ex |2 + ∣∣Ey

∣∣2∣∣Yxx Ex + Yxy Ey

∣∣2 + ∣∣Yyx Ex + Yyy Ey

∣∣2

=
√√√√ 1 + tan2 �E∣∣Yxx + Yxy tan �E

∣∣2 + ∣∣Yyx + Yyy tan �E

∣∣2 ,

(1.91)
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where Yxx , Yxy, Yyx , Yyy are the components of the admittance tensor determined
by (1.19). Substituting (1.19) into (1.91), we get

ZE(�E) =
√

1 + tan2 �E

l1 tan2 �E − l2 tan �E + l3

=
√

1

l1 sin2 �E − l2 sin �E cos �E + l3 cos2 �E

,

(1.92)

where

l1 = |Zxx |2 + ∣∣Zxy

∣∣2∣∣Zxx Z yy − Zxy Z yx

∣∣2 , l2 = 2Re(Zxx Z̄ yx + Z yy Z̄xy)∣∣Zxx Z yy − Zxy Z yx

∣∣2 l3 =
∣∣Z yy

∣∣2 + ∣∣Z yx

∣∣2∣∣Zxx Z yy − Zxy Z yx

∣∣2 .

The scalar indicator ZE can be called a E-polarized impedance. Determine �E, at
which the E-polarized impedance has a maximum and minimum. The condition

d ZE

d�E

= 0

gives the equation

tan 2�E = l2

l1 − l3
, (1.93)

which has two solutions, �max
E and �min

E , differing by �/2.
Let us plot a value ZH(�H) on the polarization axis of the magnetic field. As the

angle �H varies from 0 to 2�, the resultant point describes a closed curve that is the
polar diagram of H-polarized impedance. The polar diagram of ZH(�H) is a regular
oval determined by (1.89). Its inversion YH(�H) = 1/ZH(�H) gives an ellipse defined
by equation

k1Y 2
H sin2 �H + k2Y 2

H sin �H cos �H + k3Y 2
H cos2 �H = 1. (1.94)

Now plot a value ZE(�E) on the polarization axis of the electric field. As the angle
�E varies from 0 to 2�, the resultant point describes a closed curve that is the polar
diagram of the E-polarized impedance. The polar diagram of ZE(�E) is an ellipse
determined by the equation

l1 Z2
E sin2 �E − l2 Z2

E sin �E cos �E + l3 Z2
E cos2 �E = 1. (1.95)

Following (Counil et al., 1986), we introduce an angular skew parameter in
accordance with (1.90) and (1.93):
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skewCLM = �max
E − �min

H = �max
H − �min

E = arctan Re
Zxx + Z yy

Z yx − Zxy
. (1.96)

This parameter characterizes the mutual orientation of polar diagrams of the H-
and E-polarized impedances. Here, the angles �max

E , �min
E and �max

H , �min
H define the

directions of the maximum and minimum diameters of the polar diagrams. Note
that skewCLM = 0 if skewS = 0. So, in symmetric and quasi-symmetric models
the diagrams of the H- and E-polarized impedances are elongated in perpendicular
directions.

Examples of polar diagrams of the H- and E-polarized impedances typical of 1D,
2D, and 3D-models are presented in Fig. 1.8.

The ZH and ZE diagrams in a 1D-model are circles of the radius |Z |, where Z is
the Tikhonov–Cagniard 1D-impedance.

Consider a 2D-model with the strike along the x-axis. According to (1.54), we
have

Zxy = 0, Zxy = Z‖, Z yx = −Z⊥, Z yy = 0,

1D 2D
3D

a b

x

y

x

y

ZE

ZH

Fig. 1.8 Polar diagrams of the E-polarized (ZE) and H-polarazed (ZH) impedances

1D: Z = 4 − 2i

2D: [Z] =
[

0 4 − 2i
−1 + 2i 0

]
,

skewS = 0, skewCLM = 0
skewB = 0

3D: a) [Z] =
[−0.5 − 3i 4 − 2i

−1 + 2i 0.5 + 3i

]
,

skewS = 0, skewCLM = 0
skewB = 0.47

b) [Z] =
[−0.2 + 0.2i −1 + 3i

0.7 − 0.5i 0.5 − 1.4i

]
,

skewS = 0.63, skewCLM = 20o

skewB = 0.44
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here Z‖ and Z⊥ are the longitudinal and transverse impedances. Substituting (1.54)
into (1.89) and (1.92), we find

ZH(�H) =
√∣∣Z‖∣∣2 sin2 �H + ∣∣Z⊥∣∣2 cos2 �H

ZE(�E) =
√√√√√√

1

sin2 �E∣∣Z⊥∣∣2 + cos2 �E∣∣Z‖∣∣2
.

(1.97)

Polar diagrams of the H- and E-polarized impedances are a regular oval with a
waist and an ellipse, respectively. Their principal diameters 2

∣∣Z‖∣∣ and 2
∣∣Z⊥∣∣ are

oriented along and across the strike of the model. The ZH and ZE diagrams in an
axisymmetric 3D-model have similar shape, with their principal diameters 2 |Zr |
and 2 |Zt | being oriented along the radial and tangential directions.

In a quasi-symmetric 3D-model with skewS = skewCLM = 0, the diagrams of ZH

and ZE retain a regular shape and are elongated in perpendicular directions (3D,a).
In an asymmetric 3D-model with skewCLM = 0, a regular shape of the ZH and ZE

diagrams is preserved but the angle between their elongation directions can deviate
significantly from the right angle (3D,b). This is the only feature of the ZH and ZE

diagrams that can be used as an indicator distinguishing an asymmetric 3D medium
from a 2D or an axisymmetric 3D medium.

1.5 Dispersion Relations in the Impedance Tensor

The dispersion relations were first derived by Kramers and Kronig in the theory of
dispersion of optic rays (Mathews and Walker, 1964). These integral relations are
the direct consequence of the principle of causality.

The Kramers–Kronig dispersion relations were introduced in geoelectrics by
Kaufman (1960) and Vanyan et al. (1961). These authors used the dispersion rela-
tions to convert the apparent resistivity curves of frequency sounding into the phase
curves.

In 1972, Weidelt published his famous paper that laid the groundwork for the
mathematical theory of magnetotelluric sounding (Weidelt, 1972). In this paper he
gave rigorous analytical proof for the existence of the dispersion relations in the
Tikhonov–Cagniard one-dimensional model.

Following Weidelt, we will consider the dispersion relations of two kinds.
1. The dispersion relations of the first kind. These relations connect the real and

imaginary parts of the normalized impedance. They assume the form

R(�o) = 2

�
pv

∞∫
0

X (�)

�2 − �2
o

�d�,

X (�o) = −2�o

�
pv

∞∫
0

R(�)

�2 − �2
o

d� ,

(1.98)
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where pv means that integral is taken in the sense of the Cauchy principal value, and

R = Re
Z

i��o
, X = Im

Z

i��o
.

These relations exist if the impedance Z has no poles in the upper half-plane of
the complex frequency � = � + iλ.

2. The dispersion relations of the second kind. They relate the apparent resistivi-
ties and impedance phases. These relations are in the form:

(�o) = −π

4
− �o

π
pv

∞∫
0

ln �A(�)
d�

�2 − �2
o

,

ln
�A(�o)

�A(∞)
= 4

π
pv

∞∫
0

[π

4
+  (�)

] �d�

�2 − �2
o

,

(1.99)

where �A(∞) is the high-frequency asymptotic value of the apparent resistivity.
These relations exist if the impedance Z satisfies the condition of the minimum
phase, that is, if it has neither poles nor zeros in the upper half-plane of the complex
frequency � = � + iλ.

The existence of the dispersion relations in the two- and three-dimensional mod-
els is among the most controversial subjects of magnetotellurics.

Weidelt and Kaikkonen (1994) gave rigorous proof to the validity of the disper-
sion relations of both kinds in the H-polarized 2D-models. We examined numer-
ically a lot of the E-polarized 2D-models with different characteristic structures
(dyke, ledge, horst, graben, canyon) and revealed that all these models met the dis-
persion relations of both kinds.

Yee and Paulson (1988) considered the impedance tensor of the heterogeneous
Earth as a linear casual operator and on this ground state that the dispersion relations
of both kinds hold good in all models, including 3D ones. But this consideration
is vulnerable to criticism since the electrical and magnetic fields interact with each
other and we hardly can say that one of these fields is a cause and another is an effect
(Svetov, 1991). The magnetelluric system is casual in the sense that the electrical
and magnetic fields are effects of the same cause, for instance, of ionospheric or
magnetospheric currents.

Many people were involved in this discussion (Fischer and Schnegg, 1980, 1993;
Egbert, 1990; Svetov, 1991; Berdichevsky and Pokhotelov, 1997a, b). Nowadays
it is evident that we have to leave room for the possibility of violation of disper-
sion relations in the E-polarized 2D-models and 3D-models. The discussion makes
a clear practical sense: if the Kramers–Kronig relations are violated, our philoso-
phy of amplitude-phase inversion of MT-data should be revised. This is seen from
the following example. Take a regional elongated (quasi 2D) depression with local
near-surface 3D inhomogeneities that violate the dispersion relations. Here the sep-
arate inversions of transverse apparent resistivity and phase curves in the class of
H-polarized 2D-models may yield conflicting geoelectric structures.
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Meantime the magnetotelluric observations give a good deal of examples
with dramatic violation of MT dispersion relations (Berdichevsky et al., 1996;
Vanyan et al., 2002a; Chouteau and Tournerie, 2002). Figure 1.9 presents apparent-
resistivity and phase curves obtained in the mountains of the Lesser Caucasus
(Berdichevsky et al., 1996). Here the accuracy of the phase measurements seems to
be rather high (good spatial correlation!), but we see in Fig. 1.10 that the difference
between observed and calculated -curves amounts up to 35◦.

The key to an understanding these phenomena lies with mathematical modelling.
Berdichevsky and Pokhotelov (1997b) revealed the dramatic violation of the

Kramers–Kronig relations in a (3D + 2D)-superimposition model shown in
Fig. 1.11. The model contains a two-dimensional deep conductive prism R of half-
width v and a near-surface resistive cylinder L of radius a (a << v). The calculations
have been carried out by an approximate hybrid method given in Sect. 1.3.4. Here

Fig. 1.9 Magnetotelluric
curves in the mountains of
the Lesser Caucasus;
5,6,7, . . . observation sites

ϕeff , deg

5000

2000

1000

500

200

100

1

5

68

7

1 10

–10

–40

–60

0

5

6

8
7

ρeff , Ohm.m

10

T,s½

T,s½



40 1 The Magnetotelluric Response Functions

–30

–45

–60

0

1 103 5 7 30

–15

observed

calculated

T, s1/2

ϕeff 
, deg

Fig. 1.10 Violation of the dispersion relation in MTS-6; solid line – observed phase curve, broken
line – phase curve computed by (1.99)

the two-dimensional problem for the regional inhomogeneity, R, has been solved
numerically by program of Wannamaker et al. (1987), while the real-valued elec-
tric distortion tensor [e] has been determined from the well-known problem on a
cylinder in the stationary uniform electric field (Smythe, 1950). Introduce polar
coordinates r, � with angle � measured clockwise from the x-axis. At an arbitrary
site O(r, �) we have

exx =
{

1 − a2

r2 m cos 2� r > a
1 + m r < a

exy =
{− a2

r2 m sin 2� r > a
0 r < a

eyx =
{− a2

r2 m sin 2� r > a
0 r < a

eyy =
{

1 + a2

r2 m cos 2� r > a
1 + m r < a,

(1.100)

where

m = �L − �1

�L + �1
.

Figure 1.12 demonstrates the apparent resistivity and impedance-phase curves
obtained in the immediate vicinity of the cylinder L. Note that, relative to the
cylinder, the �x ′ y′ - and x ′ y′ -curves are oriented in a direction close to the radial
one, while the �y′x ′ - and y′x ′ -curves are oriented in a direction close to the
tangential one. It is remarkable that the near-radial �x ′ y′ -curve lies three decades
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Fig. 1.11 A superimposition model with a near-surface resistive cylinder and a 2D deep regional
conductive prism; O-observation site. Model parameters: �1 = 10 Ohm·m, h 1 = 0.5 km, �L = ∞,
a = 0.125 km, �2 = ∞, h 2 = 100 km, �R = 10 Ohm·m, h′

2 = 10 km, �h = 10 km, v = 20 km, �3 = 0

below the near-tangential �y′x ′ -curve. This relationship can be readily explained
by effect of current flowing around the resistive cylinder L. On the other hand,
the relationship between the near-radial and near-tangential phase curves is rather
strange: the near-tangential y′x ′ -curve does not leave the fourth quadrant, whereas
the near-radial x ′ y′ -curve passes over all the quadrants, making a total phase
rotation.

The Kramers–Kronig transforms of the first kind relating the real and imaginary
parts of the near-tangential and near-radial impedances are shown in Fig. 1.13.
We see that relations (1.98) provide for rather accurate transition from the real
part of the impedance to its imaginary part and vice versa. Here the dispersion
relations of the first kind obviously hold and we can say that the near-tangential
and near-normal impedances have no poles in the upper half-plane of the complex
frequency �.

Now we turn to Fig. 1.14 that presents the Kramers–Kronig transforms of
the second kind relating the apparent resistivities and impedance phases. The
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Fig. 1.12 Curves of the apparent-resistivity and impedance-phase at a point O with coordinates
r = 0.129 km, � = 45◦, � = 50◦; calculated for a model shown in Fig. 1.11

near-tangential �y′x ′ - and y′x ′ -curves exhibit a reasonably good agreement with
the dispersion relations: here the initial curves and curves calculated by (1.99)
virtually coincide. So, we can say that the near-tangential impedance has no
zeros in the upper half-plane of the complex frequency �. Another picture is
characteristic of the near-radial �x ′ y′ - and x ′ y′ -curves: here the initial curves
and curves calculated by (1.99) are close to each other in the high-frequency
range but abruptly diverge with lowering frequency. We observe a crude vio-
lation of the dispersion relations of the second kind. Clearly the near-radial
impedance has a zero (or a few zeros) in the upper half-plane of the complex
frequency �.

Recently the violation of dispersion relations of the second kind has been
detected in the two-dimensional model with an anisotropic layer (Heise et al., 2002)
and in the 2D coast-effect model (Alekseev et al., 2006).

Calculations verify the reality of anomalous phenomena that are exhibited in
violation of dispersion relations. But we know less than nothing about these phe-
nomena. To fill the gap, we need field experiments and model studies. It would
be useful to include a special test controlling the dispersion relations into existing
programs of MT data processing and inversion.

What can be done if MT data exhibit discrepancy between apparent resistivity
and phase curves? Let us recall the sorrowful letter that many of us have received
from Alan Jones when Leonid Vanyan passed away:
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Fig. 1.13 Dispersion relations between the real, R, and imaginary, X, parts of normalized
impedance Z/ i��0 at a point O with coordinates r = 0.129 km, � = 45◦, � = 50◦; solid line –
initial curve, broken line – curve compuded by (1.98); calculated for a model shown in Fig. 1.11

Dear colleagues,
The loss of our colleague and my friend Leonid Vanyan is truly sad, and I am personally
devastated by the news. Just two weeks ago Leo sent me this email message, with the germ
of an idea for how to make “old” apparent resistivity and phase data useful by requiring them
to be consistent using an iterative approach. He and I were going to work on this together,
but that will not happen now. Rather than work on this alone, I would like to share this idea
with you all. If any of you should find it useful, please name it the Vanyan correction in
Leonid’s honor. Those of you who were at Victoria in 1982 will smile at Leonid’s comment
about our agreement on the importance of comparing � and . Alan Jones



44 1 The Magnetotelluric Response Functions

Fig. 1.14 Dispersion relations between the apparent resistivity and impedance phase at a point O
with coordinates r = 0.129 km, � = 45◦, � = 50◦; solid line – initial curve, broken line – curve
computed by (1.99); calculated for a model shown in Fig. 1.11

Dear Alan,
A few years ago you and me agreed in importance of a comparison of measured  and the
same calculated from �. Couple weeks ago I asked Mark Berdichevsky: -Do you use this
technique? -Yes. -And what do you do if there is a discrepancy? -I put data in trash. But
sometimes we have a limited amount of curves. It is a pity to put them in trash. Perhaps,
there are structures that produce � and  away of Hilbert transform. But definitely there are
cases when discrepancy is due to noises, poor data processing etc. For those cases an idea
appeared. Look: Initial data -�1, 1. First step -�1 gives 2 (by Hilbert). Second step – 3 =
(1 +2)/2. Third step – 3 gives �2 (by Hilbert). Fourth step -log �3 = (log �1 + log �2)/2.
Fifth step – �3 gives 4 ...etc. After 3–4 iterations we have a pair of self-consistent �, .
Best wishes! Yours Leonid
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1.6 On the Magnetotelluric Anomalies

We consider models, in which the horizontally homogeneous Earth of normal
electric conductivity �N(z) contains two-dimensional or three-dimensional inhomo-
geneities ��(y, z) or ��(x, y, z), causing magnetotelluric anomalies (distortions).
Magnetotelluric anomalies carry information on geoelectric structures.

The normal field EN, HN is a field observed within the host Earth in the absence
of the lateral inhomogeneities. In such a one-dimensional model the currents flow
along layers, charges do not arise, the magnetic field has no vertical component,
leading mechanism is the electromagnetic induction.

Considering the normal field, we determine the normal impedance, ZN = EN
x /

HN
y = −EN

y /HN
x , and the normal apparent resistivity, �N = |ZN|2 / ��o, that are

independent of orientation of coordinate axes and reflect vertical variations in
conductivity.

In the presence of the inhomogeneities the anomalous field EA, HA appears.
Magnetotelluric anomalies caused by lateral geoelectric inhomogeneities distort
the normal impedance and normal apparent resistivity. Now we determine the
impedance tensor and oriented apparent resistivities that reflect not only vertical,
but also horizontal variations in conductivity.

Take the real Earth with three-dimensional conductivity distribution �(x, y, z).
Let the apparent esistivity, �A(xo, yo), and impedance phase, (xo, yo), be obtained
at a point Mo(xo, yo) on the Earth’s surface. We will juxtapose these distorted
values with the locally normal apparent resistivity �n(xo, yo) and locally normal
phase n(xo, yo) ,calculated from the locally normal impedanceZn(xo, yo) corre-
sponding to the one-dimensional model �n(z) = �(xo, yo, z), where �n(z) is a local
conductivity-depth profile at the point Mo. The value

��A(xo, yo) = log
�A(xo, yo)

�n(xo, yo)
(1.101)

is a measure of distortion of the apparent resistivity. Similarly

� (xo, yo) =  (xo, yo) − n(xo, yo) (1.102)

is a measure of distortion of the impedance phase.
With strong anomalies, that is, with large ��, � the apparent-resistivity and

impedance-phase curves depend heavily on orientation of the measurement axes.
For each observation site we can plot a lot of conflicting curves. It is evident that the
formal one-dimensional interpretation of such magnetotelluric curves is senseless.

We classify the magnetotelluric anomalies by their depth, scale, dimensionality
and physical nature.

1. The geoelectric medium can be divided into near-surface and deep parts.
According to this specification, we differentiate the near-surface inhomogeneities
and deep inhomogeneities, which cause the near-surface anomalies and deep
anomalies. Traditionally, we associate the near-surface anomalies with sediments
(partially or in full) and the deep anomalies with consolidated crust and mantle.
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2. Classifying the anomalies by their scale, we discern the continental, regional
and local anomalies. The effects caused by electromagnetic interaction between
oceans and continents are considered as continental anomalies. The effects con-
nected with influence of the first- and second-order tectonic structures (mountain
ridges and valleys, shields, crystalline massifs, platforms, vast depressions and
elevations) are designated as regional anomalies. These anomalies are observed
at distances numbered in the hundreds or even thousands of kilometers. Third-
order structures (minor folds, salt domes, traprocks, permafrost lenses, small-scale
inclusions) produce the local anomalies. These effects create mosaic pattern with
characteristic dimensions from tens of meters to kilometers. If their dimension is
much less than the measurement spacing, the local anomalies are considered as
noninterpretable geoelectric noise.

3. Anomalies generated by elongated inhomogeneities with great aspect ratio
(their length is much larger than their width) are considered as quasi-two-
dimensional anomalies (“two-dimensional” anomalies). Mathematical modelling
enables one to establish criteria for quasi-two-dimensionality that are valid in the
central part of the inhomogeneity. Anomalies that do not satisfy the quasi-two-
dimensionality criteria are taken as three-dimensional anomalies.

4. The most difficult is to classify the anomalies by their physical nature. We
observe complicated phenomena, in which the sources and vortices of the anoma-
lous field interact with each other. For simplicity we separate the vortex-free (poten-
tial) and vortex (solenoidal) mechanisms of the excitation of the anomalous field.
Using the terminology suggested by Kaufman (1961, 1974), we divide the anoma-
lous electromagnetic field into two parts: the galvanic (Coulomb’s) part which is
generated by the excess charges and the induction (Faraday’s) part which is gener-
ated inductively by the closed excess currents. The galvanic and induction parts of
the anomalous field are responsible for galvanic distortions and induction distor-
tions of the magnetotelluric and magnetovariational response functions.

The galvanic distortions are most pronounced at low frequencies when the pen-
etration depth of the normal field far exceeds the depth and dimensions of the
inhomogeneities. Here the inductive influence of the excess currents is too weak
to reveal itself, while the galvanic part of the anomalous field obeys the direct cur-
rent laws. Inasmuch as the anomalous field is proportional to the normal field, both
the fields have the same phases and in the same ways depend on frequency. The
galvanic anomalies manifest themselves in static shift of the low-frequency parts
of the apparent-resistivity curves and do not affect the corresponding parts of the
impedance-phases curves. These effects extend over entire spectrum of sufficiently
low frequencies and do not attenuate even as � → 0. The structure of the galvanic
anomalies is vividly imaged in the current pattern: electric currents flow around
resistive zones and gather within conductive zones.

Quite different are the regularities of the induction distortions caused by the
excess currents. These effects manifest themselves at high frequencies when the
Faraday induction in the inhomogeneous medium is sufficiently intensive. Here
anomalous and normal fields have different phases and in different ways depend on
frequency. With lowering frequency the induction effects vanish. The characteristic
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feature of the induction anomalies is the horizontal skin effect: high-frequency elec-
tric currents are concentrated in the vicinity of resistive zones.

This simple classification of magnetotelluric anomalies is built on phenomeno-
logical base. Can we construct a self-consistent theory of galvanic and induction
effects?

Turn back to the model shown in Fig. 1.1. According to (1.6) the anomalous field
meets the equations

curlHA = �NEA + j

curlEA = i��oHA ,

where

j (M) =
{

j (M) = ��E M ∈ V

0 M /∈ V

is the density of excess electric current filling the inhomogeneous domain V.
Let us divide the excess current into potential, jp, and solenoidal, js, parts:

j = jp + js, (1.103)

where
{

curl jp = 0

div jp = div j

{
curl js = curl j

div js = 0 .
(1.104)

The parts jp and js are readily determined.
We will start with the potential part jp. Define jp as

jp(M) =
{−grad U (M) M ∈ V

0 M /∈ V .
(1.105)

Here U is the scalar potential of the field jp. It satisfies the equation

�U (M) = −div jp(M) = div j (M) M ∈ V (1.106)

with condition U |S = 0 on the surface S bounding the inhomogeneous domain V.
Solving (1.106), we find

U (M) =
∫∫∫

V

G(M, Mv)div j (Mv) dV, (1.107)

where G(M, Mv) is the Green function for the Dirichlet problem:
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�G(M, Mv)| = −	(rMMv
) G(M, Mv)|S = 0. (1.108)

Thus,

jp(M) =
{ −grad

∫∫∫
V

G(M, Mv)div j (Mv) dV M ∈ V

0 M /∈ V .
(1.109)

Next we will pass on to the solenoidal part js . Define js as

j s(M) =
{

curl I(M) M ∈ V
0 M /∈ V,

(1.110)

where I can be considered as the magnetization of a magnetic body that is equivalent
to the solenoidal current of the density js distributed within the domain V. Note that
(1.110) does not provide the unique determination of js . Evidently js can be also
taken as

j s(M) = curl I′(M) M ∈ V, (1.111)

where

I′(M) = I(M) + grad �(M)

and � is arbitrary scalar function. But we eliminate such an arbitrariness by impos-
ing the requirement that div I = 0. So, we write

curl I(M) = js(M) div I(M) = 0 M ∈ V, (1.112)

whence, with due regard for (1.104),

� I(M) = −curl js(M) = −curl j(M). (1.113)

Now, using the Green function introduced by (1.108), we find

I(M) =
{ ∫∫∫

V
G(M, Mv)curl j (Mv) dV M ∈ V

0 M /∈ V .
(1.114)

Here the curl may be taken out of the integral. Since div I = 0, we express I as
I = curl P, where P is a vector field. Then (1.113) assumes the form �P = −j,
whence

P(M) =
{ ∫∫∫

V
G(M, Mv)j (Mv) dV M ∈ V

0 M /∈ V .
(1.115)
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and along with (1.114) we get

I(M) =
{

curl
∫∫∫
V

G(M, Mv)j (Mv) dV M ∈ V

0 M /∈ V .
(1.116)

Finally

js(M) =
{

curl
∫∫∫
V

G(M, Mv)curl j (Mv) dV M ∈ V

0 M /∈ V
(1.117)

or

js(M) =
{

curl curl
∫∫∫
V

G(M, Mv)j (Mv) dV M ∈ V

0 M /∈ V .
(1.118)

Thus, we have separated the electric excess current into potential and solenoidal
parts, jp and js. Each part of the excess current is responsible for its own anomalous
field.

Potential part of the electric excess current consists of currents that close upon
the excess charges arising at inhomogeneities. It excites the anomalous field Ee, He

of the electric type described by equations

curl He = �NEe + jp

curl Ee = i��oHe .
(1.119)

At low frequencies these galvanic effects are of static nature. They follow the
direct-current laws.

Solenoidal part of the excess electric current consists of currents that close upon
themselves. It excites the anomalous field Em, Hm of the magnetic type described
by equations

curl Hm = �NEm + js = �NEm + curl I

curl Em = i��oHm ,
(1.120)

where I is the magnetization of the equivalent magnetic body. Eliminating from Hm

the contribution of the electric excess current, we get a magnetic field H̃m = Hm −I.
Substitution of H̃m into (1.120) gives

curl H̃m = �NEm

curl Em = i��oH̃m + j m
s ,

(1.121)

where jm
s = i��oI is the density of excess fictitious magnetic current equivalent

to the excess electric current. Note that the magnetic excess current is proportional
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to �. These induction effects appear at high frequencies and they attenuate with
lowering frequency.

The most simple situation we have in the two-dimensional model. Let the x-axis
run along the strike. Considering the TE-mode with components Ex , Hy, Hz and
the TM-mode with components Ey, Ez, Hx , we separate the galvanic and induction
anomalies.

The TE-mode is excited by the excess electric current of density j ( jx , 0, 0) with
a single component jx (y, z) = ��Ex (y, z). Here

div j = � jx

�x
= 0, curl j = � jx

�z
1y − � jx

�y
1z = 0.

We see that the field j is solenoidal, jp = 0 and j = j s. The TE-mode is distorted
solely by the induction effects (currents flow along the strike and do not charge
the medium). Let us find the equivalent magnetic current, jm

s , responsible for the
induction distortions. By virtue of (1.116) and (1.121)

jm
sx = 0

jm
sy = i��o

�
�z

∫∫∫
V

G(M, Mv) jx (Mv) dV

jm
sz = −i��o

�
�y

∫∫∫
V

G(M, Mv) jx (Mv) dV

∣∣∣∣∣∣∣∣∣
M∈V .

(1.122)

The TM-mode is excited by the excess electric current of density j (0, jy, jz)
where jy(y, z) = ��Ey(y, z) and jz(y, z) = ��Ez(y, z). Here

div j = � jy

�y
+ � jz

�z
= 0, curl j =

(
� jz
�y

− � jy

�z

)
1x = 0. (1.123)

In this case the electric excess current consists of potential and solenoidal parts.
Let us define the potential part, jp, which causes the galvanic distortions. Accord-

ing to (1.115),

jpx (M) = 0

jpy(M) = − �

�y

∫∫∫
V

G (M, Mv)

(
� jy(Mv)

�y
+ � jz(Mv)

�z

)
dV

jpz(M) = − �

�z

∫∫∫
V

G (M, Mv)

(
� jy(Mv)

�y
+ � jz(Mv)

�z

)
dV

∣∣∣∣∣∣∣∣∣∣
M∈V .

(1.124)

Next we define the equivalent excess magnetic current, jm
s , which may cause the

induction distortions. According to (1.116) and (1.121),
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jm
sx (M)

= i��o

{
�

�y

∫∫∫
V

G(M, Mv) jz(Mv) dV − �

�z

∫∫∫
V

G(M, Mv) jy(Mv) dV

}

jm
sy = 0

jm
sz = 0.

∣∣∣∣∣∣∣∣∣∣∣∣∣
M∈V .

(1.125)

The linear magnetic current flows in the x-direction, that is, along the model
strike, and does not depend on x. This current is equivalent to an infinitely long
uniform solenoid embracing the inhomogeneous domain V. Its magnetic field is
confined to V and is zero outside V (the solenoid does not liberate its magnetic field
to outer space). It is obvious that the inductive magnetic field does not come up to
the Earth’s surface and we observe there only the galvanic effects.



Chapter 2
The Impedance Eigenstate Problem

2.1 The Classical Formulation of the Tensor Eigenstate Problem

Rotating the impedance tensor [Z], one may obtain a variety of different apparent-
resistivity and impedance-phase curves, �xy, �yx and xy, yx, sometimes drastically
conflicting in configuration. Such a great body of data is seemingly chaotic, but it
can be systematized by the methods concerned with the eigenstate problem.

Solving the eigenstate problem, we focus all the information, contained in the
components of the tensor, on its principal directions depending on geometry of the
target geoelectric structures.

Recall the classical formulation of the tensor eigenstate problem. Let a real-
valued symmetric tensor

[T] =
[

Txx Txy

Tyx Tyy

]
, Txy = Tyx (2.1)

transform a real-valued vector V(Vx , Vy) to the collinear vector tV(tVx , t Vy):

[T]V=tV, (2.2)

where t is a scalar that characterizes the change in the vector modulus. The vector
V satisfying (2.2) is the eigenvector of the tensor [T]. Its direction is the principal
direction of the tensor [T]. The scalar factor t is the principal value or eigenvalue
of the tensor [T].

If (2.2) is valid, then

( Txx −t) Vx + Txy Vy = 0,

Tyx Vx + ( Tyy −t) Vy = 0 .

This uniform system of linear equations in Vx , Vy can have nonzero solutions if its
determinant is equal to zero:

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 53
DOI 10.1007/978-3-540-77814-1 2, C© Springer-Verlag Berlin Heidelberg 2008
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(Txx − t)(Tyy − t) − Txy Tyx = 0 ,

which gives the characteristic equation for the principal values t :

t2 −( Txx + Tyy )t + ( Txx Tyy − Txy Tyx ) = 0

and the equation for the principal directions:

tan � = Vy

Vx
= t − Txx

Txy
= Tyx

t − Tyy
= t − Txx + Tyx

t + Txy − Tyy
, (2.4)

where � is an angle between the vector V and the x-axis.
It follows from (2.3) and (2.4) that any symmetric real-valued tensor [T] has two

real principal values

t1= tr [T]

2
+
√

(tr [T])2

4
−det [T] = Txx + Tyy

2
+
√

(Txx + Tyy)2

4
− (Txx Tyy − Txy Tyx ),

t2= tr [T]

2
−
√

(tr [T])2

4
−det [T] = Txx + Tyy

2
−
√

(Txx + Tyy)2

4
− (Txx Tyy − Txy Tyx )

(2.5)

and two orthogonal principal directions:

�1 = arctan
t1 − Txx + Tyx

t1 + Txy − Tyy
,

�2 = �1 + π
2 = arctan

t2 − Txx + Tyx

t2 + Txy − Tyy
,

(2.6)

where tr [T] = Txx + Tyy and det [T] = Txx Tyy − Txy Tyx .
From the solution of the eigenstate problem, we derive three independent

parameters, t1, t2 and �1, which fill all three degrees of freedom possessed by the
matrix [T].

Rotating the symmetric tensor [T] through the angle �1, we reduce it to its prin-
cipal directions and get a diagonal tensor

[T] =
[

t1 0
0 t2

]
. (2.7)

Thus, we convey all the information inherent in the four components
Txx , Txy, Tyx , Tyy of the tensor [T] to its principal values, t1 and t2 and principal
directions, �1, �2 = �1 + �/2.

On some alteration, this classical approach can be readily applied to the two-
dimensional impedance tensor. Really, with (1.62), that is, with skewS = 0 and
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skewB = 0, we can rotate the reference frame counterclockwise through the strike
angle � determined by (1.58) and rearrange the tensor [Z] to the anti-diagonal tensor
(1.54) with the longitudinal and transverse components on the secondary diagonal.
What is more, following (1.16), we can rearrange the anti-diagonal tensor [Z] to the
diagonal tensor [Z] with the longitudinal and transverse components on the principal
diagonal.

Generally such a simple solution to the magnetotelluric eigenstate problem is
unworkable. When it comes to the complex-valued impedance tensor [Z] character-
istic of three-dimensional media, the conditions skewS = 0, skewB = 0 are violated
and there is no real rotation angle that enables us to reduce the impedance tensor to
the anti-diagonal (or diagonal) form. Clearly, in magnetotellurics we have to look
for more general approaches that would be applicable in the case of asymmetric
media. Swift (1967) was likely the first to suggest some basic ideas in this field.

Statement of the impedance eigenstate problem needs some extensions asso-
ciated with the elliptic polarization of the magnetotelluric field. For the sake of
integrity, it would be useful to give a brief review of the polarization definitions
(Yee and Paulson, 1987).

2.2 Polarization of the Magnetotelluric Field

Following Yee and Paulson (1987), we consider the complex electric and magnetic
fields

Eτ=
[

Ex

Ey

]
=
[

| Ex | ei �E
x

| Ey | ei �E
y

]
, Hτ =

[
Hx

Hy

]
=
[

| Hx | ei �H
x

| Hy | ei �H
y

]
. (2.8)

Their polarization ratios are:

PE = Ey

Ex
= | Ey |

| Ex | ei (�E
y −�E

x ) = tan�E ei �E
,

PH = Hy

Hx
= | Hy |

| Hx | ei (�H
y −�H

x ) = tan�H ei �H
,

(2.9)

where

tan �E=| PE | = | Ey |
| Ex | , �E ∈ [0, π/2],

tan �H=| PH | = | Hy |
| Hx | , �H ∈ [0, π/2],

and

�E = �E
y − �E

x = arg PE,
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�H = �H
y − �H

x = argPH .

In the t-domain

Eτ (t) =
[

Ex (t)
Ey (t)

]
=
[ | Ex |cos(� t− �E

x )
| Ey |cos(� t− �E

y )

]
,

Hτ (t) =
[

Hx (t)
Hy(t)

]
=
[ | Hx |cos(� t− �H

x )
| Hy |cos(� t− �H

y )

]
.

(2.10)

Eliminating sin �t and cos �t from (2.10), we obtain the equations for the
ellipses described by the endpoint of the vectors Eτ (t), Hτ (t):

E2
x (t)

| Ex |2 + E2
y (t)

| Ey |2 − 2cos �E Ex (t) Ey (t)

| Ex || Ey | = sin2�E ,

H 2
x (t)

| Hx |2 + H 2
y (t)

| Hy |2 − 2cos�H Hx (t) Hy (t)

| Hx || Hy | = sin2 �H .

(2.11)

These ellipses received the name polarization ellipses. Parameters of the polariza-
tion ellipses can be defined through the polarization ratios.

Let us begin with the polarization ellipse for the electric field (Fig. 2.1a). First
find the angle �E made by the major axis of the polarization ellipse with the x-axis.

To this end, determine the time to, at which Eτ (t) =
√

E2
x (t) + E2

y (t) is maximum.

From the conditions

Fig. 2.1 Polarization ellipses
of electric (a) and magnetic
(b) eigenfields. I, II, III, IV –
numbers of quadrants
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dEτ (t)

dt
= 0 with

d2 Eτ (t)

dt2 < 0

we derive the following equation in to:

tan 2�to = | Ex |2 sin2 �E
x +| Ey |2 sin2 �E

y

| Ex |2 cos2 �E
x +| Ey |2 cos2 �E

y

with tan �E tan(�to− �E
x ) > 0,

whence

tan �E = | Ey |cos(�to − �E
y )

| Ex |cos(�to − �E
x )

= | Ey |
| Ex | [1 + tan �E tan(�to − �E

x )]cos �E . (2.12)

In accord with (2.9), (2.12) this equation becomes:

tan 2�E= 2 RePE

1 − | PE |2 = tan 2�E cos �E , (2.13)

where �E is taken within quadrant I (0 ≤ �E ≤ �/2), if cos �E ≥ 0 or within quad-
rant IV (0 > �E ≥ −�/2), if cos �E< 0.

Next find the ratio �E between semiaxes of the polarization ellipse. This parame-
ter is termed the field ellipticity. Substitution of to and to + �/2� into Eτ (t) yields
the major and minor semi-axes of the ellipse:

aE = | Ex |
√

1 + |PE|2 + 2Im PE +
√

1 + |PE|2 − 2Im PE

2
,

bE = | Ex |
√

1 + |PE|2 + 2Im PE −
√

1 + |PE|2 − 2Im PE

2
,

where the quantity bE is defined with its sign: it is positive for Im PE > 0, that is,
for sin�E > 0, and it is negative for Im PE< 0, that is, for sin �E< 0. Thus,

�E = bE

aE

=
√

1 + |PE|2 + 2Im PE −
√

1 + |PE|2 − 2Im PE√
1 + |PE|2 + 2Im PE +

√
1 + |PE|2 − 2Im PE

= tan �E, (2.14)

where

�E = 1

2
arcsin (sin 2�E sin�E ) − �/4 ≤ �E ≤ �/4

and

−1 ≤ �E ≤ 1.
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Note that |�E| = 0 for the linear polarization, and |�E| = 1 for the circular
polarization. What is the sense of the sign of �E? Let us define the angle velocity of
the field rotation:

� = d

dt
arctan

Ey (t)

Ex (t)
= � sin �E | Ex || Ey |

| Ex |2 cos2 (�t − �E
x ) + | Ey |2 cos2 (�t − �E

y )
.

This makes clear that the electric vector rotates clockwise if sin�E > 0, that is,
for �E > 0, and counterclockwise if sin�E< 0, that is, for �E< 0.

With (2.14), we can present simple formulae for normalized semi-axes of polar-
ization ellipse:

aE√
a2

E + b2
E

= 1√
1 + b2

E

a2
E

= 1√
1 + tan2�E

= cos �E,

bE√
a2

E + b2
E

= 1√
1 + a2

E

b2
E

= tan �E√
1 + tan2�E

= sin �E.

(2.15)

It is obvious that the polarization state of the electric field is completely deter-
mined by its polarization ratio. The complex quantity PE = tan�E ei�E

characterizes
the entire class of electric fields with different |Ex | ,

∣∣Ey

∣∣ and �E
x , �E

y , but with
the same tan �E = ∣∣Ey

∣∣ / |Ex |, �E = �E
y − �E

x and hence with the same elliptic
parameters �E, �E which define the orientation and shape of the polarization ellipse.
According to (2.13), (2.14)

tan 2�E = tan 2�E cos �E

−�/2 ≤ �E ≤ �/2

�E = tan �E sin 2�E = sin 2�E sin �E

− 1 ≤ � ≤ 1 − �/4 ≤ �E ≤ �/4.

(2.16)

Converting these relationships, we get

cos 2�E = cos 2�E cos 2�E 0 ≤ �E ≤ �/2

tan �E = tan 2�E csc 2�E −�< �E ≤ �.
(2.17)

Similar formulae are available for the polarization ellipse of the magnetic field
(Fig. 2.1b).

The angle �H between the major axis of the magnetic ellipse and the x-axis can
be determined from the equation

tan2�H= 2RePH

1− |PH|2
= tan 2�H cos �H (2.18)
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where �H is taken within quadrant I (0 ≤ �H ≤ �/2) if cos �H ≥ 0 or within
quadrant IV (0 > �H ≥ −�/2) if cos �H<0.

For the magnetic field ellipticity and normalized semi-axes of polarization ellipse
we have

�H = bH

aH

=
√

1+ |PH|2 +2Im PH−
√

1+ |PH|2 −2Im PH√
1+ |PH|2 +2Im PH+

√
1+ |PH|2 −2Im PH

= tan �H

aH√
a2

H + b2
H

= cos �H

bH√
a2

H + b2
H

= sin �H ,

(2.19)

where

�H = 1

2
arcsin(sin 2�H sin�H ) − �/4 ≤ �H ≤ �/4

and

−1< �H< 1.

Polarization ellipses offer a geometrical image of the magnetotelluric field. The
major axis of the polarization ellipse gives preferential direction of the field, while
the field ellipticity defines the measure of this preference and the sense of the field
rotation.

Using polarization descriptors, we can readily define the spatial relationships
between complex field vectors.

The complex electric fields, Eτ1 and Eτ2, are said to be orthogonal provided that
their scalar product is equal to 0:

Eτ1 · Eτ2 = Ex1 Ēx2 + Ey1 Ēy2 = 0. (2.20)

Here

PE1 P̄E2 = −1 (2.21)

and, according to (2.13) and (2.14),

�E1 − �E2 = ±�

2
�E1 = −�E2 �E1 = −�E2 . (2.22)

So, the orthogonal electric fields have the similar polarization ellipses with perpen-
dicular major axes and the opposite sense of field rotation.

The same holds good for the orthogonal magnetic fields, Hτ1 and Hτ2:

Hτ1 · Hτ2 = Hx1 H̄x2 + Hy1 H̄y2 = 0, (2.23)
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whence

PH1 P̄H2 = −1 (2.24)

and, according to (2.18) and (2.19),

�H 1 − �H 2 = ±�

2
�H 1 = −�H 2 �H 1 = −�H 2 . (2.25)

Relationships of this kind are exemplified in Fig. 2.2a. They will be referred to
as the EE orthogonality and HH orthogonality.

Next we will consider a special event when the complex fields Eτ , Hτ satisfy
equation which is valid for orthogonality of real vectors:

Ex Hx + Ey Hy = 0. (2.26)

Here

PE PH = −1 (2.27)

and, according to (2.13), (2.14) and (2.18), (2.19),

�E − �H = ±�

2
�E = �H. (2.28)

Fig. 2.2 Polarization ellipses
of electric and magnetic
eigenfields for EE and HH
orthogonality (a) and EH
quasi-orthogonality (b)

Hτ1

Hτ2

Eτ1

Eτ2

Eτ

Hτ

a

b
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So, we have the similar polarization ellipses with perendicular major axes, but
with the same sense of field rotation (Fig. 2.2b). Relationships of this kind will be
referred to as the EH quasi-orthogonality.

With these definitions, we can enter into a discussion of basic approaches to the
impedance eigenstate problem.

2.3 Basic Approaches to the Impedance Eigenstate Problem

The impedance eigenstate problem has been advanced by Sims and Bostick (1967),
Eggers (1982), Spitz (1985), LaTorraca et al. (1986), Counil et al. (1986) and
Yee and Paulson (1987). Entire gamut of different methods has been thoroughly
reviewed by Yee and Paulson (1987), Groom and Bailey (1991) and Vozoff (1991).

In our book we will restrict ourselves to a close look at three most-used methods:
(1) the Swift–Sims–Bostick method (the rotation approach), (2) the Swift–Eggers
method (the modified classical approach), (3) the LaTorraca–Madden–Korringa
method (the modified SVD approach). These methods determine the eigenstate of
the three-dimensional impedance tensor so that the solution obtained satisfies one
of the inherent properties of the two-dimensional impedance tensor.

Let us take a 2D-model with the strike along the x-axis. Here, according to (1.54),

[Z] =
[

0 Z‖

−Z⊥ 0

]
, (2.29)

whence

Ex = Z‖ Hy, Ey = −Z⊥ Hx . (2.30)

It is natural to consider the longitudinal and transverse directions that run along
and across the model strike as principal directions of [Z]. In this context, the fields
Eτ and Hτ linearly polarized along and across the model strike should be consid-
ered as eigenfields of [Z]. The two-dimensional tensor [Z] has two pairs of the
eigenfields:

TE − mode

⎧⎪⎪⎨
⎪⎪⎩

Eτ1 =
[

Ex1

0

]

Hτ1 =
[

0
Hy1

] TM − mode

⎧⎪⎪⎨
⎪⎪⎩

Eτ2 =
[

0
Ey2

]

Hτ2 =
[

Hx2

0

] . (2.31)

In each pair, the electric eigenfield is the transform of the magnetic eigenfield:

Eτ1 = �1

[
0 1
−1 0

]
Hτ1 Eτ2 = �2

[
0 1
−1 0

]
Hτ2, (2.32)

where ς1 = Z‖ and ς2 = Z⊥ are the principal values (eigenvalues) of [Z].
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These representations exhibit three inherent properties of the two-dimensional
impedance tensor [Z]:

1. Tensor [Z], defined on its principal directions, has zero principal diagonal. By
virtue of (2.29):

Zxx = Z yy = 0 (2.33)

2. Eigenfields Eτ1, Hτ1 as well as eigenfields Eτ2, Hτ2 are quasi-orthogonal. At
arbitrary orientation of the x,y-axes

Ex1 Hx1 + Ey1 Hy1 = 0

Ex2 Hx2 + Ey2 Hy2 = 0,
(2.34)

which is in agreement with (2.26). The tensor Eτ2, Hτ2 is characterized by the EH
quasi-orthogonality of electric and magnetic eigenfields.

3. Eigenfields Eτ1, Eτ2 as well as eigenfields Hτ1, Hτ2 are orthogonal. At arbi-
trary orientation of the x,y-axes

Ex1 Ēx2 + Ey1 Ēy2 = 0

Hx1 H̄x2 + Hy1 H̄y2 = 0,
(2.35)

which is in agreement with (2.20) and (2.23). The tensor [Z] is characterized by the
EE and HH orthogonality of electric and magnetic eigenfields.

The above properties of the two-dimensional impedance give a clue to gener-
alization of the magnetotelluric eigenstate problem to the 3D model. Solving the
3D eigenstate problem, we attribute one of these properties to the three-dimensional
impedance tensor. In the following we consider three methods of this kind. All these
methods share the common property that in the case of a 2D medium they define
the longitudinal and transverse directions as principal directions as well as the lon-
gitudinal and transverse impedances as principal impedances. In the general case of
a 3D asymmetric medium they offer principal directions and principal impedances
of an equivalent 2D tensor [Z].

2.4 The Swift–Sims–Bostick Method

This method has been proposed by Swift (1967) and advanced by Sims and Bostick
(1967). The Swift–Sims–Bostick method (SSB-method) comes from (2.33) and
reduces to the reference frame rotation that minimizes the principal diagonal com-
ponents Zxx , Z yy of the impedance tensor [Z] obtained at the surface of a three-
dimensional Earth. Sometimes the Swift–Sims–Bostick method (SSB method) is
referred to as rotation method.

The parameter M(�) is introduced to characterize the relation between princi-
pal and secondary diagonal components, Zxx , Z yy and Zxy, Z yx , of the impedance
tensor:
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M(�) = | Zxx (�) |2 +| Z yy (�) |2
| Zxy (�) |2 +| Z yx (�) |2 . (2.36)

Let us define the angle �, at which M(�) has a minimum. The condition

d M(�)

d�
= 0 with

d2 M(�)

d�2
> 0

results in the equation

tan 4� = 2 Re Z3 Z̄4

|Z4 |2 −|Z3 |2 (2.37)

with

2Re Z3 Z̄4sin 4� + (| Z4 |2 −| Z3 |2 ) cos 4�< 0,

where Z3 = (Zxy + Z yx )/2 and Z4 = (Zxx − Z yy)/2.
This equation has two solutions, �1 and �2 = �1 + �/2, which differ by

�/2. Thus, we obtain two perpendicular directions, �1 and �2, with minimal
principal diagonal, Zxx (�1), Z yy(�1) and Zxx (�2), Z yy(�2). These directions are
considered as principal directions of the tensor [Z]. The principal values of the
tensor [Z] are obtained on the secondary diagonal as �1 = Zxy(�1) = −Z yx (�2) and
�2 = −Z yx (�1) = Zxy(�2).

Thus, by the rotation method we derive five parameters:

|�1| , �1 = arg �1, |�2| , �2 = arg �2 , �1, (2.38)

which fill only five from eight degrees of freedom possessed by tensor [Z]. So, the
parameter space given by the rotation method is incomplete and this may result in
ambiguity. Take for instance the tensor

[Z] =
[

Zxx + � Zxy

Z yx Z yy + �

]

where � is an arbitrary quantity. To determine �1 and calculate Zxy(�1), Z yx (�1)
we use (2.37) and (1.27), but these equations contain only Z1, Z3, Z4 which do
not depend on �. Hence, we will receive the same principal directions and principal
values for tensors [Z] with different �.

Let us consider the 2D and axially symmetric 3D-models. Here min M(�) = 0.
So, the rotation method will give a tensor with zero principal diagonal and principal
directions which coincide either with longitudinal and transverse directions or with
tangential and radial directions.
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Applying the rotation method to a real asymmetric medium, we look for direc-
tion, in which the tensor

[Z] =
[

Zxx (�) Zxy(�)
Z yx (�) Z yy(�)

]

is best approximated by the tensor

[Z̃] =
[

0 Zxy(�)
Z yx (�) 0

]
=
[

0 �1

−�2 0

]
.

The error of approximation can be evaluated using Euclidean norms of matrices
[Z − Z̃] and [Z]:

	(�) = ||Z − Z̃||
||Z||

=
√

| Zxx (�) |2 +| Z yy(�) |2
| Zxx (�) |2 +| Zxy(�) |2 +| Z yx (�) |2 +| Z yy(�) |2 =

√
M(�)

1 + M(�)
.

(2.39)

So, the physical basis for this method is the approximation of a real asymmetric
medium by the two-dimensional or axially symmetric medium. Such an approxima-
tion is justified if 	 is sufficiently small (say, 	 ≤ 0.2).

It is not unusual to receive large values for (for instance, 	 > 0.5). In that event
we hardly can approximate the medium by two-dimensional or axisymmetric model.
So, the physical basis for the rotation method is ruined and its application may lead
to information losses.

To remove these limitations, we turn to the Swift–Eggers method or the
LaTorraca–Madden–Korringa method. These methods are modifications of the stan-
dard methods of matrix algebra.

2.5 The Swift–Eggers Method

This method has been proposed by Swift (1967) and advanced by Eggers (1982).
The Swift–Eggers method (SE method) can be considered as a modification of the
classical approach shown in Sect. 2.1. Here we look for EH quasi-orthogonal mag-
netotelluric eigenfields, Eτ1, Hτ1 and Eτ2, Hτ2, which, according to (2.34), satisfy
equation

Exm Hxm + Eym Hym = 0 , m = 1, 2. (2.40)

Assume that
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Ex m = �m Hy m, Ey m = −�m Hx m , m = 1, 2, (2.41)

where ςm is the complex principal value (eigenvalue, principal impedance) of the
impedance tensor [Z].
Thus,

Eτm = [Z]Hτm = �m

[
0 1
−1 0

]
Hτm , m = 1, 2. (2.42)

Rotating the magnetic eigenfield Hτm and the impedance [Z] through ±�/2, we
obtain the Adam formulation (1.16) of the eigenstate problem

[
↔
Z]

↔
Hτm = �m

↔
Hτm , m = 1, 2, (2.43)

which coincides with the standard formulation (2.2). Here, with account for (1.1 6),

↔
Hτ = [R(�/2)] Hτ =

[
Hy

−Hx

]

[
↔
Z] = [Z][R(−�/2)] =

[
Zxy −Zxx

Z yy −Z yx

]
.

Writing (2.43) in full, we get

Zxx Hx m + (Zxy − �m) Hy m = 0,

(Z yx + �m)Hx m + Z yy Hy m = 0 , m = 1, 2.
(2.44)

Let the determinant of this uniform system be zero. Then

�2
m − (Zxy − Z yx )�m + (Zxx Z yy − Zxy Z yx ) = 0, m = 1, 2. (2.45)

Solving this characteristic equation, we find the complex principal values (eigen-
values) of the tensor [Z]:

�1 =
Zxy − Z yx +

√
( Zxy − Z yx )2 −4( Zxx Z yy − Zxy Z yx )

2
= 1

2

(
I3 +

√
I2
3 − 4I2

)

�2 =
Zxy − Z yx −

√
( Zxy − Z yx )2 −4( Zxx Z yy − Zxy Z yx )

2
= 1

2

(
I3 −

√
I2
3 − 4I2

)
(2.46)

expressed in terms of rotational invariants I3 = tr
[↔
Z
]

= Zxy − Z yx and I2 =
det [Z] = Zxx Z yy − Zxy Z yx .
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Moduli of principal values, |�1| and |�2|, have a simple interpretation:

√
|Exm |2 + ∣∣Eym

∣∣2 =
√∣∣�m Hym

∣∣2 + |�m Hxm |2

= |�m |
√

|Hxm |2 + ∣∣Hym

∣∣2, m = 1, 2

whence

|�m | =
√

|Exm |2 + ∣∣Eym

∣∣2√
|Hxm |2 + ∣∣Hym

∣∣2 , m = 1, 2. (2.47)

So, the moduli of principal impedances are the ratios between the Euclidean
norms of the electric and magnetic eigenfields.

Next we should determine the principal directions of the tensor [Z]. Here a spe-
cial agreement is required. The point is that the electric and magnetic eigenfields,
Eτ1, Hτ1 and Eτ2, Hτ2, are complex vectors. They can be characterized by direc-
tions of their real and imaginary parts or by orientation of their polarization ellipses.
Let us define the principal directions of the impedance tensor as directions of the
major axes of polarization ellipses for the electric eigenfields Eτ1 and Eτ2.

With (2.40) and (2.44), the polarization ratios for Eτ1 and Eτ2 are

PEm = Eym

Exm
= − Hxm

Hym
= −�m − Zxy

Zxx
= Z yy

�m + Z yx
= − �m − Zxy − Z yy

�m + Zxx + Z yx
,

m = 1, 2.

(2.48)

Applying (2.13), we evaluate angles �E1 and �E2 made by major axes of the elec-
tric polarization ellipses with the x-axis:

tan 2�Em = tan 2�Em cos�Em , m = 1, 2, (2.49)

where tan �Em = ∣∣PEm

∣∣ , �Em = arg PEm . Note that the value of �Em is taken
within quadrant I (0 ≤ �Em ≤ �/2) if cos �Em ≥ 0 or within quadrant IV
(0 > �Em ≥ −�/2) if cos �Em < 0. The values of �E1 and �E2 indicate the directions
of major axes of the electric polarization ellipses. These directions, determined mod-
ulo �, are considered as the principal directions of the magnetotelluric impedance
tensor.

Finally we determine the ellipticity parameters �E1 and �E2 . In accord with
(2.14),

�Em = tan�Em , m = 1, 2 (2.50)
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where

�Em = 1

2
arcsin

(
sin 2�Em sin �Em

) − �/4 ≤ �Em ≤ �/4

and

−1 ≤ �Em ≤ 1.

Thus, by the Swift–Eggers method we derive eight independent eigenstate
parameters:

|ς1| , ξ1 = arg ς1, �1 = �E1 , �1 = �E1

|ς2| , ξ2 = arg ς2, �2 = �E2 , �2 = �E2

(2.51)

which fill all eight degrees of freedom possessed by the matrix [Z].
There is a one-to-one correspondence between the impedance tensor and its prin-

cipal values, principal directions and eigenfield ellipticities. Given ς1, �1, �1 and
ς2, �2, �2, we can determine [Z]. The most simple are relationships between [Z]
and ς1, ς2, PE1 , PE2 :

Zxx = ς2 − ς1

PE1 − PE2

Zxy = PE1
ς2 − PE2

ς1

PE1 − PE2

Z yx = PE2
ς2 − PE1

ς1

PE1 − PE2

Z yy = PE1 PE2 ( ς2 − ς1 )

PE1 − PE2

.

(2.52)

Here, with account for (2.9), (2.16) and (2.17),

PEm = tan�Em ei�m , m = 1, 2,

where

cos 2�Em = cos (2 arctan �Em ) cos 2�Em

0 ≤ �Em ≤ �/2

tan �Em = tan (2 arctan �Em ) csc 2�Em

0 ≤ �Em ≤ � if 0 ≤ �Em ≤ 1

−�< �Em < 0 if − 1 ≤ �Em < 0.

Now we examine indications of the Swift–Eggers method in the models of dif-
ferent dimensionality.

In the 1D-model, we have Zxx = Z yy = 0 and Zxy = −Z yx = Z where Z is
the Tikhonov–Cagniard impedance. Here �1 = �2 = Z and PE1,2 = 0/0, �E1,2 =
0/0 . The principal values of the tensor [Z] coincide with Tikhonov–Cagniard’s
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impedance, while the polarization ellipses and principal directions are indetermi-
nate, since any magnetic field is transformed to a quasi-orthogonal electric field.

Take the 2D-model with the strike along the x-axis. Here Zxx = Z yy = 0 and
Zxy = Z‖, Z yx = −Z⊥. With (2.46), (2.49), (2.50) we get �1 = Z‖, �2 = Z⊥ or
�1 = Z‖, �2 = Z⊥ and �1 = 0, �2 = �/2 or �1 = �/2, �2 = 0 as well as �1,2 = 0.
The principal values of the tensor [Z] coincide with the longitudinal and the trans-
verse impedances, while the principal directions are the longitudinal and transverse
ones. The electric eigenfields are linearly polarized along the principal directions.
At a single observation site, the Swift–Eggers method exposes the orientation of
two-dimensional structures, though cannot distinguish between the longitudinal and
transverse direction.

The similar situation is in the axially symmetric 3D-model. Here the tangential
and radial impedances are the principal values of the tensor [Z], while the tangen-
tial and radial directions are its principal directions. The ellipticity of the electric
eigenfields is zero. They are linearly polarized along principal directions.

Asymmetric 3D-structures manifest themselves in the elliptic polarization of the
electric eigenfields (�1,2 = 0) and in the violation of the perpendicularity of their
ellipses (|�1 − �2| = �/2). A special case is a quasi-symmetric 3D-structure with
skewS = 0 and skewB = 0. If Zxx + Z yy = 0, then it follows from (2.52) that
PE1 PE2 = −1. Hence the electric eigenfields Eτ1, Eτ2 are quasi-orthogonal and
|�1 − �2| = �/2.

Using the Swift–Eggers method, we can define three characeristic parameters
which reveal the lateral inhomogeneities and indicate their dimensionality:

(1) the parameter of inhomogeneity

N = �1 − �2

�1 + �2
(2.53)

In the 1D-model we have N = 0. Departure of N from 0 is a measure of lateral
inhomogeneity.

(2) the angular parameter of asymmetry (angular skew)

skewang = ||�1 − �2| − �/2| . (2.54)

In the 2D-model as well as in the axially symmetric and quasi-symmetric 3D-
models we have skewang = 0. Departure of skewang from 0 is a measure of geoelec-
tric asymmetry.

(3) the polarization parameter of asymmetry (polarization skew)

skewpol = |�1| + |�2|
2

. (2.55)

In the 2D-model and axially symmetric 3D-model we have skewpol = 0 indi-
cating linear polarization of electric eigenfields. Departure of skewpol from 0 is a
measure of geoelectric asymmetry.
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It would be interesting to find relations between the principal values of the
impedance tensor [Z] and scalar rotationally invariant impedances Zeff and Zbrd

introduced by (1.30). The effective impedance can be defined as the geometric mean
of the principal impedances:

Zeff =
√

�1 �2 =
√

det [Z] = √
Zxx Z yy − Zxy Z yx . (2.56)

The Berdichevsky impedance can be defined as the arithmetic mean of the prin-
cipal impedances:

Zbrd = �1 + �2

2
= Zxy − Z yx

2
. (2.57)

The principal impedances give rise to the principal apparent resistivity and prin-
cipal phase curves:

�1 = | �1 |2
� �0

�2 = | �2 |2
� �0

�1 = arg�1 = �1 �2 = arg�2 = �2 .

(2.58)

The �1, �2- and 1, 2-curves are oriented along the principal directions of the
impedance tensor. Unfortunately, their orientation may vary with frequency. There-
fore the principal MT-curves should be considered together with curves of �1, �2.

In parallel with principal MT-curves we can plot the effective MT-curves

�eff = | Zeff |2
��0

eff = argZeff (2.59)

and the Berdichevsky MT-curves

�brd = | Zbrd |2
��0

brd = arg Zbrd . (2.60)

2.6 The La Torraca–Madden–Korringa Method

The method offers a potent alternative to the Swift–Eggers method. It is based on
the SVD (singular value decomposition) theorem of Lanczos (1961). The funda-
mental work in this area was done by LaTorraca et al. (1986) as well as by Yee and
Paulson (1987). Applying the LaTorraca–Madden–Korringa method (LMK method),
we look for EE and HH orthogonal magnetotelluric eigenfields Eτ1, Hτ1 and
Eτ2, Hτ2, which, according to (2.20), (2.21) and (2.23), (2.24), satisfy equations
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Eτm = [Z]Hτm, m = 1, 2

Eτ1 · Eτ2 = Ex1 Ēx2 + Ey1 Ēy2 = 0 PE1 P̄E2 = −1

Hτ1 · Hτ2 = Hx1 H̄x2 + Hy1 H̄y2 = 0 PH1 P̄H2 = −1 .

(2.61)

Let us express these magnetotelluric eigenfields in terms of the polarization
descriptors �E, �H (� is an angle made by the major axis of polarization ellipse with
the x-axis) and �E, �H(ε is a ratio between the minor, b, and major, a, semi-axes of
polarization ellipse).

In conformity with (2.13), (2.18) and (2.23), (2.25),

tan 2�E1 = tan 2�E1 cos �E1 �E2 = �E1 + �

2

tan 2�H1 = tan 2�H1 cos �H1 �H2 = �H1 + �

2
,

(2.62)

where tan �E1 = ∣∣PE1

∣∣, �E1 = argPE1 and tan �H1 = ∣∣PH1

∣∣, �H1 = argPH1 . Here �E1

is taken within quadrant I (0 ≤ �E 1 ≤ �/2) if cos �E 1 ≥ 0 or within quadrant
IV (0 > �E1 ≥ −�/2) if cos �E 1<0, while �H1 is taken within quadrant I (0 ≤
�H 1 ≤ �/2) or quadrant III (� ≤ �H1 ≤ 3�/2) if cos �H 1 ≥ 0, and within quadrant
IV (0 > �H1 ≥ −�/2) or quadrant II (� > �H1 ≥ �/2) if cos �H1< 0. So, we
determine an acute angle �E1 and have freedom in choosing either acute or blunt
angle �H1 to suit proper relationship between electric and magnetic eigenfields.

In the same vein, according to (2.14), (2.19) and (2.22), (2.25),

�E1 = tan �E1 �E2 = − �E1 �E2 = −�E1

�H1 = tan �H1 �H2 = −�H1 �H2 = −�H1 ,
(2.63)

where

�E1 = 1

2
arcsin(sin2�E1 sin�E1 ) �H1 = 1

2
arcsin(sin2�H1 sin�H1 )

with −�/4 ≤ � ≤ �/4 and –1≤ ε ≤ 1.
Using these definitions, we can introduce orthonormal basises e1, e2 and h1, h2

into the spaces of electric and magnetic fields. To this end, we normalize the eigen-
fields Eτ1, Eτ2 and Hτ1, Hτ2 to

√
a2 + b2 and multiply them by a phase factor e−i�

such that their real and imaginary vectors coincide with major a and minor b semi-
axes of corresponding polarization ellipse. With account for (2.15) and (2.19), we
write
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e1 = Eτ1e−i�′
E√

a2
E1

+ b2
E1

= aE1 1′
aE

+ ibE1 1′
bE√

a2
E1

+ b2
E1

= cos �E1 1′
aE

+ isin �E1 1′
bE

h1 = Hτ1e−i�′
H√

a2
H1

+ b2
H1

= aH1 1′
aH

+ ibH1 1′
bH√

a2
H1

+ b2
H1

= cos �H1 1′
aH

+ isin�H1 1′
bH

e2 = Eτ2e−i�′′
E√

a2
E2

+ b2
E2

= aE2 1′′
aE

+ ibE2 1′′
bE√

a2
E2

+ b2
E1

= cos �E2 1′′
aE

+ isin �E2 1′′
bE

h2 = Hτ2e−i�′′
H√

a2
H2

+ b2
H2

= aH2 1′′
aH

+ ibH2 1′′
bH√

a2
H2

+ b2
H2

= cos �H2 1′′
aH

+ isin�H2 1′′
bH

,

(2.64)

where 1′
aE

, 1′
aH

, 1′′
aE

, 1′′
aH

and 1′
bE

, 1′
bH

, 1′′
bE

, 1′′
bH

are unit vectors oriented along major
and minor semi-axes.

The components of normalized eigenfields e1, h1 are

e1x = cos�E1 cos�E1 − isin�E1 sin�E1

e1y = cos�E1 sin�E1 + isin�E1 cos�E1

h1x = cos�H1 cos�H1 − isin�H1 sin�H1

h1y = cos�H1 sin�H1 + isin�H1 cos�H1 .

(2.65)

Taking into account (2.62) and (2.63), the components of normalized eigenfields
e2, h2 can be written as

e2x = −cos�E1 sin�E1 + isin�E1 cos�E1

e2y = cos�E1 cos�E1 + isin�E1 sin�E1

h2x = −cos�H1 sin�H1 + isin�H1 cos�H1

h2y = cos�H1 cos�H1 + isin�H1 sin�H1 .

(2.66)

Equations (2.65) and (2.66) have �-ambiguity in �H1 , which leads to �-ambiguity
in phases of principal values of the impedance tensor. To remove this ambiguity,
we assume that the Earth is everywhere passive and the real part of the complex
Pointing vector calculated from Eτ1 and Hτ1 as well as from e1 and h1 cannot be
directed upwards:

Re (e1 × h̄1)z ≥ 0 . (2.67)
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Substituting (2.65) into (2.67), we get

sin (�H1 − �E1 )cos (�H1 − �E1 ) ≥ 0.

Since �E1 and �H1 are limited by ± �/4, it is evident that cos (�H1 −�E1 ) is nonneg-
ative by definition. Thus, the condition (2.67) is satisfied when sin (�H1 − �E1 ) ≥ 0,
that is, when orientation of the magnetic and electric polarization ellipses meets the
condition

�E1 ≤ �H1 ≤ �E1 + �. (2.68)

Let us consider properties of normalized eigenfields e1, h1 and e2, h2.
According to (2.64)

Pem = eym

exm
= Eym

Exm
= PEm ,

Phm = hym

hxm
= Hym

Hxm
= PHm , m = 1, 2.

(2.69)

Vectors em, hm have the same polarization ratios as initial eigenfield vectors
Eτm, Hτm . Hence all parameters characterizing polarization of the electric and
magnetic eigenfields can be calculated from Pem , Phm .

What we have to stress is that vectors e1 and e2 as well as vectors h1 and h2 are
orthonormal:

em · en = 	mn, hm · hn = 	mn, (2.70)

where

	mn =
{

1 m = n
0 m = n .

We represent normalized eigenfields e1, e2 and h1, h2 by matrices

[Ue] =
[

e1x e2x

e1y e2y

]
, [Uh] =

[
h1x h2x

h1y h2y

]
(2.71)

forming orthonormal basises in the spaces of electric and magnetic fields. The con-
jugate matrices are

[Ue] =
[

ē1x ē1y

ē2x ē2y

]
, [Uh] =

[
h̄1x h̄1y

h̄2x h̄2y

]
. (2.72)

By virtue of (2.70)
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[Ue] [Ue] = [Ue][Ue] = [I] , [Uh] [Uh] = [Uh][Uh] = [I] , (2.73)

where [I] is the identity matrix

[I] =
[

1 0
0 1

]
.

This implies that [Ue] and [Uh] are unitary matrices: their conjugate matrices
coincide with their inverse matrices and they are commutative with their conjugate
matrices.

Now we shall derive impedance equation for the normalized eigenfields. Accord-
ing to (2.64),

Eτ1 =
√

a2
E1

+ b2
E1

ei�′
E e1 Hτ1 =

√
a2

H1
+ b2

H1
ei�′

H h1

Eτ2 =
√

a2
E2

+ b2
E2

ei�′′
E e2 Hτ2 =

√
a2

H2
+ b2

H2
ei�′′

H h2 .

Substituting these relations into the equation Eτm = [Z] Hτm, m = 1, 2, we
write

[Z] h1 = �1e1, [Z] h2 = �2e2, (2.74)

where

�1 =
√

a2
E1

+ b2
E1√

a2
H1

+ b2
H1

ei (�′
E−�′

H), �2 =
√

a2
E2

+ b2
E2√

a2
H2

+ b2
H2

ei (�′′
E−�′′

H) .

In matrix form

[Z] [Uh] = [Ue] [�] , (2.75)

where [�] is a diagonal matrix:

[�] =
[

�1 0
0 �2

]
.

Multiplying (2.75) on the right by [Uh], we get

[Z] = [Ue][�] [Uh] (2.76)
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This decomposition of the impedance matrix differs from the standard singular
value decomposition, SVD, in that the diagonal elements �1 and �2 of [�] are com-
plex. Let us keep the standard SVD terminology and call these values the complex
singular values. In the La Torraca–Madden–Korringa method the complex singular
values, �1 and �2, are considered as principal values of the impedance tensor.

Matrix equation (2.76) has eight unknowns quantities (polarization parameters,
�E1 , �E1 , �H1 , �H1 , and complex singular values, �1 and �2) against eight known quan-
tities (complex components, Zxx , Zxy, Z yx , Z yy).

Moduli of complex singular values and polarization parameters are readily
derived by standard SVD procedure. Introduce matrices

[CE] = [Z] [Z] =
[

Zxx Zxy

Z yx Z yy

] [
Z̄xx Z̄ yx

Z̄xy Z̄ yy

]
=
[

|Zxx |2 + ∣∣Zxy

∣∣2 Zxx Z̄ yx + Zxy Z̄ yy

Z̄xx Z yx + Z̄xy Z yy

∣∣Z yx

∣∣2 + ∣∣Z yy

∣∣2
]

[CH] = [Z] [Z] =
[

Z̄xx Z̄ yx

Z̄xy Z̄ yy

] [
Zxx Zxy

Z yx Z yy

]
=
[

|Zxx |2 + ∣∣Z yx

∣∣2 Z̄xx Zxy + Z̄ yx Z yy

Zxx Z̄xy + Z yx Z̄ yy

∣∣Zxy

∣∣2 + ∣∣Z yy

∣∣2
]

,

(2.77)

where [Z] = [Ue][�] [Uh] and [Z] = [Uh][�] [Ue]. Here

tr [CE] = tr [CH] = |Zxx |2 + ∣∣Zxy

∣∣2 + ∣∣Z yx

∣∣2 + ∣∣Z yy

∣∣2 = ‖Z‖2 ,

det [CE] = det [CH] = ∣∣Zxx Z yy − Zxy Z yx

∣∣2 = | det [Z] |2 ,

(2.78)

where ‖Z‖ and det [Z] are the Euclidean norm and determinant of the matrix [Z] .

It is seen that [CE] and [CH] are Hermitian matrices: their principal diagonal
elements are real, while the secondary diagonal elements are complex conjugate.
The remarkable feature of Hermitian matrices is that their eigenvalues are real. In
fact,

[CE] = [Ue][�] [Uh][Uh][�] [Ue] = [Ue][�] [Ue],

[CH] = [Uh][�] [Ue] [Ue][�] [Uh] = [Uh][�] [Uh],

whence

[CE] [Ue] = [Ue] [�] ,

[CH] [Uh] = [Uh] [S] ,
(2.79)

where

[
�
] =

[ |�1|2 0
0 |�2|2

]
.
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This matrix equation breaks down into four equations, which conform to classical
eigenstate formulation (2.2):

[CE] e1 = |�1|2 e1 [CE] e2 = |�2|2 e2

[CH] h1 = |�1|2 h1 [CH] h2 = |�2|2 h2 .
(2.80)

It is apparent that |�1|2 , |�2|2 are eigenvalues of matrices [CE] , [CH], while
e1, e2 and h1, h2 are their eigenvectors.

In line with (2.5) and (2.78), we get

| �1|2 = ‖Z‖2 +
√

‖Z‖4 − 4 |det [Z] |2
2

=
J 2

11 +
√

J 4
11 − 4 |I2|2
2

| �2|2 = ‖Z‖2 −
√

‖Z‖4 − 4 |det [Z] |2
2

=
J 2

11 −
√

J 4
11 − 4 |I2|2
2

,

(2.81)

where �1 and �2 are the complex principal values of the impedance tensor [Z]. Mo-
duli of �1 and �2 are expressed in terms of rotational invariants I2 = det [Z] =
Zxx Z yy − Zxy Z yx and J11 = ‖Z‖ =

√
|Zxx |2 + ∣∣Zxy

∣∣2 + ∣∣Z yx

∣∣2 + ∣∣Z yy

∣∣2. They are
independent of the orientation of measurement axes. Note that |�1| ≥ |�2|.

Similarly, in the line with (2.4) (2.69) and (2.77), we get

PE1 = |�1|2 − |Zxx |2 − ∣∣Zxy

∣∣2
Zxx Z̄ yx + Zxy Z̄ yy

= Z̄ xx Z yx + Z̄xy Z yy

|�1|2 − ∣∣Z yx

∣∣2 − ∣∣Z yy

∣∣2

= |�1|2 − |Zxx |2 − ∣∣Zxy

∣∣2 + Z̄ xx Z yx + Z̄xy Z yy

|�1|2 − ∣∣Z yx

∣∣2 − ∣∣Z yy

∣∣2 + Zxx Z̄ yx + Zxy Z̄ yy

,

PH1 = |�1|2 − |Zxx |2 − ∣∣Z yx

∣∣2
Z̄ xx Zxy + Z̄ yx Z yy

= Zxx Z̄xy + Z yx Z̄ yy

|�1|2 − ∣∣Zxy

∣∣2 − ∣∣Z yy

∣∣2

= |�1|2 − |Zxx |2 − ∣∣Z yx

∣∣2 + Zxx Z̄xy + Z yx Z̄ yy

|�1|2 − ∣∣Zxy

∣∣2 − ∣∣Z yy

∣∣2 + Z̄ xx Zxy + Z̄ yx Z yy

.

(2.82)

Knowing PE1 and PH1 , we use (2.62), (2.63) and taking into account (2.68) derive
principal directions, �E1 and �H1 , as well as ellipticities, �E1 and �H1 .
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It remains to determine phases of the principal values. According to (2.74),

�1 = arg �1 = arg
Zxx hx1 + Zxyhy1

ex1

�2 = arg �2 = arg
Zxx hx2 + Zxyhy2

ex2
,

(2.83)

where the components of vectors e, h are obtained by (2.65) and (2.66) with �, �,
known from (2.62), (2.63), (2.69). It is easy to show that �1 and �2 are rotationally
invariant.

Thus, the La Torraca–Madden–Korringa method results in eight independent
eigenstate parameters:

|�1| , �1 = arg �1, �1 = �E1 , �1 = �E1

|�2| , �2 = arg �2, �2 = �H1 , �2 = �H1 ,
(2.84)

which fill all eight degrees of freedom possessed by the matrix [Z].
There is a one-to-one correspondence between the impedance tensor and its prin-

cipal values, principal directions and eigenfield ellipticities. Given �1, �1, �1 and
�2, �2, �2, we can determine [Z] using (2.76).

Let us examine indications of the La Torraca–Madden–Korringa method in mod-
els of different dimensionality.

In the 1D-model, we have Zxx = Z yy = 0 and Zxy = −Z yx = Z where Z
is the Tikhonov–Cagniard impedance. Here we get |�1| = |�2| = |Z | . All other
definitions are not unique, since PE1 = 0/0 and PH1 = 0/0 (any orthogonal magnetic
fields are transformed to orthogonal electric fields).

Turn to the 2D-model with the strike along the x-axis. Here Zxx = Z yy = 0
and Zxy = Z‖, Z yx = −Z⊥. With (2.62), (2.63) and (2.81), (2.83) we get �1 =
Z‖, �2 = Z⊥ or �1 = Z⊥, �2 = Z‖ and �1 = 0, �2 = �/2 or �1 = �/2,

�2 = 0 as well as �1,2 = 0. The principal values of the tensor [Z] coincide with
the longitudinal and the transverse impedances, while the principal directions are
the longitudinal and transverse directions. The electric and magnetic eigenfields are
linearly polarized along the principal directions. Note that 2D indications, given by
the La Torraca–Madden–Korringa and Swift–Eggers methods, are the same. At a
single observation site, both methods cannot distinguish between the longitudinal
and transverse direction.

The similar situation is in the axially symmetric 3D-model. Here the principal
values of the tensor [Z] coincide with the tangential and radial impedances, while
the principal directions are the tangential and radial directions. The ellipticity
of eigenfields is zero. So, the eigenfields are linearly polarized along principal
directions.

In the asymmetric 3D-models, we observe the elliptic polarization of the elec-
tric and magnetic eigenfields (� = 0) and the violation of the perpendicularity of
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their ellipses (
∣∣�E1 − �H1

∣∣ = �/2). However, a quasi-symmetric 3D structure with
skewS = 0 and skewB = 0 is a special case. If Zxx + Z yy = 0, then it follows
from (2.82) that PE1 P̄H1 = −1. Therefore the electric and magnetic eigenfields are
orthogonal and

∣∣�E1 − �H1

∣∣ = �/2. Here the La Torraca–Madden–Korringa method
displays the same effect of quasi-symmetry as the Swift–Eggers method.

Similar to the Swift–Eggers method, the La Torraca–Madden–Korringa method
offers three characteristic parameters which reveal the lateral inhomogeneities and
indicate their dimensionality. Using (2.84) and going back to (2.53), (2.54) and
(2.55), we can specify the inhomogeneity parameter N, the angular parameter of
asymmetry skewang , and the polarization parameter of asymmetry skewpol .

Let us find relations between the principal values of the impedance tensor [Z]
and scalar rotationally invariant impedances Zeff and ‖Z‖ introduced by (1.30) and
(1.33d). According to (2.76), (2.81), we get

Zeff = √
det [Z] =

√
det [Ue] det [�] det [Uh]

= √
det [�] = √

�1�2 = √
Zxx Z yy − Zxy Z yx ,

Zrms =
√

|�1|2 + |�2|2
2

= 1√
2

‖Z‖ =
√

|Zxx |2 + ∣∣Zxy

∣∣2 + ∣∣Z yx

∣∣2 + ∣∣Z yy

∣∣2
2

,

(2.85)

where Zeff and Zrms are the effective and root-mean-square impedances.
Using rotationally invariant principal values �1 and �2 , we apply (2.58) and arrive

at the principal apparent-resistivity and phase curves, �1, �2 and 1, 2, oriented
along principal directions.

Furthermore, we can turn to (2.59) and plot the effective apparent-resistivity
and impedance-phase curves �eff, eff as well as the root-mean-square apparent-
resistivity curve

�rms = Z2
rms

��o
(2.86)

calculated from rotational invariant Zrms.

2.7 Final Remarks on the Impedance Eigenstate Problem

We have considered three basic methods to solve the magnetotelluric eigenstate
problem: (1) the Swift–Sims–Bostick, SSB method (the rotation approach), (2) the
Swift–Eggers, SE method (the modified classical approach), (3) the LaTorraca–
Madden–Korringa, LMK method (the modified SVD approach).

It is self-evident that the SE method and the LMK method are most informa-
tive, since, contrary to the rotation approach, they fill all eight degrees of freedom
possessed by the matrix [Z] and provide a one-to-one correspondence between the
impedance tensor [Z] and its eigenstate parameters.
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Let us compare both modificatons.
1. The SE method does not impose any limitation on the medium under con-

sideration. However, the LMK method assumes that the Earth is locally passive (it
can only absorb the electromagnetic energy) and the real Pointing vector defined by
the eigenfields everywhere points down. This limitation removing the �-ambiguity
in phases of principal values of the impedance tensor is a weak point of the LMK
method because nobody has proved that near-surface local inhomogeneities cannot
emit the energy back into the air. Note that Yee and Paulson (1987) have proposed
another modification of SVD approach with unitary matrices expressed in terms
of polarization parameters �, � and this SVD version has no need of some limita-
tions. But here we obtain the phases of principal impedances that are not rotationally
invariant, and practical usefulness of this version is questionable.

2. The SE method provides the determination of the principal values �1, �2 in a
wide class of geoelectric media including horizontally homogeneous medium. At
the same time the LMK method in horizontally homogeneous medium delivers only
|�1| , |�2| (arg ς1, arg ς2 are undefined).

3. The principal values, �1, �2, found by the SE and LMK methods, coincide
in the 1D-, 2D- and axisymmetric 3D-models, but differ in the asymmetric 3D-
models. The LMK method is more sensitive to the geoelectric asymmetry than the
SE method. Let �SE

m , m = 1, 2 be the principal values obtained by the Swift–Eggers
method. In virtue of (2.47)

∣∣�SE
m

∣∣
m=1,2

=
√

|Exm |2 + ∣∣Eym

∣∣2√
|Hxm |2 + ∣∣Hym

∣∣2 , (2.87)

where Eτm and Hτm are the quasi-orthogonal eigenfields envolved in the Swift–
Eggers procedure. Take into account that Eτ m = [Z]Hτm and expand the magnetic
eigenfield with respect to basis h1, h2 formed by normalized magnetic eigenfields
envolved in the La Torraca–Madden–Korringa procedure: Hτm = �1 mh1 + �2 mh2.
Then, according to (2.70), (2.77) and (2.80),

|Exm |2 + ∣∣Eym

∣∣2 = Ēxm Exm + Ēym Eym = Hτm[Z][Z]Hτm

= (
�̄1mh1 + �̄2mh2

)
[CH] (�1mh1 + �2mh2)

= (
�̄1mh1 + �̄2mh2

) (
�1m

∣∣�LMK
1

∣∣2 h1 + �2m

∣∣�LMK
2

∣∣2 h2

)

= |�1m |2 ∣∣�LMK
1

∣∣2 + |�2m |2 ∣∣�LMK
2

∣∣2 ,

|Hxm |2 + ∣∣Hym

∣∣2 = H̄xm Hxm + H̄ym Hym

= (
�̄1mh1 + �̄2mh2

)
(�1mh1 + �2mh2) = |�1m |2 + |�2m |2 ,

(2.88)
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where �LMK
1 and �LMK

2 are the impedance principal values, obtained by the La
Torraca–Madden–Korringa procedure. Here

∣∣ςLMK
1

∣∣ >
∣∣�LMK

2

∣∣. Substituting (2.88)
in (2.87), we get

∣∣�SE
m

∣∣
m=1,2

=

√√√√ |�1m |2 ∣∣�LMK
1

∣∣2 + |�2m |2 ∣∣�LMK
2

∣∣2
|�1m |2 + |�2m |2 , (2.89)

whence

∣∣�LMK
2

∣∣ <
∣∣�SE

m

∣∣
m=1,2

<
∣∣�LMK

1

∣∣ . (2.90)

Clearly the LMK method has the advantage of higher sensitivity to three-
dimensional asymmetric structures.

4. In the SE method, the asymmetry of the medium violates orthogonality of the
electric eigenfields, while the electric and magnetic eigenfields are always quasi-
orthogonal. And vice versa, in the LMK method the asymmetry of the medium
violates orthogonality of the electric and magnetic eigenfields, while the electric
eigenfields as well as the magnetic eigenfields are always orthogonal. In both meth-
ods the eigenfields respond to the geoelectric asymmetry, but in a different way.

5. The SE and LMK methods offer purely mathematical procedures and discus-
sion about their physical meaning is a bit scholastic. Both methods complement
each other. The magnetotelluric eigenstate analysis can help in revealing target geo-
electric structures and establishing conditions that are most favorable for their study.
This simple idea specifies the practical significance of the eigenstate problem. Just
from this viewpoint we should judge the informativeness of different techniques
devised for eigenstate analysis.

It would be instructive to test different eigenstate techniques using synthetic data
computed for characteristic models.

Let us examine a three-layered superimposition model with a local �-shaped
resistive inclusion in the first layer (conductive sediments) and a regional two-
dimensional prismatic conductor in the second layer (resistive lithosphere). The
model is presented in Fig. 2.3. Here we can also see the apparent-resistivity and
impedance-phase curves obtained over the middle of the regional conductor in the
absence of the local �-shaped inclusion. The eigenstate determinations were done by
the Swift–Sims–Bostick, Swift–Eggers and La Torraca–Madden–Korringa methods
at 14 sites located over the �-shaped inclusion and in its vicinity.

Figure 2.4 shows the principal values �1 = |�1| ei ξ1 , �2 = |�2| ei �2 of the
impedance tensor [Z] defined by the SSB, SE, and LMK methods at T = 640 s
where the apparent-resistivity and impedance-phase curves distinctly reflect the
influence of the regional conductor. In the model under consideration all three
techniques yield closely related principal values: the difference in amplitudes and
phases of �1, �2 at most observation sites does not exceed 5% and 3◦ and only at a
few sites amounts up to 8–12% and 4–6◦. But note that |�1| , |�2| experience great



80 2 The Impedance Eigenstate Problem

y

x

1 7 11

2 8 12

3 5 9

4 6 10

13

14

 k
m

6

6 
km

6 êì6 êì

PLAN

10 Ohm.m 100 Ohm m× 1 
km

5 

200 km

10
 k

m

99
 k

m

10000 Ohm.m

Ohm.m1 CROSS-SECTION

10
 k

m

8 12

5 9

6 10

6 km

6 km 

100 Ohm.m

5 Ohm.m

arg Z, deg

Z

T = 640 s

T = 640 s 

100

10

10 100

–15

–30

–45

–60

1

arg   

arg Z

ρA, Ohm.m

a b

1/2T,  s

ρ

ρ

Fig. 2.3 A superimposition model with a �-shaped near-surface resistive inclusion and a 2D deep
regional conductive prism; (a) the plan and cross-section of the model, 1, 2, 3,. . . observation
sites, (b) the longitudinal and transverse apparent-resistivity and impedance-phase curves over the
middle of the regional prism in the absence of the near-surface inclusion

scatter caused by local distorting influence of the near-surface �-shaped inclusion,
while arg�1, arg�2 are close to arg�‖, arg�⊥ obtained in the absence of the near-
surface inclusion.

Similarly, we compare the principal directions, �1 and �2, of the impedance ten-
sor [Z] defined by all three methods. Here the more variegated pattern is observed
(Fig. 2.5). Though the �-values obtained by different techniques are in good qualita-
tive agreement, the difference between them is at some sites about 15–25◦. The SE
and LMK methods yield the best correlated �1-values. The best correlated �2-values
are given by the SSB and LMK methods. Note that deviation of principal directions
of the superimposition impedance tensor from principal directions of the regional
two-dimensional impedance tensor ranges up to about 40◦, but this scatter can be
readily removed by averaging.

Distinction between the different eigenstate techniques vividly manifests itself
in the inhomogeneity parameter N calculated by (2.53) as well as in the angular
and elliptical parameters of asymmetry, skewang and skewpol , calculated by (2.54),
(2.55). Figure 2.6 shows these parameters in comparison with the asymmetry param-
eter skewS. Recall that deviation of N from zero reflects the lateral effects caused
by 2D or 3D structures, while deviation of skewang , skewpol and skewS from zero
points to the 3D asymmetry. In the model under consideration all eigenstate tech-
niques give the same qualitative pattern for |N | , skewang and skewpol , but it is
remarkable that the LMK method offers the maximum N-values being the most
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Fig. 2.4 Principal values of
the impedance tensor in a
superimposition model with a
�-shaped near-surface
resistive inclusion and a 2D
deep regional conductive
prism shown in Fig. 2.3;
SSB – Swift–Sims–Bostick
method, SE – Swift–Eggers
method, LMK – La
Torraca–Madden–Korringa
method; T = 640 s
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Fig. 2.6 Parameters of inhomogeneity N and asymmetry skews, skewang, skewpol in a superimpo-
sition model with a �-shaped near-surface resistive inclusion and a 2D deep regional conductive
prism shown in Fig. 2.3; SSB – Swift–Sims–Bostick method, SE – Swift–Eggers method, LMK –
La Torraca–Madden–Korringa method; T=640 s

sensitive to lateral effects, whereas the SE method offers the maximum skewang

and skewpol , being the most sensitive to the structural asymmetry.
We see that in the presented model all three approaches to the magnetotelluric

eigenstate analysis, based on the impedance rotation and the modifications of the
classical formulation and SVD decomposition, provide closely related structural
indications that differ only in sensitivity. What of these methods gives a better
insight into the impedance eigenstate? We can say with confidence that (1) the
Swift–Eggers and La Torraca–Madden–Korringa methods are preferable since they
fill all eight degrees of freedom of magnetotelluric impedance tensor and so yield the
most complete description of effects caused by three-dimensional inhomogeneities,
(2) it would be helpful to combine these methods and gain the benefit from the most
sensitive indications. And finally we have to stress that eigenstate indications may
be dramatically distorted by near-surface small-scale inhomogeneities and in this
case we should separate the local and regional effects.



Chapter 3
Separation of the Local and Regional
Magnetotelluric Effects

3.1 Using the Local-Regional Decomposition

Applying the eigenstate techniques in a region with homogeneous superficial for-
mations, we can identify the buried regional structures, define their dimensionality
and strike, split the observed magnetotelluric field into the TM- and TE-modes,
discern and analyze galvanic and induction responces. However the local superficial
inhomogeneities may dramatically distort the eigenstate interpretation. A superim-
position model exemplifying distortions of this kind was shown in Figs. 2.3, 2.4,
2.5, 2.6.

Separation of local and regional effects is a critical question of magnetotellurics.
This question agitated scientists for a long time. A possibility to identify and remove
the local near-surface distortions was examined in pioneering works of Bahr (1985)
and Zhang, et al. (1987). The problem has been advanced in basic papers by Bahr
(1988, 1991), Groom and Bailey (1989), Singer (1992), Smith (1995), Chave and
Smith (1994), Chave and Jones (1997), McNeice and Jones (2001) and Caldwell
et al. (2004). An excellent (though a bit outdated) review of developments in this
field is available in Smith (1995).

Relation between local and regional effects can be described functionally with
the local-regional decomposition (1.74), [ZS] = [e] [ZR] [h]−1, involving the
regional impedance tensor [ZR], the electric distortion tensor [e] and magnetic dis-
tortion tensor [h] = [I]+[h̃] [ZR]. However, the number of unknowns in this matrix
decomposition is too large to get a resolvable system of equations (12 unknown
complex values in [e] , [ZR] , [h] against 4 known complex values in [ZS]). The
local-regional decomposition needs some restrictions. There are three levels of
restrictions.

1. First, we neglect magnetic anomalies caused by local superficial inhomo-
geneities and use the truncated low-frequency decomposition (1.75).

2. Second, we limit ourselves to the two-dimensional (or axisymmetric) regional
structures.

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 83
DOI 10.1007/978-3-540-77814-1 3, C© Springer-Verlag Berlin Heidelberg 2008
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3. Third, we disregard the local induction in superficial inhomogeneities and apply
the local-regional decomposition with real-valued tensor of electric distortion
characterizd by local galvanic (static) effects.

These restrictions open the way to separation of local and regional effects.
Following is a cursory examination of the separation methods based on the super-

imposition models that contain local small-scale two- or three-dimensional inho-
mogeneities over a two- or three-dimensional large-scale regional structure. These
methods are: (1) the Bahr method, (2) the Groom-Bailey method, (3) the Zhang-
Roberts-Pedersen method, (4) the Chave-Smith method, and 5) the Caldwell-Bibby-
Brown method.

3.2 The Bahr and Groom-Bailey Methods

Bahr (1988) suggested a method for separating local and regional effects in
the superimposition model with local two-dimensional or three-dimensional near-
surface inhomogeneities and regional two-dimensional background (B method). In
this method we neglect the magnetic distortion and use the low-frequency trun-
cated decomposition (1.75), [ZS] = [e] [ZR], where [e] is the real-valued tensor
of electric distortion and [ZR] is the two-dimensional regional impedance tensor
with anti-diagonal matrix. A peculiarity of Bahr’s method is that the characteristics
of local and regional effects are given in an explicit form and their separation is
performed analytically by means of simple formulae.

The basic assumptions in the Groom-Bailey method (Groom and Bailey, 1989)
are the same as in the Bahr method, but separation of local and regional effect is
performed numerically by solving an overdetermined system of equations with least
squares fitting procedure.

We begin our consideration with the Bahr method.

3.2.1 The Bahr Method

Writing the basic equation (1.75) in the regional coordinate system (the x, y-axes
are along and across the strike of the regional two-dimensional structure), we have

[ZS] =
[

Z S
xx Z S

xy

Z S
yx Z S

yy

]
=
[

exx exy

eyx eyy

] [
0 �R

1
−�R

2 0

]
=
[

−exy�R
2 exx �R

1

−eyy�R
2 eyx �R

1

]
, (3.1)

where �R
1 and �R

2 are principal values of the regional impedance tensor (the lon-
gitudinal and transverse impedances) and exx , exy, eyx , eyy are components of the
real-valued tensor of electric distortion. The columns of the superimposition tensor
[ZS] consist of in-phase or anti-phase components:
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arg Z S
xx =

{
arg Z S

yx for exyeyy > 0
arg Z S

yx + � for exyeyy < 0

arg Z S
xy =

{
arg Z S

yy for exx eyx > 0
arg Z S

yy + � for exx eyx < 0 .

(3.2)

Another peculiarity of the low-frequency truncated decomposition is that the ten-
sor [ZS] has zero skewB which can be accompanied with nonzero skewS. In virtue
of (1.61), (3.1)

skewB =
√ ∣∣Im (

Z S
xy Z̄ S

yy + Z S
xx Z̄ S

yx

)∣∣
∣∣ Z S

xy − Z S
yx

∣∣ =

√ ∣∣∣Im (
exx eyx

∣∣�R
1

∣∣2 + exyeyy

∣∣�R
2

∣∣2)∣∣∣∣∣exx �R
1 + eyy�R

2

∣∣ = 0 .

(3.3)
and

skewS =
∣∣∣∣∣

Z S
xx + Z S

yy

Z S
xy − Z S

yx

∣∣∣∣∣ =
∣∣∣∣exy�R

2 − eyx �R
1

exx �R
1 + eyy�R

2

∣∣∣∣ . (3.4)

In general exy�R
2 = eyx �R

1 and skewS = 0.

We can say that the departure of skewS from 0 characterizes the local asymmetry,
while skewB = 0 indicates the regional two-dimensionality (or axially symmetric
three-dimensionality). Condition skewB = 0 defines the applicability of the Bahr
method.

In an arbitrary coordinate system,

[ZS]=
[

Z S
xx Z S

xy

Z S
yx Z S

yy

]
=
[

cos �R −sin �R

sin �R cos �R

][
exx exy

eyx eyy

][ 0 �R
1

−�R
2 0

][
cos �R sin �R

−sin �R cos �R

]
,

where �R is an angle between observation and regional coordinate systems, that is,
a regional strike angle. This matrix equation contains nine real unknowns (a strike
angle �R, four real elements of the electric distortion tensor [e], and two complex
principal values of the regional impedance tensor [ZR]) against eight degrees of
freedom of the superimposition tensor [ZS]. So, we can count only on partial sepa-
ration of local and regional effects.

Now we consider the separation technique in some detail. Let skewB = 0.
To determine the strike of the two-dimensional regional structure, we rotate
the reference frame trough an angle � so that components Z S

xx (�) , Z S
yx (�) and

Z S
xy(�) , Z S

yy(�) in columns of the tensor [ZS(�)] are in-phase or anti-phase. These
phase conditions can be written in the form

Im
{

Z S
xx (�) Z̄ S

yx (�)
} = 0

Im
{

Z S
xy(�) Z̄ S

yy(�)
} = 0

(3.5)
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where the bars denote the complex conjugation. With account for (1.27),

Im
{(

Z S
2 + Z S

3 sin 2� + Z S
4 cos 2�

) (−Z̄ S
1 + Z̄ S

3 cos 2� − Z̄ S
4 sin 2�

)} = 0

Im
{(

Z S
1 + Z S

3 cos 2� − Z S
4 sin 2�

) (
Z̄ S

2 − Z̄ S
3 sin 2� − Z̄ S

4 cos 2�
)} = 0 .

Expanding and simplifying these equations, we obtain

A sin 2� − B cos 2� + C = 0, A sin 2� − B cos 2� − C = 0, (3.6)

where

A = Im
(
Z S

xx Z̄ S
yy + Z S

xy Z̄ S
yx

)
B = Im

(
Z S

yx Z̄ S
xx + Z S

xy Z̄ S
yy

)
C = Im

(
Z S

xy Z̄ S
yy + Z S

xx Z̄ S
yx

) = skew2
B

∣∣Zxy − Z yx

∣∣2 .

Taking into account that C = 0 when skewB = 0, we write

A sin 2� − B cos 2� = 0 , (3.7)

whence

� = 1

2
arctan

B

A
= 1

2
arctan

Im
(
Z S

yx Z̄ S
xx + Z S

xy Z̄ S
yy

)
Im

(
Z S

xx Z̄ S
yy + Z S

xy Z̄ S
yx

) =
{

�R

�R + �
2 ,

(3.8)

where �R is a strike angle of the regional two-dimensional structure. Applying the
Bahr method, we specify the principal directions, �R and �R + �/2, of the regional
impedance [ZR].

Let skewB = 0 because of measurement noises and asymmetry of regional struc-
ture. In that event

A sin 2� − B cos 2� + C = 0, A sin 2� − B cos 2� − C = 0 .

Departure of these equations from 0 can be characterized by the quadratic deviation

	(�) = (A sin 2� − B cos 2� + C)2 + (A sin 2� − B cos 2� − C)2 . (3.9)

At a minimum of 	(�) we have the least disagreement between phases in columns
of the tensor [ZS]. Solving the equation d 	(�)/d� = 0 with d2	(�)/d�2 > 0, we
find an angle �min

R which minimizes 	(�). By virtue of (3.9)



3.2 The Bahr and Groom-Bailey Methods 87

d 	(�)

d�
= 8(A sin 2� − B cos 2�)(A cos 2� + B sin 2�) = 0,

d 2	(�)

d�2
= 16(A cos 2� + B sin 2�)2 − 16(A sin 2� − B cos 2�)2,

whence

A sin 2�min
R − B cos 2�min

R = 0, (3.10)

which agrees with (3.7). Thus, the angle �min
R coincides with the regional strike

angle, �R, defined by (3.8). We see, that at C = 0 the (3.8) provides the best approx-
imation to conditions (3.6), which determines the in-phase or anti-phase state in the
columns of the superimposition tensor [ZS].

Practical experience suggests that using the Bahr method we can get the reliable
estimate of the strike angle �R when skewB ≤ 0.15.

With known �R, we evaluate phases of the principal values of [ZR]. To smooth
noisy data, we use both components in columns of [ZS]. In accordance with (3.1)

�R
1 = arg�R

1 = 1

2

{
arctan

ImZ S
xy(�R)

ReZ S
xy(�R)

+arctan
ImZ S

yy(�R)

ReZ S
yy(�R)

}

�R
2 = arg�R

2 = 1

2

{
arctan

ImZ S
xx (�R)

ReZ S
xx (�R)

+arctan
ImZ S

yx (�R)

ReZ S
yx (�R)

}
.

(3.11)

Generally the phases �R
1 and �R

2 are taken in the fourth quadrant. Note that �R
1 + �R

2
should be close to arg det[ZS].

What about the moduli of the principal values of [ZR]? Let us introduce the
vector components e(x)(exx , eyx ), e(y)(exy, eyy) of the electric distortion tensor [e]
(Fig. 3.1). Their direction is defined by angles �x and �y measured clockwise from
the x− axis and y− axis respectively. Thus,

e(x) = ∣∣e(x)
∣∣ =

√
e2

xx + e2
yx , e(y) = ∣∣e(y)

∣∣ =
√

e2
xy + e2

yy (3.12)

Fig. 3.1 Plotting the electric
fields e(x) and e(y)
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and

�x = arctan
eyx

exx
�y = − arctan

exy

eyy

−�/2 < �x < �/2 − �/2 < �y < �/2 .

(3.13)

Returning to (3.1), we get apparent amplitudes
∣∣�̃R

1

∣∣ and
∣∣�̃R

2

∣∣ of the principal regional
impedances:

∣∣�̃R
1

∣∣ = e(y)
∣∣�R

1

∣∣ =
√∣∣Z S

xy

∣∣2 + ∣∣Z S
yy

∣∣2 ∣∣�̃R
2

∣∣ = e(x)
∣∣�R

2

∣∣ =
√∣∣Z S

xx

∣∣2 + ∣∣Z S
yx

∣∣2 .

(3.14)

As is easy to see, moduli of the principal values of [ZR] can be found in the insepara-
ble conjunction with frequency-independent factors e(x) and e(y) that define intensity
of static distortions of

∣∣�R
1

∣∣, ∣∣�R
2

∣∣ caused by near-surface local inhomogeneities.
To distinguish between longitudinal and transverse regional directions, �‖ and

�⊥, and between longitudinal and transverse regional impedances, Z‖ and Z⊥, we
have to use an additional geological or geophysical indication.

Along with characteristics of regional structure, the Bahr method may give some
information on local structures. Let us show that the vector components e(x) and e(y)

of the electric distortion tensor [e] coincide with electric fields that arise when a
local inhomogeneity is excited by the unit electric fields linearly polarized in the x-
and y-directions:

e(x) =
⎡
⎣ exx exy

eyx eyy

⎤
⎦
⎡
⎣1

0

⎤
⎦ =

⎡
⎣ exx

eyx

⎤
⎦ , e(y) =

⎡
⎣ exx exy

eyx eyy

⎤
⎦
⎡
⎣0

1

⎤
⎦ =

⎡
⎣ exy

eyy

⎤
⎦ .

(3.15)

Thus, the angles �x , �y indicate how a local inhomogeneity deflects the observed
electric fields from the exciting field. In regional coordinates, according to (3.1) and
(3.13),

�x = arctan
eyx

exx
= arctan

Z S
yy

Z S
xy

, �y = −arctan
exy

eyy
= −arctan

Z S
xx

Z S
yx

. (3.16)

In practice, we take into account the phase inaccuracies and to avoid the complex
angles use approximate formulae

�x = arctanRe
Z S

yy

Z S
xy

, �y = −arctanRe
Z S

xx

Z S
yx

. (3.17)

Looking upon a map that represents the orientation of vectors e(x) and e(y), we may
reveal the current concentration (current concentrates in a conductive body) or cur-
rent flow around (currents flow around a resistive body) and thereby classify the
near-surface structures by their conductivity.
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The final findings of Bahr’s method are:

∣∣�̃R
1

∣∣, �R
1 = arg�R

1 ,
∣∣�̃R

2

∣∣ , �R
2 = arg�R

2 , �R, �x , �y, (3.18)

where the strike angle �R is determined with �/2 ambiguity.
It should be particularly emphasized that the stability of these findings depends

dramatically on difference in phase between the longitudinal and transverse regional
impedances. In fact, with arg Z‖ = arg Z⊥ we arrive at �R = 0/0 since A = B = 0
in (3.8). The phase difference must far exceed the measurement errors. A rotation-
ally invariant measure of phase difference suggested by Bahr (1991) is

� =
√∣∣Im (

Z S
xy Z̄ S

yy + Z S
xx Z̄ S

yx + Z S
xx Z̄ S

xy + Z S
yx Z̄ S

yy

)∣∣ + ∣∣Im (
Z S

xy Z̄ S
yy + Z S

xx Z̄ S
yx − Z S

xx Z̄ S
xy − Z S

yx Z̄ S
yy

)∣∣∣∣Z S
xy − Z S

yx

∣∣
=

√|J12 + J13| + |J12 − J13|
|2Zbrd| ,

(3.19)
where Zbrd, J12 and J13 are invariants defined by (1.29), (1.34) and (1.35). We sim-
plify this phase indicator taking into account that skewB = 0 and hence J12 = 0.
So, we write

� =
√

2 |J13|
|2Zbrd| =

√
2
∣∣Im (

Z S
xx Z̄ S

xy + Z S
yx Z̄ S

yy

)∣∣
∣∣Z S

xy − Z S
yx

∣∣ . (3.20)

If μ = 0, phases of the longitudinal and transverse impedances coincide and (3.8)
becomes indeterminate.

Parallel to μ we can derive another indicator which enables the direct estimating
the phase difference. Let the tensors [ZS] and [ZS(�R)] be observed in an arbitrary
and regional coordinate system respectively. In view of (1.29), (1.32), (3.1)

det
[
Re ZS

] + det
[
Im ZS

] = det
[
Re ZS(�R)

] + det
[
Im ZS(�R)

]
= det [e(�R)]

(
Re Z‖Re Z⊥ + Im Z‖Im Z⊥)

= det [e(�R)]
∣∣ det

[
ZR(�R)

] ∣∣ (cos arg Z‖ cos arg Z⊥

+ sin arg Z‖ sin arg Z⊥)
= ± ∣∣ det [e(�R)]

[
det [ZR(�R)

] ∣∣ cos �

= ± ∣∣ det
[
ZS(�R)

]∣∣ cos � = ± ∣∣ det
[
ZS

] ∣∣ cos �

where � = arg Z‖ − arg Z⊥. Assuming that -�/2<�<�/2, we obtain

|�| = arccos

∣∣ det
[
Re ZS

] + det
[
Im ZS

] ∣∣∣∣ det
[
ZS
] ∣∣ . (3.21)

If impedance phases are measured with an accuracy of 2–3◦, it would be enough to
require that |�| > 15 ÷ 20◦.
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Fig. 3.2 Phases arg �1, arg �2 of the principal values of the regional two-dimensional impedance
[ZR] and its principal directions �1, �2 in a superimposition model with a �-shaped near-surface
resistive inclusion and a 2D deep regional conductive prism shown in Fig. 2.3; B – Bahr method,
TV – true value; T = 640 s

Now we would like to illustrate the potentialities of the Bahr method. Let us
return to the three-layered (3D+2D)-superimposition model with a local �-shaped
resistive inclusion in the sediments and a regional two-dimensional prismatic con-
ductor in the resistive lithosphere (Fig. 2.3). At T = 640 s we have skewB < 0.1 and
|�| ≈ 30◦. These conditions favour the local-regional decomposition. Figure 3.2
displays the phases �1 = arg �1, �2 = arg �2 of the principal values of the regional
two-dimensional impedance [ZR] and its principal (transverse and longitudinal)
directions, �1 and �2, deduced by the Bahr method. We see that arg � and � are
defined with an accuracy of 1–3◦ and 1–2◦ respectively. Figure 3.3 shows the chart
of the unit electric fields e(y) plotted by means of Bahr’s method. We see here a
typical picture of currents flowing around a near-surface resistive inclusion.

Fig. 3.3 Chart of the unit
electric fields e(y) in a
superimposition model with a
�-shaped near-surface
resistive inclusion and a 2D
deep regional conductive
prism shown in Fig. 2.3;
T = 640 s

x

y
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In closing we will consider two special cases.

1. The (3D + 3D)-superimposition model contains a regional three-dimensional
axisymmetric structure overlapped by the local near-surface three-dimensional
inhomogeneity. In that case we have the same basic equation (3.1), so that the
Bahr method can be applied to find the radial and tangential directions as well as
phases of the radial and tangential principal impedances.

2. The horizontally layered one-dimensional medium contains only the local near-
surface three-dimensional inhomogeneity. In this model, the low-frequency trun-
cated decomposition takes the form

[ZS] =
[

exx exy

eyx eyy

] [
0 ZN

−ZN 0

]
=
[

−exy ZN exx ZN

−eyy ZN eyx ZN

]
, (3.22)

where ZN is the normal (one-dimensional) impedance. Here, all the components
of the impedance tensor [ZS] are in-phase or anti-phase depending on the sign of
components of the distortion tensor [e].

3.2.2 The Groom-Bailey Method

Another decomposition technique to separate local and regional effects has been
suggested by Groom and Bailey (1989).

The basic assumptions in the Groom-Bailey method (GB method) are the same
as in the Bahr method. The superimposition model containing a local two- or three-
dimensional inhomogeneity over a two-dimensional regional structure is considered
and the truncated low-frequency decomposition (3.1), [ZS] = [e] [ZR], with the
real-valued electric distortion tensor [e] and anti-diagonal regional tensor [ZR] is
applied.

Using the regional coordinate system with x- and y-axes along and across the
strike of the regional structure, we represent the distortion tensor [e] as the product
of a real-valued scalar g and real-valued tensors [T], [S], [A]:

[e] = g [T] [S] [A], (3.23)

where

[T] = NT

[
1 −t

t 1

]
, [S] = NS

[
1 s

s 1

]
, [A] = NA

[
1 + a 0

0 1 − a

]
.

and

NT = 1√
1 + t2

, NS = 1√
1 + s2

, NA = 1√
1 + a2

.
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Without going into detail we note that for all real-valued g, [T], [S] and [A]
this decomposition is unique (Groom and Bailey, 1989). It has a simple physi-
cal interpretation. The factor g plays a part of the scaling parameter. The tensors
[T], [S], [A] describe elementary distortions of the regional electric field ER

τ .
Figure 3.4a shows a family of unit regional electric fields ER

τ linearly polarized
in different directions. Here vectors 1,3 are oriented in the principal directios of the
tensor [ZR], i.e. along and across the strike of the regional structure, while vectors
2,4 bisect these principal directions.

The effect of the tensor [T] is shown in Fig. 3.4b. This tensor rotates all vectors
through a clockwise angle �t = arctan t. It is said to be the twist tensor. The angle
�t is the twist angle.

The effect of the tensor [S] is shown in Fig. 3.4c. It looks like shear deformation.
By analogy with the theory of deformation this tensor is said to be the shear tensor.
It causes maximum angular changes in vectors 1,3 and does not change vectors 2,4.
Vector 1 is deflected clockwise by an angle �s = arctan s, and vector 2 by the same
angle, but counter-clockwise. The angle �s is the shear angle.

The effect of the tensor [A] is shown in Fig. 3.4d. This tensor stretches the longi-
tudinal and transverse components of electric vectors by different factors, creating
a pattern of “anisotropy”. It is said to be the anisotropy tensor.

Thus the factorization (3.23) reduces the distortions of regional electric field to
scale change and shear, twist and anisotropy deformations.

Reverting to the truncated decomposition (1.75), we write

[ZS] = g [T] [S] [A] [ZR] (3.24)

Fig. 3.4 Transformation of unit electric fields (a) by the twist (b), shear (c) and anisotropy (d)
tensors
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or

[ZS] = G [T̃] [S̃] [Ã] [ZR] (3.25)

where

G = g
1√

(1 + s2)(1 + t2)(1 + a2)

and

[T̃] =
[

1 −t

t 1

]
, [S̃] =

[
1 s

s 1

]
, [Ã] =

[
1 + a 0

0 1 − a

]
.

[ZR] =
[

0 �R
1

−�R
2 0

]
.

A peculiarity of decomposition (3.25) is that G and [Ã] cannot be determined
separately from [ZR]. So, we actually deal with apparent regional impedance [Z̃R]
absorbing G[Ã]:

[Z̃R] = G [Ã] [ZR] =
[

0 �̃R
1

−�̃R
2 0

]
, (3.26)

where

�̃R
1 = G(1 + a)�R

1 , �̃R
2 = G(1 − a)�R

2 .

The principal impedance values �̃R
1 and �̃R

2 preserve the true phases, but their ampli-
tudes differ from the true amplitudes by real-valued frequency-independent scalar
factors G(1 + a) and G(1 − a), which characterize the static effect of near-surface
local inhomogeneities.

Substituting (3.26) in (3.25), we get

[ZS] = [T̃][S̃] [Z̃R]. (3.27)

Pass now from the regional coordinate system to a measurement coordinate sys-
tem. At arbitrary orientation of the x, y-axes

[ZS] = [R(�R)]−1 [T̃] [S̃] [Z̃R] [R(�R)] (3.28)

where �R is the regional strike angle measured clockwise from the x-axis. This
matrix equation enables the determination of regional strike angle, �R, along with
apparent regional impedance, [Z̃R], and shear and twist parameters, t and s.. On
simple though cumbersome algebra we obtain
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Z S
1 = � − st	 Z S

2 = t� + s	

Z S
3 = (	 − st�)cos 2�R − (t	 + s�)sin 2�R

Z S
4 = −(t	 + s�)cos 2�R − (	 − st�)sin 2�R ,

(3.29)

where

Z S
1 = Z S

xy − Z S
yx

2
Z S

2 = Z S
xx + Z S

yy

2

Z S
3 = Z S

xy + Z S
yx

2
Z S

4 = Z S
xx − Z S

yy

2

and

	 = �̃R
1 − �̃R

2

2
� = �̃R

1 + �̃R
2

2
.

This is a system of eight equations formed by real and imaginary parts of
(3.29) for seven unknowns: t, s, �R, Re	, Im	, Re �, Im�. The system is slightly
overdetermined. It can be solved by a least squares fitting procedure with the �/2-
ambiguity in the regional strike angle �R.

The final findings of Groom-Bailey’s method are:

∣∣�̃R
1

∣∣ , �R
1 = arg �R

1 ,
∣∣�̃R

2

∣∣ , �R
2 = arg �R

2 , �R, �t , �s . (3.30)

Similarly to the Bahr method, the Groom-Bailey method may give reasonable
results if transverse and longitudinal regional impedances, � R

1 and � R
2 , have signifi-

cantly different phases. The point is that at arg �R
1 = arg �R

2 the system of equations
(3.29) falls into two linearly dependent systems and becomes undetermined.

3.2.3 Final Remarks on the Bahr and Groom-Bailey Methods

Intuitively it seems that the Bahr and Groom-Bailey methods yield closely related
characteristics of the local and regional structures. Let us examine the relationships
between these two methods in more detail.

To begin with, we compare the deflection angles �x and �y , determined by Bahr’s
equations (3.16), with the twist and shear angles �t = arctan t and �s = arctan s,
determined by Groom-Bailey’s equations (3.29). By virtue of (3.27)

[ZS] = [T̃][S̃] [Z̃R]

=
[

1 −t

t 1

] [
1 s

s 1

] [
0 �̃R

1

−�̃R
2 0

]
=
[ −(s − t) �̃R

2 (1 − st) �̃R
1

−(1 + st) �̃R
2 (s + t) �̃R

1

]
,

(3.31)
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whence

tan �x = Z S
yy

Z S
xy

= t + s

1 − st
= tan �t + tan �s

1 − tan �s tan �t
= tan(�t + �s),

tan �y = − Z S
xx

Z S
yx

= t − s

1 + st
= tan �t − tan �s

1 + tan �s tan �t
= tan(�t − �s),

(3.32)

and hence

�x = �t + �s �y = �t − �s,

�t = �x + �y

2
�s = �x − �y

2
.

(3.33)

Thus, we have simple arithmetic relations between �x , �y and �t , �s .

Furthermore, it is easy to show that the Groom-Bailey decomposition

[e] = g
1√

1 + t2

1√
1 + s2

1√
1 + a2

[
1 −t

t 1

] [
1 s

s 1

] [
1 + a 0

0 1 − a

]

and the Bahr decomposition

[e] =
[

cos �x −sin �y

sin �x cos �y

] [
ex 0

0 ey

]

are identical (Smith, 1995). Really, in view of (3.33),

[e] =
[

cos �x − sin �y

sin �x cos �y

] [
ex 0

0 ey

]

=
[

cos �t − sin �t

sin �t cos �t

] [
cos �s sin �s

sin �s cos �s

] [
ex 0

0 ey

]

= e cos �t cos �s

[
1 − tan �t

tan �t 1

] [
1 tan �s

tan �s 1

] [
1 + a 0

0 1 − a

]

= g
1√

1 + t2

1√
1 + s2

1√
1 + a2

[
1 −t

t 1

] [
1 s

s 1

] [
1 + a 0

0 1 − a

]
,

(3.34)

where

e = ex + ey

2
, g =

√
e2

x + e2
y

2
, a = ex − ey

ex + ey
.
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Thus, both the methods rest on the identical decompositions, but differ in
parametrization and technology. Comparison between (3.18) and (3.30) suggests
that the Bahr method with its analytical formulae and the Groom-Bailey method
with its least squares fitting procedure offer the same information about local and
regional structures (regional strike, phases and apparent amplitudes of principal
regional impedances, deflection angles or twist and shear angles). The special merit
of the Bahr method is that it suggests some auxiliary parameters (skewB, �, �) that
help to estimate the applicability of the truncated local-regional decomposition with
a real-valued electric distortion tensor and a two-dimensional regional impedance.
But the Groom-Bailey method has the advantage that due to the least squares fitting
procedure it may provide better stability of the local-regional decomposition.

To illustrate the Bahr and Groom-Bailey methods numerically, we turn back to
the superimposition model shown in Fig. 1.11. Here a local conductive body L
in the form of vertical cylinder is superimposed upon a regional conductive two-
dimensional prism R. Let �1=100 Ohm·m, h1= 0.1 km, �L = 10 Ohm·m, a = 0.1 km,
�2 = ∞, h2 = 100 km, �R = 10 Ohm·m, h′

2 = 10 km, �h = 10 km, v = 200 km, �3 = 0.
The problem was solved by the hybrid method given in Sect. 1.3.4. Calculations
were carried out for the observation site O in the immediate neighborhood of the
conductive cylinder (r = 0.11 km, � = 45o, � = 45◦).

Figure 3.5 depicts the longitudinal and transverse apparent-resistivity and
impedance-phase curves computed from the regional impedance in the absence of
the local near-surface inhomogeneity. The effect of the buried conductive prism is
clearly visible in longitudinal curves �‖ and ‖. Special attention must be given to
the phase curves. At

√
T < 0.1 s1/2,

√
T ≈ 3 s1/2 and

√
T > 100 s1/2 the phases of

longitudinal and transverse impedances virtually coincide.
Consider some characteristic parameters, which define the applicability of the

Bahr and Groom-Bailey decompositions. These parameters are: (1) Swift’s skews,
(1.60), (2) Bahr’s skewB, (1.61), (3) phase difference � (difference between longitu-
dinal and transverse phases calculated directly from the superimposition impedance
[ZS]), (3.21). Appart from these parameters, we also consider a model parameter q
measuring the contribution of the local magnetic anomaly:

q = 0.5 ‖m‖ = 0.5
√

|hxx − 1|2 + ∣∣hxy

∣∣2 + ∣∣hyx

∣∣2 + ∣∣hyy − 1
∣∣2, (3.35)

where q is a calibrated Euclidean norm of difference [m] = [h] − [I] between the
magnetic distortion matrix [h] and the identity matrix [I]. Recall that local-regional
Bahr’s and Groom-Bailey’s methods are applicable providing that skewB and q are
sufficiently small, while � is sufficiently large.

Figure 3.6 shows all these parameters versus
√

T. At high frequencies (
√

T < 0.1
s1/2) the regional two-dimensional structure does not manifest itself, and the
superimposition model acts as an axisymmetric model containing only a verti-
cal near-surface cylinder. Here skewS and skewB come close to zero, while mag-
netic distortion is rather large (q > 0.3). However at intermediate frequencies
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Fig. 3.5 Longitudinal and transverse apparent-resistivity and impedance-phase curves computed
from the two-dimensional regional impedance; the superimposition model is shown in Fig. 1.11

(0.1 s1/2 <
√

T <10 s1/2) the axial symmetry is violated by the regional structure,
so that skewS ranges up to about 0.4. An increase in skewS is accompanied by an
increase in skewB which reaches its peak at

√
T = 0.5 s1/2 and then tends to zero

indicating the attenuation of local induction effects. Small values of skewB correlate
with a drop in parameter q, which indicates the decay of local magnetic distor-
tions. With small skewB and q we choose an area 5 s1/2 <

√
T < 60 s1/2, where

the phase difference � varies from 7.5◦ to 35◦. This area is most favorable for the
local-regional decomposition. Coming back to Fig. 3.5, we see that the favorable
area begins with T ≈ 25 Tmax where Tmax is a period for the maximum of the �⊥−
curve.

The Bahr and Groom-Bailey decompositions were carried out against random
noises with standard deviation of 5% in the impedance amplitudes and 3◦ in the
impedance phases.
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Fig. 3.6 Characteristic
parameters skewS,

skewB, �, q for the
superimposition model
shown in Fig. 1.11; FA – area
favorable for
LR-decomposition

Figures 3.7 and 3.8 present the regional strike angle �R, the phases ‖ and ⊥ of
the longitudinal and transverse regional impedances as well as the deflection angles
�x and �y determined by Bahr’s formulae. Within the favorable area FA the scatter
in �R varies from 10÷15◦ to 3÷6◦, whereas outside the area FA it reaches 45◦ and
even more. The scatter in ⊥ does not exceed 2÷3◦ (even outside the area FA),
whereas the scatter in ‖ varies from 10÷15◦ to 2÷3◦. The scatter in �x and �y is
about 5÷10◦ within the area FA and increases to 15◦ outside this area.

Figures 3.9 and 3.10 presents the regional strike angle �, the phases ‖ and ⊥

of the longitudinal and transverse regional impedances as well as the twist and shear
angles �t and �s determined by means of Groom-Bailey’s least squares fitting pro-
cedure. Outside the favorable area FA the scatter in �R ranges up to 30◦, however
within this area it drops to 5÷7◦. The scatter in phases is about 3◦ for ⊥ and 3÷7◦

for ‖. The scatter in � t and �s is about 3–8◦ within the favorable area and increases
to 25÷30◦ outside this area. Comparing the Bahr and Croom-Bailey decomposi-
tions, we see that Groom-Bailey’s least squares fitting procedure provides more
stable results that Bahr’s analytical formulae.

It would be natural to combine the Bahr and Groom-Bailey techniques. It seems
that the efficient separation of local and regional effects should consist of two
stages. In the initial stage we have to choose frequencies favorable for local-regional
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Fig. 3.7 The Bahr decomposition in the superimposition model shown in Fig. 1.11; �-regional
strike,  ‖ and ⊥- longitudinal and transverse phases of the two-dimensional regional impedance;
vertical bars characterize the data scattering caused by measurement noise, FA – favorable area,
1-data for the noise-free impedance, 2-true data

decomposition. To this end we analyze skewS and skewB as well as phase param-
eter � and phase difference �. In the later stage we take better advantage of
Groom-Bailey’s least squares fitting procedure and find regional strike angle �R,
regional impedance phases arg�R

1 , arg�R
2 as well as twist and shear angles � t ,

� s . These latter can be converted to Bahr’s deflection angles �x , �y which offer
a clearer view of near-surface inhomogeneities. And finally the slight frequency
dependence of �R, arg�R

1 , arg�R
2 , and � t , � s may serve as a criterion for reliability

of the local-regionall decomposition.
Following Jones and Groom (1993) and McNeice and Jones (2001), we can

increase the noise-immunity of the Bahr-Groom-Bailey decomposition and separate
the local and regional effects even in the case that the phase difference between the
longitudinal and transverse regional impedances is rather small. On this way we
apply the least squares statistic to a band of n frequencies and compose a system of
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Fig. 3.8 The Bahr decomposition in the superimposition model shown in Fig. 1.11; �x and �y –
deflection angles; vertical bars characterize the data scattering caused by measurement noise, FA –
favorable area

8n equations in 4n+3 unknowns (real and imaginary parts of longitudinal and trans-
verse regional impedances and frequency-independent �R, � t , � s). Let n = 5. Thus,
we have 40 equations in 23 unknowns. Solving this overdetermined system of equa-
tions, we considerably smooth out the scatter in the local and regional parameters.
Another multi-frequency statistic has been suggested by Smith (1995). On this way
we examine a sequence of tentative regional strikes, stepping in small increment to
the strike angle, and select the best-fitting strike by weighted misfit minimization,
taking into account the correlated measurements errors.
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Fig. 3.9 The Groom-Bailey decomposition in the superimposition model shown in Fig. 1.11; � –
regional strike,  ‖ and ⊥ – longitudinal and transverse phases of the two-dimensional regional
impedance; vertical bars characterize the data scattering caused by measurement noise, FA – favor-
able area, 1-data for the noise-free impedance, 2-true data

3.3 The Zhang-Roberts-Pedersen Method

Next we examine a special case that the (2D+2D)-superimposition model contains
a two-dimensional local near-surface structure L over a two-dimensional regional
structure R. The case has been investigated by Zhang et al. in their pioneering work
(1987).

Let �R and �L be the angles of regional and local strike respectively (Fig. 3.11).
In the regional coordinate system the x,y-axes are along and across the strike of the
regional structure. In that event

[ZR] =
[

0 �R
1

−�R
2 0

]
,
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Fig. 3.10 The Groom-Bailey decomposition for the superimposition model shown in Fig. 1.11;
�t and �s – twist-angle and shear-angle; vertical bars characterize the data scattering caused by
measurement noise, FA – favorable area, 1-data for the noise-free local impedance, 2-true data

where �R
1 and �R

2 are principal values of the regional impedance tensor (the longi-
tudinal and transverse impedances). Rotating the regional impedance [ZR] trough
the clockwise angle �� = �L − �R, we pass to the local coordinate system with the
x,y-axes along and across the strike of the local structure. According to (1.27),

[ZR(��)] =
[

Z R
3 sin 2�� Z R

1 + Z R
3 cos 2��

−Z R
1 + Z R

3 cos 2�� −Z R
3 sin 2��

]
, (3.36)

where
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Fig. 3.11 Illustrating the
Zhang-Roberts-Pedersen
method

local strike

regional strike

Z R
1 = �R

1 + �R
2

2
, Z R

3 = �R
1 − �R

2

2
.

It follows from the symmetry of a two-dimensional structure L that in the local
coordinates the real-valued electric distortion tensor is diagonal:

[e] =
[

exx 0
0 eyy

]
=
[

e‖ 0
0 e⊥

]
. (3.37)

Here the positive longitudinal and transverse components, exx = e‖ and eyy = e⊥,
are aligned with and against the local strike. Thus, in the local coordinate system
the superimposition impedance [ZS] assumes the form

[ZS] =
[

Z S
xx Z S

xy

Z S
yx Z S

yy

]
=
[

e‖ 0
0 e⊥

] [
Z R

3 sin 2�� Z R
1 + Z R

3 cos 2��
−Z R

1 + Z R
3 cos 2�� −Z R

3 sin 2��

]

=
[

e‖ Z R
3 sin 2�� e‖(Z R

1 + Z R
3 cos 2��)

−e⊥(Z R
1 − Z R

3 cos 2��) −e⊥ Z R
3 sin 2��

]
,

(3.38)

where the diagonal components, Z S
xx and Z Z

yy , are anti-phase:

arg Z S
xx = arg Z S

yy + � . (3.39)

A distinguishing feature of [ZS] is that skewS = 0, skewB = 0 in the high
frequency range (we observe only the local symmetrical effect) and skewS = 0,

skewB = 0 in the low frequency range (we observe an asymmetrical superimposi-
tion of local and regional effects).

Now take a tensor [ZS] measured on arbitrary axes x, y. Using the Bahr or
Groom-Bailey decomposition, we determine the regional strike. To determine the
local strike, we rotate [ZS] trough a clockwise angle � so that components Z S

xx (�)
and Z S

yy(�) satisfy (3.39). This condition can be written as
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Im{Z S
xx (�) Z̄ S

yy(�)} = 0, Re{Z S
xx (�) Z̄ S

yy(�)} < 0 (3.40)

or, with account for (1.27),

Im{(Z S
2 + Z S

3 sin 2� + Z S
4 cos 2�)(Z̄ S

2 − Z̄ S
3 sin 2� − Z̄ S

4 cos 2�)}
= 2Im(Z̄ S

2 Z S
3 sin 2� + Z̄ S

2 Z S
4 cos 2�) = 0,

Re{(Z S
2 + Z S

3 sin 2� + Z S
4 cos 2�)(Z̄ S

2 − Z̄ S
3 sin 2� − Z̄ S

4 cos 2�)} < 0,

where

Z S
2 = Z S

xx + Z S
yy

2
, Z S

3 = Z S
xy + Z S

yx

2
, Z S

4 = Z S
xx − Z S

yy

2
.

Hence

� = 1

2
arctan

ImZ S
2 Z̄ S

4

ImZ̄ S
2 Z S

3

= 1

2
arctan

2ImZ S
yy Z̄ S

xx

Im(Zxy + Z yx )(Z̄xx + Z̄ yy)
=
{

�L

�L + �

2

(3.41)

with
∣∣∣∣∣
(Z S

xy + Z S
yx ) sin 2� + (Z S

xx − Z S
yy) cos 2�

Z S
xx + Z S

yy

∣∣∣∣∣ > 0.

Similarly to the Bahr method, we define the local superficial strike by the simple
analytical formula. It is easy to verify that in the presence of measurement errors
and model discrepancies this formula provides the best approximation to the con-
dition (3.40), which defines the anti-phase state in the diagonal components of the
superimposition tensor [ZS].

The Zhang-Roberts-Pedersen method may considerably extend the useful work-
ing range of the Bahr-Groom-Bailey method. Combining both of these methods, we
get not only the strike of a regional structure, but the strike of a near-surface local
structure as well.

Moreover, we can take an advantage of the Zhang-Roberts-Pedersen method and
estimate (at least roughly) the static effect of the superficial local structure and eval-
uate the principal regional impedances. Assume that a local structure is sufficiently
long. Then considering L as a two-dimensional structure, we disregard the galvanic
effect of the longitudinal current (electric charges hardly appear) and take e‖ ≈ 1.
Thus, we return to (3.38), we write

[ZS] =
[

Z S
xx Z S

xy

Z S
yx Z S

yy

]
≈

[
Z R

3 sin 2�� Z R
1 + Z R

3 cos 2��
−e⊥(Z R

1 − Z R
3 cos 2��) −e⊥ Z R

3 sin 2��

]
, (3.42)
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from which

e⊥ ≈
∣∣∣∣∣

Z S
yy

Z S
xx

∣∣∣∣∣ (3.43)

and

Z R
1 ≈ 1

2

{
Z S

xy − Z S
yx

e⊥

}
≈ 1

2

{
Z S

xy − Z S
yx

∣∣∣∣∣
Z S

xx

Z S
yy

∣∣∣∣∣
}

Z R
3 ≈ 1

2 cos 2(�L − �R)

{
Z S

xy + Z S
yx

e⊥

}
≈ 1

2 cos 2(�L − �R)

{
Z S

xy + Z S
yx

∣∣∣∣∣
Z S

xx

Z S
yy

∣∣∣∣∣
}

(3.44)

or

�R
1 = Z R

1 + Z R
3 ≈ 1

2

{
1 + 1

cos 2(�L − �R)

}
Z S

xy − 1

2

{
1 − 1

cos 2(�L − �R)

}
Z S

yx

∣∣∣∣∣
Z S

xx

Z S
yy

∣∣∣∣∣ ,

�R
2 = Z R

1 − Z R
3 ≈ 1

2

{
1 − 1

cos 2(�L − �R)

}
Z S

xy − 1

2

{
1 + 1

cos 2(�L − �R)

}
Z S

yx

∣∣∣∣∣
Z S

xx

Z S
yy

∣∣∣∣∣ ,
(3.45)

where Z S
xx , Z S

xy, Z S
yx , Z S

yy are components of the superimposition tensor [ZS]
expressed in local coordinates, and �R

1 , �R
2 are principal values of the regional

impedance.
Note that the findings of the Zhang-Roberts-Pedersen procedure are stable if the

phase difference in the longitudinal and transverse regional impedances is rather
large (say, 15–20◦). In this point the Zhang-Roberts-Pedersen method is similar to
the Bahr and Groom-Bailey methods.

3.4 The Chave-Smith Method

Chave and Smith (1994) considered not only the local electric distortions but the
magnetic distortions as well and suggested a method based on the full local-regional
decomposition (1.74). On this way we significantly extend the frequency range
favorable for the local-regional decomposition. Recall, for instance, that in the
case of a three-layered K-type medium we apply the truncated Bahr-Groom-Bailey
decomposition beginning with T which far exceeds a period Tmax for the maximum
of the �A-curve. With Chave-Smith’s technique we can come down to T close to
Tmax.

Return to the local-regional decomposition (3.25) underlying the Groom-Bailey
method and rewrite it together with the magnetic distortion tensor [h]:
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[ZS] = G [T̃] [S̃] [Ã] [ZR] [h]−1, (3.46)

where

G = g
1√

(1 + s2)(1 + t2)(1 + a2)
and

[T̃] =
[

1 −t
t 1

]
, [S̃] =

[
1 s
s 1

]
, [Ã] =

[
1 + a 0

0 1 − a

]
,

[ZR] =
[

0 �R
1

−�R
2 0

]
, [h] = [I] + [h̃] [ZR].

The incorporation of [h] into matrix equation (3.46) aggravates its indeterminacy.
To get a resolvable system of equations giving the regional strike, we have to reduce
the number of unknowns. To this end we expand [h̃] into the sum of diagonal and
anti-diagonal tensors:

[h̃] =
[

h̃xx h̃xy

h̃ yx h̃ yy

]
=
[

h̃xx 0
0 h̃ yy

]
+
[

0 h̃xy

h̃ yx 0

]
= [h̃]D + [h̃]A ,

where

[h̃]D =
[

h̃xx 0
0 h̃ yy

]
, [h̃]A =

[
0 h̃xy

h̃ yx 0

]
.

Using this representation, we simplify the (3.46). On rather cumbersome algebra,
we obtain:

[ZR] [h]−1 = [ZR] {[I] + [h̃][ZR]}−1 = {( [I] + [h̃][ZR] ) [ZR] −1}
= {( [I] + [h̃]A[ZR] ) [ZR]−1 + [h̃]D}−1 =

(
[

�

ZR]−1 + [h̃]D

)−1

= {( [I] + [h̃]D[
�

ZR] ) [
�

ZR]−1}−1 = [
�

ZR] ( [I] + [h̃]D[
�

ZR] )−1

= [
�

ZR] [
�

h] −1 ,

(3.47)

where [
�

ZR] is the transformed regional tensor with the anti-diagonal matrix:

[
�

ZR] = [ZR] ( [I] + [h̃]A[ZR] )−1

=
[

0 �R
1

−�R
2 0

] ([
1 0
0 1

]
+
[

0 h̃xy

h̃ yx 0

] [
0 �R

1
−�R

2 0

])−1

=
[

0
�

�1
R

−�

�2
R 0

]
,

�

�1
R = �R

1

1 + h̃ yx �R
1

,
�

�2
R = �R

2

1 − h̃xy�R
2

(3.48)
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and [
�

h] is the transformed magnetic distortion tensor whose matrix contains two
unknown components on the secondary diagonal:

[
�

h] = [I] + [h̃]D[
�

ZR] =
[

1 0
0 1

]
+
[

h̃xx 0
0 h̃ yy

] [
0

�

�1
R

−�

�2
R 0

]

=
[

1 h̃xx
�

�1
R

−h̃ yy
�

�2
R 1

]
.

(3.49)

Substituting (3.47) into (3.46), we get

[ZS] = G [T̃] [S̃] [Ã] [
�

ZR] [
�

h]−1. (3.50)

This matrix equation holds the form of the initial equation (3.46), but it includes the

transformed tensors [
�

ZR] and [
�

h] instead of the regional impedance tensor [ZR]
and magnetic distortion tensor [h].

By analogy with (3.26) we introduce the apparent regional impedance [Z̃R] ab-
sorbing the product G [Ã]:

[
�

ZR] = G

[
1 + a 0

0 1 − a

] ⎡
⎣ 0

�

�
R

1

−�

�
R

2 0

⎤
⎦ =

[
0 �̃R

1
−�̃R

2 0

]
, (3.51)

where

�̃R
1 = G

(1 + a)�R
1

1 + h̃ yx �R
1

, �̃R
2 = G

(1 − a)�R
2

1 − h̃xy�R
2

.

In this notation

[ZS] = [T̃] [S̃] [Z̃R] [
�

h]−1 . (3.52)

Here

[
�

h] = [I] + [h̃]D[
�

ZR] = [I] + [h̃]D

[Ã]−1

G
G [Ã][

�

ZR] = [I] + [ĥ]D[Z̃R] , (3.53)

where [ĥ]D is the diagonal tensor

[ĥ]D = [h̃]D

[Ã]−1

G
=
[

ĥxx 0
0 ĥ yy

]

with components

ĥxx = h̃xx

G(1 + a)
, ĥ yy = h̃ yy

G(1 − a)
.
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In an arbitrary coordinate system, we have the matrix equation:

[ZS] = [R(�R)]−1 [T̃] [S̃] [Z̃R] [
�

h]−1[R(�R)], (3.54)

where �R is the regional strike angle measured clockwise from the x-axis. In the full
form

Z S
1 = (1 − st)�̃R

1 + (1 + st)�̃R
2 − {ĥ yy(s + t) − ĥxx (s − t)}�̃R

1 �̃R
2

2(1 + ĥxx ĥ yy �̃R
1 �̃R

2 )
,

Z S
2 = (s + t)�̃R

1 − (s − t)�̃R
2 + {ĥ yy(1 − st) + ĥxx (1 + st)}�̃R

1 �̃R
2

2(1 + ĥxx ĥ yy �̃R
1 �̃R

2 )
,

Z S
3 = (1 − st)�̃R

1 − (1 + st)�̃R
2 + {ĥ yy(s + t) + ĥxx (s − t)}�̃R

1 �̃R
2

2(1 + ĥxx ĥ yy �̃R
1 �̃R

2 )
cos2�R

− (s + t)�̃R
1 + (s − t)�̃R

2 − {ĥ yy(1 − st) − ĥxx (1 + st)}�̃R
1 �̃R

2

2(1 + ĥxx ĥ yy �̃R
1 �̃R

2 )
sin2�R ,

Z S
4 = − (s + t)�̃R

1 + (s − t)�̃R
2 − {ĥ yy(1 − st) − ĥxx (1 + st)}�̃R

1 �̃R
2

2(1 + ĥxx ĥ yy �̃R
1 �̃R

2 )
cos2�R

− (1 − st)�̃R
1 − (1 + st)�̃R

2 − {ĥ yy(s + t) + ĥxx (s − t)}�̃R
1 �̃R

2

2(1 + ĥxx ĥ yy �̃R
1 �̃R

2 )
sin2�R ,

(3.55)

where

Z S
1 = Z S

xy − Z S
yx

2
Z S

2 = Z S
xx + Z S

yy

2

Z S
3 = Z S

xy + Z S
yx

2
Z S

4 = Z S
xx − Z S

yy

2
.

On single frequency we have an underdetermined system of eight equations in
nine unknowns: t, s, �R, ĥxx , ĥ yy and Re�̃R

1 , Im�̃R
1 , Re�̃R

2 , Im�̃R
2 . It can be solved

by least squares multifrequency fitting under the assumption that t, s, �R, ĥxx , ĥ yy

do not depend on frequency. Note that apparent regional impedances �̃R
1 , �̃R

2 differ
from the true regional impedances �R

1 , �R
2 not only in amplitude but in phase as

well. So, we take into account the local magnetic anomalies, but restrict ourselves
to determining the twist, shear, and regional strike.
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3.5 The Caldwell-Bibby-Brown Method

The above techniques necessitate the two-dimensionality (or axial symmetry) of
the regional background. Several approaches have been suggested to remove this
constraint (Zhang et al., 1993; Utada and Munekane, 2000). The most intriguing
approach was put forward by Caldwell et al. (2002a, b, 2004) and Bibby et al.
(2005). Using the Caldwell-Bibby-Brown technique (CBB method), we analyze the
phase tensor.

3.5.1 The Phase Tensor

Similar to the Bahr and Groom-Bailey methods, the Caldwell-Bibby-Brown method
is based on the truncated low-frequency decomposition (1.75) neglecting the local
magnetic distortions.

The idea of this elegant technique, which opens up fresh opportunities for sepa-
ration of local and regional effects, is the following.

According to (1.75), [ZS] = [e] [ZR] where [ZS] and [ZR] are the superimpo-
sition and regional impedances, and [e] is the real-valued tensor of the local electric
distortions. Applying this decomposition, we write

[ZR] = [Re ZR] + i [Im ZR],
[ZS] = [Re ZS] + i[Im ZS] = [e] [Re ZR] + i [e][Im ZR, ]

(3.56)

whence

[Re ZS] = [e] [Re ZR], [Im ZS] = [e][Im ZR]. (3.57)

Let us introduce a real-valued tensor [�] as the product of inverse of [Re ZS] by
[Im ZS] :

[�] = [�S] = [Re ZS]−1[Im ZS] = [Re ZR]−1[e]−1[e][Im ZR]

= [Re ZR]−1[Im ZR] = [�R] =
[

�xx �xy

�yx �yy

]
,

(3.58)

where

�xx = Re Z S
yyIm Z S

xx − Re Z S
xyIm Z S

yx

Re Z S
xx Re Z S

yy − Re Z S
xyRe Z S

yx

= Re Z R
yyIm Z R

xx − Re Z R
xyIm Z R

yx

Re Z R
xx Re Z R

yy − Re Z R
xyRe Z R

yx

,
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�xy = Re Z S
yyIm Z S

xy − Re Z S
xyIm Z S

yy

Re Z S
xx Re Z S

yy − Re Z S
xyRe Z S

yx

= Re Z R
yyIm Z R

xy − Re Z R
xyIm Z R

yy

Re Z R
xx Re Z R

yy − Re Z R
xyRe Z R

yx

,

�yx = Re Z S
xx Im Z S

yx − Re Z S
yx Im Z S

xx

Re Z S
xx Re Z S

yy − Re Z S
xyRe Z S

yx

= Re Z R
xx Im Z R

yx − Re Z R
yx Im Z R

xx

Re Z R
xx Re Z R

yy − Re Z R
xyRe Z R

yx

,

�yy = Re Z S
xx Im Z S

yy − Re Z S
yx Im Z S

xy

Re Z S
xx Re Z S

yy − Re Z S
xyRe Z S

yx

= Re Z R
xx Im Z R

yy − Re Z R
yx Im Z R

xy

Re Z R
xx Re Z R

yy − Re Z R
xyRe Z R

yx

.

(3.59)

It is seen that [�] is independent of local distortions. Without any assumptions
of regional dimensionality we may derive the tensor [�] immediately from the
superimposition tensor [ZS] as a true performance of the regional (one-dimensional,
two-dimensional or three-dimensional) impedance [ZR].

Rotating the tensor [�] clockwise trough an angle �, we get

[� (�)] = [R (�)] [�] [R (�)]−1, (3.60)

from which

�xx (�) = �2 +�3sin 2� + �4 cos 2�

�xy(�) = �1 + �3 cos 2� − �4 sin 2�

�yx (�) = − �1 + �3 cos 2� − �4 sin 2�

�yy(�) = �2 − �3 sin 2� − �4 cos 2�,

(3.61)

where

�1 = �xy − �yx

2
�2 = �xx + �yy

2
,

�3 = �xy + �yx

2
�4 = �xx − �yy

2
.

(3.62)

The rotational invariants of the tensor [�] are

J14 = tr[�] = 2�2 = �xx + �yy,

J15 = det[�] = �xx �yy − �xy�yx ,

J16 = �xy − �yx ,

J17 = ‖�‖ =
√

�2
xx + �2

xy + �2
yx + �2

yy .

(3.63)

Take a model with a horizontally homogeneous (1D) medium containing local
three-dimensional near-surface inhomogeneities. In this model, Z R

xx = Z R
yy = 0 and

Z R
xy = −Z R

yx = Z R , where Z R is the regional one-dimensional impedance. Then,
according to (3.60),
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�xx = Im Z R

Re Z R
= tan arg Z R, �xy = 0, �yx = 0, �yy = Im Z R

Re Z R
= tan arg Z R,

(3.64)

from which

[�] =
[

tan arg Z R 0
0 tan arg Z R

]
= tan arg Z R

[
1 0
0 1

]
. (3.65)

Here the tensor [�] has a scalar matrix with the factor tan arg Z R characterizing the
phase of the regional impedance.

Next examine a superimposition model with local three-dimensional near-surface
inhomogeneities placed against a two-dimensional regional background. Let the
x-axis run along the regional strike. Then

[ZR] =
[

0 �R
1

−�R
2 0

]
,

where �R
1 and �R

2 are principal values of the regional impedance tensor (the longitu-
dinal and transverse impedances). By virtue of (3.60)

�xx = Im �R
2

Re �R
2

= tanarg�R
2 , �xy = 0, �yx = 0, �yy = Im �R

1

Re �R
1

= tan arg�R
1 ,

(3.66)

from which

[�] =
[

tan arg �R
2 0

0 tan arg �R
1

]
. (3.67)

Here the tensor [�] has a diagonal matrix with the components tan arg �R
2 and

tan arg �R
1 characterizing the phases of the transverse and longitudinal impedances.

Evidently, the longitudinal and transverse directions are principal directions of the
two-dimensional tensor [�], while tan arg�R

1 and tan arg �R
2 are its principal values.

In accordance with (3.65) and (3.67), the tensor [�] is given the name phase
tensor.

Let us rotate the two-dimensional phase tensor [�] clockwise through an angle
�. According to (3.61),

�xx = �2 + �4 cos 2� �xy = −�4 sin 2�
�yx = −�4 sin 2� �yy = �2 − �4 cos 2�,

from which
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[�(�)] =
[

�2 + �4 cos 2� −�4 sin 2�
−�4 sin 2� �2 − �4 cos 2�

]
, (3.68)

where

�2 = 1

2
(tanarg�R

1 + tanarg�R
2 ) = sin(arg�R

1 + arg�R
2 )

2cos arg�R
1 cos arg�R

2

,

�4 = 1

2
(tanarg�R

1 − tanarg�R
2 ) = sin(arg�R

1 − arg�R
2 )

2cos arg�R
1 cos arg�R

2

.

In arbitrary coordinates, the two-dimensional phase tensor [�] is symmetric. The
similar properties of [�] are observed in models with axially symmetric three-
dimensional regional background. If the three-dimensional regional background is
asymmetric, the symmetry of the phase tensor is violated.

3.5.2 Polar Diagrams of the Phase Tensor

The dependence of the components of the phase tensor upon the direction can be
displayed by means of polar diagrams.

Let the phase tensor [�] be defined on measurement axes x, y. Introduce new
axes x ′, y′ rotated through a clockwise angle �. In accordance with (3.61),

xx (�) = |arctan�xx (�)| = |arctan(�2 +�3sin2� + �4 cos2�)| ,
xy(�) = ∣∣arctan�xy(�)

∣∣ = |arctan(�1 + �3 cos2� − �4 sin2�)| .
(3.69)

Plotting these quantities on the x ′-axis and changing � from 0 to 2�, we trace the
polar diagrams of the phase tensor. They take the form of regular or irregular ovals
with more or less narrow waist and may consist of four petals.

The xx - and xy-diagrams are exemplified in Fig. 3.12. They clearly indicate
the dimensionality of regional structures.

In the event of horizontally homogeneous (1D) regional background, the xy-
diagram contracts to a point and vanishes, while the xx -diagram is a circle of radius∣∣arg Z R

∣∣ where Z R is the regional one-dimensional impedance.
In the event of a two-dimensional or axially symmetric three-dimensional

regional background, we have

xx = ∣∣ arctan (�xx cos2 � + �yy sin2 �)
∣∣ ,

xy = ∣∣arctan{ (�xx − �yy) sin � cos �}∣∣ ,
(3.70)

where �xx , �yy are tangents of the phases of the longitudinal and transverse (or
tangential and radial) regional impedances. The xx -diagram assumes the form of
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1 D 2 D
3 D

a b

x
x x x

x x x

y y y y

y y y

ϕxx

ϕxy

Fig. 3.12 Polar diagrams of the phase tensor;

1D: Z = 4 − 2i [�Z ] =
[−0.5 0

0 −0.5

]
,

2D: [Z] =
[

0 4 − 2i
−1 + 2i 0

]
skewS = 0
skewB = 0

, [�] =
[−2 0

0 −0.5

]
skewCBB = 0 ,

3D,a: [Z] =
[−0.5 − 3i 4 − 2i

−1 + 2i 0.5 + 3i

]
skewS = 0
skewB = 0.47

,

[�] =
[−2.53 −3.47

−1.07 −0.93

]
skewCBB = 17.3◦ ,

3D,b: [Z] =
[−0.5 − 3i 4 − 2i

−1 + 2i 0.1 − i

]
skewS = 0.63
skewB = 0.44

,

[�] =
[ −2.1 0.96
−1.01 −0.38

]
skewCBB = 19.15◦

a regular oval with a well-defined waist. Its maximal and minimal diameters are as
large as doubled absolute value of the phases of the longitudinal and transverse (or
tangential and radial) regional impedances. They are oriented in the longitudinal and
transverse (or tangential and radial) directions. The xy-diagram looks like a flower
with four identical petals. The lines bisecting the angles between these petals are
oriented in the longitudinal and transverse (or tangential and radial) directions.

In the event of asymmetric three-dimensional regional structures, the regu-
lar form of phase-tensor polar diagrams is violated. In the quasi-symmetric case
(skewS = 0, skewB = 0, skewCBB = 0) the 3D,a diagrams have petals of different
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size. In the general case (skewS = 0, skewB = 0, skewCBB = 0) the 3D,b diagrams
look like a figure eight. It would be difficult to find any regularity in their relative
positions.

To conclude, let us compare Fig. 3.12 with Fig. 1.7. The diagrams of xx and
arg Zxy have similar form, while their orientations differ approximately by �/2.

3.5.3 The Phase-Tensor Eigenstate Problem

To solve the eigenstate problem, Caldwell and his workmates apply technique,
which has its origin in the method of ellipses employed in the telluric current and
dc-resistivity methods (Leonardon, 1948; Bibby, 1986).

Let us show the construction of the phase-tensor ellipse in some detail. The initial
relation is

F(�) = [�] 1τ , (3.71)

where the tensor [�] transforms a circle, described by the horizontal unit vector 1τ ,
into the ellipse, described by the horizontal vector F which makes an angle � with
the x-axis. To find the equation of the phase-tensor ellipse, we apply the singular
value decomposition of the phase tensor:

[�] =
[

cos(� − �) − sin(� − �)
sin(� − �) cos(� − �)

] [
�1 0
0 �2

] [
cos(� + �) sin(� + �)

− sin(� + �) cos(� + �)

]
,

(3.72)

where �1 and �2 are the principal values of the phase tensor, �1 ≥ �2 > 0.
Solving the matrix equation (3.72), we get

� = 1

2
arctan

�xy + �yx

�xx − �yy
, (3.73)

where � ∈ [0, �/2] when �xy + �yx ≥ 0 and � ∈ ( �/2, �) when �xy + �yx < 0,

� = 1

2
arctan

�xy − �yx

�xx + �yy
,

(3.74)

where � ∈ [0, �/2] when �xy − �yx ≥ 0 and � ∈ ( �/2, �) when �xy − �yx < 0,

�1 = 1

2

{√
‖�‖2 + 2 |det[�]| +

√
‖�‖2 − 2 |det[�]|

}
,

�2 = 1

2

{√
‖�‖2 + 2 |det[�]| −

√
‖�‖2 − 2 |det[�]|

}
,

(3.75)

where
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det[�] = �xx �yy − �xy�yx ,

‖�‖ =
√

�2
xx + �2

xy + �2
yx + �2

yy .
(3.76)

Substituting [�] from (3.72) into (3.71), we obtain:

F2 = �2
1�2

2

�2
1 sin2(� − �1) + �2

2 cos2(� − �1)
, (3.77)

where �1 = � − �. This is the equation of an ellipse in polar coordinates F, �.
The major and minor semiaxes of the ellipse make the angles � = �1 and � = �1+
�/2 with the x-axis. They are equal to the principal values �1 and �2 of the phase
tensor, which determine the principal phases 1 = −arctg�1 and 2 = −arctg�2

lying in the IV quadrant.
The phase-tensor ellipse can be constructed using (3.73), (3.74), and (3.75). It

is defined by four independent parameters 1, 2, �, � that are free of distortions
caused by near-surface inhomogeneities. These parameters characterize the regional
background and fill all four degrees of freedom possessed by the matrix [�].

The phase-tensor ellipses for a three-dimensional asymmetric and a two-
dimensional regional backgrounds are exemplified in Fig. 3.13.

Let us consider the angles � and �, which control the orientation of the phase-
tensor ellipse.

The angle � is defined by (3.73). It is curious that the Caldwell-Bibby-Brown
formula (3.73), deduced for a three-dimensional asymmetric background, coincides
with the basic Bahr formula (3.8), which yields the strike of the two-dimensional
regional background. In fact, with due regard for (3.59),

� = 1

2
arctan

�xy + �yx

�xx − �yy

= 1

2
arctan

Re Z S
yyIm Z S

xy − Re Z S
xyIm Z S

yy + Re Z S
xx Im Z S

yx − Re Z S
yx Im Z S

xx

Re Z S
yyIm Z S

xx − Re Z S
xx Im Z S

yy + Re Z S
yx Im Z S

xy − Re Z S
xyIm Z S

yx

= 1

2
arctan

Im(Z S
yx Z̄ S

xx + Z S
xy Z̄ S

yy)

Im(Z S
xx Z̄ S

yy + Z S
xy Z̄ S

yx )
.

(3.78)
The angle � is defined by (3.74). This angular rotationally invariant parame-

ter indicates the regional asymmetry. It is referred to as the Caldwell-Bibby-Brown
skew:

skewCBB = |�| = 1

2

∣∣∣∣arctan
�xy − �yx

�xx + �yy

∣∣∣∣ . (3.79)

The Caldwell-Bibby-Brown skewCBB is taken in the range [0, �/2]. In models with
1D, 2D and axially symmetric 3D regional conductivity, skewCBB = 0. Departure
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Fig. 3.13 Phase-tensor
ellipses: 3D –
three-dimensional regional
background, 2D –
two-dimensional regional
background

β
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of skewCBB from zero identifies the three-dimensional asymmetry of the regional
background.

Note that the Caldwell-Bibby-Brown skewCBB given by (3.79) is connected with
the Bahr skewB given by (1.61):

skewCBB = 1

2
arctan(M skew2

B) , (3.80)

where M is a scale factor

M =
∣∣Z S

xy − Z S
yx

∣∣2
(�xx + �yy)(Re Zxx Re Z yy − Re ZxyRe Z yx )

.
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Let us come back to Fig. 3.13. In a model with the two-dimensional regional
background, skewCBB = 0, skewB = 0 and �1 = � , �2 = � + �/2. So, applying
the Cantwell-Bibby-Brown method, we determine the principal directions of the
phase tensor that coincide with principal directions defined by Bahr’s formula. Here
the Cantwell-Bibby-Brown and Bahr methods give the identical results.

In the general case of the three-dimensonal asymmetric regional background,
skewCBB = 0 and �1 = � − �, �2 = � − � + �/2. Here we determine the principal
directions of the phase tensor by the formula that is identical to Bahr’s formula, but
introduce a correction � = skewCBB for the regional background asymmetry. It is
simply evident that such a correction makes sense if � considerably exceeds errors
in the phase measurements With small � we can neglect the asymmetry and resort
to the two-dimensional (or axially symmetric three-dimensional) approximation of
the regional background.

Evidently, the Caldwell-Bibby-Brown method may be viewed as a three-
dimensional generalization of the Bahr method.



Chapter 4
The Magnetovariational Response Functions

Along with the magnetotelluric response functions originating from linear relations
between components of the electric and magnetic fields we can consider the magne-
tovariational response functions derived from linear relations between components
of the magnetic field. This consideration may significantly enhance the capabilities
of the magnetotellurics, since at low frequencies the magnetic field becomes free
of near-surface distortions and shines a nondeceptive light on the deep geoelectric
structures.

4.1 The Wiese–Parkinson Matrix

Return again to the model of inhomogeneous medium presented in Fig. 1.1. Recall
that this layered model containing a bounded inhomogeneous domain V is excited
by a plane elliptically polarized wave incident vertically on the Earth’s surface.
Proceeding from (1.12) and supplementing (1.13c,d) with an equation for vertical
component of the magnetic field, we get

Hx = H N
x + H A

x = Hxo(1 + J H2
x ) + Hyo J H1

x a

Hy = H N
y + H A

y = Hxo J H2
y + Hyo(1 + J H1

y ) b

Hz = H A
z = Hxo J H2

z + Hyo J H1
z , c

(4.1)

where Hxo , Hyo are components of the normal magnetic field on the Earth’s sur-

face, and JH1 , JH2 are convolutions of excess currents with the magnetic Green
tensors. On eliminating Hxo , Hyo from 4.1a,b) and substituting them in (4.1c), we
obtain:

Hz = Wzx Hx + Wzy Hy (4.2)

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 119
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where

Wzx = J H2
z + (J H1

y J H2
z − J H2

y J H1
z )

1 + J H2
x + J H1

y + (J H2
x J H1

y − J H1
x J H2

y )
,

Wzy = J H1
z + (J H2

x J H1
z − J H1

x J H2
z )

1 + J H2
x + J H1

y + (J H2
x J H1

y − J H1
x J H2

y )
.

This relation has been introduced in magnetotellurics by Parkinson (1959)
and Wiese (1965). It is called the Wiese–Parkinson relation. The concept of the
Wiese–Parkinson relation has been intensively advanced by Schmucker (1962,
1970, 1979), Jankovski (1972), and Vozoff (1972), as well as by Berdichevsky
(1968), Lilley (1974), Rokityansky (1975), and Gregori and Lanzerotti
(1980).

In matrix notation

H z = [W] Hτ , (4.3)

where

[W] = [Wzx Wzy] Hτ =
[

Hx

Hy

]
.

The matrix [W] came into play under the name of the Wiese–Parkinson matrix
or the tipper matrix as it acts on the horizontal magnetic field and tips it into the
vertical magnetic field (Vozoff, 1972).

The components Wzx , Wzy are determined from the vertical anomalous magnetic
field. It is quite evident that they reflect the horizontal asymmetry of the excess cur-
rents of a galvanic and induction nature arising in the Earth due to lateral variations
in the electric conductivity. It follows from Bio-Savart’s law that the component Wzx

defines a contribution of excess current flowing in the y− direction, while the com-
ponent Wzy defines a contribution of excess current flowing in the x− direction. Let
us agree to orient Wzx , Wzy to directions corresponding to their second subscript,
that is, perpendicularly to the contributing current.

Note that the components Wzx , Wzy reflect not only the lateral conductivity vari-
ations but the vertical conductivity distribution as well. It follows directly from (4.2)
where Wzx , Wzy depend on convolutions of excess currents with the magnetic Green
tensor which is determined by normal conductivity distribution σN(z).

In the one-dimensional model the excess currents are absent. Here Wzx =
Wzy = 0.

Consider a two-dimensional model with strike along the x-axis. Here J H1
x =

J H2
x = J H2

y = J H2
z = 0, hence Wzx = 0. Thus,
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[W] = [0 Wzy], Hz = Wzy Hy, (4.4)

where

Wzy = J H1
z

1 + J H1
y

.

Clearly in this case the Wiese–Parkinson matrix contains only one component
oriented across the strike.

The similar relation is characteristic of a three-dimensional axisymmetric model.
In coordinates aligned with the radial and tangential directions, the Wiese–
Parkinson matrix has only one component oriented radially.

In closing we follow Zhang et al. (1993) and Ritter and Banks (1998) and
show that the Wiese–Parkinson matrix can be expressed in terms of the impedance
tensor. On eliminating Hxo , Hyo from (1.13a,b ) and substituting them in (4.1c),
we obtain:

Hz = Uzx Ex + Uzy Ey,

where

Uzx = J H2
z J E1

y − J H1
z (J E2

y − ZN)

J E2
x J E1

y − (J E1
x + ZN)(J E2

y − ZN)

Uzy = J H1
z J E2

x − J H2
z (J E1

x + ZN)

J E2
x J E1

y − (J E1
x + ZN)(J E2

y − ZN)
.

In matrix notation

Hz = [U] Eτ = [U] [Z] Hτ = [W] Hτ ,

where

[U] = [
Uzx Uzy

]

[W] = [U] [Z] = [
Uzx Uzy

] [ Zxx Zxy

Z yx Z yy

]

= [
Uzx Zxx + Uzy Z yx Uzx Zxy + Uzy Z yy

]
,

from which
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Wzx = Uzx Zxx + Uzy Z yx

Wzy = Uzx Zxy + Uzy Z yy .
(4.5)

There is good reason to believe that generally the impedance tensor [Z] reflects
vertical and horizontal variations in the Earth’s conductivity and that its components
tend to zero as � → 0. In view of (4.5) we can assume that the same properties are
sha-red by the Wiese–Parkinson matrix [W].

In a two-dimensional model with strike along the x− axis the relation (4.5)
reduces to

Wzx = 0

Wzy = Uzx Zxy,
(4.6)

where Zxy is the longitudinal impedance. Let the anomalous magnetic field be
caused by a near-surface body, whose dimensions are far less than the skin depth.
Then we can ignore the induction effect and take Uzx as a real-valued factor. In that
event Wzy and Zxy are in-phase.

4.1.1 Rotation of the Wiese–Parkinson Matrix

How do the components of the Wiese–Parkinson matrix change as the x, y-axes
rotate about the z-axis? Let � be a clockwise rotation angle. Then

Hz = [W] Hτ = [W][R(�)] −1[R(�)]Hτ = [W(�)] Hτ (�),

where

[W(�)] = [W][R(�)] −1 Hτ (�) = [R(�)] Hτ .

Thus,

Wzx (�) = −Wzx (� ± �) = ∓Wzy(� ± �/2) = Wzx cos � + Wzy sin �

Wzy(�) = −Wzy(� ± �) = ±Wzx (� ± �/2) = −Wzx sin � + Wzy cos � .

(4.7)

As is easy to see, in two-dimensional and axisymmetric three-dimensional mod-
els both the components,Wzx (�) and Wzy(�), are in-phase or anti-phase. Really,
according to (4.4) and (4.7), we have

Wzx (�) = Wzy(�) tan �,

whence
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arg Wzx (�) = arg Wzy(�) mod �. (4.8)

Rotational invariants of the Wiese–Parkinson matrix are

W =
√

W 2
zx + W 2

zy ‖W‖ =
√

|Wzx |2 + ∣∣Wzy

∣∣2

‖Re W‖ = √
(Re Wzx )2 + (Re Wzy)2 ‖Im W‖ = √

(Im Wzx )2 + (Im Wzy)2

P1 = Re Wzx Im Wzy − Re WzyIm Wzx

P2 = Re Wzx Im Wzx + Re WzyIm Wzy .

(4.9)

It comes to attention that in two-dimensional and three-dimensional axisymmet-
ric models P1 = 0 and P2 = Re WzyIm Wzy , where Wzy is a component oriented
across the strike or radially. But note that in a quasistatic case when the Wiese–
Parkinson matrix is real-valued we have P1 = 0 and P2 = 0 no matter what the
structure of the medium.

With regard for (4.9), we introduce the magnetovariational skew (Wiese–
Parkinson skew) as

skewmv =
∣∣∣∣P1

P2

∣∣∣∣ =
∣∣∣∣Re Wzx Im Wzy − Re WzyIm Wzx

Re Wzx Im Wzx + Re WzyIm Wzy

∣∣∣∣ . (4.10)

In 2D- and axially symmetric 3D-models we have skewmv = 0. Departure of
skewmv from 0 is a measure of geoelectric asymmetry. The important advantage of
the magnetovariational skewmv over the magnetotelluric sqewS defined by (1.60) is
that at low frequencies skewmv is not subject to near-surface distortions and reflects
the asymmetry of deep zones of the Earth. But note that indications of skewmv are
reliable in zones where magnetovariational anomalies are rather strong and the real
and imaginary components [W] are sufficiently large.

4.1.2 Dispersion Relations in the Wiese–Parkinson Matrix

Marcuello, Queralt and Ledo demonstrated recently the two-dimensional and three-
dimensional synthetic models, in which the real and imaginary components of the
Wiese–Parkinson matrix meet the dispersion relations

Im W j (�o) = 1

�
pv

∞∫
−∞

Re W j (�)

� − �o
d� = 2�o

�
pv

∞∫
o

Re W j (�)

�2 − �2
o

d� (4.11)

Re W j (�o) = − 1

�
pv

∞∫
−∞

Im W j (�)

� − �o
d� = − 2

�
pv

∞∫
o

Im W j (�)

�2 − �2
o

� d� (4.12)
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Fig. 4.1 Tipper dispersion
relations in a two-
dimensional model; triangle
– observation site; ReW :
filled circles and solid line –
synthetic values of real tipper
and their interpolation, ImW :
stars and solid line –
synthetic values of imaginary
tipper and transform (4.11) of
real tippers (Marcuello et al.,
2005)
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where j = zx, zy and pv denotes a principal value of an integral in the Cauchy
sense (Marcuello et al., 2002; Marcuello et al., 2005).

Figure 4.1 presents a two-dimensional model testifying to the adequacy of the
dispersion relations between the real and imaginary components of the Wiese–
Parkinson matrix. The transformation (4.11) of Re W is in good agreement with
Im W . The similar agreement has been observed in a three-dimensional synthetic
model, which contains an inclined conductive layer.

The consistency between the real and imaginary components of the Wiese–
Parkinson matrix may suggest that they embody the same (or almost the same)
information on the Earth conductivity.

In parallel with synthetic models, Marcuello, Queralt and Ledo applied
the transformations (4.11) and (4.12) to magnetovariational data collected in
the northern Iberian Peninsula. At many sites the field data met the disper-
sion relations, but there were sites, at which the dispersion relations were
violated.
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4.2 Vector Representation of the Wiese–Parkinson Matrix

The development of these graphical techniques was stimulated by pioneering works
of Parkinson (1959), Wiese (1962, 1965), Schmucker (1962, 1970), Everett and
Hyndman (1967), Jankovski (1972), Vozoff (1972), and Lilley (1974). The keystone
idea was to represent the complex-valued Wiese–Parkinson matrix as a complex
vector giving a pictorial image of the horizontal gradients of electric conductivity.
Such a vector received the name tipper vector or induction arrow. Complex tipper
(induction arrow) consists of real and imaginary tippers (real and imaginary induc-
tion arrows).

There exist two conventions concerning the real tipper direction. In the Wiese
convention, the real tipper points away from the zone of higher conductivity. In the
Parkinson convention, the real tipper points toward the zone of higher conductivity.

In our book we adopt the Wiese convention, which is popular in the Russian
magnetotelluric school.

In the following we consider three types of tippers: the Wiese–Parkinson tipper,
the Vozoff tipper, and the Schmucker tipper.

4.2.1 The Wiese–Parkinson Tipper Technique

Let us represent the Wiese–Parkinson matrix in the vector form

W = Wzx 1x + Wzy1y . (4.13)

The vector W is given the name Wiese–Parkinson tipper.
The complex tipper W falls into the real and imaginary tippers:

W = Re W + iIm W, (4.14)

where

Re W = Re Wzx1x + Re Wzy1y,

Im W = Im Wzx1x + Im Wzy1y .
(4.15)

Note that the rotational invariants P1 and P2 defined by (4.9) have meaning of
the vector and scalar products of the real and imaginary tippers:

Re W × Im W=

∣∣∣∣∣∣∣∣

1x 1y 1z

Re Wzx Re Wzy 0

Im Wzx Im Wzy 0

∣∣∣∣∣∣∣∣
= (Re Wzx Im Wzy − Re WzyIm Wzx )1z = P11z

Re W · Im W=Re Wzx Im Wzx + Re WzyIm Wzy = P2.

(4.16)
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Thus, according to (4.10),

skewmv = |tan �| , (4.17)

where � is an angle between the real and imaginary tippers.
Turn again to the two-dimensional model with strike along the x-axis. According

to (4.4)

Re W = Re Wzy1y Im W = Im Wzy1y . (4.18)

Here the real and imaginary tippers are collinear, being perpendicular to the strike.
Their vector product is equal to zero, P1 = 0. Collinearity of the real and imaginary
tippers is also observed in the axisymmetric three-dimensional model: vectors Re W
and Im W are oriented toward the axis of symmetry or away from it. Asymmetry of
the medium violates the collinearity of Re W and Im W.

Examples of real and imaginary Wiese–Parkinson tippers Re W and Im W for
2D and 3D-models are presented in Fig. 4.2.
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Fig. 4.2 The Wiese–Parkinson tippers W, Vozoff tippers V and polar diagrams of the Wiese–
Parkinson matrix. 2 Da: [W] = [0.5e−i�/6 0] 2Db: [W] = [0 0.5e−i�/6 ] 3 Da: [W] = [0.5 0.3]
3Db: [W] = [0.5eiπ/3 0.3ei�/6 ]
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The real tippers show a remarkable property: over a wide range of sufficiently
low frequencies they are directed away from zones of higher conductivity (current
concentration) and towards zones of lower conductivity (current deconcentration).
So, maps of real tippers may be most helpful in locating geoelectrical structures,
their tracing, their classifying by conductivity. This property of real tippers is a direct
consequence of the Bio-Savart law. Let us demonstrate this with a simple example
(Fig. 4.3). Assume that the infinitely long rectilinear horizontal direct current flows
along the x-axis trough an underground point C. At symmetrical surface points O1

and O2 we observe magnetic fields H(1) and H(2) with components

H (1)
y = J cos �

2�r
, H (1)

z = − J sin �

2�r
, H (2)

y = J cos �

2�r
, H (2)

z = J sin �

2�r
,

where r is the distance between O1, O2 and C, while � is the angle made by H(1),
H(2) with the Earth’s surface. Thus, the tippers calculated from these magnetic
fields are

W(1) = H (1)
z

H (1)
y

1y = − tan �1y, W(2) = H (2)
z

H (2)
y

1y = tan �1y .

Clearly they are directed away from the buried current.
The relations between the real and imaginer tippers can be illustrated by a

simple two-dimensional model consisting of three layers: sediments (�′
1), resis-

tive lithosphere (�2 = ∞) and highly conductive mantle (�3 = 0). The sediments
contain a rectangular conductive inclusion (�′′

1<<�′
1). The model is excited by the E-

polarized field. Figure 4.4 presents the tippers Re W and Im W for different λ1/h 1,
where λ1 = 2�

√
2�′

1/��o is the wavelength in sediments. Within the S1-interval
(λ1/h 1 = 30, 45, 60), the real and imaginary tippers point away from the conduc-
tive inclusion center. On the transition to the h-interval (λ1/h 1 = 100, 150), the

Fig. 4.3 Magnetic field of the
infinitely long rectilinear
direct current flowing
through a buried point C

Re W(1) Re W(2)PLAN

CROSS-SECTION

O1 O2
H(1)

H(2)

C

r rz
y

x

α
α
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Fig. 4.4. The real and imaginary Wiese–Parkinson tippers over a near-surface rectangular inclusion
of higher conductivity. Model parameters: �′′/�′ = 1/16, v/h 1 = 8, h 2/h 1 = 21. Calculated
for λ1/h 1 = 30, 45, 60 (S1− interval), 100, 150 (h− interval);1-real tipper, 2- imaginary tipper

real tippers preserve their orientation, whereas the imaginary tippers turn towards
the center of conductive inclusion.

A spectacular practical example is given in Fig. 4.5. This map of the real Wiese–
Parkinson tippers has been constructed for the Carpathian region in the early 1970s
(Rokityansky, 1982). When crossing the mountains, we observe the reversal of
Re W plotted for T =1000–1500 s. The induction arrows point away from the
Carpathian arc. So, we can state with confidence that the Carpathian magnetovaria-
tional anomaly is formed by a narrow arc-shaped conductive zone in the deep roots
of the mountains.

4.2.2 The Vozoff Tipper Technique

Another vector representation has been suggested by Vozoff (1972). It separates
the amplitude and phase characteristics of the magnetovariational anomalies and
offers a simple three-dimensional generalization of the longitudinal and transverse
magnetic fields. We will describe this technique with some modifications proposed
by Berdichevsky and Nguen Tkhan Van (1991).

Let us introduce the tipper ratio � as an amplitude characteristic of the magne-
tovariatonal anomaly:
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Fig. 4.5 Map of the Wiese
tippers for the Carpathian
region, periods 15–25 min;
1 – Wiese tipper, 2 – the
Carpathian arc (Rokityansky,
1982)

� = |Hz|√
|Hx |2 + ∣∣Hy

∣∣2 . (4.19)

Consider a two-dimensional model and assume that horizontal magnetic field Hτ

is polarized linearly at a clockwise angle � to the x-axis which runs along the model
strike. According to (4.4)

Hx = Hτ cos �, Hy = Hτ sin �, Hz = Wzy Hτ sin � .

Thus,

� = ∣∣Wzy sin �
∣∣ . (4.20)

The tipper ratio has minimum �min = 0 for longitudinal magnetic field (Hτ is polar-
ized along the strike, � = 0) and maximum �max = ∣∣Wzy

∣∣ for transverse magnetic
field (Hτ is polarized across the strike, � = �/2).

These relations can be readily extended to a three-dimensional model. We will
look for a quasi-longitudinal magnetic field Hq l

τ and a quasi-transverse magnetic
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field Hq t
τ that provide a minimum and a maximum of �. Generally these fields are

elliptically polarized.
In accordance with (4.2) and (4.9),

�=
∣∣Wzx Hx + Wzy Hy

∣∣√
|Hx |2 + ∣∣Hy

∣∣2 =
√√√√ (Wzx Hx + Wzy Hy)(W̄zx H̄x + W̄zy H̄y)

|Hx |2 + ∣∣Hy

∣∣2 =
√

‖W‖2 − �,

where

� =
∣∣W̄zx Hy − W̄zy Hx

∣∣2
|Hx |2 + ∣∣Hy

∣∣2 ≥ 0 .

Here the bar denotes the complex conjugation.
The quasi-longitudinal field Hq l

τ corresponds to condition �min = 0. Thus, we
have the equation

Wzx Hq l
x + Wzy Hq l

y = 0,

which gives the polarization ratio

Pq l
H = Hq l

y

Hq l
x

= −Wzx

Wzy
. (4.21)

The quasi-transverse field Hq t
τ corresponds to condition

�max = �
∣∣
�=0 = ‖W‖ =

√
|Wzx |2 + ∣∣Wzy

∣∣2 . (4.22)

Thus, we have the equation

W̄zx Hq t
y − W̄zy Hq t

x = 0,

which gives the polarization ratio

Pq t
H = Hq t

y

Hq t
x

= W̄zy

W̄zx
. (4.23)

As is evident from (4.21) and (4.23),

Pq l
H P̄q t

H = −1. (4.24)

The polarization ratios for the quasi-longitudinal and quasi-transverse magnetic
fields comply with (2.24). This means that fields Hq l

τ and Hq t
τ are orthogonal.
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The mayor axes of their polarization ellipses are oriented in the directions that
can be regarded as quasi-longitudinal and quasi-transverse directions of the three-
dimensional structure. The orthogonal quasi-longitudinal and quasi-transverse mag-
netic fields Hq l

τ and Hq t
τ are tipper eigenfields.

To determine the quasi-transverse direction, we find the clockwise angle �
q t
H

between the x-axis and the major axis of the polarization ellipse of the quasi-
transverse field Hq t

τ . By virtue of (2.18)

tan 2�
q t
H = 2Re Pq t

H

1 − ∣∣Pq t
H

∣∣2 = tan 2�
q t
H cos �

q t
H , (4.25)

where tan �
q t
H = ∣∣Pq t

H

∣∣ , �
q t
H = arg Pq t

H . Equation (4.25) defines �
q t
H modulo �.

The angle �
q t
H is taken within quadrant I (0 ≤ �

q t
H ≤ �/2 ) or III (� ≤ �

q t
H ≤ 3�/2)

if cos �
q t
H ≥ 0 and within quadrant II (�/2 > �

q t
H ≥ � ) or IV (3�/2 > �

q t
H ≥

2� ) if cos �
q t
H < 0. For the definiteness sake, we introduce the complementary

condition

∣∣∣∣�qt
H − arctg

Re Wzy

Re Wzx

∣∣∣∣<�

2
, (4.26)

which brings �
q t
H closer to direction of the real Wiese–Parkinson tipper Re W.

By plotting ‖W‖ in the direction �
qt
H , we obtain the Vozoff tipper

V = Vx 1x + Vy1y, (4.27)

where

Vx = ‖W‖ cos �
qt
H Vy = ‖W‖ sin �

qt
H .

The magnitude and direction of the Vozoff tipper fill two of four degrees of
freedom for the complex-valued components Wzx and Wzy of the matrix [W]. The
tipper magnitude ‖W‖ characterizes the intensity of a magnetovariational anomaly,
while the tipper direction �

q t
H helps in locating and identifying conductive and non-

conductive structures. Over a wide range of sufficiently low frequencies the Vozoff
tippers, similar to the real Wiese–Parkinson tippers, are directed away from the
zones of higher conductivity and towards the zones of lower conductivity.

Two more parameters are the tipper ellipticity, �
qt
H , and the tipper phase, V. With

these parameters we fill all the four degrees of freedom of the Wiese–Parkinson
matrix.

The ellipticity �
qt
H is estimated as a ratio between semi-axes of the polarization

ellipse of the quasi-transverse magnetic field Hqt
τ . According to (2.19)
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�
qt
H = bqt

H

aqt
H

=
√

1 + ∣∣Pqt
H

∣∣2 + 2Im Pqt
H −

√
1 + ∣∣Pqt

H

∣∣2 − 2Im Pqt
H√

1 + ∣∣Pqt
H

∣∣2 + 2Im Pqt
H +

√
1 + ∣∣Pqt

H

∣∣2 − 2Im Pqt
H

= tan �
qt
H ,

(4.28)
where

�
qt
H = 1

2
arcsin(sin 2�

qt
H sin �

qt
H ). (4.29)

It is notable that

Im Pqt
H = −Re Wzx Im Wzy − Re WzyIm Wzx

|Wzx |2
= − P1

|Wzx |2
, (4.30)

where P1 is the rotational invariant defined by (4.9). In the two-dimensional
and axisymmetric three-dimensional models, P1 = 0 and hence Im Pqt

H = 0
and �

qt
H = 0.

Now introduce the tipper phase V. We can derive V directly from the quasi-
transverse field Hqt

τ :

�V = arg
Hqt

z√
(Hqt

x )2 + (Hqt
y )2

, (4.31)

where Hqt
z = Wzx Hqt

x + Wzy Hqt
y . In view of (4.9) and (4.22)

Hqt
z√

(Hqt
x )2 + (Hqt

y )2
=

Wzx + Wzy
Hqt

y

Hqt
x√√√√1 +

(
Hqt

y

Hqt
x

)2
=

Wzx + Wzy
W̄zy

W̄zx√
1 +

(
W̄zy

W̄zx

)2
= ‖W‖2

W̄
= ‖W‖2

|W |2 W,

whence

V = arg W = arg
√

W 2
zx + W 2

zy . . (4.32)

Here the phase V is defined modulo � as argument of the rotational invariant W .
It indicates the relations between the phase of excess electric currents generating the
vertical magnetic field and the phase of the horizontal magnetic field. If V is close
to 0 or �, the in-phase (or anti-phase) active currents prevail. If V is close to ± �/2
the reactive currents prevail. This information could be helpful in geoelectric zoning
and structural classification.

Note that with lowering frequency the Vozoff tipper V attenuates slower than
the Wiese–Parkinson tipper Re W. It seems that it provides the larger investigation
depth.
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The model examples of tippers V are shown in Fig. 4.2. In two-dimensional
models the Vozoff tippers V and Wiese–Parkinson tippers Re W have the same
direction, while in three-dimensional models the difference in their directions can
be rather large. The advantage of the Vozoff tipper is the higher sensitivity to remote
three-dimensional structures.

Figure 4.6 presents the Vozoff tippers V obtained along the regional profile
crossing South Kamchatka (Berdichevsky and Nguen Tkhan Van, 1991). Here
the ellipticity �

qt
H varies from 0.15 to 0.3 indicating more or less strong three-

dimensionalities. At the same time the tipper phase V at periods 2500–10,000 s
deviates rather slightly from 0o which evidences the dominating influence of the
oceanic currents (coastal effect). On the Pacific coast this effect is much stronger
than on the Sea-of-Okhotsk coast. The North-West and North-East orientation of

Fig. 4.6 The Vozoff tippers
V obtained along profile
crossing South Kamchatka
(Berdichevsky and Nguen
Tkhan Van, 1991)
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the tippers can be explained by considerable impact of oceanic currents flowing
around the Kamchatka peninsula on the south.

4.3 Polar Diagrams of the Wiese–Parkinson Matrix

This representation was originated by Berdichevsky (1968). Polar diagrams show
the dependence of the components of the Wiese–Parkinson matrix upon orienta-
tion of the measurement axes. They characterize the dimensionality of geoelectric
structures and outline their strike.

Plot a value |Wzx (�)| on the x-axis rotated clockwise through an angle �. As
� goes from 0 to 2�, the resultant point describes a closed curve called the polar
diagram of the Wiese–Parkinson matrix. Its equation is deduced from (4.7):

|Wzx (�)| =
√

|Wzx |2 cos2 � + ∣∣Wzy

∣∣2 sin2 � + 2Re Wzx W̄zy sin � cos �. (4.33)

Find an angle � that provides extreme values of |Wzx (�)|. From the extremum
condition

d |Wzx (�)|
d�

= 0

we derive

tan 2� = 2Re Wzx W̄zy

|Wzx |2 − ∣∣Wzy

∣∣2 . (4.34)

Solving this equation, we obtain two maxima and two minima of |Wzx (�)| that alter-
nate in �/2. Obviously, the polar diagram may appear as a symmetric oval (with or
without “waist”) or as a figure-eight.

According to (4.33) and (4.34), the major and the minor semiaxes of the polar
diagram of the Wiese–Parkinson matrix are

aWP =

√√√√ |Wzx |2 + ∣∣Wzy

∣∣2 +
√

(|Wzx |2 − ∣∣Wzy

∣∣2)2 + 4Re2Wzx W̄zy

2

bWP =

√√√√ |Wzx |2 + ∣∣Wzy

∣∣2 −
√

(|Wzx |2 − ∣∣Wzy

∣∣2)2 + 4Re2Wzx W̄zy

2
,

(4.35)

whence

a2
WP + b2

WP = |Wzx |2 + ∣∣Wzy

∣∣2 = ‖W‖2 . (4.36)
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Fig. 4.7 The Wiese–Parkinson polar diagram and ellipse

It is notable that an inversion of the polar diagram of the Wiese–Parkinson matrix
gives an ellipse (Fig. 4.7). Its equation is

∣∣W̃zx (�)
∣∣ = 1√

|Wzx |2 cos2 � + ∣∣Wzy

∣∣2 sin2 � + 2Re Wzx W̄zy sin � cos �

, (4.37)

where
∣∣W̃zx (�)

∣∣ = 1/ |Wzx (�)| .
Let us compare equations (4.34) and (4.25). The directions of the major and

the minor axes of the polar diagram of the Wiese–Parkinson matrix coincide with
directions of the quasi-transverse and quasi-longitudinal magnetic fields defined by
the Vozoff technique. Thus, with (4.26) we can choose the major semi-axis of polar
diagram, which points away from zone of higher conductivity and toward zone of
lower conductivity (the Wiese convention).

Examples of polar diagrams of the Wiese–Parkinson matrix for 2D and 3D-
models are shown in Fig. 4.2. The polar-diagram major semi-axes which satisfy
condition (4.26) are indicated by arrow. They are parallel to the Vozoff tippers V
and point away from zone of higher conductivity.
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In the two-dimensional model with the strike along the y-axis, we have Wzy = 0
(2D,a). Here

|Wzx (�)| = |Wzx cos � | . (4.38)

Similarly, in the two-dimensional model with the strike along the x-axis, we have
Wzx = 0 (2D,b). Here

|Wzx (�)| = ∣∣Wzy sin �
∣∣ . (4.39)

Thus, the two-dimensional polar diagrams are shaped as a figure-eight oriented per-
pendicularly to the strike. The diagram of the same shape is characteristic of any
axisymmetric model. Here the figure-eight is oriented radially. It is remarkable that
the figure-eight diagram is also characteristic of any real-valued Wiese–Parkinson
matrix no matter what the structure of the medium (3D,a).

The polar diagrams in the form of an regular oval with more or less narrow waist
characterizes a three-dimensional asymmetric model (3D,b).

We have considered three graphical representations of the Wiese–Parkinson
matrix. The most efficient (most convenient, most informative) technique may be
chosen depending on the conditions of survey, target structures and used period
range.

4.4 Magnetic Tensors

Now we will consider the magnetic tensors, which define relation between the mag-
netic fields H at two sites: at an observation site and at a base (reference) site B. The
concepts of the magnetic tensors came from the pioneering works of Schmucker
(1970) and Berdichevsky (1968). The analysis of the magnetic tensors has been
advanced by Varentsov (2004, 2005).

4.4.1 The Horizontal Magnetic Tensor

Coming back to the model of inhomogeneous medium presented in Fig. 1.1, we
direct our attention to (1.13), and write

Hx (r) = H N
x + H A

x (r) = Hxo[1 + J H2
x (r)] + Hyo J H1

x (r),

Hy(r) = H N
y + H A

y (r) = Hxo J H2
y (r) + Hyo[1 + J H1

y (r)] ,

(4.40)

Hx (rB) = H N
x + H A

x (rB) = Hxo[1 + J H2
x (rB)] + Hyo J H1

x (rB),

Hy(rB) = H N
y + H A

y (rB) = Hxo J H2
y (rB) + Hyo[1 + J H1

y (rB)] .

(4.41)
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Eliminating Hxo, Hyo from (4.40) and (4.41), we get

Hτ (r) = [M(r |r B)] Hτ (rB), (4.42)

where

Hτ (r) =
[

Hx (r)

Hy(r)

]
Hτ (rB) =

[
Hx (rB)

Hy(rB)

]
(4.43)

and

[M(r |r B)] =
⎡
⎣ Mxx (r |rB ) Mxy (r |rB )

Myx (r |rB ) Myy (r |rB )

⎤
⎦

=
[

[1 + J H2
x (r)] J H1

x (r)

J H2
y (r) [1 + J H1

y (r)]

] [
[1 + J H2

x (rB)] J H1
x (rB)

J H2
y (rB) [1 + J H1

y (rB)]

]−1

.

(4.44)
Here JH1, JH2 are convolutions of the excess currents with the magnetic Green
tensor defined by (1.12).

Let us cite some formulae that can be helpful in analyzing the horizontal mag-
netic tensor.

Rotating the horizontal magnetic tensor clockwise by an angle a (by the same
angle at the observation and base sites), we get

[M(a)] = [R(a)][M][R(a) ]−1, (4.45)

where

[R(a)] =
[

cos a sin a
−sin a cos a

]
, [R(a) ] −1 =

[
cos a −sin a
sin a cos a

]
.

The rotational invariants are

tr[M] = Mxx + Myy

det [M] = Mxx Myy − Mxy Myx

tr[
↔
M] = tr[M][R(−�/2)] = Mxy − Myx

‖M‖ =
√

|Mxx |2 + ∣∣Mxy

∣∣2 + ∣∣Myx

∣∣2 + ∣∣Myy

∣∣2,
(4.46)

where [
↔
M] = [M][R(−�/2)].

The horizontal magnetic tensor [M] reflects variations in the geoelectric medium
between the base and observation sites. We obtain the most clear image of these
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variations if the base site is located in the normal magnetic field (in a horizontally
homogeneous zone). Otherwise the effect of inhomogeneities situated at the base
site will be transferred to the entire survey area and superimposed on the effects of
inhomogeneities situated at the observation sites.

Let the base site be located in the horizontally homogeneous zone. Assume that
the area under investigation contains a two-dimensional structure and the x− axis
runs along the strike of this structure. Then

[M] =
[

M‖ 0
0 M⊥

]
=
[

1 0
0 M⊥

]
, (4.47)

where M‖ = Hx (r)/Hx (rB) = 1 and M⊥ = Hy(r)/Hy(rB). Here the necessary
conditions for the two-dimensionality are observed:

skewM
S =

∣∣∣∣Mxy − Myx

Mxx + Myy

∣∣∣∣ = 0 (4.48)

and

skewM
B =

√∣∣Im (Mxy M̄yy + Mxx M̄yx )
∣∣∣∣Mxx + Myy

∣∣ = 0, (4.49)

where skewM
S and skewM

B are magnetic asymmetry parameters (analogs of the Swift
and Bahr parameters) and bars denote the complex conjugation.

If the base site is located in a quasi-homogeneous layered zone and conditions
skewM

S ≈ 0 and skewM
B ≈ 0 are fulfilled at some observation sites, one can suppose

that the medium under investigation is two-dimensional (quasi-two-dimensional)
and determine its principal (longitudinal and transverse) directions from the equa-
tion

tan 2� = Re
Mxy + Myx

Myy − Mxx
. (4.50)

This is the simplest solution of the eigenstate problem. Its accuracy can be easily
estimated comparing the longitudinal and transverse directions obtained at different
sites.

Generally the eigenstate problem for the horizontal magnetic tensor [M] can be
solved by one of the methods considered in Chap. 2.

Let us adopt the Swift–Eggers method. We will look for the collinear magnetic
eigenfields Hτm(r) and Hτm(rB), m = 1, 2:

Hτm(r) = �mHτm(rB), m = 1, 2, (4.51)
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where �m is the complex principal value (eigenvalue) of the tensor [M(r |r B)]. In
the x, y− coordinates

Hxm(r) = �m Hxm(rB) Hym(r) = �m Hym(rB) m = 1, 2. (4.52)

Substituting (4.52) in (4.42), we get

(Mxx − �m)Hxm(rB) + Mxy Hym(rB) = 0

Myx Hxm(rB) + (Myy − �m)Hym(rB) = 0, m = 1, 2.
(4.53)

Assuming the determinant of this uniform system of linear equations to be zero, we
obtain

�2
m − (Mxx + Myy)�m + (Mxx Myy − Mxy Myx ) = 0, (4.54)

whence

�1 = (Mxx + Myy) + √
(Mxx + Myy)2 − 4(Mxx Myy − Mxy Myx )

2
,

�2 = (Mxx + Myy) − √
(Mxx + Myy)2 − 4(Mxx Myy − Mxy Myx )

2
.

(4.55)

The principal directions of the tensor [M] are determined as directions of the
major axes of the polarization ellipses of the magnetic eigenfields Hτ1(r) and
Hτ2(r). With (4.52) and (4.53), the polarization ratios for Hτ1(r) and Hτ2(r) are

PHm (r) = Hym(r)

Hxm(r)
= Hym(rB)

Hym(rB)
= �m − Mxx

Mxy

= Myx

�m − Myy
= �m − Mxx + Myx

�m + Mxy − Myy
, m = 1, 2.

(4.56)

Substituting (4.56) into (2.18), we evaluate angles �H1 and �H2 made by major axes
of the polarization ellipses with the x-axis:

tan2�Hm = tan2�Hm cos�Hm , m = 1, 2 (4.57)

where tan�Hm = ∣∣PHm

∣∣ , �Hm = arg PHm . The values of �Hm are taken within quad-
rant I (0 ≤ �Hm ≤ �/2) if cos �Hm ≥ 0 or within quadrant IV (0 > �H m ≥ −�/2) if
cos �Hm < 0.

Finally we determine the ellipticity parameters �H1 and �H2 . In accord with (2.19),

�Hm = tan�Hm , m = 1, 2, (4.58)

where
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�Hm = 1

2
arcsin(sin2�Hm sin �Hm ) , −�/4 ≤ �Hm ≤ �/4

and

−1 ≤ �Hm ≤ 1.

Thus, by the Swift–Eggers method we derive eight independent eigenstate
parameters:

|�1| , arg �1, �1 = �H1 , �1 = �H1

|�2| , arg �2, �2 = �H2 , �2 = �H2 ,

(4.59)

which fill all eight degrees of freedom possessed by the matrix [M].
Take the 2D model with the strike along the x -axis. Here Mxy = Myx = 0

and Mxx = 1, Myy = M⊥. Using (4.55) and (4.57), we get �1 = 1, �1 = 0 and
�2 = M⊥, �2 = �/2 or �1 = M⊥, �1 = �/2 and �2 = 1, �2 = 0. With (4.58)
we get �1,2 = 0. The principal values of the magnetic tensor [M] coincide with its
longitudinal and the transverse components, while the principal directions are the
longitudinal and transverse ones. The magnetic eigenfields are linearly polarized
along the principal directions. Measuring the horizontal magnetic field at observa-
tion and base sites, we define the dimensionality of structure, but cannot distinguish
between the longitudinal and transverse direction.

Asymmetric 3D-structures manifest themselves in the elliptic polarization of the
magnetic eigenfields (�1,2 = 0) and in the violation of the perpendicularity of their
ellipses (|�1 − �2| = �/2).

It is a simple matter to show that in the general case the scalar invariants det [M]
and tr [M] of the tensor [M] can be expressed in terms of geometric and arithmetic
means, �G and �A, of its principal values, �1 and �2:

det[M] = Mxx Myy − Mxy Myx = �1�2 = �2
G,

tr[M] = Mxx + Myy = �1 + �2 = 2 �A,

(4.60)

where

�G = √
�1�2 = √

det[M] ,

�A = �1 + �2

2
= 1

2
tr[M].

(4.61)

It seems that the geometric and arithmetic means �G and �A of the principal
values of the tensor [M] can be taken as the invariant parameters characterizing the
change in the intensity and phase of the horizontal magnetic field on the way from



4.4 Magnetic Tensors 141

the base site to the observation site. The most convenient is parameter �G because
it is less subjected to distorting influence of inhomogeneity around the base site.
Consider the “normal” base site BN located in a horizontally homogeneous zone
and an arbitrary “anomalous” base site BA located in a horizontally inhomogeneous
zone. According to (4.42),

Hτ (r) = [M(r |r BA )] Hτ (rBA )

= [M(r |r BA )][M(rBA |r BN )]Hτ (rBN ) = [M(r |r BN )]Hτ (rBN ),

where

[M(r |r BN )] = [M(r |r BA )][M(rBA |r BN )],

whence

det [M(r |r BN )] = det [M(r |r BA )] det [M(rBA |r BN )].

Thus,

det [M(r |r BA )] = 1

det [M(rBA |r BN )]
det [M(r |r BN )]

and

�G(r |r BA ) = 1

�G(rBA |r BN )
�G(r |r BN ).

At a given frequency the values of �G(r |r BA ) and �G(r |r BN ) obtained with the
anomalous and normal base sites BA and BN differ by the constant factor
1/�G(rBA |r BN ). Hence, the ratio between parameters �G(r1 |r BA ) and �G(r2 |r BA )
determined at the observation sites O(r1) and O(r2) does not depend on position
of the base site BA:

�G(r1 |r BA )

�G(r2 |r BA )
= �G(r1 |r BN )

�G(r2 |r BN )
.

The relative variations of the geometric-mean parameter �G are invariant under
position of the base site BA. So, the parameter �G can give the most reliable image of
configuration of geoelectric structures. By analogy with effective electric intensity
Deff , it referred to as the effective magnetic intensity

Meff =
√

|det [M(r|rB)]|. (4.62)
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4.4.2 The Schmucker Tensor

Another tensor representation has been proposed by Schmucker in his classical
monograph (Schmucker, 1970). It establishes the relation between the anomalous
magnetic field HA at an observation site and the normal magnetic field HN

τ at a base
site B located in a horizontally homogeneous zone. From (4.1) we derive

HA(r) = [S(r)|S(rB)] HN
τ (rB), (4.63)

where

HA(r) =

⎡
⎢⎣

H A
x (r)

H A
y (r)

H A
z (r)

⎤
⎥⎦ , HN

τ (rB) =
[

H N
x (rB)

H N
y (rB)

]
(4.64)

and

[S(r |r B)] =

⎡
⎢⎢⎣

Sxx (r |rB ) Sxy(r |rB )

Syx (r |rB )

Szx (r |rB )

Syy(r |rB )

Szy(r |rB )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

J H2
x (r) J H1

x (r)

J H2
y (r)

J H2
z (r)

J H1
y (r)

J H1
z (r)

⎤
⎥⎥⎦ . (4.65)

Here JH1, JH2 are convolutions of the excess currents with the magnetic Green
tensor defined by (1.12).

The tensor [S] is referred to as the Schmucker tensor or the perturbation tensor.
It falls into the horizontal Schmucker tensor.

[Sτ (r |r B)] =
[

Sxx (r |rB ) Sxy(r |rB )
Syx (r |rB ) Syy(r |rB )

]
=
[

J H2
x (r) J H1

x (r)
J H2

y (r) J H1
y (r)

]
,

HA
τ (r) = [Sτ (r |r B)] HN

τ (rB),

(4.66)

which is an analog of the magnetic tensor [M], and the Schmucker matrix

[Sz(r |r B)] = [
Szx (r |rB ) Szy(r |rB )

] = [
J H2

y (r) J H1
y (r)

]
,

H A
z (r) = [Sz(r |r B)] HN

τ (rB),
(4.67)

which is an analog of the Wiese–Parkinson matrix [W].
Consider relationships between tensors [Sτ ] and [M] as well as between matrices

[Sz] and [W]. Inasmuch as the base site B is located in a horizontally homogeneous
zone, it is evident that

[Sτ ] = [M] − [I]
[Sz] = [W] [M] ,

(4.68)
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where

Sxx = Mxx − 1 Sxy = Mxy

Syx = Myx Syy = Myy − 1
Szx = Wzx Mxx + Wzy Myx Szy = Wzx Mxy + Wzy Myy .

Using the horizontal Schmucker tensor [Sτ ], we can define the anomalous mag-
netic fields p and q that correspond to the unit normal magnetic fields 1x and 1y

linearly polarized in the x- and y-directions. According to (4.66),

p = Sxx 1x + Syx 1y, q = Sxy1x + Syy1y (4.69)

and

Re p = Re Sxx 1x + Re Syx 1y Re q = Re Sxy1x + Re Syy1y

Im p = Im Sxx 1x + Im Syx 1y Im q = Im Sxy1x + Im Syy1y .
(4.70)

The vectors Re p, Im p and Re q, Im q are given the name real and imaginary per-
turbation vectors (perturbation arrows). They indicate intensity, phase and direction
of the anomalous magnetic fields depending on polarization of the normal magnetic
field. When rotated counterclockwise by �/2, they give an idea of the excess cur-
rents, which concentrate in zones of higher conductivity and flow around zones of
lower conductivity.

Using the matrix [Sz], we can construct the real and imaginary Schmucker tippers
(Schmucker induction arrows):

Re S = Re Szx 1x + Re Szy1y, Im S = Im Szx 1x + Im Szy1y . (4.71)

A distinguishing feature of the Schmucker tippers is that they eliminate considera-
tion of the horizontal components of the anomalous magnetic field and expose the
pure effect of its vertical component.

Figure 4.8 shows, as an example, a map of the real Schmucker tippers Re S for
the Pacific coast of USA (Schmucker, 1970). All the arrows point away from the
ocean and their magnitude decreases toward the continent. We observe here a typical
coastal effect caused by the influence of oceanic currents flowing along the coast.

4.5 Magnetovariational Response Functions
in the Superimposition Model

Let us consider the Wiese–Parkinson relation in the superimposition model contain-
ing local near-surface inhomogeneities against deep regional background.

Following Zhang et al. (1987, 1993), we assume that the vertical component of
the anomalous magnetic field, H S

z , observed in the superimposition model can be
written as the sum
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Fig. 4.8 Map of the
Schmucker tippers for the
Pacific coast of USA
(Schmucker, 1970);
reconstructed in the Wiese
convention

H S
z = H R

z + H L
z , (4.72)

where H R
z is caused by the regional inhomogeneity in the absence of local inhomo-

geneities and H L
z is caused by local inhomogeneities in the presence of the regional

inhomogeneity. Here, according to (1.68), (1.69) and (4.3),

H R
z = [WR] HR

τ H L
z = [h̃z] ER

τ = [h̃z] [ZR] HR
τ , (4.73)

where ER
τ and HR

τ are horizontal components of the regional magnetotelluric field,
[ZR] and [WR] are the regional impedance tensor and the regional Wiese–Parkinson
matrix, and [h̃z] = [h̃zx h̃zy] is the distortion matrix.

Substituting (4.73) in (4.72) and taking into account (1.68) and (1.70), we get

H S
z = {[WR] + [h̃z] [ZR]} HR

τ = {[WR] + [h̃z] [ZR]}[h]−1HS
τ = [WS] HS

τ , (4.74)

where, with regard for (1.70), (1.74),

[h] = [I] + [h̃][ZR]

[WS] = {[WR] + [h̃z] [ZR]}[h]−1

= [WR] {[I] + [h̃] [ZR]}−1 + [h̃z] [e]−1[ZS] = [
�

WR] + [
�

WL ] .

(4.75)
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Here [
�

WR] and [
�

WL ] are the regional and local Wiese–Parkinson matrices distorted
by local anomalies of the horizontal magnetic field:

[
�

WR] = [WR] [h]−1 = [WR]{[I] + [h̃] [ZR]}−1, (4.76)

[
�

WL ] = [h̃z] [e]−1[ZS]. (4.77)

Decomposition (4.75) has been suggested in the excellent paper by Zhang et al.
(1993). It reveals three significant properties of the Wiese–Parkinson matrix that
manifest themselves in the superimposition model:

1. The regional and local Wiese–Parkinson matrices [
�

WR] and [
�

WL ] involve
the impedances [ZR] and [ZS] and it is just this that can explain why the tipper
reflects not only the horizontal conductivity contrasts but the vertical contrasts as
well.

2. Let the local near-surface inhomogeneities be much smaller than the induct-
ion scale length defined by the skin-depth. Then their electromagnetic excitation
can be described in the direct-current approximation, so that the distortion matri-
ces [e], [h̃], [h̃z] are real-valued and frequency-independent. Hence, in the low-
frequency range, the local Wiese–Parkinson matrix assumes the form

[
�

WL ] = [
�

t] [ZS], (4.78)

where [
�

t] = [h̃z] [e]−1 = [
�

t zx
�

t zy]. Thus,

�

W L
zy = �

t zx Z S
xx + �

t zy Z S
yx

�

W L
zy = �

t zx Z S
xy + �

t zy Z S
yy .

(4.79)

As is seen, the components of the local Wiese–Parkinson matrix are linear combina-

tions of the impedance tensor components. The coefficients
�

t zx ,
�

t zy of these combi-
nations are real and frequency-independent, so that W L

zx , W L
zy reflect the frequency

dependence of Z S
xx , Z S

yx and Z S
xy, Z S

yy , while the phases of
�

W L
zx and

�

W L
zy mix the

phases of Z S
xx , Z S

yx and Z S
xy, Z S

yy .
3. Let us assume that [ZR] and [ZS] in (4.76) and (4.77) go down with lowering

frequency. In this case the distorting effects of local near-surface inhomogeneities

attenuate at large periods, so that [[
�

WL ] ∼= 0 and the Wiese–Parkinson matrix
[WS] ∼= [WR] carries undistorted information on deep regional structures.

Below we consider three methods which separate the local and regional
effect in the magnrtovariational response functions. The main difficulty on this
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way is that a number of unknown parameters in the decomposition (4.75) is
vastly larger than a number of known parameters determined from the field
observation.

4.5.1 The Zhang–Pedersen–Mareschal–Chouteau Method

Zhang and his workmates (Zhang et al., 1993) assume that the local and regional
effects in the Wiese–Parkinson matrix are uncorrelated. Then they apply (4.75)

and (4.78), and define the local and regional Wiese–Parkinson matrices [
�

WL ] and

[
�

WR] = [WS] − [
�

WL ] using the observed impedance tensor [ZS] and the least-

squares estimates of [
�

t] obtained through minimizing the misfit

q =
∥∥∥W̃ S

zx − �

t zx Z̃ S
xx − �

t zy Z̃ S
yx

∥∥∥2
+
∥∥∥W̃ S

zy − �

t zx Z̃ S
xy − �

t zy Z̃ S
yy

∥∥∥2
, (4.80)

where letters with tilde denote realizations normalized to the standard deviations of
W S

zx and W S
zy . The accuracy of such decomposition depends on to what extent the

assumption that the local and regional effects are uncorrelated is true.

4.5.2 The Ritter–Banks Method

Another approach has been suggested by Ritter and Banks (1998). This approach
rests on the decomposition

H S
z = H R

z + H L
z = {

[WR] + [h̃z][ZR]
}

HR
τ = [WS]HR

τ ,

[WS] = [WR] + [WL ] ,

(4.81)

following from (4.72) and (4.73). Here [WR] = [
�

WR] [h] and [WL ] =
[h̃z][ZR] = [

�

WL][h] are the regional and local Wiese–Parkinson matrices defined
at low frequencies when the distortion matrix [h̃z] is real-valued and frequency-
independent. Thus, along with (4.79) we have the linear relations between
components of the local Wiese–Parkinson matrix and the regional impedance
tensor:

W L
zx = h̃zx Z R

xx + h̃zy Z R
yx ,

W L
zy = h̃zx Z R

xy + h̃zy Z R
yy .

(4.82)

In the Ritter–Banks method we examine a model that contains a two-dimensional
local inhomogeneity against a two-dimensional regional background. The regional
and local strike angles are �R and �L counted clockwise from the x-axis. This is the
same (2D+2D)-superimposition model as in the Zhang–Roberts–Pedersen method
described in Sect. 3.3. According to (4.81),
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[WS] = [W S
zx W S

zy] = [
[WS(�R)] [R(�R)]

+ [h̃ z(�L)] [R(�L − �R)][ZR(�R)] [R(�R)]
] (4.83)

where [R(�)] is the rotation matrix:

[R(�)] =
[

cos � sin �
− sin � cos �

]
,

[ZR(�R)] is the regional impedance tensor:

[ZR(�R)] =
[

0 Z‖

−Z⊥ 0

]
,

[
WS(�R)

]
and

[
h̃ z(�L)

]
are the Wiese–Parkinson matrix and the magnetic distortion

tensor in the regional and local coordinates:

[
WS(�R)

] = [
0 W S

zy(�R)
]

,
[
h̃ z(�L)

] = [
h̃ zx (�L) 0

]
.

Test of (4.83) is performed simultaneously on the set of observation sites.
It reduces to hypothetical event analysis. By varying the horizontal magnetic
field polarization and monitoring the vertical magnetic field predicted for dif-
ferent events, we can find the regional strike and the phase of the regional
impedance.

4.5.3 The Berdichevsky–Kuznetsov Method

The (2D+2D)-superimposition problem can be greatly simplified if magnetic areal
observations are carried out synchronously with a base site located in the area with
the normal magnetic field and the strikes of two-dimensional structures are known
from tippers analysis.

Following Zhang et al. (1987, 1993) and Ritter and Banks (1998), we con-
sider the 3D superimposition model which contains two 2D structures of different
strike.

Examine the horizontally-layered model, in which two-dimensional horizontal
conductive prisms P ′ and P ′′ with strike angles �′ and �′′ are located at different
depths. The prisms are separated by thick highly resistive strata so that the galvanic
connection between them is virtually absent. At low frequencies the induction con-
nection is also absent. With these assumptions, we assume that each of the prisms
manifests itself as an independent body and the total magnetovariational effect of
both prisms is a sum of their partial effects. The model is excited by a plane electro-
magnetic wave incident vertically on the Earth’s surface.
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Let the magnetic field be measured simultaneously at two sites: at an arbitrary
observation site and at a base (reference) site B selected in the area with the nor-
mal magnetic field. Assume that the observations result in four magnetovariational
response functions:

1) the Schmucker matrix

[Sz] = [
Szx Szy

]
Hz(r) = H A

z (r) = [Sz] HN
τ (rB), (4.84)

2) the horizontal Schmucker tensor

[Sz] =
[

Sxx Sxy

Syx Syy

]
HA

τ (r) = [Sτ ]HN
τ (rB), (4.85)

3) the Wiese–Parkinson matrix (the tipper)

[W] = [
Wzx Wzy

]
Hz(r) = H A

z (r) = [W] Hτ (r), (4.86)

4) the horizontal magnetic tensor

[M] =
[

Mxx Mxy

Myx Myy

]
Hτ (r) = HN

τ (rB) + HA
τ (r) = [M] HN

τ (rB). (4.87)

Here the superscripts N and A indicate the normal and anomalous magnetic fields.
The problem is to find the matrices

[
S′

z

]
,
[
S′

τ

]
,
[
W′] ,

[
M′] that define

the effect of the prism P ′ in the absence of the prism P ′′ and the matrices[
S′′

z

]
,
[
S′′

τ

]
,
[
W′′] ,

[
M′′] that define the effect of the prism P ′′ in the absence of

the prism P ′. These matrices are said to be partial.
Introduce arbitrary measurement coordinates x, y as well as the coordinates x ′, y′

and x ′′, y′′ tied with prisms P ′ and P ′′ : the x ′ - axis is oriented along the strike of
the prism P ′ and the x ′′ - axis is oriented along the strike of the prism P ′′. Azimuths
of the prism strike, �′ and �′′, are measured clockwise from the x -axis.

In the coordinates x ′, y′we have

[
S′

z

] = [
0 S′

zy

] [
S′

τ

] =
[

0 0
0 S′

yy

]
. (4.88)

In the coordinates x ′′, y′′ we have

[
S′′

z

] = [
0 S′′

zy

] [
S′′

τ

] =
[

0 0
0 S′′

yy

]
. (4.89)

In the measurement coordinates x, y we have:
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[
S̃′

z

] = [
S′

z

] [
R(�′)

] = S′
zy

[− sin �′ cos �′ ]
[
S̃′

τ

] = [
R(−�′)

] [
S′

τ

] [
R(�′)

] = S′
yy

[
sin2 �′ − sin �′ cos �′

− sin �′ cos �′ cos2 �′

]

[
S̃′′

z

] = [
S′′

z

] [
R(�′′)

] = S′′
zy

[− sin �′′ cos �′′ ]
[
S̃′′

τ

] = [
R(−�′′)

] [
S′′

τ

] [
R(�′′)

] = S′′
yy

[
sin2 �′′ − sin �′′ cos �′′

− sin �′′ cos �′′ cos2 �′′

]
,

(4.90)

where [R(�)] is the rotation matrix

[R(�)] =
[

cos � sin �

− sin � cos �

]
.

Represent the total effect of both prisms as a sum of their partial effects:

H A
z = H A′

z + H A′′
z , HA

τ = HA′
τ + HA′′

τ . (4.91)

Substituting (4.84), (4.85) into (4.91), we get

[Sz] HN
τ = [

S̃′
z

]
HN

τ + [
S̃′′

z

]
HN

τ = {[
S̃′

z

] + [
S̃′′

z

]}
HN

τ

[Sτ ] HN
τ = [

S̃′
τ

]
HN

τ + [
S̃′′

τ

]
HN

τ = {[
S̃′

τ

] + [
S̃′′

τ

]}
HN

τ ,

(4.92)

whence

[Sz] = [
S̃′

z

] + [
S̃′′

z

]
[Sτ ] = [

S̃′
τ

] + [
S̃′′

τ

]
.

(4.93)

Thus, we decompose the measured matrices [Sz] , [Sτ ] reflecting both the prisms
into the partial matrices

[
S̃′

z

]
,
[
S̃′

τ

]
and

[
S̃′′

z

]
,
[
S̃′′

τ

]
reflecting each prism separately.

There exist linear relations between components of the measured and partial
matrices. According to (4.90) and (4.93),

Szx = −S′
zy sin �′ − S′′

zy sin �′′

Szy = S′
zy cos �′ + S′′

zy cos �′′
(4.94)

and
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Sxx = S′
yy sin2 �′ + S′′

yy sin2 �′′

Sxy = Syx = −S′
yy sin �′ cos �′ − S′′

yy sin �′′ cos �′′

Syy = S′
yy cos2 �′ + S′′

yy cos2 �′′.

(4.95)

These relations form the equations for S′
zy, S′′

zy and S′
yy, S′′

yy .
With �′ = �′′ the solution of the equations system (4.94) is given by

S′
zy = Szx cos �′′ + Szy sin �′′

sin(�′′ − �′)
, S′′

zy = − Szx cos �′ + Szy sin �′

sin(�′′ − �′)
. (4.96)

The equations system (4.95) is overdetermined and compatible. Its solution can
be given by

S′
yy = tr [Sτ ]

2
+
√

{tr [Sτ ]}2

4
− det [Sτ ]

sin2(�′′ − �′)

S′′
yy = tr [Sτ ]

2
−
√

{tr [Sτ ]}2

4
− det [Sτ ]

sin2(�′′ − �′)
,

(4.97)

where tr [Sτ ] and det [Sτ ] are the trace and determinant of the matrix [Sτ ]:

tr [Sτ ] = Sxx + Syy det [Sτ ] = Sxx Syy − Sxy Syx .

Using (4.96) and (4.97), we determine the partial matrices
[
S̃′

z

]
,
[
S̃′

τ

]
and[

S̃′′
z

]
,
[
S̃′′

τ

]
:

[
S̃′

z

] = [−S′
zy sin �′ S′

zy cos �′ ] ,
[
S̃′

τ

] =
[

S′
yy sin2 �′ −S′

yy sin �′ cos �′

−S′
yy sin �′ cos �′ S′

yy cos2 �′

]
,

[
S̃′′

z

] = [−S′′
zy sin �′′ S′′

zy cos �′′ ] ,
[
S̃′′

τ

] =
[

S′′
yy sin2 �′′ −S′′

yy sin �′′ cos �′′

−S′′
yy sin �′′ cos �′′ S′′

yy cos2 �′′

]
.

(4.98)

The decomposition of the matrices [M] and [W] is easily derived from the
decomposition of the matrices [Sτ ] and [Sz]. By virtue of (4.84), (4.85), (4.86),
and (4.87)

[M] = [Sτ ] + [I] , [W] = [Sz] [M]−1 , (4.99)

where [I] is the identity matrix:
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[I] =
[

1 0
0 1

]
.

Thus, in the measurement coordinates

[
M̃′] = [

S̃′
τ

] + [I] ,
[
M̃′′] = [

S̃′′
τ

] + [I] (4.100)

and

[
W̃′] = [

S̃′
z

] [
M̃′]−1

,
[
W̃′′] = [

S̃′′
z

] [
M̃′′]−1

, (4.101)

whence

[
M̃′] =

[
1 + S′

yy sin2 �′ −S′
yy sin �′ cos �′

−S′
yy sin �′ cos �′ 1 + S′

yy cos2 �′

]

[
M̃′′] =

[
1 + S′′

yy sin2 �′′ −S′′
yy sin �′′ cos �′′

−S′′
yy sin �′′ cos �′′ 1 + S′′

yy cos2 �′′

] (4.102)

and

[
W̃′] = S′

zy

1 + S′
yy

[− sin �′ cos �′]

[
W̃′′] = S′′

zy

1 + S′′
yy

[− sin �′′ cos �′′] .

(4.103)

Applying this approach to the superimposition problem, we can decompose a three-
dimensional magnetovariational anomaly into two independent two-dimensional
anomalies and reduce 3D inversion to two self-contained 2D inversions.

Figure 4.9 presents an example of such a decomposition. Consider a three-
dimensional superimposition model consisting of the sedimentary cover (�1 =
10 Ohm · m, h 1 = 0.1 km, �2 = 100 Ohm · m, h 2 = 0.9 km), the resistive
lithosphere (�3 = 1000 Ohm · m, h 3 = 99 km) and the conductive mantle (�4 =
20 Ohm ·m). The lithosphere contains the crustal two-dimensional conductive prism
CP of 6 Ohm·m resistivity, its thickness, width and azimuth being 3 km, 100 km
and 135o respectively, and the mantle two-dimensional conductive prism MP of 5
Ohm·m resistivity, its thickness, width and azimuth being 50 km, 300 km and 0o

respectively. Azimuths of the crustal and mantle prisms are determined from the

pseudo-topographies of the 3D tipper invariants ‖W‖ =
√

|Wzx |2 + ∣∣Wzy

∣∣2, plotted
on periods of 1 and 10,000 s. Decomposing 3D invariant ‖W‖ into two 2D invari-
ants

∥∥W′∥∥ and
∥∥W′′∥∥, we separate partial two-dimensional effects of the crustal and

mantle prisms, CP and MP, with reasonable accuracy.
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Fig. 4.9 Decomposition of the 3D tipper invariant ‖W‖ =
√

|Wzx |2 + ∣∣Wzy

∣∣2 into the 2D tipper

invariants
∥∥W̃′∥∥ =

√∣∣W̃ ′
zx

∣∣2 + ∣∣W̃ ′
zy

∣∣2 and
∥∥W̃′′∥∥ =

√∣∣W̃ ′′
zx

∣∣2 + ∣∣W̃ ′′
zy

∣∣2 reflecting partial effects of

the crustal prism CP and mantle prism MP

4.6 Magnetic Perturbation Ellipses

The Schmucker perturbation vectors p and q are defined by (4.69) and (4.70) as
transforms of the unit normal magnetic fields 1x and 1y polarized at the base site
in the x- and y-directions. Now we will show that vectors p and q can be incorpo-
rated into ellipses, which give better image of geoelectric structures perturbing the
magnetic field.

Let us begin with real vectors Re p and Re q. Turn to (4.66) and introduce the
following notations:

H A
x (r) = U, H A

y (r) = V,

H N
x (rB) = X, H N

y (rB) = Y,

a = Re Sxx (r| rB), b = Re Sxy(r| rB),

c = Re Syx (r| rB), d = Re Syy(r| rB),

(4.104)
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where X, Y and U, V take the real values.
In these notations the horizontal Schmucker tensor [Sτ ] transforms the XY plane

into the UV plane:

U = aX + bY

V = cX + dY.
(4.105)

It is easy to prove that a circle X2 + Y 2 = 1 given in the XY plane (at base site)
is transformed into an ellipse

(c2 + d2)U 2 − 2(bd + ac)U V + (a2 + b2)V 2 = (ad − bc)2 (4.106)

centered at the origin of the plane UV at observation site. This ellipse is referred to
as the real perturbation ellipse. It is an analog of the Doll telluric ellipse applied in
the telluric current prospecting (Leonardon, 1948; Berdichevsky, 1965).

The transformation of the unit circle into a perturbation ellipse is shown in
Fig. 4.10. The perturbation vectors Re p and Re q are transforms of the conjugate
radii 1x and 1y of the unit circle. Evidently the vectors Re p and Re q are conjugate
radii of the perturbation ellipse. It is seen from presented example that perturbation
ellipse reflects the field anisotropy much better than perturbation vectors.

In canonical form, the perturbation ellipse equation (4.106) is

(U ′)2

A2
+ (V ′)2

B2
= 1, (4.107)

where

A =
√

a2 + b2 + c2 + d2

2
+
√

(a2 + b2 + c2 + d2)2

4
− (ad − bc)2

B =
√

a2 + b2 + c2 + d2

2
−
√

(a2 + b2 + c2 + d2)2

4
− (ad − bc)2

(4.108)

Fig. 4.10 The Schmucker
perturbation vectors
Re p and Re q are conjugate
radii of the magnetic
perturbation ellipse
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are the major and minor semi-axes of the ellipse. Here

AB = ad − bc = det [Re Sτ (r| rB)] . (4.109)

The slope of the major axis is

tan � = 2(ac + bd)

a2 + b2 − c2 − d2 +
√

(a2 + b2 + c2 + d2)2 − 4(ad − bc)2

= a2 + b2 − c2 − d2 −
√

(a2 + b2 + c2 + d2)2 − 4(ad − bc)2

−2(ac + bd)

= a2 + b2 − c2 − d2 + 2(ac + bd) −
√

(a2 + b2 + c2 + d2)2 − 4(ad − bc)2

a2 + b2 − c2 − d2 − 2(ac + bd) +
√

(a2 + b2 + c2 + d2)2 − 4(ad − bc)2
.

(4.110)

Similarly we construct the perturbation ellipse for the Schmucker tensor [Im Sτ ].
Substituting

a = Im Sxx (r| rB), b = Im Sxy(r| rB),

c = Im Syx (r| rB), d = Im Syy(r| rB)

into (4.108) and (4.110), we get the semi-axes and the slope of the major axis of the
imaginary perturbation ellipse associated with the imaginary perturbation vectors
Im p and Im q.

The same technique can be used for constructing the real and imaginary ellipses
of the horizontal magnetic tensor [M].



Chapter 5
The Recent Developments

5.1 Advancement of the Plane-Wave Model

We have examined the plane-wave model of the inhomogeneous Earth that offers
basic invariant magnetotelluric and magnetovariational response functions: the
impedance tensor [Z] and phase tensor

[
�
]
, the Doll and magnetic tensors [D] and

[M], the Schmucker perturbation tensor [S], the Wiese–Parkinson and Vozoff tipper
vectors W and V.

The condition of existence of these invariant response functions is that the normal
magnetic field allows for the plane-wave (one-dimensional) approximation. This
actually is the case if the horizontal components of the normal magnetic field change
slowly along the Earth’s surface and its vertical component is close to zero.

Unfortunately, the question on physical feasibility of the plane-wave model with
its one-dimensional normal magnetic field is poorly studied theoretically. Up to now
we content ourselves with empirical estimates derived from the practical magne-
totelluric experience. There are good grounds to believe that at middle and low
latitudes (far away from the polar field sources) the magnetotelluric and magneto-
variational response functions in a broad range of frequencies (from 103 to 10–4 Hz)
yield to stable determination and give geologically meaningful information on the
structure of the Earth’s interior. The more complicated situation is encountered in
the polar zones with their dramatic electromagnetic disturbances caused by events
in the ionosphere and magnetosphere.

Concluding the analysis of magnetotelluric and magnetovariational response
functions, we would like to consider a generalized model taking into account a
source effect which may manifest itself in considerable departure of the normal
magnetic field from the plane wave (specifically, with noticeable vertical magnetic
component).

The model to be examined is presented in Fig. 5.1. It consists of the horizontally
homogeneous Earth of normal conductivity �N(z) and a bounded three-dimensional
inhomogeneous domain V of conductivity �(x, y.z) = �N(z) + ��(x, y, z), where
��(x, y, z) is an excess conductivity that varies arbitrarily in x, y, z. The Earth
comes in contact with the nonconducting air, �air = 0. The field is excited by

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 155
DOI 10.1007/978-3-540-77814-1 5, C© Springer-Verlag Berlin Heidelberg 2008
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Fig. 5.1 Illustrating the
determination of the
generalized impedance tensor

V

air

earth

primary currents of density jp closed in a source domain I located above the Earth.
The centre of the domain I is at a point O, its maximum radius is r i.

The electromagnetic field meets here the Maxwell equations

curl H = �E + jp, curl E = i��oH, z ∈ [−∞, ∞]. (5.1)

For the normal field excited in the horizontally layered Earth in the absence of
the inhomogeneous domain V we have

curl HN = �NEN, curl EN = i��oHN, z ≥ 0. (5.2)

5.1.1 Analysis of the Normal Magnetotelluric Field

A remarkable feature of the model is that the normal current flows parallel to the
boundary between the conducting Earth and the nonconducting air and the normal
electric field in the Earth has no vertical component (Berdichevsky and Zhdanov,
1984; Zhdanov and Keller, 1994):

E N
z ≡ 0, z ≥ 0. (5.3)

In order to model the normal field, we introduce the following limitations:
- The magnetotelluric observations are performed on the Earth’s surface in the

domain S :
√

x2 + y2 ≤ rs. Its centre Mo coincides with the origin of the coordinate
system, rs is its maximum radius;
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- The distance between the source domain I and the observation domain S is much
larger than maximum radii ri and rs of these domains. Implying that the normal field
rather slowly varies along the Earth’s surface, we assume that

∣∣∣∣�H N
z

�y

∣∣∣∣ �
∣∣∣∣∣
�H N

y

�z

∣∣∣∣∣ ,
∣∣∣∣�H N

z

�x

∣∣∣∣ �
∣∣∣∣�H N

x

�z

∣∣∣∣ . (5.4)

Under these conditions, we write the Maxwell equations (5.2) in the form

�H N
y

�z
= −�N EN

x ,
�H N

x

�z
= �N EN

y ,
�H N

y

�x
− �H N

x

�y
= 0,

�EN
y

�z
= −i��o H N

x ,
�EN

x

�z
= i��o H N

y ,
�EN

y

�x
− �EN

x

�y
= i��o H N

z .

(5.5)

Such a field can be expressed in terms of a scalar function U (x, y, z) :

EN
x = − 1

�N

�2U

�y�z
, EN

y = 1

�N

�2U

�x�z
, EN

z = 0,

H N
x = �U

�x
, H N

y = �U

�y
, H N

z = 1

i��o�N

�

�z

(
�2U

�x2
+ �2U

�y2

)
.

(5.6)

It is easy to verify that the function U (x, y, z) meets the one-dimensional
equation

�

�z

(
1

�N

�U

�z

)
+ i��oU = 0 (5.7)

with boundary condition U |z=0 = Uo(x, y) at the Earth’s surface and continuity
conditions for U and 1

�N

�U
�z at the boundaries between layers.

Proceeding from (5.7), we represent the function U as

U( x, y, z) = Uo(x, y) �(z) , (5.8)

where �(z) is the solution of the one-dimensional problem

d

dz

(
1

�N

d�

dz

)
+ i��o� = 0, z ≥ 0 (5.9)

with boundary conditions �|z=0 = 1 at the Earth’s surface, continuity conditions for
�(z) and 1

�N

d�
dz at the boundaries between layers and condition � → 0 at z → ∞ .
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This problem coincides with the magnetotelluric problem on the horizontally uni-
form magnetic field in a horizontally layered medium (Berdichevsky and Dmitriev,
2002). Thus, we can introduce the normal one-dimensional impedance ZN satisfying
the Riccati equation

�ZN

�z
− �N Z2

N = i��o (5.10)

and express ZN as

ZN = − 1

�N�

d�

dz
. (5.11)

Summing up (5.6), (5.8) and (5.11), we write

EN
x = �(z)ZN(z)

�Uo(x, y)

�y
, EN

y = −�(z)ZN(z)
�Uo(x, y)

�x
, EN

z = 0,

H N
x = �(z)

�Uo(x, y)

�x
, H N

y = �(z)
�Uo(x, y)

�y
,

H N
z = −�(z)ZN(z)

i��o

(
�2Uo(x, y)

�x2
+ �2Uo(x, y)

�y2

)
.

(5.12)

Thus, determination of the normal field reduces to differentiating Uo(x, y) .
Next we come back to Fig. 5.1 and assume that Ro >> ri, Ro >> rs, where

Ro = √
x2

o + y2
o + z2

o is a distance between the centre O(xo, yo, zo) of the source
domain I and the centre Mo(0, 0, 0) of the observation domain S, while ri and rs

are maximum radii of the domains I and S. Then we define Uo(x, y) as

Uo(x, y) ≈ Uo(R), R ≈ Ro, (5.13)

where R = √
(x − xo)2 + (y − yo)2 + z2

o is a distance between the observation site
M(x, y, z = 0) and the centre O(xo, yo, zo) of the source domain I. So, we obtain:

�Uo(x, y)

�x
≈ dUo(R)

d R

�R

�x
= (x − xo)

1

R

dUo(R)

d R
≈ (x − xo)

1

R

dUo(R)

d R

∣∣∣∣
R=Ro

= Co(x − xo),

�Uo(x, y)

�y
= dUo(R)

d R

�R

�y
= (y − yo)

1

R

dUo(R)

d R
≈ (y − yo)

1

R

dUo(R)

d R

∣∣∣∣
R=Ro

= Co(y − yo),

�2Uo(x, y)

�x2
+ �2Uo(x, y)

�y2
≈ 1

R

dUo(R)

d R

∣∣∣∣
R=Ro

= Co,

(5.14)
where
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Co = 1

R

dUo(R)

d R

∣∣∣∣
R=Ro

.

Substituting (5.14) into (5.12), we get

EN
x = Co(y − yo) �(z) ZN(z), EN

y = −Co(x − xo) �(z) ZN(z), EN
z = 0,

H N
x = Co(x − xo) �(z), H N

y = Co(y − yo) �(z), H N
z = − Co

i��o
�(z) ZN(z).

(5.15)

It is evident that the normal field defined by (5.15) can be considered as a field
of remote magnetic dipole located at the centre O of the source domain I. This field
is the superposition of three independent modes.

Determine the normal magnetic field at the origin of coordinates (at the centre
Mo of the observation domain S. In virtue of (5.15)

H N
x (x = 0, y = 0, z = 0) = −Coxo = H N

xo,

H N
y (x = 0, y = 0, z = 0) = −Co yo = H N

yo,

H N
z (x = 0, y = 0, z = 0) = − Co

i��o
ZN(0) = H N

zo .

(5.16)

Plugging (5.16) into (5.15), we get

EN
x = H N

yo �(z)ZN(z) − H N
zo

i��o y�(z)ZN(z)

ZN(0)
,

EN
y = −H N

xo �(z)ZN(z) + H N
zo

i��ox�(z)ZN(z)

ZN(0)
,

EN
z = 0 .

and

H N
x = H N

xo �(z) − H N
zo

i��ox�(z)

ZN(0)
, H N

y = H N
yo �(z) − H N

zo
i��o y�(z)

ZN(0)
,

H N
z = H N

zo �(z)
ZN(z)

ZN(0)
.

Grouping the field components that have the same factor H N
xo, H N

yo, H N
zo, we obtain

three independent modes: two plane-wave modes with polarization in the orthogonal
directions:
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H N
xo

{
ẼN(1) = {0, −�(z)ZN(z), 0}
H̃N(1) = {�(z), 0, 0 } H N

yo

{
ẼN(2) = {�(z)ZN(z), 0, 0}
H̃N(2) = {0, �(z), 0}

(5.17)

and a source-effect mode with the vertical magnetic component and linear variations
of the horizontal components along the Earth’s surface:

H N
zo

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẼN(3) = { − i��o y�(z)ZN(z)

2ZN(0)
,

i��ox�(z)Z N(z)

2ZN(0)
, 0}

H̃N(3) = { − i��ox�(z)

2ZN(0)
, − i��o y�(z)

2ZN(0)
,

�(z)ZN(z)

ZN(0)
} .

(5.18)

Modes
{
ẼN(1), H̃N(1)

}
,
{
ẼN(2), H̃N(2)

}
and

{
ẼN(3), H̃N(3)

}
contain normalized

fields that satisfy the conditions:

ẼN(1)(x = 0, y = 0, z = 0) = {0, −ZN(0), 0},
ẼN(2)(x = 0, y = 0, z = 0) = {ZN(0), 0, 0},
ẼN(3)(x = 0, y = 0, z = 0) = {0, 0, 0},

H̃N(1)(x = 0, y = 0, z = 0) = {1, 0, 0},
H̃N(2)(x = 0, y = 0, z = 0) = {0, 1, 0},
H̃N(3)(x = 0, y = 0, z = 0) = {0, 0, 1} .

An arbitrary normal field is the superposition of all three modes:

EN = H N
xoẼN(1) + H N

yoẼN(2) + H N
zoẼN(3),

HN = H N
xoH̃N(1) + H N

yoH̃N(2) + H N
zoH̃N(3),

(5.19)

where H N
xo, H N

yo, H N
zo are values of the normal magnetic fields at the origin of the

coordinates:

HN(x = 0, y = 0, z = 0) = {H N
xo, H N

yo, H N
zo} . (5.20)

In the general case when all three modes are available on the Earth’s surface
we get

ZN(0) = EN
x (z = 0)

H N
y (z = 0)

= − EN
y (z = 0)

H N
x (z = 0)

(5.21)

and

ZN(0) = −i��o
H N

z (z = 0)

�H N
x (z = 0)

�x
+ �H N

y (z = 0)

�y

. (5.22)
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Thus, the normal magnetotelluric field varying linearly with the distance from
its source allows for determining the one-dimensional normal impedance ZN by
magnetotelluric and magnetovariational relationships (5.21) and (5.22). This is in
good agreement with the known definitions (1.2) and (1.3), suggested by Dmitriev
and Berdichevsky (1979) and Weidelt (1978) that are at the heart of one-dimensional
Tikhonov–Cagniard’s magnetotellurics.

Now estimate a distance at which we can neglect the source effect and approx-
imate the normal field by a plane-wave. To this end we define the amplitude ratio
�N between vertical and horizontal components of the normal magnetic field at the
centre Mo of the observation domain. With a glance to (5.16),

�N =
∣∣H N

zo

∣∣√∣∣H N
xo

∣∣2 + ∣∣H N
yo

∣∣2 = |ZN(0)|
��o

√
x2

o + y2
o

= 1

ro

√
�N

��o
= h eff

ro
(5.23)

where �N is the normal apparent resistivity of the Earth:

�N = |ZN(0)|2 /��o,

h eff is the effective penetration depth determined by the normal impedance or the
normal apparent resistivity:

h eff = |ZN(0)|
��o

=
√

�N

��o
(5.24)

and ro is the distance between the centre Mo of the observation domain and the
projection of the centre O of the source domain on the Earth’s surface:

ro =
√

x2
o + y2

o .

Let us disregard the vertical component of the normal magnetic field if �N does
not exceed 0.05. Assume that the lithosphere thickness is about 100 km. Then h eff ≤
100 km and the condition �N ≤ 0.05 for polar magnetic perturbations is observed
at distances ro ≥ 2000 km, that is, at the middle and low latitudes.

5.1.2 MT and MV Response Functions in the Absence
of the Source Effect

We have divided the normal field {ẼN, H̃N} into two plane-wave modes
{ẼN( m), H̃N( m)}, m = 1, 2 defined by (5.17) and a source-effect mode {ẼN( 3),

H̃N( 3)} defined by (5.18). If the vertical component of the normal magnetic field
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is sufficiently small, we can disregard the source-effect mode and restrict ourselves
to analysis of the plane-wave modes. On this way we go back to the magnetotelluric
and magnetovariational response functions discussed in Chaps. 1 and 4. For the sake
of integrity we can consider these functions in the terms of the generalized model
examined in the present Section.

Within the inhomogeneous domain V each plane-wave mode generates the
excess current jex(m), m = 1, 2 that excites the anomalous field {ẼA( m), H̃A (m)},
m = 1, 2 . Summing the normal and anomalous fields, we get

Ẽ(m) = ẼN(m) + ẼA(m)

H̃(m) = H̃N(m) + H̃A(m) m = 1, 2.
(5.25)

The total field on the Earth’s surface is

E = H N
xoẼ(1) + H N

yoẼ(2),

H = H N
xoH̃(1) + H N

yoH̃(2),
(5.26)

where

E = E(x, y, z = 0), Ẽ(1) = Ẽ(1)(x, y, z = 0), Ẽ(2) = Ẽ(2)(x, y, z = 0),

H = H(x, y, z = 0), H̃(1) = H̃(1)(x, y, z = 0), H̃(2) = H̃(2)(x, y, z = 0) .

In the full form

Ex = H N
xo Ẽ (1)

x + H N
yo Ẽ (2)

x

Ey = H N
xo Ẽ (1)

y + H N
yo Ẽ (2)

y

(5.27)

and

Hx = H N
xo H̃ (1)

x + H N
yo H̃ (2)

x a

Hy = H N
xo H̃ (1)

y + H N
yo H̃ (2)

y b

Hz = H N
xo H̃ (1)

z + H N
yo H̃ (2)

z . c

(5.28)

From (5.28a,b) we find

H N
xo = Hx H̃ (2)

y − Hy H̃ (2)
x

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

,

H N
yo = −Hx H̃ (1)

y + Hy H̃ (1)
x

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

.

(5.29)
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By substituting (5.29) in (5.27) and (5.28c) we get the impedance relations

Ex = Zxx Hx + Zxy Hy,

Ey = Z yx Hx + Z yy Hy,
(5.30)

where

Zxx = Ẽ (1)
x H̃ (2)

y − Ẽ (2)
x H̃ (1)

y

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

, Zxy = Ẽ (2)
x H̃ (1)

x − Ẽ (1)
x H̃ (2)

x

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

,

Z yx = Ẽ (1)
y H̃ (2)

y − Ẽ (2)
y H̃ (1)

y

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

, Z yy = Ẽ (2)
y H̃ (1)

x − Ẽ (1)
y H̃ (2)

x

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

,

(5.31)

and the Wiese–Parkinson relation

Hz = Wzx Hx + Wzy Hy, (5.32)

where

Wzx = H̃ (1)
z H̃ (2)

y − H̃ (2)
z H̃ (1)

y

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

, Wzx = H̃ (2)
z H̃ (1)

x − H̃ (1)
z H̃ (2)

x

H̃ (1)
x H̃ (2)

y − H̃ (1)
y H̃ (2)

x

.Wzy (5.33)

5.1.3 The Source Effect

Now we have to find out how these determinations change due to the source effect
that generates the normal field with the vertical magnetic component. Considering
all three modes of the normal field (two plane-wave modes and the source-effect
mode), we get

Ẽ(m) = ẼN(m) + ẼA(m),

H̃(m) = H̃N(m) + H̃A(m), m = 1, 2, 3.
(5.34)

The total field on the Earth’s surface is

E = H N
xoẼ(1) + H N

yoẼ(2) + H N
zoẼ(3),

H = H N
xoH̃(1) + H N

yoH̃(2) + H N
zoH̃(3),

(5.35)
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where

E = E(x, y, z = 0), Ẽ(1) = Ẽ(1)(x, y, z = 0),

Ẽ(2) = Ẽ(2)(x, y, z = 0), Ẽ(3) = Ẽ(3)(x, y, z = 0) ,

H = H(x, y, z = 0), H̃(1) = H̃(1)(x, y, z = 0),

H̃(2) = H̃(2)(x, y, z = 0), H̃(3) = H̃(3)(x, y, z = 0).

In full form

Ex = H N
xo E (1)

x + H N
yo E (2)

x + H N
zo E (3)

x ,

Ey = H N
xo E (1)

y + H N
yo E (2)

y + H N
zo E (3)

y ,

Ez = 0 .

(5.36)

and

Hx = H N
xo H̃ (1)

x + H N
yo H̃ (2)

x + H N
zo H̃ (3)

x ,

Hy = H N
xo H̃ (1)

y + H N
yo H̃ (2)

y + H N
zo H̃ (3)

y ,

Hz = H N
xo H̃ (1)

z + H N
yo H̃ (2)

z + H N
zo H̃ (3)

z .

(5.37)

Clearly we have three independent constants, H N
xo, H N

yo and H N
zo (three degrees

of freedom), that can be determined from (5.37):

H N
xo = 1

Q

∣∣∣∣∣∣∣
Hx Hy Hz

H̃ (2)
x H̃ (2)

y H̃ (2)
z

H̃ (3)
x H̃ (3)

y H̃ (3)
z

∣∣∣∣∣∣∣
, H N

yo = 1
Q

∣∣∣∣∣∣∣
Hx Hy Hz

H̃ (3)
x H̃ (3)

y H̃ (3)
z

H̃ (1)
x H̃ (1)

y H̃ (1)
z

∣∣∣∣∣∣∣
,

H N
zo = 1

Q

∣∣∣∣∣∣∣
Hx Hy Hz

H̃ (1)
x H̃ (1)

y H̃ (1)
z

H̃ (2)
x H̃ (2)

y H̃ (2)
z

∣∣∣∣∣∣∣
,

(5.38)

where

Q =

∣∣∣∣∣∣∣
H̃ (1)

x H̃ (1)
y H̃ (1)

z

H̃ (2)
x H̃ (2)

y H̃ (2)
z

H̃ (3)
x H̃ (3)

y H̃ (3)
z

∣∣∣∣∣∣∣
.

Substituting (5.38) into (5.36) we obtain

Ex = Z ′
xx Hx + Z ′

xy Hy + Z ′
xz Hz,

Ey = Z ′
yx Hx + Z ′

yy Hy + Z ′
yz Hz,

Ez = 0 ,

(5.39)
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where

Z ′
xx = 1

Q

∣∣∣∣∣∣∣
Ẽ (1)

x Ẽ (2)
x Ẽ (3)

x

H̃ (1)
y H̃ (2)

y H̃ (3)
y

H̃ (1)
z H̃ (2)

z H̃ (3)
z

∣∣∣∣∣∣∣
, Z ′

yx = 1
Q

∣∣∣∣∣∣∣
Ẽ (1)

y Ẽ (2)
y Ẽ (3)

y

H̃ (1)
y H̃ (2)

y H̃ (3)
y

H̃ (1)
z H̃ (2)

z H̃ (3)
z

∣∣∣∣∣∣∣
,

Z ′
xy = 1

Q

∣∣∣∣∣∣∣
Ẽ (1)

x Ẽ (2)
x Ẽ (3)

x

H̃ (1)
z H̃ (2)

z H̃ (3)
z

H̃ (1)
x H̃ (2)

x H̃ (3)
x

∣∣∣∣∣∣∣
, Z ′

yy = 1
Q

∣∣∣∣∣∣∣
Ẽ (1)

y Ẽ (2)
y Ẽ (3)

y

H̃ (1)
z H̃ (2)

z H̃ (3)
z

H̃ (1)
x H̃ (2)

x H̃ (3)
x

∣∣∣∣∣∣∣
,

Z ′
xz = 1

Q

∣∣∣∣∣∣∣
Ẽ (1)

x Ẽ (2)
x Ẽ (3)

x

H̃ (1)
x H̃ (2)

x H̃ (3)
x

H̃ (1)
y H̃ (2)

y H̃ (3)
y

∣∣∣∣∣∣∣
, Z ′

yz = 1
Q

∣∣∣∣∣∣∣
Ẽ (1)

y Ẽ (2)
y Ẽ (3)

y

H̃ (1)
x H̃ (2)

x H̃ (3)
x

H̃ (1)
y H̃ (2)

y H̃ (3)
y

∣∣∣∣∣∣∣
.

In the matrix form

E = [Z′]H, (5.40)

where

E =
[

Ex

Ey

]
, [Z′] =

⎡
⎣ Z ′

xx Z ′
xy Z ′

xz

Z ′
yx Z ′

yy Z ′
yz

⎤
⎦ , H =

⎡
⎣ Hx

Hy

Hz

⎤
⎦ .

Taking the source effect into account, we can determine the generalized
impedance tensor

[
Z′] with matrix of the order 2 × 3 and can’t determine the

Wiese–Parkinson matrix (all three components of the magnetic field become inde-
pendent, which manifests itself in the dramatic multiple-coherence drop). But it
is significant that Varentsov and his workmates in their experiments on the Baltic
shield get around this problem by selecting time intervals with rather large coher-
ence (Varentsov et al., 2003a, b), while Vanyan and his workmates reconstruct a
plane-wave normal field by averaging geomagnetic disturbances over a long period
of time (Vanyan et al., 2002b).

Going toward the strong source effect, the sophisticated situations may arise that
need examination, theoretical comprehension and special technological solutions.
The recent promising results obtained by Schmucker and by Semenov et al. in com-
bining the gradient and tipper soundings (Schmucker, 2003, 2004; Semenov et al.,
in press) may be very helpful in this area.
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5.1.4 Final Remarks on the Generalized Impedance Tensor

For many years the magnetotelluric theory defines the impedance of the Earth at two
model levels: (1) the scalar impedance of the horizontally homogeneous medium
excited by a field with linearly varying horizontal components (the Tikhonov–
Cagniard impedance), and (2) the tensor impedance of the horizontally inhomo-
geneous medium excited by a plane wave. The generalized model includes both the
levels and supplements them with a third level, namely, with the tensor impedance
of the horizontally inhomogeneous medium excited by a electromagnetic field with
linearly varying horizontal components and a vertical magnetic component. Appli-
cation of this model can considerably extend the capabilities of magnetotellurics in
zones that are unfavorable for plane-wave approximation of the normal field, say, in
the auroral zones.

Let the normal field consist of three independent modes (two plane-wave modes
and a source-field mode with vertical magnetic component). Hence, we determine 6
components of the generalized impedance tensor. The question is how to solve the
inverse problem using all six components. We can suggest two different approaches
to this problem.

1. Immediate inversion of the generalized impedance tensor. Given a resistivity
model, determine electromagnetic fields excited by each mode of the normal field
and calculate the components of the generalized impedance tensor. Solution of the
inverse problem reduces to the regularized iterative minimization of the misfits of
the generalized impedance tensor.

2. Solution of the inverse problem consists of three stages: (1) synthesis of
the plane-wave magnetotelluric fields from the generalized impedance tensors, (2)
reconstruction of the basic impedance tensor, [Z], and the tipper matrix, [W], (3)
inversion of [Z] and [W] using standard methods.

5.2 Synthesis of the Magnetotelluric Field

A common set of magnetotelluric and magnetovariational data usually consists of
the impedance and tipper matrices obtained on the network of autonomous field
stations. We can pave the new ways to the qualitative and quantitative interpretation
of MT and MV data by converting autonomous impedances and tippers into the
synthetic magnetic field and computing the horizontal magnetic tensors that are
slightly subjected to the low-frequency distortions caused by the near-surface local
inhomogeneities and provide sufficiently high sensitivity to the regional structures
(Barashkov, 1986; Dmitriev and Kruglov, 1995, 1996; Dmitriev and Mershchikova,
2002).

We will consider the following conversions:

1. Synthesis of the synchronous magnetic field from the impedance tensors.
2. Synthesis of the synchronous magnetic field from the Wiese–Parkinson matrices.
3. Synthesis of the synchronous magnetic field from the generalized impedance

tensors.
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The synthetic field is determined in the air as a field excited by a plane wave
vertically incident on the Earth’s surface at which the impedance relation (1.14) and
the Wiese–Parkinson relation (4.2) are satisfied.

We begin with analysis of relations between components of the anomalous mag-
netotelluric field in the air.

5.2.1 Anomalous Magnetotelluric Field in the Air

Examine a three-dimensional model where the horizontally homogeneous layered
Earth includes a bounded inhomogeneous domain of arbitrary geometry. The air is
supposed to be nonconductive. Following the traditional geoelectric representation,
we ignore the displacement currents and assume that inhomogeneities of the Earth
cause the anomalous field EA(EA

x , EA
y , 0), HA(H A

x , H A
y , H A

z ) in the air, which
meets the Laplace equation and consists solely of the TE-mode (Schmucker, 1971a;
Berdichevsky and Jakovlev, 1984).

The anomalous electromagnetic field in the air can be expressed in terms of its
components at the Earth’s surface. Let EA, HA be known at the Earth’s surface
z = 0. Then we have the boundary-value problems for EA, HA in the air:

�EA(x, y, z) = 0 at −∞<x, y<∞ z<0

EA(x, y, z = 0) = EA
o (x, y) EA

o (x, y) → 0 as
√

x2 + y2 → ∞
EA(x, y, z) → 0 as

√
x2 + y2 + z2 → ∞

(5.41)

and

�HA(x, y, z) = 0 at −∞<x, y<∞ z<0

HA(x, y, z = 0) = HA
o (x, y) HA

o (x, y) → 0 as
√

x2 + y2 → ∞
HA(x, y, z) → 0 as

√
x2 + y2 + z2 → ∞,

(5.42)

where EA(x, y, z), HA(x, y, z) and EA
o (x, y), HA

o (x, y) are the anomalous elec-
tric and magnetic fields in the air and at the Earth’s surface. Solutions of these
problems are given by the Poisson integrals for the half-space z ≤ 0 (Tikhonov and
Samarsky, 1999):

EA(x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

EA
o (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

,

HA(x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

HA
o (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.43)
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The integral relations of this kind can be considered as three-dimensional mag-
netotelluric analogues of the Kertz formulae (Berdichevsky and Jakovlev, 1984;
Berdichevsky and Zhdanov, 1984). The integrals are taken in the sense of their
principal values.

In the scalar form

EA
x (x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

EA
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

a

EA
y (x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

EA
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

b

(5.44)

and

H A
x (x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

a

H A
y (x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

b

H A
z (x, y, z) = − 1

2π

�

�z

∞∫
−∞

∞∫
−∞

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

. c

(5.45)

These formulae make it possible to extend the anomalous field from the Earth’s
surface to any higher level in the air and weaken in this way the influence of near-
surface inhomogeneities.

From (5.45) we can easily derive the integral relations between vertical and hori-
zontal components of the anomalous magnetic field. Note that in the nonconducting
air curl HA = 0.Hence

�H A
x

�z
= �H A

z

�x
,

�H A
y

�z
= �H A

z

�y
. (5.46)

Substituting (5.45c) in (5.46) and taking into account that H A
x,y → 0 as z → −∞ ,

we obtain

H A
x (x, y, z) = − 1

2π

�

�x

∞∫
−∞

∞∫
−∞

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

H A
y (x, y, z) = − 1

2π

�

�y

∞∫
−∞

∞∫
−∞

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.47)
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On the other hand, substituting (5.45a,b) in

divHA = �H A
x

�x
+ �H A

y

�y
+ �H A

z

�z
= 0

and taking into account that H A
z → 0 as z → −∞ , we obtain

H A
z (x, y, z) = 1

2π

�

�x

∞∫
−∞

∞∫
−∞

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ 1

2π

�

�y

∞∫
−∞

∞∫
−∞

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.48)

Now we derive the integral relations between anomalous electric and magnetic
fields, EA and HA. Using Maxwell’s equation curlEA = i��oHA and taking into
account that EA

z = 0 in the TE-mode, we write

�EA
x

�z
= i��o H A

y ,
�EA

y

�z
= −i��o H A

x . (5.49)

Substituting (5.45a,b) in (5.49), we get

EA
x (x, y, z) = − i��o

2π

∞∫
−∞

∞∫
−∞

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

EA
y (x, y, z) = i��o

2π

∞∫
−∞

∞∫
−∞

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.50)

The integral operators in (5.50) can be inverted. Substituting (5.44a,b) in (5.49),
we get

H A
x (x, y, z) = i

2π��o

�2

�z2

∞∫
−∞

∞∫
−∞

EA
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

H A
y (x, y, z) = − i

2π��o

�2

�z2

∞∫
−∞

∞∫
−∞

EA
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.51)

Alternatively, substituting (5.44a,b) in

�EA
y

�x
− �EA

x

�y
= i��o H A

z (5.52)
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and taking into account (5.46), we get

H A
x (x, y, z) = i

2π��o

�2

�x2

∞∫
−∞

∞∫
−∞

EA
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

− i

2π��o

�2

�x�y

∞∫
−∞

∞∫
−∞

EA
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

,

(5.53)

H A
y (x, y, z) = i

2π��o

�2

�x�y

∞∫
−∞

∞∫
−∞

EA
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

− i

2π��o

�2

�y2

∞∫
−∞

∞∫
−∞

EA
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

,

(5.54)

H A
z (x, y, z) = i

2π��o

�2

�y�z

∞∫
−∞

∞∫
−∞

EA
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

− i

2π��o

�2

�x�z

∞∫
−∞

∞∫
−∞

EA
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.55)

In the case of two-dimensional structures the formulae are simplified. Let the
x-axis run along the strike. Consider the TE-mode of the anomalous field in the air.
For z ≤ 0 we have

H A
y (y, z) = − 1

π

∞∫
−∞

H A
oz(yo)

(yo − y)dyo

(y − yo)2 + z2
a

H A
z (y, z) = 1

π

∞∫
−∞

H A
oy(yo)

(yo − y)dyo

(y − yo)2 + z2
b

(5.56)

and

EA
x (y, z) = − i��o

π

∞∫
−∞

H A
oy(yo) ln

1√
(y − yo)2 + z2

dyo a

H A
y (y, z) = i

π��o

∞∫
−∞

EA
ox (yo)

(yo − y)2 − z2

(
(y − yo)2 + z2

)2 dyo. b

(5.57)
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Here (5.56) and (5.57) are two-dimensional counterparts of (5.47), (5.48) and (5.50),
(5.51). These formulae can be supplemented by the formula

EA
ox (y) = −i��o

y∫
−∞

H A
oz(yo) dyo, (5.58)

which follows directly from Maxwell’s equation �EA
ox/�y = −i��o H A

oz .
We have derived the integral relations that enable us to synthesize the syn-

chronous magnetotelluric field from the magnetotelluric and magnetovariational
response functions measured on the Earth’s surface.

5.2.2 Synthesis of the Magnetic Field from the Impedance Tensors

Let the impedance tensor [Z(x, y)] be measured on the Earth’s surface. Synthesis of
the magnetic field Ho(x, y) from the [Z(x, y)] reduces to the solution of the system
of the integral equations of the second kind.

For the sake of convenience we express the linear relations between horizontal
components of the magnetic and electric fields, Ho(x, y) and Eo(x, y), in terms of
the admittance tensor [Y] = [Z]−1. Proceeding from (1.19), we write:

Hox − Yxx Eox − Yxy Eoy = 0,

Hoy − Yyx Eox − Yyy Eoy = 0,

(5.59)

where

Yxx = Z yy

Zxx Z yy − Zxy Z yx
, Yxy = − Zxy

Zxx Z yy − Zxy Z yx
,

Yyx = − Z yx

Zxx Z yy − Zxy Z yx
, Yyy = Zxx

Zxx Z yy − Zxy Z yx
.

Separating the normal and anomalous fields, we get

H A
ox (x, y) − Yxx (x, y)EA

ox (x, y) − Yxy(x, y)EA
oy(x, y)

= −H N
ox + Yxx (x, y)EN

ox + Yxy(x, y)EN
oy

H A
oy(x, y) − Yyx (x, y)EA

ox (x, y) − Yyy(x, y)EA
oy(x, y)

= −H N
oy + Yyx (x, y)EN

ox + Yyy(x, y)EN
oy .

(5.60)
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On substituting (5.50) into (5.60), we write

H A
ox (x, y) + i��o

2π

∞∫
−∞

∞∫
−∞

Yxx (x, y)H A
oy(xo, yo) − Yxy(x, y)H A

ox (xo, yo)√
(x − xo)2 + (y − yo)2

dxo dyo = Fx (x, y)

H A
oy(x, y) + i��o

2π

∞∫
−∞

∞∫
−∞

Yyx (x, y)H A
oy(xo, yo) − Yyy(x, y)H A

ox (xo, yo)√
(x − xo)2 + (y − yo)2

dxo dyo = Fy(x, y),

(5.61)
where

Fx (x, y) = −H N
ox + Yxx (x, y)EN

ox + Yxy(x, y)EN
oy

= Yxx (x, y)ZN H N
oy − {Yxy(x, y)ZN + 1}H N

ox ,

Fy(x, y) = −H N
oy + Yyx (x, y)EN

ox + Yyy(x, y)EN
oy

= {Yyx (x, y)ZN − 1}H N
oy − Yyy(x, y)ZN H N

ox

and

ZN = EN
ox

H N
oy

= − EN
oy

H N
ox

.

The integral equations (5.61) let us determine the horizontal components, H A
ox

and H A
oy , of the anomalous magnetic field HA

o at the Earth’s surface from the mea-
sured admittance tensor [Y] and given normal impedance ZN and normal magnetic
field HN

o . It is advantageous to take HN
o as a field linearly polarized in the direc-

tion, which ensures a maximum sensitivity of HA
o to target structures. In regions

with elongated structures we merely direct the normal magnetic field against the
prevailing strike. Let the target structures be elongated along the x−axis. Then, the
normal magnetic field reflecting the distribution of the longitudinal excess currents
is chosen as HN

o = H N
oy1y . In that event

Fx = Yxx (x, y)ZN H N
oy,

Fy = {Yyx (x, y)ZN − 1}H N
oy,

(5.62)

where Yxx (x, y) ZN → 0 and Yyx (x, y) ZN → 1 as
√

x2 + y2 → ∞ .

Introduce normalized anomalous fields

�

H A
ox (x, y) = H A

ox (x, y)

H N
oy

,
�

H A
oy(x, y) = H A

oy(x, y)

H N
oy

. (5.63)

On substituting (5.62) and (5.63) into (5.61), the system of the integral equations
for horizontal components of the anomalous magnetic field assumes the form
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�

H A
ox (x, y)+ i��o

2π

∞∫
−∞

∞∫
−∞

Yxx (x, y)
�

H A
oy(xo, yo) − Yxy(x, y)

�

H A
ox (xo, yo)√

(x − xo)2 + (y − yo)2
dxo dyo =Yxx (x, y)ZN,

�

H A
oy(x, y) + i��o

2π

∞∫
−∞

∞∫
−∞

l
Yyx (x, y)

�

H A
oy(xo, yo) − Yyy(x, y)

�

H A
ox (xo, yo)√

(x − xo)2 + (y − yo)2
dxo dyo

= Yyx (x, y)ZN − 1.

(5.64)

To determine
�

H A
ox (x, y) and

�

H A
oy(x, y) from this system of integral equations,

it suffices to know the admittance (impedance) tensor. Having determined the hor-
izontal components of the normalized anomalous magnetic field, we can compute
its vertical component. By virtue of (5.48)

�

H A
oz(x, y) = 1

2π

�

�x

∞∫
−∞

∞∫
−∞

�

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ 1

2π

�

�y

∞∫
−∞

∞∫
−∞

�

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

,

(5.65)

where

�

H A
oz(x, y) = H A

oz(x, y)

H N
oy

.

Note that the anomalous magnetic field derived from (5.64) is readily trans-
formed in the anomalous electric field. Using (5.50), we get

�

EA
ox (x, y) = − i��o

2π

∞∫
−∞

∞∫
−∞

�

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

�

EA
oy(x, y) = i��o

2π

∞∫
−∞

∞∫
−∞

�

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

,

(5.66)

where

�

EA
ox (x, y) = EA

ox (x, y)

H N
oy

�

EA
oy(x, y) = EA

oy(x, y)

H N
oy

.

To complete this consideration, we present the two-dimensional analogues of
(5.64), (5.65) and (5.66). Let x be the strike of the 2D model. Then, according to

(5.56b), (5.58) and (5.64), we have the integral equation for
�

H A
oy(y)
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�

H A
oy(y) + i��o

π
Yyx (y)

∞∫
−∞

�

H A
oy(y0) ln

1

|yo − y|dyo = Yyx (y)ZN − 1 (5.67)

and the formulae to compute
�

H A
oz(y) and

�

EA
ox (y) :

�

H A
oz(y) = 1

π

∞∫
−∞

�

H A
oy(yo)

dyo

yo − y
(5.68)

�

EA
ox (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i��o

π

∞∫
−∞

�

H A
oy(yo) ln

1

|yo − y|dyo

−i��o

y∫
−∞

�

H A
oz(yo) dyo.

(5.69)

5.2.3 Synthesis of the Magnetic Field from the Tippers

Now we will show that the magnetic field can be synthesized not only from the
impedance tensors, but from the tippers as well.

Let the Wiese–Parkinson matrix [W(x, y)] be given on the Earth’s surface. Rea-
soning from (4.2), we assume that

Hoz − Wzx Hox − Wzy Hoy = 0. (5.70)

Separating the normal and anomalous fields, we get

H A
oz(x, y) − Wzx (x, y)H A

ox (x, y) − Wzy(x, y)H A
oy(x, y)

= Wzx (x, y)H N
ox + Wzy(x, y)H N

oy .
(5.71)

The normal magnetic field is HN
o = H N

oy1y . Then, with a glance to (5.47), we have

H A
oz(x, y) + Wzx (x, y)

2π

�

�x

∞∫
−∞

∞∫
−∞

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+Wzy(x, y)

2π

�

�y

∞∫
−∞

∞∫
−∞

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

= Wzy(x, y)H N
oy .

(5.72)
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For the normalized anomalous magnetic field,
�

H A
oz(x, y) = H A

oz(x, y)/H N
oy , we

obtain

�

H A
oz(x, y) +

∞∫
−∞

∞∫
−∞

K (x, y, xo, yo)
�

H A
oz(xo, yo) dxo dyo = Wzy(x, y), (5.73)

where

K (x, y, xo, yo) = Wzx (x, y)

2π

�

�x

1√
(x − xo)2 + (y − yo)2

+ Wzy(x, y)

2π

�

�y

1√
(x − xo)2 + (y − yo)2

+ (xo − x)Wzx (x, y) + (yo − y)Wzy(x, y)

2π [(x − xo)2 + (y − yo)2]3/2
.

With
√

x2
o + y2

o → ∞, the kernel K (x, y, xo, yo) decreases sufficiently fast, and

this allows us to integrate
�

H A
oz(xo, yo) within relatively small area. Note also that

K (x, y, xo, yo) has a singularity at
√

(x − xo)2 + (y − yo)2 → 0. So, in the vicinity
of this point, the integral should be taken as its principal value in the Cauchy sense.
Here we have to take into account that

∞∫
−∞

∞∫
−∞

K (x, y, xo, yo) dx0 dy0

= −Wzx (x, y)

2π

∞∫
−∞

∞∫
−∞

�

�xo

1√
(x − xo)2 + (y − yo)2

dxodyo

− Wzy(x, y)

2π

∞∫
−∞

∞∫
−∞

�

�yo

1√
(x − xo)2 + (y − yo)2

dxodyo = 0.

Using this property of K (x, y, xo, yo), we rewrite integral equation (5.73) in the
form

�

H A
oz(x, y) +

∞∫
−∞

∞∫
−∞

K (x, y, xo, yo)[
�

H A
oz(xo, yo) − �

H A
oz(x, y)] dxo dyo = Wzy(x, y).

(5.74)

It is simply evident now that the singularity is of little importance, since
H̃ A

oz(xo, yo) − H̃ A
oz(x, y) → 0 as

√
(x − xo)2 + (y − yo)2 → 0.
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Solving integral equation (5.74), we determine the normalized vertical compo-
nent of the anomalous magnetic field on the Earth’s surface. With a knowledge of
H̃ A

oz(x, y), we use (5.47) and compute the normalized horizontal com-ponents of the
anomalous magnetic field

�

H A
ox (x, y) = 1

2π

�

�x

∞∫
−∞

∞∫
−∞

�

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

�

H A
oy(x, y) = 1

2π

�

�y

∞∫
−∞

∞∫
−∞

�

H A
oz(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

.

(5.75)

And what is more, we can substitute (5.75) in (5.66) and calculate the normalized

components of the anomalous electric field,
�

EA
ox (x, y) and

�

EA
oy(x, y).

Equations obtained are readily reduced to the two-dimensional case. Let x be the
strike of the model. Then (5.73) assumes the form

�

H A
oz(y) +

∞∫
−∞

L(y, yo)
�

H oz(yo) dyo = Wzy(y), (5.76)

where the kernel L(y, yo) is

L(y, yo) = Wzy(y)

2π

∞∫
−∞

�

�y

1√
(x − xo)2 + (y − yo)2

dxo = Wzy(y)

π (y − yo)
, (5.77)

from which

�

H A
oz(y) + Wzy(y)

π

∞∫
−∞

�

H A
oz(yo) dyo

y − yo
= Wzy(y). (5.78)

Note that the equation for
�

H A
oz(y) can be translated into the equation for

�

H A
oy(y) .

Substituting
�

H A
oz = Wzy(

�

H A
oy + 1) in (5.78), we get

�

H A
oy(y) + 1

π

∞∫
−∞

Wzy(yo)
�

H A
oy(yo)

y − yo
dyo = − 1

π

∞∫
−∞

Wzy(yo) dyo

y − yo
. (5.79)

On inverting the Hilbert transformation, we write the equation for
�

H A
oy(y) in a

form suggested by Vanyan et al. (1998):
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Wzy(y)
�

H A
oy(y)+ 1

π

∞∫
−∞

�

H A
oy(yo)

y − yo
dyo = −Wzy(y). (5.80)

In the closing stage of the synthesis, it is a simple matter to apply (5.69) and
translate the anomalous magnetic field into the anomalous electric field.

Summing up, we arrive at a conclusion that the Wiese–Parkinson matrices given
at all points of the Earth’s surface carry complete information on magnetotelluric
anomalies. Using this information with a knowledge of the normal field and the
normal impedance, we can reconstruct the magnetotelluric field and the impedances.
Thus, considering a two-dimensional model and taking into account (5.58), we have
(Vanyan et al.,1997):

Eox (y) = EN
ox − i��o

y∫
−∞

H A
oz(yo) dyo, (5.81)

whence

Z‖(y) = Eox (y)

Hoy(y)
= 1

�

H A
oy(y) + 1

{ZN − i��o

y∫
−∞

�

H A
oz(yo) dyo} . (5.82)

5.2.4 Synthesis of the Magnetic Field from the Generalized
Impedance Tensors

Let the normal field in the generalized impedance model contain three independent
modes: two plane-wave modes with polarization in the orthogonal directions and
the source-effect mode with vertical magnetic component. In that model we have
the generalized impedance tensor

[Z′] =
[

Z ′
xx Z ′

xy Z ′
xz

Z ′
yx Z ′

yy Z ′
yz

]
,

which transforms the magnetic field H(Hx , Hy, Hz) into the electric field
E(Ex , Ey):

Ex = Z ′
xx Hx + Z ′

xy Hy + Z ′
xz Hz,

Ey = Z ′
yx Hx + Z ′

yy Hy + Z ′
yz Hz .
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Separating the normal and anomalous fields, we get

EA
ox (x, y) − Z ′

xx (x, y)H A
ox (x, y) − Z ′

xy(x, y)H A
oy(x, y) − Z ′

x z(x, y)H A
oz(x, y)

= −EN
ox (x, y) + Z ′

xx (x, y)H N
ox (x, y) + Z ′

xy(x, y)H N
oy(x, y) + Z ′

x z(x, y)H N
oz(x, y)

EA
oy(x, y) − Z ′

yx (x, y)H A
ox (x, y) − Z ′

yy(x, y)H A
oy(x, y) − Z ′

yz(x, y)H A
oz(x, y)

= −EN
ox (x, y) + Z ′

yx (x, y)H N
ox (x, y) + Z ′

yy(x, y)H N
oy(x, y) + Z ′

yz(x, y)H N
oz(x, y) .

(5.83)

Substituting (5.48), (5.50) in (5.83), we obtain a system of integral equations for
horizontal components of the anomalous magnetic field:

Z ′
xx (x, y)H A

ox (x, y) + Z ′
xy(x, y)H A

oy(x, y)

− Z ′
x z(x, y)

2π

�

�x

∞∫
−∞

∞∫
−∞

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ Z ′
x z(x, y)

2π

�

�y

∞∫
−∞

∞∫
−∞

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

− i��o

2π

∞∫
−∞

∞∫
−∞

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

= EN
ox (x, y) − Z ′

xx (x, y)H N
ox (x, y) − Z ′

xy(x, y)H N
oy(x, y) − Z ′

x z(x, y)H N
oz(x, y) ,

(5.84)
and

Z ′
yx (x, y)H A

ox (x, y) + Z ′
yy(x, y)H A

oy(x, y)

− Z ′
y z(x, y)

2π

�

�x

∞∫
−∞

∞∫
−∞

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ Z ′
y z(x, y)

2π

�

�y

∞∫
−∞

∞∫
−∞

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ i��o

2π

∞∫
−∞

∞∫
−∞

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

= EN
oy(x, y) − Z ′

yx (x, y)H N
ox (x, y) − Z ′

yy(x, y)H N
oy(x, y) − Z ′

y z(x, y)H N
oz(x, y) .

(5.85)

In these equations we can choose any polarization of the normal magnetotelluric
field. For instance, we can take the normal field as a horizontally polarized uniform
field and in this way eliminate the source effect.



5.2 Synthesis of the Magnetotelluric Field 179

Let the Earth’s inhomogeneities be elongated in the x-direction. To provide
the high sensitivity of the magnetic field to geoelectric structures, we set EN

o =
EN

ox 1x , HN
o = H N

oy1y . Then, we get a system of integral equations for normalized
horizontal components of the anomalous magnetic field:

Z ′
xx (x, y)

�

H A
ox (x, y) + Z ′

xy(x, y)
�

H A
oy(x, y)

+ Z ′
x z(x, y)

2π

�

�x

∞∫
−∞

∞∫
−∞

�

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ Z ′
x z(x, y)

2π

�

�y

∞∫
−∞

∞∫
−∞

�

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ i��o

2π

∞∫
−∞

∞∫
−∞

�

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

= ZN − Z ′
xy(x, y)

(5.86)
and

Z ′
yx (x, y)

�

H A
ox (x, y) + Z ′

yy(x, y)
�

H A
oy(x, y)

+ Z ′
y z(x, y)

2π

�

�x

∞∫
−∞

∞∫
−∞

�

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ Z ′
y z(x, y)

2π

�

�y

∞∫
−∞

∞∫
−∞

�

H A
oy(xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

+ i��o

2π

∞∫
−∞

∞∫
−∞

�

H A
ox (xo, yo)

dxo dyo√
(x − xo)2 + (y − yo)2 + z2

= −Z ′
yy(x, y),

(5.87)

where ZN is the normal impedance and
�

H A
ox = H A

ox/H N
oy ,

�

H A
oy = H A

oy/H N
oy .

Solving these integral equations and using (5.48), (5.50), we find the magnetotel-
luric field excited by the plane wave of given polarization. Calculating the mag-
netotelluric fields for two different polarizations, we can compute the impedance
and tipper matrices relating to the plane-wave excitation of the medium under
investigation.

5.2.5 Model Experiments on the Synthesis of the Magnetic Field

Let us consider numerical experiments on the synthesis of the magnetic field from
a given impedance or tipper (Fig. 5.2). The model consists of the homogeneous
upper layer of resistivity �1resting on a resistive basement of resistivity �2, which
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Fig. 5.2 Model experiments on the synthesis of the magnetic field; 1 – initial magnetic field, 2 –
magnetic field synthesized from the longitudinal impedances, 3 – magnetic field synthesized from
the tippers

contains two two-dimensional conductive prisms of resistivities �′
2, �′′

2 and widths

w′, w′′ with strike along the x-axis. The anomalous magnetic field
�

H A
oy computed

for this model (thick line) is compared with synthetic anomalous magnetic field
derived from the longitudinal impedance Zxy (thin line) and the tipper Wzy (dotted
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line). The initial and synthetic fields are seen to be in reasonable good agreement.
This result is characteristic of rather wide frequency range, from λ1/h1 = 16 to
λ1/h1 = 64, where λ1 = 2π

√
2�1/��o is the wave-length in the upper layer. But

note that such a good agreement is possible if Zxy and Wzy are given on sufficiently
long profile. In our case, with depth and width of the lower conductive zone being
3h1 and 6h1, good accuracy of the magnetic field reconstruction is attained when
the impedance and tipper are specified at distances of up to ±25h1.



Part II
Basic Models of the Distortion Theory



Chapter 6
Two Classic Models of the Distortion Theory

In the subsequent chapters we will consider how the near-surface and deep inho-
mogeneities distort the magnetotelluric and magnetovariational response functions
observed on the Earth’s surface. We are going to examine a number of models with a
view to find the characteristic evidences of two-dimensional and three-dimensional
galvanic and induction distortions and look for ways of their recognition. All mod-
els to be examined are excited by a plane monochromatic wave vertically incident
on the Earth’s surface. We have to analise the informativeness of MT- and MV-
soundings and provide the background necessary for qualitative interpretation of
experimental data and identification of objective geoelectric structures.

As a preliminary we would like to review two, now classic, models put forward
by Obukhov (1962), d’Erceville and Kunetz (1962) and Rankin (1962) at dawn of
magnetotellurics. A special feature of these two-dimensional models is that they
offer analytical solutions for the TM-mode.

6.1 The Vertical-Interface Model

We start with a vertical-interface model shown in Fig. 6.1. Meaningful analysis of
this model can be found in works by Weaver (1963, 1994), Berdichevsky (1968),
Jones and Price (1970) and Fischer et al. (1992). The model consists of the noncon-
ductive air and the conductive Earth that includes two quarter-spaces of different
resistivities, �′ and �′′, divided by the infinite vertical interface y = 0, 0 ≤ z ≤ ∞.

The problem for the TM-mode has been solved independently by Obukhov (1962)
and d’Erceville and Kunetz (1962). Following these pioneering works, we write

Hx (y, z) =

⎧⎪⎨
⎪⎩

Ḣ
N
x (z) + Ḣ

A
x (y, z) y ≤ 0, z ≥ 0

Ḧ
N
x (z) + Ḧ

A
x (y, z) y ≥ 0, z ≥ 0,

(6.1)

where Ḣ
N
x , Ḣ

A
x and Ḧ

N
x , Ḧ

A
x are the normal and anomalous magnetic fields within

the left and right quarter-spaces.

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 185
DOI 10.1007/978-3-540-77814-1 6, C© Springer-Verlag Berlin Heidelberg 2008
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Fig. 6.1 The
vertical-interface model

The normal fields are defined as

Ḣ
N
x = Hxoeik ′ z, Ḧ

N
x = Hxoeik ′′ z . (6.2)

Here k ′ = √
i��o/�′, k ′′ = √

i��o/�′′ , Im k > 0 and Hxo = Ḣ
N
x (0) = Ḧ

N
x (0) =

2 H p(0), where H p(0) is the primary magnetic field on the Earth’s surface z = 0.
The anomalous fields meet the equations

�2Ḣ
A
x

� z2
+ �2Ḣ

A
x

� y2
+ (k ′)2Ḣ

A
x = 0,

�2Ḧ
A
x

� z2
+ �2Ḧ

A
x

� y2
+ (k ′′)2Ḧ

A
x = 0 (6.3)

with the boundary conditions Ḣ
A
x (0) = Ḧ

A
x (0) = 0 on the Earth’s surface and the

conditions Ḣ
A
x (z > 0) → 0,

y→−∞
Ḧ

A
x (z > 0) → 0

y→∞
at infinity.

Solving these equations by the method of separation of variables, we get

Ḣ
A
x =

∞∫
0

a′
me�′ y sin m z dm, Ḧ

A
x =

∞∫
0

a′′
me−�′′ y sin m z dm, (6.4)

where

�′ =
√

m2 − (k ′)2, �′′ =
√

m2 − (k ′′)2, Re � > 0.

The constants a′
m and a′′

m can be defined from the boundary conditions at the
vertical interface y = 0. It follows from the continuity of Hx and Ez = − � �Hx/�y
that

Ḣ
N
x − Ḧ

N
x = Ḧ

A
x − Ḣ

A
x

�′ �Ḣ
A
x

�y
= �′′ �Ḧ

A
x

�y

∣∣∣∣∣∣∣∣
y=0

. (6.5)
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With account for (6.2),

Ḣ
N
x − Ḧ

N
x = Hxo(eik ′ z − eik ′′ z) =

∞∫
0

bm sin m z dm, (6.6)

where

bm = 2m Hxo

π

(k ′′)2 − (k ′)2

(�′�′′)2 . (6.7)

Substituting (6.4) and (6.6) in (6.5) and equating the terms with the same sub-
script, we obtain

a′′
m − a′

m = bm, �′a′
m�′ + �′′a′′

m�′′ = 0, (6.8)

whence

a′
m = 2Hxo

(k ′)2 − (k ′′)2

π

m

(�′�′′)2 (1 + �′�′/�′′�′′)
,

a′′
m = −2Hxo

(k ′)2 − (k ′′)2

π

�′

�′′
m

�′ (�′′)3 (1 + �′�′/�′′�′′)
.

(6.9)

Returning to (6.1) and (6.4), we write

Hx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ḣ
N
x + 2Hxo

(k ′)2 − (k ′′)2

π

∞∫
0

me�′ y sin mz dm

(�′�′′)2 (1 + �′�′/�′′�′′)
y ≤ 0

Ḧ
N
x − 2Hxo

(k ′)2 − (k ′′)2

π

�′

�′′
∞∫
0

me−�′′ y sin mz dm

�′ (�′′)3 (1 + �′�′/�′′�′′)
y ≥ 0 .

(6.10)

Differentiation of the magnetic field Hx with respect to z gives the electric field
Ey . On the Earth surface (z = 0):

Ey = �
�Hx

�z
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ė
N
y + 2Hxo

(k ′)2 − (k ′′)2

π
�′

∞∫
0

m2e�′ y dm

(�′�′′)2 (1 + �′�′/�′′�′′)
y ≤ 0

Ë
N
y − 2Hxo

(k ′)2 − (k ′′)2

π
�′

∞∫
0

m2e−�′′ y dm

�′ (�′′)3 (1 + �′�′/�′′�′′)
y ≥ 0,

(6.11)
where Ė

N
y , Ë

N
y are the normal electric fields within the left and right quarter-spaces.
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The transverse impedance assumes the form:

Z⊥ = − Ey

Hxo
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ż N + 2
(k ′′)2 − (k ′)2

π
�′

∞∫
0

m2e�′ y dm

(�′�′′)2 (1 + �′�′/�′′�′′)
y ≤ 0

Z̈ N − 2
(k ′′)2 − (k ′)2

π
�′

∞∫
0

m2e−�′′ y dm

�′ (�′′)3 (1 + �′�′/�′′�′′)
y ≥ 0,

(6.12)
where

Ż N = −Ė
N
y /Hxo = √−i��o�′,

Z̈ N = −Ë
N
y /Hxo = √−i��o�′′,

Ż N/Z̈ N = Ė
N
y /Ë

N
y = √

�′/�′′,

are the normal impedances for the left and right quarter-spaces. Here the transverse
impedance consists of the normal impedance ZN and a distortion term that at great

distances from the vertical interface decays exponentially as e−Im k|y| = e
−|y|

/√
2heff ,

where heff is the effective penetration depth

heff = |ZN|
��o

=
√

�

��o
,

which can be used as a scale parameter of the magnetotelluric anomaly.
We have obtained rather simple analytical expression for the TM-mode. It would

be interesting to supplement this result with numerical solution for the TE-mode.
The TE-problem was solved using the finite element method (Wannamaker et al.,
1987).

Figures 6.2 and 6.3 present the transverse and longitudinal apparent-resistivity
and impedance-phase curves, �⊥/�′, ⊥ and �‖/�′,  ‖ observed at a site over the left
quarter-space. The dimensionless quantities h′

eff/ | y| are plotted as abscissas. Here
h′

eff is the effective penetration depth and |y| is a distance from the vertical interface.
With increasing h′

eff (lowering frequency) and with decreasing |y| (going toward
the vertical interface), the apparent resistivity departs from �′, while the impedance
phase departs from −45o. When �′′ > �′, the transverse resistivities, �⊥, quickly
descend and the transverse phases, ⊥, have deep minima, while the longitudinal
resistivities, �‖, slowly ascend and the longitudinal phases,  ‖, have flattened max-
ima. And vice versa, when �′′ < �′, the longitudinal resistivities, �‖, quickly descend
and the longitudinall phases,  ‖, have deep minima, while the transverse resistiv-
ities, �⊥, slowly ascend and the transverse phases, ⊥,have flattened maxima. We
see that the transverse and longitudinal curves conflict with each other. They come
apart, so that descending of one curve corresponds to ascending of another curve.
This effect will be called the divergence effect. Distortions of the transverse curves
are of a galvanic nature, whereas the distortions of the longitudinal curves are of a
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Fig. 6.2 Longitudinal and
transverse apparent-resistivity
curves in the
vertical-interface model.
Observation site is located
over the left quarter-space.
Curve parameter: �′′/�′

induction nature. But it is remarkable that in spite of the different physical nature,
both effects vanish at closely related distances. Distortions of the apparent resistiv-
ities �⊥, �‖ attenuate at |y| ≈ 1.25 h′

eff. Distortions of the phases ⊥,  ‖ run to
greater distances and attenuate at |y| ≈ 3 h′

eff.
To gain a better insight into the physical nature of these distortions, we turn to

Figures 6.4 and 6.5, which show the Ex (y), Hy(y) and Ey (y)-profiles related to

the TE- and TM-modes. The fields Ex , Ey, Hy vary from the left normal fields Ė
N
x ,

Ė
N
y , Ḣ

N
y to the right normal fields Ë

N
x , Ë

N
y , Ḧ

N
y . They are normalized to the right

normal field. Note that Ė
N
x = Ë

N
x , Ė

N
y = Ë

N
y , Ḣ

N
y = Ḧ

N
y .

The smooth monotonous transition from Ė
N
x = Ë

N
x

√
�′

1/�′′
1 to Ë

N
x is accounted for

by the mutual induction of the longitudinal excess currents. It consists of two zones.
Within the left (“conductive”) quarter-space we have a zone of the current concen-
tration. Within the right (“resistive”) quarter-space we have a zone of the current
deconcentration. The concentration and deconcentration zones manifest themselves
in the maximum and minimum of the transverse magnetic field Hy . At high fre-
quencies, both the zones and the corresponding magnetic anomalies narrow in the
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Fig. 6.3 Longitudinal and
transverse impedance-phase
curves in the vertical-
interface model. Observation
site is located over the left
quarter-space. Curve
parameter: �′′/�′

vicinity of the vertical interface. With lowering frequency, the anomalies of Ex and
Hy flatten out. This effect can be considered as the horizontal skin effect.

The transverse electric field Ey varies also from the left normal field Ė
N
y =

Ë
N
y

√
�′/�′′ to the right normal field Ë

N
y , but now it has a jump at the vertical interface

due to surface excess charges. The characteristic feature of the transverse electric
field is that its jump is preceded in the left quarter-space by almost a tenfold drop
in Ey , which is getting steeper when frequency increases. This effect is associated
with rearrangement of the transverse current due to different skin depths in the left
and right quarter-spaces. It bears the name of the current rearrangement effect.

Next we consider the frequency responses of the real and imaginary parts of
the tipper Wzy at a site over the left quarter-space (Fig. 6.6). It is remarkable
that the ReWzy , ImWzy-curves for �′′/�′ = 10 and �′′/�′ = 0.1 are aproximately
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T=10000 s

T=10000 s

Fig. 6.4 The electric and magnetic field profiles in the vertical-interface model (TE-mode). Model
parameters: �′ = 1 Ohm · m, �′′ = 100 Ohm · m. Profile parameter: period T=1, 100, 10000 s

symmetric. Note that ReWzy , ImWzy are positive for �′′/�′ = 10 and negative for
�′′/�′ = 0.1. So, the real and imaginary induction arrows plotted by ReWzy , ImWzy

are directed from the quarter-space of lower resistivity to the quarter-space of higher
resistivity. But it is significant that at low frequencies the imaginary arrows vanish,
while the real arrows achieve their maximum.

In closing we take a brief look at the Wzy−profiles shown in Fig. 6.7. The ReWzy-
profiles contain a nearly symmetric maximum just over the vertical interface. Its
width is of the order 3 (h′

eff + h′′
eff). The ImWzy−profiles contain two maxima sep-

arated by a deep spike minimum at the vertical interface. The total width of this
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Fig. 6.5 The electric field profiles in the vertical-interface model (TM-mode) Model parameters:
�′ = 1 Ohm · m, �′′ = 100 Ohm · m. Profile parameter: period T=1, 100, 10000 s

Fig. 6.6 The tipper Wzy over
the left quarter-space. Curve
parameter: �′′/�′
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Fig. 6.7 Profiles of the tipper Wzy in the vertical-interface model. Model parameters: �′ = 10 Ohm·
m, �′′ = 100 Ohm · m

anomaly is about 5 (h′
eff + h′′

eff). The real inductive arrows are shown at the bottom
of Fig. 6.7. They radiate from left to right, that is, from lower to higher resistivity.

6.2 The Dike Model

This two-dimensional model has been advanced by Rankin (1962). It can give an
idea of local magnetotelluric anomalies. The model consists of the nonconductive
air and the conductive Earth of resistivity �′ that includes a dike of width 2v and
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Fig. 6.8 The dike model

resistivity �′′ bounded by the infinite vertical interfaces, y = −v, 0 ≤ z ≤ ∞ and
y = v, 0 ≤ z ≤ ∞ (Fig. 6.8).

Let us begin with solution for the TM-mode. By analogy with (6.1), we write

Hx (y, z) =

⎧⎪⎨
⎪⎩

Ḣ
N
x (z) + Ḣ

A
x (y, z) |y| ≥ v, z ≥ 0

Ḧ
N
x (z) + Ḧ

A
x (y, z) |y| ≤ v, z ≥ 0,

(6.13)

where Ḣ
N
x , Ḣ

A
x and Ḧ

N
x , Ḧ

A
x are the normal and anomalous magnetic fields outside

and inside the dike.
Solving equations (6.3) and taking into account the symmetry conditions, we get

H A
x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ḣ
A
x =

∞∫
0

a′
me−�′ |y| sin mz dm |y| ≥ v

Ḧ
A
x =

∞∫
0

a′′
m cosh �′′y sin mz dm |y| ≤ v,

(6.14)

where

�′ =
√

m2 − (k ′)2, �′′ =
√

m2 − (k ′′)2, Re � > 0.

The constants a′
m and a′′

m are defined from the boundary conditions at the vertical
interfaces y = ±v. Similarly to (6.5),

Ḣ
N
x − Ḧ

N
x = Ḧ

A
x − Ḣ

A
x

�′ �Ḣ
A
x

�y = �′′ �Ḧ
A
x

�y

∣∣∣∣∣∣∣
|y|=v

, (6.15)

where, according to (6.6) and (6.7),
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Ḣ
N
x − Ḧ

N
x = Hxo(eik ′ z − eik ′′ z) =

∞∫
0

bm sin mz dm

and

bm = 2m Hxo

π

(k ′′)2 − (k ′)2

(�′�′′)2 .

Substituting (6.14) and (6.6) in (6.15) and equating the terms with the same sub-
script, we obtain

a′′
m cos h�′′v − a′

me−�′v = bm, �′a′
m�′e−�′v + �′′a′′

m�′′ sin h�′′v = 0, (6.16)

whence

a′
m = 2m Hxo

π

(k ′)2 − (k ′′)2

(�′)3�′′
�′′

�′
e�′w sin h�′′v

cos h�′′v + �′′�′′

�′�′ sin h�′′v

a′′
m = −2m Hxo

π

(k ′)2 − (k ′′)2

(�′�′′)2

1

cos h�′′v + �′′�′′

�′�′ sin h�′′v
.

(6.17)

Then, with a glance to (6.13) and (6.14),

Hx =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ḣ
N
x + 2Hxo

(k′)2 − (k′′)2

π

�′′

�′
∞∫
0

m sin h�′′v
(�′)3�′′

e−�′(|y|−v) sin mz dm

cos h�′′v + �′′�′′

�′�′ sin h�′′v
|y| ≥ v

Ḧ
N
x − 2Hxo

(k′)2 − (k′′)2

π

∞∫
0

m

(�′�′′)2

cos h�′′ y sin mz dm

cos h�′′v + �′′�′′

�′�′ sin h�′′v
|y| ≤ v

(6.18)

and

Ey

∣∣
z=0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ė
N
y + 2Hxo

(k′)2 − (k′′)2

π
�′′ ∞∫

0

m2 sin h�′′v
(�′)3�′′

e−�′(|y|−v) dm

cos h�′′v + �′′�′′

�′�′ sin h�′′v
|y| ≥ v

Ë
N
y − 2Hxo

(k′)2 − (k′′)2

π
�′′ ∞∫

0

m2

(�′�′′)2

cos h�′′ y dm

cos h�′′v + �′′�′′

�′�′ sin h�′′v
|y| ≤ v .

(6.19)
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The transverse impedance assumes the form:

Z⊥ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ż N + 2
(k ′′)2 − (k ′)2

π
�′′

∞∫
0

m2 sin h�′′v
(�′)3�′′

e
−�′ (|y|−v)

dm

cos h�′′v + �′′�′′

�′�′ sin h�′′v
|y| ≥ v

Z̈ N − 2
(k ′′)2 − (k ′)2

π
�′′

∞∫
0

m2

(�′�′′)2

cos h�′′ y dm

cos h�′′v + �′′�′′

�′�′ sin h�′′v
|y| ≤ v .

(6.20)

Here, similar to the vertical-interface model, the transverse impedance consists
of the normal impedances Ż N, Z̈ N and distortion terms. At great distances from the
dike, |y| >> v, the distortion terms decay exponentially as e−Im k ′ �y = e−�y/

√
2 h′

eff ,
where �y = |y| − v is the distance from the dike edge and h′

eff is the effective
penetration depth.

Again, as in the vertical-interface model, we supplement the analytical solution
with numerical solution using the finite element method (Wannamaker et al., 1987).

We consider a dike 1 km wide in the half-space of resistivity �′ = 10 Ohm·m.
The dike of restivity �′′ = 100 Ohm·m is said to be “resistive” and the dike of
resistivity �′′ = 1 Ohm·m is said to be “conductive”.

Figures 6.9 demonstrates the apparent-resistivity, impedance-phase and tipper
curves obtained on the left of the dike. The observation site is located at the distance
�y = |y| − v = 100 m from the dike. Let us compare the apparent-resistivty and

impedance-phase curves with locally normal curves of �̇n = ∣∣Ż N

∣∣2/��o = �′ and

̇n = arg Ż N = −45o characterizing the homogeneous vicinity of the dike. Look at
the apparent-resistivity curves. At high frequencies the longitudinal �‖−curves and
the transverse �⊥−curves coincide with the locally normal �̇n-curve. The induction
and galvanic effects of the dike become evident at frequencies, on which the effec-
tive penetration depth exceeds the distance to the dike, h′

eff > 100 m. With lowering
frequency these effects attenuate and the apparent-resistivity curves merge again
with the locally normal �̇n-curve. The resistive dike manifests itself in the bell-type
�‖−curve and the bowl-type �⊥−curve, whereas the conductive dike manifests itself
in the bowl-type �‖−curve and the bell-type �⊥−curve. Similar divergence effects
are characteristic of the phase curves, ‖ and ⊥. We can say that in the vicinity
of the dike the magnetotelluic sounding reflects the horizontal resistivity distribu-
tion. Come now to the tipper curves. It is notable that the conductive dike causes
more intensive magnetovariational anomaly than the resistive one. Note also that
the ReWzy−curve is bell-type on the left of the resistive dike, while it is bowl-type
on the left of the conductive dike. At the same time, ImWzy varies in sign, and with
lowering frequency it may go from one quadrant to another.

Next examine the magnetotelluric response functions, obtained over the middle
of the resistive and conductive dikes (Fig. 6.10). Compare the apparent-resistivty

and impedance-phase curves with locally normal curves of �̈n = ∣∣Z̈ N

∣∣2/��o = �′′,
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Fig. 6.9 Curves for the apparent resistivity, impedance phase and tipper, obtained on the left of
the dike. The observation site is located at the distance 100 m from the dike; a – resistive dike,
v = 0.5 km, �′ = 10 Ohm · m, �′′ = 100 Ohm · m ; b – conductive dike, v = 0.5 km, �′ =
10 Ohm · m, �′′ = 1 Ohm · m

̈n = arg Z̈ N = −45oand �̇n = ∣∣Ż N

∣∣2/��o = �′, ̇n = arg Ż N = −45o. Let us

begin with a high-frequency range where the effective penetration depth is less than
the half-width of the dike, h′′

eff < 0.5 km. Here the �‖−curves and �⊥−curves are
undistorted, they coincide with the locally normal �̈n-curve characterizing the dike.
With lowering frequency we observe the strong divergence effect. The curves for �‖

and �⊥ depart up and down from the �̈n-curve. Here the the longitudinal resistivities
�‖ smooth the effect of the dike, while the transverse resistivities �⊥ exxagerate the
effect of the dike. With h′′

eff > 75 km, the longitudinal �‖−curves approach the
locally normal �̇n-curve characterizing the surrounding medium.

The Ex - and Hy-profiles (the TE-mode) and the Ey-profiles (the TM-mode) are
shown in Figs. 6.11 and 6.12. The electric and magnetic fields are normalized to
their values at infinity, Ex (∞) = Ė

N
x , Ey(∞) = Ė

N
y , Hy(∞) = Ḣ

N
y .

Anomalies of Ex and Hy are of the induction nature. The resistive dike manifests
itself in the maximum of Ex and the minimum of Hy . The conductive dike manifests
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Fig. 6.10 Curves for the apparent resistivity and impedance phase, obtained in the middle of the
dike (y = 0 ); a – resistive dike, v = 0.5 km, �′ = 10 Ohm ·m, �′′ = 100 Ohm ·m ; b – conductive
dike, v = 0.5 km, �′ = 10 Ohm · m, �′′ = 1 Ohm · m

itself in the minimum of Ex and the maximum of Hy . Outside the dike these anoma-
lies quickly attenuate. Give your attention to the side maxima and minima of Hy

bordering the resistive and conductive dike at high frequencies (T = 0.01 s for
the resistive dike and T = 1 s for the conductive dike). These extrema reflect the
horizontall skin effect at the dike edges. With lowering frequency the anomalies of
Ex and Hy diminish. They die out provided h′′

eff >> 2v (T = 100 s in the case of
the resistive dike and T = 10000 s in the case of the conductive dike). We see that
resolving power of Ex and Hy decreases with depth.

Anomalies of Ey are of the galvanic nature. They have a jump on the dike edges
and produce strongly pronounced maxima (over the resistive dike) and minima (over
the conductive dike). These extrema are fringed by the side minima and maxima of
Ey associated with rearrangement of the transverse currents due to different skin
depth in the dike and in the ambient medium. With lowering frequency the side
extrema vanish, while the central extrema take the rectangular form.

In closing consider the Wzy-profiles given in Fig. 6.13. The resistive and con-
ductive dikes manifest themselves in zigzag anomalies of ReWzy and ImWzy with
maximum and minimum over the dike edges. The resistive dike makes a zigzag
with left maximum and right minimum, whereas the conductive dike makes a zigzag
with right maximum and left minimum. The width of anomalies is of the order of
10h′

eff. With lowering frequency the anomalies decay, faster for the resistive dike
and slower for the conductive dike. At the bottom of Fig. 6.13 the real inductive
arrows are shown. They converge to the resistive dike and diverge outward from the
conductive dike.
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Fig. 6.13 Profiles of the tipper in the dike model; a – resistive dike, v = 0.5 km, �′ = 10 Ohm ·
m, �′′ = 100 Ohm · m; b – conductive dike, v = 0.5 km, �′ = 10 Ohm · m, �′′ = 1 Ohm · m



Chapter 7
Models of the Near-Surface Distortions

We will consider three kinds of near-surface effects distorting the magnetotelluric
field: (1) effects of small-scale inclusions located at shallow depth or even out-
cropped, (2) effects, caused by variations in the conductance of sediments underlaid
with resistive basement, and (3) effects caused by structures in the basement topog-
raphy. Our concern is to gain a more penetrating insight into physical mechanisms
of distorting effects.

7.1 Distortions Caused by Small-Scale Near-Surface Inclusions

This kind of distortions will be referred to as �-effect. Let us examine two-
dimensional and three-dimensional �-effects.

7.1.1 The Two-Dimensional �-Effect of the Semicylinder
and Prism

A model of the two-dimensional �-effect that provides simple analytic solution is
presented in Fig. 7.1. The model consists of three layers: the sediments (�′

1, h1),
the resistive lithosphere (�2 >> �′

1, h2 >> h1), and the conductive mantle (�3). The
sediments contain an outcropped inclusion in the form of an infinitely long horizon-
tal semicylinder (�′′

1, a << h1). Assume that at the periods under consideration the
effective penetration depth heff is many times larger than the semicylinder radius a.
So, considering the anomalous field, caused by the inclusion, we can neglect the
induction effects and reduce the problem to the direct-current statement demon-
strating the galvanic effects in the TM-mode.

Introduce a cylindrical coordinate system r, �, x with x being the axis of the
semicylinder. Ignoring influence of lithosphere and mantle, we determine the scalar
potential of the electric field in the Earth as

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 203
DOI 10.1007/978-3-540-77814-1 7, C© Springer-Verlag Berlin Heidelberg 2008
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T, s1/2 T, s1/2

Fig. 7.1 Two-dimensional �-effect of the outcropped small-scale semicylinder; model parameters:
�′

1 = 10 Ohm·m, h1 = 1 km, �2 = 100000 Ohm·m, h2 = 124 km, �3 = 0, a = 10 m; conductive
semicylinder �′′

1 = 1 Ohm·m, resistive semicylinder �′′
1 = 100 Ohm·m
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U (r, �, �) =

⎧⎪⎪⎨
⎪⎪⎩

EN
y (�)

{
−r cos � + �′

1 − �′′
1

�′
1 + �′′

1

a2 cos �

r

}
for r ≥ a

−EN
y (�)

2�′′
1

�′
1 + �′′

1

r cos � for r ≤ a,

(7.1)

where EN
y (�) is the normal electric field on the Earth’s surface z = 0 (Smythe,

1950). The function Usatisfies the boundary conditions

�U

��

∣∣∣∣
�=+0,π−0

= 0 U |r=a+0 = U |r=a−0
1

�′
1

�U

�r

∣∣∣∣
r=a+0

= 1

�′′
1

�U

�r

∣∣∣∣
r=a−0

.

On differentiating U , we get the electric field along the y-axis:

Ey(y, �) = Ey(y, z = 0, �) = −�U (r, �, �)

�r

∣∣∣∣
�=0

=

⎧⎪⎪⎨
⎪⎪⎩

{
1 + �′

1 − �′′
1

�′
1 + �′′

1

a2

y2

}
EN

y (�) for |y| ≥ a

2�′′
1

�′
1 + �′′

1

EN
y (�) for |y| ≤ a,

(7.2)

whence

Z⊥(y, �) = − Ey(y, �)

H N
x

=

⎧⎪⎪⎨
⎪⎪⎩

{
1 + �′

1 − �′′
1

�′
1 + �′′

1

a2

y2

}
ZN(�) for |y| ≥ a

2�′′
2

�′
1 + �′′

1

ZN(�) for |y| ≤ a,

(7.3)

where H N
x is the normal magnetic field on the Earth’s surface and ZN = −EN

y /H N
x

is the normal impedance.
Thus,

�⊥(y, �) =
∣∣Z⊥(y, �)

∣∣2
��o

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1 + �′

1 − �′′
1

�′
1 + �′′

1

a2

y2

}2

�N(�) = 	′�N(�) for |y| ≥ a
{

2�′′
1

�′
1 + �′′

}2

�N(�) = 	′′�N(�) for |y| ≤ a,

(7.4)
where �N = |ZN|2 /��0 is the normal apparent resistivity and 	′, 	′′ are the real
frequency-independent distortion factors

	′ =

⎧⎪⎪⎨
⎪⎪⎩

1 +
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1

�′′
1

− 1

�′
1

�′′
1
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1

�′′
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2

. (7.5)
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In the traditional log − representation

log �⊥(y, �) = log �N(�) +
{

log 	′ for |y| ≥ a

log 	′′ for |y| ≤ a.
(7.6)

So, the MTS-distortion defined in accordance to (1.101) is

��⊥ = log �⊥ − log �N = log 	.

It is evident that electric charges accumulated at the inclusion surface produce the
galvanic anomaly, which manifests itself in the vertical static shift of the transverse
apparent-resistivity curves. The magnitude log 	 of the static shift is defined by
�′

1/�′′
1. This effect goes under the name of �–effect. Beginning with a critical fre-

quency that depends on the inclusion size, the �−effect shifts the low-frequency
branches of the �⊥−curves up or down. It does not change the shape of shifted �⊥−
curves and does not affect the corresponding impedance-phase curves.

Let us consider a model with �′
1 = 10 Ohm·m, h1 = 1km, �2 = 105 Ohm·m,

h2 = 124 km, �3 = 0, and a = 10 m, �′′
1 = 100 Ohm·m (“resistive” inclusion)

or 1 Ohm·m (“conductive” inclusion). The semicylinder radius a is several orders
less than the effective penetration depth heff required for the sufficiently complete
information on �N(z). Look at the graphs of 	 and the apparent-resistivity curves
of �⊥ presented in Fig. 7.1. In the vicinity of the resistive inclusion we see a dras-
tic fall of 	′ caused by deconcentration of currents flowing under the inclusion.
Here 	′ < 1 and the �⊥–curve with its ascending and descending branches is shifted
downward. Over the resistive inclusion 	′′ > 1 and the �⊥−curve with its ascending
and descending branches is shifted upward. But note that 	′′ does not exceed 4
even if �′′

1 is infinitely large. Exactly the converse situation is characteristic of the
conductive inclusion. In its vicinity we have a rise of 	′ caused by concentration of
currents flowing into the inclusion. Here 	′ > 1 and the �⊥−curve with its ascend-
ing and descending branches is shifted upward, but 	′ does not exceed 4 even if
�′′

1 is infinitesimal. Over the conductive inclusions we see a drastic fall of 	′′ and
the �⊥−curve with its ascending and descending branches is shifted profoundly
downward.

Similar effect is observed in a model with a prismatic outcropped conduc-
tive inclusion (Fig. 7.2). The computations have been performed using the finite-
element method (Wannamaker et al., 1987). Look upon the apparent-resistivity and
impedance-phase curves obtained over the middle of the inclusion (y = 0). The
�⊥-curve with its ascending and descending branches is shifted downward more
than by one decade. But in form it is almost identical to the normal �N-curve. This
static effect does not affect the ⊥-curve, whose ascending and descending branches
merge with the normal N-curve.

The immediate interpretation of the �⊥-curve distorted by the � −effect would
yield dramatic errors in the sediments conductance and depth to the conductive
mantle. Fortunately the distorted TM-mode is accompanied by the TE-mode that
is hardly distorted: the ascending and descending branches of the curves for �‖, ‖

merge with the normal �N- and N-curves.
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Fig. 7.2 Two-dimensional
�-effect of the outcropped
small-scale conductive prism;
model parameters: �′

1 =
10 Ohm·m, h1 = 1 km, �′′

1 =
1 Ohm·m, �h = 10 m,v =
20 m, �2 = 100000 Ohm·m,

h2 = 124 km, �3 = 0. The
observation site is located in
the middle of the prism
(y = 0)

7.1.2 The Three-Dimensional ρ-Effect of the Hemisphere

Let us take the same layered model as in the previous subsection and replace the
semicylinder by a small hemisphere (Fig. 7.3). Assuming that the effective pen-
etration depth is many times larger than the hemisphere radius a, we neglect the
induction effects as well as the influence of the lithosphere and mantle and solve the
problem in direct-current approximation.

Introduce a spherical coordinate system r, �,  with origin at the centre of the
hemisphere (� is polar distance counted off from the z − axis and  is longitude
counted off from the yz − plane). Following (Groom and Bailey, 1991), we define
the scalar potential of the electric field in the Earth as
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Fig. 7.3 Three-dimensional �-effect of the outcropped small-scale hemisphere; observation sites
are located on the central y-profile; model parameters: �′

1 = 10 Ohm·m, h1 = 1 km, �2 =
100000 Ohm·m, h2 = 124 km, �3 = 0, a = 10 m; conductive hemisphere �′′

1 = 1 Ohm·m,

resistive hemisphere �′′
1 = 100 Ohm·m
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U (r, �, , �) =

⎧⎪⎪⎨
⎪⎪⎩

EN
y (�)

{
−r + �′

1 − �′′
1

�′
1 + 2�′′

1

a3

r2

}
sin � cos  for r ≥ a

−EN
y (�)

3�′′
1

�′
1 + 2�′′

1

r sin � cos  for r ≤ a,

(7.7)

where EN
y (�) = EN

y (x, y, z = 0, �) is the normal electric field on the Earth’s sur-
face. The function Usatisfies the boundary conditions

�U

��

∣∣∣∣
�=π/2−0

= 0 U |r=a+0 = U |r=a−0
1

�′
1

�U

�r

∣∣∣∣
r=a+0

= 1

�′′
1

�U

�r

∣∣∣∣
r=a−0

.

On differentiating U , we get the electric field along the y-axis:

Ey(y, �) = Ey(x, y, z = 0, �)
∣∣
x=0 = − �U (r, �, , �)

�r

∣∣∣∣ �=�/2
=0

=

⎧⎪⎪⎨
⎪⎪⎩

{
1 + 2

�′
1 − �′′

1

�′
1 + 2�′′

1

a3

|y|3
}

EN
y (�) for |y| ≥ a

3�′′
1

�′
1 + 2�′′

1

EN
y (�) for |y| ≤ a.

(7.8)

The corresponding magnetic field can be determined by the Bio-Savart law (inte-
grating excess currents inside and outside the hemisphere). The estimation shows
that at a << h1 the magnetic effect of the hemisphere is negligibly small within the
S1- and h-intervals. So, we can write Hx (x, y, z = 0, �) = H N

x , where H N
x is the

normal magnetic field at the Earth surface. On simplest mathematics we get

Z yx (y, �) = − Ey(y, �)

H N
x

=

⎧⎪⎪⎨
⎪⎪⎩

{
1 + 2

�′
1 − �′′

1

�′
1 + 2�′′

1

a3

|y|3
}

ZN(�) for |y| ≥ a

3�′′
1

�′
1 + 2�′′

1

ZN(�) for |y| ≤ a
(7.9)

and

�yx (y, �) =
∣∣Z yx (y, �)

∣∣2
��o

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1 + 2

�′
1 − �′′

1

�′
1 + 2�′′

1

a3

|y|3
}2

�N(�) = 	′�N(�) for y ≥ a
{

3�′′
1

�′
1 + 2�′′

1

}2

�N(�) = 	′′�N(�) for y ≤ a,

(7.10)

where �N = |ZN|2 /��o is the normal apparent resistivity and 	′, 	′′ are the real
frequency-independent distortion factors
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	′ =

⎧⎪⎪⎨
⎪⎪⎩

1 + 2

�′
1

�′′
1

− 1

�′
1

�′′
1

+ 2

a3

|y|3

⎫⎪⎪⎬
⎪⎪⎭

2
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⎧⎪⎪⎨
⎪⎪⎩

3
�′

1

�′′
1

+ 2

⎫⎪⎪⎬
⎪⎪⎭

2

(7.11)

which, according to (7.6), characterize the magnitude of the static shift.
Let us compare the static shifts observed in the 3D-model with a hemisphere and

in the 2D-model with a semicylinder of the same relative resistivity. Reasoning from
(7.5) and (7.11), we can show that

log 	′′(3D)

log 	′′(2D)
=

log

⎧⎪⎪⎨
⎪⎪⎩

3
�′

1

�′′
1

+ 2

⎫⎪⎪⎬
⎪⎪⎭

log

⎧⎪⎪⎨
⎪⎪⎩

2
�′

1

�′′
1

+ 1

⎫⎪⎪⎬
⎪⎪⎭

< 1, (7.12)

which is valid for resistive and conductive inclusions, �′′
1 > �′

1 and �′′
1 < �′

1. Thus,
the three-dimensional �−effect is less expressive than two-dimensional one. This
can be accounted for by the redistribution of currents that flow around a 3D resis-
tive inclusion and inflow from each side into a 3D conductive inclusion. The three-
dimensional �−effect is exemplified in Fig. 7.3. We see here the same pattern as in
Fig. 7.1, but the static shift over the near-surface inclusion is noticeably reduced.

In models under consideration the total conductance S1 of the upper layer varies
but little. Now we have to examine models with significant variations in the sedi-
ments conductance.

7.2 Two-Dimensional Conductance Models

The distortions caused by variations in the sediments conductance will be referred
to as S-effect. Let us begin our analysis with the two-dimensional S-effect.

7.2.1 The Tikhonov-Dmitriev Basic Model

We will examine several models that are essential for understanding the nature of the
near-surface distortions caused by variations in the conductance S1 of the sediments
underlaid with resistive basement.

Here we consider a pioneering model devised by Tikhonov and Dmitriev (1969).
This two-dimensional model consists of three layers (Fig. 7.4). The upper layer of
uniform resistivity �1 = const simulates the sediments. It contains an infinitely



7.2 Two-Dimensional Conductance Models 211

Fig. 7.4 The
Tikhonov-Dmitriev
two-dimensional basic model

long inhomogeneous domain V of width 2v and arbitrarily varying resistivity �1(y).
The underlying homogeneous layer of high resistivity, �2 >> �1, and great thick-
ness, h2>>h1, is identified with the consolidated crust and mantle. The perfectly
conductive bottom layer �3 = 0, relates to the asthenosphere. The air is supposed
to be a perfect insulator. So, we have

�1 =
{

�1 = const |y| ≥ v

�1(y) |y| ≤ v
S1 =

{
S1 = const |y| ≥ v

S1(y) |y| ≤ v

�2 >> �1 h2 >> h1 R2 >> R1 �3 = 0,

(7.13)

where S1 = h1/�1 is the longitudinal conductance of the upper layer, and R1 =
h1�1, R2 = h2�2 are the transverse resistances of the upper and intermediate layers.

With |y| → ∞ the electric and magnetic fields tend to the normal fields EN, HN.

The normal impedance of the model is defined by (1.43):

ZN = EN
x

H N
y

= − EN
y

H N
x

= −��o

k1
tan h

{
ik1h1 + tan h−1 k1

k2
tan h ik2h2

}
, (7.14)

where k1 = √
i��o/�1 and k2 = √

i��o/�2. The model is characterized by the bell-
like normal apparent-resistivity curve, �N = |ZN|2 /��o, consisting of the ascending
and descending branches (Fig. 1.4). The ascending branch corresponds to the S1-
interval carrying information on the conductance S1 = h1/�1 of the upper layer.
Here the impedance phase comes to 0. The descending branch corresponds to the
h-interval carrying information on the depth h = h1 +h2 of the perfectly conductive
basement. Here the impedance phase comes to −π/2.

The problem on the layered medium with inhomogeneous upper layer can be
solved in the generalized thin-sheet approximation first introduced by Dmitriev
(1969). An independent analysis of such a generalization can be found in the review
given by Ranganayaki and Madden (1980).

Let us recall the original idea of the thin-sheet approximation suggested by
Sheinmann (1947) and Price (1949). In this approach an inhomogeneous horizontal
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Fig. 7.5 Illustrating the
generalized thin-sheet
approximation

layer is approximated by a plane with variable conductance S(x, y). This plane is
called the S−plane. The Price-Sheinmann boundary conditions for the S−plane are
(Berdichevsky and Zhdanov, 1984)

El
x − Eu

x = 0 Hl
x − H u

x = SEu
y

El
y − Eu

y = 0 Hl
y − H u

y = −SEu
x ,

(7.15)

where superscripts l and u denote the lower and upper sides of the layer.
The Dmitriev generalization introduces into consideration the thickness of the

layer. Figure 7.5 displays a horizontal layer with constant thickness h and variable
resistivity �(x, y). Expanding the horizontal components of the electromagnetic
field in a Taylor series and keeping the first two terms, we write

El
x,y = Eu

x,y + h
�Eu

x,y

�z
Hl

x,y = H u
x,y + h

�H u
x,y

�z
.

Using the Maxwell equations and substituting the horizontal derivatives for the ver-
tical derivatives, we get
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�x

[
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�H u

y

�x
− �H u

x

�y

)]
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y

�x
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x

�y
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x
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y = −SEu
x + h

i��o

(
�2 Eu

y

�x�y
− �2 Eu

x

�y2

)
,

(7.16)

where S = h/� and R = h� are the longitudinal conductance and the transverse
resistance of the layer.
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These boundary conditions differ from those given by Sheinman (1947) and Price
(1949) in the terms proportional to h. They account for the finite thickness of the
layer.

Using (7.16), we solve the problem for TM- and TE-modes. It will be remem-
bered that the TM-mode is associated with H-polarized wave (the field H is polarized
in the strike direction). This mode gives the transverse MT-curves (telluric current
flows across the structures). The TE-mode is associated with E-polarized wave (the
field E is polarized in the strike direction). This mode gives the longitudinal MT-
curves (telluric current flows along the structures). The main difference between
these modes is that in a two-dimensional medium the TM-mode charges the struc-
tures, and its anomalies are of the galvanic nature, while the TE-mode does not
charges the structures, and its anomalies are of the induction nature.

In the model under consideration the TM-mode is represented by the components
Ey(y, z), Ez(y, z), Hx (y, z). On the Earth’s surface Ez(y, + 0) = 0 and Hx(y, 0) =
H N

x = const. On the surface of the perfectly conductive basement Ey(y, h) = 0.

By virtue of (7.16)

Ey(y, 0) = Ey(y, h1) + i��oh1 H N
x a

Ey(y, h1) = i��oh2 Hx (y, h1) + R2
d2 Hx (y, h1)

dy2
b

Hx (y, h1) = H N
x + S1(y)Ey(y, 0). c

(7.17)

Eliminating Ey(y, h1) and Hx (y, h1) from these relations, we get the equation for

the transverse impedance at the Earth’s surface, z = 0:

R2
d2

dy2
S1(y)Z⊥(y) − [1 − i��oS1(y)h2]Z⊥(y) = i��oh, (7.18)

where Z⊥(y) = −Ey(y, 0)/H N
x and h = h1 + h2. This differential equation can be

easily reduced to the integral equation

Z⊥(y) = S1

S1(y)
ZN + 1

S1(y)

v∫
−v

G(y − y′)Z⊥(y′)[S1(y′) − S1]dy′, (7.19)

where ZN is the normal impedance defined in the approximation (1.44) as

ZN = − i��oh

1 − i��oS1h2

and G(y − y′) is the Green function of the equation (7.18):

G(y − y′) = f g

2
e−g|y−y′|/ f (7.20)
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with

f = 1√
1 − i��oS1h2

Re f > 0

g = 1√
S1 R2

=
√

�1

h1h2�2
.

(7.21)

The parameters f and g have a simple physical meaning.
According to (1.48) and (1.49),

f ≈ 1√
1 − i

Tmax

T

≈ 1√
1 + J1

J3

≈
√

1 − J1

J
, (7.22)

where Tmax is a period relating to the maximum of the normal apparent-resistivity
curve �N, J is the total current induced in the normal model, J1 and J3 are the
currents induced in the upper layer and at the surface of the perfectly conductive
basement (Berdichevsky and Dmitriev, 2002). It is seen that f reflects the distri-
bution of the currents induced in the layered Earth. Due to the skin effect it varies
from rather small complex values within the S1-interval to 1 within the h-interval.
This parameter will be referred to as the induction parameter.

The parameter g characterizes the galvanic coupling between the upper layer
and the basement. It can be considered as a measure of transparency of the resistive
intermediate layer or, in other words, as a measure of percolation of the excess
currents through the intermediate layer. The smaller the longitudinal conductance S1

of the upper layer and the smaller the transverse resistance R2 of the intermediate
layer, the larger the parameter g and the larger the exchange of excess currents
between the upper layer and the basement. This parameter is referred to as galvanic
parameter (Berdichevsky and Dmitriev, 1976).

Figure 7.6 shows the normalized amplitude of the Green function calculated for
h2/h1 = 49 and �2/�1 = 1000, 100 with λ1/h1 = 25, 50 (S1-interval) and λ1/h1 =
100 (h-interval). Here λ1 = 2π

√
2�1/��o is the wavelength in the upper layer of

the normal model. The Green function plays the role of a spatial filter. The degree of
filter locality depends on �2/�1 and λ1/h1. The lower �2/�1 and the less λ1/h1, the
narrower the filter pass-band. In the S1-interval (λ1/h1 = 25, | f | = 0.4) the degree
of filter locality is much higher than in the h-interval (λ1/h1 = 100, | f | = 0.97).

It would be interesting to make some asymptotic estimates.
Let �2/�1 → ∞ and g → 0. Here the galvanic coupling between the upper layer

and the conductive basement is violated (no leakage through the intermediate layer)
and the Green function tends to zero. Consequently, the contribution of the integral
term becomes negligibly small. Thus, with account for (7.19) and (7.20),
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Fig. 7.6 The Green function
in the Tikhonov-Dmitriev
model, the TM-mode;
model parameters:
h2/h1 = 49, �2/�1 =
100, 1000, �3 = 0; curve
parameter: λ1/h1

Z⊥(y) = S1

S1(y)
ZN =

⎧⎪⎨
⎪⎩

1

S1(y)
= Zn in the S1-interval

−i
S1

S1(y)
��oh = S1

S1(y)
Zn in the h-interval.

(7.23)

In such approximation the transverse impedance Z⊥(y) is defined as the product
of the normal impedance ZN by the frequency-independent real factor S1/S1(y). In
the S1-interval the transverse impedance Z⊥(y) coincides with the locally normal
impedance Zn(y) = 1/S1(y). But in the h-interval it differs from Zn(y) = −i��oh
by the factor proportional to 1/S1(y). The low-frequency values of Z⊥(y) reflect
variations in S1(y). They are statically distorted. This galvanic distortion was given
the title S-effect.

The S-effect manifests itself in the vertical static shift of the low-frequency
descending branch of the transverse apparent resistivity curve. According to (7.23),

�⊥(y) =
∣∣Z⊥(y)

∣∣2
��o

=
{

S1

S1(y)

}2

�N =
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=

⎧⎪⎪⎨
⎪⎪⎩

1

��oS2
1 (y)

= �n in the S1-interval

��o

{
S1

S1(y)

}2

h2 = 	�n in the h-interval,
(7.24)

where 	 is the real frequency-independent distortion factor

	 =
{

S1

S1(y)

}2

.

The apparent-resistivity distortion defined in accordance to (1.101) is

��⊥ = log �⊥ − log �n =
⎧⎨
⎩

0 in the S1-interval

log 	 = 2 log
S1

S1(y)
in the h-interval.

(7.25)

Here the ascending branch of the �⊥-curve is undistorted, whereas its descending
branch is distorted (even dramatically distorted) being displaced from the locally
normal �n-curve by the frequency-independent distance log 	 (downward when
S1(y) > S1 and upward when S1(y) < S1).

Take a look at the transverse phase curve. According to (7.23) and (1.102)

⊥(y) ≈
{

0 in the S1-interval

−π

2
in the h-interval

(7.26)

and

�⊥ = ⊥ − n =
{

0 in the S1-interval

0 in the h-interval.
(7.27)

Here the ascending and descending branches of the ⊥-curve are undistorted: they
merge with the locally normal n-curve.

The one-dimensional inversion of the amplitude �⊥(y)-curves distorted by the
S−effect allows for determining the conductance S1(y) of the upper layer but,
instead of the depth h to the conductive basement, it yields an apparent depth

hA(y) = S1

S1(y)
h (7.28)

that may differ markedly from h. Errors in determining h cannot be avoided even
by the integrated one-dimensional inversion of the amplitude and phase curves. So,
in studying the relief of a highly conductive mantle at a depth of about 100 km we
may obtain a surface with strange zigzags caused by inhomogeneitis in sediments
at a depth of several tens or hundreds of meters. Looking through old journals, we
find numerous examples of such a naı̈ve interpretation.
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Intuition suggests that with decreasing �2/�1 and hence with increasing g the
S−effect attenuates. Indeed the less is �2 and the larger is �1, the better is galvanic
coupling between the upper layer and conductive basement and the more intensive is
vertical redistribution of currents normalizing the electromagnetic field. This heuris-
tic consideration can be easily confirmed with asymptotic estimate. In the h-interval

G(y − y′) = g

2
e−g|y−y′|.

If the galvanic parameter g is sufficiently large, then the Green function G(y − y′)
assumes the form of the delta-like function 	̃(y − y′). Hence, with accordance to
(7.19),

Z⊥(y) = − i��o
S1

S1(y)
h + 1

S1(y)

v∫
−v

[S1(y′) − S1]Z⊥(y′)	̃(y − y′)dy′

≈ −i��o
S1

S1(y)
h +

[
1 − S1

S1(y)

]
Z⊥(y)

whence

Z⊥(y) ≈ Zn(y) = −i��oh, �⊥(y) ≈ �n(y) = ��oh2. (7.29)

Clearly, in the case of sufficiently large g the S−effect vanishes. Galvanic leakage
from the upper layer may kill the S−effect.

How does the S−effect attenuate with distance from the inhomogeneity? Letting
|y| >> v, we can write (7.19) as

Z⊥(y) ≈ ZN + f g

2S1
e−gRe 1

f (|y|−v)e−igIm 1
f (|y|−v)

v∫
−v

Z⊥(y′)[S1(y′) − S1]dy′. (7.30)

Outside the inhomogeneity the anomalous field, characterized by the integral term,
decays exponentially as e−(|y|−v)/d , where

d = 1

gRe
1

f

=
√

S1 R2

Re
√

1 − i��oS1h2
. (7.31)

Parameter d allows to estimate the distance, at which the S−effect attenuates
and the distorted transverse impedance readjusts to the normalcy. This parame-
ter is referred to as adjustment distance (Ranganayaki and Madden, 1980; Singer
and Fainberg, 1985; Singer, 1992). The influence of the inhomogeneity can be
neglected if

|y| − v >> d. (7.32)
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In the h−interval ��oS1h2 <<1. Here the adjustment distance is the inverse of the
galvanic parameter:

d =
√

S1 R2 = 1

g
(7.33)

Considering a model with continuous change of the conductance S1, we assume
that intensity of the S-effect depends on relation between generation of excess cur-
rent in the upper layer and its leakage into the underlying intermediate layer. To
gain a better insight into this mechanism, we examine a two-dimensional model
suggested by Kuznetsov (2005). Letting

S1(y) = S1 + So cos ly l = 2π

L
So < S1, (7.34)

we turn to the initial equation (7.18) and write for the h-interval:

R2
d2

dy2
S1(y)Z⊥(y) − Z⊥(y) = i��oh, (7.35)

where Z⊥(y) is represented as a Fourier decomposition

Z⊥(y) =
∞∑
o

an cos nly. (7.36)

Substituting (7.36) in (7.35) and taking into account that

cos ly cos nly = 1

2
[cos(1 + n)ly + cos(1 − n)ly],

we have

R2
d2

dy2

[
S1

∞∑
o

an cos nly + 1

2
So

∞∑
o

an[cos(1 + n)ly + cos(1 − n)ly]

]

−
∞∑
o

an cos nly = i��oh,

(7.37)

from which

l2 R2

[
S1

∞∑
o

ann2 cos nly + 1

2
So

∞∑
o

an[(1 + n)2 cos(1 + n)ly

+ (1 − n)2 cos(1 − n)ly]

]
+

∞∑
o

an cos nly + i��oh =
∞∑
o

bn cos nly = 0.

(7.38)
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Equating the coefficients of this Fourier decomposition to zero, we obtain a sys-
tem of the linear algebraic equations in ao, a1 . . . an+1:

bo = ao + i��oh = 0

b1 = (1 + l2S1 R2)a1 + 1

2
l2So R2(ao + a2) = 0

bn = (1 + n2l2S1 R2)an + n2

2
l2So R2(an−1 + an+1) = 0.

(7.39)

It is not difficult to show that an is proportional to Sn
o . Thus, at the sufficiently

small amplitude So << S1 we can restrict ourselves to the first and second terms of
the impedance decomposition (7.36). By virtue of (7.39)

ao = −i��oh a1 = l2So R2

1 + l2S1 R2
i��oh, (7.40)

whence

Z⊥(y) = ao + a1 cos ly = −i��oh

[
1 − l2So R2

1 + l2S1 R2
cos ly

]
. (7.41)

Here the transverse impedance Z⊥(y) is subjected to the S–effect. It reflects the
variations in the conductance S1(y) of the upper layer and delivers the oscillating
apparent depth hA(y) to the conductive bottom:

hA(y) = h

[
1 − l2So R2

1 + l2S1 R2
cos ly

]
= h − ho cos ly, (7.42)

where

ho = h
l2So R2

1 + l2S1 R2
.

To estimate the intensity of the S−effect, we correlate the relative amplitudes

h
� = ho

h
= l2So R2

1 + l2S1 R2
, S

� = So

S1
. (7.43)

The measure of the S−effect intensity can be introduced in the form

Q = h
�

S
� = 1

1 + 1/ l2S1 R2
= 1

1 + L2/4π2d2
, (7.44)
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where d = √
S1 R2 is the adjustment distance. The oscillation period L has a mean-

ing of the width of the structures. This critical parameter defines the intensity of
the S−effect. As L << 2πd, we have the narrow structures with barely perceptible

leakage of the excess current. Hence we observe here the strong S-effect with h
� ≈ S

�

and Q ≈ 1. As L >> 2πd, we have the wide structures and the excess current in
the upper layer is barely perceptible due to the strong leakage. Hence we observe

here the weak S−effect with h
�

<< S
�

and Q ≈ 0.
Figure 7.7 presents the L−dependence of Q. The strong S−effect with Q

exceeding 0.9 shows itself at L ≤ 2d. The weak S−effect with Q ≤ 0.1 is observed
at L ≥ 20d. Let �1 = 10 Ohm·m, h1 = 1 km (sediments) and �2 = 104 Ohm·m,

h2 = 100 km (lithosphere). In this typical geoelectric situation we have the adjust-
ment distance d =316 km and the strong S−effect is to be expected over the regional
structures (elevations, depressions) even 500–600 km wide.

Next we examine the TE-mode. It is represented by the components
Ex (y, z), Hy(y, z), Hz(y, z). On the surface of the perfectly conductive basement
Ex (y, h) = 0. By virtue of (7.16)

Ex (y, 0) = Ex (y, h1) − i��oh1 Hy(y, 0)

Ex (y, h1) = −i��oh2 Hy(y, h1)

Hy(y, 0) = Hy(y, h1) + S1(y)Ex (y, 0) + h1

i��o

d2 Ex (y, 0)

dy2
.

(7.45)

Eliminating Ex (y, h1) and Hy(y, h1) from these equations, we get the differential
relation between the electric and magnetic fields on the Earth’s surface z = 0:

h1h2
d2 Ex (y)

dy2
− [1 − i��oS1(y)h2]Ex (y) = i��oh Hy(y), (7.46)

Fig. 7.7 Intensity of the
S-effect in relation to the
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where Ex (y) → EN
x and Hy(y) → H N

y as |y| → ∞. This relation can be used as the
boundary condition for the problem on the electric field in the air. On applying the
Green theorem to the region z ≤ 0, the problem is reduced to the integral equation
for Ex (y) = Ex (y, 0):

Ex (y) = EN
x + i��o

v∫
−v

G(y − y′)Ex (y′)[S1(y′) − S1]dy′, (7.47)

where the Green function

G(y − y′) = h2

π

∞∫
0

cos m(y − y′)dm

h1h2m2 + hm + 1/ f 2
(7.48)

involves the induction parameter f defined by (7.21).
Now we turn to the magnetic field. From (7.46), (7.47) and (7.48) we can easily

derive formulas for the magnetic field on the Earth surface, Hy(y) = Hy(y, 0) and
Hz(y) = Hz(y, 0):

Hy(y) = H N
y +

v∫
−v

G̃(y − y′)Ex (y′)[S1(y′) − S1]dy′ a

Hz(y) =
v∫

−v

G(y − y′)
d

dy′ {Ex (y′)[S1(y′) − S1]}dy′, b

(7.49)

where G̃(y − y′) is a function obtained by differentiating the Green function G:

G̃(y − y′) = h2

π

∞∫
0

m cos m(y − y′)dm

h1h2 m2 + hm + 1/ f 2
. (7.50)

The normalized amplitude of the Green function G is plotted in Fig. 7.8. Calcula-
tions were done for h2/h1 = 49 with λ1/h1 = 25, 50 (S1-interval) and λ1/h1 =100
(h-interval). The Green function plays the role of a spatial filter. The filter pass-band
at a level of 0.1 max |G| is about 2hef f = 2ZN/��o. It increases monotonously with
lowering frequency. So, if at high frequencies we observe the induction effect of
currents flowing in the vicinity of the observation site, then at low frequencies the
remote zones begin to affect. The same regularities are characteristic of the function
G̃ that governs the horizontal magnetic field. Once again we see that the magnetotel-
luric sounding is developing not only in the vertical direction, but in the horizontal
direction as well. In passing to the h-interval, the induction effects begin to atten-
uate. Really, the contribution of the integral terms in (7.47) and (7.49a) becomes
negligibly small as � → 0 and the magnetotelluric field comes to the normalcy.
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Fig. 7.8 The Green function in the Tikhonov-Dmitriev model, the TE-mode; model parameters:
h2/h1 = 49, �2 = ∞, �3 = 0; curve parameter: λ1/h1

Summing up, we define the longitudinal impedance

Z‖(y) ≈

⎧⎪⎪⎨
⎪⎪⎩

q(y, �)Zn(y) = q(y, �)

S1(y)
in the S1-interval

q(y, �)Zn(y) = −iq(y, �)��0h
q(y,�)→1 as �→0

in the h-interval,
(7.51)

where q(y, �) is a frequency-dependent complex factor accounting for distortions
caused by the inductive interaction between near-surface excess currents.

The longitudinal apparent resistivities and phases assume the form

�‖(y) ≈

⎧⎪⎪⎨
⎪⎪⎩

	(y, �)�n(y) = 	(y, �)

��oS2
1 (y)

in the S1-interval

	(y, �)�n(y) = 	(y, �)��oh2

|q(y,�)|→1 as �→0
in the h-interval

(7.52)

‖(y) ≈
⎧⎨
⎩

n(y) + arg q(y, �) in the S1-interval

n(y) + arg q(y, �)
arg q(y,�)→0 as �→0

in the h-interval, (7.53)

where 	(y, �) = |q(y, �)|2 .

Thus, the induction effects are most pronounced within the S1-interval. They
may tangibly affect the ascending branches of the apparent-resistivity and phase
curves, and their one-dimensional inversion may give false geoelectric structures.
But within the h-interval the induction effects die out and the one-dimensional
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inversion of the descending branches of the apparent-resistivity and phase curves
may yield a real depth to the conductive basement.

Next consider the anomalies of the vertical magnetic field. In the integral rela-
tion (7.49b) the Green function affects the derivative of the excess current. It is
evident that the intensity of Hz−anomalies depends on how fast Ex and S1 change.
Physically it means that Hz reflects the asymmetry of the excess current. The max-
imum anomalies of Hz are observed above discontinuities of S1, say, above the
vertical interfaces. Anomalies of Hz like anomalies of Ex and Hy appear within the
S1-interval and disappear in the h-interval. This specifies the shape of the frequency
responses of the tipper. The mechanism of attenuation of the near-surface magnetic
anomalies is easy to understand: it follows from (1.49) that with lowering frequency
the current in the upper inhomogeneous layer decays (J1/J3 → 0).

In conclusion, we will derive two useful estimates.
1. At what frequency do the induction effects attenuate? To get an answer, it

would be enough to define the boundary of the h-interval. From (1.48) we can derive
the following rough estimate:

T >> 2π�oh2 max S1, �<<
1

�oh2 max S1
. (7.54)

2. How far do the induction effects extend? Turn to (7.48) and (7.50) and repre-
sent the functions G(y − y′) and G̃(y − y′) as

G(u) = h2

πheff

∞∫
0

cos m̃udm̃

h̃1h̃2m̃2 + h̃m̃ + 1/ f 2

G̃(u) = h2

πh2
eff

∞∫
0

m̃ cos m̃udm̃

h̃1h̃2m̃2 + h̃m̃ + 1/ f 2
,

(7.55)

where

u = ∣∣y − y′∣∣ /heff, m̃ = mheff, h̃ 1 = h1/heff, h̃2 = h2/heff, h̃ = h/heff,

and heff = |ZN| /��o is the effective penetration depth defined by the normal
impedance. Successively integrating (7.55) by parts, we obtain the asymptotic
decompositions of the functions G(u) and G̃(u) for u → ∞. Let |y| − v >> heff.

Keeping the first terms in decompositions of G(u) and G̃(u), we write

G(u) = h2h f 4

πh2
eff

1

u2
+ O

(
1

u4

)
, G̃(u) = −h2 f 2

πh2
eff

1

u2
+ O

(
1

u4

)
. (7.56)

Substitute (7.56) in (7.47) and (7.49). Taking into account (1.44) and (7.20), we
obtain the components of the anomalous electromagnetic field far away from the
edge of the inclusion:
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EA
x (y) = Ex (y) − EN

x = i��oh2h f 4

π (|y| − v)2

v∫
−v

Ex (y′)[S1(y′) − S1]dy′

= −ZN

h2 f 2

π (|y| − v)2

v∫
−v

Ex (y′)[S1(y′) − S1]dy′,

H A
y (y) = − h2 f 2

π (|y| − v)2

v∫
−v

Ex (y′)[S1(y′) − S1]dy′,

Hz(y) = − 2h2h f 4

π (|y| − v)3

v∫
−v

Ex (y′)[S1(y′) − S1]dy′

= − ZN

i��o

2h2 f 2

π (|y| − v)3

v∫
−v

Ex (y′)[S1(y′) − S1]dy′,

(7.57)

whence

EA
x (y)

H A
y (y)

= ZN a

−i��o
Hz

d H A
y

dy

= ZN. b
(7.58)

Equation (7.58a) means that the Leontovich condition (Leontovich, 1948) is sat-
isfied in the far zone |y| − v >> heff. The ratio between EA

x and H A
y equals the

normal impedance ZN no matter how strong the magnetotelluric anomalies are. Here
the longitudinal impedance Z‖, defined by magnetotelluric ratio Ex/Hy , coincides
with the normal impedance ZN:

Z‖(y) = Ex (y)

Hy(y)
= EN

x (y) + EA
x (y)

H N
y (y) + H A

y (y)
= ZN H N

y (y) + ZN H A
y (y)

H N
y (y) + H A

y (y)
= ZN. (7.59)

Equation (7.58b) suggests that along with estimation (7.59), we can estimate ZN

using the magnetovariational ratio (1.3). Taking into account that �H N
y

/
�y = 0, we

write

−i��o
Hz

d H A
y

dy

= −i��o
Hz

d H N
y

dy + d H A
y

dy

= −i��o
Hz
d Hy

dy

= ZN. (7.60)

Note that (7.60) is valid for a field with quadratic spatial variation of Hy , while
(7.59) is valid for a field with linear spatial variation of Hy (Weidelt, 1978; Dmitriev
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and Berdichevsky, 1979; Berdichevsky and Dmitriev, 2002). Intending to determine
the normal impedance ZN, one can use the magnetovariational ratio at lesser dis-
tances from inhomogeneity than the magnetotelluric ratio (Fiskina et al., 1986).

As an example, we will consider in greater detail the 2D-models with sediments
consisting of two and three homogeneous segments.

7.2.2 The Two-Segment Model

Figure 7.9 presents a model where the upper layer consists of two homogeneous
segments of resistivities �′

1 and �′′
1. Here

�1 =
⎧⎨
⎩

�′
1 y ≤ 0

�′′
1 y ≥ 0

S1 =
{

S′
1 y ≤ 0

S′′
1 y ≥ 0

�2 >> �1 h2 >> h1 R2 >> R1 �3 = 0,

(7.61)

where S′
1 = h1/�′

1, S′′
1 = h1/�′′

1 are the conductances of the left and right segments
of the upper layer and R1 = h1�1, R2 = h2�2 are the resistances of the upper and
intermediate layers.

The two-segment model was examined by Ranganayaki and Madden (1980),
Dawson et al. (1982), Dawson (1983), Berdichevsky and Jakovlev (1989),
Barashkov and Jakovlev (1989), Weaver (1994).

The model under consideration admits of a simple analytical solution for the
TM-mode.

Return to (7.18). It falls into two equations with constant coefficients:

d2

dy2
Z⊥(y) − (g′)2

( f ′)2
Z⊥(y) = − (g′)2

( f ′)2
Ż N y ≤ 0

d2

dy2
Z⊥(y) − (g′′)2

( f ′′)2
Z⊥(y) = − (g′′)2

( f ′′)2
Z̈ N y ≥ 0,

(7.62)

Fig. 7.9 The two-segment
model

ρ1‛‛ρ1‛
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where g′, g′′and f ′, f ′′ are galvanic and induction parameters and Ż N, Z̈ N are normal
impedances in the left and right segments. By virtue of (7.21)

Ż N = − i��oh

1 − i��oS′
1h2

, Z̈ N = − i��oh

1 − i��oS′′
1 h2

.

Here Z⊥(y)
y→−∞

→ Ż N and Z⊥(y)
y→∞

→ Z̈ N.

Solutions of these equations are

Z⊥(y) =
⎧⎨
⎩

Ż N + Aeg′ y/ f ′
y ≤ 0

Z̈ N + Be−g′′ y/ f ′′
y ≥ 0.

(7.63)

Note that behavior of Z⊥ within each segment is governed by local values of
galvanic and induction parameters, g and f .

The coefficients A and B are determined from the conditions that S1 Z⊥ and
S1d Z⊥/dy are continuous at the boundary between the segments:

S′
1 Z⊥∣∣

y=0 = S′′
1 Z⊥∣∣

y=0 a

S′
1

d Z⊥

dy

∣∣∣∣
y=0

= S′′
1

d Z⊥

dy

∣∣∣∣
y=0.

b
(7.64)

Condition (7.64a) provides the continuity of the horizontal component jy of the
current density at the Earth’s surface:

S1 Z⊥ = −h1

�1

Ey(z = 0)

H N
x

= h1

H N
x

jy(z = +0),

while condition (7.64b) implies the continuity of the vertical component jz of the
current density at the floor of the upper layer. By virtue of (7.17c)

S1
d Z⊥

dy
= − 1

H N
x

d Hx (z = h1)

dy
= − jz(z = h1)

H N
x

.

Substitution of (7.63) into (7.64) gives a system of linear equations for un-
knowns A and B:

S′
1 A − S′′

1 B = S′′
1Z̈ N − S′

1Ż N

S′
1

g′

f ′ A + S′′
1

g′′

f ′′ B = 0,
(7.65)
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from which

Z⊥(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ż N

{
1 −

(
1 −

√
S′′

1

S′
1

f ′′

f ′

)
e

g′
f ′ y

}
y ≤ 0

Z̈ N

{
1 −

(
1 −

√
S′

1

S′′
1

f ′

f ′′

)
e− g′′

f ′′ y

}
y ≥ 0

(7.66)

and

�⊥(y) =
∣∣Z⊥(y)

∣∣2
��o

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�̇n

∣∣∣∣∣1 −
(

1 −
√

S′′
1

S′
1

f ′′

f ′

)
e

g′
f ′ y

∣∣∣∣∣
2

y ≤ 0

�̈n

∣∣∣∣∣1 −
(

1 −
√

S′
1

S′′
1

f ′

f ′′

)
e− g′′

f ′′ y

∣∣∣∣∣
2

y ≥ 0,

(7.67)

where �̇n and �̈n are locally normal apparent resistivities for the left and right
segments:

�̇n =
∣∣Ż N

∣∣2
��o

= ��oh2∣∣1 − i��oS′
1h2

∣∣2 �̈n =
∣∣Z̈ N

∣∣2
��o

= ��oh2∣∣1 − i��oS′′
1 h2

∣∣2 .

One can readily see that within the S1-interval (at the ascending branch of the
�⊥-curves) the distortions of the transverse impedance and apparent resistivity are
small if not negligibly small. Let ��oS′

1h2 >> 1 and ��oS′′
1 h2 >> 1. Then

√
S′

1

S′′
1

f ′

f ′′ ≈ 1,

whence

Z⊥(y) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ż N = 1

S′
1

y ≤ 0

Z̈N = 1

S′′
1

y ≥ 0

�⊥(y) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̇n = 1

��o(S′
1)2

y ≤ 0

�̈n = 1

��o(S′′
1 )2

y ≥ 0.

(7.68)

But within the h-interval (at the descending branch of the �⊥-curves) the distor-
tions become stronger. Given the large difference between S′

1 and S′′
1 , we observe

the dramatic S-effect, which manifests itself in the static shift of the descending
branches of the apparent-resistivity curves and scarcely affects the phase curves.
If ��oS′

1h2 << 1 and ��oS′′
1 h2 << 1, then f ′ ≈ f ′′ ≈ 1. Replacing the galvanic

parameters g′, g′′ by adjustments distances d ′ = 1/g′, d ′′ = 1/g′′, we write
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Z⊥(y) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ż N

{
1 −

(
1 −

√
S′′

1

S′
1

)
ey/d ′

}
y ≤ 0

Z̈ N

{
1 −

(
1 −

√
S′

1

S′′
1

)
e−y/d ′′

}
y ≥ 0

�⊥(y) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�̇n

∣∣∣∣∣1 −
(

1 −
√

S′′
1

S′
1

)
ey/d ′

∣∣∣∣∣
2

y ≤ 0

�̈n

∣∣∣∣∣1 −
(

1 −
√

S′
1

S′′
1

)
e−y/d ′′

∣∣∣∣∣
2

y ≥ 0,

(7.69)

where Ż N = Z̈ N = −i��oh and �̇n = �̈n = ��oh2.
The S-effect is most pronounced at the boundary between the left and right

segments:

Z⊥(0) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ż N

√
S′′

1

S′
1

y = −0

Z̈ N

√
S′

1

S′′
1

y = +0

�⊥(0) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̇n
S′′

1

S′
1

y = −0

�̈n
S′

1

S′′
1

y = +0.

(7.70)

With distance from the conductance discontinuity the S-effect exponentially
attenuates and the transverse apparent resistivity comes to the normalcy. Table 7.1
presents the distances y, at which �⊥ takes its locally normal value, �̇n or �̈n, with an
accuracy of 5%. For 2 ≤ S′

1/S′′
1 ≤ 1000 these critical distances chage from 2.4d to

3.7d at the left conductive segment and from 2.8d to 7.1d at the right resistive seg-
ment. Take, for instance, the sediments conductance and the lithosphere resistance
characteristic of platform regions: S1 ∼ 250 S and R2 ∼ 109 Ohm · m2. Here the
adjustment distance d is of order 500 km. Thus, the S-effect caused by variations in
the sediments conductance can cover a vast geological province.

As an example we consider a 2D-model with parameters �′
1 = 10 Ohm·m, �′′

1 =
100 Ohm·m, h1 = 1km,�2 = 105 Ohm·m, h2 = 99km, �3 = 0. Calculations have
been performed using analytical solution (7.69) and with the finite element method
(Wannamaker et al., 1987).

Table 7.1 Distances at which �⊥ ≈ �n with an accuracy of 5%

S′
1/S′′

1 2 5 10 50 100 1000

|y| /d ′ y < 0 2.4 3.0 3.3 3.5 3.6 3.7
y/d ′′ y > 0 2.8 3.9 4.5 5.5 5.9 7.1
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Fig. 7.10 Longitudinal and transverse apparent-resistivity and impedance-phase curves over the
left conductive segment in the model shown in Fig. 7.9; y-distance to the boundary between seg-
ments; �̃⊥, ̃⊥-analytical solution, �⊥, ⊥ and �‖, ‖-numerical solution by means of the finite
element method, �̇n, ̇n- locally normal solution. Model parameters: �′

1 = 10 Ohm · m, �′′
1 =

100 Ohm·m, h1 = 1 km, �2 = 105 Ohm·m, h2 = 99 km, �3 = 0

Figures 7.10 and 7.11 show the apparent-resistivity and impedance-phase curves
obtained over the left and right segments at different distances from the con-
ductance discontinuity.

First of all note that within the S1- and h-intervals the transverse �⊥-curves
plotted from the analytical and numerical solutions agree fairly well. The ascending
branches of the �⊥-curves are not distorted. They coincide with ascending branches
of the locally normal �n-curves. However, the descending branches of the �⊥-curves
are distorted by the S-effect. They are shifted from the locally normal �n-curves,
down over the left conductive segment and up over the right resistive segment. The
maximum S-effect is observed at the boundary between the segments. With distance
from the conductance discontinuity the S-effect monotonously decreases. It vanishes
at y ≈ −3000 km over the left segment (d ′ = 1000 km) and at y ≈ 1200 km
over the right segment (d ′′ = 316 km). These estimates are in a good agreement
with Table 7.1. Now have a look at the transverse phase curves. In passing to the
h-interval the ⊥-curves, plotted from the analytical and numerical solutions, merge
together and with lowering frequency they approach the locally normal n-curves.
A remarkable property of the S-effect is that the drastically shifted branches of the
�⊥-curves correspond to the slightly distorted branches of the ⊥-curves.
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Fig. 7.11 Longitudinal and transverse apparent-resistivity and impedance-phase curves over the
right resistive segment in the model shown in Fig. 7.9; y-distance to the boundary between seg-
ments; �̃⊥, ̃⊥-analytical solution, �⊥, ⊥ and �‖, ‖-numerical solution by means of the finite
element method, �̈n, ̈n- locally normal solution. Model parameters: �′

1 = 10 Ohm·m, �′′
1 =

100 Ohm·m, h1 = 1 km, �2 = 105 Ohm·m, h2 = 99 km, �3 = 0

Quite different relations are characteristic of the longitudinal magnetotelluric
curves, distorted by the induction effects. These distortions are clearly seen near
the boundary between the left and right segments. The ascending branches of the
�‖- and ‖-curves are deformed. Within the conductive segment they are affected
by the resistive segment and become steeper (y = −1km,−10 km). Within the
resistive segment they are affected by the conductive segment and flatten out
(y = 1km, y = 10 km). The induction effects vanish at |y| ≥ 100 km, which
corresponds to the condition

|y| ≥ max heff = h = h1 + h2. (7.71)

Figure 7.12 displays the tipper curves. With distance from the boundary between
the segments the tippers rather quickly diminish. The large tippers are observed
in the region |y| ≤ 10 km. Within the h-interval (T ≥ 1000 s) tippers decay. Note
that ReWzy is positive throughout all frequencies under examination, while ImWzy

changes the sign. With lowering frequency the tipper phases, W = arg Wzy , go from
the Ith quadrant to the IVth quadrant and merge with the longitudinal impedance
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phases, ‖. This relation between the tipper and the longitudinal impedance is in
agreement with decomposition (4.79) suggested in (Zhang et al., 1993).

Next we will consider the electric and magnetic profiles related to the TE- and
TM-modes.

Figure 7.13 shows Ex - and Hy-profiles crossing the two-segment model. The
fields Ex , Hy are components of the TE-mode. They are normalized to the right

normal fields Ë
N
x , Ḧ

N
y = Ḣ

N
y . At high frequencies the longitudinal electric field Ex

rises steeply up from 0.1 Ë
N
x (T = 1 s) and from 0.22 Ë

N
x (T = 15 s) to Ë

N
x . With low-

ering frequency this sharp transition monotonously flattens (T = 40÷100 s). Areas
of observable changes in Ex spread up to 400 km from the boundary between
the segments of different resistivity. The electric anomaly is accompanied by the
well-defined maxima and minima of the transverse magnetic field Hy . These
extrema reflect the concentration and deconcentration of the electric currents at
the segment boundary. The higher frequency, the narrower the concentration and
deconcentration zones and the sharper the magnetic extrema. Here we again see
the horizontal skin effect. It clearly manifests itself in the range covered T =
1÷40 s and embraces the areas of about 400 km wide. At T >250 s the skin effect
attenuates.

Figure 7.14 shows the Ey-profile (the TM-mode). The transverse electric field

Ey is normalized to the normal field Ë
N
y . It has a jump on the boundary between

the left (conductive) and right (resistive) segments. Over the left segment we see
a fall of Ey , which is accounted for by rearrangement of the transverse current
due to different skin depths in the left and right segments and by current leakage
(the current meets the resistive segment and flows under it – let us recall an old
geophysical joke “the current is not a fool”). The effect of skin-depth difference is
characteristic of high frequencies (T = 0.15 s). Its distortion zone does not exceed
1 km. At low frequencies the under-flow effect dominates (T = 15 s, 1500 s). We
can estimate its remote action by the adjustment distance d. Over the left segment
it is observed at distances numbered in the hundreds and even thousands of km
(d ′ − 3d ′). The distortion of the high-frequency field Ey over the right segment is
rather weak (T = 0.15 s). But with lowering frequency (T = 15 s, 1500 s), we
notice a pronounced anomaly of Ey , which attenuates due to leakage of excess cur-
rent into the underlying medium. Here the distortion zone numbers in the hundreds
of km (1.5 d ′′).

Finally, we consider the Wzy-profiles (Fig. 7.15). Here ReWzy is pos-
itive everywhere, while ImWzy changes the sign with frequency. The
ReWzy-profiles have a nearly symmetric maximum, whose form slightly depends
on frequency. The highest maximum of ReWzy is observed in the S1-interval
(T = 10 s). The ImWzy-profiles show maxima or minima which alternate with
frequency. In the h –interval (T = 1000 s) tippers vanish. The real inductive arrows
are shown at the bottom of Fig. 7.15. They radiate from left to right, that is, from
higher to lower conductivities.
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Fig. 7.13 Electric and magnetic field profiles (TE-mode) in the two-segment model shown in
Fig. 7.9; y-distance to the boundary between segments. Model parameters: �′

1 = 10 Ohm·m, �′′
1 =

100 Ohm·m, h1 = 1 km, �2 = 105 Ohm·m, h2 = 99 km, �3 = 0. Profile parameter: period
T = 1–1500 s
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Fig. 7.14 Electric field profiles (TM-mode) in the two-segment model shown in Fig. 7.9;
y-distance to the boundary between segments. Model parameters: �′

1 = 10 Ohm·m, �′′
1 =

100 Ohm·m, h1 = 1 km, �2 = 105 Ohm·m, h2 = 99 km, �3 = 0. Profile parameter: period
T = 0.15 − 1500 s

7.2.3 The Three-Segment Model

Now we consider a model where the upper layer consists of three segments
(Berdichevsky and Jakovlev, 1989; Weaver, 1994). The model is shown in Fig. 7.16.
Here the central segment of resistivity �′′

1 and width 2v is bordered by the left and
right segments of resistivity �′

1. In this model

�1 =

⎧⎪⎪⎨
⎪⎪⎩

�′
1 y ≤ −v

�′′
1 − v ≤ y ≤ v

�′
1 y ≥ v

S1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′
1 y ≤ −v

S′′
1 − v ≤ y ≤ v

S′
1 y ≥ v

�2 >> �1 h2 >> h1 R2 >> R1 �3 = 0,

(7.72)

where S′
1 = h1/�′

1, S′′
1 = h1/�′′

1 are the longitudinal conductances of the side and
central segments of the upper layer and R1 = h1�1, R2 = h2�2 are the transverse
resistances of the upper and intermediate layers.

Now (7.18) falls in the following two equations with constant coefficients:

d2

dy2
Z⊥(y) − (g′)2

( f ′)2
Z⊥(y) = − (g′)2

( f ′)2
Ż N |y| ≥ v

d2

dy2
Z⊥(y) − (g′′)2

( f ′′)2
Z⊥(y) = − (g′′)2

( f ′′)2
Z̈ N |y| ≤ v,

(7.73)
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Fig. 7.15 Tipper profiles in the two-segment model from Fig. 7.9; y-distance to the bound-
ary between segments. At the bottom – real inductive arrows. Model parameters: �′

1 =
10 Ohm·m, �′′

1 = 100 Ohm·m, h1 = 1 km, �2 = 105 Ohm·m, h2 = 99 km, �3 = 0. Profile
parameter: period T = 0.01 − 1000 s
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Fig. 7.16 The three-segment
model

where notations g′, f ′ and g′′, f ′′ are the same as in (7.62), and Ż N, Z̈ N are normal
impedances for the side segments and the central segment.

Solutions of these equations are

Z⊥(y) =

⎧⎪⎨
⎪⎩

Ż N + Ae−g′|y|/ f ′ |y| ≥ v

Z̈ N + B cos h
g′′

f ′′ y |y| ≤ v.
(7.74)

The coefficients A and B are determined by satisfying conditions (7.64) at the
edges of the central segment, |y| = v. Thus, we obtain

Z⊥(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż N

⎡
⎢⎢⎣1 − 1

�

�2 − �2

� + � cot h
g′′

f ′′ v
e−g′(|y|−v)/ f ′

⎤
⎥⎥⎦ |y| ≥ v

Z̈ N

⎡
⎢⎢⎣1 + 1

� sin h
g′′

f ′′ v

�2 − �2

� + � cot h
g′′

f ′′ v
cos h

g′′

f ′′ y

⎤
⎥⎥⎦ |y| ≤ v,

(7.75)
where

� =
√

S′
1

S′′
1

� = f ′

f ′′ =
√

1 − i��oS′′
1h2

1 − i��oS′
1h2

.

The transverse apparent resistivities are
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�⊥(y) =
∣∣Z⊥(y)

∣∣2
��o

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇n

∣∣∣∣∣∣∣∣
1 − 1

�

�2 − �2

� + � cot h
g′′

f ′′ v
e−g′(|y|−v)/ f ′

∣∣∣∣∣∣∣∣

2

|y| ≥ v

�̈n

∣∣∣∣∣∣∣∣
1 + 1

� sin h
g′′

f ′′ v

�2 − �2

� + � cot h
g′′

f ′′ v
cos h

g′′

f ′′ y

∣∣∣∣∣∣∣∣

2

|y| ≤ v,

(7.76)
where �̇n and �̈n are locally normal apparent resistivities in the side segments and
the central segment.

Once again we see that variations in the conductance S1 of the upper layer may
dramatically distort the descending branches of the apparent-resistivity curves (S-
effect) but leaves almost undistorted their ascending branches. Let ��oS′

1h2 >> 1
and ��oS′′

1 h2 >> 1. Then in the S1-interval (within the ascending branch of the
�⊥-curves), we have � ≈ �, whence

Z⊥(y) ≈

⎧⎪⎪⎨
⎪⎪⎩

Ż N = 1

S′
1

|y| ≥ v

Z̈ N = 1

S′′
1

|y| ≤ v

�⊥(y) =
∣∣Z⊥(y)

∣∣2
��o

≈

⎧⎪⎪⎨
⎪⎪⎩

�̇n = 1

��o(S′
1)2

|y| ≥ v

�̈n = 1

��o(S′′
1 )2

|y| ≤ v.

(7.77)

In this approximation, the transverse impedance and apparent resistivity do not
depart from their locally normal values.

Now pass on to the h-interval. Let ��oS′
1h2 << 1 and ��oS′′

1 h2 << 1. Then,
within the descending branch of the �⊥-curves, we have f ′ ≈ f ′′ ≈ 1 and � ≈ 1,
whence

Z⊥(y) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż N

⎡
⎢⎢⎢⎢⎣1 −

1 − S′′
1

S′
1

1 +
√

S′′
1

S′
1

cot h
v

d ′′

e−(|y|−v)/d ′

⎤
⎥⎥⎥⎥⎦ |y| ≥ v

Z̈ N

⎡
⎢⎢⎢⎢⎣1 − 1

sin h
v

d ′′

1 − S′
1

S′′
1√

S′
1

S′′
1

+ cot h
v

d ′′

cos h
y

d ′′

⎤
⎥⎥⎥⎥⎦ |y| ≤ v

(7.78)
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and

�⊥(y) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇n

∣∣∣∣∣∣∣∣∣∣
1 −

1 − S′′
1

S′
1

1 +
√

S′′
1

S′
1

cot h
w

d ′′

e−(|y|−v)/d ′

∣∣∣∣∣∣∣∣∣∣

2

|y| ≥ v

�̈n

∣∣∣∣∣∣∣∣∣∣
1 − 1

sin h
v

d ′′

1 − S′
1

S′′
1√

S′
1

S′′
1

+ cot h
v

d ′′

cos h
y

d ′′

∣∣∣∣∣∣∣∣∣∣

2

|y| ≤ v,

(7.79)

where d ′ = 1/g′, d ′′ = 1/g′′ are adjustment distances for side and central segments
and Ż N = Z̈ N = −i��oh, �̇n = �̈n = ��oh2.

These equations clearly demonstrate the key features of the S-effect in the three-
segment model.

The most pronounced S-effect is observed at the edges of the central segment:

Z⊥(±v) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ż N

⎡
⎢⎢⎢⎢⎣1 −

1 − S′′
1

S′
1

1 +
√

S′′
1

S′
1

cot h
v

d ′′

⎤
⎥⎥⎥⎥⎦ |y| = v + 0

Z̈ N

⎡
⎢⎢⎢⎢⎣1 −

(
1 − S′

1

S′′
1

)
cot h

v

d ′′√
S′

1

S′′
1

+ cot h
v

d ′′

⎤
⎥⎥⎥⎥⎦ |y| = v − 0

(7.80)

and

�⊥(±v) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇n

∣∣∣∣∣∣∣∣∣∣
1 −

1 − S′′
1

S′
1

1 +
√

S′′
1

S′
1

cot h
v

d ′′

∣∣∣∣∣∣∣∣∣∣

2

|y| = v + 0

�̈n

∣∣∣∣∣∣∣∣∣∣
1 −

(
1 − S′

1

S′′
1

)
cot h

v

d ′′√
S′

1

S′′
1

+ cot h
v

d ′′

∣∣∣∣∣∣∣∣∣∣

2

|y| = v − 0.

(7.81)
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If v ≥ 3d ′′, we set coth(v/d ′′) ≈ 1 and receive the same estimates (7.70) for the
S-effect as in the two-segment model:

Z⊥(±v) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ż N

√
S′′

1

S′
1

|y| = v + 0

Z̈ N

√
S′

1

S′′
1

|y| = v − 0

�⊥(±v) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̇n
S′′

1

S′
1

|y| = v + 0

�̈n
S′

1

S′′
1

|y| = v − 0.

(7.82)

Moving away from the central segment, the S-effect exponentially attenuates.
We can turn to Table 7.1 and estimate a distance, at which �⊥ approaches its locally
normal value �̇n with an accuracy of 5%. It is a question of several adjustment
distances.

It would be interesting to estimate the width w = 2v of the central segment, at
whose middle (y = 0) the transverse apparent resistivity �⊥ is close to its locally
normal value �̈n. Figure 7.17 shows the dependence of �⊥(0)/�̈N on w for models
with and S′′

1 /S′
1 = 0.01, d ′′ = 100 km and S′′

1 /S′
1 = 100, d ′′ = 1000 km. The
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Fig. 7.17 The w-dependence of the normalized transverse apparent resistivity �⊥(0)/�̈n obtained
in the middle of the central segment of the model shown in Fig. 7.16
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calculations were done by (7.79). We see that at w < 0.01d ′′ the entire central seg-
ment is embraced with strong S-effect (no visible current leakage from the upper
layer). With widening the central segment, the S-effect weakens due to current
leakage through the upper layer bottom. At w ∼ 5 ÷ 7.5 d ′′ the S-effect in the
middle of the central segment virtually vanishes. It is a question of distances that
may number in the hundreds and thousands of km.

Let us consider the magnetotelluric and magnetovariational curves calculated for
the three-segment model using analytical solutions (7.75), (7.76) and with the finite
element method (Wannamaker et al.,1987).

Figsures 7.18 and 7.19 display the transverse and longitudinal apparent-
resistivity and impedance-phase curves obtained in the model with the resistive
central segment 20 km wide.

Once again we see that within the S1- and h-intervals the �⊥-curves plotted from
the analytical and finite-element solutions agree fairly well. Ascending branches
of the �⊥-curves are not distorted. They coincide with ascending branches of the
locally normal �̇n-curves. However, descending branches of the �⊥-curves are dis-
torted by the S-effect. Over the side segments they are shifted down reflecting the
current leakage (the current penetrates into the intermediate layer and flows under
the resistive central segment). These distortions are noticeable even at great dis-
tances from the central segment (y = −1010 km, �y = |y| − v = 1000 km,
adjustment distance d ′ ≈ 1000 km). When coming closer to the central segment,
the distortion increases. In the immediate neighborhood of the central segment
(y = −11 km, �y = 1 km), the transverse apparent resistivity �⊥ is 4 times less
than �̇n. Over the central segment, the ascending branches of the �⊥-curves elongate
and their descending branches shift up reflecting the drop in S1. Here �⊥ is 2000
times greater than �̇n.

It is quite another matter with the �‖-curves. Over the side segments the lon-
gitudinal �‖-curves are slightly distorted. Induction effect caused by the resistive
insertion is noticeable only in the immediate neighborhood of the central segment
(y = −11 km, �y = 1 km). Here the ascending branch of the �‖-curve shifts to
the left and becomes less sloping. In going to the central segment, we observe a
remarkable strong distortion reflecting the inductive influence of excess currents
concentrated at both sides of the resistive central segment. Here the �‖ -curves
acquire a well-defined false minimum that could be mistaken as an evidence of a
deep conductive layer underlying the central segment. This effect is known as the
effect of false conductive layer.

Now we turn to the phase curves. Note that the descending branches of the
transverse ⊥-curves plotted from the analytical and finite-element solutions merge
together. Over the side segments the ascending and descending branches of the
⊥-curves come close to the normal ̇n-curves (slight phase distortions). But in
the region of the maximum of the ⊥-curves we observe a considerable discrep-
ancy between ⊥ and ̇n. At the same time the longitudinal ‖-curves are almost
everywhere in close agreement with the normal ̇n-curves. Only in the immediate
neighborhood of the central segment (�y = 1km) we have the ‖-curve, whose
ascending branch is strongly shifted to the left. Somewhat different relations are
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Fig. 7.19 Longitudinal and transverse apparent-resistivity and impedance-phase curves over the
resistive central segment in the model shown in Fig. 7.16; y-distance to the centre of the model;
�̃⊥, ̃⊥-analytical solution, �⊥, ⊥ and �‖, ‖-solution by the finite elements method, �̈n, ̈n-
locally normal solution. Model parameters: �′

1 = 1 Ohm·m, h1 = 1km, �′′
1 = 100 Ohm·m, v =

10 km, �2 = 10000 Ohm·m, h2 = 99 km, �3 = 0

characteristic of the central segments. Here the ascending branch of the ⊥-curves
is slightly distorted, whereas their descending branch shifts drastically to the right.
And the ‖-curves have a pronounced minimum (effect of false conductive layer),
while their descending branch is shifted to the right and comes close to the ⊥-curve.

Figure 7.20 displays the tipper curves, which are antisymmetric with respect to
the midpoint of the central segment. At all frequencies the real tippers are positive
in the left part of the model and negative in its right part. At the same time the
imaginary tipper change their sign with frequency. The large tippers are observed
over the edges of the central segment (|�y| ≤ 3km). They rather quickly attenuate
with distance from the central segment. Within the h-interval (T ≥ 8000 s) the
real and imaginary tippers decay. With lowering frequency the tipper phases, W =



7.2 Two-Dimensional Conductance Models 243

w

w
w

w
w

w

F
ig

.7
.2

0
T

ip
pe

r
cu

rv
es

in
th

e
th

re
e-

se
gm

en
tm

od
el

sh
ow

n
in

Fi
g.

7.
16

w
ith

re
si

st
iv

e
ce

nt
ra

ls
eg

m
en

t;
y-

di
st

an
ce

to
th

e
ce

nt
re

of
th

e
m

od
el

;R
eW

zy
,I

m
W

zy
−

re
al

an
d

im
ag

in
ar

y
tip

pe
rs

,


W
-p

ha
se

of
W

zy
,


‖ -

ph
as

e
of

Z
‖ .

M
od

el
pa

ra
m

et
er

s:
�

′ 1
=

1
O

hm
·m

,
h

1
=

1
km

,
�

′′ 1
=

10
0

O
hm

·m
,

v
=

10
km

,
�

2
=

10
00

0
O

hm
·m

,
h

2
=

99
km

,
�

3
=

0



244 7 Models of the Near-Surface Distortions

arg Wzy or W = arg Wzy + π , pass from the Ith quadrant to the IVth quadrant and
merge with the longitudinal impedance phases, ‖. This is in accordance with (4.6),
predicted in (Zhang et al., 1993).

Next we consider the model with the conductive central segment 20 km wide. We
observe here the same effects as in the model with the resistive central segment.

The transverse and longitudinal apparent-resistivity and impedance-phase curves
obtained in this model are shown in Figs. 7.21 and 7.22. The �⊥- and ⊥-curves
(finite-element solution) are consistent with �̃⊥- and ̃⊥-curves (analytical solu-
tion). Their distortion is rather weak within the resistive side segments bordering
the conductive central segment. Here the �⊥- and ⊥-curves are close to the normal
ones. At the same time the �‖- and ‖-curves are distorted by the induction effect
smoothing their ascending branches. This effect vanishes at distances of the order of
the effective penetration depth (100 km). Going to the central segment, we observe

Fig. 7.21 Longitudinal and transverse apparent-resistivity and impedance-phase curves over the
left resistive segment in the model shown in Fig. 7.16; y-distance to the centre of the model;
�̃⊥, ̃⊥-analytical solution, �⊥, ⊥ and �‖, ‖-numerical solution by the finite elements method,
�̇n, ̇n− locally normal solution. Model parameters: �′

1 = 1 Ohm·m, h1 = 1 km, �′′
1 =

1 Ohm·m, v = 10 km, �2 = 10000 Ohm·m, h2 = 99 km, �3 = 0
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Fig. 7.22 Longitudinal and transverse apparent-resistivity and impedance-phase curves over
the central conductive segment in the model from Fig. 7.16; y-distance to the centre of the
model; �̃⊥, ̃⊥-analytical solution, �⊥, ⊥ and �‖, ‖-numerical solution by the finite elements
method, �̇n, ̇n-locally normal solution. Model parameters: �′

1 = 100 Ohm·m, h1 = 1 km, �′′
1 =

100 Ohm·m, v = 10 km, �2 = 10000 Ohm·m, h2 = 99 km, �3 = 0

the strong S-effect that dramatically distorts the �⊥-curves. These curves have no
ascending branch and their descending branch is shifted deeply down. Here the �‖-
and ‖- curves are much less distorted.

Figure 7.23 presents the tipper curves. Here over the side segments bordering the
conductive central segment we observe rather large tippers at distances �y = |y|−v

about 30 km. Comparing Fig. 7.23 with Fig. 7.20, we see that conductive struc-
tures cause more vigorous magnetovariational anomalies than resistive structures.
Note also that in this model low-frequency tippers show the same property as in
the model with the resistive central segment: the tipper phases, W = arg Wzy or
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W = arg Wzy + π , pass from the Ith quadrant to the IVth quadrant and merge with
the longitudinal impedance phases, ‖.

In closing consider the field and tipper profiles.
Figure 7.24 presents the electric and magnetic profiles in a model with the resis-

tive central segment. The fields Ex , Hy (TE-mode) and Ey (TM-mode) are nor-

malized to the normal fields Ė
N
x ,Ė

N
y ,Ḣ

N
y . The inductive TE-anomalies envelope

the central segment and rather quickly attenuate with distance. At the distances

Fig. 7.24 Electromagnetic field profiles in the three-segment model with resistive central segment
shown in Fig. 7.16; y-distance to the centre of the model. Model parameters: �′

1 = 1 Ohm·m, h1 =
1 km, �′′

1 = 100 Ohm·m, v = 10 km, �2 = 10000 Ohm·m, h2 = 99 km, �3 = 0 Profile param-
eter: period T = 1–10000 s
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�y = |y| − v = 30 km they virtually vanish. Let us take a look at their frequency
dependence. On a period T = 1s we observe a bell-like maximum of Ex and a
bowl-like minimum of Hy fringed with sharp side maxima. The minimum of Hy

is caused by current deficiency within the central resistive segment, while the side
maxima reflect the concentration of longitudinal currents in the neighborhood of the
central segment (horizontal skin effect). Such events are characterized by the condi-
tion h′′

eff << 2v (the effective depth penetration is much less than the width of central
segment). At low frequencies, when h′′

eff >> 2v, these anomalies flatten (T = 100s)
and vanish (T = 10000 s). This effect is referred to as inductive flattening. Quite
different picture is exhibited by the galvanic TM-anomaly. Over the central segment
we have a box-like maximum of Ey whose amplitude slightly depends on frequency.
Outside the central segment two types of galvanic anomalies are observed. At high
frequency (T = 1s) we have sharp side minima of Ey associated with rearrange-
ment of transverse currents due to different skin depth in the central segment and in
the bordering side segments. With lowering frequency these minima vanish and we
see a slow decrease of Ey caused by current leakage (transverse currents penetrate
into the underlying medium and flow under the resistive segment). In the h-interval
(T = 10000 s) this effect extends to distances about 1000 km.

The electric and magnetic profiles in a model with the conductive central segment
are presented in Fig. 7.25. First consider the inductive TE-anomalies. The central
segment manifests itself in a bowl-like minimum of Ex (T = 1s, h′′

eff << 2v). At
the low frequencies this minimum flattens and vanishes (T = 100 − 10000 s,
h′′

eff >> 2v). A decrease in Ex is accompanied with an increase in Hy . Note that
at high frequencies the horizontal skin effect makes itself evident within the central
segment: the excess longitudinal currents are concentrated at its boundaries caus-
ing the sharp side maxima of Hy (T = 1s). At the low frequencies the excess
currents are distributed uniformly and the anomaly of Hy assumes the form of a
bell-like maximum (T = 100 s). At T = 10000 s this maximum decays. The
anomalies of Ex and Hy attenuate rather quickly with distance. At the distances
�y = |y| − v >> 100 km they virtually vanish. Coming to the galvanic TM-
anomalies, we observe an abrupt drop in Ey over the central segment (current rear-
rangement effect, which shows up in sharp side minima). Note also that within the

central segment
∣∣∣Ey/Ė

N
y

∣∣∣ <<
∣∣∣Ex/Ė

N
x

∣∣∣ for T ≥ 100 s. If the normal field is isomet-

ric (Ė
N
x = Ė

N
y ), then

∣∣Ey

∣∣ << |Ex |. The low-frequency electric field is quasilinearly
polarized along the conductive central segment, which serves as a current channel.
This effect looks like a channeling effect.

Figure 7.26 displays the Wzy-profiles. We see here the same zigzag anomalies of
ReWzy and ImWzy as in the dike model (compare Fig. 7.26 with Fig. 6.13). Note
that the real and imaginary tippers are intensive in the S1-interval and they quickly
decay in going to the h-interval.

7.2.4 The Screening Effect

In closing we consider a case that highly resistive intermediate layer inhibits the
current rearrangement and impairs or even blocks the access to information on the
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Fig. 7.25 Electromagnetic field profiles in the three-segment model with conductive central
segment shown in Fig. 7.16; y-distance to the centre of the model. Model parameters: �′

1 =
100 Ohm·m, h1 = 1 km, �′′

1 = 1 Ohm·m, v = 10 km, �2 = 10000 Ohm·m, h2 = 99 km,

�3 = 0 Profile parameter: period T = 1 − 1000 s

conductance of underlying sedimentary strata. This galvanic effect is referred to as
the screening or shielding effect.

A model of the galvanic-screening effect is shown in Fig. 7.27. Here the sed-
imentary strata consists of three layers: the upper conductive layer (�1, h1), the
highly resistive intermediate layer �2 >> �1, h2) and the lower inhomogeneous
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Fig. 7.26 Tipper profiles in the three-segment model shown in Fig. 7.16; y-distance to the centre of
the model. At the bottom – real inductive arrows. Model parameters: a – in the model with resistive
central segment �′

1 = 1 Ohm·m, �′′
1 = 100 Ohm·m, v = 10 km, h1 = 1, �2 = 10000 Ohm·m, h2 =

99 km, �3 = 0; b – in the model with conductive central segment �′
1 = 100 Ohm·m, �′′

1 =
1 Ohm·m, v = 10 km, h1 = 1 km, �2 = 10000 Ohm·m, h2 = 99km, �3 = 0. Profile parameter:
period T = 0.01 − 10000 s

Fig. 7.27 Three-segment
model with a higly resistive
screening layer
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three-segment layer (�3, h3) with the side segments of resistivity �′
3 and the central

segment of resistivity �′′
3 and width 2v. The sediments rest on the highly resistive

lithosphere (�4 >> �1, h4 >> h1+h2+h3) underlaid with highly conductive mantle
(�5 = 0).

Let us begin with analytical solution of the problem for the TM-mode. Following
(Berdichevsky and Jakovlev,1990), we ignore the influence of the conductive mantle
and set �4 → ∞, h4 → ∞. Then, using Dmitriev’s thin-sheet approximation (7.16)
and taking into account that on the surface of the perfect insulator Hx = 0, we write

Ey(y, 0) = Ey(y, h1) + i��oh1 H N
x

Ey(y, h1) = Ey(y, h12) + i��oh2 Hx (y, h1) + R2
d2 Hx (y, h1)

dy2

Hx (y, h 1) = H N
x + S1 Ey(y, 0)

Hx (y, h12) = Hx (y, h1) + S2 Ey(y, h1)

Hx (y, h12) = −S3(y)Ey(y, h12),

where h12 = h1 + h2 and S1 = h1/�1, S2 = h2/�2, S3(y) = h3/�3(y), R2 = h2�2.
Eliminating Ey(y, h1), Ey(y, h12) and Hx (y, h1), Hx (y, h12) from these equations,
we get the equation for the transverse impedance at the Earth’s surface, z = 0:

S1 R2
d2S3(y)Z⊥(y)

dy2
− [S(y) − i��oS1h2S3(y)]Z⊥(y)

= −{1 − i��o[h1S2 + h12S3(y)]},
(7.83)

where Z⊥(y) = −Ey(y)/H N
x and S(y) = S1 + S2 + S3(y). With ��oS1h2 << 1

and ��o[h1S2 + h12S3(y)] << 1 we are in the S-interval. Here (7.83) reduces to the
equation

S1 R2
d2S3(y)Z⊥(y)

dy2
− S(y)Z⊥(y) = −1, (7.84)

which falls into two equations with constant coefficients:

S1 R2S′
3

d2 Z⊥(y)

dy2
− S′ Z⊥(y) = −1 |y| ≥ v

S1 R2S′′
3

d2 Z⊥(y)

dy2
− S′′ Z⊥(y) = −1 |y| ≤ v,

(7.85)

where S′
3 = h3/�′

3, S′′
3 = h3/�′′

3 and S′ = S1 + S2 + S′
3, S′′ = S1 + S2 + S′′

3 .
General solutions of equations (7.85) are

Z⊥(y) =
{

Ż N + Ae−ḡ′|y| |y| ≥ v

Z̈ N + B cos hḡ′′y |y| ≤ v,
(7.86)
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where ḡ′, ḡ′′ are the generalized galvanic parameters of the �′
3- and �′′

3-segments:

ḡ′ =
√

S′

S1 R2S′
s

=
√

S′

S′
3

g ḡ′′ =
√

S′′

S1 R2S′′
3

=
√

S′′

S′′
3

g

g = 1√
S1 R2

(7.87)

and Ż N, Z̈ N are the normal impedances:

Ż N = 1

S′ , Z̈ N = 1

S′′ . (7.88)

The generalized adjustment distances are

d̄ ′ = 1

ḡ′ =
√

S′
3

S′ d, d̄ ′′ = 1

ḡ′′ =
√

S′′
3

S′′ d, d =
√

S1 R2. (7.89)

They differ from the standard adjustment distance d by factor depending on ratio
between S3 and S. The less the conductance S3 of sediments covered with highly
resistive layer, the less the generalized adjustment distance.

The coefficients A and B are determined from the conditions that Z⊥ and
d Z⊥/dy are continuous at |y| = v. It is easy to show that these conditions provide
continuity of current densities jy and jz within the first and second layers.

On simple mathematics we obtain

Z⊥(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

S′

⎡
⎢⎣1 − �S3

S′′ + q ′ cot h
v

d̄ ′′
e−(|y|−v)/d̄ ′

⎤
⎥⎦ |y| ≥ v

1

S′′

⎡
⎢⎣1 + 1

sin h
v

d̄ ′′

�S3

q ′′ + S′ cot h
v

d̄ ′′
cos h

y

d̄ ′′

⎤
⎥⎦ |y| ≤ v,

(7.90)

where

�S3 = S′′
3 − S′

3, q ′ =
√

S′S′′S′′
3

S′
3

, q ′′ =
√

S′S′′S′
3

S′′
3

.

These representations give a good account of the screening effect. The central
segment manifests itself due to current penetrating through the shielding layer �2.
The conductive penetrability of the layer �2 is characterized by the generalized
galvanic parameters ḡ′ and ḡ′′, which define the generalized adjustment distances
d̄ ′ and d̄ ′′. The most indicative is the relation between d̄ ′′ and the half-width v of
central segment. According to (7.90),
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Z⊥(0)
d̄ ′′ << v

≈ 1

S′′ weak screening

Z⊥(y)
d̄ ′′ >> v

≈ 1

S′ strong screening.

(7.91)

The screening effect is exemplified in Fig. 7.28. Here the apparent-resistivity
curves obtained over the middle of the central conductive segment (y = 0) are
shown. They have been computed by the finite-element method (Wannamaker
et al., 1987). The resistivity �2 of the shielding layer takes the value from 1000
to 125000 Ohm·m. Let us consider the transverse �⊥− curves. They depend heavily

Fig. 7.28 The screening effect in the model shown in Fig. 7.27. Model parameters: �1 =
5 Ohm·m, h1 = 0.2 km, �2 = 1000, 5000, 25000, 125000 Ohm·m, h2 = 0.3 km, �′

3 =
100 Ohm·m, �′′

3 = 1 Ohm·m h3 = 0.3 km, v = 15 km, �4 = 10000 Ohm·m, �5 = 0
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on �2. In the case that �2 = 1000 Ohm·m and d̄ ′′/v = 0.28 the conductive central
segment is hardly screened: the �⊥−curve has a well-defined minimum reflecting
the conductive segment of the layer �3 and its ascending branch is close to the locally
normal �̈n−curve (descending branch of the �⊥−curve is shifted down because of
the S−effect). But with �2 = 5000 Ohm·m and d̄ ′′/v = 0.64 the minimum of the
�⊥−curve flattens and with �2 ≥ 25000 Ohm·m and d̄ ′′/v ≥ 1.4 vanishes at all.
Here we observe the strong screening of the conductive central segment. This effect
does not affect the longitudinal �‖−curves, which are close to the locally normal
�̈n−curve but have steeper ascending branch due to inductive influence of resistive
side segments.

7.3 Three-Dimensional Conductance Models

Let us consider several thin-sheet models, which admit analytic representations of
the three-dimensional S-effect.

7.3.1 The Dmitriev-Barashkov Basic Model

The three-dimensional model of the S-effect, suggested by Dmitriev and Barashkov
(Barashkov, 1983; Barashkov and Dmitriev, 1987), is shown in Fig. 7.29. Here

�1(x, y) →√
x2+y2→∞

�1 = const, S1(x, y) →√
x2+y2→∞

S1 = const

�2 >> �1 h2 >> h1, R2 >> R1 �3 = 0,

(7.92)

where S1(x, y) = h1/�1(x, y), R1 = h1�1, R2 = h2�2. The function �1(x, y) is
twice differentiable.

Here we briefly run through cumbersome mathematics. The problem is solved
in thin-sheet S-approximation and involves two polarizations of the normal electro-
magnetic field:

Fig. 7.29 The
Dmitriev-Barashkov basic
model

(x,y)



7.3 Three-Dimensional Conductance Models 255

EN(1) = {
EN

x , 0, 0
}
, HN (1) = {

0, H N
y , 0

}
EN(2) = {

0, EN
y , 0

}
, HN(2) = {

H N
x , 0, 0

}
.

The low-frequency asymptotics of the impedance tensor, obtained for sufficiently
slow S1−variations, assumes the form

[Z(x, y, �)] = [e][ZN(�)], (7.93)

where [ZN(�)] is the normal one-dimensional low-frequency impedance tensor
determining the depth h to the conductive basement:

[ZN(�)] =
[

0 ZN(�)
−ZN(�) 0

]
, ZN(�) = −i��oh (7.94)

and [e] is the real-valued frequency-independent electric distortion matrix determin-
ing the S-effect:

[e(x, y)] =

⎡
⎢⎢⎣

1 − �u(x, y)

�x
−�v(x, y)

�x

−�u(x, y)

�y
1 − �v(x, y)

�y

⎤
⎥⎥⎦ . (7.95)

Here u(x, y), v(x, y) are scalar potentials of the normalized anomalous electric
fields in the first (m =1) and the second (m =2) polarizations of the normal field:

EA(1)

EN
x

= −grad u,
EA(2)

EN
y

= −grad v. (7.96)

The functions u(x, y), v(x, y) are derived from the equations

�

�x

(
1

g2(x, y)

�u(x, y)

�x

)
+ �

�y

(
1

g2(x, y)

�u(x, y)

�y

)
− u(x, y) = �

�x

1

g2(x, y)
a

�

�x

(
1

g2(x, y)

�v(x, y)

�x

)
+ �

�y

(
1

g2(x, y)

�v(x, y)

�y

)
− v(x, y) = �

�y

1

g2(x, y)
, b

(7.97)
where g(x, y) = 1/

√
S1(x, y)R2 is the local galvanic parameter.

It is seen that the three-dimensional S−effect depends on distribution of galvanic
parameter g(x, y) and its gradients. We observe here the same mechanisms as in
above-examined two-dimensional models of the S−effect.

An important point is that the transition from Dmitriev-Barashkov’s model to the
two-dimensional Tikhonov-Dmitriev model can be accomplished by simple elongat-
ing of three-dimensional structures. Let S1, v, g be functions of y. Then, according
to (7.96) and (7.97),
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d2

dy2

{
1

g2(y)

(
dv(y)

dy
− 1

)}
− dv(y)

dy
= 0,

whence on some substitutions we obtain

R2 d2

dy2
S1(y)Z⊥(y) − Z⊥(y) = i��oh, Z⊥ = − Ey

H N
x

,

which coincides with low-frequency asymptotics of Tikhonov-Dmitriev’s equation
(7.18).

Evidently the Dmitriev-Barashkov model can be considered as a three-
dimensional generalization of the two-dimensional Tikhonov-Dmitriev model.

7.3.2 The Singer-Fainberg Model

Now we review another three-dimensional generalization of the Tikhonov-Dmitriev
model suggested by Singer and Fainberg (1985) and Fainberg and Singer (1987).
The Singer-Fainberg model gains a better insight into the physical mechanism of
anomalies caused by the S1-variations and allows for estimating their long-range
action.

The model is shown in Fig. 7.30. It has the same normal background as in the
Tikhonov-Dmitriev model, but its upper layer contains a closed anomalous domain
V bounded by arbitrary cylindrical surface:

�1 =
{

�1 = const outside V

�1(x, y) inside V
S1 =

{
S1 = const outside V

S1(x, y) inside V

�2 >> �1 h2 >> h1 R2 >> R1 �3 = 0,

(7.98)

where S1 = h1/�1 is the conductance of the upper layer, and R1 = h1�1, R2 = h2�2

are the resistances of the upper and intermediate layers.

Fig. 7.30 The
Singer-Fainberg model
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The problem is solved in the Price-Sheinmann thin-sheet approximation.
On the Earth’s surface the electric and magnetic fields Eτ (Ex , Ey) and

H(Hx , Hy, Hz) are determined from the integral equation

Eτ (r) = EN
τ + EA

τ (r) = EN
τ +

∫∫
V

[GE (r|rs)]�S1(rs)Eτ (rs)ds (7.99a)

and the integral relation

H(r) = HN
τ + HA

τ (r) = HN
τ +

∫∫
V

[GH (r|rs)]�S1(rs)Eτ (rs)ds, (7.99b)

where EN
τ (EN

x , EN
y ), HN

τ (H N
x , H N

y ) and EA
τ (EA

x , EA
y ), HA

τ (H A
x , H A

y ) are the normal
and anomalous electric and magnetic fields, �S1(rs) = S1(rs) − S1 is the excessive
conductance, [GE ] and [GH ] are the electric and magnetic Green tensors for the
horizontally layered normal background.

Let the distance to the anomalous domain V be much greater than its maximum
diameter. Turn to (7.99a) and (7.99b) and represent the anomalous electromagnetic
field EA, HA observed far avay from the domain V as the field of an equivalent
electric dipole located at a point O in the middle of V . Taking the Green tensors
outside the integrals, we use cylindrical coordinates r, , z with the origin at the
equivalent dipole, and write

EA
τ = [GE ]

∫
V

∫
�S1(rs)Eτ (rs)ds = [GE ]P

HA
τ = [GH ]

∫
V

∫
�S1(rs)Eτ (rs)ds = [GH ]P,

(7.100)

where

P =
∫
V

∫
�S1(rs)Eτ (rs)ds (7.101)

is the moment of the equivalent electric dipole. Note that Eτ and P tend to zero as
� → 0.

Using cylindrical coordinates r, , z with the origin at the point O, we write

EA
r = Pr

S1

{
Q1(r )

r
+ d Q4(r )

dr

}
, EA

 = P

S1

{
d Q1(r )

dr
+ Q4(r )

r

}
,

H A
r = P

d Q3(r )

dr
, H A

 = −Pr
Q3(r )

r
, H A

z = −P

{
1

r

d

dr
r

d Q2(r )

dr
− Q2(r )

r2

}
,

(7.102)
where Pr = P·1r , P = P·1, 1r = r/r, 1 = 1r × 1z, P = Pr 1r + P1.
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Functions Q1, Q2, Q3, Q4 are defined by

Ql(r ) = 1

2π

∞∫
0

ql (m)J1(mr )dm, l = 1, 2, 3, 4, (7.103)

where J1 is the first order Bessel function, and

q1(m) =
(

1 − i��oS1
Z̄ T E

m Z̄ T E − i��o

)−1

, q2(m) = Z̄ T E

m Z̄ T E − i��o(1 + S1 Z̄ T E )
,

q3(m) = m Z̄ T E

m Z̄ T E − i��o(1 + S1 Z̄ T E )
, q4(m) = 1

1 + S1 Z̄ T M
.

(7.104)
The spectral TE- and TM-impedances Z̄ T E and Z̄ T M of the two-layered horizontally
homogeneous medium underlying the inhomogeneous S1− plane are computed as

Z̄ T E = − i��o

�2
tanh �2h2, Z̄ T M = �2�2 tanh �2h2, �2 =

√
m2 − i��o/�2.

(7.105)
They relate to the TE- and TM-modes which reflect the induction and galvanic
effects respectively.

As is seen from (7.102), (7.103) and (7.104), the Green tensor [GE ] governing
the anomaly of the electric field involves both impedances, “inductive” Z̄ T E and
“galvanic” Z̄ T M , while the Green tensor [GH ] governing the anomaly of the mag-
netic field involves only the “inductive” impedance Z̄ T E . This defines essentially
different character of electric and magnetic anomalies. With lowering frequency the
inductive impedance Z̄ T E tends to zero:

Z̄ T E

�→0
→ 0, (7.106)

whereas the galvanic impedance Z̄ T M takes on a static value:

Z̄ T M

�→0
→ m�2 tanh mh2. (7.107)

Substituting (7.106), (7.107) into (7.102), (7.103) and (7.104), we have

EA
r

Pr
�→0

→ 1

2π S1

⎧⎨
⎩

1

r2
+ d

dr

∞∫
0

J1(mr )

1 + mS1�2 tanh mh2
dm

⎫⎬
⎭

EA


P
�→0

→ 1

2π S1

⎧⎨
⎩− 1

r2
+ 1

r

∞∫
0

J1(mr )

1 + mS1�2 tanh mh2
dm

⎫⎬
⎭

H A
r

�→0
→ 0, H A


�→0

→ 0, H A
z

�→0

→ 0.

(7.108)
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This mathematics sheds light on the physical mechanisms of the magnetotelluric
anomalies caused by near-surface three-dimensional inhomogeneities. Anomalies
of electric field include the induction and galvanic parts. At low frequency they
lose the inductive part and become static. Anomalies of the magnetic field are of
the inductive nature. At low frequency they vanish. The remarkable property of the
magnetic field is that with lowering frequency it gets free of near-surface distortions.

At what distance from inhomogeneity can we determine the true normal
impedance? Singer and Fainberg answer this question, using two criteria: r >> λo

and r >> λL. Combining these criteria, they write

r >> max(λo, λL). (7.109)

Parameter λo is an effective penetration depth h̄eff derived from the Tikhonov-
Cagniard impedance Z̄ of the two-layered horizontally homogeneous medium
underlying the inhomogeneous S1− plane:

λo = h̄eff = ∣∣Z̄ ∣∣ /��o, (7.110)

where

Z̄ =
√

−i��o�2 tan h
√

−i��o
/

�2h2.

Parameter λL is a generalized adjustment distance

λL = f

|g| =
√

S1 R2

|1 − i��oS1h2| , (7.111)

where g and f are the galvanic and induction parameters defined by (7.21). Note

that Singer and Fainberg prefer to write λL as

λL =
√

R2∣∣S−1
1 + Z

∣∣ , (7.112)

where Z = −i��oh2 is the low-frequency asymptotics of Z̄ . The advantage of
(7.112) is that it allows to generalize the estimation of λL to the multilayered mantle.

Let us come back to (7.102), (7.103), (7.104) and (7.105). Assuming that
r >> λo, we reduce Q1, Q2, Q3, Q4 to the far-zone asymptotics and write

EA
r = 1

2π i��o
Pr Z2

N

{
1

r3
+ 1

S1 ZNλoλ2
L

√
π

2r/λL

(
1 + 1

2r/λL

)
e−r/λL

}

EA
 = − 1

2π i��o
P Z2

N

{
2

r3
+ 1

r S1 ZNλoλL

√
π

2r/λL

e−r/λL

} (7.113)
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and

H A
r = − P ZN

π i��or3

H A
 = − Pr ZN

2π i��or3

H A
z = 3P Z2

N

2π�2�2
or4

,

(7.114)

where ZN is the normal Tikhonov-Cagniard impedance on the Earth’s surface.
Now evaluate the ratio between vertical component of the anomalous magnetic

field and two-dimensional divergence of its horizontal components. By virtue of
(7.114)

−i��o
H A

z

divHA
τ

= −i��o
H A

z

1

r

{
�

�r

[
r H A

r

] + �

�

[
H A



]} = ZN,

whence

−i��o
Hz

divHτ

= −i��o
H N

z + H A
z

divHN
τ + divHA

τ

= −i��0
H A

z

divHA
τ

= ZN, (7.115)

where H N
z = 0 and divHN

τ = 0. So, the condition r >> λ0 defines a zone, in which
we can estimate ZN, using the magnetovariational ratio (1.3).

Next evaluate the ratio between orthogonal components of the anomalous electric
and magnetic fields. By virtue of (7.113) and (7.114)

EA
 (r)

H A
r (r)

= ZN

{
1 + r2

2S1 ZNh̄effλL

√
π

2r/λL

e−r/λL

}

EA
r (r)

H A
 (r)

= −ZN

{
1 + r3

S1 ZNh̄effλ2
L

√
π

2r/λL

(
1 + 1

2r/λL

)
e−r/λL

}
.

(7.116)

Assume that along with condition r >> λo the condition r >> λL is observed. Dis-
regarding the second term in the braces, we get

EA
 (r)

H A
r (r)

= − EA
r (r)

H A
 (r)

= ZN, (7.117)

whence
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E(r)

Hr (r)
= EN

 (r) + EA
 (r)

H N
r (r) + H A

r (r)
= ZN H N

 (r) + ZN H A
 (r)

H N
 (r) + H A

 (r)
= ZN

Er (r)

H(r)
= EN

r (r) + EA
r (r)

H N
 (r) + H A

 (r)
= − ZN H N

r (r) + ZN H A
r (r)

H N
r (r) + H A

r (r)
= −ZN.

(7.118)

So, the condition r >> max{λo, λL} defines a zone, in which we can estimate ZN,
using the magnetovariational and magnetotelluric ratios.

Singer and Fainberg believe that these rough estimates can be applied even to
large-scale inhomogeneities. In that event one has to estimate the distance rmin from
the nearest edge of the inhomogeneous area.

7.3.3 The Berdichevsky-Dmitriev Model

Let us recall this simple model that gives an analytic image of galvanic distortions
caused by three-dimensional sedimentary structures (Berdichevsky and Dmitriev,
1976). The model is shown in Fig. 7.31. It consists from sediments (�′

1,h1), the
resistive lithosphere (�2 = ∞, h2 >> h1), and the conductive mantle (�3 = 0). The
sediments contain an inclusion in the form of elliptic cylinder of resistivity �′′

1 with
diameters 2a, 2b along x , y. In the Price-Sheinmann thin-sheet S-approximation we
have

S1 =
{

S′
1 = h1/�′

1 outside the inclusion

S′′
1 = h1/�′′

1 inside the inclusion.
(7.119)

To get an analytic solution to this three-dimensional problem, we ignore the cur-
rent leakage through the �2−layer and use the hybrid quasistatic method based on
the LR-decomposition. The mathematcs is performed in three stages as shown in
Sect. 1.3.4.

Fig. 7.31 The
Berdichevsky-Dmitriev
model

ρ1‛‛ h1ρ1‛

h2

a
b
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In the first stage, the normal impedance of the one-dimensional background is
derived in the absence of the inclusion:

[ZN] =
[

0 ZN

−ZN 0

]
, (7.120)

where

ZN = −i��oh

1 − i��oS′
1h2

, h = h1 + h2.

In the second stage, we find the electric and magnetic distortion tensors [e] and [h].
The tensor [e] is derived from the well-known problem on infinitely long ellipti-

cal cylinder in the uniform static field (Smythe, 1950). Restricting our consideration
to measurements along the y-axis, we get

[e] =
[

exx 0
0 eyy

]
(7.121)

where

exx
|y|>b

=
(
a2S′

1 − b2S′′
1

)√
a2 − b2 + y2 + ab

(
S′′

1 − S′
1

) |y|
(a − b)

(
aS′

1 + bS′′
1

)√
a2 − b2 + y2

= 1 + f

(
y,

S′′
1

S′
1

)

exx
|y|<b

= S′
1

a + b

aS′
1 + bS′′

1

eyy
|y|>b

=
(
a2S′′

1 − b2S′
1

)√
a2 − b2 + y2 + ab

(
S′

1 − S′′
1

) |y|
(a − b)

(
aS′′

1 + bS′
1

)√
a2 − b2 + y2

= 1 + f

(
y,

S′
1

S′′
1

)

eyy
|y|<b

= S′
1

a + b

aS′′
1 + bS′

1
(7.122)

and

f (y, �) = ab(1 − �)

(a − b)(a + b�)

{
1 − |y|√

a2 − b2 + y2

}
, � = S′

1

S′′
1

or
S′′

1

S′
1

.

The tensor [h] is determined by (1.85). With a knowledge of [ZN] and [e] we
have

[h] =
[

hxx 0
0 hyy

]
, (7.123)

where
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hxx = 1 + 1

2
(S1eyy − S′

1)ZN

hyy = 1 + 1

2
(S1exx − S′

1)ZN,

S1 =
{

S′
1 for |y| < b

S′′
1 for |y| > b.

(7.124)

At the last stage, we substitute (7.120), (7.121), (7.123) into (1.74) and determine

[Z] =
[

0 Zxy

Z yx 0

]
, (7.125)

where

Zxy = exx
1

ZN
+ 1

2 (S1exx − S′
1)

Z yx = − eyy
1

ZN
+ 1

2 (S1eyy − S′
1)

.

(7.126)

Finally,

�xy =
∣∣Zxy

∣∣2
��o

�yx =
∣∣Z yx

∣∣2
��o

, (7.127)

where

�xy

(
S′′

1

S′
1

)
= �yx

(
S′

1

S′′
1

)
for |y| > b

�xy

(a

b

)
= �yx

(
b

a

)
for |y| < b.

Let us consider the apparent resistivities �xy and �yx outside the inclusion (|y| > b).
According to (7.120), (7.125) and (7.127),

�xy
|y|>b

=
{

	S
xy �̇S

n in the S1 − interval

	h
xy �̇h

n in the h − interval

�yx
|y|>b

=
{

	S
yx �̇S

n in the S1 − interval

	h
yx �̇h

n in the h − interval,

(7.128)

where the locally normal apparent resistivities �̇S
n , �̇h

n in the S1− and h− intervals
are

�̇S
n = 1

��o(S′
1)2

, �̇h
n = ��oh2

and the 3D-distortion factors are
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	S
xy =

{
1 + f (y, S′′

1 /S′
1)

2 + f (y, S′′
1 /S′

1)

}2

	h
xy = {

1 + f (y, S′′
1 /S′

1)
}2

	S
yx =

{
1 + f (y, S′

1/S′′
1 )

2 + f (y, S′
1/S′′

1 )

}2

	h
yx = {

1 + f (y, S′
1/S′′

1 )
}2

.

Letting S′′
1 < S′

1, it is easy to show that 	S
xy > 1, 	h

xy > 1 and 	S
yx < 1, 	h

yx < 1. So,
�xy > �̇n, �yx < �̇n and �xy > �yx . These relations are characteristic of the lateral
flow-around effect observed in the vicinity of a resistive inclusion where zones of the
current concentration and deconcentration appear (Fig. 7.32). In the concentration
zones the apparent resistivities increase, while in the deconcentration zones they
decrease.

Letting S′′
1 > S′

1, we have 	S
xy < 1, 	h

xy < 1 and 	S
yx > 1, 	h

yx > 1. So, �xy < �̇n,
�yx > �̇n and �xy < �yx . These relations are characteristic of the lateral current-
gathering effect observed in the vicinity of a conductive inclusion. Zones of the cur-
rent concentration and deconcentration, in which the apparent resistivities increase
and decrease, are displayed in Fig. 7.33.

Figure 7.34 presents the apparent-resistivity curves, �xy and �yx , distorted by the
flow-around and current-gathering effects. The observation site x = 0, y = 1.5 b
is located outside a resistive (S′′

1 /S′
1 = 1/16) or conductive (S′′

1 /S′
1 = 16) inclusion.

The �A−curves are plotted in the log-log scale with ordinates �A/�′
1 and abscissas

λ′
1/h1, where λ′

1 is the wavelength in the medium of resistivity �′
1. The curves of

�xy and �yx are similar in form. They replicate the bell-type normal curve of �̇n, but

Fig. 7.32 Flow-around effect
in the vicinity of a resistive
inclusion
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Fig. 7.33 Current-gathering
effect in a conductive
inclusion

are shifted up or down (with small horizontal displacement). In the case of resistive
inclusion with S′′

1 /S′
1 = 1/16 the �xy-curves are shifted up, while the �yx -curves

are shifted down (the flow-around effect). In the case of conductive inclusion with
S′′

1 /S′
1 = 16 the �xy-curves are shifted down, while the �yx -curves are shifted up

(the current-gathering effect). The magnitude of the static shift depends on a/b.
Consider, for instance, the �yx -curve in the vicinity of the resistive inclusion. Its shift
reflecting the flow-around effect dramatically increases when a/b changes from 0.2
to 5 and then decreases and vanishes when a/b changes from 5 to ∞. This reminds
the behavior of a prudent pedestrian who turns around a short barrier but climbs
over a long barrier.

Asymptotic estimates derived from (7.122) show that galvanic distortions caused
by the flow-around and current-gathering effects attenuate at the distances

y >>

√
ab(a + b)(1 − �)

2(a + b�)
, � =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′′
1

S′
1

for �xy

S′
1

S′′
1

for �yx .

(7.129)
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Fig. 7.34 Apparent-resistivity curves �xy and �yx distorted by the flow-around and current-
gathering effects in the vicinity of a resistive (S′′

1 /S′
1 = 1/16) or conductive (S′′

1 /S′
1 = 16) inclu-

sion, �xy(S′′
1 /S′

1) = �yx (S′
1/S′′

1 ). The observation is carried out at the site x = 0, y = 1.5b. Curve
parameter: a/b, model parameters: �2/�1 = ∞, �3/�1 = 0, h2/h1 = 20

The distortions can be somewhat suppressed using the Berdichevsky scalar
impedance. Figure 7.35 demonstrates the apparent-resistivity curves �brd =
|Zbrd|2 /��0, where Zbrd = (Zxy − Z yx )/2. Note that �brd(�′′

1/�′
1) = �brd(�′

1/�′′
1).

Given �′′
1/�′

1 = 1/16 or 16, the curves of �brd calculated for a/b from 0.1 to 1
approach the normal curve �̇n.

Figure 7.36 presents the apparent-resistivity curves of �xy and �yx obtained over
the inclusion (|y| < b). Here the fields Eτ and Hτ are uniform, so that the impedance
tensor does not depend on the position of the observer. At a/b → ∞ we have
a two-dimensional resistive or conductive inclusion directed along the x-axis. The
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Fig. 7.35 Apparent-resistivity curves �brd observed in the vicinity of a resistive (S′′
1 /S′

1 = 1/16)
or conductive (S′′

1 /S′
1 = 16) inclusion, �brd(S′′

1 /S′
1) = �brd(S′

1/S′′
1 ). The observation is carried out

at the site x = 0, y = 1.5b. Model parameters: �2/�1 = ∞, �3/�1 = 0, h2/h1 = 20. Curve
parameter: a/b

inclusion is connected with the limit curves �yx = �⊥ and �xy = �‖, which refer
to the H− and E−polarized fields respectively. In the case of a resistive inclusion
(S′′

1 /S′
1 = 1/16) the ascending branch of the transverse �yx -curve merges with the

S1-line, while its descending branch lies far above the h-line. At the same time the
ascending branch of the longitudinal �xy-curve lies far below the S1-line, while its
descending branch merges with the h-line. In the case of a conductive inclusion
(S′′

1 /S′
1 = 16) the transverse �yx -curve has no ascending branch, while its descend-

ing branch lies far below the h-line. At the same time the ascending branch of the
longitudinal �xy-curve lies above the S1-line, while its descending branch merges
with the h-line. With decreasing a/b, the lateral flow-around and current-gathering
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Fig. 7.36 Apparent-resistivity curves �xy and �yx distorted by the flow-around and current-
gathering effects over a resistive (S′′

1 /S′
1 = 1/16) or conductive (S′′

1 /S′
1 = 16) inclusion,

�xy(S′′
1 /S′

1) = �yx (S′
1/S′′

1 ). The observation is carried out at the site x = 0, |y| < b. Model param-
eters: �2/�1 = ∞, �3/�1 = 0, h2/h1 = 20. Curve parameter: a/b, �xy(a/b) = �yx (b/a)

effects appear. They manifest themselves clearly in the fact that the ascending
branches of the trasverse �yx -curves recede from the S1-line, while their descending
branches approach the h-line. We see that the flow-around and current-gathering
effects distort the ascending branches of the transverse apparent-resistivity curves,
but reduce the S−effect distorting their descending branches. At the same time the
ascending branches of the longitudinal �xy-curves approach the S1-line, while their
descending branches recede from the h-line. The flow-around and current-gathering
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effects reduce the distortion of the ascending branches of the longitudinal apparent-
resistivity curves, but distort their descending branches.

In our consideration the inclusion elongation e = a/b, a > b (aspect ratio) can
be used as a parameter that controls an accuracy of the two-dimensional approxima-
tion of the three-dimensional inclusions. Considering an inclusion elongated in the
x− direction, we introduce the following decompositions of the apparent resistivi-
ties observed over the inclusion:

�xy(3D) =
{

pS
xy�S

xy(2D) in the S1-interval

ph
xy�h

xy(2D) in the h-interval

�yx (3D) =
{

pS
yx �S

yx (2D) in the S1-interval

ph
yx �h

yx(2D) in the h-interval.

(7.130)

Here �S
xy(2D), �h

xy(2D), �S
yx (2D), �h

yx (2D) are the two-dimensional apparent
resistivities, obtained at e → ∞, and pS

xy, ph
xy, pS

yx , ph
yx are the factors characteriz-

ing their three-dimensional distortions. According to (7.122) and (7.126),

�S
xy(2D) = 4

��o(S′
1 + S′′

1 )2
�h

xy(2D) = ��oh2

�S
yx (2D) = 1

��o(S′′
1 )2

�h
yx (2D) = ��oh2

(
S′

1

S′′
1

)2 (7.131)

and

pS
xy = (e + 1)2

(
e + 2

1 + S′
1/S′′

1

)2 ph
xy = (e + 1)2

(e + S′′
1 /S′

1)2

pS
yx = (e + 1)2

(
e + 1 + S′

1/S′′
1

2

)2 ph
yx = (e + 1)2

(e + S′
1/S′′

1 )2
.

(7.132)

The factors pS
xy, ph

xy, pS
yx , ph

yx tend to 1, as the elongation e tends to ∞ (the ellip-
tic cylinder degenerates into a two-dimensional prism). Naturally the departure
of pS

xy, ph
xy, pS

yx , ph
yx from 1 is a measure of the inclusion three-dimensionality.

Assume that the elliptic inclusion can be considered as quasi-two-dimensional,
provided 0.9 ≤ pS

xy, ph
xy, pS

yx , ph
yx ≤ 1.1, that is, if the longitudinal and trans-

verse apparent resistivities, �xy and �yx , differ from the two-dimensional apparent
resistivities �S

xy(2D), �h
xy(2D) and �S

yx (2D), �h
yx (2D) at most by 10%. Thus, in view

of (7.132), we can derive the simple estimates for the quasi-two-dimensionality of
resistive and conductive elliptic inclusions (Table 7.2). The most favorable estimates
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Table 7.2 Conditions of the quasi-two-dimensionality of elliptic inclusion

m = S′′
1 /S′

1 The S1− interval The h− interval

Longitudinal
�xy - curve

Transverse
�yx - curve

Longitudinal
�xy - curve

Transverse
�yx - curve

Resistive inclusion
m < 1
* * *
m = 0.5
m = 0.1
m = 0.01
m = 0

e = 6
e = 16
e = 19.6
e = 20

e = 8.55
e = 80.1
e = 939
e = ∞

e = 9.5
e = 17.9
e = 19.8
e = 20

e = 18
e = 170
e = 1880
e = ∞

Conductive inclusion
m > 1
* * *
m = 2
m = 10
m = 100
m = ∞

e = 5.33
e = 14.5
e = 17.6
e = 18

e = 4.27
e = 8.45
e = 9.39
e = 9.5

e = 18
e = 170
e = 1880
e = ∞

e = 9.5
e = 17.9
e = 19.8
e = 20

are for the longitudinal �xy−curves, observed over a resistive inclusion (e does
not exceed 20 in the S1− and h−intervals), and for the transverse �yx−curves,
observed over a conductive inclusion (e does not exceed 9.5 in the S1−interval and
20 in the h− interval). At the same time the longitudinal �xy−curves, observed
over a conductive inclusion, and the transverse �yx−curves, observed over a
resistive inclusion, call for elongations e which range up to 100 or even 1000.
The different robustness of the longitudinal and transverse apparent-resistivity
curves to the 3D effects generated by the resistive and conductive elliptical inclu-
sions is accounted for by difference in current around-flow and current gathering
mechanisms.

7.3.4 The Golubtsova Model

The elliptic-cylinder model exposes the galvanic mechanism of the three-
dimensional near-surface distortions. In addition to this analytic model, it would
be useful to consider a similar numerical model that reflects both the mecha-
nisms, galvanic and induction. Let us examine the model consisting of sediments
(�′

1, h1), the resistive lithosphere (�2 >> �′
1, h2 >> h1), and the conductive man-

tle (�3 << �2). The sediments contain a regional conductive inclusion in the form
of a round cylinder of the radius a with resistivity �′′

1(r ), which decreases mono-
tonically from �′′

1(a) = �′
1 at the inclusion edge to �′′

1(0) = min �′′
1 at its centre.

The calculations were performed by Debabov’s program in the Price-Sheinmann
thin-sheet S-approximation (Debabov, 1980; Golubtsova, 1981). So, we have a con-
ductance model with S′

1 = h1/�′
1 and S′′

1 (r ) = h1/�′′
1(r ), where S′′

1 (a) = S′
1 and

S′′
1 (0) = max S′′

1 . Figure 7.37 shows the field profiles, which pass through the
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Fig. 7.37 Electromagnetic field profiles in a model with the axially symmetric conductive inclusion
in the upper layer. The profiles pass through the inclusion centre in the y−direction. Models param-
eters: S′

1 = 10S, max S′′
1 = 1000S, a = 500 km, �2 = 104 Ohm·m, h2 = 225 km, �3 = 1 Ohm·m

(Golubtsova, 1981)
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inclusion centre in the y−direction. The electric and magnetic fields are normal-
ized to the normal fields Ė

N
x ,Ė

N
y ,Ḣ

N
x ,Ḣ

N
y . The components Ey, Hx correspond to

the primary electric field polarized along the profile. The components Ex , Hy, Hz

correspond to the primary electric field polarized across the profile. Both the com-
ponents of the electric field, Ex and Ey , have a vast minimum over the conductive
inclusion. At low frequencies (T = 80−320 s) the inclusion borders with zones of
increased Ey and decreased Ex . This exhibits the current-gathering effect entailing
the concentration and deconcentration zones in the vicinity of a conductive inclu-
sion (Fig. 7.32). But at high frequencies (T = 5−20 s) the horizontal skin effect
comes into play inside the conductive inclusion. It concentrates the current at the
inclusion sides and, hence, counteracts the current-gathering effect. The side max-
ima of Ey vanish, and flanges of the central minimum of Ex become steeper (the
current-gathering effect attenuates). The same mechanism shows up in the magnetic
field. At low frequencies (T = 80 s) both the horizontal components of the mag-
netic field, Hx and Hy , have a vast maximum caused by current gathering inside
the conductive inclusion. At high frequencies (T = 5 − 20 s) the current-gathering
effect attenuates, and we observe the side maxima of Hy , which reflect the hori-
zontal skin effect. It is remarkable that high-frequency observations carried out at
the edge of a vast isometric conductive structure may admit the two-dimensional
interpretation inasmuch as they are slightly distorted by the current-gathering
effect.

7.4 Models of Structures in the Basement Topography

To complete analysis of near-surface distortions, we examine two models of buried
topographic structures violating the horizontal homogeneity of sediments.

7.4.1 The Horst Model

The cross-section of this two-dimensional model is shown in Fig. 7.38. The upper
layer (�1) simulates the conductive sedimentary strata underlaid by the resistive
lithosphere (�2) resting on the highly conductive mantle (�3). The model is a coun-
terpart of the three-segment conductance model with a resistive central segment
(Fig. 7.16). Let us compare these two models.

Figure 7.39 presents the longitudinal and transverse apparent-resistivity and
impedance-phase curves obtained outside and over the horst 20 km wide. The con-
ductive clearance between the roof of the horst and the Earth’s surface canalizes
the transverse current and conspicuously changes the behavior of the transverse
curves, �⊥ and ⊥, outside the horst. Distortions of the curves �⊥ and ⊥ atten-
uate rather quickly with distance (due to diminution of the current leakage trough
the upper-layer bottom). In the immediate vicinity of the horst the �⊥-curves are
shifted upwards (due to the near-surface current concentration). Over the horst we
have the curves �⊥ and ⊥, which look much as they do in the three-segment
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Fig. 7.38 Model of the
two-dimensional horst

1 Ohm.m

10000 Ohm.m

0.1 Ohm.m

98 km

2 km20 km

1.
9 

km

conductance model (Figures 7.18, 7.19). Their ascending branches are close to the
locally normal curves �̈n, while their descending branches are drastically shifted
upwards (the S−effect). As for the longitudinal curves, �‖ and ‖, they are little
different from those in the three-segment conductance model and they have a false
minimum caused by the inductive influence of excess currents concentrated at both
sides of the horst (the effect of false conductive layer).

Figure 7.40 displays the tipper curves reflecting pictorially the horst structure.
They are much like those in the three-segment model (Fig. 7.20).

Figure 7.41 demonstrates the field profiles, which pass across the horst in the
y−direction. The electric and magnetic fields are normalized to the normal fields
Ė

N
x ,Ė

N
y ,Ḣ

N
y observed at |y| → ∞. In many respects the field profiles replicate

those in the three-segment model (Fig. 7.24), but it is notable that in the horst model
we get the box-like Ey− profiles without side minima, so that the transverse electric
field more adequately reflects the structure of the medium than in the three-segment
model.

Now we come to the two-dimensional approximation of the three-dimensional
horst. What is the condition of quasi-two-dimensionality, which allows for the
two-dimensional interpretation of the response functions obtained over a three-
dimensional horst and in its vicinity? Reasoning from the Berdichevsky-Dmitriev
model (Sect. 7.3.3), we can suppose that the quasi-two-dimensionality condition
in the middle part of the elongated horst depends on its elongation (aspect ratio)
and conductivity contrast. It seems that the same is valid for the horst vicinity
if a distance to the horst is far less than its half-length. It can be also presumed
that with increasing frequency, the two-dimensional approximation becomes more
accurate (due to skin effect, which extinguishes the influence of the far ends of
a horst).

Consider a three-dimensional horst shown in Fig. 7.42. Let us examine a set of
models with fixed parameters �1 = 10 Ohm·m, h1 = 1 km, �h = 0.7 km, �2 =
103 Ohm·m, h2 = 99 km, �3 = 10 Ohm·m and variable parameters v = 7.5 km,
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Fig. 7.40 Tipper curves, ReWzy and ImWzy , outside and over the horst in the model shown in
Fig. 7.38; y-distance to the centre of the model

l = 15, 75, 150, 300 km; v = 15km, l = 30, 150, 300, 600 km; v = 30 km, l =
60, 300, 600, 1200 km, where 2v and l are the width and length of the horst.
Straightforward computation testifies that on this parametrical set the horst elon-
gation e = l/2v may be well used as a stable indicator of quasi-two-dimensionality.
By way of example consider a horst 60 km wide and 60 km long (e = 1).
Figure 7.43 demonstrates the three-dimensional and two-dimensional (e = ∞)
apparent-resistivity, impedance-phase and tipper curves, obtained along a central
profile running in the y−direction.

The apparent resistivity �xy , �yx and phase xy, yx curves observed over
the horst (y = 0, y = 22.5 km) show up rather strong flow-around effect.
Here, at low frequencies, we get �xy (3D) >> �‖(2D), xy(3D) >> ‖(2D)
and �yx (3D) << �⊥(2D), yx (3D) << ⊥(2D). The flow-around effect also man-
ifests itself in the tipper curves ReWzy(3D) and ImWzy(3D), measured out-
side the horst (y = 37.5 km). But it quickly attenuates as the horst elonga-
tion e increases. Figure 7.44 demonstrates the apparent resistivity, impedance-
phase and tipper curves for a horst 60 km wide and 600 km long (e = 10).
Here the curves for �xy(3D), �yx (3D) and xy(3D), yx (3D) virtually merge
with the two-dimensional curves for �‖(2D), �⊥(2D) and ‖(2D), ⊥(2D), while
the curves for ReWzy(3D), ImWzy(3D) are sufficiently close to the curves for
ReWzy(2D), ImWzy(2D). It seems that the condition e ≥ 10 provides the quasi-two-
dimensionality of the horst 60 km wide. The same condition is found for the horsts
15 and 30 km wide. It should be recognized that this condition is valid not only over
the horst, but in its visinity |y| − v ≤ 0.5l as well.

Now compare the quasi-two-dimensionality condition, obtained in the horst
model, with conditions, obtained in the elliptic-cylinder model with equivalent
contrast of conductances: m = S′′

1 /S′
1 = (h1 − �h)/h1 = 0.3.Using estimates

given by (7.132) for the 10%-difference between �A(3D) and �A(2D), we get
eS

xy ≥ 10.3, eS
yx ≥ 21.2 in the S1−interval and eh

xy ≥ 13.7, eh
yx ≥ 43.3 in the

h−interval. Consider the quasi-two-dimensionality conditions for the horst and
elliptic-cylinder. They are almost the same for the longitudinal �xy−curves (e ≥ 10
against eS

xy ≥ 10.3, eh
xy ≥ 13.7) and considerably differ for the transverse
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Fig. 7.41 Electromagnetic field profiles outside and over the horst in the model shown in Fig. 7.38;
y-distance to the centre of the model. Profile parameter: period T = 1–1000 s

�yx−curves (e ≥ 10 against eS
yx ≥ 21.2, eh

yx ≥ 43.3). The latter is accounted for
by a great role of the transverse currents flowing through the conductive clearance
between the roof of the horst and the Earth’s surface. When narrowing the clear-
ance (or filling it with a resistive layer), we intensify the flow-around effect and
bring the quasi-two-dimensionality condition for the horst close to the quasi-two-
dimensionality condition for the elliptic cylinder.
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Fig. 7.42 Model of a
three-dimensional horst

7.4.2 The Graben Model

A two-dimensional model of the graben is shown in Fig. 7.45. Similar to the horst
model, the upper layer (�1) simulates the conductive sedimentary strata underlaid
by the resistive lithosphere (�2) resting on the highly conductive mantle (�3). The
graben model is a counterpart of the three-segment conductance model with a con-
ductive central segment (Fig. 7.16). Let us compare these two models.

Figure 7.46 presents the longitudinal and transverse apparent-resistivity and
impedance-phase curves, �‖, �⊥ and ‖, ⊥, observed outside and over the graben.
They closely resemble the curves for �‖, �⊥ and ‖, ⊥ obtained in the three-
segment model (Figs. 7.21 and 7.22). Outside the graben the �⊥ − and ⊥−curves
are hardly distorted, while the �‖− and ‖−curves experience the strong effect of
false conductive layer, which however quickly attenuates with distance. Over the
graben the �⊥ − and ⊥−curves are drastically distorted by the strong S−effect
(the descending branches of the �⊥−curves are displaced from the locally normal
�̈n-curve almost by two decades), while the �‖− and ‖−curves are distorted rather
slightly.

The tipper curves are shown in Fig. 7.47. They are much like those in the three-
segment model (Fig. 7.23).

Figure 7.48 shows the field profiles, which pass across the graben in the
y− direction.The electric and magnetic fields are normalized to the normal fields
Ė

N
x ,Ė

N
y ,Ḣ

N
y observed at |y| → ∞. The field profiles are not too different from
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those in the three-segment model (Fig. 7.25). Over the graben we observe an
abrupt drop in Ey , though without side minima associated with the current rear-

rangement effect. Here
∣∣∣Ey/Ė

N
y

∣∣∣ <<
∣∣∣Ex/Ė

N
x

∣∣∣ at T ≥ 100 s. It means that with

an isotropic normal field (Ė
N
x = Ė

N
y ) the low frequency electric field is polarized

quasi-linearly along the graben (the channeling effect). Another characteristic fea-
ture of the model is a strong horizontal skin effect, which concentrates longitudinal
currents at the graben boundaries. It becomes distinctly apparent in side maxima of
Hy (T = 1, 10 s).

Finally we examine conditions favorable to the two-dimensional approxima-
tion of the three-dimensional graben shown in Fig. 7.49. Let us consider a set
of three-dimensional models with fixed parameters �1 = 10 Ohm·m, h1 =
0.3 km, �h = 1.7 km, �2 = 103 Ohm·m, h2 =99.7 km, �3 =10 Ohm·m and variable
parameters v = 15 km, l = 30, 150, 300 km; v = 30 km, l = 60, 300, 600 km.
As in the case of the horst, we use the elongation e = l/2v as an indicator
of quasi-two-dimensionality. Figure 7.50 demonstrates the three-dimensional and
two-dimensional (l = ∞) apparent-resistivity, impedance-phase and tipper curves
along a central y−profile going across a graben 60 km wide and 60 km long
(e = 1). It is remarkable that the transverse curves for �yx (3D), yx (3D), observed
over the graben edge (y = 29, 31 km) and outside the graben (y = 40 km)
are close to the curves for �yx (2D), yx (2D) and can be treated as quasi-two-
dimensional. At the same time the longitudinal curves for �xy(3D), xy(3D) and
the tipper curves for ReWzy(3D), ImWzy(3D) differ noticeably from the curves
for �xy(2D), xy(2D) and ReWzy(2D), ImWzy(2D). One can arrive to conclu-
sion that the TM-mode is more robust to the current-gathering effect than the
TE-mode.

The current-gathering effect rather quickly attenuates as the graben elonga-
tion e increases. Figure 7.51 demonstrates the apparent-resistivity, impedance-
phase and tipper curves for a graben 60 km wide and 600 km long (e = 10).
Now the three-dimensional curves for �xy(3D), �yx (3D), xy(3D), yx (3D) and

Fig. 7.45 Model of the
two-dimensional graben
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Fig. 7.48 Electromagnetic field profiles outside and over the graben in the model shown in
Fig. 7.38; y-distance to the centre of the model. Profile parameter: period T = 1–1000 s
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Fig. 7.49 Model of a
three-dimensional graben

Fig. 7.50 Apparent-resistivity, impedance-phase and tipper curves in the model of a three-
dimensional graben shown in Fig. 7.49. Model parameters: �1 = 10 Ohm·m, h1 = 0.3 km,

� h = 1.7 km, v = 30 km, l = 60 km �2 = 103 Ohm·m, h2 = 99.7 km, �3 = 10 Ohm·m
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Fig. 7.51 Apparent-resistivity, impedance-phase and tipper curves in the model of a three-
dimensional graben shown in Fig. 7.49. Model parameters: �1 = 10 Ohm·m, h1 = 0.3 km,

�h = 1.7 km, v = 30 km, l = 600 km, �2 = 103 Ohm·m, h2 = 99.7 km, �3 = 10 Ohm·m

ReWzy(3D), ImWzy(3D) virtually merge with the two-dimensional curves for
�‖(2D), �⊥(2D),‖(2D), ⊥(2D) and ReWzy(2D), ImWzy(2D). Thus, the condition
e ≥ 10 confidently provides quasi-two-dimensionality of the graben 60 km wide.
The same condition is found for the graben 30 km wide.

Let us compare the condition e ≥ 10 with conditions obtained in the elliptic-
cylinder model with equivalent contrast of conductances: m = S′′

1 /S′
1 = (h1 +

�h)/h1 =6.7. Using estimates given by (7.132) for 10%-difference between �A(3D)
and �A(2D) , we get eS

xy ≥ 13.1, eS
yx ≥ 8 in the S1−interval and eh

xy ≥ 107.3, eh
yx ≥

16.8 in the h−interval. We see that the quasi-two-dimensionality in the graben
model may be provided by considerably smaller elongation than in the elliptic-
cylinder model. This can be accounted for by dominating role of the currents flowing
into the graben from above.



Chapter 8
Models of Deep Geoelectric Structures

In the preceding chapter, we studied the near-surface magnetotelluric anomalies
caused by geoelectric inhomogeneities in the sediments. Now we turn our attention
to the deep geoelectric inhomogeneities located in the consolidated Earth’s crust and
the upper mantle.

Figure 8.1 shows generalized resistivity-depth profiles for stable (SR) and active
(AR) regions, compiled from geothermal and geoelectric data as well as from lab-
oratory measurements (Vanyan, 1997). In stable regions, the resistivity decreases
monotonically from 104÷105 Ohm·m near the Earth’s surface to 10 Ohm·m at
depths of the order of 400 km. This global resistivity decay is conditioned by the
gradual warm-up of the Earth’s interior and its phase changes. The total resistance
of the lithosphere is about 109 Ohm·m2 in stable regions and 3 × 108 Ohm·m2 in
active regions (Kuvshinov, 2004). Two local minima of resistivity can be recognized
against this background in active regions, one in the crust (C), and the other in the
upper mantle (A). The resistivity minimum in the Earth’s crust is explained by the
fluidization (� = 10 ÷ 250 Ohm·m) or the graphitization (� = 0.1 ÷ 100 Ohm·m) of
crystalline rocks. The resistivity minimum in the upper mantle is caused by astheno-
spheric partial melting (� = 10 ÷ 50 Ohm·m) and hydrogen diffusity. Studying the
deep conductive anomalies, C and A, we can obtain an unique information on
the fluid regime, petrophysics, reology, thermodynamics and geodynamics of the
Earth’s interior.

Keeping this in mind, we examine models of three kinds: (1) models of crustal
conductive zones, (2) models of asthenosphere conductive zones, (3) models of deep
conductive faults.

8.1 Models of Crustal Conductive Zones

Figure 8.2 demonstrates the one-dimensional apparent-resistivity curves calcu-
lated for crustal conductive layers located at a depth of 20 km, their conductance
being two–four times greater than the sediments conductance. Under these condi-
tions, the crustal conductors display themselves in vast minima or bendings of the

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 287
DOI 10.1007/978-3-540-77814-1 8, C© Springer-Verlag Berlin Heidelberg 2008
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Fig. 8.1 Geoelectric
resistivity-depth profiles in a
tectonically stable and a
tectonically active region.
SR – stable (“cold”) region,
AR – active (“hot”) region;
C – zone of decreased
resistivity in the crust,
F – fluidization,
� = 10 ÷ 250 Ohm·m,
G – graphitization,
� = 0.1 ÷ 100 Ohm·m;
A – asthenospheric zone of
decreased resistivity,
PM – partial melting,
HD – hydrogen diffusity,
� = 10 ÷ 50 Ohm·m
(Vanyan, 1977)

apparent-resistivity curves near the line h = 25 km. How do they display themselves
in two-dimensional and three-dimensional models?

A two-dimensional model of the crustal conductive zone is shown in Fig. 8.3. The
upper layer (�1) simulates the conductive sedimentary strata underlaid with the resis-
tive lithosphere (�2) resting on the highly conductive mantle (�3). The lithosphere
consists of three layers (�′

2, �′′
2, �′′

3), the �′′
2−layer contains a conductive infinitely

long prism of resistivity �c, its half-width is v. The prism runs in the x−direction.

Fig. 8.2 One-dimensional
apparent-resistivity curves
over the crustal conductive
layer at a depth of 20 km;
h-lines for 25, 50, 100, 200,
and 400 km are shown.
I – sediments conductance
50 S, crustal conductive layer
conductance 100 S;
II – sediments conductance
100 S, crustal conductive
layer conductance 400 S;
III – sediments conductance
500 S, crustal conductive
layer conductance 1000 S
(Vanyan and Shilovsky, 1983)
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Fig. 8.3 Model of a
two-dimensional crustal
conductive zone:
�1- conductive sediments,
�2- resistive lithosphere,
�c- crustal conductive zone,
�3- conductive mantle

8.1.1 Magnetotelluric Anomaly Caused by Crustal
Conductive Zone

To gain a better insight into physical mechanisms of magnetotelluric anomaly
caused by the crustal conductive zone, we start our consideration with the field
profiles passing across the prism in the y−direction. The electric and magnetic fields
are normalized to the normal fields Ė

N
x ,Ė

N
y , Ḣ

N
y obtained at |y| → ∞.

Figure 8.4 presents the Ey−profile, which vividly displays the peculiarities of
the TM-mode in a model with the wide conductive zone (� = 500 km). We recognize
here three effects conditioned by shunting action of the conductive prism:

– The current selects a path of the least resistance and flows from the resistive
�2−layer into the conductive �1−layer. The near-surface current concentration aris-
ing in regions M1 and M3 manifests itself in side maxima of Ey developed on low
frequencies (T = 1000÷10000 s).

– The near-surface current flows from the conductive �1−layer into the con-
ductive prism. In region M2, the near-surface current deconcentration evolves. It
manifests itself in a vast central minimum of Ey developed over wide frequency
range (T = 100÷10000 s).

– The deep current flows from the conductive �3−layer into the conductive
prism. This effect decreases the near-surface current deconcentration. In region M2,
we observe a gentle maximum of Ey superimposed on the central minimum of Ey

(T = 10000 s).
Quite different pattern is displayed by the TE-mode. Figure 8.5 presents the

Ex - and Hy-profiles. The crusal conductive zone is reflected in the wide bowl-
shaped minimum of Ex (T = 100 s). With lowering frequency this minimum
flattens out. It practically vanishes at T ≥ 10000 s, where effective penetration
depth heff is much greater than prism width 2 v (heff >> 2 v). The Hy-profile
has more complicated appearance. Here the crustal conductive zone is reflected
in the gentle central maximum caused by excess current filling the prism and
in rather sharp side maxima and minima, which arise due to the horizontal
skin effect at the edges of the prism (T = 100 s). At lower frequencies the cen-
tral maximum increases, while the side extrema flatten out (T = 1000 s). But
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Fig. 8.4 Electric profiles
(TM-mode) passing across
the conductive zone shown in
Fig. 8.3. Model parameters:
� 1 = 10 Ohm·m, h 1 = 1 km,

�′
2 = �′′

2 = 1000 Ohm·m,

h′
2 = 19 km, h′′

2 = 15 km
�c = 10 Ohm·m, v = 500 km,

�′′′
2 = 500 Ohm·m, h′′′

2 = 65 km,

�3 = 10 Ohm·m. Profile
parameter: period
T = 100, 1000, 10000 s

with further lowering frequency when most of current is induced in the homo-
geneous conductive mantle the magnetic anomaly almost completely decays
(T = 10000 s).

8.1.2 Magnetotelluric and Magnetovariational Response Functions
in the Model of Crustal Conductive Zone

Now examine the apparent-resistivity and impedance-phase curves observed in the
two-dimensional model from Fig. 8.3.

Figure 8.6 shows the transverse and longitudinal curves �⊥, ⊥ and �‖, ‖

together with the locally normal curves �̇n, ̇n (outside the prism) and �̈n, ̈n (over
the prism). They have been obtained at the different distances y from the epicentre
of the crustal conductive zone. The low-frequency branches of the transverse curves
�⊥, ⊥ observed over the central part of the prism are distorted (y = 0 ÷ 250km).
They are shifted down with respect to the locally normal curves �̈n, ̈n. This gal-
vanic effect is accounted for by the transverse-current redistribution due to the
shunting action of the crustal conductive zone. Inasmuch as its intensity depends
on the prism conductance Sc = �h/�c, it is termed the deep S-effect. Outside the
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Fig. 8.5 Electromagnetic
profiles (TE-mode) passing
across the conductive zone
shown in Fig 8.3. Model
parameters:
� 1 = 10 Ohm·m, h 1 = 1 km,

�′
2 = �′′

2 = 1000 Ohm·m,

h′
2 = 19 km, h′′

2 = 15 km,

�c = 10 Ohm·m,v = 500 km,

�′′′
2 = 500 Ohm·m,h′′′

2 = 65 km,

�3 = 10 Ohm·m. Profile
parameter: period
T = 100, 1000, 10000 s
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prism (y = 501÷700 km) the deep S-effect shifts the low-frequency branches of the
transverse curves �⊥, ⊥ up. It quickly attenuates with distance and vanishes at
y ≥ 800 km. The formal one-dimensional inversion of the MT-curves distorted by
the deep S-effect yields a false elevation and false side depressions of the conductive
mantle.

Not so dramatic are the induction effects. The longitudinal curves �‖, ‖

are essentially distorted only near the edges of the conductive prism
(y = 499 ÷ 501 km). Here we observe the �‖- and ‖-curves with flattened descend-
ing branches. Away from the conductive prism (y = 600, 700km) and over its central
part (y = 0 ÷ 250 km) the longitudinal curves �‖, ‖ merge with the locally normal
curves �n, n and allow for the one-dimensional inversion.

How does the dimension of the crustal conductive zone affect the apparent-
resistivity and impedance-phase curves? Figure 8.7 shows the apparent-resistivity
curves in the model where half-width v of the prism varies from 25 to 850 km. The
observation site is located at the epicentre of the crustal conductive zone (y = 0).
The conductive prism with v = 25 km is almost completely screened in the TM-
mode (the bell-shaped �⊥-curve shows no evidence of crustal conductor). But in the
TE-mode we see the �‖-curve, which has a gentle displaced minimum revealing the
presence of the conductive prism. Let us increase the prism half-width. In the case
v = 100 km, the �⊥-curve has a small knee reflecting the crustal conductor, while the
�‖-curve practically merges with the locally normal curve �̈n. The case v = 150 km
is of special interest. Here the prism half-width v is more than threefold adjustment
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Fig. 8.6 Transverse and longitudinal magnetotelluric curves obtained at different distance
y from the epicenter of the conductive zone shown in Fig. 8.3. Model parameters:
� 1 = 10 Ohm·m, h 1 = 1 km, �′

2 = �′′
2 = 1000 Ohm·m, h′

2 = 19 km, h′′
2 = 15 km, �c = 10 Ohm·m,

v = 500 km, �′′′
2 = 500 Ohm·m, h′′′

2 = 65 km,�3 = 10 Ohm·m

distance d =√
h 1h′

2�′
2/�1 = 43.6 km calculated from parameters of the �1−layer

and the �′
2−layer, which separates the �1−layer from the conductve prism. In this

condition, the �⊥-curve shows the descending branch, which consists of two parts.
The first part is undistorted, it merges with the locally normal �̈n−curve and marks
a depth to the conductive prism. The second part lies beneath the �̈n−curve, it is
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Fig. 8.7 Transverse and longitudinal magnetotelluric curves obtained at the epicentre of the
conductive zones of different half-width v. The mode is shown in Fig. 8.3. Model parameters:
� 1 = 10 Ohm·m, h 1 = 1 km, �′

2 = �′′
2 = 1000 Ohm·m, h′

2 = 19 km, h′′
2 = 15 km, �c = 10 Ohm·m,

�′′′
2 = 500 Ohm·m, h′′′

2 = 65 km, �3 = 10 Ohm·m

distorted by the deep S-effect. With further increasing v, the deep S-effect attenuates,
the �⊥-curve is normalized, and at v = 850 km both the curves, �⊥ and �‖, coincide
with the locally normal curve �̈n. Note that in the model under consideration the
�‖-curve allows for the one-dimensional inversion if the half-width v of the con-
ductive prism is 5 times larger than its depth h1 + h′

2 (see Fig. 8.3), whereas the
one-dimensional inversion of the �⊥-curve is justified if the half-width v is 42.5
times larger than the depth h1 + h′

2. This is pay for the screening effect and the deep
S-effect.

Let us discuss these effects at greater length. It would be instructive to answer
two questions: (1) how does the galvanic-screening effect depend on resistivity �′

2
of the layer overlying the crustal conductive zone? (2) how does the deep S-effect
depend on resistivity �′′′

2 of the layer underlying the crustal conductive zone?
Figure 8.8 shows the transverse apparent-resistivity �⊥-curves in the model from

Fig. 8.3 with half-width of the conductive prism v = 500 km and resistivity �′
2 of

the overlying layer varying from 1000 Ohm·m to 100000 Ohm·m. The observation
site is located at the epicentre of the crustal conductive zone (y = 0). The screen-
ing effect of the overlying layer with resistivity �′

2 = 1000 Ohm·m is rather slight.
Here, in a wide range of high and medium frequencies, the �⊥-curve merges with
the locally normal �̈n-curve. It has a distinct minimum reflecting the conductive
prism. With increasing �′

2 this minimum is smoothed and at �′
2 = 100000 Ohm·m

we get the bell-shaped �⊥-curve with no evidence of crustal conductor (complete
screening). Intuition suggests that the screening effect can be roughly estimated by
means of adjustment distance d =√

S1 R′
2, where S1 = h1/�1 and R′

2 = h′
2�′

2. When
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Fig. 8.8 The screening effect
in relation to the resistivity �′

2
of the layer overlapping the
crustal conductive zone
shown in Fig. 8.3. The
observation site is located at
the zone epicentre. Model
parameters:
� 1 = 10 Ohm·m, h 1 = 1 km,

�′
2 = 1000 Ohm·m, h′

2 = 19 km,

h′′
2 = 15 km, �c = 10 Ohm·m,

v = 500 km, �′′′
2 = 500 Ohm·m,

h′′′
2 = 65 km, �3= 10 Ohm·m

resistivity �′
2 changes from 1000 Ohm·m to 100000 Ohm·m, the ratio v/d runs from

11.47 to 1.15. Reasoning from Fig. 8.8, we establish three levels of screening: (1)
slight screening: v/d ≥ 10, (2) moderate screening: v/d ≈ 2 ÷ 3.5 and (3) strong
screening: v/d ≤ 1.

Figure 8.9 presents the transverse apparent-resistivity �⊥-curves in the model
from Fig. 8.3 with half-width of the conductive prism v = 500 km and resistivity �′′′

2
of the underlying layer varying from 250 Ohm·m to 32000 Ohm·m. The observation

Fig. 8.9 The deep S-effect in
relation to the resistivity �′′′

2
of the layer underlying the
crustal conductive zone. The
model is shown in Fig. 8.3.
The observation site is
located at the zone epicentre
Model parameters:
�1 = 10 Ohm·m, h1 = 1 km,

�′
2 = �′′

2 = 1000 Ohm·m,

h′
2 = 19 km, h′′

2 = 15 km,

�c = 10 Ohm·m, v = 500 km,

h′′′
2 = 65 km, �3 = 10 Ohm·m
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site is located at the epicentre of the crustal conductive zone (y = 0). The deep
S-effect observed in the model with resistivity �′′′

2 = 250 Ohm·m is rather slight.
Here the �⊥-curve is close to the locally normal �̈n-curve. But with increasing �′′′

2
its minimum reflecting the conductive prism is smoothed and its descending man-
tle branch shifts down. At �′′′

2 = 32000 Ohm·m we observe strong deep S-effect.
Here the minimum on the �⊥-curve disappears, while vertical displacement of the
descending branch is about one decade. Using adjustment distance d =√

Sc R′′′
2 with

Sc = h′′
2/�c and R′′′

2 = h′′′
2 �′′′

2 , we can roughly estimate the deep S-effect. Reasoning
from Fig. 8.9, we establish three levels of deep S-effect (1) slight deep S-effect:
v/d ≥ 3, (2) moderate deep S-effect : v/d ≈ 1.5 ÷ 2.5 and (3) strong deep S-effect:
v/d ≤ 1.

More precise estimates of the deep S-effect based on analytical solutions can be
found in (Berdichevsky and Jakovlev, 1991; Singer, 1992).

The Wzy-profiles are shown in Fig. 8.10. In the period range from 50 to 10000 s
the real tippers Re Wzy do not change their sign with frequency. But the imaginary
tippers Im Wzy do change their sign with frequency. Note that Re Wzy and Im Wzy

are of the same sign on high frequencies (T = 50–100 s) and of opposite sign on low
frequencies (T = 1000–10000 s). The maxima and minima of ReWzy and ImWzy

are observed over the left and right edges of the deep conductive prism. It is evident
that at all frequencies under consideration the real induction arrows point away from

Fig. 8.10 Tipper profiles
passing across the crustal
conductive zone. The model
is shown in Fig. 8.3. Model
parameters: � 1 = 10 Ohm·m,

h 1 = 1 km, �′
2 = �′′

2 =
1000 Ohm·m, h′

2 = 19 km,

h′′
2 = 15 km, �c = 10 Ohm·m,

v = 500 km, �′′′
2 = 500 Ohm·m,

h′′′
2 = 65 km, �3 = 10 Ohm·m
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the epicentre of the crustal conductive zone, while the imaginary induction arrows
reverse their direction in the transition from the high frequencies to the low ones.

How are the real and imaginary tippers influenced by dimension of a crustal
conductive zone and its resistivity? Fig. 8.11 presents curves for Re Wzy and
Im Wzy measured over the right edge of the conductive prism with half-width
ν = 25, 500 km and �c = 10, 25, 50 Ohm·m. It is seen that narrowing the prism
from 1000 km to 50 km and increasing its resistivity from 10 to 50 Ohm·m we
substantially diminish the real and imaginary tippers, but they still are measurable.

8.1.3 Electromagnetic Excitation of Crustal Conductors

Two physical mechanisms, galvanic and inductive, may be implicated in the
electromagnetic excitation of the three-dimensional crustal conductors.

The galvanic mechanism is associated with electric currents that percolate from
sediments and concentrate within the crustal conductive zone. The resistive crustal
layers underlying the sediments hamper the current redistribution and screen the
conductive zone. Intensity of the galvanic excitation can be estimated by the adjust-
ment distance d = √

Ssed Rcrust , where Ssed is the sediments conductance and Rcrust

Fig. 8.11 Real and imaginary tippers over the right edge of wide (v = 500 km) and narrow (v =
25 km) crustal conductive zone of resistivity �c = 10, 25, 50 Ohm·m . The model is shown in
Fig. 8.3. Model parameters: �1 = 10 Ohm·m, h 1 = 1 km, �′

2 = �′′
2 = 1000 Ohm·m, h′

2 = 19 km,

h′′
2 = 15 km, �′′′

2 = 500 Ohm·m, h′′′
2 = 65 km, �3 = 10 Ohm·m
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is the resistance of the crustal layers between the sediments and the conductive
zone. Reasoning from model estimates, we believe that a three-dimensional conduc-
tive zone with maximum horizontal diameter Dmax manifests itself rather notably
if Dmax > 3d. Let Ssed = 100 S and Rcrust = 107 Ohm·m2 (conductive zone is over-
laid with a crustal layer of resistivity 1000 Ohm·m and thickness 10 km). Then
d = 31.6 km. Here the crustal conductor with horizontal diameter Dmax = 100 km is
expected to be quite detectable. But it is of no use to hope that such a conductor can
be excited galvanically if the resistance of upper layer exceeds 108÷5·108 Ohm·m2.

The inductive mechanism is associated with local induction in the crustal con-
ductors. This mode seems to have the advantage that the buried three-dimensional
conductors may be excited and detected, no matter how resistive the surroundings
are (Berdichevsky et al., 1984, 1992; Vanyan et al., 1986, 1988, 1991; Egorov,
1987). Let us estimate the intensity of local induction in the real crustal conductors
(fluidized, graphitized). Following (Kaufman, 1994), consider a conductive sphere
with a radius a and resistivity � placed in the homogeneous non-conductive space
with a uniform magnetic field Ho directed along the horizontal x-axis (Fig. 8.12).
Examine the anomalous magnetic field HA arising due to local induction in the
sphere. Over the sphere, at its epicentre (x = 0, y = 0, |z| = a + h), we have

HA = 1

2
DHo

a3

(a + h)3
, (8.1)

from which

∣∣∣∣H A

Ho

∣∣∣∣ = 1

2
|D| a3

(a + h)3
, (8.2)

where

D = 3 coth p(1 − i)

p(1 − i)
+ 3

2p2i
− 1. (8.3)

Here h is a distance between the observation site and the surface of the sphere, while
p is the induction-factor defined as the ratio between the radius a of the sphere and
the skin-depth 	 = √

2�/��o:

Fig. 8.12 Coducting sphere
of resistivity � in a uniform
magnetic field Ho;
HA- magnetic field of the
currents induced within the
sphere
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Fig. 8.13 The p-dependence
of |D |

p = a/	. (8.4)

The parameter D defines the moment M = 2πa3 DHo of an equivalent magnetic
dipole situated at the centre of the sphere. It characterizes the intensity of local
induction. The p-dependence of |D| is shown in Fig. 8.13. We distinguish here two
ranges: (1) p < 1.5, weak local induction, and (2) p � 1.5, strong local induction.
The point is which of these ranges the fluidized and graphitized crustal conductors
fall into.

Conductive zones of the fluid nature usually occur at a depth of about 15–25 km.
Their thickness amounts to 15–20 km, while their resistivity may reach 10–15
Ohm·m. To test intensity of local induction, we consider a cubic conductor 20 ×
20 × 20 km with resistivity 10 Ohm·m and the upper face at a depth 15 km. Assume
that observations cover a period range from 25 to 3000 s. For rough estimation, take
an equivalent sphere with a = 10 km and h = 15 km. Now calculate the anomalous
magnetic field

∣∣H A
/

Ho

∣∣ appearing due to local induction within the conductor.
According to (8.2), (8.3) and (8.4), we get for T ≥ 25 s: 	 ≥ 7.96 km,p ≤
1.25, |D| ≤ 0.2,

∣∣H A
/

Ho

∣∣ ≤ 0.006. This is a case of weak local induction: the
induced magnetic field is negligibly small against the inducing magnetic field.

Next test the intensity of local induction in conductive zones of the graphite
nature. Their resistivity reaches 1 Ohm·m (and even less). They usually occur at
a depth of about 3–15 km and their thickness does not exceed 3–4 km. Consider
a cubic conductor 4 × 4 × 4 km with resistivity 1 Ohm·m and the upper face at a
depth 3 km. Assume that it manifests itself at periods from 10 to 1000 s. Taking the
equivalent conductive sphere with � = 1 Ohm·m and a = 2 km, h = 3 km, we get
for T ≥ 10 s : 	 ≥ 1.59, p ≤ 1.26, |D| ≤ 0.2,

∣∣H A
/

Ho

∣∣ ≤ 0.0064. Once again
we meet a case of weak local induction within a crustal conductor.

Clearly these rough estimations are preliminary. Satisfactory analysis can be
performed by modeling specific three-dimensional structures. The distinguish-
ing feature of the weak local induction is that magnetotelluric anomalies decay
when we increase the resistivity of the host medium which contain conductive
bodies.
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8.1.4 On the Quasi-Two-Dimensionality of Crustal Conductors

At what elongation, that is, at what ratio between the longitudinal and transverse
sizes can a crustal conducitve zone be considered as a quasi-two-dimensional one
and described by a two-dimensional model?

To begin with we recall rough criteria of quasi-two-dimensionality derived from
the well-known problem on a conductive ellipsoid of revolution (Svetov, 1960,
1973; Kaufman, 1974). The ellipsoid of resistivity �i is placed in the infinite homo-
geneous space of resistivity �e with the uniform electric field directed along the
ellipsoid maximum diameter. If the electromagnetic wave length λ inside and out-
side the ellipsoid is many times its maximum diameter, we can use the direct-current
approximation and get the condition of quasi-two-dimensionality of the magnetic
anomaly excited by a longitudinal electric field in a simple form dependent on the
resistivity contrast �e/�i :

e = a

b
≥ 4 1.7

√
� e

� i
λ >> a, (8.5)

where a and b are maximum and minimum ellipsoid diameters. Taking �e =
1000 Ohm·m and �i = 10 Ohm·m, we conclude that the ellipsoid can be approxi-
mated by an infinitely long cylinder if its elongation e is over 60. Unfortinately,
such an estimate may go beyond the scope of real large-scale geological structures.
Another condition of quasi-two-dimensionality can be suggested for high frequen-
cies. If the wave length λ outside the conductive ellipsoid is less than its maximum
diameter (λ < a), the skin effect extinguishes the influence of the far ends and at the
middle part of the ellipsoid the electromagnetic anomaly excited by the transverse
electric field is quasi-two-dimensional.

To get more specific estimate, we consider the three-layered Earth including con-
ductive sediments �1, resistive lithosphere �2 with a conductive right prism �′

2 of
length l, width 2 v, thickness �h, and a conductive mantle �3 (Fig. 8.14). Let us test
a set of models with fixed parameters �1 = 10 Ohm · m, h1 = 1 km, �h = 15 km,
h2 = 99 km, h′

2 = 14 km, �′
2 = 10 Ohm · m, �3 = 10 Ohm · m and variable parame-

ters �2 = 1000, 10000 Ohm ·m, v = 7.5 km, l = 15, 75, 105, 150, 225, 300, 375 km;
v = 15 km, l = 30, 150, 300, 450, 600 km; v = 30 km, l = 60, 180, 300, 600, 900 km,
where v and l are half-width and length of the conductive prism.

Take the model containing the conductive cube with l = 15 km, v = 7.5 km,

�h = 15 km, which manifests itself in the period range T ≥ 25 s. To define its
induction-factor p, we use the equivalent sphere. According to (8.4), p ≤ 0.94. This
indicates rather weak local induction in the model under consideration. It seems that
the same is true for the entire model set.

By way of example inspect a three-dimensional model with parameters
�2 = 103 Ohm·m, v = 30 km, l = 60 km (elongation e = 1) together with its two-
dimensional counterpart (l = ∞). Figure 8.15 presents the 3D and 2D apparent-
resistivity, impedance-phase and tipper curves obtained on a central profile going in
the y−direction. At all sites the curves �xy(3D), �yx (3D) and xy(3D), yx (3D)
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Fig. 8.14 Model of a
three-dimensional crustal
conductive zone

are close to the transverse curves �⊥(2D) and ⊥(2D), while the tippers
Re Wzy(3D), Im Wzy(3D) do not exceed 0.05. Due to rather strong galvanic screen-
ing and negligible local induction we observe here only slight evidences of the con-
ductive prism. The transverse �yx (3D)-curve obtained over the prism (x = 0, y = 0)
has the ascending branch with gentle bending, while its descending branch is
shifted somewhat down due to the deep S-effect. But with increasing the prism
elongation the screening effect attenuates (longitudinal current penetrates into
the prism) and the curves �xy(3D), xy(3D) come close to the two-humped
longitudinal curves �‖(2D), ‖(2D), while the tippers Re Wzy(3D), Im Wzy(3D)
grow. At v = 30 km, l = 600 km (e = 10) the curves Re Wzy(3D), Im Wzy(3D)
practically merge with the curves Re Wzy(2D), Im Wzy(2D) and this opens
up the way to the two-dimensional interpretation of the tippers. Finally at
v = 30 km, l = 900 km (e = 15) the curves �yx (3D), �xy(3D) and yx (3D), xy(3D)
virtually coincide with the curves �⊥(2D), �‖(2D) and ⊥(2D), ‖(2D) so that the
apparent-resistivities and impedance-phases also become quasi-two-dimensional
(Fig. 8.16).

Testing the entire model set, we have got the results that are summarized in
Table 8.1. Note that conditions of the quasi-two-dimensionality depend on the
crustal conductor width 2v: the wider the conductor, the less its elongation that pro-
vides quasi-two-dimensionality. Note also that when raizing the lithosphere resistiv-
ity we aggrevate the screening effect and increase the crustal-conductor elongation
that provides quasi-two-dimensionality. This clearly confirms the galvanic nature
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Table 8.1 Elongations of crustal conductor providing the tipper quasi-two-dimensionality (W-2D)
and the apparent-resistivity and impedance-phase quasi-two-dimensionality (�, -2D)

Lithosphere resistivity Conductor width (km) Conductor elongation

W-2D �,-2D

1000 Ohm·m 15 20 25
30 15 20
60 10 15

10000 Ohm·m 15 30 50
30 25 35
60 20 25

of low-frequency magnetelluric anomalies. And finally we have to emphasize that
the quasi-two-dimensionality conditions inferred are valid not only over the crustal
conductor, but in its visinity as well, |y| − v < < 0.5 l.

8.1.5 Are Deep Crustal Conductors Isotropic or Anisotropic?

One of the significant problems of modern deep magnetotellurics is recognition
of anisotropy in the crustal and mantle conductive zones (Bahr and Duba, 2000;
Bahr and Simpson, 2002; Wannamaker, 2005). The difficulty is that isotropic and
anisotropic bounded deep conductors located in or under a highly resistive medium
may manifest themselves in the equivalent magnetotelluric and magnetovariational
response functions, which cannot distinguish between isotropy and anisotropy and
admit both the interpretations.

It is generally agreed that a stable difference between the principal values of the
impedance tensors observed over a large area with 2D indications counts in favor of
anisotropy. Is such an evidence reliable?

Let us consider two typical examples of crustal conductors and define conditions,
at which equivalency between isotropy and anisotropy is the case.

Figure 8.17 presents the two-dimensional layered models ICC (isotropic crustal
conductor) and ACC-I (anisotropic crustal conductor). They simulate the conductive
sediments and the resistive lithosphere underlaid with the conductive mantle. In the
Earth’s crust, at a depth of 20–35 km, the model ICC contains the isotropic crustal
conductor in the form of the two-dimensional homogeneous prism of resistivity
of 10 Ohm·m and width of 44 km. In the model ACC-I we have the same prism
composed of alternating vertical layers of resistivities of 5 and 1000 Ohm·m. The
strike of vertical layers coincides with the prism strike. The prism can be considered
as an anisotropic (macroanisotropic) crustal conductor with the diagonal resistivity
tensor

[
�ACC - I

] =
⎡
⎣ �xx 0 0

0 �yy 0
0 0 �zz

⎤
⎦ .
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Fig. 8.17 Two-dimensional models of the crustal conductive zones. The model ICC contains
an isotropic crustal conductor, the model ACC-I contains an anisotropic crustal conductor with
alternating vertical dykes

From Kirchhoff’s laws, we have: �xx ≈ 10 Ohm·m, �yy ≈ 500 Ohm·m,

and �zz ≈ 10 Ohm·m. The apparent-resistivity and tipper curves have been
computed for different distances from the model centre (y = 0, −22, −80 km).
The calculations performed by the finite-element method (Wannamaker et al.,
1987) show that the apparent–resistivity and tipper curves generated in the models
ICC and ACC-I are so close to each other that it would be impossible to distinguish
between them.
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Fig. 8.18 Two-dimensional models of the crustal conductor. The model ICC contains an isotropic
crustal conductor, the model ACC-II contains an anisotropic crustal conductor with alternating
horizontal layers of higher and lower resistivity

A similar relation is observed in Fig. 8.18. We have here the same model ICC
with the isotropic crustal conductor in the form of the two-dimensional prism of
resistivity of 10 Ohm·m and the model ACC-II with the prism composed of alternat-
ing horizontal layers of resistivities of 5 and 1000 Ohm·m. The prism can be con-
sidered as an anisotropic (macroanisotropic) conductor with the diagonal resistivity
tensor.

[
�ACC - II

] =
⎡
⎣�xx 0 0

0 �yy 0
0 0 �zz

⎤
⎦ .
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From Kirchhoff’s laws, we have: �xx ≈ 10 Ohm·m, �yy ≈ 10 Ohm·m, and �zz ≈
500 Ohm·m. The apparent-resistivity and tipper curves computed for different dis-
tances from the model centre (y = 0, −22, −80 km) are also closely related to each
other and cannot distinguish between isotropy and anisotropy.

The isotropy-anisotropy equivalence has simple physical interpretation. The TE-
mode is associated with longitudinal currents. It provides the anisotropic-isotropic
equivalence since these currents penetrate into the anisotropic and isotropic con-
ductors in a similar way and their integral effect is almost the same. The TM-
mode reflects the behavior of the transverse currents, which penetrate into the
anisotropic and isotropic conductors in a different way and hence may detect the
difference between anisotropy and isotropy. But the TM-mode is subjected to gal-
vanic screening and its informativeness depends on the screening-effect intensity.
We suggest a straightforward rough criterion for the anisotropy-isotropy equiva-
lence: the deep isotropic and anisotropic conductors are equivalent provided that
w < 2d, where w is the width of the conductor and d =√

Ssed Rcrust is the adjust-
ment distance determined by the sedimentary conductance Ssed and resistance Rcrust

of crustal strata separating the conductor from the sediments. In the equivalent mod-
els ICC and ACC-I as well as ICC and ACC-II (see Figs. 8.17 and 8.18), we have
d = 43.6 − 97.5 km and w = 44 km. Here w < < 2d. Widening the crustal conduc-
tor or decreasing the resistance of the overlying strata, we arrive at models with
transverse apparent-resistivity curves which distinguish between the isotropy and
anisotropy. In models with a moderate resistance of the upper crust, say Rcrust ≈
107 Ohm·m2, typical for active regions, the difference between the isotropic and
anisotropic crustal conductors, 100–150 km wide, may be seen. Under these con-
ditions, the studies of anisotropic crustal conductors make undoubted practical
sense.

8.2 Models of Asthenosphere Conductive Zones

Figure 8.19 presents the apparent-resistivity curves calculated for a one-dimensional
model with the sediments of conductance 150 S and the asthenosphere of conduc-
tance from 0 to 20000 S. The horizontal asthenospheric layer occurs at a depth of
90 km. It shows up rather vividly when its conductance exceeds 2000–3000 S. In
that event the apparent-resistivity curves have a steep descending branch close to
the line h = 100 km.

Seen below are several models illustrating the magnetotelluric anomalies caused
by asthenosphere conductive zones.

8.2.1 The Dmitriev-Mershchikova Cosine-Relief Model

Giving credit to simple analytical solutions, we begin with a two-dimensional model
suggested by Dmitriev and Mershchikova (1974). This three-layered model is shown
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Fig. 8.19 One-dimensional
apparent-resistivity curves
over the asthenospheric
conductive layer at a depth of
90 km. The sediments
conductance 150 S; curve
parameter – asthenosphere
conductance in 1000 S;
h-lines for 100, 200, and
400 km are shown. From
(Vanyan and Shilovsky, 1983)

in Fig. 8.20. Here the layers �1 and �2 simulate the conductive sediments and resis-
tive lithosphere, while the highly conductive basement, �3 = 0, is identified with
asthenosphere. The asthenosphere surface has the cosine relief with the period L
and amplitude ho counted off from the mean depth h1 + h2. The local depth to the
asthenosphere is defined as

h(y) = h1 + h2(y) = h1 + h2 − hocos ly, (8.6)

where l = 2π/L .
First we consider the TM-mode. It is clear that the transverse impedance Z⊥(y)

is an even periodic function with the period L that can be represented by a Fourier
decomposition

Z⊥(y) = − Ey(y)

Hx (y)
= Z̄ +

∞∑
1

ancos nly, (8.7)

where Z̄ is a normal impedance obtained at ho = 0. Substituting Z⊥(y) into equation
(7.35) valid for the mantle descending branch of the apparent-resistivity curves (the
h-interval), we get

Fig. 8.20 Two-dimensional
model with the cosine relief
of the asthenosphere surface
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S1 R2(y)
d2

dy2

∞∑
1

ancos nly −
∞∑
1

ancos nly + i��oh(y) = Z̄ , (8.8)

where S1 = h1/�1 and R2(y) = h2(y)�2. On differentiation, we write

l2S1�2

[
1

2
ho

∞∑
1

ann2 {cos (1 + n)ly + cos (1 − n)ly} − h2

∞∑
1

ann2cos nly

]

−
∞∑
1

ancos nly − i� �ohocos ly = Z̄ − i� �o(h1 + h2).

(8.9)

Fourier coefficients an are found by minimizing the misfit of (8.9). The arith-
metic shows that we can restrict ourselves to series with 7 terms. In the case that
ho ≤ 0.3 h2 and L ≥ 4 ho, the low-frequency transverse impedance is approximated
by formula

∣∣Z⊥(y)
∣∣ ≈ ��oh⊥(y)

where
h⊥(y) = h1 + h2 − �⊥hocos

2π

L
y. (8.10)

Here �⊥ is a distortion factor dependent on the galvanic ratio �⊥ = L/dmin,
where dmin is the minimum adjustment distance:

�⊥ = e−3/(�⊥)1.4

dmin =
√

S1 Rmin
2 , Rmin

2 = hmin
2 �2.

(8.11)

A similar approximation can be proposed for the TE-mode. Let us consider the
low-frequency longitudinal impedance. Reducing (7.46) to the h-interval, we get

h1h2(y)
d2 Ex (y)

dy2
− Ex (y) = i��oh(y)Hy(y). (8.12)

Obviously Ex (y) and Hy(y) are even periodic functions with the period L . They
can be represented by the Fourier decompositions

Ex (y) = Ēx +
∞∑
1

bnenlzcos nly

∣∣∣∣
z = 0

= Ēx +
∞∑
1

bncos nly

Hy(y) = 1

i��o

�Ex (y, z)

�z

∣∣∣∣
z = 0

= H̄y + l

i��o

∞∑
1

bnncos nly,

(8.13)

where Ēx = Z̄ H̄y and H̄y are normal fields obtained for ho = 0.
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Substitution of (8.13) into (8.12) gives

l2h1(h2 − hocos ly)
∞∑
1

bnn2cos nly + l{(h1 + h2) − hocos ly}
∞∑
1

bnn cos nly

+
∞∑
1

bncos nly − i��oho H̄ycos ly = − Z̄ H̄y − i��o(h1 + h2)H̄y .

(8.14)

Fourier coefficients bn are found by minimizing the misfit of (8.14). Restricting
ourselves to series with 6 terms, we determine the low-frequency longitudinal
impedance as

Z‖(y) = Ex (y)

Hy(y)
=

Z̄ H̄y +
6∑
1

bn cos nly

H̄y + l
i��o

6∑
1

bnn cos nly

. (8.15)

In the case that ho ≤ 0.3 h2 and L ≥ 4 ho, the low-frequency longitudinal
impedance is approximated by formula

∣∣Z‖(y)
∣∣ ≈ � �oh‖(y), (8.16)

where

h‖(y) = h1 + h2 − �‖hocos
2π

L
y.

Here �‖ is a distortion factor dependent on the inductive ratio �‖:

�‖ = e−0.7/(�‖)1.2

, �‖ = L

h1 + hmin
2

. (8.17)

Note that �⊥<1 and �‖<1. Returning to (8.10) and (8.16), we see that the magne-
totelluric sounding smoothes out the asthenosphere topography. Instead of the true
amplitude ho, we get a reduced amplitude h ⊥

o = a⊥h o due to the galvanic screening
effect in the TM-mode and a reduced amplitude h‖

o = a‖ho due to the induction-
flattening effect in the TE-mode. According to (8.11), departure of �⊥ from 1 does
not exceed 0.1 provided that L > 12 dmin. According to (8.17), departure of �‖ from
1 does not exceed 0.1 provided that L > 5 (h1 + hmin

2 ).
The TM- and TE-mechanisms of the electromagnetic distortions caused by the

asthenosphere relief is shown in Fig. 8.21. We see here the conductive redistribution
of the transverse currents (TM-mode) and the mutual induction of the longitudinal
currents (TE-mode).

What is relation between these two effects? Consider some typical examples. Let
�1 = 10 Ohm·m, h1 = 1 km, �2 = 10000 Ohm·m, hmin

2 = 50 km, dmin = 227 km. The
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Fig. 8.21 TM- and TE-mechanisms of the electromagnetic distortions caused by the astheno-
sphere relief

distortion factors �⊥, �‖ along with galvanic and inductive ratios �⊥, �‖ calculated
for different periods L are presented in Table 8.2. We see that in the TM-mode the
asthenosphere topography is severely screened over a wide range of periods L up to
500 km (�⊥ ≤ 0.38, �⊥ ≤ 2.23), whereas in the TE-mode the asthenosphere topog-
raphy manifests itself quite distinctly even at L = 100 km (�‖ = 0.73, �‖ = 1.96).
One can say that the TE-mode may be more sensitive to the asthenosphere topogra-
phy than the TM-mode.

8.2.2 Magnetotelluric Anomalies Caused
by the Asthenosphere Uplift

Now we turn to more realistic model discribing a single two-dimensional uplift of
the asthenosphere (Fig. 8.22). Here the layers �1,�2 and �3 simulate the conductive
sediments, the resistive lithosphere, and the conductive asthenosphere, while v and
�h are the half-width of the uplift and its amplitude.

Let us begin with a model of the uplift. Its parameters are: �1 = 10 Ohm·m,

h 1 = 1 km, �2 = 10000 Ohm·m, h2 = 99 km, �3 = 10 Ohm·m, v = 250 km, h′
2 =

50 km.
Figure 8.23 presents the field profiles, which pass across the asthenosphere uplift

in the y−direction. The electric and magnetic fields, normalized to the normal fields
Ė

N
x ,Ė

N
y ,Ḣ

N
y given at |y| → ∞, are calculated for periods relating to the descend-

ing branch of the apparent-resistivity curves. The asthenosphere uplift manifests
itself in minima of the electric fields. Once again we see the distinction between
the TM- and TE-modes. In the TM-mode we have the transverse field Ey with

Table 8.2 Distortion factors a⊥, a‖ in relation to the period L

L, km 100 200 300 500 1000 2000

TM-mode
�⊥ 0.45 0.9 1.34 2.23 4.46 8.93
a⊥ 0.0001 0.03 0.14 0.38 0.69 0.87

TE-mode
�‖ 1.96 3.92 5.88 9.8 19.6 39.2
a‖ 0.73 0.87 0.92 0.96 0.98 0.99
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Fig. 8.22 Two-dimensional
model of the asthenosphere
uplift

well-defined minima observed over the entire h-interval (T = 100–100000 s), while
in the TE-mode the minima of the longitudinal field Ex disappear with lowering
frequency (low-frequency flattening). At the same time the Hy-profile shows the
gentle central maximum, caused by excess current filling the uplift, and rather sharp
side maxima and minima, which arise due to the horizontal skin effect at the edges
of the uplift (T = 100 s). At lower frequencies the central maximum increases, while
the side extrema flatten out (T = 1000 s). But with further lowering frequency when
the most of current is induced in the homogeneous conductive mantle the magnetic
anomaly almost completely decays (T = 100000 s).

Now examine the apparent-resistivity and impedance-phase curves observed in
the two-dimensional model of the asthenosphere uplift. Figure 8.24 shows the trans-
verse and longitudinal curves �⊥, ⊥ and �‖, ‖ together with the locally normal
curves �̇n, ̇n outside the uplift and �̈n, ̈n over the uplift. They have been obtained
in the model from Fig. 8.22 at the different distances y from the epicentre of the
uplift.

Consider the apparent-resistivity and impedance-phase curves observed over the
central part of the uplift (y = 0 ÷ 125 km). Here the descending mantle branches
of the transverse curves �⊥, ⊥ are distorted by moderate screening effect. They
are shifted somewhat upward with respect to the locally normal curves �̈n, ̈n. At
the same time the descending mantle branches of the longitudinal curves �‖, ‖ are
virtually undistorted. They merge with the locally normal curves �̈n, ̈n.

Coming to the apparent-resistivity and impedance-phase curves observed outside
the uplift (y = 251 ÷ 300 km), we see that their descending mantle branches are
shifted somewhat downward with respect to the locally normal curves �̇n, ̇n. These
distortions are accounted for by galvanic and induction effects of the conductive
uplift. At y = 500 km both the effects attenuate. Here the curves �⊥, ⊥ and �‖, ‖

merge with the locally normal curves �̇n, ̇n.
It would be instructive to find out how the distortions of the apparent-resistivity

curves depend on the dimension of the uplift. Figure 8.25 shows the curves �⊥, �‖

in the model from Fig. 8.22 with half-width v of the uplift varying from 5 km to
750 km. The observation site is located over the epicentre of the uplift (y = 0).
By analogy with (8.11) and (8.17), we estimate the intensity of the distortions
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Fig. 8.23 The Ey−profiles and Ex , Hy−profiles passing across the regional asthenosphere
uplift (v = 250 km). For the model from Fig. 8.22 with parameters �1 = 10 Ohm·m,

h1 = 1 km,�2 = 10000 Ohm·m, h 2 = 99 km, h′
2 = 49 km, �h = 50 km, �3 = 10 Ohm·m. Period

T = 100, 1000, 10000 s, 100000 s

in terms of the galvanic ratio �⊥ = v/d and inductive ratio �‖ = v/h, where
d =√

h1(h1 + h′
2)�2/�1 = 223.6 km is the adjustment distance over the uplift and
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Fig. 8.24 The transverse and longitudinal magnetotelluric curves �⊥, ⊥ and �‖, ‖

obtained at different distance y from the epicentre of the regional asthenosphere uplift (v=250 km);
�̇n, ̇n and �̈n, ̈n – locally normal curves outside and over the asthenosphere uplift. For the
model from Fig. 8.22 with parameters �1 = 10 Ohm·m, h 1 = 1 km, �2 = 10000 Ohm·m, h 2 =
99 km, h′

2 = 49 km, �h = 50 km, �3 = 10 Ohm·m

h = h1 + h′
2 = 50 km is the depth to the uplift. The uplift with v = 5 km is hardly

distinguishable because of screening and low-frequency flattening. Here the curves
�⊥ and �‖ are close to the locally normal �̇n-curve characterizing the uplift sur-
roundings. These distortions are marked by small values of the galvanic and induc-
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Fig. 8.25 The transverse and longitudinal apparent-resistivity curves �⊥, �‖ in relation to the
width of the asthenosphere uplift. The observation site is located at the epicentre of the uplift.
The uplift half-width v = 5, 25, 50, 100, 250, 500, 750 km; �̇n, ̇n and �̈n, ̈n – locally normal
curves outside and over the asthenosphere uplift. For the model from Fig. 8.22 with param-
eters �1 = 10 Ohm·m, h1 = 1 km, �2 = 10000 Ohm·m, h 2 = 99 km, h′

2 = 49 km, �h = 50 km,

�3 = 10 Ohm·m

tive ratios (�⊥ = 0.022, �‖ = 0.1). With widening the uplift, the curves �⊥, �‖

depart from the �̇n-curve and approach the �̈n-curve characterizing the uplift. At
v = 100 km, the �‖-curve almost merges with the �̈n-curve (�‖ = 2) and comes to
the normalcy, while the �⊥-curve remains close to �̇n-curve and shows no evidence
of the uplift (�⊥ = 0.45). But at v = 500 km, the �⊥-curve almost merges with the
�̈n-curve and also comes to the normalcy (�⊥ = 2.24). Using these estimates, we can
say that in model under consideration the �‖-curves allow for the one-dimensional
inversion if �‖ ≥ 2, whereas the one-dimensional inversion of the �⊥-curves is
justified if �⊥ ≥ 2 ÷ 2.5.

The next question is how the distortions of the apparent-resistivity curves
depend on the lithosphere resistivity. Figure 8.26 shows the curves in the model
from Fig. 8.22 with the lithosphere resistivity �2 = 1000, 10000, 100000 Ohm·m
and the half-width of the asthenosphere uplift v = 100, 250 km. The obser-
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Fig. 8.26 The transverse and longitudinal apparent-resistivity curves �⊥, �‖ in relation to
the width of the asthenosphere uplift and the lithosphere resistivity. The observation site
is located at the epicentre of the uplift. The uplift half-width v = 100, 250 km; the litho-
sphere resistivity �2 = 1000, 10000, 100000 Ohm·m; �̇n, ̇n and �̈n, ̈n – locally normal curves
outside and over the asthenosphere uplift. For the model from Fig. 8.22 with parameters
�1 = 10 Ohm·m, h1 = 1 km, h 2 = 99 km, h′

2 = 49 km, �h = 50 km, �3 = 10 Ohm·m

vation site is located at the epicentre of the uplift (y = 0). Here the
transverse �⊥-curve at v = 250 km and �2 = 1000 Ohm·m is practically
undistorted (�⊥ = 3.53). It merges with the locally normal �̈n-curve char-
acterizing the uplift. But with increasing �2 and decreasing v the screen-
ing effect comes into play. At v = 250 km, �2 = 10000 Ohm·m (�⊥ = 1.12)
and v = 100 km, �2 = 1000 Ohm·m (�⊥ = 1.41) the �⊥-curve departs from the
�̈n-curve and approaches the locally normal �̇n-curve which characterises
the uplift surroundings. At v = 250 km, �2 = 100000 Ohm·m (�⊥ = 0.35) and
v = 100 km, �2 = 100000 Ohm·m (�⊥ = 0.14) the �⊥-curve merges with the �̇n-
curve so that the asthenosphere uplift is actually screened. Quite different are the
longitudinal �‖-curves. At �2 ≥ 1000 Ohm·m and v ≥ 100 km (�‖ ≥ 2) they merge
with the locally normal �̈n-curve. In a model with the uplift whose half-width is
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Fig. 8.27 The Wzy- profiles passing across the regional asthenosphere uplift
(v = 250 km). For the model from Fig. 8.22 with parameters �1 = 10 Ohm·m, h1 = 1 km,
�2 = 10000 Ohm·m, h 2 = 99 km, h′

2 = 49 km, �h = 50 km, �3 = 10 Ohm·m. Period T = 100,

1000, 10000 s

twice its depth, the �‖-curves measured at the epicentre of the uplift are slightly
distorted and allow for one-dimensional interpretation.

The Wzy-profiles are shown in Fig. 8.27. In the period range from 100 s to
10000 s the real tippers Re Wzy do not change their sign with frequency, while the
imaginary tippers ImWzy do change. Note that ReWzy and Im Wzy are of the same
sign on high frequencies (T = 100 s) and of opposite sign on low frequencies (T =
1000–10000 s). The minima and maxima of ReWzy and ImWzy are observed over the
left and right edges of the asthenosphere uplift. It is evident that at all frequencies
under consideration the real induction arrows point away from the uplift epicentre,
while the imaginary induction arrows reverse their direction in the transition from
the high frequencies to the low ones.

Figure 8.28 presents curves for ReWzy and ImWzy measured over the right edge
of the uplift with half-width v = 50, 250 km and �3 = 10, 25, 50 Ohm·m. It is seen
that narrowing the uplift from 500 km to 100 km and increasing its resistivity from
10 Ohm·m to 50 Ohm·m we substantially diminish the real and imaginary tippers,
but they still are measurable.
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Fig. 8.28 Real and imaginary tippers over the right edge of regional asthenosphere uplift (v = 50,

250 km) of resistivity �3 = 10, 25, 50 Ohm·m. For the model from Fig. 8.22 with parameters
�1 = 10 Ohm·m, h1 = 1 km, �2 = 100000 Ohm·m, h 2 = 99 km, h′

2 = 49 km, �h = 50 km, �3 =
10 Ohm·m

8.2.3 May Asthenospheric Structures be Excited Inductively?

Optimism in this field was supported by the papers, in which the astenospheric struc-
tures were treated as perfect conductors and the inductive mechanism of electromag-
netic excitation played a considerable role (Vanyan et al.,1986, 1988, 1991; Egorov,
1987; Berdichevsky et al., 1992). In that simplified consideration, the astheno-
spheric conductors were manifested by noticeable magnetotelluric anomalies (in
spite of the highly resistive lithosphere that screens the galvanic effects). Naturally
the question arises: to what extent do these models approach the reality?

Examine the above model of the asthenosphere uplift. Let the uplift assume the
form of a 100 × 100 × 100 km cubic block with resistivity � = 50 Ohm·m and
the upper face at a depth h = 50 km. For rough estimation, we use an equivalent
sphere with a = 50 km and a+h = 100 km (see Fig. 8.12). Suppose that the astheno-
sphere uplift manifests itself in the period range T = 100 − 2500 s and calculate the
anomalous magnetic field

∣∣H A
/

Ho

∣∣ appearing due to local induction within the
uplift. According to (8.2), (8.3) and (8.4), we get 	 ≥ 61.6 km, p ≤ 0.81, |D| ≤
0.09,

∣∣H A
/

Ho

∣∣ ≤ 0.0056. This is a case of weak local induction: the induced mag-
netic field is negligibly small against the inducing magnetic field. When studying
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such an asthenosphere uplift, we most likely can count only on the galvanic mecha-
nism of electromagnetic excitation. It seems that we have to revise inferences from
the papers cited above.

8.2.4 On the Quasi-Two-Dimensionality
of Asthenospheric Structures

Consider three-layered models including conductive sediments �1 and resistive
lithosphere �2 underlaid with conductive asthenosphere �3 (Fig. 8.29). The astheno-
sphere surface has a three-dimensional rectangular uplift of length l, width 2v and
amplitude �h.

Let us test a set of these models at fixed parameters �1 = 10 Ohm·m, h1 = 1 km,

h2 = 99 km, h′
2 = 49 km, �h = 50 km, �3 = 10 Ohm·m and variable parameters

�2 = 1000, 10000 Ohm·m; 2v = 30 km, l = 30, 150, 300, 360, 450, 600, 750 km;
2v = 60 km, l = 60, 180, 300, 600, 900, 1200, 1500, 3000 km.

Figure 8.30 exemplifies the apparent-resistivity, impedance-phase and tip-
per curves obtained in the three-dimensional model of the asthenosphere
uplift with �2 = 10000 Ohm·m, v = 30 km, l = 60 km (elongation e = 1) and its

Fig. 8.29 A model with the
three-dimensional
asthenosphere uplift
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Fig. 8.30 The apparent-resistivity, impedance-phase and tipper curves in the model
of the asthenosphere uplift from Fig. 8.29 with parameters �1 = 10 Ohm·m, h1 = 1km,
�2 = 10000 Ohm·m, h′

2 = 49 km, �h = 50 km,v = 30 km, l = 60 km, �3 = 10 Ohm·m. Elongation
of the three-dimensional uplift e = l/2 v = 1

two-dimensional counterpart (l = ∞). The observation sites are located on a cen-
tral profile going in the y− direction. At all sites the curves �xy(3D), �yx (3D) and
xy(3D), yx (3D) are close to the transverse curves �⊥(2D) and ⊥(2D), while the
tippers ReWzy(3D), ImWzy(3D) do not exceed 0.02. Here the resistive lithosphere
heavily screens the asthenosphere uplift.

With elongating the uplift, the screening effect attenuates and the curves
�xy(3D), xy(3D) come close to the longitudinal curves �‖(2D), ‖(2D), while
the tippers ReWzy(3D), ImWzy(3D) increase. At v = 30 km, l = 600 km (e = 10)
the curves ReWzy(3D), ImWzy(3D) come close to the curves ReWzy(2D),
ImWzy(2D) and yield to the two-dimensional interpretation. Finally at
v = 30 km, l = 900 (e = 15) the curves �xy(3D), �yx (3D) and xy(3D), yx (3D)
merge with the curves �‖(2D), �⊥(2D) and ‖(2D), ⊥(2D), and also admit the
two-dimensional interpretation (Fig. 8.31).

The results of this test are summarized in Table 8.3. We observe here the same
regularities as in Table 8.1 which presents results obtained in the model of a crustal
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Fig. 8.31 The apparent-resistivity, impedance-phase and tipper curves in the model
of the asthenosphere uplift from Fig. 8.29 with parameters �1 = 10 Ohm·m, h1 = 1km,
�2 = 10000 Ohm·m,h′

2 = 49 km, �h = 50 km,v = 30 km, l = 900 km, �3 = 10 Ohm·m. Elongation
of the three-dimensional uplift e = l/2v = 15

conductor. The conditions of quasi-two-dimensionality of the asthenosphere uplift
depend on its width 2 v. The wider the uplift, the less its elongation that provides
quasi-two-dimensionality. Note also that the higher the lithosphere resistivity, the
stronger the galvanic screening and the larger the uplift elongation that provides

Table 8.3 Elongations of asthenosphere uplift providing the tipper quasi-two-dimensionality
(W-2D) and the apparent-resistivity and the impedance- phase quasi-two-dimensionality
(�, -2D)

Lithosphere resistivity (Ohm·m) Uplift width (km) Uplift elongation

W-2D �,  -2D

1000 30 10 15
60 7 10

10000 60 10 15
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quasi-two-dimensionality. This clearly suggests that in the models under considera-
tion the local induction is weak and magnetelluric anomalies are of galvanic nature.

8.2.5 Are Asthenospheric Structures Isotropic or Anisotropic?

In studying the upper mantle, we may face the anisotropy-isotropy equivalence.
Asthenospheric conductive zones located under the highly resistive lithosphere can
manifest themselves in the equivalent response functions, which do not distinguish
between isotropy and anisotropy and admit both the interpretations.

Let us consider two examples concerning the asthenosphere uplift.
Figure 8.32 shows the two-dimensional models IAU-I (isotropic asthenosphere

uplift) and AAU-I (anisotropic asthenosphere uplift). The model IAU-I contains the
isotropic asthenosphere uplift of resistivity of 9.1 Ohm·m, width of 200 km and
amplitude of 50 km. In the model AAU-I we have the same uplift composed of
alternating vertical dykes of resistivities of 5 and 50 Ohm·m (the strike of vertical
dykes coincides with the uplift strike). The uplift can be considered as an anisotropic
(macroanisitropic) conductor with the diagonal resistivity tensor

[
�AAU - I

] =
⎡
⎣�xx 0 0

0 �yy 0
0 0 �zz

⎤
⎦ .

where �xx ≈ 9.1 Ohm·m, �yy = 27.5 Ohm·m, and �zz ≈ 9.1 Ohm·m.
The calculations performed by the finite-element method (Wannamaker et al.,

1986) show that the apparent–resistivity and tipper curves obtained in the models
IAU-I and AAU-I are close to each other. The models demonstrate the anisotropy-
isotropy equivalence.

Next consider Fig. 8.33, which presents the two-dimensional models IAU-II
(isotropic asthenosphere uplift) and AAU-II (anisotropic asthenosphere uplift).
The model IAU-II contains the isotropic asthenosphere uplift of resistiv-
ity of 10 Ohm·m, width of 200 km and amplitude of 50 km. In the model
AAU-II we have the same uplift composed of alternating horizontal lay-
ers of resistivities of 5 and 1000 Ohm·m. The uplift can be considered
as an anisotropic (macroanisotropic) conductor with the diagonal resistivity
tensor

[
�AAU - II

] =
⎡
⎣�xx 0 0

0 �yy 0
0 0 �zz

⎤
⎦ .

where �xx ≈ 10 Ohm·m, �yy ≈ 10 Ohm·m, and �zz ≈ 500 Ohm·m.
The apparent-resistivity and tipper curves obtained in the models IAU-II and

AAU-II are also close to each other (anisotropy-isotropy equivalence).
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In closing, consider Fig. 8.34, which presents the two-dimensional models IA-I
(isotropic asthenolith) and AA-I (anisotropic asthenolith) with the lithosphere resis-
tance of 1.5·109 Ohm·m2. The model IA-I contains the deep-seated extended
isotropic asthenolith of resistivity of 18.2 Ohm·m, width of 500 km and amplitude of
100 km. In the model AA-I we have the same asthenolith composed of alternating
vertical layers of resistivities of 10 and 100 Ohm·m (the strike of vertical layers
coincides with the asthenolith strike). Here

Fig. 8.32 Two-dimensional models of the asthenosphere uplift. The model IAU-I contains an
isotropic asthenosphere uplift, the model AAU-I contains an anisotropic asthenosphere uplift with
alternating vertical dykes
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Fig. 8.33 Two-dimensional models of the asthenosphere uplift. The model IAU-II contains an
isotropic asthenosphere uplift, the model AAU-II contains an anisotropic asthenosphere uplift with
alternating horizontal layers of higher and lower resistivity

[
�AA - I

] =
⎡
⎣�xx 0 0

0 �yy 0
0 0 �zz

⎤
⎦ ,

where �xx ≈ 18.2 Ohm·m, �yy = 55 Ohm·m, and �zz ≈ 18.2 Ohm·m.
We see that the apparent–resistivity and tipper curves obtained in the mod-

els IA-I and AA-I are close to each other (anisotropy-isotropy equivalence). But
with decreasing the lithosphere resistance, the equivalence between isotropy and
anisotropy in the asthenolith disappears. Figure 8.35 shows the models IA-II and
AA-II with the lithosphere resistance of 1.5·108 Ohm·m2. Here the transverse
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Fig. 8.34 Two-dimensional models of the asthenolith. The model IA-I contains an isotropic
asthenolith, the model AA-I contains an anisotropic asthenolith with alternating vertical layers
of higher and lower resistivity. The lithosphere resistance 1.5·109 Ohm·m2

apparent resistivity and impedance-phase curves obtained over the asthenoliths
(y = 0) noticeably differ from each other.

We would like to stress again that the main factor that conditions the equivalence
between isotropy and anisotropy is the lithosphere resistance defining the screen-
ing effect. The least favorable for studying the anisotropic asthenosphere are the
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Fig. 8.35 Two-dimensional models of the asthenolith. The model IA-II contains an isotropic
asthenolith, the model AA-II contains an anisotropic asthenolith with alternating vertical layers
of higher and lower resistivity. The lithosphere resistance 1.5·108 Ohm·m2

stable regions where the lithosphere resistance ranges up to 109÷5·109 Ohm·m2

and the TM-mode is characterized by the strong screening effect (w < 2d where
w is the asthenosphere width, d = √

Ssed R lit is the adjustment distance, Ssed is
the sedimentary conductance and R lit is the resistance of lithospheric strata sep-
arating an asthenospheric conductor from the sediments). Here the anisotropy-
isotropy equivalence may exist even at distances of about 300–500 km. Widening
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the asthenospheric conductor, we get models which expose considerable difference
between isotropy and anisotropy at the distances of about 1000÷1500 km stretching
over the whole tectonic province. But in active regions (especially with deep con-
ductive faults) the lithosphere resistance drops to 108÷5·108 Ohm·m2 and the
screening effect is not so dramatic (especially if sedimentary conductance is small).
Here, in all likelihood, we can differentiate between the anisotropic and isotropic
asthenospheric conductors even at distances of order of 300÷500 km and obtain
unique information on the state of the Earth’s interior.

Summing up, we can say that studying the crustal and mantle conductive zones
we run the risk of wrong interpretation. But note that for the final conclusions, it
would be necessary to consider a set of models, in which the anisotropy strike does
not coincide with the strike of deep conductors.



Chapter 9
Models of Deep Faults

The deep fluidized or graphitized faults form conductive channels, which cross the
highly resistive lithosphere and provide the vertical redistribution of excess cur-
rents. This physical mechanism normalizes the magnetotelluric field distorted by
near-surface inhomogeneities and increases its sensitivity to crustal and mantle con-
ductive zones (Berdichevsky et al., 1993, 1994). It is evident that the deep fluidized
faults define to a large part the efficiency of deep magnetotellurics.

9.1 Near-Surface Inhomogeneity in the Presence
of Conductive Faults

This two-dimensional model is shown in Fig. 9.1. It consists of the three-segment
sediments (�′

1, �′′
1, �′

1), the resistive lithosphere (�2) and the mantle highly conduc-
tive zone (�3 = 0). The central sedimentary segment of width 2ν and resistivity
�′′

1 is bordered by conductive vertical channels of width q and resistivity �f which
simulate faults connecting sediments with mantle. Here

�1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�′
1 y ≥ v

�′′
1 −v ≤ y ≤ v

�′
1 y ≤ −v

�2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�2 y ≥ v + q
�f v + q ≥ y ≥ v

�2 −v ≤ y ≤ v

�f −v − q ≤ y ≤ −v

�2 y ≤ −v − q

�3 = 0 h 2 � h 1.

(9.1)

The attractive feature of the problem is that it admits of an analytical solution for
the TM-mode. Using the Dmitriev thin-sheet approximation, we turn to (7.17) and
take into account that the lithosphere has the variable resistivity. Then, eliminating
Ey(y, h 1), Hx (y, h 1) from (7.17) and assuming that Hx (y, 0) = H N

x = const , we
get the equation for the transverse impedance Z⊥(y) = −Ey(y, 0)/H N

x :

h 2
d

dy
�2(y)

d

dy
S1(y)Z⊥(y) − [1 − i��oS1(y)h 2]Z⊥(y) = i��oh , (9.2)

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 327
DOI 10.1007/978-3-540-77814-1 9, C© Springer-Verlag Berlin Heidelberg 2008
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Fig. 9.1 The
two-dimensional model with
conductive faults bordering
the central sedimentary
segment (a) and its equivalent
electric circuit (b)

where S1(y) = h 1/�1(y) and h = h 1 + h 2. With regard to (9.1), this equation falls
into three independent equations with constant coefficients:

d2 Z⊥(y)

dx2
−
(

g′
1

f ′

)2

Z⊥(y) = −
(

g′
1

f ′

)2

ŻN y ≥ v + q

d2 Z⊥(y)

dx2
−
(

g′
2

f ′

)2

Z⊥(y) = −
(

g′
2

f ′

)2

ŻN v + q ≥ y ≥ v

d2 Z⊥(y)

dx2
−
(

g′′

f ′′

)2

Z⊥(y) = −
(

g′′

f ′′

)2

Z̈N 0 ≤ y ≤ v ,

(9.3)

where g1, g2, g3 are galvanic parameters:

g′
1 = 1√

S′
1 R′

2

g′
2 = 1√

S′
1 R′′

2

g′′ = 1√
S′′

1 R′
2

S′
1 = h 1/�′

1 S′′
1 = h 1/�′′

1 R′
2 = h 2�2 R′′

2 = h 2�f ,

f ′, f ′′ are induction parameters:
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f ′ = 1√
1 − i��oS′

1h 2
, f ′′ = 1√

1 − i��oS′′
1 h 2

,

and ŻN, Z̈N are normal impedances of side and central segments defined in the thin-
sheet approximation:

ŻN = − i��oh

1 − i��oS′
1h 2

, Z̈N = − i��oh

1 − i��oS′′
1 h 2

.

Solutions of these equations are

Z⊥(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŻN + Ae−g′
1 y/ f ′

y ≥ v + q

ŻN + Be−g′
2 y/ f ′ + Ceg′

2 y/ f ′
v + q ≥ y ≥ v

Z̈N + D cos h
g′′

f ′′ y 0 ≤ y ≤ v .

(9.4)

Constants A, B, C, D are found from conditions that S1(y)Z⊥(y) and
�2(y) d S1(y)Z⊥(y)

dy are continuous at y = ν and y = ν + q.
The first condition ensures the horizontal component of the current density jy to

be continuous at the Earth’s surface:

S1(y)Z⊥(y) = − h 1

�1(y)

Ey(y, 0)

H N
x

= − h 1

H N
x

jy(y, 0) .

The second condition ensures the vertical component of the electric field Ez to
be continuous at the floor of sediments:

�2(y)
d S1(y)Z⊥(y)

dy
= −�2(y)

H N
x

d S1(y)Ey(y, 0)

dy
= �2(y)

H N
x

d [H N
x − Hx (y, h 1)]

dy

= −�2(y)

H N
x

d Hx (y, h 1)

dy
= Ez(y, h 1)

H N
x

.

On cumbersome mathematics we get

A = ŻN(1 + k)
(
η2 − �2

)
e[g′

1(w+q)−g′
2q]

/
f ′
[

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ η
g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

B = ŻN
(
η2 − �2

)
eg′

2w
/

f ′
[

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ η
g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

C = ŻN
(
η2 − �2

)
e−g′

2(w+2q)
/

f ′
[

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ η
g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

D = Z̈N
g′′ (η2 − �2

)
η g′

2 sinh
g′′

f ′′ v

(
ke−2 g′

2q
/

f ′ − 1
) [

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ η
g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

,

(9.5)

where
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k =
√

�f − √
�2√

�f + √
�2

, � =
√

S′
1

S′′
1

, η = f ′′

f ′ =
√

1 − i��oS′
1 h 2√

1 − i��oS′′
1 h 2

.

In the absence of faults (�f = �2), we return to the three-segment model examined
in Sect. 7.2.3. This model contains a near-surface inhomogeneity, which distorts the
transverse impedance in the low-frequency range.

Consider the transverse impedance Z⊥ in a model with conductive faults.
Let us begin with the S1 – interval relating to the ascending branch of the

apparent-resistivity curve �⊥ = ∣∣Z⊥∣∣2/��o. Here ��oS1 h 2 � 1. Then f ≈√−i��oS1h2, whence η ≈ �. Hence the coefficients A, B, C and D defined by
(9.5) are close to zero, from which

Z⊥(y) ≈

⎧⎪⎪⎨
⎪⎪⎩

ŻN = 1

S′
1

Z̈N = 1

S′′
1

|y| ≥ v + q

|y| ≤ v .
(9.6)

Here we arrive at the same representation (7.77) inferred in Sect. 7.2.3 for the
three-segment model without conductive faults. In the S1 – interval the transverse
impedance is not distorted.

Now we pass on to the h – interval relating to the descending branch of the

apparent-resistivity curve �⊥ = ∣∣Z⊥∣∣2/��o. Here ��oS1 h 2 � 1. Then f ≈ 1,

whence η ≈ 1. Thus,

A ≈ ŻN(1 + k)(1 − �2)e[g′
1(w+q)−g′

2q]
/

f ′
[

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

B ≈ ŻN

(
1 − �2

)
eg′

2w
/

f ′
[

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

C ≈ ŻN

(
1 − �2

)
e−g′

2(w+2q)
/

f ′
[

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

D ≈ Z̈N
g′′(1 − �2)

g′
2 sin h

g′′

f ′′ v

(
ke−2 g′

2q
/

f ′ − 1
) [

�2
(

1 + ke−2 g′
2q
/

f ′
)

+ g′′

g′
2

(
1 − ke−2 g′

2q
/

f ′
)

coth
g′′

f ′′ v
]−1

.

(9.7)

The normalizing role of the faults is seen from two asymptotic estimates.
Let �2 → ∞, �f → ∞. In this model the lithosphere is of infinitely high resis-

tivity and the faults are absent. Then A = B = C = 0 and D = �2 − 1, whence

Z⊥(y) ≈
{

ZN = −i��oh

�2 ZN = −i��o�2 h

|y| ≥ v

|y| ≤ v.
(9.8)
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The model without faults exhibits the strong S – effect: the transverse impedance
Z⊥ observed over the central segment differs from the locally normal impedance Zn

by the distortion factor �⊥ = �2 = S′
1

/
S′′

1 .
Let �2 → ∞, �f → 0. In this model the faults are of infinitesimal resistivity.

Then A = 0, D = 0, whence

Z⊥(y) ≈
{

ZN = −i��oh |y| ≥ v + q
ZN = −i��oh |y| ≤ v

(9.9)

Here the S – effect is suppressed and the transverse impedance Z⊥ comes to
the normalcy: excess current arising in the inhomogeneous sediments is released
through the conductive faults.

Clearly the intensity of the S – effect depends on the fault resistivity. Consider
this mechanism from the physical point of view.

The impact of a thin fault crossing highly resistive lithosphere can be defined by
two integral parameters: by the resistance ζf = �fh 2

/
q = R′′

2

/
q of the fault in the

vertical direction and by the resistance ζs = 2�′′
1ν
/

h 1 = 2ν
/

S′′
1 of the sedimentary

central segment in the horizontal direction. Let us return to (9.7) and find asymp-
totics of coefficients A and D at q → 0 and �2 → ∞. Using Taylor-series expansion
of exponential and hyperbolic functions, we write

A ≈ −i��oh

(
1 − S′

1

S′′
1

)
1

S′
1

S′′
1

+ 1

P
(F + 1)

,

D ≈ −i��oh

(
S′

1

S′′
1

− 1

)
1

P
S′

1

S′′
1

+ F + 1
,

(9.10)

where

P = v√
S′

1 R′
2

, F = ζs

2ζ f
= vq

S′′
1 R′′

2

.

These asymptotic formulae are valid for small q and great �2. They have sim-
ple physical interpretation. We believe that vertical redistribution of excess current
includes two mechanisms: (1) slow percolation through the highly resistive litho-
sphere; the intensity of this mechanism is determined by parameter P (the greater is
P, the more intensive is the percolation), and (2) abrupt flow through the conductive
faults; the intensity of this mechanism is determined by parameter F (the greater
is F, the more intensive is the abrupt flow). In (9.10) these two mechanisms are
expressed separately.
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The fault effect is dominant when P S′
1

/
S′′

1 � F + 1 with S′
1 > S′′

1 or when
P � F + 1 with S′

1 < S′′
1 . Let one of these conditions be satisfied. Then, ignoring

the percolation effect, we get

A = 0 D = −i��oh

(
S′

1

S′′
1

− 1

)
1

F + 1
, (9.11)

whence

Z⊥(y) ≈
⎧⎨
⎩

−i��oh |y| ≥ v + q

−i��o�⊥h |y| ≤ v ,
(9.12)

where �⊥ is a distortion factor which defines the intensity of the S – effect (magni-
tude of the static shift of the apparent-resistivity descending branch):

�⊥ = F + S′
1

/
S′′

1

F + 1
.

Here the S – effect enhances when the fault resistivity increases:

�⊥
F→0

→ S′
1

S′′
1

and the S – effect vanishes when the fault resistivity decreases:

�⊥
F→∞

→ 1.

In this approximation the action of faults reduces to the simple shunting. An
equivalent electric circuit is shown in Fig. 9.1. The sedimentary central segment
with resistance ζs is shunted by faults with resistance 2ζf. Determine the excess
current � Jy filling the central segments in the absence of the faults (�2 = �f = ∞).
In the model without leakage, we have the constant current Jy = Ey S1 = const .
Therefore Jy(−ν ≤ y ≤ ν) = Ey(−ν ≤ y ≤ ν)S′′

1 = EN
y S′

1, where EN
y is the

normal electric field. At the same time, the normal current in the central segment is
J N

y = EN
y S′′

1 . So, � Jy = Jy − J N
y

= EN
y (S′

1 − S′′
1 ). Now introduce the faults and

establish relations between excess currents � J s
y and � J f

y flowing in sediments and
faults respefctively. From Kirchhoff’s laws

� J s
y + � J f

y = � Jy = EN
y (S′

1 − S′′
1 )

� J s
y

� J f
y

= 2ζ f

ζs
= 1

F
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whence

� J s
y = EN

y

S′
1 − S′′

1

F + 1
.

Summing J N
y and � J s

y , we obtain the total current J s
y flowing in sediments:

J s
y = J N

y + � J s
y = EN

y

S′
1 − S′′

1

1 + F
.

Consequently,

Ey(−v ≤ y ≤ v) = J s
y

S′′
1

= EN
y

F + S′
1

/
S′′

1

F + 1
,

whence

Z⊥(−v ≤ y ≤ v) = − Ey(−v ≤ y ≤ v)

Hx
= −i��o�⊥h , �⊥ = F + S′

1

/
S′′

1

F + 1
,

which coincides with (9.12).
Using (9.12), we can suggest a simple criterion of slight S – effect. Let us believe

that the S – effect is slight if deviation of �⊥ from 1 does not exceed 0.2. This
condition is fulfilled if F ≥ 5S′

1

/
S′′

1 − 6 when S′
1

/
S′′

1 ≥ 1.2 or if F ≥ 4 − 5S′
1

/
S′′

1
when S′

1

/
S′′

1 ≤ 0.8.
As an pictorial example we consider the apparent-resistivity curves in the model

from Fig. 9.1. Let us take fixed parameters �′
1 = 10 Ohm · m, h 1 = 1 km, �′′

1 =
200 Ohm · m, ν = 10 km, �2 = 10000 Ohm · m, h 2 = 20 km, �3 = 0 and variable
parameters q = 0 ÷ 1 km, �f = 1 ÷ 3 Ohm · m. Here S′

1

/
S′′

1 = 20. Figure 9.2

Fig. 9.2 Transverse apparent-resistivity �⊥ – curves in the model shown in Fig. 9.1. Observation
site is located at the centre of the model (y = 0). Model parameters: �′

1 = 10 Ohm · m, h 1 =
1 km, �′′

1 = 200 Ohm · m, ν = 10 km, �2 = 10000 Ohm · m, h 2 = 20 km, q = 0, 1 km, � f =
1, 3 Ohm · m, �3 = 0; 1 – transverse �⊥ – curve computed by means of the finite element method,
2 – transverse �⊥ – curve computed from analytical solution (9.4), 3 – locally normal �̈n – curve
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shows the transverse �⊥ – curves obtained at the centre of the model (y = 0) from
analytical solution (9.4) and finite element solution (Wannamaker et al. 1987). Note
that both the solutions virtually coincide. In the absence of faults (q = 0) we observe
the strong S – effect: the descending branch of the �⊥ – curve is dramatically shifted
upward with respect to the locally normal �̈n – curve, its static shift being about two
decades. But with conductive faults the situation essentially changes. In the case
�f = 3 Ohm · m the static shift considerably diminishes, while in the case �f = 1
Ohm·m the �⊥ – curve practically merges with locally normal �̈n – curve.

9.2 Deep Inhomogeneity in the Presence
of Conductive Faults

In the previous section we saw that the deep faults normalize the apparent-resistivity
curves distorted by near-surface S-inhomogeneity. Now we will show that the deep
faults increase the sensitivity of the apparent-resistivity curves to deep conductive
zones.

Figure 9.3 presents a two-dimensional model consisting of five layers. Here the
homogeneous conductive sediments (�1) and resistive lithosphere (�2, �3, �4) rest
on the conductive mantle (�5). The lithosphere contains a conductive crustal zone
(�′′

3) of width 2ν bordering by vertical conductive channels (faults) of resistivity � f

and width q that connect sediments with conductive mantle.
The �⊥ – curves obtained over the midpoint of the conductive zone (y = 0) are

shown in Fig. 9.4. The calculations have been performed for fixed parameters �1 =
10 Ohm · m, h 1 = 1 km, �2 = 100000 Ohm · m,h 2 = 19 km, �′

3 = 1000 Ohm ·
m, �′′

3 = 10 Ohm · m, h 3 = 15 km, �4 = 1000 Ohm · m, h 4 = 65 km, �5 =
10 Ohm · m and variable parameters q = 0, 5 km, ν = 25, 100, 250, 500 km; �f =
1, 5, 10 Ohm · m. Note that in the model under consideration the lithosphere resis-
tance is about 109 Ohm·m2 which is typical for stable regions. In the absence of
faults (q = 0) the conductive zone is strongly screened by highly resistive layers
of the llithosphere. Thus, at ν = 25, 100 km the transverse �⊥ – curves practically
coincide with the locally normal �̇n – curve connected with a normal background.

Fig. 9.3 The
two-dimensional model with
conductive faults bordering
the deep conductive zone
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Fig. 9.4 Transverse apparent-resistivity �⊥ – curves observed at the epicentre of the deep con-
ductive zone (y = 0) in the model from Fig. 9.3 with fixed parameters � 1 = 10 Ohm · m,

h 1 = 1 km, � 2 = 100000 Ohm · m, h 2 = 19 km, �′
3 = 1000 Ohm · m, �′

3 = 10 Ohm · m,

h 3 = 15 km, �4 = 1000 Ohm · m, h 4 = 65 km, �5 = 10 Ohm · m and variable parameters
v = 25, 100, 250, 500 km; � f = 1, 5, 10 Ohm · m; 1 – locally normal curves �̇n, �̈n, 2 – transverse
�⊥ – curves in the presence of conductive faults (q = 5 km), curve parameter: � f , Ohm · m, 3 –
transverse �⊥ – curve in the absence of conductive faults (q = 0)

When widening the conductive zone (ν = 250, 500 km), the �⊥ – curves slightly
flatten still preserving their bell-like shape without distinct evidences of a conduc-
tive zone. The different pattern is observed when conductive faults are present. Even
relatively narrow conductive zone (w = 25, 100 km) manifests itself in the �⊥ –
curves with a descending branch, which enables one to estimate a depth to this zone.
Here the deep S – effect is clearly observable (at low-frequencies the descending
branch of the �⊥ – curves is shifted downwards with respect to the locally normal �̈n

– curve connected with a central segment of the model). When widening the conduc-
tive zone (ν = 250, 500 km), the deep S – effect attenuates and the low-frequency
branches of the �⊥ – curves approach the locally normal �̈n – curve. The lower the
fault resistivity, the weaker the deep S – effect and the closer the �⊥ – curve to the
normalcy. In the case ν = 250 km, �f = 1 Ohm · m or ν = 500 km, �f = 5 Ohm · m
the �⊥ – curve virtually comes to the normalcy and provides the reliable 1D
inversion.

The calculations show that highly resistive layers of the continental lithosphere
(10000 ÷ 100000 Ohm · m) forbid the galvanic access to the deep conductive zones
(the screening effect). If the net of deep conductive faults crossing the continental
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lithosphere had not been sufficiently dense, the regional palette of the magnetotel-
luric data would been consisted of the uniform bell-type apparent-resistivity curves
with verticall scattering of their mantle branches due to the near-surface S – effect.
It can be said without exaggeration that in many regions magnetotellurics owes its
information on crustal and mantle conductivity to the deep conductive faults cross-
ing the resistive lithosphere.

9.3 Current Channeling in Conductive Faults

The notion of the current channeling (conductive channeling) has been introduced
into magnetotellurics by Weidelt (1977). He used the thin sheet approximation and
examined a plane-wave model consisting of the upper inhomogeneous layer (�1) and
the homogeneous two-layered substratum (�2 = 1000 Ohm ·m, h 2 = 250 km, �3 =
50 Ohm·m). The upper layer contains the homogeneous background of conductance
Sn = 500 S and a highly conductive cranked channel of conductance S = 4000 S.
Figure 9.5 shows how the total and anomalous currents flow in the upper layer. It is
seen that the density of the anomalous current is significantly enhanced within the
conductive channel. This concentration effect received the name current channeling.
The current channeling is defined as concentration of induced current in highly con-
ductive elongated structures. The main idea in this definition is that currents induced
in a large remote area flow via conductive channels into domain under investigation
and generate here an anomalous magnetic field which has little in common with
the normal magnetic field representative for that domain (Weidelt, 1977). The early
works on the current channeling effect had been reviewed by Jones (1983). The
Simpson and Bahr monograph (2005) provides a present look on this effect.

It is generally taken that the current channeling effect is of a three-dimensional
nature and requires a three-dimensional treatment. But here we would like to note

Fig. 9.5 The Weidelt model of current channeling: systems of total and anomalous currents in the
layer with a cranked conductive inclusion, T = 1800 s
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Fig. 9.6 Current channeling in the conductive faults: (a) model cross-section, (b) current channel-
ing, (c) profile of the transverse electric field Ey(y) normalized to the normal field EN

y , (d) trans-
verse apparent-resistivity curves �⊥ and locally normal apparent-resistivity curves �n over central
block (y = 0) and side blocks (|y| = 100 km)

that two-dimensional models with deep conductive faults demonstrate effects, which
can be reasonably considered as current channeling.

An example of such a model is given in Fig. 9.6. The two-dimensional model
consists of the central resistive block bordered by the deep conductive faults, which
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connect the conductive upper layer (sediments) with deep (crustal) conductive layers
localized within the side resistive blocks (Fig. 9.6a). The crustal layers, the faults
and the sediments form a closed conductive circuit. The transverse currents, which at
low frequencies are induced in the crustal conductive layers, are channeled through
the conductive faults and concentrate within sediments (Fig. 9.6b). This channeling
effect clearly manifests itself over the central segment. Here at low frequencies the
transverse electric field dramatically increases (Fig. 9.6c) and a descending branch
of the transverse apparent-resistivity �⊥ – curves lies far above the locally normal
apparent-resistivity �n – curve (Fig. 9.6d).



Part III
Interpretation of Magnetotelluric

and Magnetovariational Data



Chapter 10
Statement of Inverse Problem

The inverse problem in magnetotellurics using the plane-wave approximation of
the source field consists in the determination of the geoelectric structure of the
Earth from a dependence of the magnetotelluric and magnetovariational response
functions on observation coordinates x, y, z = 0 and frequency � of the electro-
magnetic field. Magnetotelluric and magnevariational inversions usually reduce to
solution of the operator equations for the impedance tensor and tipper:

[Z{x, y, z = 0, �, �(x, y, z)}] = [Z̃] a

W{x, y, z = 0, �, �(x, y, z)} = W̃, b
(10.1)

where [Z] and W are operators of the forward problem that calculate the impedance
tensor and tipper from a given electrical conductivity �(x, y, z), both the operators
depend parametrically on x, y, �; [Z̃] and W̃ are the impedance tensor and tip-
per determined on the set of surface points (x, y) and frequencies � with errors �Z

and �W.
The electrical conductivity �(x, y, z) is found from the conditions

∥∥[Z̃] − [Z{x, y, z = 0, �, �(x, y, z)}]∥∥ ≤ �Z a∥∥W̃ − W{x, y, z = 0, �, �(x, y, z)}∥∥ ≤ �W. b
(10.2)

Inverse problem (10.1) includes MT inversion (10.1a) and MV inversion (10.1b).
It is solved in the class of piecewise-homogeneous or piecewise-continuous models
excited by a plane wave vertically incident on the Earth’s surface, z = 0. Inver-
sions (10.1a) and (10.1b) should be mutually consistent. They result in approximate
conductivity distributions �̃(x, y, z) such that misfits of the impedance tensor and
tipper do not exceed errors, �Z and �W, in the initial data. The distributions �̃(x, y, z)
generate a set �� of equivalent solutions of the inverse problem (10.1).

Magnetovariational inversion (10.1b), (10.2b) can be extended by inversion of
the horizontal magnetic tensor:

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 341
DOI 10.1007/978-3-540-77814-1 10, C© Springer-Verlag Berlin Heidelberg 2008
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[M{x, y, z = 0, �, �(x, y, z)}] = [M̃] c (10.1)∥∥[M̃] − [M{x, y, z = 0, �, �(x, y, z)}]∥∥ ≤ �M, c (10.2)

where [M] is operator of the forward problem that calculates the magnetic tensor
from a given electrical conductivity �(x, y, z), it depends parametrically on x, y, �;
[M̃] is the magnetic tensor determined on the set of surface points (x, y) and fre-
quencies � with errors �M.

Errors in the initial data �Z, �W, �M include the measurement and model errors.
The measurement errors are commonly random. They arise due to instrumental
noises, external interferences, and inaccuracies in the calculation of [Z̃], W̃, [M̃].
Improvement in instrumentation and field data processing methods decreases these
errors. Presently, due to progress in MT technologies, measurement errors are, as a
rule, fairly small (the problems may be encountered in zones of intense industrial
disturbances). The main difficulty is connected with model errors that arise due to
the inevitable deviation of numerical simulations from real geoelectric structures
and real MT fields. As an example, we can cite the errors arising in 2D inversion
of data obtained above 3D structures or the errors typical of polar zones, where
the magnetic field of ionospheric currents has a vertical component contradicting
the plane-wave approximation. Model errors are systematic. They are usually larger
than measurement errors. To estimate the model errors, we need a tentative mathe-
matical modeling.

Strategy and informativeness of the inverse problems depend on the dimension-
ality of models.

The simplest inverse problem is 1D inversion carried out in the class of one-
dimensional models. It applies the mathematics of zero horizontal derivatives. Such
a mathematics provides the local determination of the electrical conductivity along
vertical profiles passing through observation points. The 1D inversion evidently
ignores distortions produced by lateral geoelectric inhomogeneities. It is justified
if horizontal variations in the conductivity are fairly small. Otherwise, it can miss
real structures and give birth to false structures (artefacts).

The transition to 2D and 3D inversions carried out in the classes of two- and
three-dimensional models enables the more or less adequate regard for the horizon-
tal geoelectric inhomogeneities, but calls for horizontal derivatives. This mathemat-
ics substantially complicates the inverse problem.

10.1 On Multi-Dimensional Inverse Problem

Consider three distinguishing features of the multi-dimensional inverse problem.

10.1.1 Normal Background

In solving the multi-dimensional inverse problem, we face the contradiction
between a finite area of MT and MV observations and a mathematical statement
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colling for conditions at infinity. In forward problem, this contradiction can be
easily removed through the embedding the observation area into the reasonably con-
structed infinite horizontally homogeneous layered medium considered as a normal
background. In the inverse problem, the normal background of the medium under
consideration is unknown and it should be chosen as a mathematical abstraction
consistent with observation data obtained at the boundary of the observation area
and a priori geological and geophysical information.

Note that using the homogeneous half-space as a normal background, we run the
risk of false structures at the periphery of the observation area. With the help of
these structures the computer tries compensate the contradictions between the real
geolectric medium and homogeneous half-space.

We believe that in the general three-dimensional case a normal background
consistent with the real medium can be introduced by the extrapolation of scalar
invariants of the measured impedance tensors, for example, the invariant Zbrd (the
Berdichevsky impedance) or Zeff (the effective impedance). The idea is to adjust
the normal background to a mean value of the impedance invariants obtained at the
boundary of the observation area. This techique will be referred to as the adjustment
method. Let values of the impedance tensor [Z] be determined in an observation area
S0 bounded by a contour C0 and let [Z(l)], l = 1, 2...L be specified at L points of
C0 (Fig. 10.1). The average value of the invariant Zbrd on the contour C0, i.e., on the
boundary of the observation area, is found as

Z̄brd = ant log
1

L

L∑
l=1

log Z (l)
brd = ant log

1

L

L∑
l=1

log
Z (l)

xy − Z (l)
yx

2
. (10.3)

Fig. 10.1 Introduction of a
normal background into the
3D interpretation model
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Using the spline approximation, the values Zbrd are extrapolated in such a way that
the condition Zbrd = Z̄brd is valid on a new boundary contour C1 and the derivative
of Zbrd along the normal to C1 vanishes. Given these conditions, we assume that
the impedance Z̄brd is close to the normal impedance ZN of a horizontally layered
medium in the infinite normalized area SN external with respect to C1 and determine
its normal conductivity �N(z) by the one-dimensional inversion of the impedances
Z̄brd. At the last stage we perform the one-dimensional inversion of the impedances
Zbrd extrapolated in the transition zone St and find gently varying transition conduc-
tivities �t(x, y, z) between the observation area S0 and the normalized area SN. So,
we get a model, in which a normal background and a transition zone embrace the
observation area:

�(M) =
⎧⎨
⎩

�(x, y, z) M ∈ S0

�t(x, y, z) M ∈ St

�N(z) M ∈ SN.

(10.4)

The conductivity �t in the transition zone can be corrected at the stage of the three-
dimensional inversion.

Likewise, the normal background is introduced using the effective impedances
Zeff.

To test this algorithm, we should make sure that an expansion of the transition
zone St has no significant effect on the results of MT and MV inversions in the
central part of the observation area S0.

The adjustment method based on the averaging and extrapolation of Zbrd, Zeff or
Z‖, Z⊥ can be applied in a 2D approximation of elongated structures. Let observa-
tions be carried out along a transverse profile P0 from y = −c0 to y = c0 (Fig. 10.2).
The average of the invariant Zbrd at the edges of the profile is determined as

Fig. 10.2 Introduction of a normal background into the 2D interpretation model
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Z̄brd = ant log
1

2
{Zbrd(y = −c0) + Zbrd(y = c0)}

= ant log
Z‖(−c0) + Z⊥(−c0) + Z‖(c0) + Z⊥(c0)

4
.

(10.5)

Using a spline or linear extrapolation, the values of Zbrd are taken beyond
the observation profile P0 in such a way that the conditions Zbrd = Z̄brd and
�Zbrd

/
�y = 0 be valid at the points y = −c1 and y = c1. The extrapolation

frames the profile P0(−c0 ≤ y ≤ c0) by the transition zones P ′
t (−c1<y< −

c0), P ′′
t (c0<y<c1) and the infinite normalized profiles PN(y ≤ −c1), PN(y ≥ c1)

with the normal impedance ZN ≈ Z̄brd. On the one-dimensional inversion of the
normal impedance ZN ≈ Z̄brd we get a model with a symmetric normal background:

�(y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�N(z) y ≤ −c1

�′
t(y, z) −c1<y< − c0

�(y, z) −c0 ≤ y ≤ c0

�′′
t (y, z) c0<y<c1

�N(z) y ≥ c1.

(10.6)

Alternatively, we can determine a symmetric normal background by separate
extrapollation of the longitudinal or transverse impedances, Z‖ or Z⊥.

Introduction of a two-dimensional symmetric homogeneous background is quite
understandable, if the impedance values measured at the edges of the observation
profile P0 do not greatly differ from each other. In the regions with strongly pro-
nounced asymmetry (for instance, on the ocean coast or at foothills), geophysicists
give usually preference to an asymmetric background characterized by the different
normal impedances ŻN, Z̈N and the different normal conductivities �̇N(z), �̈N(z)
which provide the best adjustment to the real geoelectric structures bordering the
observation profile. Evidently this approach is tolerable provided that a sufficient
information on the areas adjacent to edges of the profile is available.

Note that any two-dimensional asymmetric model by means of mirror-image can
be reduced to a symmetric model with a homogeneous background.

10.1.2 On Detailedness of the Multi-Dimensional Inversion

Compared to the one-dimensional inversion, the two-dimensional and three-
dimensional inversions are less stable since they require a much greater number of
free parameters for constructing adequate models. Solution of the two-dimensional
or three-dimensional inverse problem is meaningful provided it is sought within a
sufficiently narrow set of plausible models forming an interpretation model. But
here we come up against the paradox of instability. The more restricted the inter-
pretation model, the more stable the inverse problem and the poorer the detailedness
of its solution. On the other hand, the more stable the inverse problem, the higher
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its resolution. The resolution of the inverse problem and the detailedness of its solu-
tion are antagonistic. The inverse problem should be solved with optimum relation
between stability, resolution and detailedness (Berdichevsky and Dmitriev, 2002).
We have to fit the solution detailedness to the inversion resolution and smooth or
schematize models of the geoelectric medium (to diminish a number of parameters).
This complies with the diffusive nature of the low-frequency magnetotelluric field
that can offer only a smoothed integral image of the geoelectric medium. Existing
in the Earth buried sharp conductivity contrasts can be introduced into the inter-
pretation model using a priori information or hypotheses. Thus, the most complete
interpretation is performed by a compromise between smoothing inversion and con-
trasting inversions. An interpretation model with a small number of layers and
structures is preferable. The additional layers and structures should be introduced
providing the magnetotelluric and magnetovariational indications demand their
presence.

10.1.3 On Redundancy of Observation Data

Solving a 1D inverse problem, we determine a conductivity distribution �(z) from
the scalar complex-valued Tikhonov–Cagniard impedance Z , i.e., from two scalar
response functions |Z | and arg Z , which have different resolving power and can
nicely complement each other.

When increasing the interpretation dimensionality, we significantly extent the
number of response functions derived from observation data. The two-dimensional
and three-dimensional inverse problems are multicriterion problems. Magnetotel-
luric inversion aimed at determining the conductivity distribution involves complex-
valued matrices of the impedance tensor (2 × 2), the phase tensor (2 × 2), the
horizontal magnetic tensor (2 × 2), the tipper (1 × 2). Summing up, we say that
a scalar real function defining a two-dimensional or three-dimensional distribution
of the electrical conductivity is going to be derived from 28 scalar real functions.
These functions have different sensitivity to parameters of the interpretation model
and different immunity to galvanic distortions that ruin information on buried geo-
electric structures. How can we cope with such a great body of observation data
which have quite divergent properties? On joint simultaneous inversion they can
bother each other impairing the inversion accuracy. The challenge is to devise the
interpretation scenarios combining the inversions of different response functions in
the most efficient way.

10.2 Inverse Problem as a Sequence of Forward Problems

Solving inverse problem (10.1), (10.2), we compare the observed response func-
tions with model response functions derived from hypothetical conductivity dis-
tributions �(x, y, z) and sequentially minimize the model misfit by means of the
iterative procedure. So, the inverse problem reduces to a sequence of the forward
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problems. Let us construct the operators of the forward problem, [Z{x, y, z =
0, �, �(x, y, z)}] and W{x, y, z = 0, �, �(x, y, z)}, that at each iteration step cal-
culate the impedance tensor and tipper from a given conductivity �(x, y, z). Obvi-
ously, these operators depend on the dimensionality of the model.

10.2.1 Forward Problem in the Class of 1D-Models

Let us consider a 1D-model in which the electrical conductivity �(z) is a piecewise-
constant function of depth z:

�(z) = �m for zm−1 < z < zm, m ∈ [1, M], zo = 0, zM = ∞, hm = zm −zm−1,

(10.7)

where �m and hm are the conductivity and thickness of the mth layer, respectively.
At a depth z = zM−1, the model rests on an infinite homogeneous basement having
a conductivity �M = const . The scalar impedance Z of this model can be found
directly from the Riccati equation:

d Z (z, �)

dz
− �(z)Z2(z, �) = i��o, z ∈ [0, zM−1], (10.8)

where Z (z, �) satisfies the boundary condition

Z (zM−1, �) = (1 − i)
√

��o

2�M

and is continuous at boundaries between layers.

10.2.2 Forward Problem in the Class of 2D-Models

Let a 2D-model striking along the x-axis contain an anomalous doman |y| ≤ l
where the conductivity is a piecewise-constant function of the horizontal coordinate
y and depth z and let this domain be bordered by infinite normal background y<− l
and y > l where the conductivity depends solely on the depth z:

� =
⎧⎨
⎩

�N(z) y< − l
�(y, z) −l ≤ y ≤ l
�N(z) y > l.

(10.9)

The electromagnetic field in a 2D-model can be divided into two independent
modes: the induction TE-mode with the components Ex , Hy, Hz and the galvanic
TM-mode with the components Ey, Ez, Hx . The TE-mode gives the longitudinal
impedance Z ‖ and the tipper Wzy , which reflect the induction effects of geoelec-
tric structures (induction anomalies), whereas the TM-mode gives the transverse
impedance Z⊥, reflecting the galvanic effects of geoelectric structures (galvanic
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anomalies). Thus, we have three independent formulations of the inverse problem,
separating induction and galvanic anomalies of different physical origin.

1. MT inversion (TE-mode): the conductivity �(y, z) is found from the longitu-
dinal impedance Z̃‖. To determine the operator Z‖{y, z = 0, �, �(y, z)}, the longi-
tudinal impedance is written in the form

Z‖ (y, z = 0, �) = Ex (y, z = 0, �)

Hy(y, z = 0, �)
= i��o

Ex (y, z, �)
�Ex (y, z, �)

�z

∣∣∣∣∣∣∣∣
z=0

, (10.10)

where Ex (y, z, �) is obtained from the Helmholtz equations

�2 Ex (y, z, �)

�y2
+ �2 Ex (y, z, �)

�z2
+ i��o �N(z)Ex (y, z, �) = 0, |y| > l,

�2 Ex (y, z, �)

�y2
+ �2 Ex (y, z, �)

�z2
+ i��o �(y, z)Ex (y, z, �) = 0 |y| ≤ l

(10.11)
with the conditions at infinity

Ex (y, z, �) → EN
x (z, �)

|y|→∞
, Ex (y, z, �) → 0

z→∞
(10.12)

and the boundary conditions

[Ex (y, z, �)]S = 0,

[
�Ex (y, z, �)

�n

]
S

= 0. (10.13)

Here, EN
x (z, �) is the normal electric field, and n is the normal to the bound-

ary S between blocks or layers of different conductivities. The square brackets in
(10.13) indicate a jump of a function at the boundary S. The anomalous electric field
EA

x (y, z) = Ex (y, z) − EN
x (z) satisfies in the air the radiation condition.

For the longitudinal impedance we have

Z‖(y, z, �) →
|y|→∞

ZN(z, �) = EN
x (z, �)

H N
y (z, �)

, (10.14)

where ZN(z, �) and H N
y (z, �), are the normal (one-dimensional) impedance and the

normal magnetic field.
2. MV inversion (TE-mode): the conductivity �(y, z) is found from the tipper

W̃zy . To determine the operator Wzy{y, z = 0, �, �(y, z)}, the tipper is written in the
form

Wzy(y, z = 0, �) = Hz(y, z = 0, �)

Hy(y, z = 0, �)
= −

�Ex (y, z, �)

�y
�Ex (y, z, �)

�z

∣∣∣∣∣∣∣∣
z=0

, (10.15)
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where Ex (y, z, �) is obtained from Helmholtz equations (10.11) with conditions at
infinity (10.12) and boundary conditions (10.13). According to (10.12) and (10.15),

Wzy(y, z, �)
|y|→∞

→ 0, (10.16)

i.e., the tipper vanishes as the distance from the anomalous zone tends to infinity.
3. MT inversion (TM-mode): the conductivity �(y, z) is found from the trans-

verse impedance Z̃⊥. To determine the operator Z⊥{y, z = 0, �, �(y, z)}, we write
the transverse impedance as

Z⊥(y, z = 0, �) = − Ey(y, z = 0, �)

Hx (y, z = 0, �)
= − 1

�(y, z)

�Hx (y, z, �)

�z

∣∣∣∣
z=0

Hx (y, z = 0, �)
, (10.17)

where Hx (y, z, �) is obtained from the equations

1

�N(z)

�2 Hx (y, z, �)

�y2
+ �

�z

{
1

�N(z)

�Hx (y, z, �)

�z

}
+ i��o Hx (y, z, �) = 0 |y| > l

�

�y

{
1

�(y, z)

�Hx (y, z, �)

�y

}
+ �

�z

{
1

�(y, z)

�Hx (y, z, �)

�z

}
+ i��o Hx (y, z, �) = 0 |y| ≤ l

(10.18)

with the conditions at infinity

Hx (y, z, �) → H N
x (z, �)

|y|→∞
, Hx (y, z, �) → 0

z→∞
(10.19)

and the boundary conditions

[Hx (y, z, �)]S = 0,

[
1

�(y, z)

�Hx (y, z, �)

�n

]
S

= 0 Hx (y, z = 0, �) = H N
x (�)

(10.20)

where H N
x (z, �) is the normal magnetic field.

According to (10.17) and (10.19), we have

Z⊥(y, z, �)
|y|→∞

→ ZN(z, �) = − EN
y (z, �)

H N
x (z, �)

, (10.21)

where ZN(z, �) and EN
y (z, �) are the normal (one-dimensional) impedance and the

normal electric field.
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10.2.3 Forward Problem in the Class of 3D-Models

Now, we consider MT and MV inversions in the class of 3D-models. Let a homo-
geneously layered Earth with the normal conductivity �N(z) depending on depth z
contain a bounded anomalous domain V in which the conductivity �(x, y, z) is an
arbitrary piecewise-continuous function of the horizontal coordinates x, y and the
depth z. This model admits two independent formulations of the inverse problem
that separate MT and MV inversions with their different sensitivities to near-surface
distortions.

1. MT inversion: conductivity �(x, y, z) is found from the impedance tensor [Z̃].
To determine the operator [Z{x, y, z = 0, �, �(x, y, z)}], we use integral equations.

Recall that the electromagnetic field in a 3D model satisfies the integral relations

E(r) = EN(r) +
∫∫∫

V

��(rv)[GE (r |r v)]E(rv)dV a

H(r) = HN(r) +
∫∫∫

V

��(rv)[GH (r |r v)]E(rv)dV, b
(10.22)

where EN, HN are the normal electric and magnetic fields, [GE ], [GH ] are the elec-
tric and magnetic Green tensors, �� = � − �N is the excess (anomalous) conduc-
tivity, M(r) is an arbitrary point in the Earth or on its surface, and Mν(rν) is a point
in the anomalous domain V.

An integral equation for the electric field inside the anomalous region is readily
derived from (10.22a). Assume that M(r) ∈ V . Then

E(r′
v) −

∫∫∫
V

��(rv)[GE (r′
v |r v)]E(rv) dV = EN(r′

v) . (10.23)

Solving integral equation (10.23) and determining the electric field inside V,
we substitute E(rν) into (10.22) and find the electric and magnetic fields on the
Earth’s surface. The special convenience of this approach is that the electric and
magnetic Green tensors are calculated only once for a given normal conductivity
�N(z). When the conductivity �(rν) changes in the iterative inversion procedure,
kernels of integrals in (10.22) are simply obtained through the multiplication of the
known Green tensors by the excess conductivity ��(r	). This substantially shortens
the computational time because kernels of integrals need not be calculated anew
whenever the model of the medium changes.

The electric and magnetic fields are found for two different polarizations of the
normal field:

EN(1) = {EN(1)
x , 0, 0} HN(1) = {0, H N(1)

y , 0}
EN(2) = {0, EN(2)

y , 0} HN(2) = {H N(2)
x , 0, 0} .
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The resulting electromagnetic fields on the Earth’s surface E(1) = {E (1)
x , E (1)

y , 0},
H(1) = {H (1)

x , H (1)
y , H (1)

z } and E(2) = {E (2)
x , E (2)

y , 0}, H(2) = {H (2)
x , H (2)

y , H (2)
z }

provide the system of linear equations for the impedance tensor components:
{

Zxx H (1)
x + Zxy H (1)

y = E (1)
x

Zxx H (2)
x + Zxy H (2)

y = E (2)
x

{
Z yx H (1)

x + Z yy H (1)
y = E (1)

y

Z yx H (2)
x + Z yy H (2)

y = E (2)
y ,

(10.24)

whence

Zxx = E (1)
x H (2)

y − E (2)
x H (1)

y

H (1)
x H (2)

y − H (2)
x H (1)

y

Z yx = E (1)
y H (2)

y − E (2)
y H (1)

y

H (1)
x H (2)

y − H (2)
x H (1)

y

Zxy = E (2)
x H (1)

x − E (1)
x H (2)

x

H (1)
x H (2)

y − H (2)
x H (1)

y

Z yy = E (2)
y H (1)

x − E (1)
y H (2)

x

H (1)
x H (2)

y − H (2)
x H (1)

y

.

(10.25)

2. MV inversion: conductivity �(x, y, z) is found from the tipper W̃. To deter-
mine the operator W{x, y, z = 0, �, �(x, y, z)}, we use the magnetic fields H(1) =
{H (1)

x , H (1)
y , H (1)

z } and H(2) = {H (2)
x , H (2)

y , H (2)
z }, obtained on the Earth’s surface

for two different polarizations of the normal field, and solve the system of linear
equations

{
Wzx H (1)

x + Wzy H (1)
y = H (1)

z

Wzx H (2)
x + Wzy H (2)

y = H (2)
z ,

(10.26)

which yields the tipper components

Wzx = H (1)
z H (2)

y − H (2)
z H (1)

y

H (1)
x H (2)

y − H (2)
x H (1)

y

, Wzy = H (2)
z H (1)

x − H (1)
z H (2)

x

H (1)
x H (2)

y − H (2)
x H (1)

y

. (10.27)

10.3 Three Questions of Hadamard

Solving an inverse problem, one should answer three questions of Hadamard:

1. Does the solution of this problem exist?
2. Is it unique?
3. Is it stable with respect to small errors in initial data?

These questions determine the correctness of the inverse problem. If its solution
exists and if it is unique and stable, the problem is well-posed (posed correctly). But
if one of these conditions is violated, the problem is regarded as ill-posed (posed
incorrectly), and it calls for special consideration. We will show that inverse prob-
lems of magnetotellurics are ill-posed.
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10.3.1 On the Existence of Solution to the Inverse Problem

At first glance, this question appears to be simple, because the impedance tensor
[Z̃] and the tipper W̃ measured on the Earth’s surface should correspond to the
really existing distribution of conductivity in the inhomogeneous Earth. However,
the experimental values of the impedance tensor and the tipper are inaccurate, and
they may conflict with mathematical models.

Let [Z̃] and W̃ contain measurement and model errors �Z and �W. It is evident that
the real distribution of conductivity in the Earth and the real MT and MV response
functions do not belong to the chosen model class on which the inverse problem is
defined. Such an inverse problem does not have a rigorous solution. To remove this
contradiction, the notion of quasi-solution is introduced: a conductivity distribution
�(x, y, z) is said to be a quasi-solution of the inverse problem (10.1) if the condi-
tions (10.2) are satisfied, i.e., if the misfits of the impedance tensor and the tipper do
not exceed errors in the initial data, �Z and �W. The inverse problem (10.1) has a set
of quasi-solutions. From this set we have to select a quasi-solution that provides (at
a given level of abstraction) the best approximation to the real geoelectric structure.
This conductivity distribution �̂(x, y, z) is called the exact model solution. When
solving the inverse problem, we endeavour to find the exact model solution.

Using the notion of the exact model solution, we can formalize the definition
of measurement and model errors. Let [Ẑ] and Ŵ be the impedance tensor and the
tipper obtained from a model that belongs to the chosen model class and has the
conductivity �̄(x, y, z). Then, measurement errors are determined as

�ms
Z =‖ [Ẑ] − [Ẑ] ‖, �ms

W =‖ Ŵ − Ŵ ‖ (10.28)

and model errors are determined as

�md
Z =‖ [Ẑ] − [Ẑ{x, y, z = 0, �, �(x, y, z)}] ‖

�md
W =‖ Ŵ − Ŵ{x, y, z = 0, �, �(x, y, z)} ‖ .

(10.29)

Setting �Z = �ms
Z + �md

Z and �W = �ms
W + �md

W and applying the triangle rule, we
reduce (10.28), (10.29) to the initial condition (10.2).

10.3.2 On the Uniqueness of Solution to the Inverse Problem

We proceed from the following heuristic statement. The inverse problem has a
unique solution if it is defined on a given model class and the impedance tensor
and the tipper belonging to this class are exactly determined on the entire Earth’s
surface in the entire frequency range. This statement was proven in four partial
cases.
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I. Tikhonov (1965) proved the uniqueness theorem for 1D MT inversion in
the class of piecewise-analytical functions �(z). In our book we present a sim-
plified proof of the Tikhonov theorem for the case of a homogeneously layered
model.

Let �(z) be a piecewise-constant function of the depth z:

�(z) = �m

at zm−1<z<zm, m ∈ [1, M], zo = 0, zM = ∞, h m = zm − zm−1, where �m and
h m are the conductivity and thickness of the mth layer and zm is the depth of its
lower boundary. At the depth z = zM−1, the model rests on an infinite homogeneous
basement of conductivity �M = const . The admittance Y (z, �) in this homoge-
neously layered model satisfies the Riccati equation

dY (z, �)

dz
+ i��oY 2(z, �) = −�(z), z ∈ [0, zM−1], � ∈ [0.∞] (10.30)

with the boundary conditions

[Y (z, �)]S = 0, Y (zM−1, �) = (1 + i)
√

�M

2��o
.

Using (10.30), we can easily derive a recurrent formula expressing Ym−1 =
Y (zm−1, �) through Ym = Y (zm, �):

Ym−1 = 
m
(
m + Ym) − (
m − Ym)e2ikm hm

(
m + Ym) + (
m − Ym)e2ikm hm
, (10.31)

where km is the wavenumber of the mth layer:

km = (1 + i)

√
��o�m

2

and


m = km

��o
= (1 + i)

√
�m

2��o
.

Inverse of (10.31) yields a formula determining Ym through Ym−1 (converting the
admittance from the upper boundary of the mth layer to its lower boundary):

Ym = 
m
(
m + Ym−1) − (
m − Ym−1)e2ikm hm

(
m + Ym−1) + (
m − Ym−1)e2ikm hm
. (10.32)
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Let the admittance Yo = Y (0, �) be known at the Earth’s surface, while the conduc-
tivity �(z) be known in the interval 0 < z < zm . Then, the successive application of
(10.32) provides the admittance Ym = Y (zm, �) at a depth zm .

Now, we prove the theorem of uniqueness, which is formulated as follows. If
Y (1)(z, �) and Y (2)(z, �) are the solutions of problem (10.30) for �(1)(z) and �(2)(z),
then Y (1)

o (�) ≡ Y (2)
o (�) implies that �(1)(z) ≡ �(2)(z). This theorem is proven ad

absurdum. Assume that

Y (1)
o (�) ≡ Y (2)

o (�) a

�(1)(z) ≡ �(2)(z) at 0 < z < zm−1 b

�(1)(z) = �(2)(z) at z > zm−1. c

(10.33)

Then, applying (10.32) to (10.33a) and (10.33b) and extending Y (1)
0 and Y (2)

0 to
the depth zm−1, we obtain Y (1)

m−1(�) ≡ Y (2)
m−1(�). Let us determine the high-frequency

asymptotics of Ym−1(�). According to (10.31),

Ym−1(�)
�→∞

∼ 
m = (1 + i)
√

�m

2��o
. (10.34)

Thus, the identity Y (1)
m−1(�) ≡ Y (2)

m−1(�) leads to �(1)
m = �(2)

m , which contradicts the
assumption (10.33c). Successively increasing m, we reach the model basement and
obtain �(1)(z) ≡ �(2)(z), z ≥ 0. The theorem of uniqueness is proven.

II. The next step was made by Weidelt (1978), who proved the uniqueness the-
orem for a 2D model excited by an E-polarized field. In this model, the electrical
conductivity �(y, z) is supposed to be an analytical function. It has been shown that
simultaneous observations of horizontal components of the electric and magnetic
fields, carried out in the entire frequency range 0 < � < ∞ along an y-profile of a
finite length, provide the unique determination of �(y, z).

The Weidelt theorem was generalized by Gusarov (1981), who considered a 2D
E-polarized model with the piecewise-analytical conductivity �(y, z). The Gusarov
theorem states that the piecewise-analytical function �(y, z) is uniquely determined
by the longitudinal impedance Z‖ = Zxy specified in the entire frequency range
0 < � < ∞ on an infinite y-profile −∞< y <∞.

All these proofs have their basis in the skin effect. Due to the skin effect, there
always exists a high frequency such that the field or impedance can be approximated
by a high-frequency asymptotics depending on a local conductivity. Comparison
of high-frequency asymptotics for various geoelectric structures suggests that dif-
ferent distributions of conductivity � correspond to different fields and different
impedances. Unfortunately, the realization of this simple idea encounters signifi-
cant mathematical difficulties due to complexity of the determination of the field
high-frequency asymptotics in heterogeneous media.
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Resorting to intuition, the above proofs of uniqueness can be extended to the
general 3D case of MT inversions. It appears evident that the �− dependence of
the impedance tensor ensures determination of the vertical variations in the con-
ductivity, whereas its x, y-dependence characterizes the horizontal variations in the
conductivity. Intuition suggests that measurements of the MT impedance made in
a wide frequency range along sufficiently long profiles or over a sufficiently large
area can provide information which enables the reconstruction of the geoelectric
structure of the region studied.

III. The uniqueness of the MV inversion for a long time was open to question. It
seemed that the tipper characterizes horizontal heterogeneities of the medium, but
cannot provide information on its normal layered structure because Wzx = Wzy =
0 in a horizontally homogeneous model. However, if the medium is horizontally
inhomogeneous, the manetovariational sounding can be considered as a common
frequency sounding using the magnetic field of a local buried source. The latter
is formed by any geoelectric inhomogeneity ��(x, y, z) filled with excess electric
current. It is evident that this current and its magnetic field depend not only on
the structure of the inhomogeneity, ��(x, y, z), but also on the normal structure,
�N (z). Thus, the solution �(x, y, z) = �N (z)+��(x, y, z) of the magnetovariational
inverse problem exists and we should find out whether it is unique.

The theorem of uniqueness for the MV inversion was proven by Dmitriev
(Berdichevsky et al., 2000; Dmitriev, 2005). Let us consider a model shown in Fig.
10.3. In this model, a homogeneously layered Earth with the normal conductivity

�N(z) =
{

�(z) 0 ≤ z ≤ D
�D D ≤ z

contains a 2D inhomogeneous domain S of conductivity �(y, z) = �N (z)+��(y, z),
where ��(y, z) is the excess conductivity. The inhomogeneity is striking along the
x-axis, and the maximum diameter of its cross-section is d. The functions �N (z) and

Fig. 10.3 A layered model
with a 2D inhomogeneous
bounded domain S

D
S

d

N(z) (y,z)

D
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��(y, z) are piecewise-analytical. An infinite homogeneous basement of conductiv-
ity �D = const occurs at a depth D. The model is excited by the plane E-polarized
electromagnetic wave incident vertically on the Earth’s surface z = 0.

The Dmitriev theorem states that the piecewise-analytical distribution of conduc-
tivity

�(M) =
{

�N(z) M /∈ S
�N(z) + ��(y, z) M ∈ S

is uniquely determined by exact values of the tipper

Wzy(y) = Hz(y, z = 0)

Hy(y, z = 0)
, −∞< y <∞, 0 ≤ � < ∞,

given on the Earth’s surface z = 0 at all points of the y-axis from −∞ to ∞ in the
entire range of frequencies � from 0 to ∞.

The uniqueness theorem is proven in two stages. First we derive the asymptotics
of the tipper Wzy (y) at a great distance from the inhomogeneity S and show that
it determines the normal conductivity �N (z). Then, with the known conductivity
�N (z), we prove that the tipper uniquely determines the longitudinal impedance of
the inhomogeneous medium.

The anomalous magnetic field HA on the Earth’s surface can be represented as a
field produced in a horizontally homogeneous layered medium by excess current of
density jx distributed in the domain S. Normalizing HA, we write:

�

H
A

oy(y) = H A
y (y, z = 0)

H N
y (z = 0)

=
∫
S

jx (Mo)hy(y, Mo) d S

�

H
A

oz(y) = H A
z (y, z = 0)

H N
y (z = 0)

=
∫
S

jx (Mo)hz(y, Mo) d S,

(10.35)

where hy(y, Mo), hz(y, Mo) are magnetic fields produced at the surface of a hori-
zontally homogeneous medium by an infinitely long linear current of the unit den-
sity flowing at the point Mo(yo, zo) ∈ S in the x -direction. The functions hy(y, Mo)
and hz(y, Mo) assume the form (Dmitriev, 1969; Berdichevsky and Zhdanov, 1984)

hy(y, Mo) = i

��o
lim
z→0

∞∫
0

cos λ(y − yo) eλz U (λ, z = 0, zo)λ dλ

hz(y, Mo) = − i

��o
lim
z→0

∞∫
0

sin λ(y − yo) eλz U (λ, z = 0, zo)λ dλ,

(10.36)

where the factor eλz relates to the upper half-space z ≤ 0 and the function U (λ, z, zo)
is the solution of the boundary problem



10.3 Three Questions of Hadamard 357

d2U (λ, z, zo)

dz2
− �2(λ, z)U (λ, z, zo) = −�(z − zo) z, zo ∈ [0, D]

�(λ, z) =
√

λ2 − i��o�N(z) Re � > 0

(10.37)

with conditions

d U (λ, z, zo)

dz
+ λ U (λ, z, zo) = 0 z = 0

d U (λ, z, zo)

dz
− �D(λ)U (λ, z, zo) = 0 z = D

�D(λ) =
√

λ2 − i��o�D Re �D > 0.

Let us turn to (10.36) and find the asymptotics of the functions hy(y, Mo)
and hz(y, Mo) at |y − yo| → ∞. Given large |y − yo|, harmonics of low spatial
frequencies λ make the major contribution to hy(y, Mo), hz(y, Mo). Expanding
U (λ, z = 0, zo) in powers of small λ, we get

U (λ, z = 0, zo) = U (λ = 0, z = 0, zo) + λ
dU (λ, z = 0, zo)

dλ

∣∣∣∣
λ=0

+ . . . ,

whence, upon the substitution into (10.36) and integration, we obtain

hy(y, Mo) = i

��o

U (λ = 0, z = 0, zo)

(y − yo)2
+ O

(
1

(y − yo)4

)

hz(y, Mo) = 2i

��o

1

(y − yo)3

d U (λ, z = 0, zo)

dλ

∣∣∣∣
λ=0

+ O

(
1

(y − yo)5

)
.

(10.38)

In order to write the relations between
�

H
A

0y and
�

H
A

0z in the form containing the
MT impedance, we introduce the functions

Vy(z) = U (λ = 0, z, zo), Vz(z) = d U (λ, z, zo)

dλ

∣∣∣∣
λ=0

. (10.39)

The function Vy(z) is the solution of problem (10.37) at λ = 0. The problem for
the function Vz(z) is solved by differentiating (10.37) with respect to λ and setting
λ = 0. Then,

d2Vz(z)

dz2
+ i��o �(z)Vz(z) = 0 z ∈ [0, D]

dVz(z)

dz

∣∣∣∣
z=+0

= −Vy(0)

dVz(z)

dz

∣∣∣∣
z=D

−
√

−i��o �DVz(D) = 0.

(10.40)
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In this notation,

hy(y, Mo) = i

��o

Vy(0)

(y − yo)2
+ O

(
1

(y − yo)4

)

hz(y, Mo) = 2 i

��o

Vz(0)

(y − yo)3
+ O

(
1

(y − yo)5

)
.

(10.41)

Now return to (10.35) and determine the anomalous magnetic field at the great
distances from the inhomogeneity. Let |y − yo| >> d. Then,

�

H
A
oy (y) = i

��o
Vy (0)

∫
S

jx (Mo)

(y − yo)2
d S = i

��o

Vy (0)

(y − yS)2

∫
S

jx (Mo) d S = i

��o

Vy (0)

(y − yS)2
Jx

�

H
A
oz(y) = 2i

��o
Vz(0)

∫
S

jx (Mo)

(y − yo)3
d S = 2i

��o

Vz(0)

(y − yS)3

∫
S

jx (Mo) d S = 2i

��o

Vz(0)

(y − yS)3
Jx ,

(10.42)
where

Jx =
∫
S

jx (Mo) d S

is the total excess current in the inhomogeneity and yS is the coordinate of the central
point of its cross-section S. Thus, with regard for (10.40), we have

�

H
A

oz(y)
�

H
A

oy(y)
= 2

(y − yS)

Vz(0)

Vy(0)
= − 2

(y − yS)

Vz(0)
dVz(z)

dz

∣∣∣∣
z=0

(10.43)

It is easy to show that the ratio
�

H
A

0z /
�

H
A

0y can be expressed through the normal
impedance of the Earth. Let us introduce the function

Z (z) = i��o
Vz(z)

dVz(z)

dz

. (10.44)

It is seen from (10.40) that Z (z) satisfies the Riccati equation

d Z (z)

dz
− �N (z) Z2 (z) = i��o (10.45)

with the boundary condition

Z (D) =
√

−i��o

�D

.
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We obtained the known problem (1.40) for the impedance of a 1D medium with the
conductivity �N(z), 0 ≤ z ≤ D and �D = const, z > D. The function Z (z) in
the model under consideration evidently represents the normal impedance ZN (z).
Setting Z (z) =ZN (z) and taking into account (10.43), (10.44) and (10.45), we find
the far-zone asymptotics

ZN(0) = − i��o(y − yS)

2

�

H
A

oz(y)
�

H
A

oy(y)

∣∣∣∣∣∣
|y−yS |>>d

= − i��o(y − yS)

2

H A
oz(y)

H A
oy(y)

∣∣∣∣∣
|y−yS |>>d

(10.46)
that coincides with the known expression for a remote infinitely long linear current
(Vanyan, 1965). The normal impedance ZN (0) is connected with the ratio of the

components
�

H
A

0z and
�

H
A

0y of the anomalous magnetic field, which can be determined
from values of the tipper Wzy known at all points of the y-axis from –∞ to ∞. To

find
�

H
A

0y , we solve the integral equation (5.80)

Wzy(y)
�

H
A

oy(y) + 1

�

∞∫
−∞

�

H
A

oy(yo)

y − yo
dyo = −Wzy(y).

Then we compute

�

H
A

oz = Wzy(1 +
�

H
A

oy) (10.47).

Knowing Wzy , we synthesize the normalized anomalous magnetic field
�

H
A

0y ,
�

H
A

0z
and calculate the normal impedance ZN from the far-zone asymptotics. With known
�

H
A

0y ,
�

H
A

0z and ZN, we integrate the second Maxwell equation (the Faraday law) and
continue the longitudinal impedance Z‖ to the entire y-axis:

Z‖(y) = Ex (y)

Hy(y)
= 1

1 +
�

H
A

oy

⎧⎨
⎩ZN − i��o

y∫
−∞

�

H
A

oz(y) dy

⎫⎬
⎭ . (10.48)

Thus, we find Z‖ from Wzy . A one-to-one correspondence exists between Z‖ and
Wzy . Therefore, we can apply the Gusarov theorem (1981), stating that inversion of
Z‖ has a unique solution, and extend this result to inversion of Wzy . The uniqueness
theorem for 2D MT inversion (the TE-mode) gives rise to that for 2D MV inversion.
Moreover these two theorems can be supplemented by the uniqueness theorem for
the horizontal magnetic field.

IV. Return to a 2D model shown in Fig. 10.3. Let the longitudinal impedance
Z‖(y) = Z‖(y, z = 0) = Ex (y, z = 0)/Hy(y, z = 0) be known at all
points of the y-axis from −∞ to ∞ in the entire range of frequencies �
from 0 to ∞.
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The electric field Ex (y, z) in the air is a solution of the problem

�2 Ex (y, z)

�y2
+ �2 Ex (y, z)

�z2
+ k2

o Ex (y, z) = 0 − ∞<y<∞ 0 ≥ z > −∞
(10.49)

with boundary condition on the Earth’s surface

Ex (y, z = 0) = Z‖ (y) Hy(y, z = 0) = Z‖ (y)

i��o

�Ex (y, z)

�z

∣∣∣∣
z=0

and absorption condition in the air

{
Ex (y, z) − Eoeikoz

} → 0 as
√

y2 + z2 → ∞,

were ko is the air wavenumber, Im ko > 0 , and Eo is the amplitude of the incident
wave. It is well known that a problem of this kind has a unique solution continuously
depending on the coefficient Z‖(y) in the boundary condition. Consequently, to the
different impedances Z‖

(1)(y) and Z‖
(2)(y) , the different electric fields E (1)

x (y, z) and
E (2)

x (y, z) correspond.
Does it mean that to different impedances there correspond different magnetic

fields on the Earth’s surface?
Let us give the proof by contradiction. The boundary problem for the electric

field can be rewritten as

�2 Ex (y, z)

�y2
+ �2 Ex (y, z)

�z2
+ k2

o Ex (y, z) = 0 − ∞<y<∞, 0 ≥ z > −∞
�Ex (y, z)

�z

∣∣∣∣
z=0

= i��o Hy(y, z = 0)

{
Ex (y, z) − Eoeikoz

} → 0 as
√

y2 + z2 → ∞.

(10.50)

Solution of this problem exists and is unique. Hence, to identical magnetic fields
H (1)

y (y, z = 0) ≡ H (2)
y (y, z = 0) identical electric fields E (1)

x (y, z) ≡ E (2)
x (y, z)

correspond.
Assume that to the different impedances Z‖

(1)(y, �) and Z‖
(2)(y, �) , the identical

magnetic fields H (1)
y (y, z = 0) ≡ H (2)

y (y, z = 0) correspond. But it follows from
(10.50) follows that in this case the identical electric fields E (1)

x (y, z) ≡ E (2)
x (y, z)

also correspond to the different impedances Z‖
(1)(y, �) and Z‖

(2)(y, �) , which con-
tradicts the statement derived from (10.49). So, we say that to different impedances
Z‖

(1)(y, �) and Z‖
(2)(y, �) different magnetic fields H (1)

y (y, z = 0) and H (2)
y (y, z =

0) correspond. And taking into account the Gusarov uniqueness theorem for the lon-
gitudinal impedance Z‖(y, �) , we state that to different conductivity distributions
�(1)(y, z) and �(2)(y, z) there correspond different magnetic fields H (1)

y (y, z = 0)
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and H (2)
y (y, z = 0) on the Earth’s surface. The uniqueness theorem for the magnetic

field Hy(y, z = 0) is proved.
Both the methods, MT and MV soundings, have a common mathematical basis.

The 2D conductivity distribution is uniquely determined from exact values of TE
impedances as well as from exact values of tippers or transverse horizontal magnetic
fields given on the infinitely long transverse profile in the entire frequency range.

10.3.3 On the Instability of the Inverse Problem

Inverse problems of magnetotellurics are unstable. The set ��, characterized by
small misfits of the impedance tensor and tipper, can contain equivalent solutions
that strongly differ from one another and from the exact model solution.

We illustrate this property of the inverse problem by the example of the 1D inver-
sion. The analysis is based on the theorem of stability of the S-distribution proven
by Dmitriev in (Berdichevsky and Dmitriev, 1991, 2002).

Recall that the S-distribution stands for a function

S(z) =
z∫

0

�(z) dz (10.51)

determining the conductance of the Earth on the interval [0, z] The conductivity � is
connected with the conductance S through the differential relation �(z) = d S(z)/dz.

The theorem of stability of the S-distribution consists of two statements.
1. The admittance Y (�) = Y (z = 0, �) measured at the Earth’s surface depends

continuously on S(z) . Thus, the condition

∥∥S(1)(�) − S(2)(�)
∥∥

C ≤  (10.52)

implies that

∥∥Y (1)(�) − Y (2)(�)
∥∥

L2
≤ �(), (10.53)

where � → 0 at  → 0 .
2. The conductance S(z) is stably determined from the admittance Y (�) = Y (z =

0, �) measured at the Earth’s surface. Thus,

∥∥S(1)(�) − S(2)(�)
∥∥

C → 0 (10.54)

if

∥∥Y (1)(�) − Y (2)(�)
∥∥

L2
→ 0. (10.55)
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Take the set of conductivity distributions obtained from the inversion of 1D
admittance:

�� ∈ �� = {�(z) :
∥∥Ỹ (�) − Y [�, �(z)]

∥∥
L2

≤ �Y}, (10.56)

where Ỹ (�) is the measured admittance, Y [�, �(z)] is the operator calculating the
admittance from a given distribution �(z), and �Y is the error in the admittance. The
theorem of stability of the S-distribution implies that, for any �(1)

� (z) and �(2)
� (z)

from the set ��, the following condition is valid:

∥∥∥∥∥∥
z∫

0

�(1)
� (z)dz −

z∫
0

�(2)
� (z)dz

∥∥∥∥∥∥
C

≤ (�Y), (10.57)

where  → 0 as �Y → 0. If �(1)
� (z) and �(2)

� (z) meet condition (10.57), they are
equivalent, i.e., they are characterized by closely related S-distributions and cannot
be resolved by MT observations performed with an error �Y. Such �− distribu-
tions are called S-equivalent distributions. We say that �� is the set of S-equivalent
distributions of the conductivity. In the framework of one-dimensional magnetotel-
lurics, we can formulate the following generalized principle of S-equivalence: the
conductance S characterizes the whole set �� of equivalent solutions of the inverse
problem. To specify the entire set �� it is sufficient to know its S-distribution.

Differentiating the conductance S(z), one intends to find the conductivity �(z).
However, the immediate numerical differentiation of S(z) is an unstable operation
generating a scatter in the distribution �(z). The determination of �(z) from Y (�)
is evidently an ill-posed problem. It is easy to show, that there exist essentially
different distributions �(1)(z) and �(2)(z) corresponding to close distributions S(1)(z)
and S(2)(z), and thereby to close distributions Y (1)(�) and Y (2)(�).

As an example, consider a model with an infinite homogeneous basement at a
depth h. Let

�(1)(z) − �(2)(z) =
{

0 for z /∈ [z′, z′ + �h]

c/
√

�h for z ∈ [z′, z′ + �h],
(10.58)

where z′ + �h<h, while c and �h are arbitrary positive constants. Then

S(1)(z) − S(2)(z) =
z∫

0

[�(1)(z) − �(2)(z)]dz

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for 0 ≤ z ≤ z′

c(z − z′)√
�h

for z′ ≤ z ≤ z′ + �h

c
√

�h for z′ + �h ≤ z ≤ h.

(10.59)
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The norms of deviations (10.58) and (10.59) are determined as

N� = ∥∥�(1)(z) − �(2)(z)
∥∥

L2
=

⎧⎨
⎩

h∫
0

[�(1)(z) − �(2)(z)]2dz

⎫⎬
⎭

1/2

= c

NS = ∥∥S(1)(z) − S(2)(z)
∥∥

L3
=

⎧⎨
⎩

h∫
0

[S(1)(z) − S(2)(z)]2dz

⎫⎬
⎭

1/2

= c
√

�h(h − z′ − 2�h/3).

(10.60)

Choosing large c and small �h, the deviation N� can always be done arbitrar-
ily large, and the deviation NS arbitrarily small. Consequently, arbitrarily differing
conductivities can correspond to close conductances and close admittances.

Let the medium contain a thin layer, whose conductance So is much smaller
than the conductance S of the overlying layers. The conductivity of the layer can
vary within wide limits constrained by the condition So<<S, but these variations
scarcely affect the admittance measured on the Earth’s surface.

The one-dimensional inverse problem is unstable. Evidently, we have every rea-
son to extend this conclusion to the two-dimensional and three-dimensional inverse
problems. Compare, for example, a 2D or 3D-model with a slowly varying boundary
between two deep layers and a model in which this boundary rapidly fluctuates
around its slow variation. Their MT and MV response functions observed on the
Earth’s surface will virtually coincide, although these models are largely different.

Inverse problems of magnetotellurics are unstable. An arbitrarily small error in
initial MT and MV data can lead to an arbitrarily large error in the inversion of
these data, i.e., in the conductivity distribution. Using the terminology of Hadamard,
we state that the inverse problems of magnetotellurics are ill-posed. An immediate
solution of an ill-posed (unstable) problem is generally meaningless, because it can
yield results far from reality.

10.4 In the Light of the Theory of Ill-Posed Problems. . .

The cornerstone of the MT and MV data interpretation is the theory of ill-posed
problems. Its basic principles were formulated by Tikhonov (1963). Presently, meth-
ods of this theory have been developed rather comprehensively and are widely used
in practice (Tikhonov and Arsenin, 1977; Lavrentyev et al., 1980; Glasko, 1984;
Tikhonov and Goncharsky, 1987; Zhdanov, 2002) The Russian mathematical school
headed by Tikhonov gave rise to a new doctrine of physical experiment encompass-
ing various fields of science and technology.

Following (Berdichevsky and Dmitriev, 1991, 2002; Zhdanov, 2002), we
consider inverse problems of magnetotellurics in light of Tikhonov’s theory of
regularization, which provides a basis for developing the strategy of MT and MV
inversions.
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10.4.1 Conditionally Well-Posed Formulation
of the Inverse Problem

The interpretation of an unstable MT or MV inverse problem is meaningful if a
priori geological-geophysical information on the region under consideration is used
and certain restraints on its geoelectric structure are imposed. This is a way for trans-
forming an unstable problem into a stable one. In the absence of a priori information
restricting the scope of search, we can obtain only one of equivalent models or, at
best, a model with a significantly smoothed distribution of conductivity leveling out
contrasts of sought-for structures.

Thus, the transformation of an unstable problem into a stable one is accomplished
by restricting the scope of search. Before searching, we have to decide where we are
searching and what we are searching for (Goltsman, 1971). Otherwise, our interpre-
tation will remind a Russian fairy tale whose hero was told: “Go there no one knows
where and bring somewhat no one knows what”.

Considering a set �� of equivalent solutions, we choose a compact subset �C
�

containing the exact model solution and consisting of solutions that are sufficiently
close to the exact model solution (recall that a functional set is compact if any
sequence of functions in this set contains a subsequence converging to a function
also belonging to this set – the necessary condition of compactness of a set is its
boundedness). The theory of regularization is based on the Tikhonov theorem on the
stability of an inverse problem defined on compact subset (Tikhonov and Arsenin,
1977; Berdichevsky and Dmitriev, 2002). This theorem is formulated as follows: if
the error � in the initial information tends to zero, the solution of the inverse problem
on a compact subset �C

� converges to the exact model solution. An ill-posed inverse
problem that has an unique solution and is stable on the compact subset �C

� is called
conditionally well-posed problem (or well-posed after Tikhonov), and the subset
�C

� is called a correctness set. Thus, the inverse problem, which is ill-posed after
Hadamard, becomes well-posed after Tikhonov.

The compact subset �C
� (the correctness set) is chosen on a basis of a priori

geological and geophysical information and constraints obtained directly from the
qualitative analysis of the observation data and hypotheses tests that help to localize
and identify geoelectric structures.

What we want to stress is that a new geoelectric model is evolved from previous
geological and geophysical models. The solution of an MT or MV inverse problem
is efficient if magnetotellurics gives a new information as compared to what was
known before MT and MV observations.

In defining the correctness set, i.e., in imposing restraints on the geoelectric
structure of the medium, one should keep in mind that the condition � → 0 is
unrealizable in practice, because any initial information obtained by processing field
measurements is never free from errors. Therefore, we should speak of the practical
stability of a conditionally well-posed problem. The problem with real errors � is
regarded as practically stable if the correctness set consists of plausible solutions
which are sufficiently close to the exact model solution.
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Here arises a paradoxical situation. The narrower the correctness set is, the more
stable will be the inverse problem. The more stable is the inverse problem, the higher
is its resolution, but the poorer is the detailedness of its solutions. The resolution of
the inverse problem and the detailedness of its solutions appear to be antagonistic.
We call this situation the paradox of instability. Desiring to improve the detailedness
of an inversion, we extend the correctness set. But as a consequence, the resolution
is decreased and the practical stability deteriorates. Thus, the details of the inversion
may be lost in errors. It is clear that in solving an inverse problem, it is vital to find
the optimal relation between detailedness and resolution. The detailedness of an
inversion must be correlated with the resolution.

The correctness set, in which the solution to the inverse problem is sought
for, forms an interpretation model. The latter should incorporate ideas (hypothe-
ses) on the Earth’s stratification and local and regional structures disturbing this
stratification.

The interpretation models of magnetotellurics are divided into two classes: (1)
quasi-homogeneous layered models, (2) locally inhomogeneous layered models
(Fig. 10.4).

A quasi-homogeneous layered model consists of a finite number of infinite or
pinching-out layers. In this model class, the electrical conductivities of layers and
their boundaries slowly vary in horizontal directions (easy dipping, gentle folding).
A very important feature of the quasi-homogeneous layered models is the presence
of high-resistivity layers playing the role of galvanic screens. The screening effect
characterized by the galvanic parameter of the model determines the intensity of
near-surface galvanic anomalies and the sensitivity of the magnetotelluric sounding
to deep conductive structures.

A locally inhomogeneous layered model consists of a finite number of layers with
breaks and sharp variations of their conductivity and boundaries. It may include

Fig. 10.4 Quasi-
homogeneous and
locally-inhomogeneous
layered models
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discontinuities, displacements, subductions, intersections, bounded inclusions and
channels of more or less complicated geometry.

The interpretation model should meet the following two requirements: (1) it
should be simple (being determined by a small number of free parameters that
ensure the practical stability of the inverse problem), and (2) it should be informative
(reflecting main properties of the geoelectric medium and containing target layers
and structures). These conditions are opposite: the simpler is the model, the less
informative it is. Here the paradox of instability manifests itself. Thus, we have to
choose an optimal model, that is, it should be reasonably informative yet sufficiently
simple. The detailedness of an inversion should be provided by the resolution of
the inverse problem.This is a crucial point of the interpretation, predetermining not
only the strategy for inversion, but also, to some degree, its result. At this stage of
interpretation, the factors such as intuition of a researcher, his professional skill and
academic experience, his understanding of the actual geological situation and goals
of the MT survey, his adherence to traditions and willingness to deviate from these
traditions – all plays a role.

Constructing an interpretation model, a researcher is limited by a priori infor-
mation and by results of qualitative analysis of field measurements as well as by
hypotheses tests. Just in this sense we say that the interpretation of MT and MV data
is effective under the condition of sufficiently reasonable constrains. The statement
“the better we know the medium under consideration, the better we can determine
its geoelectric structure” seems paradoxical. But it actually means that, solving the
inverse problem, we improve and widen our knowledge of the Earth’s structure, and
therefore, the better is this structure known, the more meaningful and detailed are
the new results.

The amount of a priori information required for constructing an optimal inter-
pretation model depends on the complexity of the medium and on the goals of the
interpretation. Whereas rather detailed a priori information on tectonics and geo-
dynamics are required in rift or subduction zones, only very general ideas on the
Earth’s stratification are sufficient for stable platforms with gentle folding.

Moreover, we can reject a priori information at the preliminary stage of inter-
pretation and perform the smoothing Occam inversion. This simple transformation
provides a gross geoelectric regionalization helpful for the identification of zones of
interest for further interpretation.

Tikhonov’s theory of ill-posed problems offers two basic approaches to the
interpretation of MT and MV data: (1) optimization method, and (2) regulariza-
tion method (Berdichevsky and Dmitriev, 1991, 2002). We briefly describe these
approaches.

10.4.2 Optimization Method

This approach is effective in studying simple media, described by a small number
of parameters. Return to inverse problem (10.1) and assume that available a priori
information constrains a sufficiently narrow compact set M of admissible solutions
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including the exact model solution. Let values of the impedance tensor [Z̃] and the
tipper W̃ be known from observations. Then we can determine the approximate
solutions �̃Z (x, y, z) and �̃W (x, y, z) of problem (10.1) by minimizing the misfit
functionals:

IZ {�̃Z } = ∥∥[Z̃] − [Z{x, y, z = 0, �, �̃Z (x, y, z)}]∥∥
= inf

�∈M

∥∥[Z̃] − [Z{x, y, z = 0, �, �(x, y, z)}]∥∥
IW {�̃W } = ∥∥W̃ − W{x, y, z = 0, �, �̃W (x, y, z)}∥∥

= inf
�∈M

∥∥W̃ − W{x, y, z = 0, �, �(x, y, z)}∥∥ .

(10.61)

The misfit minimization procedure is usually iterative. A starting model is con-
structed through the parametrization of the interpretation model. Solving the for-
ward problem for the starting model, we calculate the misfits between model and
experimental values of the impedance tensor and the tipper.Then a new model,
decreasing the misfits, is chosen. The iterations are performed until the misfits
approach the level of errors in the initial values of [Z̃] and W̃. If the misfits cannot
be decreased to the level of errors in the initial data, this implies that the compact
set M is overly narrow. In this case, we test successively widening compacta (e.g.,
we increase the density of subdivision of the model). A compactum on which the
equation misfit is equal to the error in initial data is regarded as an optimal com-
pact set. However, an overly wide compactum makes the problem unstable and can
yield a solution that differs strongly from the exact model solution. This limits the
practicality of the optimization method.

It is obvious that separate inversions of the impedance and the tipper make
sense if solutions �̃Z (x, y, z) and �̃W (x, y, z) are close to each other. Otherwise
magnetotelluric and magnetovariational inversions call for correlation. We can, for
instance, carry out the magnetotelluric and magnetovariational inversions in parallel,
minimizing the functional of total misfit

I{�(x, y, z)} = gZ

∥∥[Z̃] − [Z{x, y, z = 0, �, �(x, y, z)}]∥∥2

+ gW

∥∥W̃ − W{x, y, z = 0, �, �(x, y, z)}∥∥2
(10.62)

and controlling the contributions of magnetotelluric and magnetovariational inver-
sions by means of weights, gZ and gW. Alternatively, we can accomplish successive
partial inversions, minimizing the functionals of magnetotelluric and magnetovaria-
tional misfits

IZ{�(x, y, z)} = ∥∥[Z̃] − [Z{x, y, z = 0, �, �(x, y, z)}]∥∥2

IW{�(x, y, z)} = ∥∥W̃ − W{x, y, z = 0, �, �(x, y, z)}∥∥2
.

(10.63)
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Adopting this strategy, we start with magnetovariational inversions, which is free
from distorting effects of local near-surface inhomogeneities, and then proceed to
magnetotelluric inversion with a starting model, constructed from the results of mag-
netovariational inversion.

10.4.3 Regularization Method

Regularization of solutions substantially widens the possibilities of interpretation.
Given a sufficient amount of a priori information, this approach provides maximum
geoelectric information consistent with the accuracy of field observations and mod-
eling. The main peculiarity of the regularization method is that criterion for choos-
ing an approximate solution is included directly in the algorithm of inversion. When
solving the inverse problem, the compactum M narrows around the exact model
solution. The regularization method admits the introduction of any type of a priori
information with control of its influence on the solution of the inverse problem.
What is more, the regularization method enables one to focus the inversion on the
target layers and structures.

This approach is based on the regularization principle: the criterion for the selec-
tion of solution should be such that the inferred approximate solution tends to the
exact model solution of the inverse problem, when the errors in the initial infor-
mation tend to zero. The regularization principle for MT (1.1a) and MV (1.1b)
inversions takes the form

lim �̂Z (x, y, z)
�Z→0

= �̂Z (x, y, z),

lim �̂W (x, y, z)
�W→0

= �̂W (x, y, z),
(10.64)

where �̂Z , �̂W and �̂Z , �̂W are approximate and exact model solutions of MT and
MV problems, and �Z, �W are errors in the initial data.

The regularization principle is implemented with the help of a regularizing oper-
ator. The regularizing operator R of an inverse problem is referred to as a set of
analytical and numerical operations that allows one to obtain an approximate solu-
tion satisfying the regularization principle. In inverse problems of geophysics, it is
advantageous to use a regularizing operator R depending on a numerical parameter
� > 0, which is called the regularization parameter. As the error � in the initial data
tends to zero, the regularization parameter � should also tend to zero:

lim �
�Z→0

→ 0 MT inversion

lim �
�W→0

→ 0 MV inversion
(10.65)

and the regularizing operator, when applied to the approximate response function,
should yield the exact model solution.
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lim R�[Z̃]
�Z→0

= �̄Z (x .y, z) MT inversion

lim R�W̃
�W→0

= �̄W (x, y, z) MV inversion
(10.66)

The magnetotelluric and magnetovariational inversions reduce to constructing
the regularizing operator R� and determining the regularization parameter � con-
sistent with the accuracy of observations. The approximation solution obtained in
this way is stable with respect to errors in the initial data. It is called a regularized
solution.

Variational methods of constructing the regularizing operator are most
widespread in geophysics. A stabilizing functional (stabilizer), providing a crite-
rion for the selection of admissible solutions, plays a key role in this approach. The
stabilizer is usually written in the form

�{�(x, y, z)} ≤ C, (10.67)

where C is a positive constant. The functional �{�(x, y, z)} determines a compact
set of functions �(x, y, z) ∈ �C. The smaller the value of C, the narrower the set �C.
Introducing (10.67), inverse problem (1.1) is formulated as a variational problem
for a conditional extremum:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf �{�(x, y, z)}
∥∥[Z̃] − [Z{x, y, z = 0, �, �(x, y, z)}]∥∥ ≤ �Z a

∥∥W̃ − W{x, y, z = 0, �, �(x, y, z)}∥∥ ≤ �W. b

(10.68)

So, we find a minimum compactum �C consisting of functions �(x, y, z) that
satisfy conditions (10.68a) and (10.68b). The set � of approximate solutions to such
an inverse problem is the intersection of the compactum �C with the sets ��Z and
��W of equivalent solutions of MT and MV inverse problems:

� = �C ∩ ��Z ∩ ��W . (10.69)

It is convenient to replace the conditional-extremum problem by the
unconditional-extremum problem:

inf ��{�(x, y, z)}, (10.70)

where �� is the Tikhonov regularizing functional,

��{�(x, y, z)} = I{�(x, y, z)} + ��{�(x, y, z)}, (10.71)
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consisting of the misfit functional I(�) and the stabilizing functional �(�). The
solution of this inverse problem reduces to the minimization of ��(�), that is, to
the minimization of I(�) and �(�). Whereas the initial problem (10.1) is unsta-
ble, the solution obtained by minimizing the functional �� is stable with respect
to small variations in [Z̃] and W̃. The point is that the functional �(�) narrows
the class of possible solutions and stabilizes the problem. It is given the name the
stabilizer.

The structure of the misfit functional I(�) depends on the inversion strategy. It
can be a functional (10.62) of total misfit, when carrying out the magnetotelluric and
magnetovariational inversions in parallel, or fuctionals (10.63) of partiall misfits,
when accomplishing successive inversions.

The structure of the stabilizing functional �(�) depends on a priori restraints
imposed on the inverse problem. It can be, for example, the requirement of smooth-
ness of �(x, y, z) satisfied by minimizing the functional

�(�) =
∫∫∫

V

{(
��

�x

)2

+
(

��

�y

)2

+
(

��

�z

)2
}

dxdydz (10.72)

or the requirement of closeness of �(x, y, z) to a hypothetical model �0(x, y, z)
satisfied by minimizing the functional

�(�) =
∫∫∫

V

{�(x, y, z) − �0(x, y, z)}2dxdydz. (10.73)

The weight of the stabilizing functional, i.e., the degree of its effect on the
solution of an inverse problem, is controlled by the regularization parameter
� (Fig. 10.5). At large �, the minimization of ��(�) leads to the dominating
minimization of �(�), i.e., oversmoothes the solution or retains it near the a priori

Fig. 10.5 Dependence of the
solution of an inverse
problem on the regularization
parameter �; �̄ is an exact
model solution

< opt

> opt= opt

z
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hypothetical model, ignoring results of observations. At small �, the minimization
of ��(�) leads to the dominating minimization of I(�), i.e., the stabilizing effect
of �(�) is suppressed and an unstable incorrect solution is obtained. An optimum
value of � providing a sufficiently small misfit and ensuring sufficiently strong sta-
bilization of the solution is to be found.

The regularization parameter � should be consistent with the error � in the initial
information. The optimum value of � can be chosen by testing a monotonically
decreasing sequence �1 > �2 > . . . > �n . For each �, variational problem (10.70)
is solved and the iterative sequence of solutions characterized by their misfit is deter-
mined. The parameter � = �opt , at which the misfit attains the error � in the initial
data, is regarded as an optimum parameter. The optimum parameter of regulariza-
tion provides a conductivity distribution fitting best the exact model solution. This
simple technique is applicable if the error � is well known. However, we commonly
have a more or less gross estimate:

�min ≤ � ≤ �max. (10.74)

In this case, solutions consistent with various values of � from interval (10.74)
are tested. Close solutions selected from the resulting set are averaged, providing an
approximation to the exact model solution.

If we know next to nothing of measurement and model errors, the parameter
�opt cannot be chosen by the knowledge of solution misfits. In this case, a quasi-
optimal value of the regularization parameter is determined. For example, �opt can
be defined as a value � at which the solution of the problem significantly deviates
from requirements of the stabilizer (smoothness or closeness to the hypothetical
model) but yet remains sufficiently stable. This heuristic method for the determi-
nation of �opt was proposed by Hansen (1998). It is based on the so-called L-
representation. A monotonically decreasing sequence of regularization parameters
�1 > �2 > . . . > �n is tested and the misfit I� and the stabilizer �� are deter-
mined for various � and a fixed minimum of Tikhonov’s functional ��. Figure 10.6
presents the curve of �� versus I� on a log–log scale. This curve has typically the
L-shaped form, with a fairly distinct bend separating a nearly horizontal branch with
large I� and small �� from a nearly vertical branch with small I� and large ��. The
exact model solution is best approximated by assuming that the central point of the
bend, characterized by the largest curvature, defines the quasi-optimal parameter of
regularization, �opt .

10.4.4 A Few Words About the Backus–Gilbert Method

A description of the Backus–Gilbert method usually begins with the following state-
ments (Backus and Gilbert, 1968). The number of observations is always finite, but
the characteristics of the medium cannot be represented a priori by a finite number of
parameters. If the space of the observation data is finite-dimensional but the space of



372 10 Statement of Inverse Problem

Fig. 10.6 The
L-representation

the Earth’s parameters is infinite-dimensional, the inverse problem is indeterminate,
that is, it has an infinite number of solutions. Indeterminacy (to be more precise,
underdeterminancy) of the inverse problem holds even for ideally accurate initial
data. However, if it is not possible to obtain an exact solution to the problem, it is
possible to find a smoothed (locally averaged) characteristic of the medium which
for a given set of observed quantities is determined uniquely and provides the best
approximation to the parameters of the desired model. Thus, emphasis is placed on
the construction of an optimal smoothing operator having the properties of a spatial
filter.

The theory of Backus and Gilbert is sometimes opposed to the Tikhonov theory
of ill-posed problems. It is said that the Backus–Gilbert method is designed for
underdetermined problems with limited number of sufficiently accurate initial data,
whereas the Tikhonov method is presented to problems that may have a unique solu-
tion but they are unstable because of inaccuracy in the initial data. Is such a demar-
cation justified? With interpolation and extrapolation, a set of discrete samplings can
be represented as a continuous function approximating the true field characteristic,
and then an underdetermined problem reduces to a problem that is unstable due
to errors of approximation. It seems that the theory of Backus and Gilbert may by
considered as an integral part of the general theory of ill-posed problems.

10.4.5 Probabilistic Statement of the Inverse Problem

The inverse problem (10.1), (10.2) can be stated in probabilistic terms (Goltsman,
1971; Kovtun, 1980; Tarantola and Valette, 1982; Yanovskaja and Porokhova, 1983;
Glasko, 1984; Tarantola, 1987; Backus, 1988; Spichak, 1999, 2005). It seems that
the probabilistic approach involving the powerful methods of the probability theory
and statistics may give a simple and convenient tools for solving inverse problems
of magnetotellurics and analyzing solutions obtained.
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Which of approaches – deterministic or probabilistic – is the more general?
The question sounds a bit scholastic, inasmuch as the two approaches have a
common philosophy. The point is that in the probabilistic formulation the inverse
problem remains unstable and still needs the regularization, which directly does
not follow from probabilistic formalism. Obviously, the principle definitions for
the probabilistic inverse problem should be derived from the general theory of
regularization.

Let us come back to operator equations (10.1). In a general form we can write

F {x, y, z = 0, �, �(x, y, z)} = F̃, (10.75)

where F is an operator of the forward problem, which depends parametrically on
x, y, � and calculates the tensor or vector response function F from a given electrical
conductivity �(x, y, z), and F̃ is this response function determined on the sets of
observation points M(x, y) and frequencies � with error �.

We will begin with the principle of regularization, which in the deterministic
terms is expressed by (10.64). These equations can be readily rewritten in proba-
bilistic terms. Concerning (10.75), we write

lim P
�→0

{‖�̃ − �̄‖ > } = 0, (10.76)

where P is the probability that the error of the solution (the deviation of approxi-
mate solutions �̃ from the exact model solution �̄) is larger than an arbitrarily small
positive number . Equation (10.76) expresses the stochastic principle of regular-
ization. An inversion operator constructed on the basis of this principle is called a
stochastically regularizing operator.

To exemplify the construction of the stochastically regularizing operator, we
consider the method of maximum likelihood (Goltsman, 1971; Kovtun, 1980;
Yanovskaja and Porokhova, 1983).

Following Goltsman (1971), we introduce the likelihood function as:

l(�) = ln p(�)p�(F̃), (10.77)

where p(�) is the density of the a priori (unconditional) probability of the solution
� and p�(F̃) is the density of the a posteriori (conditional) probability of a response
function F̃ for the given conductivity distribution �. It is reasonable to think that
if a solution � comes into being , the probability of this event is fairly great. We
can go a bit further and suppose that the most probable event characterized by
the maximum likelihood is the advent of a solution � that is close to the exact
model solution �̄. This heuristic consideration says that the approximate solution to
the problem (10.75) can be found from the condition for the maximum likelihood
function

l(�̃) = sup
�∈��

l(�) (10.78)
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One cannot say that we know the statistics of errors � in the initial data well.
However, we can restrict ourselves to considering the measurement errors and
accept the normal (Gaussian) probability distribution for the function F̃:

p�(F̃) = 1

sF

√
2�

exp

〈
−

∥∥F̃ − F{�}∥∥2

2s2
F

〉
, (10.79)

where sF is the root-mean-square (standard) deviation of F̃.
The situation with statistical description of the Earth’s conductivitiy,�, is even

worse. Here our information is very limited, and depending on a priori data, we can
rely on more or less reasonable hypotheses. Let us show some examples.

1. If a priori information about the medium is rather scanty, then all we can do
is to assume that � is distributed uniformly over an infinite space ��. But then, the
inverse problem is unstable and its statement (no matter, deterministic or probabilis-
tic) makes no sense.

2. Let a priori information available allow us to assume that � belongs to a com-
pact set M ∈ ��, and that it is distributed in this set with uniform density

p(�) =
{

const = 0 � ∈ M

0 � /∈ M.
(10.80)

Then

�(�) = ln
const

sF

√
2�

−
∥∥F̃ − F{�}∥∥2

2s2
F

. (10.81)

In this case, the condition for maximum likelihood (10.78) reduces to equation

∥∥F̃ − F(�̃)
∥∥ = inf

�∈M

∥∥F̃ − F(�)
∥∥ . (10.82)

implying the minimization of the misfit functional

I = ∥∥F̃ − F{�}∥∥2
(10.83)

as in the optimization method. The problem is conditionally correct and can be
solved directly by the optimization method, using (10.62) or (10.63).

3. Now, let us suppose that the existing a priori information is sufficient for con-
structing a hypothetical conductivity distribution �0, which belongs to a compact
set M ⊂ ��. The requirement for the desired solution � is that it must be close to �0

(in probabilistic sense !). We will express this requirement in terms of the normal
distribution

p(�) = 1

s�

√
2�

exp

〈
−‖� − �0‖2

2s2
�

〉
, (10.84)
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where s� is the root-mean-square (standard) deviation of �. Introduce a parameter
�, which is equal to the ratio of variances D for the F̃ and �:

� = DF̃

D�
= s2

F̃

s2
�

. (10.85)

Then

�(�) = ln
1

2�sF̃s�
− 1

2s2
F̃

��(�), (10.86)

where

��(�) = ∥∥F̃ − F{�}∥∥2 + � ‖� − �0‖2 . (10.87)

In this case the condition for maximum likelihood (10.78) reduces to equation

��(�̃) = inf
�∈M

��(�) (10.88)

implying the minimization of Tikhonov’s functional ��(�) as in the regularization
method. Here the functional ��(�) consists of the misfit functional I and the stabi-
lizing functional � with the regularization parameter �:

��(�) = I+��

I = ∥∥F̃ − F{�}∥∥2
� = ‖� − �0‖2 � = s2

F̃

/
s2

�.

The problem is conditionally correct and can be solved directly by the regular-
ization method, using (10.71).

We see that the maximum likelihood method leads to the same algorithms as
in the deterministic approach. A similar conclusion can be made for the Bayesian
inversion based on the Bayes theorem of hypotheses (Zhdanov, 2002). If we limit
our consideration to the inversion of MT and MV data, the advantage of probabilistic
approaches is not obvious. However, these approaches using the powerful methods
of the modern probability theory and statistics do give a simple and convenient tool
for analyzing a solution obtained.

10.5 Comparison Criteria

To compare magnetotelluric and magnetovariational response functions and deter-
mine their misfits, we use some special criteria taking into account the pequliarities
of the inverse problems of magnetotellurics. The comparison criteria must be con-
structed so that the contributions of data with a similar amount of information will
be the same. The point is that periods, T , as well as apparent resistivities, �A, and
moduli of impedances, |Z |, can vary over several orders of magnitude. By virtue of
the principle of similitude, the ranges with similar relative variations of these values
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carry similar amounts of information. Therefore, for a uniform comparison, it is best
to represent T and �A, |Z | in bilogarithmic coordinates ln T and ln �A, ln |Z |. At the
same time, phases of impedances, arg Z , as well as real and imaginary parts of the
tipper, Re W and Im W , should be represented in a space with logarithmic abscissas
ln T and arithmetic ordinates arg Z and Re W , Im W .

Let us begin with the one-dimensional inversion. Consider the Tikhonov–
Cagniard impedance in bilogarithmic representation:

ln Z (ln T ) = ln |Z (ln T )| ei arg Z (ln T ) = ln |Z (ln T )| + i arg Z (ln T ). (10.89)

Assume that this function determining a relationship between ln Z and ln T
belongs to the metric function R – norm. Thus, we introduce the R – norm for
the impedance Z (T ):

‖Z (T )‖2
R = ‖ln Z (ln T )‖2

L2
= ‖ln |Z (ln T )|‖2

L2
+ ‖arg Z (ln T )‖2

L2.
(10.90)

Compare impedances Z̃ (T ) and Z (T ) obtained from the field measurements and
model computations. In the R – norm, the distance between these impedances, deter-
mining the impedance misfit, is expressed as

∥∥Z̃ (T ) − Z (T )
∥∥2

R

= ∥∥ln
∣∣Z̃ (ln T )

∣∣ − ln |Z (ln T )|∥∥2
L2

+ ∥∥arg Z̃ (ln T ) − arg Z (ln T )
∥∥2

L2

=
Tmax∫

Tmin

⎧⎨
⎩

[
ln

∣∣Z̃ (ln T )
∣∣

|Z (ln T )|

]2

+ [
arg Z̃ (ln T ) − arg Z (ln T )

]2

⎫⎬
⎭

dT

T
,

(10.91)

where Tmin and Tmax are minimal and maximal periods bounding the observation
interval. This equation defines the impedance metric in the R – norm.

In practice, the impedance is measured over a finite number of periods
T1, T2, . . . TM−1, TM, where T1 = Tmin, TM = Tmax. On integrating (10.91) by trape-
zoid rule, we get

∥∥Z̃ (T ) − Z (T )
∥∥2

R
= 1

2

{[
ln

∣∣∣∣ Z̃ (ln T1)

Z (ln T1)

∣∣∣∣
]2

+ [arg Z̃ (ln T1) − arg Z (ln T1)]2

}
ln

T2

T1

+ 1

2

M−1∑
m=2

{[
ln

∣∣∣∣ Z̃ (ln Tm)

Z (ln Tm)

∣∣∣∣
]2

+ [arg Z̃ (ln Tm) − arg Z (ln Tm)]2

}
ln

Tm+1

Tm−1

+ 1

2

{[
ln

∣∣∣∣ Z̃ (ln TM)

Z (ln TM)

∣∣∣∣
]2

+ [arg Z̃ (ln TM) − arg Z (ln TM)]2

}
ln

TM

TM−1
.

(10.92)

Let the impedances Z̃ (T ) and Z (T ) be obtained on a logarithmic uniform grid
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Tm = �m−1T min , � > 1, m ∈ [1, M]. (10.93)

Then,

∥∥Z̃ (T ) − Z (T )
∥∥2

R
= 1

2
ln �

{[
ln

∣∣∣∣ Z̃ (ln T1)

Z (ln T1)

∣∣∣∣
]2

+ [arg Z̃ (ln T1) − arg Z (ln T1)]2

}

+ ln �

M−1∑
m=2

{[
ln

∣∣∣∣ Z̃ (ln Tm)

Z (ln Tm)

∣∣∣∣
]2

+ [arg Z̃ (ln Tm) − arg Z (ln Tm)]2

}

+ 1

2
ln �

{[
ln

∣∣∣∣ Z̃ (ln TM)

Z (ln TM)

∣∣∣∣
]2

+ [arg Z̃ (ln TM) − arg Z (ln TM)]2

}
,

(10.94)
where ln � is a distance between adjacent measurements.

Similarly, we can define R – norm for the admittance:

‖Y (T )‖2
R = ‖ln Y (ln T )‖2

L2
= ‖ln |Y (ln T )|‖2

L2
+ ‖arg Y (ln T )‖2

L2.
. (10.95)

The admittance metric (misfit) is defined as

∥∥Ỹ (T ) − Y (T )
∥∥2

R

= ∥∥ln
∣∣Ỹ (ln T )

∣∣ − ln |Y (ln T )|∥∥2
L2

+ ∥∥arg Ỹ (ln T ) − arg Y (ln T )
∥∥2

L2

=
Tmax∫

Tmin

{[
ln

∣∣∣∣ Ỹ (ln T )

Y (ln T )

∣∣∣∣
]2

+ [
arg Ỹ (ln T ) − arg Y (ln T )

]2

}
dT

T
,

(10.96)

where Ỹ (T ) and Y (T ) are admittances obtained from the field measurements and
model computations. In discrete representation we write

∥∥Ỹ (T ) − Y (T )
∥∥2

R
= 1

2

{[
ln

∣∣∣∣ Ỹ (ln T1)

Y (ln T1)

∣∣∣∣
]2

+ [arg Ỹ (ln T1) − arg Y (ln T1)]2

}
ln

T2

T1

+ 1

2

M−1∑
m=2

{[
ln

∣∣∣∣ Ỹ (ln Tm)

Y (ln Tm)

∣∣∣∣
]2

+ [arg Ỹ (ln Tm) − arg Y (ln Tm)]2

}
ln

Tm+1

Tm−1

+ 1

2

{[
ln

∣∣∣∣ Ỹ (ln TM)

Y (ln TM)

∣∣∣∣
]2

+ [arg Ỹ (ln TM) − arg Y (ln TM)]2

}
ln

TM

TM−1
,

(10.97)
where T1 = Tmin and TM = Tmax. On a logarithmic uniform grid (10.93), we have
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∥∥Ỹ (T ) − Y (T )
∥∥2

R
= 1

2
ln �

{[
ln

∣∣∣∣ Ỹ (ln T1)

Y (ln T1)

∣∣∣∣
]2

+ [arg Ỹ (ln T1) − arg Y (ln T1)]2

}

+ ln �

M−1∑
m=2

{[
ln

∣∣∣∣ Ỹ (ln Tm)

Y (ln Tm)

∣∣∣∣
]2

+ [arg Ỹ (ln Tm) − arg Y (ln Tm)]2

}

+ 1

2
ln �

{[
ln

∣∣∣∣ Ỹ (ln TM)

Y (ln TM)

∣∣∣∣
]2

+ [arg Ỹ (ln TM) − arg Y (ln TM)]2

}
.

(10.98)

Note that in the function space R the impedance and admittance metrics coincide:

∥∥Z̃ (T ) − Z (T )
∥∥2

R
= ∥∥Ỹ (T ) − Y (T )

∥∥2
R
. (10.99)

Let us supplement the impedance and impedance metrics with the apparent-
resistivity metrics. By analogy with (10.91) and (10.92), we get

‖�̃A(T ) − �A(T )‖2
R =

Tmax∫
Tmin

[
ln

�̃A(ln T )

�A(ln T )

]2 dT

T

+ 1

2

{[
ln

�̃A(ln T1)

�A(ln T1)

]2

ln
T2

T1
+

M−1∑
m=2

[
ln

�̃A(ln Tm)

�A(ln Tm)

]2

ln
Tm+1

Tm−1
+ 1

2

[
ln

�̃A(ln TM)

�A(ln TM)

]2

ln
TM

TM−1

}
,

(10.100)
where �̃A and �A are apparent resistivities obtained from the field measurements and
model computations and T1 = Tmin, TM = Tmax. On a logarithmic uniform grid
(10.93), the apparent-resistivity misfit takes the form

‖�̃A(T ) − �A(T )‖2
R = ln �

{
1

2

[
ln

�̃A(ln T1)

�A(ln T1)

]2
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m=2

[
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�̃A(ln Tm)

�A(ln Tm)

]2

+ 1

2

[
ln

�̃A(ln TM)

�A(ln TM)

]2
}

.

(10.101)

When �̃A comes close to �A, we have

[
ln

�̃A

�A

]2

=
[

ln(1 + �̃A − �A

�A

)

]2

≈
[

�̃A − �A

�A

]2

. (10.102)

Using such an approximation, we consider the apparent-resistivity misfit as a
quadratic sum of partial relative misfits with a factor ln �. The similar approximation
is valid for logarithmic misfit of the impedance or admittance.

Going over to the general case of the three-dimensional inversion, we introduce
coordinates x, y of the observation sites and define the impedance and admittance
tensors, [Z] and [Y], the tipper, W, and the apparent resistivity, �A, in the function
space R.
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We have

ln Z (x, y, ln T ) = ln |Z (x, y, ln T )| ei arg Z (x,y,ln T ) = ln |Z (x, y, ln T )| + i arg Z (x, y, ln T )

ln Y (x, y, ln T ) = ln |Y (x, y, ln T )| ei arg Y (x,y,ln T ) = ln |Y (x, y, ln T )| + i arg Y (x, y, ln T )

W (x, y, ln T ) = Re W (x, y, ln T ) + i Im W (x, y, ln T )

ln �A(x, y, ln T ),
(10.103)

where Z is a component of the tensor [Z] (for instance, Zxy) or its scalar invari-
ant (for instance, Zeff = √

Zxx Z yy − Zxy Z yx ), Y is a component of the tensor
[Y] (for instance, Yxy) or its scalar invariant that reduces to the Tikhonov–Cagnard
admittance in the 1D-model (for instance, Yeff = √

Yxx Yyy − YxyYyx ), W is a com-
ponent of the tipper W (for instance, Wzx ) or its scalar invariant (for instance,

W =
√

W 2
zx + W 2

zy), �A is a component of the apparent resistivity (for instance,

�xy) or one of its scalar invariant (for instance, �eff = |Zeff|2 /��o).
The impedance, admittance, tipper and apparent-resistivities metrics (misfits) are

defined as
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]2
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⎫⎬
⎭

dT

T
dydx

(10.104)

∥∥Ỹ (x, y, T ) − Y (x, y, T )
∥∥2

R

= ∫
X

∫
Y

Tmax∫
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⎧⎨
⎩
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|Y (x, y, ln T )|

]2
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(10.105)

∥∥W̃ (x, y, T ) − W (x, y, T )
∥∥2

R

= ∫
X

∫
Y

Tmax∫
Tmin

[Re W̃ (x, y, ln T ) − Re W (x, y, ln T )]2 dT

T
dydx

+ ∫
X

∫
Y

Tmax∫
Tmin

[Im W̃ (x, y, ln T ) − Im W (x, y, ln T )]2 dT

T
dydx

(10.106)
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‖�̃A(x, y, T ) − �A(x, y, T )‖2
R =

∫
X

∫
Y

Tmax∫
Tmin

[
ln

�̃A(x, y, ln T )

�A(x, y, ln T )

]2 dT

T
dydx . (10.107)

These misfits are readily written in the discrete form. As an example, consider
the apparent-resistivity misfit

‖�̃A(x, y, T ) − �A(x, y, T )‖2
R = 1
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ln
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TM−1
,

(10.108)

where k ∈ [1, K ], l ∈ [1, L], m ∈ [2, M − 1], T1 = Tmin, TM = Tmax.
It is self-evident that since the misfits of magnetotelluric and magnetovaria-

tional response functions are expressed in the metric of the function space R, the
inaccuracies � of the initial data (measurement and model errors) must be expressed
in the same metric. Take, for instance, the apparent-resistivity misfit specified in
the space R by (10.107), (10.108). We will compare this misfit with an error �� of
the same structure. Following (10.102), we determine �� by relative deviations of
apparent resistivities:
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(10.109)

where k ∈ [1, K ], l ∈ [1, L], m ∈ [2, M − 1], T1 = Tmin, TM = Tmax.
Next we turn to comparison of geoelectric media. These criteria must stress the

influence of those characteristics of the medium that reflect best of all the objective
structures and contribute most significantly to the response functions. In this respect,
the electrical conductivity is at premium. Magnetotellurics has enhanced sensitivity
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to conductors. It is directed for the most part to studies of conductive zones (ore
deposits, hydrothermas, reservoirs, fluid-saturated layers and faults, fractured areas,
dehydration areas, graphitization and melting areas). Within these zones, the electric
conductivity may increase up to several orders.There is good reason to believe that
geoelectric media considered in MT and MV studies should be compared just by
their conductivity �(x, y, z).

In comparing distributions of �(1)(x, y, z) and �(2)(x, y, z) we use the L2 – norm

∥∥�(1)(x, y, z) − �(2)(x, y, z)
∥∥2

L2
=

∫∫∫
V

p(z)
{
�(1)(x, y, z) − �(2)(x, y, z)

}2
dV ,

(10.110)
where p(z) is a weight function that decreases monotonically with depth (reflecting
the decrease of sounding resolution).

In the case of peacewise constant distributions of �(1)(x, y, z) and �(2)(x, y, z),
we can introduce a D – norm summing the conductivity deviations over the homo-
geneous blocks:

∥∥�(1)(x, y, z) − �(2)(x, y, z)
∥∥2

D
=

L∑
l=1

M∑
m=1

N∑
n=1

pn

{
�(1)

lmn − �(2)
lmn

}2
, (10.111)

where indices l, m, n define the distribution of the blocks in x, y, z, and pn is a
monotonically decreasing factor that reflects the decrease of sounding resolution
with depth.



Chapter 11
The Interpretation Model

Interpretation of the magnetotelluric and magnetovariational data starts with con-
structing an interpretation model. It is composed on the basis of a priory geological
and geophysical information and plausible hypotheses. And great consideration is
given to the analysis of magnetotelluric and magnetovariational response functions
and their rough tentative inversions. Summing up different evidences (lithologic,
petrophysical, tectonic, geodynamic, seismic, geothermic, geoelectric), we create
reasonable qualitative image of the medium under consideration and constrain a
model class, within which the solution of the inverse problem is sought for. The
interpretation model should take into account the aim and the area of the search,
that is, designate the target objects, which we are going to find, and characterize
(at least presumably) the host medium, in which these objects are to be found. Just
at this stage of interpretation we form the correctness set (a set of geophysically
meaningful solutions) and transform the ill-posed unstable inverse problem into a
conditionally well-posed stable one. Just at this stage of interpretation we compose
an optimal grid for the inversion of field data, choose the normal background and
starting values of resistivities (conductivities), suggest the strategy of solution of the
inverse problem.

To get the trustworthy and sufficiently complete magnetotelluric indications nec-
essary for constructing the adequate interpretation model we examine and remove
the static distortions of the apparent resistivities caused by near-surface inhomo-
geneities.

11.1 Analyzing the Static Distortions

The static distortions caused by near-surface inhomogeneities extend over the
whole low-frequencies range and severely plague the interpretation of the apparent-
resistiviy curves, generating false geoelectric structures.

In Part II of our book we considered a few models illustrating two kinds of
the static distortions: the S−effect caused by variations in the conductance S of
the upper layer underlaid with resistive bedding and the �−effect caused by small
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surface inhomogeneities of higher or lower resistivity �. Now we are going to review
the current state of the art in this field and consider some techniques for correcting
the apparent-resistivity curves distorted by static effects.

Static effects are observed in the period range T >Ts, where the skin-depth
is much larger than the dimensions of the inhomogeneity. At these periods the
local induction dies out and galvanic anomalous field caused by charges becomes
quasi-static. Anomalies of this kind manifest themselves in the vertical shift
of the bilogarithmic apparent-resistivity curves. The shape of the shifted curves
and corresponding section of the phase curves remain unchanged. The initial
period Ts depends on the dimensions and position of the causative inhomogene-
ity (Berdichevsky and Dmitriev, 1976; Jones, 1988; Vozoff, 1991; Singer, 1992;
Weaver, 1994; Zhdanov and Keller, 1994; Berdichevsky and Dmitriev, 2002).

11.1.1 Recognising the Static Distortions

To recognize and evaluate the static shift of the apparent-resistivity curves �A, we
need some references. It would be natural to measure the static shift of �A-curve
from the locally normal �n-curve calculated for the observation site. Unfortunately
such estimation is possible only in theory. In practice, we can correlate adjacent
�A-curves or use some references derived from frequency, transient or magnetovari-
atonal soundings.

Let us start with the S-effect. Figure 11.1 shows a two-dimensional model
composed of an inhomogeneous upper layer (sediments) underlaid with a hori-
zontally homogeneous layered substratum (the crust and upper mantle). The sed-
iments contain several 20 km wide sections with stepwise twofold increase in the
resistivity. The sediments conductance varies from 100 to 2.5 S. The substratum
consists of a thick resistive strata (the lithosphere) and a highly conductive base-
ment (the asthenosphere). The resistive lithosphere includes a crustal conductive
layer.

The transverse apparent-resistivity curves obtained in this model are presented
in Fig. 11.2. They have two maxima which are separated by a distinct minimum
reflecting the crustal conductive layer. As the upper-layer conductance decreases
from 100 S at site 1 to 2.5 S at site 6, the �⊥-curves with their ascending and
descending branches move conformally upwards, holding the same two-humped
shape. But note that the ascending branches which carry information on the upper-
layer conductance merge with the locally normal �n-curves. These branches are
slightly distorted. Their one-dimensional inversion gives adequate values of S.
At the same time the descending branches carrying information on the conduc-
tive basement are dramatically distorted. They are shifted from the locally nor-
mal �n-curves. The vertical shift amounts up to 2.5 decades. It is easy to imagine
what a crazy substratum would be obtained by one-dimensional inversion of these
branches.

Let us estimate the intensity of the S-effect. Figure 11.3 shows the correlation
between apparent resistivities �⊥(

√
T = 100 s1/2) and �⊥(

√
T = 1 s1/2) related
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Fig. 11.1 Two-dimensional model of the S-effect

to descending and ascending branches of the �⊥-curves. The graph is plotted to
bilogarithmic scale. It is approximated by a straight line with inclination close to
45◦. Thus, a relationship between �⊥(

√
T = 100 s1/2) and �⊥(

√
T = 1 s1/2) can be

represented as

�⊥(
√

T = 100 s1/2) ≈ C�⊥(
√

T = 1 s1/2)

log �⊥(
√

T = 100 s1/2) ≈ log C + log �⊥(
√

T = 1 s1/2),
(11.1)

where C is a constant. This relation indicates a strong S− effect (due to high resis-
tivity of the substratum underlying the inhomogeneous upper layer). It is easy to
verify that a decrease in the substratum resistivity weakens the S−effect and this
manifests itself in diminishing the regression inclination.

The transverse phase curves are exhibited in Fig. 11.4. Their high-frequency
ascending and low-frequency descending branches are close to the locally-
normal n-curves being slightly distorted. However, in the middle-frequency
range they depart from the locally normal n-curves and this distortion amounts
up to 50◦.

It is important to find the initial period Ts of the static shift (a period separating
the distorted descending branch of the �⊥-curves from their undistorted ascend-
ing branch). A good indicator can be given by the phase curves. Have a look at
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Fig. 11.2 Transverse apparent-resistivity curves in the model of the S-effect from Fig. 11.1

Fig. 11.5. The adjacent ⊥-curves diverge within a range of the slightly distorted
high-frequency branches of the �⊥-curves, but they come together within a range of
the statically shifted low-frequency branches of these curves. So, the initial period
Ts of the S-effect can be evaluated as a boundary between zones with diverged and
converged phase curves. Using this indication in the case under consideration, we
get Ts≈ 9 s.

Now consider the �− effect. The case is illustrated in Fig. 11.6. Here the upper
layer contains a two-dimensional small outcropped inclusion, 10 m thick and 120 m
wide, consisting of conductive and resistive sections, while the host medium is the
same as in the previous model given in Fig. 11.1. The transverse �⊥-curves are
presented in Fig. 11.7. They show the conspicuous static shift, though variations
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Fig. 11.3 Correlation between the apparent resistivites �⊥(
√

T = 100 s1/2) and �⊥(
√

T = 1 s1/2)
related to descending and ascending branches of the �⊥-curves obtained in the model of the S-effect
shown in Fig. 11.1; 1, 2, 3. . .- observation sites

in the sediments conductance S1 do not exceed 10%. The peculiarity of this case
is that not only the descending low-frequency branches of the �⊥-curves, but their
ascending high-frequency branches also are shifted vertically from the locally nor-
mal �n-curves. One can see that the �⊥-curves suffer the static distortion over the
entire frequency range including the ascending and descending branches, which
carry information on the upper layer and substratum. Note that within this frequency
range the ⊥-curves are not distorted being closely related to the locally normal n-
curves (Fig. 11.8). Using the phase indication, that is, marking a boundary between
zones with diverged and converged phase curves, we evaluate the initial period of
the �-effect as Ts≈ 0.25 s (Fig. 11.9). Let us give a glance at Fig. 11.10 correlating
the descending and ascending branches of the �⊥-curves. The graph can be approx-
imated by a straight line with inclination close to 45◦. Remarkable as it is, the �−
effect demonstrates the same relations between descending and ascending branches
of the �⊥-curves as the strong S− effect.

The above definitions of the S− and � − effects retain their meaning in the three-
dimensional situation. An example of the � − effect caused by a three-dimensional
outcropped inhomogeneity with random lognormal distribution of resistivities is
given in Figs. 11.11 and 11.12. Here the apparent-resistivity curves, �xy and
�yx , with their high-frequency ascending branch and low-frequency two-humped
descending branch are conformally scattered about the normal �N-curve. Their static
shift embraces 2.5 decades, whereas the corresponding phase curves, xy and yx ,
merge with normal N-curve. Correlating the descending and ascending branches
of the �xy− and �yx− curves, we get a graph with inclination close to 45◦, which
indicates the strong static shift (Fig. 11.13).

Behind the S− and �− effects are the same physical mechanisms. However, they
operate in different frequency intervals and on different spatial scales – so, these
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Fig. 11.4 Transverse impedance-phase curves in the model of the S-effect shown in Fig. 11.1

effects may differ in manifestation and hence in the correction technique. Consider,
for instance, apparent-resistivity curves in a three-layered model with �2 � �1 and
�3 � �2. When correcting the S− effect, we have to correct only the descending
branch of the �A− curves reflecting the depth h1 + h2. But in the case of the �−
effect, both the ascending and descending branches of the �A−curves reflecting
the conductance S1 and the depth h1 + h2 should be corrected. How can we rec-
ognize the S− and �−effects in data? Considering �A−curves, we can hardly tell
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Fig. 11.5 Combined graph of
the transverse
apparent-resistivity and
impedance-phase curves
obtained in the model of the
S-effect shown in Fig. 11.1

the S−effect from the �−effect. The impedance-phase curves are more indicative,
since they help to estimate the initial period TS as a period where adjacent phase
curves merge together. So, we can suggest a simple rule for static shift correction.
The �A− curves should be corrected for the static shift at periods with coincident
phases at the adjacent sites. Other evidences may be found by correlating apparent
resistivities �A−with sediments conductance Ssed determined from frequency and
transient soundings or resistivity logging. If, for instance, the �A− values from the
low-frequency descending branch of apparent-resistiviry curves correlate with the
Ssed−values, then we can suppose that they are distorted by the S−effect. And
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Fig. 11.6 Two-dimensional model of the �-effect

conversely, if the �A−values from the high-frequency ascending branch of apparent-
resistivity curves do not correlate with the Ssed−values, then we can suppose that
they are distorted by the �−effect.

Success of magnetotelluric soundings depends dramatically on the reliability of
the static-shift corrections. There is no standard universal remedy for static shift,
so the best result can be attained by combining different correction techniques.
Modern magnitotellurics offers a variety of methods for the static-shift correction
(Larsen, 1977; Bostick, 1984; Jones, 1988; Kaufman, 1988; Berdichevsky et al.,
1989b; Pellerin and Hohmann, 1990; Vozoff, 1991; Singer, 1992). These methods
use statistical averaging, filtering, fitting to a given reference, and mathematical
modeling.

11.1.2 Averaging Apparent Resistivities

A simple statistics for suppressing the �−effect has been suggested in
(Berdichevsky et al., 1980). Following this paper, we consider the magnitude of
the static shift as a random variable with lognormal distribution. Returning to the
model shown in Figs. 11.11 and 11.12, we write

�(i)
xy = 	(i)

xy�N �(i)
yx = 	(i)

yx �N i = 1, 2, ... 22 (11.2)
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Fig. 11.7 Transverse apparent-resistivity curves in the model of the �-effect shown in Fig. 11.6

and

log �(i)
xy = log 	(i)

xy + log �N log �(i)
yx = log 	(i)

yx + log �N i = 1, 2, ... 22, (11.3)

where 	(i)
xy, 	(i)

yx are the real frequency-independent distortion factors in the three-
dimensional model of the �−effect and i is the site number. Averaging of log �(i)

xy

and log �(i)
yx gives

log �̂xy = 1

22

22∑
i=1

log �(i)
xy = 1

22

22∑
i=1

log 	(i)
xy + log �N = log 	̂xy + log �N ≈ log �N

log �̂yx = 1

22

22∑
i=1

log �(i)
yx = 1

22

22∑
i=1

log 	(i)
yx + log �N = log 	̂yx + log �N ≈ log �N

(11.4)
or

�̂xy = 	̂xy�N �̂yx = 	̂yx �N, (11.5)
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Fig. 11.8 Transverse impedance-phase curves in the model of the � -effect shown in Fig. 11.6

where

�̂xy =
{

22∏
i=1

�(i)
xy

}1/22

	̂xy =
{

22∏
i=1

	(i)
xy

}1/22

≈ 1

�̂yx =
{

22∏
i=1

�(i)
yx

}1/22

	̂yx =
{

22∏
i=1

	(i)
yx

}1/22

≈ 1.

(11.6)

Figure 11.14 presents the apparent-resistivity curves �̂xy and �̂yx averaged over
22 sites on the local near-surface inhomogeneity. They are close to the normal �N-
curve characterizing the regional background (departure of �̂xy , �̂yx from �N does not
exceed 12%). We can say that the averaging removes the geoelectric noise caused
by the �− effect.

The potentials of statistical suppression of the �−effect were clearly demon-
strated in the Baikal region (Berdichevsky et al., 1980). Here the apparent-resistivity
curves suffer severe local distortions due to near-surface intrusions and permafrost
lenses. The area under investigation is divided into vast zones I, II, III,. . . with con-
formal �eff− curves (Fig. 11.15a). Within each zone, the strong static shift covers 1,
2 or even 3 decades (Fig. 11.15b). The immediate inversion of all these chaotically
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Fig. 11.9 Combined graph of
the transverse
apparent-resistivity and
impedance-phase curves
obtained in the model of the
�-effect shown in Fig. 11.6

Fig. 11.10 Correlation
between the apparent
resistivites
�⊥(

√
T = 100 s1/2) and

�⊥(
√

T = 1 s1/2) related to
descending and ascending
branches of the �⊥-curves
obtained in the model of the
�-effect shown in Fig. 11.6;
1, 2, 3, 4 - observation sites
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Fig. 11.11 Three-dimensional model of the �-effect

scattered MT data is senseless. But in each zone we can average conformal apparent-
resistivity curves and get

�̂eff = ant log

{
1

N

∑
log �eff

}
. (11.7)

Typical histograms of log �eff/�̂eff obtained in zones I and III are shown in
Fig. 11.16. It is indicative that statistical distributions of log �eff are fairly well
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Fig. 11.12 Combined graph of the apparent-resistivity and impedance-phase curves obtained in
the model of the �-effect shown in Fig. 11.11

approximated by the log-normal low (solid line).When averaging log �eff over each
zone, we get a visibly consistent and geophysically meaningful pattern. The result
of the trial one-dimensional inversion of the average �̂eff − curves is presented in
Fig. 11.17. On the Siberian platform we find a deep conductive layer with resistivity
of 100–200 Ohm·m at a depth from 25 to 40 km. Approaching the Baikal rift, the
crustal layer rises and its resistivity diminishes. In the Trans-Baikal zone the depth
to the conductor reaches 15 km, whereas the resistivity reduces to 10–15 Ohm·m.
So, even at this rough level, we gain an insight into geoelectric structure of the
Baikal rift.

11.1.3 Filtering Apparent Resistivities

Generally the spatial spectrum of magnetotelluric responces functions
(impedances, apparent resistivities) consists of high frequencies characterizing
the non-interpretable geoelectric noise produced by small-scale near-surface
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Fig. 11.13 Correlation
between the apparent
resistivites
�A(

√
T = 100 s1/2) and

�A(
√

T = 1 s1/2) related to
descending and ascending
branches of the �A-curves
obtained in the model of the
�-effect shown in Fig. 11.1

inhomogeneities and low frequencies corresponding to the large-scale buried
structures of different orders that are the target of MT-survey. In this context, the
suppression of the noise reduces to the low-frequency filtration.

A simplest low-frequency filter can be constructed using a low-order polynomials
(Kaufman, 1988). As an example, take a filter that smoothes the spatial variations
of the effective apparent resistivities:

�eff(x) = a0 + a1x + a2x2 (11.8)

or

�eff(x, y) = a0 + a1x + a2 y + a3x2 + a4xy + a5 y2, (11.9)

Fig. 11.14 Averaging the
�A-curves obtained in the
model of the �-effect shown
in Fig. 11.11
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Fig. 11.15 Averaging the conformal �eff-curves observed in the Baikal region; a – zones of the
conformal �eff-curves, b –conformal �eff-curves and their averaging (Berdichevsky et al., 1980,
1989b)

Fig. 11.16 Histograms of the apparent resistivities distorted by the �-effect (Berdichevsky et al.,
1980)
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Fig. 11.17 Trial geoelectric model of the Baikal rift; one-dmensional inversion of the averaged
�eff-curves (Berdichevsky et al., 1980)

where coefficients a0, a1, a2 . . . of polynomial approximation are determined by the
least squares method. Note that an optimum order of the polynomial is chosen in
accordance with supposed dimensions of target structures.

Consider now a filtering technique known as Electro-Magnetic Array Profiling,
EMAP (Bostick, 1984; Torres-Verdin and Bostick, 1992). The typical EMAP array
is shown in Fig. 11.18. It consists of the magnetic base station and the measurement
electric dipoles, which are continuously aligned along the profile oriented across the
structural strike (the employment of a continuous array helps to avoid aliasing). The

z
y

x

Ex

Ex

Ex

Ex

Ex

Ey

Hx

Hy

Fig. 11.18 The typical EMAP array (Torres-Verdin and Bostick, 1992)
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impedances are defined from the magnetic field Hy measured at a base station and
the filtered electric fields E flt

x measured on the profile.
The low-frequency spatial filtering is performed by means of the Hanning trans-

formation (Bernard and Rader, 1969):

E flt
x (x0) =

x0+W/2∫
x0−W/2

Ex(x) H (x − x0) dx = 1

2π

∞∫
−∞

ex(kx) h (kx) e−ikxx0 dkx

= 1

2π

∞∫
−∞

eflt
x (kx) e−ikxx0 dkx,

(11.10)

where H (x) is the Hanning window of width W:

H (x) =

⎧⎪⎨
⎪⎩

1

W

(
1 + cos

2πx

W

)
|x | ≤ W

2

0 |x | >
W

2
,

h(kx) is its frequency response as a function of the spatial frequency kx:

h(kx) =
∞∫

−∞
H (x)eikxx dx = 1

W

W/2∫
−W/2

(
1 + cos

2πx

W

)
eikxx dx

=
sin

W kx

2
W kx

2

⎛
⎜⎜⎝1 −

1

2

1 + 2π

W kx

−
1

2

1 − 2π

W kx

⎞
⎟⎟⎠ =

sin
W kx

2
W kx

2

4π2

W 2k2
x

4π2

W 2k2
x

− 1

,

ex(kx) is the spatial spectrum of the observed electric field E(x):

ex(kx) =
∞∫

−∞
Ex(x)eikxx dx,

and eflt
x (kx) is the spatial spectrum of the filtered electric field E flt

x (x):

eflt
x (kx) = h(kx)ex(kx) .

Figure 11.19 presents the filter using the Hanning windows. Its 3 dB cutoff point
with h ≈ 0.7 is located at W kx ≈ 4.52. With increasing W kx the amplitude falls as
1/(W kx)3. At W kx ≈ 10.36 we have 20 dB attenuation with h = 0.1.

The critical question is how to choose the optimum window width W. Bostick
(1984) believes that W should be proportional to the effective penetration depth heff:
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Fig. 11.19 The EMAP filter
using the Hunning window
(Torres-Verdin and Bostick,
1992)
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where heff = ∣∣Zxy

∣∣ /��o. It is strange, because we have to take into account the
scale of near-surface local inhomogeneities rather than the induction in the layered
host medium. Wouldn’t it be more reasonable to take W � �x , where �x is the
characteristic dimension of static anomalies producing the geoelectric noise?

Next we consider an areal filtering technique applied by Berdichevsky and
Nechaeva (1975) and Berdichevsky et al. (1989b). In the simplest case, the two-
dimensional filtration of apparent resistivities �A can be performed discretely by
means of a rectangular window Wx × Wy formed by two box-functions, Bx(x) and
By(y):

�flt
A (xo,yo) = 1

N

∑
i

∑
j

�A(xi, yj) Bx(xi−xo) By(yj−yo), (11.11)
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where

Bx(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 |x | ≤ Wx

2

0 |x | ≥ Wx

2

By(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 |y| ≤ Wy

2

0 |y| ≥ Wy

2
,

N is a total number of observation sites located inside the window and xo, yo is its
middle point (Fig. 11.20). The filter provides a fair smoothing of the geoelectric
noise on condition that lengths Wx and Wy are more than twice the autocorrelation
radius of local anomalies of apparent resistivities. To filter �A-curves, we repre-
sent MT-data as a set of apparent-resistivity maps for various periods. Each map is
smoothed using a sliding window (11.11). The apparent resistivities from smoothed
maps are synthesized, thereby yielding filtered �flt

A -curves that reflect the regional
structures.

By way of example, we will show the filtration of the apparent-resistivity curves,
�xy and �yx , obtained in southwest Jakutiya. High geoelectric noise caused by
permafrost lenses is observed in this province. Dimensions of lenses vary from
0.5–1 km to 10–20 km. The dimension W = Wx = Wy of the sliding window
have been determined from an analysis of the normalized autocorrelation functions
of apparent resistivities calculated along several profiles crossing the region under
investigation. The autocorrelation function R(t) along the profile AB is demonstrated
in Fig. 11.21. It consists of a wide maximum related to local anomalies and a sub-
horizontal oscillating branch associated with regional structures. A radius of auto-
correlation of local anomalies has been taken to be equal to a distance t = 42 km, at
which R(t) = 0. Estimates for other profiles are about the same. Doubling the radius
of autocorrelation, we have constructed a filter with square window 84 × 84 km.
Figure 11.22 presents the filtration of the �xy-resistivity map for T = 225 s. The
initial map exhibits a mosaic of apparent resistivities that veils the effects of regional
structures. Upon filtering we have got a smoothed map with fairly visible large-scale
structures – Botuobian elevation (maximum of �xy) and Iggiattian depression (min-
imum of �xy). The filtered apparent-resistivity curves are exemplified in Fig. 11.23.

Fig. 11.20 Rectangular
window for the
two-dimensional filtration
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Fig. 11.21 Autocorrelation
function of �xy values along
the profile AB
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One can see that low-frequency branches of the filtered curves come closer together
reflecting regular, large-scale variations in apparent resistivities.

Let us consider an example of another filtering technique employed by company
North-West Ltd (Russia) for suppressing geoelectric noise along single profiles.
Figure 11.24 presents a set of graphs showing spatial variations of

∣∣Zxy

∣∣ at different
periods T. The strong �-effect with sharp outliers replicated at all T from 14 to
1000 s is in evidence here. These static distortions are suppressed by smoothing a
graph obtained for T = 14 s. To this end we remove the most dramatic outliers and
use an exponential low-frequency filter
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Fig. 11.22 Filtering the apparent-resistivity map: 1 – contour of �xy values in Ohm·m, 2 – correla-
tion profile
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Fig. 11.23 Apparent-
resistivity curves filtered by
the rectangular window

∣∣Z flt
xy(T = 14 s)

∣∣
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n∑
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∣∣

j e

−

⎧⎪⎨
⎪⎩
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e

−

⎧⎪⎨
⎪⎩
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∣∣
τ

⎫⎪⎬
⎪⎭

q , (11.12)

where τand q are the filter half-width and steepness. The low-frequency filtration of∣∣Zxy(T = 14 s)
∣∣ with τ =7.5 km and q =1 results in

∣∣Z flt
xy(T = 14 s)

∣∣. Now we can
calculate correction factors

Ki =
∣∣Z flt

xy(T = 14s)
∣∣
i∣∣Zxy(T = 14s)
∣∣
i

and obtain smoothed values
∣∣Z flt

xy(T )
∣∣
i

= Ki

∣∣Zxy(T )
∣∣
i for all T >14 s. In this way

we construct graphs of
∣∣Z flt

xy

∣∣. The apparent-resistivity curves of �flt
xy = ∣∣Z flt

xy

∣∣2 /��0

are shown in Fig. 11.25.

11.1.4 Fitting Apparent Resistivities to Reference Level

It is simply evident that averaging and filtering of the apparent-resistivity curves
entail the information losses. In order to avoid these losses, we can use techniques
based on fitting the shifted apparent-resistivity curves to some reference level.
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Fig. 11.24 North-West
filtering technique:
a – filtering a graph obtained
at T= 14 s, b – multiplying
the graphs, obtained at
T > 14 s, by correction
factors

The most beneficial are techniques relying on extraneous references. We will
consider two techniques of that kind: (1) using transient electromagnetic sounding
(TEM-Sounding, TEMS), and (2) using global magnetovariational sounding (GMV-
Soundig, GMVS).

It seems that Andrieux and Wightman (1984) were the first who tried to eliminate
the �−effect by applying TEMS. The idea was widely discussed in the literature.
This approach can be efficient if near-surface local inhomogeneities are embedded
in a host one-dimensional medium.

Sternberg et al.(1988) use a TEMS-system consisting of a square transmitter loop
and recording central loop. There is good reason to believe that the observed mag-
netic field is hardly distorted by small surficial bodies. In order to compare TEM-
and MT-data, the skin-depths in the frequency- and time-domains are equated.
This yields the relation T = 5.15t between magnetotelluric period T and transient
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Fig. 11.25 Apparent-
resistivity curves filtered by
the North-West technique

time t. One-dimensional modeling shows that in the absence of sharp resistivity
contrasts the transient apparent-resistivity curves �TEM(5.15t)and the undistorted
magnetotelluric apparent-resistivity curves �MT(T ) are almost similar. As long as
we avoid comparing the steep parts of the �TEM- and �MT-curves, the transient
apparent-resistivity curves offer rather reliable reference for correcting magnetotel-
luric apparent-resistivity curves distorted by the static shift. A practical example
of such a correction is given in Fig. 11.26. Here the transient �TEM-curve offers
a resistivity-depth profile that is in line with well-log data. At the same time the
magnetotelluric �MT-curve is displaced to the left from the transient �TEM-curve, and
its inversion differs severely from well-log data. Correcting this distortion, the �MT-
curve is shifted to the right so that its high-frequency branch fits the �TEM-curve. Now
the inversion of the static-shift corrected �MT-curve is in reasonably good agreement
with the well-log resistivities.

Another shift-correction technique involving TEM-soundings has been
suggested by Pellerin and Hohmann (1990). To improve the accuracy in com-
paring MT- and TEM-data, the apparent-resistivity �TEM-curve is converted to
the apparent-resistivity �MT-curve. The correction scheme is simple. The one-
dimensional TEM-inversion gives a resistivity-depth profile, from which a reference
�MT-curve is calculated. Then the distorted �MT-curve is matched with the reference
�MT-curve. Here, contrary to Sternberg et al. (1988), we compare data of the same
kind and do not place restrictions on the resistivity contrasts. The technique is
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Fig. 11.26 Static-shift correction using TEM data as a reference (Sternberg et al., 1988)

exemplified in Fig. 11.27. Here the discrepancy between the observed phase curves,
xy and yx , is within the accuracy of the measurement, whereas the conformal
apparent-resistivity curves, �xy and �yx , are shifted from each other by one-half
decade. But the �xy-curve fits rather well the �MT-curve computed from the TEM-
data and hence can be considered as undistorted. At the same time the �yx -curve

Fig. 11.27 Static-shift
correction using TEM data as
a reference (Pellerin and
Hohmann, 1990)
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is evidently distorted and should be shifted downwards to match the �xy- curve.
After correction we have two closely related �xy- and �yx -curves typical of a one-
dimensional model.

Lastly we consider a correction technique involving global magnetovariational
sounding, GMVS (Larsen, 1977; Rokityansky, 1982; Berdichevsky et al., 1989a, b;
Vanyan, 1997; Berdichevsky and Dmitriev, 2002). The technique is used to cor-
rect apparent-resistivity curves distorted by the �- and S-effects. Here the refer-
ence is given by the standard aparent-resistivity curve �st reproduced from GMVS
and large magnetotelluric statistics collected in different geological provinces. The
�st-curve defines an average planetary distribution of the Earth’s conductivity that
can be adopted as a normal geoelectric model of our planet. Figure 11.28 shows
the standard �st-curve suggested by Fainberg in his pioneering works (1983a, b).
It is composed of GMVS data and magnetotelluric extension that can be formed
by slightly distorted MT-curves obtained in different geological provinces. We will
use the �st-curve edited by Vanyan with regard to further generalizations of GMVS
and MT data (Vanyan, 1997; Berdichevsky et al., 1989a, b). Coordinates of this
�st-curve are set out in Table 11.1. Figure 11.29 presents two examples of how
corrections are performed. Let a long-period apparent–resistivity curve �xy be dis-
torted by the �-effect that persists throughout the entire MT recording range. Its
low-frequency descending branch lies much below the �st-curve. To remove the
�-effect, the �xy-curve should be shifted upward so that its low-frequency descend-
ing branch fits the �st-curve. In the case of the S-effect, the correction procedure
becomes more intricate. We have to take into account that the high-frequency
ascending branch of the �xy-curve reflecting the upper layer conductance is slightly
distorted and does not need any correction. So only the low-frequency branch of

Fig. 11.28 Constructing the
standard apparent-resistivity
curve �st
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Table 11.1 Standard apparent resistivities

�st, Ohm·m 28000 10000 3500 1600 700 260 120 52√
T , s1/2 1 2 5 10 20 50 100 200

the �xy-curve including its bowl-type and bell-type elements is shifted upward to
fit the �st-curve. Then the intact and shifted parts of the �xy-curve are smoothly
interpolated.

Unfortunately, this attractive method should be applied with some reservation.
The most reliable results can be obtained in stable geological provinces (or at least
far away from anomalous zones such as rifts, subductions, plumes, volcanoes) where
the mantle’s conductivity at depth of about 300–500 km hardly experiences gross
changes in horizontal directions. Note also that the distortions of low-frequency

Fig. 11.29 Static-shift
correction using the standard
apparent-resistivity curve �st

as a reference
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branches of the apparent-resistivity curves caused by bounded conductive zones in
deep layers of the Earth’s crust (the deep S-effect) may severely spoil the static-shift
corrections.

Let us mention one more fitting technique which can be useful for qualitative
analysis of the apparent-resistivity curves. It is based on the vertical translation of
the �A−curves to the S̄− line, where S̄ is a mean conductance of the upper conduc-
tive layer underlaid with a resistive substratum (Feldman et al., 1988; Berdichevsky
et al., 1988; Dmitriev-Berdichevsky, 1988). This approach is exemplified in
Fig. 12.54.

11.1.5 Modeling the Distortions

Let some electromagnetic soundings (with direct or alternating current) give suf-
ficiently complete information on conductance S of the upper layer underlaid
with highly resistive rocks. Then we can construct a thin-sheet model reflect-
ing the horizontal variations in S and compute corrections for the distortions
caused by the S-effect. This idea has been realized by Fainberg et al. (1995)
in the dynamic-correction method. A distinguishing feature of this method is
that corrections can be applied in a wide frequency range (including transition
from undistorted branch of the apparent-resistivity curves to their statically shifted
branch).

We will illustrate the principle of the dynamic corrections by the example of mag-
netotelluric sounding aimed at studying deep conductive zones in the lithosphere or
asthenosphere (Berdichevsky, 1996). Assume that the inhomogeneous sediments
rest on the highly resistive layers of the crystalline Earth’s crust. Following (1.75),
we represent the measured impedance tensor

[Z] =
[

Zxx Zxy

Zyx Zyy

]

as

[Z] = [e] [ZR], (11.13)

where

[e] =
[

exx exy

eyx eyy

]

is the electric-distortion tensor, and

[ZR] =
[

ZR
xx Z R

xy

Z R
yx Z R

yy

]
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is the regional three-dimensional impedance tensor in the absence of sediments
inhomogeneities. In order to determine the distortion tensor [e], we examine a two-
layered model with the inhomogeneous upper layer of given conductance S(x, y)
and the homogeneous basement of high resisistivity �B. The model is excited by a
plane wave. Solving the problem in the low-frequency thin-sheet approximation, we
get the model impedance

[Zm] =
[

Zm
xx Zm

xy

Zm
yx Zm

yy

]

that, similar to (11.13), can be presented as

[Zm] = [em] [Zm
N ], (11.14)

where [em]is the tensor of the electric distortion:

[em] =
[

em
xx em

xy

em
yx em

yy

]

and [Zm
N ] is the normal impedance defined by the normal conductance SN:

[Zm
N ] =

[
0 Zm

N

−Zm
N 0

]
Zm

N = 1

SN + 1√−i��o�B

.

In such an approximation we determine the tensor of the electric distortion as

[em] = [Zm] [Zm
N ]−1. (11.15)

Let the S− effect weakly depend on the structure of the highly resistive litho-
sphere. Then

[e] ≈ [em], (11.16)

and

[ZR] = [e]−1[Z] ≈ [em]−1[Z] = [Zm
N ][Zm]−1[Z] . (11.17)

Thus, we compute the regional impedance tensor, which is supposed to be
free of near-surface distortions caused by the S-effect. Now we can solve the
eigenstate problem (say, by the Swift-Eggers method) and define the principal
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apparent-resistivity and principal phase curves related to the principal directions
of the regional impedance tensor.

Note that accuracy of dynamic corrections depends on the choice of the normal
conductance SN and the basement resistivity �B. So, it would be reasonable to test
the distortion matrix [em] obtained at different SN and �B.

11.1.6 Saving the Static Shift Troubles

Can we dispose of static distortions? We manage to do this for the geoelectric noise
caused by the �− effect. Making good use of the averaging and filtering techniques,
we smooth the local random distortions and pave the way for meaningful geophys-
ical interpretation. Certainly, on this way we lose some information, but it can be
possible to improve the MT-inversion by involving local TEMS- references.

In the case of static distortions caused by the S-effect we have a more complicated
situation. The scale of these distortions depends on dimensions of causing geoelec-
tric structures as well as on the galvanic transparency of resistive rocks underlying
the inhomogeneous upper layer. We can observe the local S-effects (stretching over
hundreds of meters) and the regional S-effects (extending for hundreds of kilome-
ters). It is evident that the averaging and filtering techniques are efficient only for
local S-effects. To eliminate the regional S-effect, we should use reference given by
the standard apparent-resistivity curve �st or apply the dynamic corrections (that is,
to solve the two-dimensional or three-dimensional problem for given distribution of
the upper layer conductance). Both approaches are associated with uncertainties that
are difficult to control and we not always manage to estimate the reliability of shift-
corrected apparent-resistivity curves. It is the S-effect that deserves the notorious
title of the main villain of the magnetotelluric piece.

Can we dispose of the S-effect? It would be possible, if we remove the inversion
uncertainties caused by near-surface galvanic anomalies of the electric field. We see
two different pragmatic approaches to this problem.

1. Development of a new interpretation strategy in which the magnetic field is
a primary source of information on the Earth’s conductivity. The remarkable prop-
erty of the magnetic field is that with lowering frequency the anomalies caused by
near-surface inhomogeneities attenuate and the anomalies caused by deep inhomo-
geneities come to light. So the magnetic field can scan the Earth illuminating suc-
cessively deeper and deeper areas independently of near-surface inhomogeneities.
On this way we employ the MVS-MTS complex with MVS, which plays the role of
a basic method, and MTS, which controls and supplements the MVS data.

2. Interpretation of magnetotelluric and magnetovariational response functions in
the hypotheses test mode. Hypotheses are made on the basis of modern geological
and geophysical ideas (with all their controversies and viewpoints variety). On this
way we construct several starting models that correspond to the different hypotheses
and give unambiguous references for correcting the apparent-resitivity curves. The
most credible is a hypothesis that shows minimal model misfit.

In our book we will give special prominence to both approaches.
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11.2 Stratifying the Geoelectric Background

At this stage we perform some rough one-dimensional estimates stratifying the geo-
electric background. Two appropriate techniques can be used: the Occam inver-
sion provided by smoothing stabilizer (Constable et al., 1987; Parker, 1994) or the
Zohdy transformation, suggested originally for the resistivity method (Zohdy, 1989;
Andreeva et al., 1991; Hobbs and Dumitresku, 1997; Berdichevsky and Dmitriev,
2002). We shall restrict our consideration to Zohdy’s transformation. The key advan-
tage of this approach is that it yields immediately the stable S−distribution. So, we
get a firm and pictorial basis for geoelectric stratification.

Magnetotelluric modification of Zohdy’s transformation has its origin in the
Molochnov-Viet transformation (Berdichevsky and Dmitriev, 2002), which trans-
lates the apparent-resistivity curve �A(

√
T )into a resistivity-depth profile �(z) :

�(
√

T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�A(
√

T )

[
1 + 1

2

d log �A(
√

T )

d log
√

T

]2
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d log �A(

√
T )

d log
√

T
≤ 0
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√

T )

[
1 − 1

2

d log �A(
√

T )

d log
√

T

]−2
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d log �A(

√
T )

d log
√

T
≥ 0

z(
√

T ) = heff(
√

T ) =
√

�A(
√

T )T

2π�o
.

(11.18)

Simplicity of the Molochnov-Viet transformation is achieved at the cost of a
severe sacrifice in its accuracy. An apparent-resistivity curve calculated from �(z)
may dramatically differ from the initial curve �A(

√
T ). We can reduce this difference

by means of iterative procedure involving Zohdy corrections.
Let �A(

√
T ) be given on a sufficiently dense grid Tm, m ∈ [0, M]:

�A(
√

Tm) = �(m)
A .

At nth iteration we have

�(m,n) = �(n)(
√

Tm) = �(n)(z(m))

z(m) = z(
√

Tm) =
√

�A(
√

T m)Tm

2π�o

�(m,n)
A = �(n)

A (
√

Tm)

(11.19)

and



11.2 Stratifying the Geoelectric Background 413

�(m,n)
A = P �(m,n)

, (11.20)

where P is an operator transforming resistivity-depth profile into apparent-resistivity
curve. Multiplying �(m,n) by Zohdy’s correction factor Z (m,n), we get

�(m,n+1) = Z (m,n)�(m,n), (11.21)

where

Z (m,n) = �(m)
A

�(m,n)
A

.

We illustrate Zohdy’s corrections by a simple example. Let the resistivity-depth
profile �(m,1) is given by (11.18). Correcting �(m,1), we obtain the second iteration

�(m,2) = Z (m,1)�(m,1),

where, according to (11.20) and (11.21),

Z (m,1) = �(m)
A

�(m,1)
A

�(m,1)
A = P �(m,1).

If �(m,1)
A > �(m)

A , the value for �(m,1) is overstated but it is reduced by Zohdy’s
factor. And vice versa, if �(m,1)

A < �(m)
A , the value for �(m,1) is understated but it is

enhancved by Zohdy’s factor. It seems that we arrive at the second iteration with
diminished misfit of resistivity profile �(m,2). This heuristic consideration suggests
that Zohdy’s multiplications decrease the misfit of transformation.

Iterations are continued until the misfit

�(n) = 100%

M

M∑
m=1

∣∣∣∣∣ln
�(m,n)

A

�(m)
A

∣∣∣∣∣ (11.22)

becomes reasonably small. Though lacking theoretical support, this simple approach
works rather well in practice. It is typical that on 25–50 iterations we reach a misfit
of the order of 2–3%.

Figure 11.30 shows the five-layer test model. Parameters of the model are: �1 =
10 Ohm · m, h1 = 1 km, �2 = 100 Ohm · m, h2 = 2 km, �3 = 10 Ohm · m, h3 =
3 km, �4 = 1 Ohm · m, h4 = 4.2 km, �5 = 60 Ohm · m. The original �A-curve has
pronounced maximum and minimum corresponding to the second and third layers.
Its starting transformation made by the Molochnov-Viet scheme yields a smoothed
resistivity distribution �(z) with a misfit of 96% for its �A-response. The Zohdy
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Fig. 11.30 Zohdy transformation of an apparent resistivity curve; a – apparent resistivity curves:
1 – original data, 2 – result of the differential Molochnov-Viet transformation, misfit in apparent
resistivity 96%, 3 – result of Zohdy transformation, 12 iterations, misfit in apparent resistivity 16%,
4 – result of Zohdy transformation, 39 iterations, misfit in apparent resistivity 1% b – resistivity
profiles: 1,2,3,4 are the same as above

iterative corrections reduce the �A-response misfit to 16 % (12 iterations) and 1 %
(39 iterations). Now the resistivity distributions �(z)come near to the original one,
though conspicuously differ in details. But note that the conductance distribution
S(z) obtained by 39 iterations virtually merges with original one (Fig. 11.31). It is
determined stably and characterizes the whole variety of equivalent solutions of the
one-dimensional inverse problem (Berdichevsky and Dmitriev, 2002).

Let us gain the benefit from S(z) and stratify (at least roughly) the lithosphere in
the Tungus syneclise. Figure 11.32 shows a set of the S-distributions obtained along
the river Podkamennaya Tunguska. Here the main indicator of the geoelectric strat-
ification is the rate of vertical changes of the conductance S(z). Fast and moderate
changes correspond to conductive layers, while slow changes relate to resistive
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Fig. 11.31 S-distribution
obtained by Zohdy
transformation shown in
Fig. 11.30; 1 – original data,
2 – result of the differential
Molochnov-Viet
transformation, misfit in
apparent resistivity 96%,
3 – result of Zohdy’s
transformation, 12 iterations,
misfit in apparent resistivity
16%, 4 – result of Zohdy’s
transformation, 39 iterations,
misfit in apparent
resistivity 1%

layers. The boundaries between conductive and resistive layers are reflected in the
maxima of curvature of S(z). Let us correlate the S-distributions at sites 1–11.
In most cases they present a five-layer strata. Connecting the curvature maxima,
we outline the conductive layer in the lower crust (25–50 km) underlaid with the
resistive mantle (50–100 km) and the mantle conductor (>100 km). Note that in
some places the smoothness of boundaries is violated (may be, because of three-
dimensional distortions). Of course, the accuracy of these results leaves much to
be desired and they need further consideration. But “exploration problems some-
times require a simple ‘yes’ or ‘no’ answer to the question such as ‘Does a buried
conductor exist here?’” (Vozoff, 1991).

Fig. 11.32 Correlating the
vertical S-distributions along
the river Podkamennaya
Tunguska
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11.3 Identifying the Geoelectric Structures

We can localize the geoelectric structures and define their dimensionality using the
magnetovariational and magnetotelluric formalized tests. Note that these tests estab-
lish only necessary conditions of one- and two-dimensionality. For the final conclu-
sion we analyze the spatial distribution of the necessary conditions and examine trial
three-dimensional models.

11.3.1 The Magnetovariational Test

The initial invariant parameters for the magnetovariational test are derived from
(4.9) and (4.10). We use two parameters:

1. The magnetovariational innhomogeneity parameter determined as

Nmv = ‖W‖ =
√

|Wzx |2 + ∣∣Wzy

∣∣2.

2. The magnetovariational asymmetry parameter determined as

skewmv =
∣∣∣∣Re Wzx Im Wzy − Re Wzy Im Wzx

Re Wzx Im Wzx + Re Wzy Im Wzy

∣∣∣∣ .

Parameters Nmv and skewmv are estimated with respect to threshold values 	 that
characterize the level of measurements errors. If Nmv and skewmv are beneath 	,
they are considered to be zero. Testing Nmv , we assume that 	 = 0.03–0.05. Testing
skewmv , we take 	 = 0.1–0.2, which, according to (4.17), corresponds to angle of
6–11◦ or 169–174◦ between the real and imaginary tippers. Note that in zones with
small ‖Re W‖ = √

(Re Wzx )2 + (Re Wzy)2, ‖Im W‖ = √
(Im Wzx )2 + (Im Wzy)2

the asymmetry parameter skewmv is calculated unstably. Its evaluation makes sense
if ‖Re W‖ ≥ 0.07 − 0.1 and ‖ImW‖ ≥ 0.07 − 0.1.

The flow chart for the magnetovariational dimensionality test is shown in
Fig. 11.33. Applying this test, we can differentiate three types of structures
approximating the geoelectric medium: (1) one-dimensional structures, (2) two-
dimensional structures or axisymmetric three-dimensional structures, (3) asymmet-
ric three-dimensional structures.

The starting point is the inhomogeneity parameter Nmv . Inspecting Nmv , we out-
line the horizontally homogeneous one-dimensional (quasi-one-dimensional) areas
with Nmv ≤ 	 and the horizontally inhomogeneous areas with Nmv � 	. The hori-
zontally inhomogeneous areas are the subject for further study. They manifest them-
selves in anomalies observed over the edges of inhomogeneities. Testing skewmv ,
we can divide these areas into zones with skewmv ≤ 	, corresponding to two-
dimensional (elongated) or axisymmetric three-dimensional (isometric) structures,
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Fig. 11.33 Flow chart for the
magnetovariational
dimensionality test

and zones with skewmv >> 	, corresponding to three-dimensional asymmetric
structures. What we would like to stress is that at low frequencies the magneto-
variational parameters become free from near-surface effects and reflect more and
more deep structures. So, applying the magnetovariational test on different frequen-
cies, we can plot the maps, pseudo-sections and pseudo-topographies of Nmv and
skewmv , and see how the detected structures change with depth.

11.3.2 The Magnetotelluric Test

The magnetotelluric test came from the pioneering works of Bahr (1991) and
Weaver et al. (2000). The Bahr test and Weaver-Agarval-Lilley test (WAL test) have
been analysed and advanced in (Weaver, 2003; Weaver et al., 2003; Marti et al.,
2005). These tests examine five invariant parameters derived from the impedance
and phase tensors and provide complete dimensionality classification. Note that the
Weaver-Agarval-Lilley test presents the impedance tensor as a sum of three matrices
associated with 1D, 2D and 3D regional structures respectively and seems to be
somewhat sophisticated.

In our book we consider a simplified magnetotelluric test applied in
(Berdichevsky and Dmitriev, 2002). This test rests on the same logic scheme as
in (Weaver et al., 2000; 2003), but operates with customary parameters N and skew
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reflecting the geoelectric inhomogeneity and asymmetry (Swift, 1967; Bahr, 1988;
Caldwell et al., 2004; Berdichevsky and Dmitriev, 2002).

Using the Berdichevsky-Dmitriev magnetotelluric test on sufficiently low fre-
quencies, we ignore the magnetic anomalies caused by near-surface inhomo-
geneities. So, following Bahr (1988) and Caldwell et al. (2004), we proceed from
the truncated decomposition (1.75), [Z] = [e][ZR], where [e] is the real-valued
tensor of local electric distortion and [ZR]is the regional impedance tensor.

The initial invariant parameters in the Berdichevsky-Dmitriev test are:
1. The inhomogeneity parameter determined by (2.46) and (2.53):

Nmt = ζ1 − ζ2

ζ1 + ζ2
=
√

1 − 4
Zxx Z yy − Zxy Z yx

(Zxy − Z yx )2
,

where ζ1, ζ2 are principal impedances derived from the Swift-Eggers decomposi-
tion.

2. The Swift asymmetry parameter determined by (1.60):

skewS =
∣∣∣∣ Zxx + Zxy

Zxy − Z yx

∣∣∣∣ .

Its analog is the angle asymmetry parameter determined by (2.54):

skewang = A = ||α1 − α2| − π/2| ,

where angles α1, α2 define the principal directions derived from the Swift-Eggers
decomposition.

3. The Bahr phase-sensitive asymmetry parameter determined by (1.61):

skewB =
√∣∣Im(Zxy Z̄ yy + Zxx Z̄ yx )

∣∣∣∣Zxy − Z yx

∣∣ ,

where the bars denote the complex conjugation. Its analog is the Caldwell-Bibby-
Brown asymmetry parameter skewCBB, determined by (3.80) from the phase tensor:

skewCBB = 1

2
arctan

∣∣∣∣�xy − �yx

�xx + �yy

∣∣∣∣ = 1

2
arctan(M skew2

B),

where scale factor M is

M =
∣∣Zxy − Z yx

∣∣2∣∣(�xx + �yy)(ReZxx ReZ yy − ReZxyReZ yx )
∣∣ .

All the parameters are estimated with respect to threshold values 	 that charac-
terize the level of measurements errors. In the magnetotelluric test, we usually take
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	 between 0.05 and 0.15 for |Nmt | , ImNmt , skewS, skewB and between 2oand 5o

for skewang, skewCBB.
The flow chart for the magnetotelluric test is shown in Fig. 11.34. With the help

of this test we can outline horizontally homogeneous (quasi-one-dimensional) areas
and horizontally inhomogeneous areas with two-dimensional (elongated) or axisym-
metric (isometric) structures and asymmetric three-dimensional structures. What’s
more, it is possible to single out the two-dimensional and axisymmetric structures
with in-phase principal impedances (arg ζ1 = arg ζ2), which are unfavorable for the
Bahr and Groom-Bailey decompositions.

Applying the magnetotelluric test, we use the profiles, maps, pseudo-sections
as well as pseudo-topographies of |Nmt | , ImNmt and skewS, skewB, skewCBB and
discern the local (near-surface) and regional (deep) structures.

Fig. 11.34 Flow chart for the magnetotelluric dimensionality test
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The starting point in Berdichevsky-Dmitriev test is the inhomogeneity
parameter Nmt . Here we outline the horizontally homogeneous (quasi-one-
dimensional) areas with |Nmt | ≤ 	 and recognize the two-dimensional and
three-dimensional areas with |Nmt | >> 	, which are the subject for fur-
ther study. Testing skew and ImNmt , we divide these areas into zones of
four types: (1) zones with two-dimensional (elongated) or axisymmetric (iso-
metric) three-dimensional structures (skewS ≤ 	, skewB ≤ 	, skewCBB ≤ 	), (2)
zones with local two-dimensional (elongated) or three-dimensional structures
and regional one-dimensional (quasi-one-dimesional) structures as well as two-
dimensional or axisymmetric structures with in-phase principal impedances
(ImNmt ≤ 	), (3) zones with local two-dimensional or three-dimensional struc-
tures and regional two-dimensional (elongated) or axisymmetric (isometric) three-
dimensional structures (ImNmt >> 	, skewS >> 	, skewB ≤ 	, skewCBB ≤ 	), (4)
zones with asymmetric three-dimensional structures (ImNmt >> 	, skewS >> 	,
skewB >> 	, skewCBB >> 	).

Summing up the magnetovariational and magnetotelluric tests, we classify
the target structures and apply the Zhang-Roberts-Pedersen, Bahr, Groom-Bailey,
Chave-Smith, Ritter-Banks techniques to determine the strike of the regional two-
dimensional background.

Fig. 11.35 Magnetotelluric
parameters
|Nmt | , sqewang,skewB, skewS

along a profile crossing the
Kirghiz Tien Shan
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11.3.3 Determining the Strike of the Regional Two-Dimensional
Background

By way of example, let us consider the magnetotelluric parameters Nmt ,
skewang, skewS, and skewB obtained on a submeridional profile crossing the
Kirghiz Tien Shan (Fig. 11.35). The values of |Nmt | almost everywhere exceed
0.3, indicating a strong lateral inhomogeneity. But in some parts of the profile,
large values of skewS (>>0.2) correlate with relatively small values of skewB

(< 0.1–0.15), revealing a superposition of local 3D structures and regional 2D back-
ground. Note that almost all anomalies of skewS ≥ 0.3 are reflected in skewang ≥
15◦. Figure 11.36 presents the impedance principal directions PDSE defined by the
Swift-Eggers decomposition and the strike of the regional 2D background speci-
fied by the Bahr decomposition. The directions PDSE vary chaotically, evidencing
a random noise caused by local 3D inhomogeneities, whereas the regional strike
gravitates to latitudinal direction with rather small deviations.

Fig. 11.36 Impedance
principal directions along a
profile crossing the Kirghiz
Tien Shan; PDSE– defined by
Swift-Eggers method,
STRIKE – defined by Bahr
method
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11.4 Visualizing the Geoelectric Structures

The magnetovariational and magnetotelluric tests may give a good indication of
dimensionality of geoelectric structures, their position and strike. We detail these
indications by visualizing the geoelectric structures. This can be done in sev-
eral ways – for instance: (1) plotting tipper vectors (induction arrows), (2) con-
structing impedance and tipper polar diagrams, (3) drawing the profiles, maps,
pseudo-sections and pseudo-topographies of magnetotelluric and magnetovaria-
tional response functions.

11.4.1 Plotting Tipper Vectors

We will start with tipper vectors. Recall that in the Wiese convention the real tippers
diverge from conductive structures and converge to resistive structures. In the 2D
model they are perpendicular to the structure strike. Considering tippers, we classify
structures by their conductivity and trace their geometry.

Let us return to the model from Fig. 2.3. This superimposition model contains
a �-shaped resistive inclusion in the upper layer and a 2D deep regional conduc-
tive prism in the intermediate layer. Figure 11.37 presents the Wiese-Parkinson
and Vozoff tippers, Re W and V, calculated for period T = 160 s. One can see that
arrows Re W and V converge to the middle of the �-shaped resistive inclusion, the
V-arrows giving somewhat more distinct pattern than the Re W-arrows.

Next we consider two instructive experimental examples.
Figure 11.38 presents a map of the Kirghiz Tien Shan with real Wiese-Parkinson

tippers Re W plotted for T = 1600 s (Trapeznikov et al., 1997). Southern regions
of the Kirghiz Tien Shan exhibit small chaotically oriented induction arrows. But

Fig. 11.37 Real Wiese-Parkinson tippers Re W and Vozoff tippers V over a near-surface �-shaped
resistive inclusion in the superimposition model shown in Fig. 2.3
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Fig. 11.38 Real Wiese-Parkinson tippers Re W along profiles I-I, II-II, III-III, IV-IV, V-V crossing
the Kirghiz Tien Shan, T=1600 s (Trapeznikov et al., 1997) 1- MTS, 2- long-period deep MTS,
3- Re W, 4- sedimentary basins: Chu (1), Fergana (2), Ili (3), Naryn (4), Atbashi (5), Susamyr
(6), Issyk Kul (7)

moving north, we meet a vast area with large induction arrows which are directed
toward the northwest, north and northeast. We can believe that such anomaly is
caused by a deep conductive layer whose resistivity increases from the south to the
north.

Figure 11.39 shows a map of the south-west of the East European platform with
real Wiese-Parkinson tippers Re W plotted for T = 300 s (Jankovski et al., 2004).
We see a striking correlation between the iduction arrows and configuration of the
crystalline basement depth isolines. The vectors Re W are directed toward the base-
ment uplift, being transverse to the depth isolines. Here the induction arrows reflect
the topography of the crystalline basement.

One more example of the real Wiese-Parkinson tippers Re W taken from the
audiomagnetotellurics surveys in Jakutia is shown in Fig. 11.40. We see here the
induction arrows plotted for T = 0.001 s. They run out of an isometric conductive
zone that coincides with the known diamond pipe filled with loose volcanic
formations.

11.4.2 Constructing Impedance and Tipper Polar Diagrams

The typical polar diagrams of the impedance tensor, phase tensor, and tipper were
shown in Figs. 1.7, 1.8, 3.12, 4.2. Now we consider the polar diagrams of the
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Fig. 11.39 Real Wiese-Parkinson tippers Re W at the south-west periphery of the East European
platform, T=300 s (Jankovski et al., 2004)

impedance and phase tensors synthesized for the superimposition model from Fig.
2.3. The model contains a near-surface local resistive �-shaped inclusion and a deep
regional conductive two-dimensional prism. The calculations have been performed
at T = 640 s.

The amplitude diagrams of |Zxx | and |Zxy | shown in Figs. 11.41a,b expose a
distorting effect of the near-surface resistive inclusion. The behavior of the |Zxx |-
diagrams is difficult to interpret: the variations in their shape and orientation seem
to be rather chaotical. But the |Zxy |-diagrams look like regular ovals with a more
or less narrow waist, and their major diameters follow the direction of the current
flowing around the resistive inclusion. So, they can give an idea of the inclusion
resistivity and its geometry. The phase diagrams of | arg Zxy | are worthy of special
attention (Fig. 11.41c). They are free from the distorting effect of the near-surface
inclusion. These diagrams everywhere appear as identical regular ovals elongated
across the strike of the deep regional prism. The directions of the minimum diameter
determine the strike of the prism, and the maximum and minimum half-diameters
yield the phase of the transverse and longitudinal regional impedances | arg Z⊥| and
| arg Z‖|. Uncertainties of these determination do not exceed 5◦.
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Fig. 11.40 Real
Wiese-Parkinson tippers
Re W over the diamond pipe
(Jakutia), T=0.001 s

Figures 11.41d,e present the polar diagrams of the E- and H-polarized
impedances. They show dramatic influence of the near-surface resistive inclusion.
The ZE- diagrams are the most intriguing. Their orientation changes rather sharply
following the direction of the current flowing around the resistive inclusion. Here
the flow-around effect is more pronounced than in the |Zxy |-diagrams.

Polar diagrams of the phase tensor are shown in Fig. 11.41f,g. The great majority
of the xx -diagrams have the shape of regular ovals elongated along the strike of the
deep regional prism. Being analogues of the | arg Zxy |-diagrams, they are similar in
shape but are oriented at a right angle. The directions of the maximum diameter of
the xx - diagrams determine the strike of the prism, and the minimum and max-
imum half-diameters yield the phases of the transverse and longitudinal regional
impedances | arg Z⊥| and | arg Z‖|. Uncertainties of these determinations may reach
10–12◦. Almost all the xy- diagrams appear as four-petal flowers, and the bisectors
between the petals are directed along and across the strike of the regional prism.
However at two sites we observe rather large deviation from this pattern specific to
the 2D-model. Comparing between (Fig. 11.41f,g) and (Fig. 11.41c), we can see that
the phase diagrams of the impedance tensor are less distorted by the near-surface
inclusion and better approximate the deep two-dimensional prism than the diagrams
of the phase tensor. This can be explained by the fact that the phase tensor is defined
without taking into account the near-surface magnetic anomalies.

It seems that the combined analysis of impedance polar diagrams can be usefull
in separating the local and regional effects. The analysis is most effective with the
E- polarized impedance diagrams, characterizing the near-surface structure, and the
phase diagrams of the impedance tensor, throwing light on the deep structure.

This analysis can be supplemented by the analysis the tipper diagrams, which
expose the near-surface structure on high frequencies and the deep structure on
the low frequencies. The tipper diagrams have the form of figure-eight, their waist
defines the departure from the two-dimensionality and they can bring an arrow,
which points away from the conductive zone.
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a0.0004 Ohm b0.001 Ohm 45° c

45° 45°

0.0017 Ohm 0.0017 Ohm
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f g

Fig. 11.41 Polar diagram of the impedance tensor and phase tensor in the superimposition model
shown in Fig. 2.3; the model contains a near-surface local resistive �-shaped inclusion and a deep
regional conductive 2D prism. Impedance tensor: a – diagram of |Zxx |, b - diagram of

∣∣Zxy

∣∣,
c - diagram of

∣∣arg Zxy

∣∣; Polarized impedances: d – diagram of E-polarized impedance, e - diagram
of H-polarized impedance; Phase tensor: f – diagram of xx , g - diagram of xy

Figure 11.42 exemplifies relationships between magnetotelluric and magne-
tovariational low-frequency polar diagrams plotted along the same profile as in
Figs. 11.36. No regularity can be seen in the behavior of the diagrams of |Zxy |
and|Zxx |. Their shape and orientation vary chaotically. This should be ascribed to
a strong effect of local near-surface 3D inhomogeneities, producing random noise.
The diagrams of | arg Zxy | are more stable with respect to near-surface distortions.
At many sites they are elongated in the submeridional direction, reflecting the
sublatitudinal strike of the regional 2D structures. The most informative are the
tipper diagrams. All of them are oriented in the submeridional direction, their waist
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Fig. 11.42 Polar diagrams of
the impedance tensor and
Wiese-Parkinson matrix
along a profile crossing the
Kirghiz Tien Shan

T = 1600 s

being rather narrow. This confidently indicates the regional two-dimensional back-
ground with the sublatitudinal strike.

11.4.3 Drawing the Profiles, Maps, Pseudo-Sections
and Pseudo-Topographies of MT and MV
Response Functions

More detailed information on the shape and position of geoelectric structures can
be obtained from the profiles, maps, pseudo-sections and pseudo-topographies of
magnetotelluric and magnetovariational response functions. We will consider sev-
eral examples demonstrating the informativeness of these graphical representations.

Figure 11.43 presents the electric (telluric) and magnetic effective intensities,
Deff = √|Dxx Dyy − Dxy Dyx | and Meff = √|Mxx Myy − Mxy Myx |, along a profile
crossing the East Urals and the Tobol’sk tectonic zone. The thickness of the sandy-
argillaceous Cenozoic and Mezozoic strata increases from 600 m near the Urals to
2000 m in the vicinity of Tobol’sk. Some small-scale structures are seen against this
background. Here Deff and Meff are in rather good agreement with each other. They
evidently reflect the regional Mezozoic topography. To downsinking of the bottom
of the Mezozoic sediments there corresponds a decrease in Deff and an increase
in Meff. Such a correlation is typical for regions with quiet tectonics and gentle
geoelectric variations in the absence of high resistive screening layers.

Quite different picture is observed in regions, where the sediments contain high
resistive screening layer. Here the electric intensity Deff reflects the topography of
this layer, while the magnetic intensity Meff can reflect the crystalline basement
topography.
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Fig. 11.43 Electric and
magnetic effective intensities
Deff and Meff along the
profile Urals-Tobol’sk;
1 – Deff (conventional units),
2 – Meff (conventional units),
3 – Mezozoic bottom from
MTS-data, 4 – Mezozoic
bottom from seismic data

Consider an example of such relations taken from the MT-surveys on the Siberian
platform. The terrigenous sediments in the region under consideration contain
trappean intrusions (Upper Cambrian) and salt-bearing strata (Lower Cambrian).
Figure 11.44 presents a map (a) for the depth of reflecting horizon in the Lower
Cambrian and for the sediments conductance S. The contours on the seismic horizon
outline two deep structures: the Sokolov depression (SD) and the Romanov uplift
(RU). At the same time the conductance contours show a submeridional uplift at
the place where the reflection seismics gives the Sokolov depression. Explanation
to this contradiction is that the S-map reflects topograthy of near-surface trappean
intrusions. Let us compare the map A with a map (b) for the telluric and magnetic
effective intensities, Deff and Meff. The S– and Deff−maps look similar. A submerid-
ional maximum of Deff outlined in the vicinity of the village Sokolov corresponds
to the minimum of S elongated approximately in the same direction. By and large
the seismic map and the Meff–map are also similar. The minimum of Meff outlined
in the vicinity of the village Romanov corresponds (with some displacement) to
the Romanov uplift. Summing up, we can say that Deff–map characterizes (at least
qualitatively) the trappean intrusions, while the Meff–map provides a rough idea of
the basement topography.

Next we will show a synthetic example. Let us turn again to the superimposition
model from Fig. 2.3 containing a near-surface local resistive �-shaped inclusion and
a deep regional conductive two-dimensional prism. Figure 11.45 shows the contour
maps of the apparent resistivities

�eff = |Zeff|2
��o

=
∣∣Zxx Z yy − Zxy Z yx

∣∣
��o

, �brd = |Zbrd|2
��o

=
∣∣Zxy − Z yx

∣∣2
4��o

,

�rms = Z2
rms

��o
= |Zxx |2 + ∣∣Zxy

∣∣2 + ∣∣Z yx

∣∣2 + ∣∣Z yy

∣∣2
2��o
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Fig. 11.44 Mapping the
electric and magnetic
effective intensities
Deff and Meff in the Siberian
platform. (a) map of the
sediments conductance in
comparison with structural
map of the reflecting horizon
in the Lower Cambrian,
1 – contours of conductance
(S), 2 – structural contours on
reflecting horizon (m). (b)
map of magnetic effective
intensity Meff and electric
effective intensity Deff,

3 – contours of Meff

(conventional units),
4 – contours of Deff

(conventional units)
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Fig. 11.45 Maps of apparent resistivities �eff, �brd, �rms in the model shown in Fig. 2.3. The model
contains a near-surface resistive �-shaped inclusion

plotted at T = 640 s. All three maps exhibit more or less smoothed �-shaped max-
imum reflecting the inclusion shape. Note that over the entire range of low fre-
quencies relating to the S1- and h-intervals the form of the contour lines is hardly
changed. Note also that the most adequate inclusion shape is given by �eff, whereas
�rms gives the largest amplitude of the �-shaped maximum.

Next we will consider the pseudo-sections and pseudo-topograpfies of the mag-
netotelluric and magnetovariational response functions that can give the most picto-
rial image of geoelectric structures.

Figure 11.46 provides a synthetic example of pseudo-sections of apparent resis-
tivity and impedance phase. A two-dimensional model consists of a conductive
layer, �1 = 10 Ohm · m, and a resistive layer, �2 = 10000 Ohm · m, resting on
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Fig. 11.46 Pseudo-sections
of the transverse apparent
restivity �⊥ and impedance
phase ⊥ in a model with the
horst in the upper layer;
(a) the model cross-section,
(b) pseudo-section of �⊥,
(c) pseudo-section of ⊥

a conductive basement, �3 = 1 Ohm · m. The surface of the �2– layer forms a
rectangular ledge imitating a horst. The pseudo-sections of the transverse apparent
resistivities, �⊥, and transverse impedance phases, ⊥, are oriented across the horst.
Both of these cross-sections demonstrate intensive anomalies reflecting the horst.
But anomaly of �⊥ has a false deep root in the lower part of the pseudo-section.
This root is caused by the static shift of the low-frequency branches of transverse
�⊥-curves (the S– effect). At the same time, the anomaly of ⊥ is closed within
the upper part of the pseudo-section related to the �1- layer and does not violate
the horizontal layering of the underlying medium. So, comparing the amplitude and
phase pseudo-sections, we can get a good image of the horst and outline the area
with strong static distortions of the �⊥ – curves.

A prominent example of the pseudo-sections of the effective apparent resistivity
and impedance phase, �eff and eff, is given in (Ranganayaki, 1984). Figure 11.47
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Fig. 11.47 Geologic
cros-section of The Women’s
Pocket Anticline and
pseudo-sections of effective
impedance phase eff and
apparent resistivity �eff;
(a) geologic cross-section,
(b) pseudo-section of eff,
(c) pseudo-section of �eff

(Ranganayaki, 1984)

40

4

0.4

0.04

T, s

3000

2000

1000

z, m

0.04

0.4

4

40

T, s

a

b

c

75
50

25

25
35

35

SW NE

25

ϕeff

ρeff

presents the geologic cross-section of the steep anticlinal fold (The Woman’s Pocket
fold in Golden Valley County, Montana) as well as �eff and eff pseudo-sections
plotted along the same profile. It is rather instructive to see how closely the eff

pseudosection resembles the geologic cross-section. Moving from the SW side of
the fold to its NE side, we observe a sharp decrease in eff (T = 0.04 − 4 s), which
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shows that the fold involves a steep uprise of resistive layers. But at T > 40 s the
phase contours become horizontal, which suggests that the basement of the fold is
flat-layered. The �eff pseudo-section is less indicative. At T > 40 s the NE side of
the fold is marked by higher values of �eff reflecting an uprise of resistive layers.
There is no evidence of the flat-layered basement. A characteristic feature of the �eff

pseudo-section is that the near-surface inhomogeneity generates the vertical static
anomaly that runs between the two sides of the fold through the entire �eff pseudo-
section (the �-effect) and spoils information on the fold.

Now we consider several examples of the pseudo-topography. This pictorial
technique is a three-dimensional generalization of the pseudo-sections. We present
pseudo-topographies plotted from synthetic data.

An initial three-dimensional model is shown in Fig. 11.48. In this seven-layer
model, the first, second and third layers imitate sediments, whereas the fourth, fifth,
and sixth layers are identified with the high-resistivity lithosphere. A conductive
mantle serves as the base of the model. The first sedimentary layer contains a

Fig. 11.48 Three-
dimensional synthetic model
containing a near-surface
(NP), crustal (CP), and
mantle (MP) 2-D prisms; α is
the prism strike azimuth, w is
the prism width, and the
numbers in the frontal and
lateral faces of the model are
resistivities of the layers and
prisms in Ohm·m
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high-resistivity inclusion in the form of an infinitely long rectangular prism NP
(near-surface prism) 32 km wide striking at an azimuth 0◦ measured from the x-axis.
The fourth (crustal) layer contains a conductive inclusion in the form of an infinitely
long rectangular prism CP (crustal prism) 100 km wide striking at an azimuth
of –45◦. The prism contacts the sedimentary cover. The conductive mantle has an
uplift in the form of an infinitely long rectangular prism MP (mantle prism) with a
width of 300 km, a height of 50 km, and a strike azimuth of –90◦.

The forward problem was solved with the help of the standard Mackie program
(Mackie et al., 1994). Based on this solution, the following magnetovariational and
magnetotelluric response functions were calculated:

1. The Wiese–Parkinson matrix [W] interrelating horizontal and vertical compo-
nents of the magnetic field:

Hz = [W] Hτ , [W] = [Wzx Wzy] , Hτ =
[

Hx

Hy

]
.

The pseudo-topography of the invariant ‖W‖=√|Wzx |2 + |Wzy |2 is constructed. At
the surface of a horizontally homogeneous Earth, we have ‖W‖ = 0.

2. The magnetic tensor [M] relating horizontal components of the magnetic field
to horizontal components of the normal magnetic field:

Hτ = [M] HN
τ , Hτ =

[
Hx

Hy

]
, [M] =

[
Mxx Mxy

Myx Myy

]
, HN

τ =
[

H N
x

H N
y

]
.

The pseudo-topography of the invariant

‖M‖ =
√

|Mxx |2 + ∣∣Mxy

∣∣2 + ∣∣Myx

∣∣2 + ∣∣Myy

∣∣2
2

is constructed. At the surface of a horizontally homogeneous Earth, we have
‖M‖ = 1.

3. The impedance tensor [Z] relating horizontal components of the electric field
to horizontal components of the magnetic field:

Eτ = [Z] Hτ , Eτ =
[

Ex

Ey

]
, [Z] =

[
Zxx Zxy

Z yx Z yy

]
, Hτ =

[
Hx

Hy

]
.

The invariant Zbrd = (Zxy − Z yx )/2 is calculated and the pseudo-topographies of
the apparent resistivity �brd = |Zbrd|2/��o and the phase brd = − arg Zbrd are con-
structed. We have �brd = � and brd = 45◦ at the surface of a homogeneous Earth
having a resistivity of � = const .

4. The phase tensor [�] obtained by the transformation of the impedance tensor:
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[�] = [Re Z]−1[Im Z] =
[

�xx �xy

�yx �yy

]
.

The pseudo-topography of the apparent phase

A = − arctan
�xx + �yy

2

is constructed. At the surface of a horizontally homogeneous Earth, we have

A = − arg Z , where Z is the 1D Tikhonov–Cagniard impedance.

Figure 11.49 shows the pseudo-topography of Wiese–Parkinson matrix invariant
‖W‖ constructed in the range of periods from 0.16 to 10000 s. The near-surface,
crustal, and mantle prisms are clearly recognizable here as edge maxima of ‖W‖
delineating the prisms. With increasing period, these maxima become smoother and
broaden because the resolution of the Wiese–Parkinson matrix drops with depth.
Examining the pseudo-topography of the invariant ‖W‖, we can identify periods
at which the effects of various prisms are superimposed on each other and periods
at which each prism is seen as a separate body unaffected (or almost unaffected)
by the other prisms (the effects of the prisms are not superimposed). Thus, the
period T = 0.16 s demonstrates the pure effect of the near-surface prism, while, at
longer periods, the effects of the crustal (T = 40 s) and mantle (T = 10000 s) prisms
are predominant. At these periods, we can change projections of the near-surface,
crustal, and mantle prisms and find their azimuths (0, –45◦, and –90◦). Moreover,
each of these prisms can admit a trial 2D inversion performed in a more or less
narrow interval of periods around 0.16, 40, or 10000 s excluding the presence of
other prisms. It is evident that the pseudo-topography of the invariant ‖W‖ of the
Wiese–Parkinson matrix provides a good basis for the choice of adequate interpre-
tation model.

We arrive at the same conclusion, examining the pseudo-topography of the invari-
ant ‖M‖ of the magnetic tensor [M] shown in Fig. 11.50. The pseudo-topography
of ‖M‖ is constructed in the same range of periods from 0.16 to 10000 s. The
high resistivity near-surface prism is observed at the period T = 0.16 s as a 2D
“graben” framed by maxima that arise due to the external skin effect in the con-
ductive medium surrounding the prism (at high frequencies, the longitudinal elec-
tric current concentrates near the vertical faces of the high resistivity prism). With
decreasing frequency, the effect of the near-surface prism decays, giving room to
the effect of the conductive crustal prism (T = 1 and 6.3 s) which manifests itself as
2D “horst” with side maxima arising due to the internal skin effect. The effect of the
crustal prism prevails at the period T = 40 s, so that this prism can be regarded as a
separate body almost free from the influence of the near-surface and mantle prisms.
The further decrease in frequency reveals the mantle prism resolved in the form of
a flat maximum. The effects of the mantle and crustal prisms are superimposed at
T = 250 s. At T = 10000 s, the effect of the mantle prism becomes predominant,
while the effect of the crustal prism is nearly unrecognizable. In the vicinity of the
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Fig. 11.49 Pseudo-topographies of the invariant ‖W‖ of the Wiese–Parkinson matrix: NP, CP, and
MP are, respectively, the near-surface, crustal, and mantle prisms. The horizontal scale of distances
is given in kilometers

periods T = 0.16, 40, and 10000 s, we can determine azimuths of all three prisms and
perform a trial 2D inversion for each prism ignoring the presence of other prisms.

Now come back to the initial model and introduce chaotically distributed small-
scale heterogeneities into the first sedimentary layer. Figure 11.51 presents the
pseudo-topography of the invariant ‖W‖ of the Wiese-Parkinson matrix and the
invariant ‖M‖ of the magnetic tensor constructed for this contaminated model. At
T = 1 s, the effects of the near-surface and crustal prisms are lost in the geoelec-
tric noise produced by the local heterogeneities of the sedimentary cover. However,
already at T = 6.3 s, the effect of the crustal prism becomes noticeable and, at the
period T = 40 s, it exceeds significantly the level of geoelectric noise. With the
further decrease in frequency, the near-surface geoelectric noise disappears, and the
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Fig. 11.50 Pseudo-topographies of the invariant ‖M‖ of the magnetic tensor: NP, CP, and MP are,
respectively, the near-surface, crustal, and mantle prisms. The horizontal scale of distances is given
in kilometers

effects of the crustal and mantle prisms in the interval of periods 250–10000 s are
actually undistorted.

Summing up, we can say that the magnetovariational response functions, [W]
and [M], resolve both the horizontal and vertical variations in the Earth’s conductiv-
ity and are immune to the local near-surface galvanic distortions. There is every rea-
son to believe that magnetovariational functions specified in a wide frequency range
contain sufficiently complete parametric information on the geoelectric medium and
this information can be obtained without troubles caused by the static shift.

Next we consider the pseudo-topographies of the magnetotelluric response
functions.

Figure 11.52 presents the pseudo-topographies of the apparent resistivity �brd

constructed in the range of periods from 0.16 to 10000 s. At the period T = 0.16 s,
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Fig. 11.51 Pseudo-topographies of the invariants ‖W‖ and ‖M‖ in the presence of strong near-
surface noise: a - the invariant ‖W‖ of the Wiese–Parkinson matrix, b - the invariant ‖M‖ of the
magnetic tensor, CP and MP are the crustal and mantle prisms, respectively. The horizontal scale
of distances is given in kilometers
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Fig. 11.52 Pseudo-topographies of the apparent resistivity �brd: NP, CP, and MP are the near-
surface, crustal, and mantle prisms, respectively. The horizontal scale of distances is given in
kilometers, and the vertical scale of resistivities is given in logarithmic units of Ohm·m

we see the pure effect of the high-resistivity near-surface prism represented as a
2D “horst” framed by external minima and internal maxima arising due to the
redistribution of the transverse current. With decreasing frequency, this effect does
not attenuate but is superimposed on the effect of the conductive crustal prism
resolved as a 2D “graben” (T = 1, 6.3, and 40 s). Here we see the joint action of
two effects: the “horst” with an azimuth of 0◦, reflecting the near-surface prism, and
the “graben” with an azimuth of –45◦, reflecting the crustal prism. With a further
decrease in frequency, both effects are superimposed on the effect of the conduc-
tive mantle prism resolved as a gentle 2D “valley” striking at an azimuth of –90◦



440 11 The Interpretation Model

(T = 250 and 10000 s). Here the mantle-prism image bears evidences of the crustal
prism and even of the near-surfase prism.

The pseudo-topography of the phase brd is shown in Fig. 11.53. At T = 0.16 s,
the high-resistivity near-surface prism is imaged as a 2D “horst” with an azimuth of
0◦. When lowering frequency, this effect attenuates rather rapidly, giving place to
the effect of the conductive crustal prism imaged as a 2D “horst” with an azimuth of
–45◦ (T=1 and 6.3 s). As the frequency is further decreased, the effect of the near-
surface prism virtually vanishes and we can see the superimposition of the crustal
and mantle effects (T = 40 and 250 s). Here the conductive mantle prism is imaged as
a gently sloping uplift striking at –90◦. Both the effects are weakly expressed at the
period T = 10000 s where the impedance phase reflects the homogeneous mantle
underlying the mantle prism (at depths much greater than 100 km). To sum up, we

Fig. 11.53 Pseudo-topographies of the impedance phase brd: NP, CP, and MP are, respectively, the
near-surface, crustal, and mantle prisms. The horizontal scale of distances is given in kilometers,
and the vertical scale of phases is given in degrees
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note that (1) the phase brd is much less subjected to near-surface distortions than the
apparent resistivity �brd, (2) in the model under consideration, the phase immunity
to near-surface distortions is quite comparable with the immunity of the magneto-
variational invariants ‖W‖ and ‖M‖, and (3) the resolution of the phase brd leads
in depth the resolution of the apparent resistivity �brd and the magnetovariational
invariants ‖W‖ and ‖M‖: whereas �brd, ‖W‖ and ‖M‖ reliably detect the mantle
prism in the range of periods 250–10000 s, the phase brd reveals the mantle prism
in the interval 40–250 s.

The pseudo-topography of the apparent phase A determined from the phase ten-
sor [�] is displayed in Fig. 11.54. Comparing the pseudo-topographies of A and
brd, we see that in the model under consideration the phase A has approximately
the same immunity to near-surface distortions as the phase brd. In both pseudo-
topographies, the effect of the near-surface prism virtually vanishes at the period
T = 6.3 s, and the effect of the crustal prism decays at a period of about 10000 s.

Finally, we consider pseudo-topographies of the apparent resistivity �brd and
phase brd determined in the model with the first sedimentary layer containing
chaotically distributed small-scale heterogeneities. The pseudo-topography of �brd

is shown in Fig. 11.55. We see that the geoelectric noise produced by local hetero-
geneities fills all levels of the pseudo-topography, from T = 1 s to T = 10000 s. In
this “forest” the near-surface, crustal and mantle prisms are lost. The pseudotopogra-
phy of brd shown in Fig. 11.56 is much more informative. Here, the levels T = 1, 6.3,
and 40 s are filled with smoothed geoelectric noise which does not cover the crustal
prism. And the levels T = 250 and 10000 s are almost free of the noise. Against
this background, the effects of the crustal and mantle prisms can be identified quite
reliably.

It seems that the pseudo-topography technique can prove helpful for constructing
the interpretation model. The main advantage of this technique is that the topog-
raphy of magnetotelluric and magnetovariational invariants is constructed without
any restrictions and can give a fairly comprehensive idea of the resolution of dif-
ferent response functions, mutual position and shape of geoelectric structures, the
superposition of their effects, the thickness and height of the “forest” produced by
geoelectric noise.

11.5 Mapping the Sediments Conductance

The sediments conductance S is a traditional geoelectric parameter widely used in
all methods of the electric and electromagnetic soundings with direct and alternating
current. This parameter readily determined from the apparent-resistivity curves can
give a qualitative information on the topography of the crystalline basement and
variations in the thickness and resistivity of the sedimentary layers. Maps of S may
provide the geolectric zoning of vast areas. They are helpful in recognizing local and
regional structures as well as in analyzing the informativeness of the magnetotelluric
and magnetovariational response functions.

Determining the sediments conductance by magnetotelluric sounding, we usually
take the �eff − curves and apply a simplified technique which is valid for the 1D
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Fig. 11.54 Pseudo-topographies of the aparent phase A: NP, CP, and MP are, respectively, the
near-surface, crustal, and mantle prisms. The horizontal scale of distances is given in kilometers,
and the vertical scale of phases is given in degrees

model (Berdichevsky and Dmitriev, 2002). Here some inaccuracies are possible due
to distorting influence of geoelectric inhomogeneities.

The geophysical literature offers several approaches providing more adequate
determination of the sediments conductance (Schmucker, 1971b; Vasseur and
Weidelt, 1973; Obukhov et al., 1983; Berdichevsky and Zhdanov, 1984; Singer and
Fainberg, 1997). We restrict our consideration to the Singer-Fainberg method as
well as the Obukhov method which reduce the conductance determination to more
or less simple arithmetic.

11.5.1 The Singer-Fainberg Method

The basic model in this method consists of an inhomogeneous thin layer resting
on the one-dimensional resistive substratum that can contain conductive layers at a
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Fig. 11.55 Pseudo-topographies of the apparent resistivity �brd in the presence of strong near-
surface noise: NP and CP are, respectively, the near-surface and crustal prisms. The horizontal
scale of distances is given in kilometers, and the vertical scale of resistivities is given in logarithmic
units of Ohm·m

sufficiently large depth (Singer and Fainberg, 1997). The upper layer {�1(x, y), h1}
is characterized by conductance S1(x, y) = h1/�1(x, y). Applying the Price-
Sheinmann boundary conditions (7.15) valid within the S1− interval, we write

Hx (x, y, h 1) − Hx (x, y, 0) = S1(x, y)Ey(x, y, 0)
Hy(x, y, h 1) − Hy(x, y, 0) = −S1(x, y)Ex (x, y, 0)

Ex (x, y, h 1) = Ex (x, y, 0)
Ey(x, y, h 1) = Ey(x, y, 0),

(11.23)
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Fig. 11.56 Pseudo-topographies of the impedance phase brd in the presence of strong near-surface
noise: NP, CP, and MP are, respectively, the near-surface, crustal, and mantle prisms. The horizontal
scale of distances is given in kilometers, and the vertical scale of phases is given in degrees

whence

S1(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

Hx (x, y, h 1) − Hx (x, y, 0)

Ey(x, y, 0)

− Hy(x, y, h 1) − Hy(x, y, 0)

Ex (x, y, 0)
.

(11.24)

Let the electromagnetic field Eτ (Ex , Ey)
∣∣
z= 0, Hτ (Hx , Hy)

∣∣
z= 0 be known on the

Earth’s surface. Then with the given underlying substratum we can transform
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Eτ (Ex , Ey)
∣∣
z= h1

= Eτ (Ex , Ey)
∣∣
z = 0 into Hτ (Hx , Hy)

∣∣
z = h1

and find S1 from
(11.24). The problem is easily converted to the spectral domain. The Fourier spectra
for the electromagnetic field are

eτ (ex , ey)
∣∣
z= h 1

=
∞∫

−∞

∞∫
−∞

Eτ (Ex , Ey)
∣∣
z=h 1

ei(kx x+ky y)dx dy

hτ (hx , hy)
∣∣
z=h 1

=
∞∫

−∞

∞∫
−∞

Hτ (Hx , Hy)
∣∣
z=h 1

ei(kx x+ky y)dx dy,

(11.25)

where kx , ky are the spatial frequencies. Note that there exists the linear relation
between h and e (Berdichevsky and Dmitriev, 2002):

h =
[↔
Y
]

e
[↔
Y
]

=
[ ↔

Y xx
↔
Y xy

↔
Y yx

↔
Y yy

]
, (11.26)

where
[
Ÿ
]

is the spectral admittance tensor. Its components are

↔
Y xx = − kx ky

k2
x + k2

y

(
Y T M

� − Y T E
�

) ↔
Y xy = −Y T M

� + k2
x

k2
x + k2

y

(
Y T M

� − Y T E
�

)
↔
Y xy = Y T M

� − k2
y

k2
x + k2

y

(
Y T M

� − Y T E
�

) ↔
Y yy = kx ky

k2
x + k2

y

(
Y T M

� − Y T E
�

)
,

(11.27)

where Y T M
� and Y T E

� are the spectral admittances in the TM- and TM-modes defined
from the Riccati equations:

dY T M
�

dz
− �

(
k2

x + k2
y − i��o

�

) (
Y T M

�

)2 = −1

�
z ≥ h 1

dY T E
�

dz
+ i��o

(
Y T E

�

)2 = − i

��o

(
k2

x + k2
y − i��o

�

)
z ≥ h 1.

(11.28)

Thus, defining the spectum eτ (ex , ey)
∣∣
z= h1

of the known electric field

Eτ (Ex , Ey)
∣∣
z= h1

and determining the spectral admittance tensor
[
Ÿ
]
, we can calcu-

late the spectrum hτ (hx , hy)
∣∣
z=h1

and compute the magnetic field
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Hτ (Hx , Hy)
∣∣
z= h 1

= 1

4�2

∞∫
−∞

∞∫
−∞

hτ (hx , hy)
∣∣
z= h 1

e−i(kx x+ky y)dkx dky

= 1

4�2

∞∫
−∞

∞∫
−∞

[↔
Y
]

eτ (ex , ey)
∣∣∣
z= h 1

e−i(kx x+ky y)dkx dky,

(11.29)

which opens the way to evaluating S1(x, y) by (11.24). At practical computation
we apply the Fourier-Bessel transformation and reduce the double Fourier integral
to the more convenient Hankel integral, which provides the better accuracy and
robustness. The calculations are performed on the frequencies related to the ascend-
ing branch of the apparent-resisrivity curves.

A model example of mapping S1(x, y) is shown in Fig. 11.57. The subsur-
face layer with background conductance of 10 S contains a large-scale �− shaped
anomaly with conductance of 100 S and a small-scale square anomaly with con-
ductance of 15 S. It is underlaid with a 20 Ohm·m homogeneous basement. The
calculation has been performed for the period of 0.1 s. We see that the Singer-
Fainberg method gives sharply defined images of the S− anomalies with distortions
below 10%. This is much better than in the maps of the apparent resistivity shown
in Fig. 11.45.

11.5.2 The Obukhov Method

The idea of this method is derived from the same model as in the Singer-
Fainberg method (Obukhov et al., 1983). Ignoring the basement conductivity (�2 →
∞, h2 → ∞), we assume that a thin horizontal S1(x, y)− layer is located in the free
space. Such simplification is justified on the frequencies related to the S1− interval.

Let us represent the magnetic field Hτ as a sum of the external field Hext
τ created

by primary currents above the S1(x, y)− layer and the internal magnetic field Hint
τ

created by currents induced within the S1(x, y)− layer:

Hτ = Hext
τ + Hint

τ . (11.30)

Applying the Price-Sheinmann conditions (7.15), we write for the internal magnetic
field Hint:

H int
x (x, y, h 1) − H int

x (x, y, 0) = S1(x, y)E−
y (x, y, 0)

H int
y (x, y, h 1) − H int

y (x, y, 0) = −S1(x, y)E−
x (x, y, 0).

(11.31)

It follows from the Bio-Savart law that the horizontal components of Hint(x, y, h1)
and Hint(x, y, 0) are antisymmetric, that is, they have the same moduli and the
opposite phases, H int

x (x, y, h1) = −H int
x (x, y, 0) and H int

y (x, y, h1) =
−H int

y (x, y, 0). So, on the Earth’s surface
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Fig. 11.57 Mapping upper-layer conductance S by the Singer-Fainberg method; (a) an initial model
of the S - anomaly, (b) the conductance S evaluated by the Singer-Fainberg inversion (Singer and
Fainberg, 1997)

H int
x (x, y, 0) = −1

2
S1(x, y)Ey(x, y, 0)

H int
y (x, y, 0) = 1

2
S1(x, y)Ex (x, y, 0).

(11.32)

In the vector form

Hint
τ (x, y) = 1

2
S1(x, y) [R(−�/2] Eτ (x, y) = [

�(x, y)
]

Hτ (x, y) a

Hext
τ (x, y) = Hτ (x, y) − Hint

τ (x, y) = {
[I] − [

�(x, y)
]}

Hτ (x, y), b
(11.33)
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where

[I] =
[

1 0
0 1

]
[R(−�/2] =

[
0 −1
1 0

]
[Z(x, y)] =

[
Zxx Zxy

Z yx Z yy

]

[
� (x, y)

] = 1

2
S1(x, y) [R(−π/2] [Z(x, y)]

and

Hint
τ (x, y) = Hint

τ (x, y, 0) Hext
τ (x, y) = Hext

τ (x, y, 0),

Hτ (x, y) = Hτ (x, y, 0) Eτ (x, y) = Eτ (x, y, 0).

Now we gain the benefit from the magnetic tensor [M( x, y| xB, yB)] defin-
ing the relation between the horizontal magnetic fields Hτ (x, y) and Hτ (xB, yB)
at two sites: at a site O(x, y) and at a base site B(xB, yB). Substituting
[M( x, y| xB, yB)]Hτ (xB, yB) for Hτ (x, y), we rewrite (11.33) in the form

Hint
τ (x, y) = [

�(x, y)
]

[M( x, y| xB, yB)]Hτ (xB, yB) a

Hext
τ (x, y) = {

[I] − [
� (x, y)

]}
[M( x, y| xB, yB)]Hτ (xB, yB). b

(11.34)

Let the sediments conductance S1(xB, yB) be given at the base site (say, from the
TEM-sounding). Then we can turn to (11.33b) and determine the external magnetic
field Hext

τ (xB, yB) at the base site. Taking into account that Hext
τ is uniform in the

model excited by a plane wave, we get by virtue of (11.33b):

Hext
τ = {

[I] − [
�(xB, yB)

]}
Hτ (xB, yB). (11.35)

Using (11.35), we obtain the internal magnetic field Hint
τ (x, y) at any of observa-

tion sites:

Hint
τ (x, y) = Hτ (x, y) − Hext

τ = {[M( x, y| xB, yB)] − [I] + [
�(xB, yB)

]}Hτ (xB, yB).
(11.36)

Finally we exclude Hτ (xB, yB) from (11.33b) and (11.36), and derive a redundant
matrix equation that gives unknown S1(x, y) with known [Z] , [M( x, y| xB, yB)]
and S1(xB, yB):

[
�(x, y)

]
[M( x, y| xB, yB)] = [M( x, y| xB, yB)] − [I] + [

�(xB, yB)
]
. (11.37)

Solving this equation, we obtain

S1(x, y) = S′
1(x, y) + S′′

1 (x, y)

2
, (11.38)
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where

S′
1(x, y)

= 2

∣∣∣∣∣
1 − Myy (xB, yB

∣∣ x, y) + [Mxy (xB, yB | x, y) Zxx (xB, yB) + Myy (xB, yB | x, y) Zxy (xB, yB)]S(xB, yB)/2

Zxy (x, y)

∣∣∣∣∣
S′′

1 (x, y)

= 2

∣∣∣∣ 1 − Mxx (xB, yB | x, y) − [Mxx (xB, yB | x, y) Z yx (xB, yB) + Myx (xB, yB | x, y) Z yy (xB, yB)]S(xB, yB)/2

Z yx (x, y)

∣∣∣∣ .

Here

	 = 2
S′

1 − S′′
1

S′
1 + S′′

1

characterizes the measurement and model errors.
The above technique is a part of more general approach which is referred to as

the Obukhov Z int− transformation. Let us recall this interesting approach which
can be usefull in indentifying the geoelectric structures.

On the surface of the 1D model, the internal magnetic field Hint
τ = Hτ /2. In view

of this, we can introduce an “internal” 1D impedanse Z int as

Z int = Ex

H int
y

= − Ey

H int
x

= 2Z (11.39)

and an “internal” apparent resistivity �int as

�int =
∣∣Z int

∣∣2
4��o

= |Z |2
��o

= �A. (11.40)

In the 1D model, the impedance Z int and apparent resistivity �int coincide
respectively with the doubled Tikhonov-Cagniard impedance Z and the Tikhonov-
Cagniard apparent resistivity �A.

Similarly we can introduce an “internal”-impedance tensor in the 2D and 3D
models. To this end, we turn to (1.13) and replace Hx , Hy for H int

x , H int
y :

Ex = EN
x + EA

x = Hx o J E2
x + Hy o(ZN + J E 1

x ) a

Ey = EN
y + EA

y = Hx o(−ZN + J E2
y ) + Hy o J E1

y b

H int
x = 0.5H N

x + H A
x = Hx o(0.5 + J H 2

x ) + Hy o J H 1
x c

H int
y = 0.5H N

y + H A
y = Hx o J H 2

y + Hy o(0.5 + J H 1
y ) . d

(11.41)

Eliminating Hxo, Hyo from (11.41 c,d) and substituting these values in (11.41 a,b),
we establish
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Ex = Z int
xx H int

x + Z int
xy H int

y

Ey = Z int
yx H int

x + Z int
yy H int

y ,

where

Z int
xx = 0.5J E2

x − ZN J H2
y + (J E2

x J H1
y − J E1

x J H2
y )

0.25 + 0.5(J H2
x + J H1

y ) + (J H2
x J H1

y − J H1
x J H2

y )

Z int
xy = ZN(0.5 + J H2

x ) + 0.5J E1
x + (J E1

x J H2
x − J E2

x J H1
x )

0.25 + 0.5(J H2
x + J H1

y ) + (J H2
x J H1

y − J H1
x J H2

y )

Z int
yx = 0.5J E2

y − ZN(0.5 + J H1
y ) + (J E2

y J H1
y − J E1

y J H2
y )

0.25 + 0.5(J H2
x + J H1

y ) + (J H2
x J H1

y − J H1
x J H2

y )

Z int
yy = 0.5J E1

y + ZN J H1
x + (J E1

y J H2
x − J E2

y J H1
x )

0.25 + 0.5(J H2
x + J H1

y ) + (J H2
x J H1

y − J H1
x J H2

y )
.

Thus, we have the complex-valued tensor
[
Zint

]
that transforms the horizontal

internal magnetic field Hint
τ into the horizontal electric field Eτ :

Eτ = [
Zint

]
Hint

τ . (11.43)

With a knowledge of magnetic tensor [M], it is possible to establish relations
between the impedance tensors

[
Zint

]
and [Z]. Let us menage to locate the base site

within an undistorbed area where H(xB, yB) = HN = 2Hext
τ . Then at any observation

site

Hint
τ (x, y) = Hτ (x, y) − 0.5 [M(xB, yB |x, y) ] Hτ (x, y)

= ([I] − 0.5 [M(xB, yB |x, y) ]) Hτ (x, y).
(11.44)

So, in view of (11.43)

Eτ (x, y) = [
Zint(x, y)

]
Hint

τ (x, y)

= [
Zint(x, y)

]
([I] − 0.5 [M(xB, yB |x, y) ]) Hτ (x, y)

= [Z(x, y)] Hτ (x, y),
(11.45)

whence

[Z(x, y)] = [
Zint(x, y)

]
([I] − 0.5 [M(xB, yB |x, y) ]) (11.46)

and

[
Zint(x, y)

] = [Z(x, y)] ([I] − 0.5 [M(xB, yB |x, y) ])−1 . (11.47)
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The internal apparent resistivities are:

�int
xy(x, y) =

∣∣Z int
xy (x, y)

∣∣2
��o

�int
yx (x, y) =

∣∣Z int
yx (x, y)

∣∣2
��o

. (11.48)

where

Z int
xy (x, y) = 0.5Zxx (x, y)Mxy(xB, yB |x, y ) + Zxy(x, y){1 − 0.5Mxx (xB, yB |x, y )}

1 − 0.5tr [Mxx (xB, yB |x, y )] + 0.25 det [Mxx (xB, yB |x, y )]

Z int
yx (x, y) = 0.5Z yy(x, y)Myx (xB, yB |x, y ) + Z yx (x, y){1 − 0.5Myy(xB, yB |x, y )}

1 − 0.5tr [Mxx (xB, yB |x, y )] + 0.25 det [Mxx (xB, yB |x, y )]
.

Within the S1− interval

[
Zint

] ≈
[

0 Z int
xy

Z int
yx 0

]
Z int

xy ≈ −Z int
yx ≈ 1

S1
�int

xy ≈ �int
yx ≈ 1

��oS2
1

. (11.49)

The remarkable property of the internal apparent resistivities is that they are
robust to the induction effects as well as to some galvanic effects (for instance, to
flow-around and current-gathering effects). It is believed that in these cases the elec-
tric and internal magnetic fields are proportional to the same factor characterizing
the intensity of the magnetotelluric anomaly.

Figure 11.58 shows the longitudinal apparent-resistivity �‖− curve, obtained
over the middle of the resistive central segment in the two-dimensional three-
segment model. This curve has a broad minimum caused by the inductive

Fig. 11.58 The Obukhov
transformation in the
two-dimensional
three-segment model; the
apparent-resistivity curves are
obtained at the midpoint of
the resistive central segment:
�‖ - longitudinal apparent
resistivity, �

‖
int-internal

longitudinal apparent
resistivity, �̈n - locally normal
apparent resistivity
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Fig. 11.59 The Obukhov
transformation of the
apparent-resistivity curves in
the Ciskopetdag foredeep: �‖

- longitudinal apparent
resistivity, �⊥ - transverse
apparent resistivity,
�⊥

int-internal transverse
apparent resistivity
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influence of excess currents concentrated at both sides of the resistive segment
(effect of false conductive layer). On the Z int− transformation, we get the �

‖
int−

curve, which assumes the bell-like form and approaches the locally normal �̈n−
curve.

Convincing example of Obukhov’s transformation is given in Fig. 11.59. We
see the transverse and longitudinal apparent-resistivity curves obtained across and
along the Ciskopetdag foredeep. Note that the transverse �⊥− curves have a gently
inclined ascending branch and they flatten as we approach the Kopetdag. This is a
manifestation of the regional flow-around effect (the transverse current flows around
the resistive mountain ridge). The Obukhov transformation straightens the ascend-
ing branches of the �⊥

int− curves and they approach the slightly distorted longitudinal
�‖− curves.



Chapter 12
Inversion Strategy

The past decade witnessed the striking technological and methodological advances
in exploration and academic magnetotellurics. Field equipments ensuring a stable
determination of magnetotelluric and magnetovariational response functions have
been worked out. Effective programs have been developed for 1D, 2D and even 3D
inversions of impedances and tippers. Magnetovariational sounding, for many years
considered as an assistant in localizing and identifying the geoelectric structures, has
been put in the forefront of the modern magnetotellurics. It became a powerful tool
for resolving and studying the horizontal and vertical conductivity distribution with-
out static shift problem. New approaches to the analysis and interpretation widening
the informativeness of geoelectrics have been proposed. Field investigations have
been conducted in many tectonic provinces of the world providing basically new
information on the Earth’s crust and upper mantle that essentially supplements the
results obtained by seismics.

All these results need to be systemized and generalized. The development of a
modern philosophy of the magnetotelluric interpretation is a challenge of current
research. Nowadays we already have some works responding to this challenge. On
the geophysical bookshelves we find monographs considering the methods of regu-
larized solution of inverse problems based on the ideas of Tikhonov (Zhdanov, 2002;
Berdichevsky and Dmitriev, 2002) and examining the technological and geological
aspects of magnetotellurics (Simpson and Bahr, 2005).

In the present monograph, we would like to focus our attention on the strategy of
the integrated multicriterion inversion of the magnetelluric and magnetovariational
response functions.

12.1 The Smoothing and Contrasting Inversions

In general, we can consider two types of conductivity distributions �(x, y, z): (1)
a smooth distribution �(x, y, z) that is continuous with its gradient, (2) a contrasty
distribution �(x, y, z) that has discontinuities. Let an inhomogeneous body, smooth
or contrasty, be buried into the homogeneous Earth. It manifests itself at the Earth’s

M. Berdichevsky, V.I. Dmitriev, Models and Methods of Magnetotellurics, 453
DOI 10.1007/978-3-540-77814-1 12, C© Springer-Verlag Berlin Heidelberg 2008
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surface in a smoothed diffusive magnetotelluric anomaly with extent that can con-
siderably exceed the body dimensions. The resolution of the magnetotelluric and
magnetovariational soundings is such that we cannot distinguish the smooth body
from the contrasty one. In view of errors in the initial data, both �− distributions are
equivalent. To decide between the smooth and contrasty �− distributions, we need
a priori information or some hypotheses.

In regions with sufficiently slow horizontal variations in the conductivity and
thickness of the geoelectric layers, we can take a quasi-homogeneous layered
interpretation model and regularize the magnetotelluric and magnetovariational
inversions by smoothing the solution obtained. This traditional form of Tikhonov’s
regularization is named the smoothing inversion or Occam inversion (after William
of Occam, English philosopher, 1285–1349, whose maxim says that assumptions
introduced to explain a thing must not be multiplied beyond necessity).

The Occam inversion is implemented on the large grids and its stability is ensured
by the smoothing stabilizer. The simplest form of the smoothing stabilizer is

�(�) =
∫ ∫

V

∫ {
g1

[(
��

�x

)2

+
(

��

�y

)2
]

+ g2

(
��

�z

)2
}

dxdydz, (12.1)

where � = �(x, y, x) is a solution of the inverse problem and g1, g2 are weights
controlling the horizontal and vertical smoothing. Requirements of the smoothness
of �(x, y, z) can be readily supplemented with requirement of the closeness of
�(x, y, z) to the hypothetical model �0(x, y, z). In this case we can construct the
stabilizing functional as

�(�) =
∫ ∫

V

∫ {
g1

[(
��

�x

)2

+
(

��

�y

)2
]

+ g2

(
��

�z

)2

+ g3(� − �0)2

}
dxdydz,

(12.2)

where a weight g3 is chosen so small that requirement of the closeness of � to �0

does not dominate over requirements of the smoothness of �.
The mathematical programs OCCAM, REBOCC and NLCG based on the

smoothing inversion are widely used in exploration magnetotellurics (Constable
et al., 1987; DeGroot-Hedlin and Constable, 1990; Siripunvaraporn and Egbert,
2000; Rodi and Mackie, 2001). They have proved to be quite efficient in studying
the regional structure of the sedimentary basins in areas with gentle tectonics.

Unfortunately, there is a limit to what can be done with smoothing inversion.
Magnetotellurics is of frequent use in areas where we look for sharp geoelectric
contrasts between different geological formations (for instance, in areas with ore-
bearing bodies or fluidized layers and faults). When smoothing, we get blurred
images and lose significant information (smear or even miss the real structures).
In that events we have to take a locally inhomogeneous interpretation model
characterized by a contrasty �−distribution and regularize the magnetotelluric
and magnetovariational inversions by keeping the solution close to a hypothetical
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contrasty model �0. This form of Tikhonov’s regularization is named the contrasting
inversion. It has been realized in programs INV2D, II2DC and IGF-MT2D
developed by Varentsov and Novozhynsky (Varentsov, 2002; Novozhynski and
Pushkarev, 2001).

The contrasty interpretation model usually consists of reasonably small num-
ber of homogeneous blocks with fixed geometry of their boundaries. The density
of blocky partition is larger in zones with expected structures and less in empty
zones. Position of the blocks and their shape are chosen using a priori information,
qualitative magnetotelluric and magnetovariational indications, tentative smoothing
inversions, and hypotheses. Stability of the contrasting inversion is ensured by the
blocky stabilizer

�(�) =
L∑

l=1

gl

{
�(l) − �(l)

0

}2
, (12.3)

where gl is a weight controlling the contribution of the lth block.
The smoothing and contrasting inversions operate at different levels of automa-

tion.
The smoothing inversion is best suited to automatic operation. Let the geoelec-

tric survey be carried out in a region with supposedly gentle tectonics. If analysis
of magnetotelluric impedances shows sufficiently small values for the parame-
ters of inhomogeneity, the smoothing inversion calls for stratifying the geoelectric
medium, defining the normal background, correlating the S−distribution, analyzing
the model misfits and estimating the inversion accuracy. So, the smoothing inversion
enables rather fast interpretation of the large amounts of field data and is particularly
attractive in the commercial magnetotelluric surveys.

On the contrary, the contrasting inversion calls for intensive contacts between
the geophysicist and the computer. The point is that results of the inversion may
depend on the partition of the blocky model and in the course of inversion we have
to follow the misfit minimization and improve the shape and position of the blocks
associated with target structures. Besides, we have to take into account the properties
of the different response functions and on this basis to divide the interpretation into a
succession of interrelated partial inversions focused upon different target structures.
Moreover, we can accomplish some tentative inversions intended for the hypothe-
ses testing and correct the interpretation model. The contrasting inversion helps to
obtain rather complete and meaningful description of the intricately built medium,
but it is time-consuming. Its application is usually limited by regional studies and
deep academic investigations.

In closing, let us mention two recent developments that may extend the capabili-
ties of the smoothing and contrasting inversions: (1) Zhdanov suggested a focusing
stabilizers that exposes the sharp conductivity variations against a smoothed back-
ground (Zhdanov, 2002), (2) Varentsov constructed a scanning windows that super-
imposes smoothed conductivity variations upon a piecewise homogeneous blocky
background (Varentsov, 2002).
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12.2 The Hypotheses Test Mode

We consistently stress that the interpretation efficiency considerably depends on the
amount of a priori geological and geophysical information. However the require-
ments imposed upon a priori information can be reduced when the inverse problem
is considered as a problem of hypotheses testing.

Let us entertain a hypothesis that the upper mantle contains a conductive zone
(asthenosphere) originated from partial melting. The blocky interpretation model
for this inverse problem should include some conductive blocks corresponding to
the supposed asthenosphere. To execute the inversion, we introduce a stabilizer
determining the deviation of the solution from the tested hypothesis. By minimizing
Tikhonov’s functional and computing the model misfit, we can answer the question
whether the tested hypothesis is consistent with the observation data. Moreover,
when changing the conductivity and the position of the “asthenosphere” blocks and
controlling these changes by the model misfit, we correct the tested hypothesis.

A similar approach can be applied to compare the alternative hypotheses. Let
one of hypotheses provide the misfit that does not exceed the uncertainty in the field
data and is far less than the misfits of the other hypotheses. Then this hypothesis
is taken as the most credible. But if different hypotheses are characterized by the
misfits of the same order, then we conclude that all these hypotheses are equivalent.
It means that we dramatically need an additional information to choose the most
credible one.

12.3 Quasi-One-Dimensional MT Inversion

This approach can be used in investigating quasi-homogeneous layered media (verti-
cal conductivity distribution is piecewise constant, while conductivity and thickness
of the layers change slowly in horizontal directions). The quasi-one-dimensional
inversion is efficient in regions with gentle sedimentary tectonics, say, on the vast
platform. Here the magnetovariational anomalies can be rather weak so that mag-
netovariational soundings are hardly applicable and we restrict ourselves to magne-
totelluric soundings.

The concept of the quasi-one-dimensional inversion is simple (Dmitriev, 1987;
Barashkov and Dmitriev, 1990; Oldenburg and Ellis, 1993). We look for a 3D con-
ductivity distribution such that the magnetotelluric response function (impedance or
apparent resistivity) at each observation site is close to the locally normal response
function and admits the one-dimensional inversion. The quasi-one-dimensional
inversion is controlled by the misfit of the 3D model obtained by synthesizing the
one-dimensional inversions.

12.3.1 Synthesizing the One-Dimensional Inversions

By way of example, consider a quasi-homogeneous layered medium and take
apparent-resistivity curves �̃brd(xm, ym, T ) measured at sites Om, m = 1, 2, . . . M .
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The inversion of all these curves is performed in the class of 1D layered models.
With regularized optimization, we get

��[�̃m(z)] = inf
�

��[�m(z)] m = 1, 2, ...M, (12.4)

where �̃m(z) = �̃(xm, ym, z) is an approximate solution of the 1D inverse problem,
� is a regularization parameter, and ��[�m(z)] is Tikhonov’s functional involving
the misfit functional I and stabilizing functional �:

��[�m(z)] = I[�m(z)] + ��[�m(z)] m = 1, 2, ...M. (12.5)

The misfit functional assumes the form

I[�m(z)] = ∥∥�̃brd(xm, ym, T ) − �1D
A [xm, ym, T, �m(z)]

∥∥2

R m = 1, 2, ...M,

(12.6)

where �1D
A [xm, ym, T, �m(z)] is an operator of the local one-dimensional direct prob-

lem that calculates the apparent resistivity �A for a period T and a given electrical
conductivity �m(z).

The stabilizing functional �[�m(z)] provides the proximity of the solution �̃m(z),
obtained at a site Om , to the solution �̃m−1(z), obtained at a neighboring site Om−1:

�[�m(z)] = ‖�m(z) − �̃m−1(z)‖2
L 2

m = 1, 2, ...M. (12.7)

In this way we ensure the slow horizontal changes in �(x, y, z) within the area
under consideration. The initial normal conductivity distribution �̃1(z) = �N(z) is
taken at the site O1 that belongs to the boundary C1 of the normalized area SN

(Fig. 10.1). It can also be taken at any site Om , where a priori information (for
instance, well-log data) provides the reliable determination of �̃m(z).

Having solved the 1D inverse problems for all sites Om , we find a set of one-
dimensional approximate solutions �̃m(z), m = 1, 2, . . . M . Next we synthesize
�̃m(z) = �̃(xm, ym, z) and accomplish their spline-approximation in x, y with a min-
imum norm of horizontal derivatives of conductivity. So we construct a smoothed
quasi-one-dimensional solution �̃(x, y, z) of the three-dimensional inverse problem.
An operator of such quasi-one-dimensional inversion is designated as �q1D:

�̃(x, y, z) = �q1D{�̃brd(xm, ym, T )} m = 1, 2, ...M. (12.8)

The misfit of the quasi-one-dimensional inversion is

I[�̃(x, y, z)] =
M∑

m=1

∥∥�3D
brd

[xm, ym, T, �̃(x, y, z)] − �̃brd (xm, ym, T )
∥∥2

R
, (12.9)
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where �3D
brd[xm, ym, T, �̃(x, y, z)] is an operator of the three-dimensional direct prob-

lem that calculates the apparent resistivity �brd for a period T and a given electric
conductivity �̃(x, y, z).

12.3.2 Using the S–Method

The foregoing technique of one-dimensional successive inversions is convenient if
the number of geoelectric layers does not change within the area under consider-
ation. But in the case that the sedimentary strata contain pinching-out layers, we
have to solve the 1D problems with the maximum number of layers. Evidently this
impairs the solution stability, because false thin layers may appear. In that event
we can take advantage of the S−method which allows the Earth stratification to be
made at the last stage of the inversion (Dmitriev, 1987).

The S−method consists in solving an unstable nonlinear 1D inverse problem in
two steps.

The first step reduces to determining conductance distributions

Sm(z) = S(xm, ym, z) =
z∫

0

�m(z)dz m = 1, 2, ...M (12.10)

from �̃brd(xm, ym, T ). This is a stable nonlinear problem (recall the Dmitriev theo-
rem of stability of the S – distribution). The second step is that of determining �m(z)
from Sm(z). This is an unstable linear problem. Thus, instead of solving a single
complicated problem, we successively solve two simpler problems.

The conductance distributions, Sm(z), are evaluated by minimizing the Tikhonov
functional

��[Sm(z)] = I[Sm(z)] + ��[Sm(z)], Sm(z) =
z∫

0

�m(z)dz m = 1, 2, ...M,

(12.11)
where the misfit functional is

I[Sm(z)] = ∥∥�̃brd(xm, ym, T ) − �1D
A [xm, ym, T, �m(z)]

∥∥2

R m = 1, 2, ...M

and the stabilizing functional is

�[Sm(z)] = ∥∥Sm(z) − S̃m−1(z)
∥∥2

L 2
m = 1, 2, ...M.

Here �m(z) is a piecewise-constant function digitized on a large number of steps.
When integrating unstable �m(z), we get stable S̃m(z). This stage in the 1D
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solution is called the S-transformation. The obtained S̃m(z), m = 1, 2, . . . M can
be smoothed in x,y by a spline with a minimum norm of horizontal derivatives of
the conductance.

At the second step we determine �m(z) from S̃m(z), m = 1, 2, . . . M . A mini-
mization problem for �m(z) is

inf{��(�m(z)} = inf{I[�m(z)] + ��[�m(z)]} m = 1, 2, ...M, (12.12)

where

I[�m(z)] =
∥∥∥∥S̃m(z) −

z∫
0

�m(z)dz

∥∥∥∥
2

L 2

�[�m(z)] = ‖p(z)[�m(z) − �0(z)]‖2
L 2

.

Here � is the regularization parameter, �0(z) is the hypothetical model constructed
on the basis of a priori information, p(z) is a weighting factor that decreases mono-
tonically with depth.

The Euler equation for (12.11) can be reduced to the Volterra integral equation
of the second kind:

�p(z)[�m(z) − �0(z)] +
z∫

0

(z − �)�m(�)d� =
z∫

0

S̃m(�) d� z ∈ [0, zmax].

(12.13)
On simple rearrangement, we write

�p(z)��m(z) +
z∫

0

(z − �)��m(�)d� = fm(z) z ∈ [0, zmax], (12.14)

where

��m(z) = �m(z) − �0(z)

fm(z) =
z∫

0

S̃m(�) d� −
z∫

0

(z − �)�0(�)d� =
z∫

0

[S̃m(�) − S0(�)] d�

S0(z) =
z∫

0

�0(�)d� .

Solving this equation for a given �, we find ��m(z)|� and calculate �m(z)|� =
�0(z) + ��m(z)|�. So, we find a set of approximate one-dimensional solutions
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�̃m(z) = �̃m(z)|�opt
m = 1, 2, . . . M , obtained for the optimal regularization param-

eter � = �opt .
Synthesizing �̃m(z) and accomplishing their spline-approximation in x,y, we

construct a smoothed quasi-one-dimensional solution �̃(x, y, z) of the three-
dimensional inverse problem with misfit calculated by (12.9).

The simple alternative to the minimization problem (12.11) is to determine con-
ductivity profiles �̃m(z) by numerical differentiation of smoothed conductance dis-
tributions S̃m(z):

�̃m(z) = d S̃m(z)

d z
m = 1, 2, ...M, (12.15)

where S̃m(z) is spline-approximated in z. Moreover, we can use a simple graph-
ics and approximate S̃m(z) by a broken line corresponding to a piesewise-constant
�̃m(z). However, while we gain in simplicity, we lose in detailedness.

An example of S-transformation taken from a survey in the Tungus syneclise
is shown in Fig. 12.1. The initial �̃A− curve was inverted on different large grids
with different started models (from 60 to 100 layers). Though values obtained for
�̃(z) are rather whimsical and can dramatically diverge, the corresponding apparent-
resistivity curves are close to the �̃A− curve (Fig. 12.1a) and the S-profiles calcu-
lated from �̃(z)− distributions faithfully copy each other (Fig. 12.1b). The mean
S-profile presented in Fig. 12.1c consists of 6 quasi-linear segments approxi-
mated by a broken line which presents the piecewise-constant �̃(z)-distribution.
The “breaks” are so sharp that the approximation can be done even manually. The
thickness of a layer is determined from the abscissas of the breaks, while the ratio
of thickness to conductance difference gives the layer resistivity. Finally we get a
six-layer resistivity profile in which a conductive asthenosphere can be recognized
at a depth of about 70 km (Fig. 12.1d). Such a simple visualization permits us not
only to solve the inverse problem, but also to evaluate visually the accuracy of
the solution in a given model class. For example, in Fig. 12.1c, it can clearly be
seen that the depth to the asthenosphere has been determined with an uncertainty of
about ±5 km.

The advantages of the S-method in comparison with other methods of solving the
one-dimensional inverse magnetotelluric problem seem to be indisputable. First, we
obtain the integral characteristics of the entire set of equivalent solutions. Second,
the way in which a priori information is introduced is simplified. Third, the poten-
tialities of the qualitative interpretation are expanded. Really, the linear parts of the
S-distribution correspond to homogeneous layers and the breaks, that is, the rapid
changes in the slope of the S-profile mark the boundaries between these layers. On
the other hand, if the S-distribution has a significant curvature, this is the evidence
for the presence of gradient layer. Thus, even at the first stage we obtain an indica-
tive geoelectric pattern. We can separate homogeneous layers from gradient layers,
evaluate their mean electric conductivity and assign the plausible position of their
boundaries.
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Fig. 12.1 Interpretation of a �A−curve using the S-method. (a) Approximation of a �A− curve
(solid line) with curves computed from various equivalent solutions (dashed line); 1 – initial
approximation is a homogeneous medium, 100 layers; 2 – initial approximation is a homogeneous
medium, 60 layers; 3 – initial approximation is an alternating sequence of conductive and resistive
layers, 100 layers; 4 – initial approximation is an alternating sequence of conductive and resistive
layers, 60 layers. (b) The S-distributions. (c) Approximation of the average S-distribution by a bro-
ken line and determination of resistivity of the fourth layer, �4 = h 4/S4. (d) Six-layer geoelectric
strata determined from the average S-profile

12.3.3 Correcting Quasi-One-Dimensional Inversion

If the misfit (12.9) is too large, the quasi-one-dimensional solution �̃(x, y, z) can be
improved by using a convergent iterative procedure.

At the first iteration, we follow (Barashkov and Dmitriev, 1990; Oldenburg and
Ellis, 1993) and write
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�̃(1)(x, y, z)
= �q1D{�̃brd(xm, ym, T ) − �3D

brd[xm, ym, T, �̃(x, y, z)] + �1D
A [xm, ym, T, �̃m(z)]}

m = 1, 2, ...M,

(12.16)

where �q1D, �3D
brd, and �1D

A are operators of the quasi-one-dimensional inversion,
three-dimensional inversion, and local one-dimensional inversion respectively.

At the second iteration

�̃(2)(x, y, z)
= �q1D{�̃brd(xm, ym, T ) − �3D

brd[xm, ym, T, �̃(1)(x, y, z)] + �1D
A [xm, ym, T, �̃(1)

m (z)]}
m = 1, 2, ...M.

(12.17)

At the kth iteration

�̃(k)(x, y, z)
= �q1D{�̃brd(xm, ym, T ) − �3D

brd[xm, ym, T, �̃(k−1)(x, y, z)] + �1D
A [xm, ym, T, �̃(k−1)

m (z)]}
m = 1, 2, ...M.

(12.18)

Its misfit is

I[�̃(k)(x, y, z)] =
M∑

m=1

∥∥�3D
brd

[xm, ym, T, �̃(k)(x, y, z)] − �̃brd (xm, ym, T )
∥∥2

R
. (12.19)

Each iteration brings �3D
brd closer to �̃brd. Hence, �̃(x, y, z) approaches �q1D{�1D

A }.
It means that we near a solution where apparent resistivities at each observation site
coincide with their locally normal values.

The quasi-one-dimensional inversion can be considered as an analog of the
smoothing inversion. Both the methods define models with a smooth conductivity
distribution. The difference is that in the smoothing inversion stabilizer (12.1) is
minimized over the entire inhomogeneity domain (integral smoothing), while in the
quasi-one-dimensional inversion we use stabilizer (12.7) and minimize the differ-
ence between conductivities at neighboring sites (local smoothing).

Convergence of this iterative procedure for sufficiently slow horizontal change
in �(x, y, z) has been proved by Barashkov (1983). In actual practice, we usually
observe rather fast convergence of iterative procedure (3–5 iterations).

From the practical standpoint, the quasi-one-dimensional inversion is very con-
venient, since the multi-dimensional direct problem is solved only several times.
Figure 12.2 presents examples of quasi-one-dimensional inversion of the transverse
apparent-resistivity �⊥− curves calculated for a model with a two-dimensional
graben and horst. Here the second and the third iterations approximate fairly well
the topograhy of a resistive basement.
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Fig. 12.2 Quasi-one-dimensional interpretation of the transverse �⊥-curves over a graben (a) and
a horst (b); 1,2,3,4-numbers of iteration
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12.4 Two-Dimensional Bimodal MV-MT Inversion

This approach is widely used in investigating locally inhomogeneous layered
media that have well-defined extended strike and allow for two-dimensional
approximation.

The condition of quasi-two-dimensionality of the structures under study can be
established by means of magnetovariational and magnetotelluric tests (Sect. 11.3.1,
11.3.2) and with a priori 3D modelling. A convincing a posteriori evidence of
quasi-two-dimensionality is that the two-dimensional inversions of different mag-
netovariational and magnetotelluric response functions (tippers, magnetic tensors,
impedance tensors) agree with each other.

The two-dimensional magnetotelluric field consists of the TM- and TE-modes.
The TM-mode is related to the H-polarized wave generating the transverse
MT-curves (telluric current flows across the structures, its magnetic field is directed
along the structures and does not depend on the Earth’s conductivity). The TE-mode
is related to the E-polarized wave generating the longitudinal MT-curves together
with the tippers and horizontal magnetic tensor (telluric current flows along the
structures, its magnetic field is directed across the structures). The main difference
between these modes is that the TM-mode charges the structures, and its anoma-
lies are of galvanic nature, but the TE-mode does not charge the structures, and its
anomalies are of inductive nature.

The TM- and TE-modes offer different sensitivity to near-surface and deep con-
ductivity and provide different accuracy of 2D-approximation of real 3D structures.
These properties of the TM- and TE-modes dictate the philosophy and practical
strategy of the two-dimensional interpretation of MT-data collected in the regions
with elongated structures.

The problems of two-dimensional interpretation of magnetotelluric and mag-
netotevariational soundings have been discussed in many papers and monographs
(Svetov, 1973; Kaufman, 1974; Berdichevsky and Dmitriev, 1976, 2002; Jupp and
Vozoff, 1977; Kaufman and Keller 1981; Veselovsky and Yudin, 1988; Park et al.,
1983, 1991; Wannamaker et al., 1984; Berdichevsky and Zhdanov, 1984; Park,
1985; Mackie et al., 1988; Wannamaker et al., 1989a, 1991; Berdichevsky et al.
1992b, 1995, 1998, 2003; Weaver, 1994; Zhdanov and Keller, 1994; Gupta and
Jones, 1995; Banks et al., 1996; Zhdanov, 2002; Mehanee and Zhdanov, 2002;
Ledo et al., 2002; Ledo, 2006). The discussion exhibits a wide range of vari-
ous and sometimes conflicting viewpoints, from “the TM-impedance functions are
emphasized because theory and experiment show that they are more robust to three-
dimensional effects. . .” (Wannamaker et al., 1989) and “Two-dimensional modeling
should emphasize the TM-mode impedance. . . because it is more immune to finite
strike effects.” (Wannamaker, 1999) to “. . .inverting both the TE- and TM-modes
results in models that fit the TM locally without resolving large-scale structure
evinced only by the TE-mode.” (Banks et al., 1996) and “. . . the most comprehen-
sive and reliable information on the Earth’s conductivity can be derived by means of
bimodal inversion, that is using both the TM- and TE-modes.” (Berdichevsky et al.,
1998).
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In our book we will present some approaches to the two-dimensional MT and
MV interpretation that are characteristic of the Russian magnetotelluric school.

Discussing the strategy of two-dimensional interpretation of MT- and MV-data,
we have to address Part II of our book and answer three questions. In decreasing
order of importance, these questions are: (1) what field mode is more sensitive to the
near-surface and deep structures which are the targets of magnetotellurics? (2) what
field mode is more robust to the 3D-effects caused by real geological bodies? (3)
what field mode is more susceptible to the static distortions caused by near-surface
inhomogeneities?

12.4.1 Sensitivity of the TM- and TE-Modes
to the Target Structures

This point is crucial in determining the magnetotelluric informativeness. We know
that the TM-mode may be more sensitive to near-surface structures and fluid-
saturated faults as well as the lithosphere resistance (porosity, fissuring), whereas the
TE-mode may be more sensitive to deep conductive (fluidized, graphitized, partially
melted) zones.

Consider the basic lithosphere model consisting of the upper conductive layer
(the sediments), the intermediate resistive layers (the consolidated crust and upper
mantle), and the conductive basement (the asthenosphere).

We will start with examining the sensitivity of TM- and TE-modes to near-
surface structures. In Fig. 12.3, the sediments with thickness of 1 km contain a
two-dimensional horst-like resistive elevation with amplitude of 0.7 km and width
of 1 km. The horst is clearly marked by the transverse apparent resistivities �⊥ for
periods 0.1–10000 s covering the S1− and h− intervals and by the transfer phases
⊥ for periods 0.1–1 s relating to the very beginning of the S1− interval. But it is
dramatically smoothed in corresponding graphs of the longitudinal apparent resis-
tivity �‖ and the phase ‖, while the real and imaginary tippers, Re W and Im W,
are close to the detection threshold. The narrow horst is readily detected using the
TM-mode, but it may be missed when using the TE-mode.

Next we examine the sensitivity of TM- and TE-modes to deep structures. Con-
sider a model that contains a two-dimensional prominent asthenosphere elevation
with amplitude of 75 km and width of 150 km.

Figure 12.4 displaces a case typical for stable regions. Here the lithosphere resis-
tance is about 3·109 Ohm·m2. The asthenosphere elevation is indiscernible in the
transverse apparent resistivities �⊥ and phases ⊥ for periods 100–10000 s (the
h− interval), but it reveals itself markedly in the corresponding graphs of the longi-
tudinal apparent resistivities �‖ and phases ‖ and generates the real and imaginary
tippers, Re W and Im W, that considerably exceed the detection threshold. Clearly
the asthenosphere elevation can be indicated with confidence using the TE-mode,
but it may be missed when using the TM-mode (the screening effect).

Figure 12.5 displays a case typical for active regions. Here the lithosphere
resistance is reduced to 2.5·108 Ohm·m2. This visibly affects the TM-mode: the



466 12 Inversion Strategy

Fig. 12.3 Illustrating the sensitivity of the TM- and TE-modes to near-surface structures. The
normal �N-curve is shown on the lower left. At the top: apparent-resistivity, impedance-phase and
tipper profiles; profile parameter: period T
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Fig. 12.4 Illustrating the sensitivity of the TM- and TE-modes to deep structures (a case typical
of stable regions). The normal �N-curve is shown on the lower left. At the top: apparent-resistivity,
impedance-phase and tipper profiles; profile parameter: period T
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Fig. 12.5 Illustrating the sensitivity of the TM- and TE-modes to deep structures (a case typical
of active regions). The normal �N-curve is shown on the lower left. At the top: apparent-resistivity,
impedance-phase and tipper profiles; profile parameter: period T
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screening effect abates and the discernible �⊥- and ⊥-anomalies caused by the
asthenosphere elevation come into play. At the same time the �‖−, ‖− and
W− anomalies are hardly changed. The TM-mode is more sensitive to the litho-
sphere resistance than the TE-mode.

Another remarkable property of the TM-mode is that it may indicate the pres-
ence of conductive subvertical channels (fluid-saturated faults) crossing the resistive
litosphere. Let us revert to the model with the asthenosphere elevation shown in
Fig. 12.4 and introduce into it two two-dimensional vertical conductive channels
which intersect the lithosphere and connect the asthenosphere elevation with the
sediments. This model is shown in Fig. 12.6. Comparing Fig. 12.6 with Fig. 12.4,
we see, that the current channeling slightly affects the TE-mode, but it abates the
screening effect in the TM-mode so that the discernible �⊥ - and ⊥-anomalies
occur reflecting the asthenosphere elevation.

12.4.2 Robustness of the TM- and TE-Modes to the 3D-Effects

The two-dimensional model is a convenient mathematical abstraction that separates
the magnetotelluric field into two modes of different physical nature: the TM-mode
associated with galvanic anomalies and the TE-mode associated with induction
anomalies. The question naturally arises: which of these modes is more robust to
the 3D effects caused by real geological bodies.?

Summing up the analysis carried out in Part II of our book and taking into
account the estimates suggested in (Svetov, 1973; Kaufman, 1974; Berdichevsky
and Dmitriev, 1976; Veselovsky and Yudin, 1988; Berdichevsky et al., 1995), we can
say that the TM-mode is more robust to 3D effects caused by conductive bodies (that
is, by current gathering), while the TE-mode is more robust to 3D effects caused by
resistive bodies (that is, by current around-flow).

Let us exemplify this statement by two characteristic models that have given a
keen insight into the problem being a subject of rather long discussion.

Figure 12.7 presents a famous model of conductive sedimentary basin suggested
by Wannamaker et al. (1984). The model has a layered background and Fig. 12.7
contains an elongated rectangular prism of resistivity � = 2 Ohm · m located in the
first layer of resistivity 400 Ohm·m. The prism’s length and width are l = 35km and
w = 15km, its elongation (aspect ratio) is e = l/w = 2.3. The apparent-resistivity
curves have been computed for the central site O. In the left side of Fig. 12.8, we
show the three-dimensional longitudinal and transverse apparent-resistivty curves
of �

‖
3D and �⊥

3D oriented along and across the strike of the prism (in x and y direc-
tions). For comparison, the two-dimensional longitudinal and transverse apparent-
resistivty curves of �

‖
2D and �⊥

2D are shown too. They correspond to the TM- and
TE-modes generated in a 2D-model containing the prism with l → ∞. The locally
normal one-dimensional curve �n is displayed as well. In the period range from
0.01 to 1 s, the three-dimensional curves of �

‖
3D and �⊥

3D virtually coincide with
the normal �n− curve. These high-frequency branches of the �A− curves admit the
1D-inversion determining a depth to the conductive prism. With lowering frequency,
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Fig. 12.6 Illustrating the sensitivity of the TM- and TE-modes to deep structures in the presence of
conductive faults. The normal �N-curve is shown on the lower left. At the top: apparent-resistivity,
impedance-phase and tipper profiles; profile parameter: period T
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Fig. 12.7 Model with an
elongated prismatic
inclusion, O – sounding site
(Wannamaker et al., 1984)

the difference between the three-dimensional �A− curves and the normal �n− curve
drastically increases up to several orders. These distortions originate from the cur-
rent gathering effect. But note that the transverse �⊥

3D-curve is close to the two-
dimensional �⊥

2D-curve and its 2D-inversion is quite acceptable. At the same time
the longitudinal �

‖
3D-curve departs dramatically from the two-dimensional �

‖
2D-curve,

and its 2D-inversion will introduce a spurious conductor in place of the resistive
crust.

It is quite evident that in the model with conductive prism the TM-impedance is
more robust to 3D-effects than the TE-impedance. But can we expand this remark-
able property of the TM-mode to the general case?

Let us replace the prism of 2 Ohm·m resistivity by a prism of the same geometry
but of 40000 Ohm·m resistivity. Now we simulate a resistive mountain root rather
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Fig. 12.8 Apparent resistivity curves in model shown in Fig. 12.7; � -prism resistivity. Solid lines:
locally normal 1D-curves. Dashed lines – long dash: longitudinal and transverse 2D-curves, short
dash: longitudinal and transverse 3D-curves

than a conductive basin, and observe currents flowing around instead of currents
gathering. The �A− curves are displayed in the right side of Fig. 12.8. We see that
the relationship between the three-dimensional and two-dimensional curves changes
radically. In fact, in the model with resistive prism, both of the three-dimensional
curves are close to their two-dimensional counterparts. What’s more, the longitudi-
nal curve of �

‖
3D is close not only to the curve of �

‖
2D but even to the locally normal

curve of �n. The longitudinal 3D-response corresponding to the TE-mode is almost
undistorted! It admits not only 2D-inversion, but even 1D-inversion.

In a model with the resistive prism the around-flow effect consists of three ele-
ments: over-flow (currents flow over the prism), under-flow (currents flow under
the prism) and side-flow (currents flow along the sides of the prism). Here the over-
and under-flow effects prevail, and this is why the curve of �⊥

3D is close to the curve
of �⊥

2D. It would be instructive to consider a model with prevalent side-flow effect.
Figure 12.9 presents a model, in which the sediments include a three-dimensional
horst-like elevation approaching the Earth’s surface. The length and width of the
horst are l = 12 km and w = 2 km, the clearance between the roof of the horst and
the Earth’s surface being 10 m. The horst elongation is e = l/w = 6. One can expect
that in this model the side-flow effect will dominate, and the agreement between
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Fig. 12.9 Model with a
three-dimensional horst-like
resistive elevation in the
sediments; A,B,C -sounding
sites and their distance to
elevation edge

�⊥
3D- and �⊥

2D-curves will be violated. Figure 12.10 shows the three-dimensional
transverse and longitudinal curves of �⊥

3D and �
‖
3D obtained along the central profile

at different distances from the horst edge (5, 3 and 1 km, sites A,B and C respec-
tively). Also shown are the two-dimensional curves of �⊥

2D and �
‖
2D corresponding to

the model with the infinitely long horst, and the locally normal curves of �n corre-
sponding to the model without a horst. It is notable that at all sites the longitudinal
curves of �

‖
3D practically coincide with the �

‖
2D- and �n-curves. Clearly, they allow for

two-dimensional and even one-dimensional inversion. At the same time the trans-
verse �⊥

3D-curves drop below the �⊥
2D-curves, and this fall drastically increases in

the immediate vicinity of the horst. At site C (1 km from the horst) the �⊥
2D-curve

tips over, and the degree of its distortion is almost the same as in the case of lon-
gitudinal �

‖
3D-curve in the model with a conductive prism. Going to the impedance

phases, we note that fall of the �⊥
3D-curves is accompanied by severe deformation of

⊥
3D-curves. These properties of the around-flow effect indicate its galvanic-

inductive nature (intensity of current around-flow is governed by horizontal skin-
effect in the conductive medium surrounding a resistive body). Needless to say that
the formal two-dimensional inversion of the transverse curves of �⊥

3D and ⊥
3D will

introduce a spurious conductor.
The around-flow effect is observed quite often in foothills. Figure 12.11 presents

the longitudinal (�‖) and transverse (�⊥) apparent-resistivity curves measured along
a profile crossing the Precaucasian foredeep (Berdichevsky and Dmitriev, 1976).
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Fig. 12.11 Top: longitudinal
(�‖) and transverse (�⊥)
apparent-resistivity curves
along a profile crossing the
Precaucasian foredeep.
Bottom: geophysical
cross-section; C –the
Caucasian ridge, PCF- the
Precaucasian foredeep;
surface of the Paleozoic
basement from �‖-curves (1),
from seismics (2), from
drilling (3)

The longitudinal �‖-curves are bowl-type throughout the entire profile, 150 km
long. Their 1D-interpretation yields the Paleozoic basement topography that is
in close agreement with seismics and drillings. At the same time the transverse
�⊥-curves change their shape, from the bowl-type at the distance of 120–150 km
from mountains to a falling type in the vicinity of mountains. Small wonder that 1D-
and even 2D-interpretation of the transverse �⊥-curves would give incongruous (say,
crazy) results that have nothing in common with seismic data and general geological
ideas of the region’s structure. Suffice it to say that with TM-inversion, the resistivity
of sediments falls to 0.1 Ohm·m, while the solid high-ohmic lithosphere wedges out
and the conductive “asthenosphere” appears at the depth of about 8–10 km. It seems
that this remarkable situation is the same as in model with a three-dimensional
horst shown in Figs.12.9 and 12.10. The resemblance in behavior of experimental
and model MT-curves is striking. It is evident that within the Precaucasian fore-
deep, we meet an intensive 3D-effect connected with currents flowing around the
high-ohmic Caucasian Ridge. The flow-around effect dramatically distorts the trans-
verse �⊥-curves (the TM-mode) and scarcely affects the longitudinal �‖-curves (the
TE-mode). So, one cannot agree with the statements like “2D-interpretation of the
TM-mode is more accurate than the TE-mode in the presence of 3D-bodies” (Park,
1996) or “2D-modelling should concentrate on the impedance in the TM-mode
because of its low sensitivity to the effect of finite strike” (Wannamaker, 1999).
In fact, the TM-impedance is more robust to 3D-effects caused by conductive struc-
tures (that is, by current gathering), but the TE-impedance may be more robust (even
considerably more robust!) to 3D-effects caused by resistive structures (that is, by
current around-flow).
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Can we predict (at least roughly) the effect of finite strike of elongated structures?
It wouldn’t be dramatically wrong if we assume that the conductive structure (say,
graben) in the TM-field and the resistive structure (say, horst or ridge) in the TE-field
allow for the two-dimensional approximation provided their elongation exceeds
5–10. But conditions of the two-dimensional approximation of elongated structures
dramatically change when we consider the conductive structures in the TE-field and
the resistive structures in the TM-field. The question is about elongations that range
up to 15–25 (and even more) depending on geoelectric situation. Such elongated
structures, if they exist, are a rarity in nature. We believe that any two-dimensional
inversion may need a posteriori estimation if not correction of model errors caused
by 2D approximation.

12.4.3 Susceptibility of the TM- and TE-Modes to Near-surface
Galvanic Distortions

In the abstract two-dimensional model, only the TM-mode suffers from the near-
surface galvanic distortions which manifest themselves in static shift of apparent-
resistivity curves. But in actual practice, we may deal with superposition of
large-scale elongated structures and small-scale three-dimensional near-surface
inhomogeneities of more or less complicated form. In that events, both the field
modes, TM and TE, are distorted and hence not only the transverse but also the lon-
gitudinal apparent-resistivity curves suffer from static shift. Fortunately, the experi-
ence suggests that in many cases (even in mountains) the longitudinal �‖− curves
are less disturbed than the transverse �⊥− curves (Kovtun, 1989; Moroz, 1991;
Dyakonova et al., 1986; Alperovich et al., 1980; Berdichevsky and Dmitriev, 2002).
This is typical for regions with a predominance of elongated inhomogeneities with
a common strike in the absence of pronounced local 3D-inhomogeneities.

Let us show three indicative examples.
In Fig. 12.12 we see the longitudinal and transverse apparent-resistivity curves,

�‖ and �⊥, obtained in the vicinity of the Urals (Dyakonova et al., 1986). Here
the longitudinal �‖-curves experience far lesser static shift than the transverse
�⊥-curves. The descending mantle branches of the longitudinal curves are close
to each other. They gravitate to the standard curve of �st. At the same time, the
corresponding transverse curves cross the �st-curve and their mantle branches are
shifted upward by decade and a half.

The longitudinal and transverse apparent-resistivity curves, �‖ and �⊥, obtained
on the Kola Peninsula (Djakonova et al., 1986) are presented in Fig. 12.13. Here
almost the same pattern is observed. The longitudinal curves seem to be slightly
distorted. Their left descending branches merge together, reflecting a conductive
layer in the lower part of the Earth’s crust. The mantle branches of these curves
are arranged about the standard curve of �st, though with a slightly different slope.
Compare the longitudinal curves with transverse ones. The transverse curves cross
the �st –curve. They are drastically shifted upward (up to decade).
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Fig. 12.12 Longitudinal and transverse apparent-resistivity curves characteristic of the Urals, �st –
the standard apparent-resistivity curve

Fig. 12.13 Longitudinal and transverse apparent-resistivity curves characteristic of the Kola Penin-
sula, �st – the standard apparent-resistivity curve
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Fig. 12.14 Longitudinal and
transverse apparent-resistivity
curves characteristic of the
Kamchatka Peninsula

T, s1/2T, s1/2

No less indicative are the apparent-resistivity curves obtained on the Kamchatka
peninsula (Fig. 12.14). At many sites, the descending branches of the longitudinal
�‖-curves lie between the h-lines 40 and 60 km detecting the elevation of the par-
tially melted asthenosphere in the region of contemporary volcanism. At the same
time, the transverse �⊥-curves exhibit the vertical scattering that ranges up to two
decades and is hard of interpretation.

The last example is drawn from the magnetotelluric soundings carried out in the
mountains of the Kirghiz Tien Shan (Trapeznikov et al., 1997). The longitudinal and
transverse apparent-resistivity curves, �‖ and �⊥, are presented in Fig. 12.15. The

Fig. 12.15 Longitudinal and transverse apparent-resistivity curves characteristic of the Kirghiz
Tien Shan, �st – the standard apparent-resistivity curve
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longitudinal curves exhibit distinctive minima and clearly outlined descending man-
tle branches, which are close to the standard �st-curve (small static shift !). It seems
that these curves are weakly distorted and may be used for rough 1D-estimates. One
can presume that minima of the �‖-curves are caused by a crustal conductive layer.
It lies at a depth of about 20–30 km, and its conductance increases from 200–300
S in the north (MTS-1) to 1000–1500 S in the south (MTS-4). These estimates are
in accordance with a model constructed from the tipper inversion (Fig. 5). Quite
different pattern is given by the transverse curves. The crustal conductor is clearly
evidenced only by the �⊥− curve from MTS-4, carried out near a deep fault. But
with distance from the fault the crustal conductor is screened and the apparen-
resistivity minimum degenerates into gentle bendings (MTS-1, MTS-2). What is
more, the mantle branches of the �⊥− curves are significantly displaced upward
and downward from the standard �st-curve (large static shift).

Beyond question, in the above examples the longitudinal �‖− curves are less
susceptible to near-surface galvanic distortions than the transverse �⊥− curves.

12.4.4 Informational Complementarity of the TM- and TE-Modes

We have examined the main properties of the TM- and TE-modes in the presence
of elongated target structures. The results of this consideration are summarized in
Table 12.1, which shows the susceptibility of the TM- and TE-modes to near-surface
static distortions and their accuracy in the 2D-approximation of elongated structures
as well as their sensitivity to near-surface and deep structures, the lithosphere resis-
tance and conductive faults.

The TM-mode (�⊥, ⊥) provides the better accuracy in the 2D-approximation of
conductive structures and the better sensitivity to near-surface structures as well as to
the lithosphere resistance and deep faults, but it suffers from the screening effect and
may miss the deep structures (for instance, conductive zones in the high-resistive
lithosphere).

The TE-mode (Re W, Im W, �‖, ‖) ensures the better accuracy in the
2D-approximation of resistive structures and the better sensitivity to deep structures,
but it is open to large errors in the 2D-approximation of conductive structures. Also,
if the transverse apparent-resistivity curves in the TM-mode suffer dramatically
from the static shift, the TE-mode may change the situation for the better (the tipper
and longitudinal impedance-phase curves do not experience static distortions, while
the longitudinal apparent-resistivity curves under favorable conditions are slightly
distorted).

The TM- and TE-modes nicely complement each other: gaps left by one mode
are filled by another mode. In this sense we say that the TM- and TE-modes satisfy
the principle of informational complementarity.

The complementarity principle forms a sound basis for the 2D-interpretation
strategy.

The sensitivity to the target structures is of critical importance. Consider, for
instance, a magnetotelluric survey designed to studying conductive zones in deep
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layers of the resistiive lithosphere. Due to severe galvanic screening, the sensitiv-
ity of the TM-mode is too poor for this task. So, the TE-mode with its higher
sensitivity to buried conductors is the only contributor of useful information. The
situation is paradoxical. We have to abandon the TM-mode with its high accuracy
of 2D-approximation, and instead to harness the less-accurate TE-mode. But there
is no way to the necessary information except by using the TE-mode with all trou-
bles arising from the 2D-approximation errors and the 3D-static effects that cannot
be reproduced by two-dimensional modeling. It is better to get rough (maybe even
qualitative) information than no information. Thus, we have to use the TE-mode and
try to control the errors of its two-dimensional inversion by means of a posteriori
3D-estimates.

In closing, we state that in the general case the most comprehensive and reli-
able information on the Earth’s conductivity can be derived by means of bimodal
inversion, using the TE- and TM-modes (tippers, magnetic tensors, longitudinal and
transverse MT-curves).

12.5 Two Approaches to Multicriterion Inverse Problem

Solution to an inverse problem, constrained by the interpretation model, is chosen
using criteria of the minimal misfits. These criteria ensure the agreement between
the solution and the observation data. The number of criteria is determined by the
number of the response functions in use (real and imaginary or amplitude and face
functions). If the inversion envolves a few response functions, the problem is multi-
criterion.

The two-dimensional integrated interpretation of magnetovariational and mag-
netotelluric data belongs to the class of multicriterion problems. The electric con-
ductivity of the Earth can be usually inferred from the TE-mode with the response
functions ReW and ImW, �‖ and ‖ (real and imaginary tippers, longitudinal appar-
ent resistivities and phases of longitudinal impedances) and the TM-mode with
the response functions �⊥and ⊥ (transverse apparent resistivities and phases of
transverse impedances). These functions differ in the sensitivity to target geoelectric
structures, in the robustness to 3D effects, in the susceptibility to near-surface static
distortions. The TE-mode is more sensitive to deep structures and less sensitive to
the resistance of the lithosphere, whereas the TM-mode is less sensitive to deep
structures and more sensitive to the resistance of the lithosphere. On the other hand,
the apparent resistivities may suffer from the near-surface static distortions, whereas
the low-frequency tippers and impedance phases are immune to these troubles. An
algorithm of the 2D bimodal inversion should be constructed so that the different
response functions support and complement each other. When inverting the differ-
ent response functions, one should give priority to the most reliable elements of the
solution and suppress the least reliable ones.

The following two approaches are possible in solving multicriterion inverse prob-
lems: (1) parallel inversion of all response functions taking part in the interpretation,
and (2) successive partial inversion of each of the response functions.
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The parallel inversion summarizes all inversion criteria related to various res-
ponse functions. In solving a 2D inverse problem, the parallel inversion of M
response functions reduces to the minimization of the Tikhonov’s functional ��

containing the total misfit. For instanse,

inf
p

�� {�(y, z)} = inf
p

{
M∑

m=1

gmIm {�(y, z)} + �� {�(y, z)}
}

, (12.20)

where

Im {�(y, z)} = ∥∥F̃m − Fm {y, z = 0, �, �(y, z) }∥∥2
R

� {�(y, z)} = ‖�(y, z) − �0(y, z)‖2
L2

.

Here p is the vector of the sought-for parameters, F̃m is the mth response function,
Fm is an operator of the forward problem that calculates the mth response function
for a given electric conductivity �(y, z), Im is the misfit of the mth response function,
gm is a weight representing the significance of the mth response function, �0(y, z)
is a hypothetical model.

At first glance, the parallel inversion seems to be the most attractive because it
incorporates simultaneously all response functions in use and considerably simpli-
fies the work of the geophysicist. One can even say that the parallel inversion opens
the way to the automatic inversion. Let us consider the situation more attentively.

If various response functions Fm have the same sensitivity to all parameters
p(p1, p2, . . .) of the geoelectric medium and the same immunity to near-surface
distortions, their parallel inversion is not very advantageous because one, the most
reliably determined (the least susceptible to geoelectric noise), response function is
sufficient for a comprehensive inversion.

The use of several response functions can extend the inversion potentials if these
functions differ significantly in their sensitivity to various parameters of the geo-
electric medium and in their immunity to near-surface distortions. However, in this
case their joint inversion may become conflicting. Really the different functions
can bother each other, because they impose different constraints on the geoelectric
medium and demand different criteria for mimimizing the model misfit. Moreover
such a joint inversion increases the risk of falling into a local minimum.

True enough, it is possible that in some cases a fortunate choice of weights allows
one to construct a self-consistent meaningful model with a sufficiently small overall
misfit. However, the adequate selection of such weights is itself a complex problem
that is hard to solve rationally.

Apparently, the SPI method (successive partial inversions) is the best approach
to the solution of a multicriterion inverse problem.

Let a response function Fm be the most sensitive to the vector of parameters
p(m). Then, the partial mth inversion in the multicriterion two-dimensonal problem
calls for the minimization of the following Tikhonov’s functional on the set of the
parameters p(m), with the parameters p − p(m) being fixed:
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inf
p(m)

�(m)
� {�(y, z)} = inf

p(m)
{ Im{�(y, z)} + ��m {�(y, z)}} , (12.21)

where

Im{�(y, z)} = ∥∥F̃m − Fm{y, z = 0, �, �(y, z)}∥∥2
R

�m {�(y, z)} = ∥∥�(y, z) − �(m−1)(y, z)
∥∥2

L2

and �(m−1)(y, z) is a model obtained by the (m − 1)th inversion.
Step-by-step examination of the different response functions Fm, m = 1,

2, . . . M reduces the solution of the multicriterion problem to a sequence of partial
inversions. Each partial inversion can be aimed to solving some specific problem
and focused on some specific structures.

Partial inversions comprehensively incorporate specific features of the response
functions, their informativeness, and their confidence intervals. They admit the
information exchange between various response functions, enable a convenient
interactive dialog, and are easily tested. And finally they decrease the number of
sought-for parameters and hence improve the stability of the inverse problem. We
believe that this direction of research is most promising for further development of
methods designed for the integrated interpretation of MVS and MTS data.

Magnetotelluric soundings carried out in various geological provinces showed
the proficiency of the SPI method (Trapeznikov et al., 1997; Berdichevsky et al.,
1998, 1999; Pous et al., 2001; Vanyan et al., 2002a, b). Below, we briefly describe
some model experiments elucidating the potentials of successive partial inversions
with MV priority.

Figure 12.16 displays a 2D model schematically illustrating geoelectric structure
of the Kirghiz Tien Shan (Trapeznikov et al., 1997). The model will be referred to
as the TS model. It includes (1) inhomogeneous sediments (resistivity varies from
10 to 100 Ohm·m), (2) an inhomogeneous resistive crust (resistivity varies from
104 in the south to 105 Ohm·m in the north), (3) a deep crustal layer with resistivity
increasing monotonically from 10 Ohm·m in the south to 300 Ohm·m in the north,
(4) conductive zones A, B, and C branching from the crustal conductive layer, (5)
a poorly conductive mantle underlaid by a conductive asthenosphere at a depth of
150 km.

The forward problem has been solved with the finite element method
(Wannamaker et al., 1987). Gaussian white noise has been introduced into the
response functions: it has standard deviations of 5% for apparent resistivities �‖, �⊥

and tippers Re Wzy, Im Wzy and 2.5◦ for phases ‖, ⊥. To imitate the static
shift caused by small 3D near-surface inhomogeneities, the apparent resistivities
were multiplied by random real numbers uniformly distributed in the interval from
0.5 to 2.

It is interesting to estimate a frequency range within which the tipper
becomes virtually free of near-surface effects. Figure 12.17 demonstrates frequency
responses of Re Wzy and Im Wzy calculated for TS model and for the same model
but with a homogeneous upper layer of a resistivity of 10 Ohm·m. Except for a few
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Fig. 12.16 The two-dimensional TS model; resistivity values in Ohm·m are shown within blocks;
blocks of lower crustal resistivities are shaded; A, B, and C are local conductive zones in the crust

sites (y = 45 km for Re Wzy and y = −45, 55, 100 km for Im Wzy), the Re Wzy and
Im Wzy curves obtained for models with inhomogeneous and homogeneous upper
layers merge together at periods of order 100 s and even less. These periods relate
to the low-frequency range, in which the near-surface MV anomalies attenuate and
effects of deep conductive zones come to the forefront.

The integrated interpretation of the synthetic data obtained in the TS model has
been performed by the method of partial inversions.

Constructing the interpretation model, we assumed that the following a priori
information was available: (1) the sedimentary cover is inhomogeneous, with an
average thickness of 1 km, (2) the consolidated crust is inhomogeneous and can
contain local conductive zones, its resistivity can experience regional variations, and
an inhomogeneous conductive layer can exist near or within the seismic waveguide
(35–50 km), (3) the upper mantle consists of homogeneous layers, and its resistivity
at depths below 200 km can amount to 20 Ohm·m, (4) the profile under observation
is bordered on north and south by vast asymmetric media which slowly vary with
distance.

To detail these assumptions, we performed a trial inversion of the tippers using
a smoothing program capable of revealing crustal conductive zones. We applied the
REBOCC program (Siripunvaraporn and Egbert, 2000) and take a homogeneous
half-space with a resistivity of 100 Ohm·m as an initial approximation. Figure 12.18
presents this trial model TS-1, resulting from the inversion of Re Wzy and Im Wsy . It
shows clear evidences of three local crustal conductors A, B, and C (� < 30 Ohm·m)
but fails to stratify the crust and upper mantle.

The a priori information complemented with data on local crustal conductors
provides the construction of a blocky interpretation model. On this way, we tested
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Fig. 12.18 Model TS-1; inversion of tippers Re Wzy and Im Wzy has been performed using the
smoothing REBOCC program; A, B, and C are conductive zones in the crust (cf. Fig. 12.16)

three hypotheses concerning the position of the crustal conductive layer: (1) a con-
ductive layer overlies the seismic waveguide (25–35 km), (2) a conductive layer
coincides with the seismic waveguide (35–50 km), (3) a conductive layer underlies
the seismic waveguide (50–70 km). The interpretation model has been constructed
in line with the second hypothesis, which resulted in the minimum model misfit. It
consists of 70 blocks of a fixed geometry (Fig. 12.19). The partition density depends
on the position and size of supposed structures and is highest within the sedimentary
cover, local crustal conductors, and crustal conductive layer. The model allows for

Fig. 12.19 The two-dimensional blocky interpretation model; starting resistivities are shown
within blocks
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the symmetric or asymmetric bordering background that is composed of horizon-
tally homogeneous layers.

Partial inversions of the synthetic data have been carried out in the class of blocky
media with the use of the II2DC program (Varentsov, 2002) in the following suc-
cession: (1) Re Wzy and Im Wzy inversion → (2) ‖ inversion → (3) �⊥ and ⊥

inversion. All the inversions were conducted automatically.
Below, we consider each inversion separately.
1. Inversion of the real and imaginary tippers, Re Wzy and Im Wzy . Starting resis-

tivities for this inversion are shown in Fig. 12.19. The tipper inversion results in
the model presented in Fig. 12.20. It is referred to as the TS-2 model. The model
agrees well with the initial TS model. The divergence between the tippers calculated
from both models in the period range from 1 to 10000 s is generally no more than
0.02 (Fig. 12.21). Using the MV data alone, we have successfully reconstructed the
most significant elements of the initial model, including the inhomogeneous sedi-
mentary cover, the local crustal conductors A, B, and C, and the inhomogeneous
crustal conductive layer whose resistivity varies from 234 Ohm·m in the north to
16 Ohm·m in the south (from 300 to 10 Ohm·m in the initial model). Also resolved
was the contrast between the nonconductive and conductive mantle (1667 Ohm·m/
109 Ohm·m in the TS-2 model against 1000 Ohm·m /10 Ohm·m in the initial TS
model). We see that the MV response functions measured on a 200 km profile enable
not only to detect the local conductive zones but to stratify the medium as well (with
an accuracy sufficient for obtaining some petrophysical estimates).

2. Inversion of the longitudinal-impedance phases, ‖. At this stage, without
going beyond the TE-mode, we control the tipper inversion and gain additional
constraints on the stratification of the medium. The point is that the longitudinal
apparent-resistivity �‖− curves are distorted by static shift caused by near-surface
3-D inhomogeneities. We avoided this difficulty by restricting ourselves to the

Fig. 12.20 Model TS-2; inversion of the tippers Re Wzy and Im Wzy has been performed using
the blocky II2DC program; resistivity values in Ohm·m are shown within blocks; blocks of lower
crustal resistivity are shaded (cf. Fig. 12.16)
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Fig. 12.21 Comparison of tippers Re Wzy , Im Wzy from the TS-2 and TS models

inversion of the undistorted ‖− curves. If �‖− and ‖− curves meet the dispersion
relations, the disregard of the �‖− curves does not lead to a loss of information.
We interpreted the ‖− curves using the starting model TS-2, obtained from the
tipper inversion. Inversion of ‖ was performed with fixed resistivities of the sedi-
mentary cover. It resulted in the model, which is referred to as the TS-3 model. The
model is shown in Fig. 12.22. The divergences between the phases from the TS-3
model and initial TS model do not exceed 2.5◦ (Fig. 12.23). Comparing the TS-3
and TS-2 models, we see that the phase inversion agrees reasonably well with the
tipper inversion. Two points are of particular interest: (1) the edge resistivities of
the inhomogeneous crustal layer (343 and 10 Ohm·m) became closer to their true
values (300 and 10 Ohm·m), and (2) the contrast between the nonconductive and
conductive mantle became sharper (3801 Ohm·m /15 Ohm·m in the TS-3 model
against 1000 Ohm·m /10 Ohm·m in the initial TS model). Thus, the phase inversion
visibly improved the accuracy of the stratification.

3. Inversion of the transverse apparent resistivity and impedance-phase, �⊥ and
⊥. At this stage we pass on to the TM-mode, which is sensitive to galvanic effects.
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Fig. 12.22 Model TS-3; inversion of the impedance phases ‖ has been performed using the
blocky II2DC program; resistivity values in Ohm·m are shown within blocks; blocks of lower
crustal resistivities are shaded (cf. Fig. 12.16)

Fig. 12.23 Comparison of impedance phases ‖ from the TS-3 and TS models
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Its inversion is focused on estimating the resistivity of the upper crust. The TS-3
model, obtained from the ‖− inversion, was used as a starting model. Here we fixed
all resistivities except for crustal blocks that contact the sedimentary cover. The �⊥−
and ⊥− inversion resulted in the TS-4 model, shown in Fig. 12.24. It confirms the
galvanic connection between the vertical conductive zone B and sediments, and
reveals the asymmetry of the highly resistive upper crust whose resistivity changes
from 283 000 Ohm·m in the north to 13 000 Ohm·m in the south (in the initial TS
model, from 100 000 Ohm·m in the north to 10 000 Ohm·m in the south).

The TS-4 model is the final model obtained from the successively applied auto-
matic partial inversions. Its agreement with the initial TS model is evident. All of the
essential TS structures are well resolved in the TS-4 model. Misfits between these
models at the overwhelming majority of sites do not exceed 0.02 in tippers and 2.5◦

in phases. The transverse apparent-resistivity misfits are shown in Fig. 12.25. The
TS-4 and TS models yield similar regional variation in �⊥ with a local scatter caused
by geoelectric noise. Note that irregular alternation of cells with higher and lower
resitivity within zones B and C as well as within the crustal condutive layer can be
readily smoothed without increasing the model misfits.

Next we consider the case when the a priory information on the media bordering
the profile is rather scanty. In that event we have to apply the adjustment method sug-
gested in Sect. 10.1.1. Figure 12.26 presents the longitudinal �‖− curves obtained
at the edges of profile, y = −50 km and y = 200 km, as well as the average �̄‖−
curve that is taken as a curve for the normal apparent resistivity �N. One-dimensional
inversion of this curve yields a normal background which is introduced symmetri-
cally into the interpretation model from Fig. 12.19 at a distance of 300 km from
each edge of the profile. Repeating the partial inversions in the same succession as in
case of an asymmetrical normal background, we obtain a final model TS-5 shown in
Fig. 12.27. All of the essential TS structures are clearly seen in this model. The only
essential difference between models constructed with asymmetric and symmetric

Fig. 12.24 Model TS-4; inversion of the apparent resistivities �⊥ ad impedance phases ⊥ has
been performed using the blocky II2DC program; resistivity values in Ohm·m are shown within
blocks; blocks of lower crustal resistivities are shaded (cf. Fig. 12.16)
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Fig. 12.25 Comparison of impedance apparent resistivities �⊥ from the TS-4 and TS models

backgrounds is that in the case of the symmetric background the horizontal changes
of resistivity in the upper crust and crustal conductive layer are less strong.

In closing, we turn back to the starting model with asymmetrical normal back-
ground and perform the parallel inversion of all response functions (Re Wzy , Im Wzy ,

Fig. 12.26 Averaging the
longitudinal apparent-
resistivty curves �‖ obtained
at the edges of profile
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Fig. 12.27 Model TS-5; partial inversions have been performed using the blocky II2DC program
with a symmetric normal background; resistivity values in Ohm·m are shown within blocks; blocks
of lower crustal resistivities are shaded (cf. Figs.12.27 and 12.24)

‖, �⊥ and ⊥) used in constructing the TS-4 model. Figure 12.28 displays the
TS-6 model obtained by parallel inversion. In this model: (1) resistivity contrasts in
the sedimentary cover are significantly smoothed, (2) the resistivity contrast in the
upper, highly resistive crust is also significantly smoothed, (3) the conductive zones
A and C are resolved with some degree of certainty, while the central through-
the-crust conductive zone B is completely destroyed, (4) the contrast between the
two edge resistivities in the crustal conducting layer is much lower, and (5) the
monotonic decrease of the mantle resistivity is disturbed (a highly resistive layer
appears in the conductive mantle). We see that the parallel inversion of all response
functions in use impairs the information on the Earth’s interior.

Fig. 12.28 Model TS-6; the parallel inversion of Re Wzy , Im Wzy , ‖, �⊥, and ⊥ has been per-
formed using the blocky II2DC program with an asymmetric normal background; resistivity values
in Ohm·m are shown within blocks; blocks of lower crustal resistivities are shaded (cf. Figs.12.16
and 12.24)
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Of course, the parallel inversion is the simplest approach to a multicriterion
problem, and apparently this is the reason why it is popular among geophysicists
fascinated by the possibility of automatic inversions eliminating the necessity of
comprehensive analysis. The technique of successive partial inversions undoubt-
edly complicates the work, and this is a possible reason for the objections raised in
discussions. However, our experiments on the integrated interpretation of MV and
MT data indicate that the game, albeit more difficult, is worth the candle.

In the last sections of our book we would like to look upon two case histories
illustrating the interpretation of magnetotelluric and magnetovariational data by
means of hypotheses testing and succession of partial inversions.

12.6 Geoelctric Model of the Baikal Rift

Magnetotelluric studies in the Baikal rift zone have been conducted for many years,
beginning in 1960s (the Eastern Geophysical Trust, Institute of the Earth’s Crust,
and the University of Moscow). These pioneering works, initiated by V. Pospeev
(Pospeev, 1976), deeply influenced the development of geoelectrics in our coun-
try. During three decades, nearly 1000 MT-soundings were carried out within the
rift zone and adjacent areas. Unfortunately, the data obtained are nonuniform in
their quality. A considerable part of this vast territory was studied at the dawn
of magnetotellurics, in the 1960s and 1970s, when observations were made with
analog medium-frequency instrumentation and were processed manually, by rough
(visual or approximate) methods. Interpretation of these data is usually reduced to
one-dimensional inversion of effective apparent-resistivity curves, thereby ignoring
the distortions caused by near-surface inhomogeneities. Authentic magnetotelluric
measurements using digital broadband instrumentation as well as efficient methods
of spectral analysis and geoelectric noise suppression were started in the late 1970s,
but by that time the research activities had been shifted from the Baikal rift into
Trans-Baikal areas and further to the east. It was not until 20 years later that an
attempt was made to analyze and generalize these obsolete results obtained in the
Baikal rift zone, to select the most reliable data and construct a meaningful geoelec-
tric model of this province, typical of continental rifting (Berdichevsky et al., 1999;
Berdichevsky and Dmitriev, 2002). It has been shown that magnetotellurics may
play a decisive role in choosing between the competing conceptions for the deep
structure of the Baikal rift. Let us consider this instructive two-dimensional inter-
pretation accomplished as a sequence of partial inversions of apparent-resistivity
curves in the hypothesis test mode.

12.6.1 Two Concepts of the Baikal Rift Zone

Two different concepts of the Baikal rift zone are discussed in the literature:
1. The mantle-diapir concept. Figure 12.29a presents a schematic cross-section

of the Baikal rift zone along a profile transecting the middle part of Lake Baikal.
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Fig. 12.29 Mantle-diapir
model of the Baikal rift zone;
(a) after Krylov et al. (1975,
1981) and Puzyrev (1997),
(b) after Grachev (1996); SP
-Siberian plate, BR-Baikal
rift, Mn – Mongolia; 1 –
sediments, 2 – the Earth’s
crust, 3 – normal mantle, 4 –
anomalous mantle, 5 –
M-discontinuity

This model proposed by Puzyrev and Krylov has been constructed on the basis of
deep seismic soundings and seismological data (Krylov et al., 1975, 1981; Puzyrev,
1997). Here, the subhorizontal surface of the low-velocity asthenosphere is recog-
nized at a depth of about 100 km. A subvertical slitlike channel (associated with
a fault separating the Siberian Platform from the Baikal region) branches off from
asthenospheric layer. A subhorizontal low-velocity zone, the so-called anomalous
mantle, is contiguous to this channel. The anomalous low-velocity mantle has the
shape of a “visor” adjoining the Moho surface. The average thickness of this zone is
about 20 km. It is distinctly separated from the subhorizontal asthenosphere and
extends in a northeasterly direction for a distance greater than 1500 km. On a
transverse section of the Baikal Rift zone, the anomalous mantle gradually thins
out to the southeast.
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The Puzyrev-Krylov model was substantially developed by Grachev in his study
of continental rifting dynamics (Grachev, 1996). Grachev stresses the asymmetry of
the Baikal Rift, which manifests itself in a rise of the low-velocity asthenosphere
on the transition from platform to folded zone (Fig. 12.29b). The formation of the
anomalous mantle, with its subvertical stem and subhorizontal apophysis, is inter-
preted in terms of a mantle diapir, that is, as intrusion of magma into the continental
lithosphere, typical of the prerifting regime.

2. The asthenospheric-upwarp concept. This alternative concept, conceived by
Zorin and his colleagues, is based on gravimetry, deep seismic soundings, and tele-
seismic observations (Zorin, 1971; Gao et al., 1994). In developing this concept,
they passed through several versions. The earliest version of the model is illus-
trated in Fig. 12.30a. Here, the rift zone mantle includes a vast, compact region
of lower density, reaching and even crossing the Moho. It is considered to be an

Fig. 12.30 Asthenospheric-
upwarp model of the Baikal
rift zone; (a) early version,
after Zorin (1971), (b) –
recent version, after Gao
et al. (1994); 1 – sediments,
2 – The Earth’s crust,
3 – basic and ultrabasic
intrusion, 4 – normal mantle,
5 – anomalous mantle,
6 – density, g/sm3,
7 – numerator-velocity of
P-wave, km/s, denominator-
density, g/sm3
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asthenospheric upwarp with deep roots. The upwarp symmetry is disturbed by a
small, narrow nose wedging out to the southeast. In a more recent version, this nose
is absent, but instead, the asthenospheric upwarp is markedly asymmetric, being
characterized by significant reductions in density and velocity (Fig. 12.30b).

Tectonically, these two models are essentially different. In the Puzyrev-Krylov-
Grachev model, the anomalous mantle recognized immediately beneath the Moho
occurs as a stratal apophysis isolated from the main asthenosphere, while in the
Zorin model, it is represented by a massive, uniform plumelike body integrated with
a deep mantle.

The two concepts in question say nothing about the Earth’s crust in the Baikal rift
zone. In this respect, we should note two facts: (1) Within the Baikal rift zone, it has
been established with considerable reliability that the crust contains a waveguide
with its top at depths of 12–15 km, and (2) The lithosphere in the Baikal region is
dissected by numerous deep faults. Two major faults (Obruchevsky and Barguzin)\
bound the Baikal graben. The Main Mongolo-Okhotsky fault separates the folded
systems of the eastern Trans-Baikal region.

12.6.2 Synthesis of Apparen-Resitivity Curves

Nowadays, we have at our disposal a lot of effective apparent-resistivity curves, �eff,
and some quasi-longitudinal and quasi-transverse apparent-resistivity curves, �‖ and
�⊥, oriented along (Az = 45◦ ± 15◦) and across (Az = 135◦ ± 15◦) the Baikal
graben. The �A-curves are most often limited by periods of 10–30 min. In recent
years, some reference MT soundings have been carried out, ranging to several hours.

Figure 12.31 displays a map of the Baikal region outlining five zones with dif-
ferent types of the apparent-resistivity curves. Zone I is situated on the Siberian
platform. Zone II relates to the Cis-Baikal trough, and zone III is associated with the

Fig. 12.31 Map of types of
apparent-resistivity curves; I,
II, III, IV, V – numbers of
zones, within which the �A –
curves are of the same type
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western Trans-Baikal. Zones IV and V represent the folded systems of the southeast-
ern Trans-Baikal. Each zone contains about 8–10 short-period MT soundings and
1–3 long-period reference MT soundings. Within each zone, the apparent-resistivity
curves are similar in form but dramatically suffer from the static shift caused by
near-surface trappean intrusions. The distorted �A-curves have been corrected by
averaging and synthesized by vertical translation (the average long-period �A-curves
are vertically shifted to the average short-period �A-curves). Given a representative
statistics of short-period magnetotelluric soundings, this noise abatement procedure
may combine separate fragments of MT soundings and construct continuous noise-
suppressed �A-curves that cover the entire interval of periods – from a few seconds
to a few hours.

The synthesized average curves of apparent resistivity obtained in the various
zones are plotted in Fig. 12.32. We believe that the uncertainty for the synthe-
sized apparent resistivity does not exceed 10% at high frequencies and 20% at

Fig. 12.32 The synthesized apparent-resistivty curves in I, II, III, IV, V zones
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low frequencies. On the Siberian Platform, zone I, we have bell-shaped �A-curves.
Approaching the Baikal graben (zones II, III), we get the �‖- and �⊥-curves with
deep minimum in a period range of 100–500 s. This minimum is most pronounced
in the western Trans-Baikal (zone IV). In the southeastern Trans-Baikal it degen-
erates into the flattened descending branch (zone V). The rough estimates allow
us to associate the minima of apparent resistivities with an inhomogeneous crustal
conductive layer at a depth of 15–30 km.

12.6.3 Interpretation Model

Generalizing the reliable geological and geophysical data, we distinguish the follow-
ing properties of the Baikal rift zone that control the structure of the interpretation
model: (1) The Baikal rift is a linear structure trending northeast, (2) The Baikal rift
zone is dissected by deep faults striking mostly northeast, (3) The crust of the Baikal
rift zone includes an inhomogeneous conductive layer, which may correlate with
the seismic waveguide, and (4) The upper mantle of the Baikal rift zone is laterally
heterogeneous and may contain such structures as a mantle diapir or asthenosphere
upwarp.

Constructing the interpretation model, we assume that the Baikal rift zone admits
the inversion of apparent-resistivity curves in the class of two-dimensional structures
with a northeast strike. Evidently, a two-dimensional interpretation model should
incorporate the following elements: (1) a heterogeneous surface layer (sediments)
whose conductance varies in accordance with the known electric-prospecting data,
(2) a high-resistivity upper crust with a conductive layer, (3) vertical conductive
channels simulating deep faults, and (4) a heterogeneous upper mantle with con-
ductive inclusions.

12.6.4 Bimodal Inversion in the Hypotheses Test Mode

The strategy of bimodal interpretation depends on the sensitivity of the TM- and
TE- modes to the target structures.

The TE-mode is the main source of information about deep structure in areas with
a monolithic upper lithosphere, where the TM-mode is hardly informative due to the
screening effect of the high-resistivity lithospheric layers. The situation is different
in areas with fault-block tectonics. Conductive (fluid-saturated, graphitized) faults
favor the vertical redistribution of telluric currents induced in various layers of the
crust and upper mantle and thus increase the sensitivity of the TM-mode to deep
structures. Under these conditions, the TM-mode can play an important (perhaps,
even leading) role in the interpretation of MT soundings aimed to studies of the
Earth’s crust and upper mantle.

One of the most objectionable problems in the bimodal interpretation of MT
soundings is the correction of longitudinal �‖-curves distorted by the regional
S-effect. Some crude estimates can be performed by ignoring the lateral variations in
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the deep electric conductivity and reducing the �‖-curves to the standard (normal)
�st-curve constructed from global magnetovariational sounding and representative
statistics of MT data. However, such a normalization procedure is hardly applica-
ble in a rift zone where strong lateral inhomogeneity of the upper mantle can be
expected. Here we should pose the inverse problem as a problem of hypotheses
testing and to compensate static shift by reducing the �‖-curves to the reference
longitudinal curves defined from a two-dimensional model corresponding to the
hypothesis being tested.

The two-dimensional interpretation of the longitudinal and transverse curves, �‖

and �⊥, obtained in the Baikal region was carried out in the hypotheses test mode.
The two-level algorithm consisting of sequence of the TE and TM partial inversions
was used. We will consider the application of this algorithm in greater detail.

Level I (TE inversion). At this level, we construct a starting model consistent
with the hypothesis tested, and correct the longitudinal �‖-curves, reducing them to
the reference �‖ -curves calculated from the starting model. Inversion of corrected
�‖-curves yields information about the crustal conductive layer.

Level 2 (TM inversion). At this level, the model derived from the TE inversion
of the corrected longitudinal �‖-curves is taken as a starting model. Inversion of the
transverse �⊥-curves yields information about faults and allows us to edit crustal
and mantle structures.

The model resulting from the TM inversion may be taken as a starting model
for the repeated TE inversion. Consecutive transitions from one level to another
continue until we attain a sufficiently small model misfit.

Let us turn to MT soundings in the Baikal region. The INV2D program suggested
by Golubev and Varentsov (1994) has been used for their bimodal inversion. The
program approximates the inhomogeneous Earth by a piecewise-uniform medium
consisting of 40 blocks with fixed (20 blocks) and free (20 blocks) resistivities.
The free resistivities are fitted through minimization of the Tikhonov functional
involving a misfit functional and stabilizer that ensures proximity of inversion to
the starting model. The geometry of blocks is chosen in such a way that the misfit
minimization could lead to the formation of structures consistent with a hypotheses
being tested.

12.6.5 Test of the Mantle-Diapir Hypothesis

The two-dimensional starting model corresponding to the mantle-diapir hypothesis
is shown in Fig. 12.33. It includes the following elements: (1) inhomogeneous sed-
imentary cover differentiated by using a priori geoelectric data, (2) a homogeneous
lithosphere with a resistivity 104 Ohm·m, (3) an asymmetric asthenosphere with
a resistivity varying from 100–200 to 20–30 Ohm·m, (4) a mantle diapir with an
apophysis of 100 Ohm·m resistivity, (5) a low-resistivity mantle (5 Ohm·m).

Let us take the starting model as a reference for correcting the longitudinal
�‖-curves. Comparing the experimental curves of �‖ with the theoretical curves of
�

‖
sm calculated from starting model, we see that �‖-curves are close to �

‖
sm-curves
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Fig. 12.33 Interpretation of �A-curves in the mantle-diapir model class. (a) starting model; Roman
numerals – numbers of zones, Arabic numerals – values of resistivity in Ohm·m; (b) correction of
longitudinal �‖-curves, 1 – theoretical �‖-curve calculated from starting model, 2 – experimental
synthetic �‖-curve, 3 – corrected �‖-curve

in all zones, except for zone IV (Barguzin synclinorium), thereby confirming the
validity of the starting model. The �‖-curves are corrected through their vertical
translaton that fits the low-frequency branches to the model �

‖
sm-curves. The shift is

generally small which indicates a weak regional S-effect.
The TE inversion of corrected �‖-curves is illustrated in Fig. 12.34. It optimizes

the resistivities of the crust. The initial structure of the sedimentary cover and upper
mantle was fixed during the entire cycle of iterations. The inversion clearly reveals
a continuous conductive layer in the middle crust whose resistivity decreases from
200 Ohm·m in the platform area I, II to 30–15 Ohm·m in the rift zone III, IV and 60
Ohm·m in the southeastern Trans-Baikal region V, VI (Fig. 12.31). The accuracy of
inversion is rather high. The general rms misfit does not exceeds 12%.

Going to the TM inversion, we insert narrow near-surface conductive zones in
the sedimentary cover to simulate the static shift of the transverse �⊥-curves. The
TM inversion optimizes the resistivities of the upper crust, crustal conductive layer
and upper mantle. The result of 25 iterations is presented in Fig. 12.35. The crustal
conductive layer changes insignificantly. Considerable variations are observed in the
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Fig. 12.34 Interpretation of �A-curves in the mantle-diapir model class. (a) TE-inversion; Roman
numerals – numbers of zones, Arabic numerals -values of resistivity in Ohm·m; (b) relation
between experimental (1) and model (2) �‖-curves

upper crust and lower lithosphere of the western (I, II, III) and southeastern (V, VI)
zones: resistivities increase to 10000 Ohm·m in I, II, III zones and decrease to 1000
and 500 Ohm·m in V, VI zones. At the same time, the mantle resistivity under the
platform (I, II, III) increases to 100 Ohm·m at depths of 300–500 km. The iterations
provide accurate inversion within zones I, II, III and VI, where the rms misfit does
not exceed 16%. However, the model and experimental apparent-resistivity curves
diverge dramatically in zones IV and V, in the vicinity of the Baikal rift, where
misfits of their low-frequency branches amount to 90%, considerably exceeding the
errors of apprent-resistivity synthesis.
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Fig. 12.35 Interpretation of �A-curves in the mantle-diapir model class without conductive faults.
(a) TM-inversion; Roman numerals – numbers of zones, Arabic numerals -values of resistivity in
Ohm·m; (b) relation between experimental (1) and model (2) �⊥-curves

Convergence of the TM inversion is significantly improved if vertical conductive
channels crossing the high-resistivity lithosphere are introduced into the starting
model. Figure 12.36 shows the result of such inversion. Here, we have a model
with three vertical conductive channels associated with the Obruchevsky, Barguzin,
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Fig. 12.36 Interpretation of �A-curves in the mantle-diapir model class with conductive faults. (a)
TE- and TM-inversion; Roman numerals – numbers of zones, Arabic numerals -values of resistivity
in Ohm·m; (b) relation between experimental (1) and model (2) �‖- and �⊥- curves
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and Main Mongolo-Okhotsky faults. These channels connect the sediments with the
conductive mantle. Although the starting resistivities of the crust and upper mantle
in this model remain unchanged, the experimental and model �⊥-curves converge,
and misfits of their low-frequency branches do not exceed 20%. At the same time,
the �‖-curves are weakly affected by the conductive faults, and the misfits of these
curves remain as small as during the TE inversion in the absence of the faults.

The inferred model, whose misfits do not exceed the assumed uncertainty of
the apparent-resistivity synthesis, may be considered a final result of the bimodal
interpretation of MT soundings in the class of mantle diapir models. In assessing the
adequacy of this result, two questions should be answered: (1) Is the asthenosphere
asymmetry reliably diagnosed? and (2) Is the anomalous mantle reliably outlined?
Analysis of the model shows that we can answer both questions in the positive.
By smoothing the asthenosphere asymmetry and excluding the anomalous mantle,
we conspicuously increase the model misfits. In the course of several model tests
we conclude that the resistivity of the anomalous mantle is about 50–100 Ohm·m.
Assuming that the decrease of mantle velocity is caused by partial melting, such
resistivity values indicate that the concentration of the liquid phase does not exceed
a few percent. This estimate is consistent with seismic estimates by Krylov (1981).

What is the geological nature of the vertical conductive channels? Evidently, in
the upper and middle crust they may be interpreted as fluid-saturated fault zones.
But one might suppose that in the lower crust and upper mantle these channels are
associated with deep roots of the faults, characterized by vertical fracturing that
conveys mantle fluids.

Summing up, we can say that the mantle diapir hypothesis is fairly consistent
with the MT data.

12.6.6 Test of the Asthenosphere-Upwarp Hypothesis

Figure 12.37 shows starting models that correspond to the early and recent versions
of the asthenospheric-upwarp hypothesis (cf. Figure 12.30). The main elements of
these models are: (1) inhomogeneous sediments which are differentiated using a pri-
ori geoelectric data, (2) a homogeneous lithosphere with a resistivity of 104 Ohm·m,
(3) an asthenospheric upwarp with a resistivity 100 Ohm·m and with its roof at a
depth of 50 km.

Experimental longitudinal and transverse curves of �‖ and �⊥ were interpreted
using the same algorithm as above. The latter includes: (1) correction of longitudinal
�‖curves through their vertical translation, bringing their low-frequency branches
into coincidence with the model curves of �sm calculated from starting model, (2)
inversion of corrected the �‖-curves, and (3) inversion of the �⊥-curves.

The final results of TM inversion are presented in Fig. 12.38 (the early version of
the hypothesis) and Fig. 12.39 (the recent version of the hypothesis). Both hypothe-
ses give low-frequency TM inversion misfits that go far beyond a 20% confidence
boundary. Evidently, the models with asthenospheric upwarp that comes in contact
with the Moho are in conflict with the MT data.
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Fig. 12.37 Starting models for interpretation of �A -curves in asthenospheric-upwarp model class;
(a) early version, (b) recent version; Roman numerals – numbers of zones, Arabic numerals -values
of resistivity, Ohm. m

12.6.7 Final Remarks on the Geoelectric Model of the Baikal
Rift Zone

The interpretation of MT soundings in the hypothesis test mode has two important
features to be stressed: (1) The starting model, constructed in compliance with a
hypothesis being tested, allows for obtaining certain reference levels needed for
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Fig. 12.38 Interpretation of �⊥-curves in asthenospheric-upwarp model class, the early version.
(a) TM-inversion, Roman numerals – numbers of zones, Arabic numerals – values of resistivity in
Ohm·m, (b) relation between experimental (1) and model (2) �⊥-curves
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Fig. 12.39 Interpretation of �⊥-curves in asthenospheric-upwarp model class, the recent version.
(a) TM-inversion, Roman numerals – numbers of zones, Arabic numerals – values of resistivity in
Ohm·m, (b) relation between experimental (1) and model (2) �⊥-curves
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confident correction of static shifts, (2) The interpretation is conducted in a narrow
model class bounded by the limits of a hypothesis being tested. So, the inversion
stability is enhanced, but its resolution is decreased.

These features were clearly demonstrated in the course of interpreting the MT
soundings conducted in the Baikal rift zone. We avoided the uncertainties that come
about from corrections of static shifts. We obtained rather reliable evidence in favor
of the mantle diapir model. However, we missed many details in the structure of
the Baikal rift. Their examination requires other approaches and a better quality of
field data (wide frequency range of MT-variations, integrated MV and MT studies,
robust processing techniques, considerably denser observations). But what we have
to stress is that magnetotellurics due to its unique possibilities settled the long-term
discussion about the deep structure of the Baikal rift.

12.7 Geoelectric Model of the Cascadia Subduction Zone

In 1978, on the initiative of Vanyan, a global geoelectric project was organized
under the auspices of the International Association of Geomagnetism and Aeronomy
(IAGA) with the aim of studying deep electric conductivity characterizing melt-
ing processes in the asthenosphere. Work on this project, named ELAS (ELectrical
conductivity of the ASthenosphere), was conducted throughout the world, and the
objectives of the projects were extended. It had included investigations of the con-
ductivity in the lithosphere and asthenosphere (Electrical conductivity of the Litho-
sphere and ASthenosphere). The ELAS project brought geoelectrics to the forefront
of modern geodynamics.

One of the most important events in the history of the ELAS project was the
EMSLAB experiment (ElectroMagnetic Study of the Lithosphere and Astheno-
sphere Beneath the Juan de Fuca plate) conducted from 1985 to 1988 by US,
Canadian, and Mexican geophysicists on the Pacific coast of North America in the
Cascadia subduction zone (where the Juan de Fuca microplate subducts under the
northwestern continental margin).

Figure 12.40 shows the network of the EMSLAB observations (Wannamaker
et al., 1989a). Almost the entire Juan de Fuca plate and adjacent part of the Pacific
orogenic belt were covered by MV soundings with a spacing of 50–100 km. MT
soundings were performed mainly on an E–W profile near the town of Lincoln.
This profile was named the Lincoln line. Spacings of MT and MV soundings on the
Lincoln line were about 5 km (39 MTS sites) in a period range of 0.01–500 s and
10 km (15 deep MTS sites) in a period range of 50–10000 s.

Researchers involved in the EMSLAB experiment had hoped to obtain new infor-
mation on the state and structure of the crust and upper mantle in the Cascadia
subduction zone.

The first geoelectric models of the Cascadia subduction zone were constructed
either by means of the Backus–Gilbert smoothing method (Jiracek et al., 1989)
or manually, by the trial-and-error approach (Wannamaker et al., 1989b; Vanyan
et al., 1988). These models were vulnerable to criticism, but they showed that
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Fig. 12.40 Electromagnetic sounding network in the EMSLAB experiment. (a) General scheme:
(1) state boundaries, (2) volcano, (3) MV sounding, (4) MT sounding, (5) MV sounding on the
Lincoln line, (6) MT sounding on the Lincoln line. (b) Schematic map showing continental MT
sounding sites: (1) towns, (2) volcano, (3) MT sounding, (4) deep MT sounding (Wannamaker
et al., 1989a)
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magnetotellurics can serve as a productive tool for studying the subduction zone.
Presently, we recall these results with an understanding of the important role that
they played in the history of deep geoelectric studies.

The 1990s were marked by a rapid development of computational geoelectrics
(Zhdanov and Spichak, 1992; Mackie and Madden, 1993; Varentsov, 1999;
Siripunvaraporn and Egbert, 2000; Novozhynski and Pushkarev, 2001). The cre-
ation of computational programs that enable the automatized inversion of the MT
and MV response functions in complex media opened the way toward the improve-
ment of the EMSLAB results (Zhdanov and Spichak, 1992; Berdichevsky et al.,
1992a; Varentsov et al., 1996). This discussion set the stage for revising ideas of the
Cascadia subduction zone. Let us follow (Pushkarev, 2002; Pushkarev et al., 2002;
Vanyan et al., 2002a) and consider a new model of the Cascadia subduction zone
constructed in the hypoteses test mode with the priority of MV soundings.

12.7.1 Brief Geological Description of the Cascadia
Subduction Zone

The region under study is a part of the Pacific orogenic belt, characterized by intense
Tertiary and Quaternary volcanism. The main geological structures of the region
originate from the subduction and accompanying volcanism (Khain and Lomize,
1995). They extend S–N for up to 300–500 km. The S–N (x) and W–E (y) directions
can be regarded as the major tectonic directions, defining the longitudinal (||) and
transverse (⊥) components of the impedance tensor.

The Juan de Fuca spreading ridge, giving rise to the Juan de Fuca plate, is located
at a short distance from the coast (about 500 km). Moving eastward, we cross the
following structures: (1) the abyssal basin of the Juan de Fuca plate, (2) the continen-
tal slope composed of compacted sediments of the accretionary prism, (3) the shelf
covered by loose sediments, (4) the Coast Range consisting of volcanic–sedimentary
rocks, (5) the gently dipping Willamette Valley filled with a thick sequence of sed-
iments and basaltic intrusions, (6) the Western (older) and (7) the High (younger)
Cascade mountains composed of volcanic and volcanic–sedimentary rocks typical
of present-day active volcanic arcs, and (8) the lava-covered Deschutes Plateau.

The oceanic crust within the abyssal basin of the Juan de Fuca plate has a struc-
ture typical of the Pacific. It comprises three layers: (1) a sedimentary layer 1–2
km thick, (2) a 1.5–2 km thick layer of basalts (pillow lavas) and basaltic flows
with dolerite dikes, and (3) a layer of fully crystalline igneous rocks (gabbro and
ultramafic varieties) 3–4 km thick.

The Cascade Range includes high peaks and sharply defined mountain crests.
The highest peaks are volcanic cones developed on the ancient basement. The moun-
tain structures are composed of Oligocene–Pliocene volcanic rocks represented by
lava flows and significant amounts of breccias, tuffs, and mudflow deposits. The
structure of the Cascade Range is complicated by the emplacement of intrusive
massifs.

The more easterly plateau is also dominated by volcanic rocks with prevailing
Pliocene and Pleistocene lavas.
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12.7.2 Geophysical Investigations in the Cascadia Subduction Zone

Figure 12.41 presents a schematic map of the Cascadia subduction zone, reflecting
the main features of contemporary tectonic processes: crustal seismicity, volcanism,
and formation of the accretionary complex.

Earthquake sources concentrate in the northern and southern parts of the sub-
duction zone, within the states of Washington and California, where the Benioff
zone is traced quite reliably. According to seismological evidence, the oceanic plate
subducts at a low angle in these areas, with its dip gradually increasing to 45◦. At
the same time, the central part of the subduction relating to the state of Oregon is
aseismic. Here, the oceanic plate also starts subducting at a low angle, but seismic
tomography data indicate that, at depths of about 40–80 km, it is sharply curved and
then descends at an angle of about 70◦.

Fig. 12.41 Evidences of recent tectonic processes: (1) accretionary complex, (2) crustal seismicity,
(3) Quaternary volcanic rocks, (4) depth to the Benioff zone in km (Romanyuk et al., 2001b)
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Let us consider the most comprehensive seismic model of the central Cascadia
subduction zone developed by Trehu et al. (1994). It is based on reflection data and
natural seismicity observations. Figure 12.42 shows the velocity section along an
E–W profile near the Lincoln line. The downgoing slab with velocities increasing
from 6.5 to 8 km/s is clearly recognizable. The continental part of the seismic section
is characterized by a more or less gently dipping bedding, with a monotonic increase
in the velocities from 5 km/s at depths of 1–2 km to 7 km/s at depths of about 20
km. No P-wave velocity inversion was discovered within the crust.

According to seismic refraction data, the near-surface P-wave velocities range
from 2.9 to 5.2 km/s. The upper and middle crust at depths of 3–30 km is character-
ized by velocities of 6.1–6.5 km/s. Beneath the High Cascades, the lower crust at a
depth of 45 km has a velocity of about 7 km/s. The Moho is fixed at a depth of 45
km. Importantly, a low-velocity layer was identified, although not very reliably, in
the middle crust.

Gravity data were used by Romanyuk et al. (2001a) to construct a two-
dimensional density stratification model of the Cascadia subduction zone along
a profile crossing central Oregon (Fig. 12.43). The oceanic crust has densities of
1.90–2.45 g/cm3 (sediments), 2.79 g/cm3 (basalts and dolerites), and 3 g/cm3 (gab-
bros and ultramafic rocks). The oceanic mantle to a depth of 40 km has a density
of 3.33–3.35 g/cm3 (lithosphere). In a depth range of 40–140 km, its density is
reduced to 3.3 g/cm3 (asthenosphere). The densities of the oceanic lithosphere and
asthenosphere increase as they subduct under the continent.

Next examine the data of numerous measurements of the heat flow and tem-
perature gradient. Near the Coast Range and the Willamette Valley, the heat flow
amounts to 40 mW/m2 and the temperature gradient is about 30◦C/km. These values
increase in the Western Cascades and they reach 105 mW/m2 and 65◦C/km in the
High Cascades. Here we encounter a lot of hot springs. The Cascades heat flow
maximum is attributed to the influence of an extensive magma chamber at depths of

Fig. 12.42 Deep seismic section along an E–W profile close to the Lincoln line. Numbers indicate
P-wave velocities in km/s (Trehu et al., 1994)



12.7 Geoelectric Model of the Cascadia Subduction Zone 513

Fig. 12.43 Density model along the E–W profile crossing central Oregon; (1) model, (2) observa-
tions. Numbers indicate densities in g/cm3 (Romanyuk et al., 2001a)
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about 10–20 km. Ingebritsen et al. (1989) believe that heat rises from great depths
through a relatively narrow zone.

Figure 12.44 shows a predictive geothermal and petrological model Cascadia,
generalizing current ideas of the subduction zone and its fluid regime (Romanyuk
et al., 2001b). The prediction is based on the existing estimates of the heat flow
and depths of the Curie isotherm (∼500◦C) as well as petrological analysis of mag-
mas, and some other data. The continental crust above the downgoing Juan de Fuca
plate in the near-shore area is characterized by lower temperatures. A subvertical
zone of higher temperatures reaching the melting point of wet peridotite (∼900◦C)
has been outlined beneath the High Cascades. The release of fluids in the upper
part of the subducting plate can be associated with several mechanisms. First, free
water of micropores and microfractures is released under the action of increasing
lithostatic pressure at depths of up to 30 km. Then, at depths of 30–50 km, where
the temperature exceeds 400◦C, dehydration of minerals such as talc, serpentine,
and chlorite starts. Finally, basalt is transformed into eclogite at depths greater than
75 km, and amphibolite exsolution can take place at depths exceeding 90 km. All
these processes are accompanied by release of fluids. Supposedly, fluids released
at shallow depths migrate through the contact zone between the subducting and
continental plates. At greater depths, fluids can be absorbed by mantle peridotites
(serpentinization) at lower temperatures and disturb phase equilibria at higher tem-
peratures, giving rise to wet melting. Melts migrate upward to the Earth’s surface,
resulting in the formation of a volcanic arc.

In conclusion, we note the results of sea-floor frequency sounding on the Pacific
Plate (Vanyan, 1997). The upper part of the oceanic crust consisting of sediments
and basaltic pillow lavas is characterized by a higher porosity and has a resistivity
of 3–10 Ohm·m. Below, the resistivity markedly increases, reaching at least 10 000
Ohm·m.

Such is the a priori geological and geophysical information on the basis of which
we will interpret geoelectric data obtained on the Lincoln line.

12.7.3 MT and MV Soundings on the Ocean Coast

The resistivity contrast on the ocean coast, reaching three and even four orders of
magnitude, causes a strong MT anomaly referred to as the coast effect. This anomaly
has galvanic and inductive components.

The galvanic anomalies arise when the electric current flows perpendicular to the
shoreline (the TM-mode). The shoreward oceanic electric current divides into two
branches.

One part of the current flows into the continental sedimentary cover. Sediments
capture the oceanic current and channel it far from the coast, with slow leakage
into the crystalline basement and deep conductive zones. This phenomenon can be
referred to as a continental-trap effect. The size of the continental trap is of the
order of several adjustment distances

√
S1 R2, where S1 = h1/�1 is the average
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conductance of the sedimentary cover and R2 = h2�2 is the average resistance of the
high-resistivity crust that separates the sedimentary cover from the deep conductive
zone.

Another part of the oceanic electric current bypasses the continental trap. The
current leaks into the ocean floor and is distributed among continental deep conduc-
tive zones.

The proportion of the currents flowing into the sedimentary cover to the current
penetrating into deep conductors defines the degree of low-frequency distortions
of the transverse MT-curves and their sensitivity to crustal and mantle conductivity
anomalies.

The inductive anomalies arise as the electric current flows parallel to the coast
(the TE-mode). They are caused by the inductive interaction between oceanic
and continental longitudinal electric currents. At high frequencies the longitudi-
nal excessive currents concentrate in the near-coast zone. Inductive distortions of
longitudinal MT-curves are observed near the shore and they decay at distances of
the same order as a depth to the well-conducting mantle. In the near-coast zone, the
asymmetry of longitudinal electric currents generates the vertical component of the
magnetic field, which can exceed its horizontal component.

By way of illustration, we turn to the work of Berdichevsky et al. (1992) and
consider two-dimensional models A and S (Fig. 12.45). Geologically, these models
are substantially different. Model A imitates an active tectonic zone. Its continental
part involves a thick conductor, encompassing the lower crust and upper mantle. In
the same depth range, model S contains only a thin crustal conductor, characteristic
of stable tectonic zones.

Let us examine the behavior of the transverse and longitudinal apparent-
resistivity curves of �⊥

A , �⊥
S and �

‖
A, �

‖
S calculated for models A and S. Relation-

ships observed on the oceanic profile are rather simple. In the near-coast zone, the
�⊥-curves are thrown down reflecting the current leakage from the ocean to the
continental crustal and mantle conductors. The leakage effects slowly attenuate with
distance from the continent. Even at distances about 1000 km, the low-frequency
resistivities �⊥

A , �⊥
S differ dramatically from the normal apparent-resistivity �o

n. The
induction effects distorting the longitudinal apparent-resistivity curves are far more
local. They are visible in the near-coast zone, but they vanish at distances of
about 50 km and the resistivities �

‖
A, �

‖
S virtually merge with the normal apparent-

resistivity �o
n . Somewhat different relationships are observed on the continental

profile. Near the coast, the ascending branches of the transverse �⊥-curves coin-
cide with the normal apparent-resistivity curve of �c

n . However, with decreasing fre-
quency, the �⊥-curves depart from the �c

n-curve: their ascending branches lengthen,
and the descending branches shift upward by 2.5 decades. No evidence of a crustal
or crust–mantle conductive layer is available there. With distance from the ocean,
the shape of the �⊥-curves slowly changes: gentle inflections and minima reflect-
ing a deep conductive layer appear and the descending branches shift downward.
Finally, at a distance of about 700 km (six adjustment distances), the �⊥-curves
merge with the normal curve of �c

n . The behavior of the transverse apparent resis-
tivity curves �⊥ can be accounted for by the continental trap effect. The situation
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Fig. 12.45 Apparent-
resistivity curves in models of
the stable (S) and active
(A) tectonic zones;
1 – locally normal curves �c

n
(continent) and �o

n (ocean),
2 – transverse �⊥-curves,
3 – longitudinal �‖-curves.
Parameter of the curves is the
distance to the coast in km.
Resistivities (Ohm·m) and
thicknesses (km) of layers are
shown in the model sections:
a – model S, b – model A

with the longitudinal curves �‖ is quite different. Their behavior is governed by
the inductive effect. Even in the near-coast zone, they have distinct inflections and
minima indicating the presence of a crustal or crust–mantle conductive layer. At
a distance of about 100 km from the coast, the �‖-curves merge with the normal
curve �c

n .
In closing, we can compare the resolution of the TM- and TE-modes. It is seen

from Fig. 12.46 that at a distance of 15 km and even of 85 km from the coast the
transverse curves of �⊥

A and �⊥
S obtained in models A and S practically coincide

(they differ by no more than 3–5% throughout the period range considered). So,
using the TM-mode in an 85 km wide alongshore zone, it is impossible to dis-
tinguish a crustal conductor 10 km thick from a crust-mantle conductor 114 km
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Fig. 12.46 Illustrating the
resolution of the apparent-
resistivity curves in models S
and A at distances of 15 and
85 km from the coast:
1 – locally normal curves
(�c

n), 2 – transverse curve
(�⊥), 3 – longitudinal
curve (�‖)

thick. In the same zone, the TE-mode clearly distinguishes between crustal and
crust-mantle conductors.

Next we will examine the behavior of the tipper. Figure 12.47 shows the curves of∣∣Wzy

∣∣. The coast effect produces an extensive Wzy-anomaly extending for about 100
km in the ocean and 300 km on the continent. Note rather high resolution of tippers:
at periods of 100 and 1000 s, the difference between models A and S displays itself
quite distinctly even in the near-coast zone.

Evidently, the TE-mode (longitudinal apparent resistivities and tippers) is more
sensitive to deep conductive zones compared to the TM-mode (transverse apparent
resistivities). This statement, derived from the analysis of simplest models, needs
more detailed elaboration taking into account the structure of the subduction zone.
Figure 12.48 presents a blocky model of the subduction zone involving the fol-
lowing components: (1) ocean, (2) continental sediments, (3) oc – oceanic crust,
(4) oa – oceanic asthenosphere, (5) sp – subducting plate, (6) cc – continental



12.7 Geoelectric Model of the Cascadia Subduction Zone 519

Fig. 12.47 Tipper curves in
the models of stable (S) and
active (A) tectonic zones.
Parameters of the models S
and A are the same as in
Fig. 12.45
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crust, (7) tz – transition zone, (8) cf – crustal fluidized layer, (9) ca – continental
asthenosphere, (10) mantle. Varying the resistivities of blocks sp, cc, tz, cfl, and
ca, we construct a set of models representing different geodynamical situations and
enabling the estimation of the sensitivity of the TE- and TM-modes to the subduct-
ing plate, continental crustal conductors, and continental asthenosphere. The initial
model has a continental section, in which subducting plate, crustal conductors and
asthenosphere are absent. It is successively complicated by introducing the follow-
ing components into the continental section: (1) a crustal conductive layer (either of
infinite extent or 300 km wide), (2) a downsinking conductive plate either connected
or unconnected with the crustal conductive layer, and (3) a conductive asthenosphere
(either of infinite extent or 300 km wide) connected or unconnected with the oceanic
asthenoshere. Analysis of these models leads to the following evident conclusions
that are valid for the continental profile crossing 200 km wide alongshore zone:

1) the resistance of the continental upper crust can be estimated by the TM-mode,
2) the crustal conductive layer of infinite and finite extent is best expressed by the

TE-mode,
3) the conductive junction of the plate with the crustal conductive layer is best

resolved by the TM-mode,
4) the conductive continental asthenosphere is best resolved y the TE-mode; even a

well-defined asthenosphere 300 km wide may be overlooked by the TM-mode,
5) the conductive junction of the continental asthenosphere with the oceanic

asthtenosphe is poorly reflected in both modes,
6) the difference between continental conductors of infinite and finite extent is bet-

ter resolved by the TM-mode.

These conclusions agree with the results of trial inversions of synthetic data
obtained for the examined models. Interpretation has been performed with the pro-
grams Inv2D-FG (Golubev and Varentsov, 1994) and IGF-MT2D (Novozhynski
and Pushkarev, 2001), which provide a regularized solution of the magnetotelluric
and magnetovariational inverse problems in the class of piecewise-uniform (blocky)
media. The inversion of the TE-mode (longitudinal apparent resistivities, longitu-
dinal impedance phases, tipper components) successfully reconstructed the conti-
nental cross-sections with crustal and astenospheric conductors. The inversion of
the TM-mode (transverse apparent resistivities and transverse impedance phases)
was less efficient (crustal and astenospheric conductors are defined with gaps and
distortions). However, the TM-mode determined more reliably the resistivity of the
continental upper crust and fixed the junction of the subducting plate with the crustal
conductive layer.

12.7.4 On the Regional Near-surface Distortions

Now we have to give due consideration to regional near-surface heterogeneities
crossed by the Lincoln line and elucidate their influence on magnetotelluric and
magnetovariational response functions.
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Fig. 12.49 Conductance S of the upper layer along the Lincoln line: 1-observations, 2-spline
approximation

Figure 12.49 plots the conductance S of the upper layer along the Lincoln line.
The plot is based on bathymetric data and MT soundings from oceanic and con-
tinental segments of the profile. The conductance S in the deep ocean is of the
order of 10000 S. The Coast Range, composed of Early Tertiary sediments and
volcanic rocks, is characterized by a conductance of about 100–150 S. The volcanic–
sedimentary complex of the western part of the Western Cascades and the thick
sequence of Tertiary deposits filling the Willamette Valley are characterized by con-
ductances reaching 250–300 S. In the eastern part of the Western Cascades, where
these deposits wedge out, the conductance drops to 10 S. Beneath the High Cascades
and the backarc plateau, the S values once again increase, reflecting the development
of volcanic–sedimentary rocks underlying Late Tertiary and Quaternary volcanic
formations.

Figure 12.50 presents a map of the conductance S of the upper layer encompass-
ing the Juan de Fuca Ridge and plate with adjacent continental areas. In constructing
this map, the data on sediments thickness and their average resistivities have been
used. The Juan de Fuca Ridge (I) and the abyssal basin of the Juan de Fuca plate
(II) are clearly seen in this map. The following structures of submeridional strike
are outlined on the continent: the Coast Range (III), the Willamette Valley (IV) and
the Puget Sound lowland (V), the Western Cascades (VI) and the High Cascades
(VII). This map has been incorporated into a less detailed map covering the entire
northwestern United States (1280 km × 1280 km) and superimposed on a uniform
background of S = 10000 S. Estimates indicate that, in modeling the magnetotel-
luric field in the central part of this map, the influence of its edges can be neglected.
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Fig. 12.50 Map showing the conductance S of the upper layer. Stations on the Lincoln line are
indicated by crosses with distances from the coast in km

The three-dimensional magnetotelluric field on the Lincoln line was calculated
in the approximation of an inhomogeneous thin layer S(x, y) underlain with a hor-
izontally homogeneous layered medium. The latter has been taken as the average
continental background in the model of the Cascadia subduction zone suggested by
Varentsov et al. (1996). The calculations were performed with the SLPROG pro-
gram (Singer and Fainberg, 1985). Figure 12.51 shows the 3D curves of apparent
resistivities, impedance phase and tippers obtained along the Lincoln line at different
distance r from the coast. They are compared with corresponding locally normal 1D
curves as well as with the 2D curves calculated for a two-dimensional model, in
which the S(r) values specified on the Lincoln line were continued northward and
southward. In the Coast Range and Willamette Valley zone (r = 15–76 km), the
3D and 2D curves fall close together, and in many cases they virtually coincide (the
marked static shift of the longitudinal and transverse apparent-resistivity curves,
�xy and �yx , is observed only not far from the shore). Somewhat different relations
are characteristic of the Cascades and Deshutes Plateau zone (r = 117–178 km).
Here the agreement between the 3D and 2D curves is preserved as a whole, but the
static shift of the transverse curves �yx reaches half-decade and at some sites the
high-frequency branches of the 3D and 2D phase curves demonstrate some discrep-
ancies. A common peculiarity of the Lincoln line is that almost without exception
the 3D and 2D longitudinal apparent-resistivity and impedancee-phase curves, �xy
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Fig. 12.51 Three-dimensional (3D) curves of �xy, �yx , xy, yx , Re Wzy, Im Wzy along Lincoln
line, r is a distance from the coast. The corresponding 2D curves calculated for a two-dimensional
model and locally normal 1D curves calculated for a one-dimensional model are also shown
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and xy , agree closely with the 1D locally normal curves �n and n. Summing up,
we can assume that the regional structure of near-surface rocks in the vicinity of
the Lincoln line is favorable for a 2D interpretation of MT and MV soundings. This
important result is consistent with the estimates obtained by Zhdanov and Spichak
(1992) and Spichak (1999).

12.7.5 Models EMSLAB-I and EMSLAB-II

Two models are of special interest in the discussion about the geoelectric structure
of the Cascadia subduction zone: the EMSLAB-I model (Wannamaker et al., 1989b)
and the EMSLAB-II model (Varentsov et al., 1996).

The EMSLAB-I model is shown in Fig. 12.52. This two-dimensional model has
been constructed by the trial-and-error method with a high priority to the TM-mode,
which, as the authors of the model believe, is tolerant to 3D deviations from the two-
dimensionality. This model minimizes the misfit of the curves of �⊥, ⊥ and virtu-
ally ignores the misfit of the curves of �‖, ‖. The most interesting elements in the
EMSLAB-I model are (1) the upper conductive part of the oceanic plate subducting
under the Coast Range, (2) a subhorizontal conductive layer in the continental crust
thickening under the High Cascades, and (3) a well-developed conductive astheno-
sphere under the ocean. The question of whether the downgoing plate is connected
with the crustal conductor is left open. No continental asthenosphere is present in
this model, although the shape of the experimental curves of �‖, ‖ indicates a

<3000<1000<300<100<30<10<3<1
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Fig. 12.52 The EMSLAB I model: CB – Cascadia Basin, NB – Newport Basin, CR – Coast Range,
WV – Willamette Valley, WC – Western Cascades, HC – High Cascades, DP – Deschutes Plateau
(Wannamaker et al., 1989b)
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low resistivity in the upper mantle. The absence of gross discrepancies between
the observational and model values of Re Wzy, Im Wzy is regarded as evidence of
reliability of the model.

Unfortunately, the EMSLAB-I model is vulnerable to criticism. A resistive (cold)
continental mantle contradicts the modern geodynamic concepts of the Cascadia
subduction zone (compare EMSLAB-I model with the predictive model CASCA-
DIA shown in Fig. 12.43). It is natural to think that the EMSLAB-I model does
not show the continental asthenosphere because of a low sensitivity of TM-mode to
mantle conductors. The point is that in the Cascadia subduction zone, only bimodal
inversion using both modes (TE + TM) can provide a key to studying the astheno-
sphere (Berdichevsky et al., 1992).

Experiments on the bimodal interpretation of MT and MV data from the Cas-
cadia subduction zone resulted in the EMSLAB-II model (Fig. 12.53). This two-
dimensional model has been constructed with the INV2D-FG program designed for
automated inversion (Varentsov et al., 1996). The program enabled the optimization
of resistivities in 20 blocks with a fixed geometry. The following response functions
were used in the course of bimodal inversions of MT and MV data: (1) ⊥ and
Re Wzy(maximum weight), (2) ‖ and �⊥ (normal weight), and (3) �‖(minimum
weight). The EMSLAB-II model has much in common with the EMSLAB-I model:
the same oceanic asthenosphere, the same downgoing plate, and the same crustal
conductive layer. However, the plate is connected with the crustal conductor, and
the continental mantle contains a conductive asthenosphere (!) separated from the
oceanic asthenosphere. Thus, a new evidence for partial melting in the continental
mantle has been obtained.

<3000<1000<300<100<30<10<3<1

resistivity (Ohm·m)

250 200 150 100 50 0 50 100 150 km

0.1

1

10

100

km

0.1

1

10

100

km

CB NB CR WV WC HC

Fig. 12.53 The EMSLAB II model. Notation is the same as in Fig. 12.52 (Varentsov et al., 1996)
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The main drawback of the EMSLAB-II model is its schematism caused by
the limitations of the INV2D-FG program. Nowadays we have at our disposal
more effective programs for two-dimensional automated inversion of MT and MV
data. They include the smoothing program REBOCC, implementing Occam’s razor
(Siripunvaraporn and Egbert, 2000), and the programs IGF-MT2D (Novozhynski
and Pushkarev, 2001) and II2DC (Varentsov, 1999), which provide the optimiza-
tion of models containing 512 and more blocks of a fixed geometry. Advances
in computing magnetotellurics open up new avenues for the interpretation of
EMSLAB data.

12.7.6 Analysis of Observations on the Lincoln Line

Figure 12.54 shows the transverse apparent-resistivity curves obtained on the con-
tinental part of the Lincoln line. The curves consist of two ascending branches
separated by an inflection or a minimum. The low-frequency ascending branches
of these curves have identical slopes and occupy nearly two decades. To get a better
insight into the behavior of apparent resistivities, we normalize the �⊥-curves by
shifting them vertically so that their left-hand ascending branches fit best the line
of the average conductance S = 50 S of the upper layer. The normalized �⊥-curves
demonstrate a simple regular relation: the greater the distance from the coast, the
deeper the central minimum of these curves and the lower their right-hand branch.
Comparing Fig. 12.54 with Fig. 12.45, we find a striking similarity between the
normalized �⊥-curves obtained on the Lincoln line and the theoretical �⊥-curves
calculated for the models A and S. It seems evident that the continental trap effect is
observed on the Lincoln line and that precisely this effect rather than the influence
of lithospheric and asthenospheric structures governs the transverse �⊥-curves at
various distances from the coast.

The longitudinal apparent resistivity curves obtained in the same period range
are shown in Fig. 12.55. With distance from the coast, the �‖-curves change in
shape, showing bell- and bowl-type branches. In many cases the �‖-curves have
gently ascending or descending low-frequency branches lying at various levels. One
might assume that the longitudinal �‖-curves reflect variations in the geoelectric
structure of the lithosphere and asthenosphere but are distorted by static shifts and
occasionally by 3D effects.

Note that the transverse curves of �⊥ and ⊥ satisfy the dispersion relations at all
sites of the Lincoln line. However, the longitudinal curves of �‖ and ‖ episodically
violate the dispersion relations (sites 3, 4, 10, and 13), as is seen in Fig. 12.56.

Now we turn to the analysis of the inhomogeneity parameter N (in Swift-Eggers
determination) and asymmetry parameters skewS and skewB, which help to identify
geoelectric structures and determine their dimensionality. The pseudo-sections of
these parameters are presented in Fig. 12.57. At high frequencies (T<<1 s), the
inhomogeneity parameter N fluctuates at the level of 0.1, indicating the acceptability
of one-dimensional estimates of the resistivity for near-surface rocks. With lower-
ing frequency, we notice an influence of deeper inhomogeneities. At T = 1s, the
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Fig. 12.54 Transverse apparent resistivity �⊥- curves along the continental part of the Lincoln line:
(a) observed curves, (b) normalized curves. The parameter of the curves is the distance to the coast

parameter N varies from 0.1–0.2 in the Willamette Valley and High Cascades to 0.4
in the Coast Range and Western Cascades. At low frequentcy (T>100 s), N increases
to 0.4 in the Willamette Valley and to 0.5–0.8 in the Coast Range and Cascades.
Large values of N, are associated, as a rule, with large values of skewS (0.3–0.5)
and small values of skewB(0.1–0.15). Thus, following Bahr, we can regard the deep
regional background of the Cascadia subduction zone as a two-dimensional. Deep
three-dimensional effects make itself evident only in the Willamette Valley and in
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Fig. 12.55 Longitudinal apparent resistivity �‖- curves along the continental part of the Lincoln
line. The parameter of the curves is the distance to the coast

the High Cascades, where low-frequency values of skewB exceed 0.3. The azimuth
of the strike of the regional two-dimensional structures determined from the Bahr
decomposition varies from 0◦ to 10◦. This agrees with orientation of tipper polar
diagrams and induction arrows at many points on the Lincoln line. As an illustration,
Fig. 12.58 shows the tipper polar diagrams for T = 2500 s and real induction arrows
for T = 6400 s. Within the Coast Range,the tipper diagrams are figures-of-eight
with their major axis oriented transversally or subtransversaly to the shoreline.

Fig. 12.56 Dispersion relations between apparent-resistivity �A- curves and phase - curves: 1-
observations, 2- dispersion transformation
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Fig. 12.57 Pseudo-sections of the magnetotelluric parameters of (a) inhomgeneity parameter N,
(b) asymmetry parameter skewS, and (c) asymmetry parameter skewB: CR – Coast Range, WV –
Willamette Valley, WC – Western Cascades, HC – High Cascades, DP – Deschutes Plateau

Much the same diagrams (though with some exceptions) are typical of the
Willamette Valley. Within the High Cascades, magnetic diagrams degenerate into
ovals but retain a transverse orientation. The real induction arrows point eastward,
here and there with small deviations. It seems that in the EMSLAB experiment
we can seek a solution to the inverse geoelectric problem within a class of two-
dimensional media with meridional strike.
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Fig. 12.58 Magnetic polar diagrams and real induction arrows along the continental part of the
Lincoln line: a – tipper polar diagrams at the period T = 2500 s, b – real induction arrows at the
period T = 6400 s

12.7.7 A New Geolectric Model of Cascadia: EMSLAB-III

The interpretation of data obtained on the Lincoln line is performed in the hypothe-
ses test mode by the method of partial inversions. It consists of three stages.

At the first stage, we carry out the one-dimensional inversion of short-period
curves of the effective apparent resistivity and impedance phase, �eff and eff, and
construct an approximate geoelectric section of the volcanic–sedimentary cover to
a depth of 3.5 km (Fig. 12.59). This section, consistent with the near-surface part of
the EMSLAB-I model (Wannamaker et al., 1989b), is incorporated into the starting
two-dimensional interpretation model.

At the second stage, we use the REBOCC program realizing the Occam razor
and conduct experiments with a smoothed two-dimensional inversion. Under the
complex conditions of the Cascadia subduction zone, the joint inversion of the TE
and TM-modes yields intricately alternating low- and high-resistivity spots with a
poor misfit minimization. The real structures of the subduction zone can hardly be
recognized in these queer spots. The most interesting result is obtained from the par-
tial inversions of the TE-mode (tippers and phases of the longitudinal impedance).
It is shown in Fig. 12.60. Here the vast western and eastern conductive zones are
distinctly outlined. They are separated by a rather narrow T-shaped high-resistivity
zone that relates to the downgoing oceanic plate. In this simple pattern, the western
and eastern conductors are identified as an oceanic asthenosphere with its top fixed
at a depth of about 30–40 km and as a crust–mantle area of dehydration and partial
melting in the depth range of 10–20 to 60–70 km. It is noteworthy that the upper
boundary of the eastern conductor resembles the relief of the crustal conductive
layer in the models EMSLAB-I and EMSLAB-II.

At the third, final, stage we apply the method of partial inversions and construct
a new geoelectric model of the Cascadia subduction zone called the EMSLAB-III
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Fig. 12.59 Resistivity section of the volcanic–sedimentary strata derived from short-period MT-
curves (T = 0.01–100 s). Notation is the same as in Fig. 12.57

Fig. 12.60 Two-dimensional smoothing REBOCC inversion of the TE-mode (Re Wzy, Im Wzy,

‖). Notation is the same as in Fig. 12.57
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model. Long-period MV and MT curves (T = 1 − 10000 s) are interpreted with the
programs IGF-MT2D (Novozhynski and Pushkarev, 2001) and II2DC (Varentsov,
2002), implementing the misfit minimization in the class of blocky media with
a fixed geometry of blocks. The interpretation is conducted in the hypotheses
test mode. We examine three hypotheses of the Cascadia subduction zone which
involve (1) dehydration in the continental crust (EMSLAB-I model, Fig. 12.52),
(2) dehydration in the continental crust and development of a continental par-
tially melted asthenosphere (EMSLAB-II model, Fig. 12.53), and (3) dehydration
in the continental crust and development of a continental asthenosphere with a
subvertical magmatic zone of ascending melting (predictive CASCADIA model,
Fig. 12.44).

The two-dimensional interpretation model (START model) is shown in
Fig. 12.61 with starting values of resistivities. The oceanic water resistivity is
taken as 0.3 Ohm·m. The seafloor topography and thicknesses of bottom sedi-
ments, as well as sediments of the accretionary prism and shelf, are specified
from the bathymetric and sedimentary thickness maps. The depth to the oceanic
asthensphere is defined as 37 km in conformity with the models CASCADIA,
EMSLAB-I, and EMSLAB-II. The surface of the subducting oceanic plate is recon-
structed from seismic data (Trehu et al., 1994) and seismic tomography imagery
(Weaver and Michaelson, 1985; Rasmussen and Humphries, 1988). The structure
of the continental volcanic–sedimentary cover is determined from the 1D inver-
sion of short-period MT curves. The downgoing plate as well as continental crust
and mantle are divided into uniform, resistive blocks (103–104 Ohm·m) whose
distribution allows a free choice of crustal and mantle structures consistent with
the three hypotheses under the question. The hypothesis that best fits observa-
tions is selected automatically in the process of resistivity optimization and misfit
minimization.

Let us use an interpretation scheme in which the magnetovariational inversion
plays a leading role, whereas the magnetotelluric inversion serves to check and
edit the MV results. The main advantage of this scheme is that, with lowering
frequency, the magnetovariational tipper becomes free from the distorting effects of
near-surface heterogeneities. It is clear that, in this way, we substantially improve the
reliability of geoelectric information burdened with galvanic distortions of apparent
resistivities.

Magnetovariational and magnetotelluric data obtained at 15 stations on the Lin-
coln line (T = 1–10000 s) are successively interpreted on three levels (Fig. 12.62).
Here, we follow the same algorithm of partial inversions as in Section 12.6
describing the experiments on integrated interpretation of synthetic MV and
MT data.

Level I. Inversion of Re Wzy and Im Wzy(TE-mode). The START model was
taken as the starting model. The MV inversion yields the TP model shown in
Fig. 12.63. The model misfits are given in Table 12.2, where 	Re Wzy and 	Im Wzy

are the misfits of the real and imaginary tippers (rms deviations of the model val-
ues from the observed values), while �Re Wzy = ∣∣max Re Wzy − min Re Wzy

∣∣ and
� Im Wzy = ∣∣max Im Wzy − min Im Wzy

∣∣ characterize the maximum variation in
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Fig. 12.62 Algorithm of partial inversions

the observed values of the real and imaginary tippers. The TP model seems to agree
well with observations: at most stations, the misfits 	Re Wzy and 	Im Wzy are at
least 5–10 times less than the maximum tipper variations. A noteworthy feature of
the model is a conductive continental asthenosphere with a branching-out vertical
low-resistivity zone penetrating the continental crust under the High Cascades. This
feature of the TP model distinguishes it from EMSLAB-I and EMSLAB-II mod-
els and makes it similar to the predictive CASCADIA model, in which a vertical
high-temperature zone of wet and dry melting characterized by low resistivities is
localized beneath the High Cascades. When eliminating the conductive continen-
tal asthenosphere and vertical low-resistive crust-mantle zone, we get the misfits
increased by factors of 1.5–2.5. So, we conclude that the tipper inversion settles the
dispute among the EMSLAB-I, EMSLAB-II, and CASCADIA model in favor of
the CASCADIA model.

Level II. Inversion of ‖ (TE-mode). On this level, we check and edit the results
of tipper inversion. The inversion of the longitudinal �‖-curves distorted by near-
surface heterogeneities requires a preliminary normalization of the apparent resis-
tivities, which almost always involves the risk of errors (especially in mountains).
Therefore, interpreting the EMSLAB data, we limit ourselves to the inversion of the
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longitudinal phase ‖-curves whose low-frequency branches are weakly distorted
at most stations. If the dispersion relations exist between the apparent-resistivity
and phase curves, we hardly lose any substantial information while rejecting the
longitudinal �‖-curves. The normalization of the ‖-curves reduces to an elimina-
tion of branches which violate the dispersion relations or are suspected of three-
dimensional distortions.

The TP model derived from the inversion of the Re Wzy- and Im Wzy-curves
is used as a starting model for the longitudinal phase inversion. The inver-
sion of the ‖-curves results in the TE model shown in Fig. 12.64. The
model misfits are presented in Table 12.3, where 	‖ is the phase misfit
(rms deviation of the model values from the observed values), while �‖ =∣∣max ‖ − min ‖∣∣ characterizes the maximum variation of the observed phase
values. At most stations, the phase misfits are 5 to 10 times less than the
phase maximum variation, indicating good agreement between the model and
observations.

Compare the continental segments of the TE and TP models. The TE model
differs from TP model by better resolving the crustal conductive layer (25–
45 km, 14–46 Ohm·m) and the subvertical mantle conductive zone (45–110
km, � = 12–46 Ohm · m). We can consider the TE model as an edited TP
model.

Level III. Inversion of �⊥ and ⊥ (TM-mode). The transverse apparent resistivi-
ties and phases are less sensitive to crustal and mantle conductive zones but they may
provide sharp estimate of the resistivity of the upper consolidated crust and reveal
the electric connection between the downgoing oceanic plate and crustal conductive
layer.

The inversion of the TM-mode is performed using the TE-2 model derived from
the inversion of the TE-mode as a starting model. It results in the TM model shown
in Fig. 12.65. The model misfits are presented in Table 12.4, where 	�⊥ and 	⊥ are
misfits of transverse apparent resistivities and phases (rms deviation of the model
values from the observed values), while while �⊥ = ∣∣max ⊥ − min ⊥∣∣ charac-
terizes the maximum variation of the observed phase values. The apparent resistivity
misfits at most stations vary from 6 to 12%, and the phase misfits are 7–10 times
smaller than the maximum phase variation.

The TM model inherits the main features of the starting TE model (although with
some deviations). What does the TM model indicate? First, there is no continuous
ellectrical connecton between the downgoing oceanic plate and the crustal conduc-
tive layer (a conductive coupling is absent). Second, the upper consolidated crust in
the continental segment of the model has a resistivity of about 2000 Ohm·m (not
very high).

To complete the interpretation, we analyze the TP, TE, and TM models and con-
struct the generalized model EMSLAB-III, smoothing out insignificant details and
enlarging blocks. All changes are controlled by local misfits. The resulting gener-
alized model EMSLAB-III is shown in Fig. 12.66. Look at Fig. 12.67, where the
model and observed curves of �⊥, �‖, ⊥, ‖, Re Wzy , and Im Wzy are compared
(the static shift in the observed curves of �‖ is eliminated by a vertical displacement
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Table 12.3 Misfits of longitudinal phases

Station 1 2 5 6 7 8 9 11 12 14 15

	‖, deg 4.0 2.6 3.1 4.6 5.5 4.0 2.0 4.1 2.5 2.3 4.9
�‖, deg 23 21 21 23 45 38 29 42 20 29 41

of their low-frequency branches). The remarkable accord between the model and
the observation catches the eye.

In its oceanic segment, the EMSLAB-III model is similar to EMSLAB-I and
EMSLAB-II models, resolving a thick oceanic asthenosphere in a depth range of
37–110 km.

In the continental segment, the EMSLAB-III model clearly defines a crustal
conductive layer (25–40 km, � = 20 Ohm · m) and a conductive asthenosphere
(100–155 km, � = 30 Ohm·m). The crustal and asthenosphere conductors are con-
nected by a columnar conductive body (� = 20–30 Ohm·m) that penetrates through
the lithosphere and reaches a depth of about 7 km under the volcanic zone of the
High Cascades.

The downgoing oceanic plate in a depth range of 4–40 km contains a thin inclined
conductor (� = 20 Ohm·m) separated from the crustal conductive layer by a zone of
higher resistivity (� = 200–500 Ohm·m). To all appearance, the fluids in the crustal
conductive layer are of internal or mantle origin.

We would like to stress that EMSLAB-III model clearly reflects the fluid regime
of the subduction zone. The downgoing plate drags low-resistivity water-saturated
rocks of the ocean floor. As the plate sinks, free water is driven out and migrates
through the shear zone (at the contact between the subducting oceanic and sta-
ble continental plates). Dehydration (release of combined water), beginning at
depths of about 30–40 km in the downgoing plate supplies fluids to the mantle
and causes wet melting of asthenospheric material. Low-resistivity melts migrate
upward through the lithosphere and form the volcanic arc. The heating of the
lithosphere activates dehydration in the lower crust, forming the crustal conductive
layer.

The new geoelectric model EMSLAB-III of the Cascadia subduction zone recov-
ered from the magnetovariational and magnetelluric data with magnetovariational
priority fills the most essential gaps in the previous EMSLAB-I and EMSLAB-II
models and is in excellent agreement with the predictive geothermal and petro-
logical CASCADIA model behind which are present-day concepts of geodynamic
history of the plate subduction. It seems that the MV-sounding with its rather high
sensitivity to horizontal and vertical conductivity variations and rather high immu-
nity to near-surface galvanic distortions can be considered as an efficient tool of the
modern geoelectrics. Today the geophysicists have every reason to develop a new
magnetotelluric strategy that would realize these attractive potentials of the mag-
netovariational sounding, especially in the deep geoelectric studies. Do not forget
that many things worth doing in the world had been declared impossible before they
were done.



540 12 Inversion Strategy

1 
  

2 
  

3 
  

4 
  

5 
  

6 
  

7 
  8

   
9 

  
10

   
11

   
12

   
13

   1
4 

  1
5

C
R

   
W

V
   

W
C

   
H

C
   

D
P 

  

F
ig

.1
2.

65
T

M
m

od
el

de
ri

ve
d

fr
om

th
e

in
ve

rs
io

n
of

tr
an

sv
er

se
re

si
st

iv
iti

es
an

d
im

pe
da

nc
e

ph
as

es
�

⊥
an

d


⊥ .
N

ot
at

io
n

is
th

e
sa

m
e

as
in

Fi
g.

12
.6

1



12.8 From Two-Dimensional Inversion to Three-Dimensional Inversion 541

Table 12.4 Misfits of transverse apparent resistivities and phases

Station 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

	�⊥, % 12 12 11 10 18 16 13 11 18 7 6 11 12 12 9
	⊥, deg 2.5 2.9 2.6 1.9 2.2 3.6 1.0 2.4 4.5 1.8 1.5 2.2 1.9 1.9 1.4
�⊥, deg 20 19 24 18 21 19 22 18 27 21 23 34 22 18 29

12.8 From Two-Dimensional Inversion to Three-Dimensional
Inversion

Let us consider two peculiarities that distinguish the three-dimensional inversion
of magnetovariational and magnetotelluric data from the two-dimensional inversion
discussed above.

The electromagnetic field studied in two-dimensional models is of simple struc-
ture. The transverse current flows in the vertical plane perpendicular to the model
strike (gathers in the conductive zones and flows over and under the resistive
zones), while the longitudinal current flows horizontally (along the model strike).
In three-dimensional models the electromagnetic field is dramatically complicated.
Considering the three-dimensional models, we observe strong lateral effects (lateral
flow-around and current-gathering) and reveal rather complex trajectories, along
which the currrent transfers the information on the conductivity distribution. It is
evident that adequate description of real asymmetric locally inhomogeneous media
requires a great number of the geoelectric and geometric parameters (resistivities
and distances in x, y, z). Complication of the interpretation model and an increase
in the number of its parameters lead to the extension of the set of equivalent solutions
and impair the inversion stability. Thus, we arrive to the conclusion of necessity of
strong constraints imposed on the three-dimensional interpretation model.

The properties of the two-dimensional magnetotelluric field depend on its ori-
entation in reference frame formed by the model strike (to separate the induction
and galvanic anomalies, it is enough to orient the magnetotelluric field along and
across the model strike). In the three-dimensional asymmetric model such a refer-
ence frame is absent. So, we lose that simple physical basis, on which the strategy
of two-dimensional inversion separating inductive TE mode and galvanic TM mode
has been constructed. It would be helpful to use the experience of two-dimensional
interpretation and to create the strategy of multicriterion three-dimensional inver-
sion, which is an analog of multicriterion two-dimensional inversion, but takes into
account the properties of the three-dimensional magnetotelluric field.

We see the following approaches to the three-dimensional interpretation of mag-
netovariational and magnetotelluric date.

1. Let a single observation profile cross an elongated three-dimensional struc-
ture at acute angle. Here the quasi-two-dimensionality conditions are not observed,
but we can accomplish the formal two-dimensional inversion and introduce
three-dimensional corrections determined by the hypotheses testing (hypothetical
three-dimensional structures of different strike and different elongation are tested).
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model EMSLAB III: 1-observations, 2-model EMSLAB III



On this way we can localize a three-dimensional structure and roughly estimate its
depth and strike.

2. Let the quasi-homogeneous geoelectric medium be covered by the areal mag-
netotelluric survey. In that case the three-dimensional interpretation can be reduced
to the quasi-one-dimensional inversion of apparent resistivities �eff, �brd or �rms

computed from one of the scalar invariants Zeff, Zbrd or Zrms of the impedance ten-
sor. Such an approach is referred to as scalarization of the magnetelluric inversion.

3. In the case of the locally inhomogeneous geoelectric medium the three-
dimensional interpretation can be accomplished by successive partial inversions
informatively connected with each other through starting models and stabilizing
functionals. Proceeding from the experience of two-dimensional interpretation, we
assume that the most efficient is the following succession of inversions: (1) inversion
of the magnetovariational response functions (tipper, horizontal magnetic tensor) –
being free of near-surface static distortions, this inversion yields sufficiently reliable
image of the geoelectric medium (particularly of its conductive zones), (2) inversion
of the magnetotelluric phase response functions (phases of impedance tensor, phase
tensor) – this inversion is also free of near-surface static distortions, it controls and
edits the results of the magnevariational inversion, and (3) inversion of the mag-
netotelluric amplitude response functions (apparent resistivities) – this inversion is
subjected to strong near-surface static distortions, but it can give additional infor-
mation on upper layers of the sedimentary cover and galvanic connections that exist
in the sedimentary cover and consolidated Earth’s crust. Such a three-stage interpre-
tation can be significantly simplified by scalarization of the partial inversion (scalar
invariants of tipper, horizontal magnetic tensor, impedance tensor, phase tensor are
in use).

4. Method of the successive partial inversion provides necessary stability of the
three-dimensional interpretation under condition of sufficiently simple structure of
geoelectric medium (single simple-shaped conductive inclusions, absence of strong
horizontal and vertical ruptures and dislocations, etc). Studying complex-structured
media, we should divide the three-dimensional interpretation into two stages. At the
first stage the smoothing (or quasi-one dimensional) inversion is conducted and a
simplified schematic model of the investigated medium is constructed. At the sec-
ond stage this model is included into the blocky starting model as the fixed first
approximation. The obtained basis is correlated with the a priori information and
with the results of the qualitative analysis of MV-MT data. On this way it is supple-
mented with a set of local hypothetical inhomogeneities, whose free parameters are
determined by the method of successive partial inversions. Hypotheses, which yield
the minimal model misfit, are accepted as the most plausible. Thus, the smoothing
(or quasi-one-dimensional) inversion is combined with the hypotheses tests. This
complex provides stable sufficiently detailed three-dimensional interpretation per-
formed in the class of models with a small number of free parameters.

544 12 Inversion Strategy



Magnetotelluric Catechism
(Instead of Afterword)

Summing up, we formulate some statetments, which can navigate the interpretation
of magnetotelluric and magnetovariational soundings.

1. Presently one cannot entrust the computer (even the supercomputer) with
complete self-dependent automatic press-button inversion. Inversion should be con-
ducted in the interactive mode realizing the contact between the geophysicist (a
leader) and the computer (a performer). Leader suggests to performer an inversion
strategy that can define the interpretation success.

2. The statement of the inverse problem calls for a normal background, which
can be given as a mathematical abstraction consistent with magnetotelluric response
functions obtained at the boundary of the observation area and with a priori infor-
mation.

3. The inverse problem is unstable. Its solutions is meaningful provided it is
sought within a restricted set of plausible solutions forming the interpretation model.
The choice of the interpretation model should be confidently controlled by a priori
information and qualitative indications derived from the field observations.

4. The magnetotelluric field is of diffusive nature. Generally it can offer only
a smoothed image of the geoelectric medium. Buried sharp conductivity contrasts
existing in the Earth are introduced into the interpretation model from a priori in-
formation or hypothetically. The most complete interpretation can be performed by
a compromise between smoothing (Occam) and contrasting (blocky) inversions.

5. In solving an unstable inverse problem, we come up against the paradox of in-
stability.The more restricted the interpretation model, the more stable the inverse
problem and the poorer the detailedness of its solution. On the other hand, the
more stable the inverse problem, the higher its resolution. The resolution of the
inverse problem and the detailedness of its solution are antagonistic. The inverse
problem should be solved with optimum relation between stability, resolution and
detailedness. An interpretation model with a small number of layers and structures
is preferable. The additional layers and structures can be introduced providing the
magnetotelluric and magnetovariational indications demand their presence. Taking
advantage of blocky partition, a number of parameters defining the interpretation
model should be reduced to a minimum providing a stable solution.

545



546 Magnetotelluric Catechism (Instead of Afterword)

6. The magnetotelluric inverse problem is multicriterion. We can use tippers,
magnetic tensors, impedance and phase tensors. These response functions have dif-
ferent sensitivity to different parameters of the interpretation model and different
immunity to near-surface distortions. Being inverted simultaneously, they may come
into conflict with each other impairing the inversion accuracy. The best approach to
the solution of a multicriterion inverse problem is a succession of partial inversions
focused upon different elements of the interpretation model. Partial inversions trade
their information: the result of a previous inversion is transferred to a next inver-
sion as a starting model. When studying media with sharp horizontal contrasts and
strong geoelectric noise, it is profitable to begin with tippers and magnetic tensors
which are free from static distortions and nicely resolve the geoelectric medium
in the horizontal and vertical directions. It is just tipper and magnetic tensor that
under complicated conditions can give a sound reliable basis for further estimates
performed by phases and apparent resistivities.

7. The magnetotelluric effects are of integral nature and therefore the large com-
pact bodies can manifest themselves as mosaic alternation of cells of higher and
lower conductivity. Such a solution should be considered as one of the equivalent
solutions. In agreement with geological expediency, it can be smoothed under con-
dition that the misfits of the response functions do not increase.

8. The inversion adequacy should be estimated by comparing the modeled and
measured local response functions. The model elements whose elimination does
not increase the misfits of the response functions are considered as unnecessary
insignificant artifacts and removed.

9. Magnetotelluric large-scale regional studies of sediments and deep studies of
the Earth’s crust and upper mantle are usually carried out on the long single pro-
files which dooms geophysicists to the quasi-one-dimensional or two-dimensional
interpretation of the observation data. Admissibility of such simplifications should
be verified by a priori and a posteriori analysis of lateral effects. An important part
of this analysis is an appraisal and correction of interpretation errors arising due to
finite strike of elongated structures considered as two-dimensional ones.

10. The main puzzle of magnetotellurics is a violation of the dispersion rela-
tions between apparent resistivities and impedance phases. We have several exotic
models that expose these anomalies and occasionally we observe the violations of
the dispersion relations in actual practice. But we little understand their physical
mechanisms and we cannot tell with distinctness what properties of the geoelectric
medium are responsible for violation of the dispersion relations. The study in this
field is a challenge for all of us.
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induction intensity, 33
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optimization method, 366–368
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Parkinson convention, 125
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perturbation tensor, 142

perturbation vectors, 143
phase tensor, 111
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polarization ratios, 55
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radial direction, 24
real perturbation ellipse, 153
regional anomalies, 46
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regularization method, 366, 368–371
regularization parameter, 368
regularization principle, 368
regularized solution, 369
regularizing operator, 368
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rotational invariants, 15, 123
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smoothing inversion, 346, 454
S-plane, 212
SSB-method, 62
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thin-sheet approximation, 211
three-dimensional anomalies, 46
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Tikhonov-Cagniard model, 3
tipper eigenfields, 131
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tipper matrix, 120
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twist tensor, 92
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Weaver-Agarval-Lilley test, 417
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Wiese convention, 125
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