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It’s late. Time to make up your mind. Which will it be?
The reality of dreams or the dream of reality?
—Alfred Bester
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PREFACE

The goals of this book are to (a) review the now-large literature across
many different disciplines about shortcomings of statistical tests; (b) explain
why these criticisms have sufficient merit to justify change in data-analysis
practices; (c) help readers acquire new skills concerning effect size estimation
and interval estimation for effect sizes; and (d) review additional alternatives
to statistical tests, including bootstrapping and Bayesian statistics.

This book is a follow-up to the report of Leland Wilkinson and the Task
Force on Statistical Inference (TFSI; 1999) of the American Psychological
Association (APA) and the fifth edition of the Publication Manual of the
American Psychological Association (APA, 2001). Both the report of the TFSI
and the most recent Publication Manual call for changes in the way data are
analyzed for psychology research journals, including rhe reporting of effect
sizes and confidence intervals for primary results. The reporting of effect
sizes is now also required by increasing numbers of research journals in
psychology and other disciplines. In addition, the reforms mentioned imply
a reduced role for traditional statistical tests, which reflects decades of
increasing criticism of the use of statistical tests in the behavioral and
other sciences.

An additional goal is related to the criticism that the most recent
Publication Manual calls for change in data analysis practices but does not
give examples. Numerous examples with actual research results are presented
throughout this volume.

This book is written for researchers and students in psychology and
related areas who may not have strong quantitative backgrounds. It assumes
that the reader has had at least one undergraduate-level course in behavioral
science statistics. Each substantive chapter begins with a review of fundamen-
tal statistical issues but does not get into the minutia of statistical theory.
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Works that do so are cited in the text, and such works can be consulted
for more information. This book is suitable as a textbook for an introductory
course in behavioral science statistics at the graduate level. It can also be
used in a senior undergraduate-level course that considers modern methods
of data analysis. Coverage of some of the more advanced topics in this
book, such as noncentrality interval estimation and effect size estimation
for random factors, could be skipped in such a class. Especially useful for
all readers is chapter 3, which considers common misinterpretations of the
results of statistical tests. These misinterpretations are widespread among
students and researchers alike, and such false beliefs may have hindered the
development of psychology and related areas as cumulative sciences.

It was a pleasure to work with the development and production staff
at the APA. Their work is first-rate. The two anonymous reviews of an
earlier version of this work were extraordinarily helpful. This kind of feedback
is invaluable to an author, and any remaining shortcomings in the book
reflect my own limitations. Special thanks to Debbie Hardin, the project
manager for this book, who did a super job of dealing with the original
(and technically complicated) manuscript. Finally, 1 greatly appreciate the
support of my wife while working on this project and the delightful company
of our two wonderful children, to whom this book is dedicated.
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CHANGING TIMES

Somehow the wondrous promise of the earth is that there are things

beautiful in it, things wondrous and alluring, and by virtue of your trade
you want to understand them.

—Mitchell Feigenbaum, Chaos theorist

(quoted in Gleick, 1988, p. 187)

This book has a home page on the Internet; its address is
http://www.apa.org/books/resources/kline

From the home page, readers can find supplemental readings about
advanced topics, exercises with answers, resources for instructors and stu-
dents, and links to related Web sites. Readers can also download data files
for some of the research examples discussed later.

In 1996, the Board of Scientific Affairs of the American Psychological
Association (APA) convened the Task Force on Statistical Inference
(TFSI). The TFSI was asked to respond to the long-standing controversy
about statistical significance tests and elucidate alternative methods (Wilkin-
son & TFSI, 1999). Some hoped that the TFSI would recommend a ban
on statistical tests in psychology journals. Such a ban was also discussed in
recent special sections or issues of Psychological Science (Harris, 1997a),
Research in the Schools (McLean & Kaufman, 1998), and an edited book by
Harlow, Mulaik, and Steiger (1997), the title of which asks the question,
“What if there were no significance tests?” Problems with and alternatives
to statistical tests were also discussed in a special issue of the Journal of
Experimental Education (B. Thompson, 1993a).

Serious discussion of such a ban reflects the culmination of many years
of disenchantment with statistical tests. In fact, this controversy has escalated
decade by decade and has crossed various disciplines as diverse as psychology

and wildlife sciences (e.g., D. Anderson, Burnham, & W. Thompson, 2000).



Talk of a ban on statistical tests would probably come as a surprise to a
casual observer, to whom it would be plain that results of statistical tests
are reported in most empirical articles published in psychology and related
disciplines in the past 50 years (Hubbard & Ryan, 2000). The same observer
stepping into almost any university classroom for courses in behavioral
science statistics at either the undergraduate or graduate level would find
that these tests have been the main subject matter for the past 20 years or
more (Aiken, West, Sechrest, & Reno, 1990; Frederich, Buday, & Kerr,
2000).

Nevertheless, by the late 1990s the number of voices in the behavioral
sciences decrying the limitations of statistical tests started to reach a critical
mass. This was apparent in the formation of the TFSI by the APA to look
at this controversy. It is also obvious in the fact that about two dozen
research journals in psychology, education, counseling, and other areas now
require the reporting of effect sizes in submitted manuscripts (Fidler &
B. Thompson, 2001).! Two of these are flagship journals of associations
(American Counseling Association, Council for Exceptional Children),
each with more than 50,000 members. One of the most recent APA journals
to make this requirement is the Journal of Educational Psychology. The require-
ment to report effect sizes sends a powerful message to potential contributors
to these journals that use of statistical tests alone is insufficient, and the
number of journals making it is bound to increase. Editorial policies in
prominent journals can be an important bellwether for reform (Sedlmeier
& Gigerenzer, 1989; Vacha-Haase, 2001). Indeed, Kaufman (1998) noted
that the controversy over the use of statistical tests is the major methodologi-
cal issue of our generation. So perhaps a casual observer might sense that
change is coming after all.

GOALS AND PLAN OF THE BOOK

This book aims to help readers stay abreast of ongoing changes in the
ways we analyze our data and report our findings in the behavioral sciences.
These readers may be educators, applied researchers, reviewers of manuscripts
for journals, or undergraduate or graduate students in psychology or related
disciplines. It is assumed that many readers (like the author) were trained
in traditional methods of data analysis—that is, the use of statistical tests
as the primary (if not only) way to evaluate hypotheses. Readers who are
currently students are perhaps at some advantage because their views and
skills may not yet be so narrow. However, even very experienced researchers

!'B. Thompson keeps a list of journals that require the reporting of effect sizes at http://www.coe
.tamu.edu/~bthompsonfjournals.htm
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who have published many articles may have wondered whether there are
not better ways to evaluate research hypotheses, or whether it is actually
necessary to include results of statistical tests in articles (e.g., Kaufman,
1998). Readers already convinced of the limitations of statistical tests should
find in this book useful arguments to reinforce their viewpoint. Readers not
sharing this view will, it is hoped, ind some interesting ideas to ponder.

This book does not debate whether we in the psychological community
should change the way we use statistical tests. Tryon (2001) and others
have noted that more than 50 years of trying to remediate misuses of
statistical tests by discussing their technical merits has not been productive.
This book assumes instead that developments in the field already point
toward a diminishing role for statistical tests. As a consequence, the goals
of this book are to help readers understand (a) the controversy about and
limitations of statistical tests, (b) strengths and weakness of some proposed
alternatives to statistical tests, and (c) other methods related to a reduced
role for statistical tests, such as meta-analysis. Of primary importance for
the second and third points is effect size estimation which, as mentioned,
is now required by many journals. The estimation of average effect size
across a set of studies in the same general area is also a key part of most meta-
analyses. Another major focus of this book involves interval estimation,
especially the construction of confidence intervals based on observed ef-
fect sizes.

Part I of the book is concerned with fundamental concepts and summa-
rizes the debate about statistical tests. Chapter 2 reviews principles of sam-
pling and estimation that underlie confidence intervals and statistical tests.
Chapter 3 outlines arguments against the continued use of statistical tests
as our primary means to evaluate hypotheses. This discussion assumes that
although there is nothing inherently wrong with statistical tests, what they
actually do makes them unsuitable for perhaps most types of behavioral
research. It is also argued that research progress in psychology has been
hindered by our preoccupation with statistical tests.

Part II comprises four chapters that emphasize effect size estimation
in comparative studies that compare at least two different groups or conditions.
Chapter 4 reviews the general rationale of effect size estimation and intro-
duces basic parametric effect size indexes for continuous outcome variables,
including standardized mean differences and measures of association. Also
considered is the comparison of groups at the case level with relatively
simple statistics based on proportions of scores above or below certain
reference points. The critical problem of evaluating substantive (theoretical,
clinical, or practical) significance versus statistical significance is also dis-
cussed. Chapter 5 introduces nonparametric effect size indexes for comparing
groups on categorical outcomes, such as relapsed versus not relapsed. Chap-
ters 6 and 7 concern effect size estimation in one-way designs with at
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least three conditions and factorial designs with two or more independent
variables. Many empirical examples are presented in chapters 4 to 7.

Presentations about effect size estimation are often chock full of equa-
tions. This is because many effect size indexes can be computed in more
than one way, such as from group descriptive statistics or test statistics. To
reduce the overall number, only the most essential equations are given in
chapters 4 to 7. Some of these equations are for primary researchers who
have access to the original data, but others are also handy in secondary
analyses based on summary statistics often reported in printed or on-line
documents. Information about additional ways to compute effect size indexes
is available in technical books about meta-analysis, such as Cooper and
Hedges (1994b).

Part III includes two chapters that cover topics related to reform of
methods of data analysis in the social sciences. Chapter 8 deals with princi-
ples of replication and meta-analysis. The latter has become an increasingly
important tool in both the social and health sciences for synthesizing results
across a research literature. Its emphasis on effect sizes in primary studies
instead of results of statistical tests avoids some of the limitations of the
latter. Researchers working in areas with sufficient numbers of studies for
meta-analysis thus need to understand its potential strengths and limitations.
Chapter 9 surveys two other alternatives to traditional statistical tests that
are often overlooked in psychology, statistical resampling—which includes
the method of bootstrapping—and Bayesian estimation.

RETROSPECTIVE

Comprehensive historical accounts of the long-standing controversy
about statistical significance tests can be found in Gigerenzer (1993), Huberty

and Pike (1999), and Oakes (1986).

Hybrid Logic of Statistical Tests (1920-1960)

The basic logical elements of what is today often referred to as null
hypothesis significance testing (NHST) were present in scientific papers as
early as the 1700s (Stigler, 1986). These elements were not formally orga-
nized into a systematic method until the early 1900s, however. The method
of NHST in its contemporary form is actually a hybrid of two different
schools of thought, one from the 1920s associated with R. Fisher (e.g.,
1925) and another from the 1930s called the Neyman—Pearson approach,
after Neyman and E. S. Pearson (e.g., Neyman & E. S. Pearson, 1933).
Other individuals contributed to these schools, such as K. Pearson and
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A. Wald (Hogben, 1957), but the work of the three principals listed first
forms the genesis of NHST.

The Neyman—Pearson model is an extension of the Fisher model.
Fisher’s approach featured only a null hypothesis and subsequent estimation
of the conditional probability of the data under it with statistical tests. The
probabilities generated by statistical tests are commonly called p values.
There was no alternative hypothesis in Fisher’s model. The conventional
levels of statistical significance used today, .05 and .01, are generally attrib-
uted to Fisher, but he apparently did not advocate that these values be
applied across all studies (Cowles & Davis, 1982). Anyhow, for its focus
on p values under the null hypothesis, Fisher’s model has been called the
p-value approach (Huberty, 1993).

The addition of the alternative hypothesis to the basic Fisher model,
the attendant specification of one- or two-tailed regions of rejection, and
the application of fixed levels of o across all studies characterize the Neyman—
Pearson model. The last characteristic listed is perhaps the main source of
the rigid application of the .05 or .01 levels of statistical significance that
is today’s practice. For the same reason, the Neyman—Pearson model has
been described as the fixed-p approach (Huberty, 1993). The Neyman—
Pearson model also brought with it the conceptual framework of power and
associated decision errors, Type I and Type 1. A modern power analysis is
in spirit and fact based on the Neyman—Pearson model, not the Fisher model.

To say that advocates of the Fisher model and the Neyman—Pearson
model exchanged few kind words about each other’s approach is an under-
statement. Their long-running debate was acrimonious. Nevertheless, the
integration of the two models by statisticians and authors other than Fisher,
Neyman, and E. S. Pearson into what makes up contemporary NHST took
place roughly between 1935 and 1950 (Huberty, 1993). Gigerenzer (1993)
referred to this integrated model as the hybrid logic of scientific inference, and
P. Dixon and O’Reilly (1999) called it the “Intro Stats” method because
this is the approach outlined in virtually all contemporary textbooks for
introductory statistics in the behavioral sciences. Many authors have noted
that (a) the hybrid logic that underlies modern NHST would have been
rejected by Fisher, Neyman, and E. S. Pearson, although for different reasons;
and (b) its composite nature may be a source of confusion about what results
from statistical tests really mean.

Institutionalization of the “Intro Stats” Method (1940-1960)

Before 1940, statistical tests were used in relatively few published
articles in psychology. Authors of works from this time instead used in
nonstandard ways a variety of descriptive statistics or rudimentary test statis-
tics. However, from roughly 1940 to 1960 during what Gigerenzer and
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D. Murray (1987) called the inference revolution in psychology, the Intro
Stats method was widely adopted in textbooks, university curricula, and
journal editorial practice as the method to test hypotheses. Gigerenzer (1993)
identified two factors that contributed to this shift. One is the move in
psychology away from the study of single cases, such as in operant condition-
ing studies of individual animals, to the study of groups. This change occurred
roughly from 1920 to 1950. Another is what Gigerenzer (1993) and others
called the probabilistic revolution in science, which introduced indeterminism
as a major theoretical concept in areas such as quantum mechanics and
genetics to better understand the subject matter. In psychology, though, it
was used to mechanize the inference process through NHST, a critical
difference, as it turns out.

After the widespread adoption of the Intro Stats method, there was a
dramatic increase in the reporting of statistical tests in journal articles in
psychology and related fields. This trend is obvious in Figure 1.1, reproduced
from Hubbard and Ryan. These authors sampled about 8,000 articles pub-
lished between 1911 and 1998 in randomly selected issues of 12 different
APA journals. Summarized in the figure are the percentages of articles in
which statistical tests were used in the data analysis. This percentage is
about 17% from 1911 to 1929. It increases to around 50% in 1940, continues
to rise to about 85% by 1960, and exceeds 90% since the 1970s. The time
period of the most rapid increase in use of NHST, about 1940 to 1960,
corresponds to the inference revolution in psychology.

Some advantages to the institutionalization of NHST were noted by
Gigerenzer (1993). The behavioral sciences grew rapidly after 1945, and its
administration was made easier by the near-universal use of statistical tests.
For example, journal editors could use NHST outcomes to decide which
studies to publish or reject, respectively, those with or without statistically
significant results, among other considerations. The method of NHST is
mechanically applied, and thus seemed to remove subjective judgment from
the inference process. That this objectivity is more apparent than real is
another matter (more about this point later). The method of NHST also
gave behavioral researchers a common language and perhaps identity as
members of the same grand research enterprise. It also distinguished them
from their counterparts in the natural sciences, who may use statistical tests
to detect outliers but not typically to test hypotheses (Gigerenzer, 1993).
The elevation of any method to dogma has potential costs, some of which
are considered next.

Increasing Criticism of Statistical Tests (1940—Present)

There has been controversy about statistical tests for more than 70
years, or as long as they have been around (Kirk, 1996). Some examples of
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Figure 1.1. Percentage of articles reporting results of statistical tests in 12 journals
of the American Psychological Association from 1911 to 1998. From “The Historical
Growth of Statistical Significance Testing in Psychology—And Its Future Prospecits,”
by R. Hubbard and P. A. Ryan, 2000, Educational and Psychological Measurement,
60, p. 665. Copyright 2001 by Sage Publications. Reprinted with permission.

early critical works include Boring (1919), Berkson (1942), Rozeboom
(1960), a book by Hogben (1957), and edited books by Morrison and Henkel
(1970) and Kirk (1972). Overall, the numbers of published works critical
of NHST has been increasing exponentially since the 1940s. D. Anderson et
al. searched the research literature in ecology, medicine, business/feconomics,
statistics, and the social sciences for works that questioned the scientific
utility of statistical tests. Presented in Figure 1.2 are the total numbers of
such works across all surveyed disciplines. Relatively small numbers were
published from 1940 to 1960. However, the numbers of critical articles has
increased rapidly since the 1970s, and just about 200 were published in the
1990s in psychology and the other disciplines surveyed by D. Anderson et al.

Summarized next are some of the major arguments against the contin-
ued widespread use of statistical tests in the behavioral sciences; they are
considered in more detail in later chapters.

1. The p values generated by statistical tests are widely misunder-
stood. These misunderstandings include the belief that p values
measure the likelihood of sampling error, replication, and the
truth of the null or alternative hypothesis. These false beliefs
may not be solely the fault of users of statistical tests, however.
This is because the logical underpinnings of contemporary
NHST are not entirely consistent.

INTRODUCTORY CONCEPTS 9
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Figure 1.2. Total numbers of articles in ecology, medicine, business—economics,
statistics, and the social sciences that question the utility of statistical tests. From
“Null Hypothesis Testing: Problems, Prevalence, and an Alternative,” by D. R.
Anderson, K.P. Burnham, and W. L. Thompson, 2000, Journal of Wildlife
Management, 64, p. 913. Copyright 2000 by The Wildlife Society. Adapted with
permission.

2. Mistaken beliefs about what statistical tests tell us act as a
collective form of cognitive distortion that has hindered re-
search progress in the behavioral sciences. This is apparent
by the failure to develop a stronger tradition of replication
compared to the natural sciences, a lack of relevance of much
of our research, and wasted research effort and resources. Crit-
ics do not generally suggest that statistical tests are the sole
cause, but their excessive use exacerbates these problems.

3. It is likely that p values from statistical tests in many (if not
most) behavioral studies are not very meaningful, especially
when implausible null hypotheses are tested or distributional
assumptions do not hold. If p values are suspect, so are decisions
based on them.
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4. The information actually provided by a statistical test is very
specific, so much so that statistical tests do not typically tell
researchers what they really want to know.

5. Statistical significance says nothing directly about the size of
an effect or whether it has theoretical, practical, or clinical
import. Effect size magnitude, substantive significance, and
whether a result replicates are what we really want (and need)
to know.

6. For all the problems of statistical tests, however, there is no
magical alternative (J. Cohen, 1994). That is, proposed alter-
natives, such as effect size estimation and interval estimation
in individual studies and the use of meta-analysis to synthesize
these results across studies, have their own potential problems.
Thus, alternatives to statistical tests should not be uncriti-
cally endorsed.

The Failure of Early “Suggestions” to Report Effect Sizes
(1994—Present)

One way to compensate for some of the limitations of statistical tests
is to report supplemental information, such as a measure of effect size
magnitude. Kirk (1996) noted that the idea of effect size estimation is hardly
new: It can found in the work by K. Pearson in the early 1900s, and one
of most widely used effect size statistics in the analysis of variance—estimated
eta-squared (f{?), also called the correlation ratio (R*)—is attributed to
R. Fisher. The reporting of effect sizes is also generally advocated by contem-
porary critics of statistical tests.

The fourth edition of the APA’s publication manual (APA, 1994) for
the first time encouraged but did not require authors to report effect sizes
along with results of statistical tests. Unfortunately, results of several empiri-
cal surveys of post-1994 volumes in more than 20 different journals indicate
that this encouragement has had relatively little impact (Vacha-Haase,
Nilsson, Reetz, Lance, & B. Thompson, 2000). For example, Kirk (1996)
examined the 1995 volumes of four different APA journals. The proportions
of empirical articles reporting effect sizes across the four journals ranged
from 12 to 77%. The figure of 77% seems impressive, but Kirk (1996) noted
that authors in this particular journal were more likely to use regression
techniques, which automatically generate correlation effect sizes such as R%.
Rates of effect sizes in empirical articles in other journals are about 25%,
but authors did not always interpret the effect sizes that they reported (e.g.,
B. Thompson & Snyder, 1998; Vacha-Haase & Ness, 1999). In a broader
survey of reporting practices of articles published in the Journal of Applied
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Psychology, Finch, Cumming, and Thomason (2001) found little evidence
of reform in the reporting of results of statistical tests over the years 1940
to 1999. That there would be so little change in reporting practices since
the inference revolution in psychology is surprising, especially given that
relatively inexpensive personal computers have made available to applied
researchers many sophisticated statistical methods. An analogy would be
putting the engine from a modern car in the body of a car from the 1940s:
Because of limitations of its dated chassis, the car may not actually go
any faster.

The Rise of Meta-Analysis and Meta-Analytic Thinking
(1976—Present)

Since its introduction in the late 1970s (Glass, 1976; R. Rosenthal,
1976), meta-analysis has become an important tool for research synthesis
in several disciplines. Meta-analysis is described in chapter 8, so only
its impact on the controversy about statistical tests is outlined in this
chapter. The typical meta-analysis in the social sciences estimates the
central tendency and variability in standardized effect sizes across a set
of studies of the same phenomenon, such as the relative effectiveness
of treatment over control. This focus on effect size and not statistical
significance in individual studies encourages the reader of a meta-analytic
article to think outside of the limitations of the latter. There are also
now several examples in which meta-analytic results show that conclusions
based on whether null hypotheses are rejected in individual studies have
been wrong (e.g., Rossi, 1997).

The increasing use of meta-analysis has also encouraged meta-analytic
thinking, to which Cumming and Finch (2001, p. 555) and B. Thompson
(2002b) attributed the following characteristics:

1. An accurate appreciation of the results of previous studies is
seen as essential.

2. A researcher should view his or her own study as making a
modest contribution to that body of previous research.

3. A researcher should report results so that they can be easily
incorporated into a future meta-analysis. This includes the
reporting of effect sizes and confidence intervals.

4. Retrospective interpretation of new results, once collected,
are called for via direct comparison with previous effect sizes.

Meta-analytic thinking is likely to become ever more predominate.
It is also incompatible with using statistical tests as the primary inference
tool.

12 CHANGING TIMES



Report of the TFSI and the APA’s Fifth Edition of the Publication
Manual (1999-Present)

The report of the TFSI dealt with a wide range of methodological and
statistical issues (Wilkinson & TFSI, 1999). It also offered suggestions for
the then-upcoming fifth edition of the APA’s Publication Manual (APA,
2001). Some of the TFSI’s main recommendations concerning data analyses
are summarized next:

1.
2.

wn

However, the TFSI decided not to recommend a ban on statistical tests
in psychology journals. In its view, such a ban would be a too extreme way to
curb abuses of statistical tests (Wilkinson & TFSI, 1999, pp. 602-603).

The fifth edition of the APA’s Publication Manual (APA, 2001) takes
a similar stand. That is, it acknowledges the controversy about statistical
tests, but it also states that it is not a proper role of the Publication Manual
to resolve this debate (pp. 21-22). It goes on to recommend the complete
reporting of the results of statistical tests, which would include the value
of the test statistic, its degrees of freedom, and either the level of a applied
across all tests, such as p < .05, or the exact p value from the output of a
computer program, such as p = .012. Other recommendations about the

Use minimally sufficient analyses (simpler is better).
Do not report statistics from computer output without knowing
what they mean.

. Document assumptions about population effect sizes, sample

sizes, or measurement behind a priori estimates of the
statistical power of the study. Use confidence intervals about
observed results instead of estimating the observed (post
hoc) power.

Report observed effect sizes for primary outcomes or whenever
p values are reported. This makes for better research and
informs subsequent meta-analyses.

Report confidence intervals about observed effect sizes.
Give assurances to a reasonable degree that the data meet
statistical assumptions.

statistical analyses (pp. 21-26) include the following:

1.

Report adequate descriptive statistics, such as means, vari-
ances, and sizes of each group and a pooled within-groups
variance—covariance in a comparative study or a correlation
matrix in a regression analysis. This information is neces-
sary for later meta-analyses or secondary analyses by other
researchers.

INTRODUCTORY CONCEPTS
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2. Effect sizes should “almost always” be reported (p. 25). Several
examples of effect size indexes are listed, many of which are
discussed later in this book and by Kirk (1996) and Borenstein
(1998), among others. The absence of effect sizes is also cited
as an example of a study defect (p. 5). However, authors are
still not required to report them.

3. The use of confidence intervals is “strongly recommended,”
but not required (p. 22).

Predictably, not everyone is happy with the report of the TFSI or the
fifth edition of the Publication Manual. For example, B. Thompson (1999)
noted that only encouraging the reporting of effect sizes or confidence
intervals presents a self-canceling mixed message. Sohn (2000) lamented
the lack of clear guidelines in the report of the TFSI for changing data
analysis practices that may improve the relevance of psychology research.
Finch et al. (2001) welcomed the TFSI report, but contrasted the somewhat
ambiguous recommendations about statistical analyses in the APA’s current
Publication Manual against the relatively simple set of guidelines for manu-
scripts submitted to biomedical journals by the International Committee of
Medical Journal Editors (1997). Kirk (2001) also welcomed the TFSI report
but suggested that the next (sixth) edition of the Publication Manual should
contain a much more detailed section on the recommendations of the TFSI.
He also noted the relative absence of examples in the current Publication
Manual (fifth edition) of how to appropriately report statistics. See TEFSI
(2000) for responses to some of these criticisms.

Interviews by Fidler (2002) with some of the principals shed light on
why the fifth edition of the Publication Manual does not require reporting
of effect sizes. There are some situations where it is difficult or impossible
to compute effect sizes. This is especially true for some complex repeated-
measures designs or multivariate designs. Thus, there was a reluctance to
mandate a requirement that in some research contexts could not be met.
However, it is possible to calculate effect sizes in perhaps most behavioral
studies. It is also true that the effect size estimation void for some kinds of
designs is being filled by ongoing research, and is or soon will be filled.

PROSPECTIVE

I believe the events just described indicate a future in which the role
of traditional statistical tests in behavioral research will get smaller and
smaller. This change will not happen overnight, and statistical tests are not
about to disappear in the short term. Indeed, it is expected in the meantime
that researchers will still have to report the results of statistical tests in their

14 CHANGING TIMES



manuscripts. This is because, to be frank, their manuscripts may be rejected
if they contain no statistical tests. However, researchers should give much
less interpretive weight to outcomes of statistical tests than in the past.
Specific recommendations follow.

1. Researchers should not view a statistically significant result
as particularly informative. For example, they should not con-
clude that such results are automatically noteworthy or that
they are likely to replicate.

2. Researchers should also not discount a statistically nonsignifi-
cant result. For example, they should not conclude that failing
to reject the null hypothesis means that the population effect
size is zero. This false belief may be responsible for the over-
looking of possibly beneficial effects in health research (R.
Rosenthal, 1994).

3. Effect sizes should always be reported, and confidence intervals
should be constructed about them whenever possible. How-
ever, real reform does not involve computing effect sizes only
for statistically significant results. This would amount to “busi-
ness as usual” where the statistical test is still at center stage
(Sohn, 2000). Real reform also means that effect sizes are
interpreted and evaluated for their substantive significance,
not just reported.

Other recommendations are given later in the book, many of which
do not involve the use of statistical tests at all. This is consistent with a
vision of the future in behavioral research that I and others advocate (e.g.,
B. Thompson, 2002b): Most studies in the future will not use statistical tests
as the primary decision criterion, and those that do will concern only very
specific problems for which variations of NHST may be appropriate, such
as equivalence testing or inferential confidence intervals (chap. 3, this
volume). It is also envisioned that the social sciences will become more like
the natural sciences. That is, we will report the directions and magnitudes of
our effects, determine whether they replicate, and evaluate them for their
theoretical, clinical, or practical significance, not just their statistical signifi-

cance (Kirk, 1996).

VOICES FROM THE FUTURE

As mentioned, it may be easier for younger researchers who are not
as set in their ways to respond to the call for reform in methods of data
analysis and inference. However, some journal editors—who are typically
accomplished and experienced researchers—are taking the lead in reform.
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So are the authors of many of the works cited in this book. Students are
also promising prospects for reform because they are, in my experience and
that of others (Hyde, 2001), eager to learn about limitations of traditional
statistical tests. They can also understand, with proper instruction, ideas
such as effect size and confidence intervals, even in introductory statistics
courses. In fact, it is my experience that it is easier to teach undergraduates
these concepts than the convoluted logic of NHST. Other basics of reform
are even easier to teach, such as the need for replication.

Presented next are some example responses to the question, “What is
the most important thing you learned in this class?” on a recent final
examination in introductory psychology statistics I gave. These words from
future behavioral researchers also reiterate some of the major goals of this
book. May we all be so wise.

= Null hypothesis significance testing is not the only or necessarily
the best way to test hypotheses.

* Just because a finding is statistically significant doesn’t mean
that it’s important or reliable.

* If you increase the sample size enough, any result will be statisti-
cally significant. This is scary.

» To be skeptical of research papers that put a large emphasis on
statistical significance.

» Statistical significance does not mean practical significance.
Effect size, power, means, and standard deviations should be
included in research reports. There needs to be in the social
sciences a better understanding of statistical tests so that we
can make better, more informed choices.

It has been said that if we do not make the future, others will do it
for us. It is time to start building our future by moving beyond statistical
tests and leaving behind other, old ways of doing things. We need to explore
other possibilities for testing our hypotheses, ones that may lead to a more
productive future for research in psychology and related disciplines. I hope
this book will challenge, encourage, and support readers to think and act
along these lines.

CONCLUSION

The controversy about statistical tests in psychology was briefly de-
scribed, as were the events leading up to it. This history gives the context
for the 1999 report of the Task Force on Statistical Inference and the 2001
fifth edition of the Publication Manual of the APA. It also indicates that
the continued use of statistical tests as the sole way to test hypotheses and
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make inferential decisions in the behavioral sciences is unlikely. The points
raised set the stage for reviewing in the next chapter some fundamental
statistical concepts. These concepts are also crucial for understanding the
limitations of statistical tests and characteristics of some proposed alterna-
tives, such as interval estimation and effect size estimation.
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FUNDAMENTAL CONCEPTS

When we are self-indulgent and uncritical, when we confuse hopes and
facts, we slide into pseudoscience and superstition.

—Carl Sagan (1996, p. 27)

This chapter prepares readers for learning about alternatives to statisti-
cal tests through survey of fundamental concepts about research designs,
variables, and estimation. Also reviewed are characteristics of statistical
tests in general and those of three of the most widely used tests in comparative
studies, the t test and F test for means and the chi-square (x?) test for two-
way contingency tables. We will see in the next chapter that there are
many misunderstandings about statistical tests, so readers should pay close
attention to the discussions that follow. Exercises with answers for this
chapter are available on this book’s Web site.

TERMS AND IDEAS ABOUT COMPARATIVE STUDIES

Essential ideas about study design and the nature of independent or
dependent variables are reviewed in this section. It is hoped that this
presentation will build a common vocabulary for later chapters.

Independent Samples Designs and Correlated Designs
An independent variable (factor) has at least two levels. In an
independent samples (between-subjects) design, each level is studied with an

unrelated sample (group), and every case is measured once on the dependent
(outcome) variable. If cases are randomly assigned to samples, the factor
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is a manipulated or experimental variable and the design is a randomized-
groups or completely randomized design. If cases are classified into groups based
on an intrinsic characteristic such as gender, the factor is a nonexperimental or
individual-difference variable. Studies in which all factors are individual-
difference variables are referred to as nonexperimental, correlational, or
observational studies.

The samples are related in a dependent-samples or correlated design.
There are two kinds. In a repeated-measures or within-subjects design, each
case is measured at every level of the factor, such as pretest and posttest.
This means that the “samples” are actually identical across the levels of the
factor. R. Rosenthal, Rosnow, and Rubin (2000) distinguished between
ntrinsically and nonintrinsically repeated-measures designs. The logic of the
former requires multiple assessments of each case, such as when maturational
change is studied in individuals. The rationale of a nonintrinsically repeated-
measures design does not require multiple testing of each case because the
same factor could theoretically be studied with independent samples. For
instance, the effect of caffeine versus no caffeine on athletic performance
could be studied with unrelated groups in a completely randomized design
or with just one group in a repeated-measures design. In the second kind
of correlated design, a matched-groups design, a separate group corresponds
to each level of the factor, just as in between-subjects designs. The difference
is that each case in a matched-groups design is explicitly paired with a case
in every other sample on at least one matching variable, which controls
for this variable.

Compared to designs with independent samples, correlated designs
may reduce error variance and increase statistical power. For these reasons,
a correlated design may be chosen over an independent samples design even
though the research question does not require dependent samples. These
advantages have potential costs, though. Repeated-measures designs may
require controls for order effects, and matched-groups designs are subject
to regression effects if cases come from the extremes of their respective
populations. See Ellis (1999) for a clear discussion of these and other design
issues when studying dependent samples.

Balanced and Unbalanced Designs

An independent samples design is balanced if the number of cases
in each group (n) is the same. If any two groups are of different size, the
design is unbalanced. With no missing data, correlated designs are inherently
balanced. Although there is no general statistical requirement for balanced
designs, there are some potential drawbacks to unbalanced designs. One
is loss of statistical power even if the total number of cases is the same
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for a balanced versus an unbalanced design. Suppose that n; = n; = 50
for a balanced two-group design. R. Rosenthal et al. (pp. 30-32) showed
that the relative loss of power for an unbalanced design where n; = 70
and ny = 30 is equivalent to losing 16 cases (16% of the sample size) from
the balanced design. The relative power loss increases as the group size
disparity increases.

A critical issue concerns the reason why the group sizes are unequal.
For example, an unbalanced design may arise because of randomly missing
data from a design intended as balanced, such as when equipment fails and
scores are not recorded. A handful of missing observations is probably of
no great concern, such as if n; = 100 and n; = 97 as a result of three
randomly missing scores. A more serious problem occurs when unbalanced
designs are a result of nonrandomly missing data, such as when higher
proportions of participants drop out of the study under one condition than
another. Nonrandomly missing observations in this instance may cause a
bias: Study participants who withdrew may differ systematically from those
who remain, and the results may not generalize to the intended population.
Unfortunately, there is no simple statistical “fix” for bias because of nonran-
domly missing data. About all that can be done is to understand the nature
of the data loss and how it affects the results; see West (2001) for more
information.

Sometimes unbalanced designs are intentional—that is, based on a
specific sampling plan. Standardization samples of contemporary ability tests
are often stratified by demographic or other variables to match recent census
data about the population of the United States. Because sizes of groups
based on demographic variables such as gender or age are not usually equal
in the population, samples so stratified may be unbalanced. Unequal group
sizes in this case is actually an asset because it helps to ensure the representa-
tiveness of the sample in terms of relative group sizes. There are also times
when groups with relatively low population base rates are intentionally
oversampled. This is a common practice in research with special populations.
Suppose that the base rate of clinical depression in the general population
is 5%. In a particular study, a group of n; = 50 depressed patients is compared
with n; = 50 control cases. This design is balanced, which maximizes the
power of the group contrast. However, the base rate of depression in the
sample is 10 times higher than in the population. Because sample base rates
affect statistical tests and some types of effect size estimates, the results may
not generalize if the population base rates are very different.

Schultz and Grimes (2002) made the point that equal group sizes are
not always an asset even in randomized trials. Specifically, they show that
forcing equal group sizes through restricted forms of random assignment,
such as permuted-blocks randomization, may introduce bias compared to
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simple randomization, which does not guarantee equal group sizes. Thus,
whether unequal group size is a problem depends on the research context.

Multiple Independent or Dependent Variables

Studies with just one independent variable are called single-factor or
one-way designs. However, many behaviors studied by social scientists are
affected by more than one variable. One of the goals of a multifactor design
is to model this complexity by including two or more factors in the design.
The terms higher order, factorial, or blocking design, among others, describe
various kinds of multifactor designs. Blocking designs involve partitioning
the total sample into groups based on an individual-difference variable (e.g.,
age) believed to affect outcome. If cases within each block are randomly
assigned to levels of a manipulated factor, the resulting two-way design is
a randomized-blocks design. Effect size estimation in single-factor designs is
covered in chapters 4 through 6, and chapter 7 deals with this topic for
multifactor designs.

Regardless of the number of factors, comparative studies with just one
dependent variable are univariate designs. Many common statistical tests
such as the t and F tests for means are generally univariate tests. Multivariate
designs have at least two dependent variables, which allows measurement
of outcome in more than one area. This book deals only with univariate
designs. Because entire volumes are devoted to the basics of multivariate
methods (e.g., Grimm & Yarnold, 1995, 2000), it is beyond the scope of
this book to deal with them in detail. Also, multivariate analyses often wind
up as a series of univariate analyses conducted with individual outcomes. This
book’s Web site has a supplemental chapter about multivariate effect size
estimation in designs with independent samples and fixed factors.

Fixed-Effects and Random-Effects Factors

This distinction affects how the results are to be generalized and how
effect size magnitude should be estimated. It is introduced by example:
Suppose that the independent variable is dosage of a drug. There are theoreti-
cally an infinite number of dosages. If, say, five different dosages are randomly
selected for study, the drug factor is a random-effects factor. Selecting dosages
at random may give a representative sample from all possible levels. If so,
the results of the study may generalize to the whole population of dosages.
However, if the particular dosages for study are selected by some other
means, the drug factor is probably a fixed-effects factor. For instance, a
researcher may intentionally select five different dosages that form an equal-
interval scale, such as O (control), 3, 6, 9, and 12 mg - kg!. Because these
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dosages are not randomly selected, the results may not generalize to other
dosages not included in the original study, such as 15 mg - kg™’

Qualitative factors are usually treated as fixed factors. This is especially
true for individual-difference variables such as gender where all possible
levels may be included in the study. Quantitative variables can be analyzed
as either fixed or random factors. A control factor is a special kind of random
factor that is not of interest in itself but is included for the sake of generality
(Keppel, 1991). Suppose that participants are required to learn a list of
words. If only a single word list is used, it is possible that the results are
specific to the particular words on that list. Using several different lists
matched on characteristics such as relative word frequency and treating
word list as a random factor may enhance generalizability. Repeated-measures
factors that involve trials or measurement at specific times, such as three
and six months after treatment, are usually considered fixed. If there are
many repeated measures and only some are randomly selected for analysis,
the repeated-measures factor is considered random.

Designs with random factors may require special considerations in
statistical testing and effect size estimation. Thus, it may be better to consider
a factor as fixed instead of random if in doubt. Chapters 6 and 7 deal with
designs in which there is at least one random factor. Please note that
the subjects factor is almost always seen as random because its levels—the
individual cases—are usually different from study to study.

Covariate Analyses

Both correlated and blocking designs may reduce error variance com-
pared to independent samples and one-way designs, respectively. Another
way is covariate analysis. A covariate is a variable that predicts outcome but
is ideally unrelated to the independent variable. The variance explained by
the covariate is removed, which reduces error variance. Suppose a basic
math skills pretest is given to students before they are randomly assigned
to different instructional conditions for introductory statistics. Qutcome is
measured with a common final examination. It is likely that the pretest will
covary with exam scores. In an analysis of covariance (ANCOVA), the
effect of the pretest is statistically removed from the outcome variable. With
enough reduction in error variance, the power of the test of instructional
condition may be increased. Because ANCOVA is a statistical method, it
can be incorporated into any of the designs mentioned earlier. However,
ANCOVA is usually appropriate only for randomly assigned groups, and it
is critical to meet the statistical assumptions of this method. These points
are elaborated in chapter 6 when effect size estimation in covariate analyses
is discussed.
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SAMPLING AND ESTIMATION

Basic issues in sampling and estimation are reviewed next, including
types of samples, statistics as estimators of population parameters, and inter-
val estimation (i.e., the construction of confidence intervals based on sam-
ple statistics).

Types of Samples

One of the hallmarks of behavioral research is the distinction between
populations and samples. It is rare that whole populations are studied. If
the population is large, vast resources may be needed to study it. For example,
the budget for the 2000 census of the population of the United States was
about $4.5 billion, and almost a million temporary workers were hired for
the endeavor (U.S. Census Bureau, 2002). It may be practically impossible
to study even much smaller populations. For example, the base rate of autism
is about 4 in 10,000 children (.04%). If autistic children are dispersed over
a large geographic area or live in remote regions, studying all of them may
be impracticable.

Behavioral scientists must usually make do with small subsets of popula-
tions or samples. There are three general kinds of samples: random, system-
atic, and ad hoc. Random samples are selected by a chance-based method
that gives all observations an equal probability of appearing in the sample,
which may yield a representative sample. Observations in systematic samples
are selected using some orderly sampling plan that may yield a representative
sample, but this is not guaranteed. Suppose that an alphabetical list of every
household is available for some area. A random number between 10 and
20 is generated and turns out to be 17. Every 17th household from the list
is contacted for an interview, which yields a 6% (1/17) sample in that area.

Most samples in social science research are neither random nor system-
atic but rather ad hoc samples, also called samples of convenience, locally
available samples, or accidental samples. All of these terms imply the study
of samples that happen to be available. A group of undergraduate students
in a particular class who volunteer as research participants is an example
of a convenience sample. There are two problems with such samples. First,
they are probably not representative. For instance, it is known that volunteers
differ systematically from nonvolunteers. Second, distributional theories that
underlie statistical tests generally assume random sampling. If the data
are from ad hoc samples, there is a conceptual mismatch with the test’s
distributional theory. This is a criticism of statistical tests among others
considered in the next chapter.

Despite the potential problems of ad hoc samples, it is often difficult
or impossible to collect random or even systematic samples. True random
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sampling requires a list of all observations in the population, but such lists
rarely exist. Also, the notion of random or systematic sampling does not
apply to animal research: Samples in this area are almost never randomly
selected from known populations of animals. Perhaps the best way to mitigate
the influence of bias in ad hoc samples is to follow what is now a fairly
standard practice: Measure a posteriori a variety of sample characteristics
and report them along with the rest of the results, which allows readers of
the study to compare its sample with those of other studies in the same
area. Another option is to compare the sample demographic profile with
that of the population (if such a profile exists) to show that the sample is
not obviously unrepresentative.

Sample Statistics as Estimators

Values of population parameters, such as means (1), variances (6?%), or
correlations (p), are usually unknown. They are instead estimated with
sample statistics, such as M (means), s? (variances), or r (correlations). These
statistics are subject to sampling error, which refers to the difference between
an estimator and the corresponding population value. These differences
arise because the values of statistics from random samples tend to vary
around that of the population parameter. Some of these statistics will be
too high and others too low (i.e., they over- or underestimate the population
parameter), and only a relatively small number will exactly equal the popula-
tion value. This variability among estimators from different samples is a
statistical phenomenon akin to background (natural) radiation: It’s always
there, sometimes more or less, fluctuating randomly from sample to sample.
The amount of sampling error is generally affected by the variability of
population observations, how the samples are selected, and their size. If the
population is heterogenous (e.g., 6° is large), values of sample statistics may
also be quite variable. Obviously, values of estimators from biased samples
may differ substantially from that of the corresponding parameter. Given
reasonably representative sampling and constant variability among popula-
tion observations, sampling error varies inversely with sample size. This
implies that statistics in larger samples tend to be closer on average to the
population parameter than in smaller samples. This property describes the
law of large numbers, and it says that one is more likely to get more accurate
estimates from larger samples than smaller samples.

Sample statistics are either biased or unbiased estimators of the corres-
ponding population parameter. The sample mean is an unbiased estimator
because its average (expected) value across all possible random samples
equals the population mean. The sample variance—also called a mean
square—is an unbiased estimator of population variance if computed as the
ratio of the sum of squares over the degrees of freedom, or
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where X is an individual score. In contrast, a sample variance derived as
S? = SS/N is a negatively biased estimator because its values are on average
less than 62. All references to sample variances that follow assume Equation
2.1 unless otherwise indicated. Expected values of statistics that are positively
biased estimators generally exceed that of the corresponding parameter.

There are ways to correct some statistics for bias. For example, although
s* is an unbiased estimator of G?, the sample standard deviation s is a
negatively biased estimator of 6. However, multiplication of s by the correc-
tion factor in parentheses that follows

8= (1 . “N;_I))s (2.2)

yields the statistic &, which is a numerical approximation to the unbiased
estimator of 6. Because the value of the correction factor in Equation 2.2
is larger than 1.00, 6 > s. There is also greater correction for negative bias
in smaller samples than in larger samples. If N = 5, for instance, the unbiased
estimate of O is

G={1+1/45-DI}s=(1.0625)s
but for N = 50, the unbiased estimate is
6 ={1+1/[4 (50 — 1)]} s = (1.0051)s

which shows relatively less adjustment for bias in the larger sample. In even
larger samples, the value of the correction factor in the previous equation
is essentially 1.00; that is, there is practically no adjustment for bias. This
is another instance of the law of large numbers: Averages of even-biased
statistics from large samples tend to closely estimate the corresponding
parameter.

Point and Interval Estimation
Sample statistics are used for two types of estimation. Point estimation
is when the value of a sample statistic (e.g., M) is taken as the sole estimate

of a parameter (e.g., ). Because of sampling error, however, it is quite
unlikely that the two will be equal. Interval estimation recognizes this reality
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by constructing a confidence interval about a point estimate. A confidence
interval reflects the amount of sampling error associated with that estimate
within a specified level of uncertainty. A confidence interval can also be
seen as a range of plausible values for the corresponding parameter. In
graphical displays, confidence intervals may be represented as error bars
around a single point. Carl Sagan (1996) called error bars “a quiet but
insistent reminder that no knowledge is complete or perfect” (pp. 27-28).
Wider reporting of confidence intervals is also part of suggested reform of
statistical practice in the social sciences (see chapter 1).

We need a more precise definition of a confidence interval. The follow-

ing is based on Steiger and Fouladi (1997, pp. 229-230):

1. A 1 — o confidence interval for (on) a parameter is a pair
of statistics yielding an interval that, over repeated samples,
includes the parameter with probability 1 — a. (The symbol
o is the level of statistical significance.)

2. A 100 (1 — a)% confidence interval for a parameter is a pair
of statistics yielding an interval that, over repeated samples,
includes the parameter 100 (1 — )% of the time.

The value of 1 — o is selected by the researcher to reflect the degree
of statistical uncertainty. The lower bound of a confidence interval is the
lower confidence limit, and the upper bound is the upper confidence limit.
Because the most common levels of statistical significance in NHST are
o = .05 or o = .01, one usually sees in the literature either 95% or 99%
confidence intervals. However, it is possible to construct confidence intervals
that correspond to other levels of statistical significance. For example, error
bars around points that represent means in graphs are sometimes each one
standard error wide, which corresponds roughly to o = .32 and a 68%
confidence level.

In traditional confidence intervals—those based on central test statis-
tics (defined next)—the sample statistic is usually exactly between the lower
and upper bounds. That is, the width of the interval is symmetrical around
the estimator. The phrase “a confidence interval about” an estimator is
sometimes used to describe a symmetrical confidence interval. However,
this phrase neglects to mention the population parameter that the interval
is intended to approximate. It is also the case that the estimator does not
always fall at the very center of other kinds of confidence intervals, such
as those based on noncentral test statistics (also defined next).

The traditional way to construct a confidence interval is by adding
and subtracting from a statistic the product of its standard error and the
two-tailed critical value at the o, level of statistical significance in a relevant
central test distribution, such as t. A standard error is the standard deviation
of the sampling distribution of an estimator. The square of the standard
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error is the conditional variance, the variance of the sampling distribution.
A sampling distribution is a probability distribution based on random samples
all of size N. In general, standard errors vary directly with variability among
population observations and inversely with sample size. The latter explains
part of the law of large numbers: Distributions of statistics from larger samples
are generally narrower than distributions of the same statistic from smaller
samples. A central test distribution assumes that the null hypothesis is true.
Central test distributions are used in null hypothesis significance testing
(NHST) to determine the critical values of test statistics. Tables of critical
values for distributions such as t, F, and %* found in many introductory
statistics textbooks are based on central test distributions.

Standard errors of statistics with simple sampling distributions can be
estimated with formulas that have appeared in statistical textbooks for some
time. By a “simple” distribution it is meant that (a) the statistic estimates
only a single population parameter, and (b) both the shape and variance
of its sampling distribution are constant regardless of the value of the
parameter. Distributions of means and mean differences are simple as just
defined, and traditional confidence intervals for them are discussed next.

Confidence Intervals for

The standard error in a distribution of random means is

0.2

oM = ﬁ (23)

Because the population variance 6? is not generally known, this standard
error is usually estimated as

A (2.4)
M= N_\/N .

This estimate is subject to sampling error because the variance s* is a sample
statistic. The relevant test statistic for means when ¢ is unknown is central
t, so the general form of a confidence interval for p based on a single
observed mean is

M =+ sy [t.0ait, o« (N = 1)] (2.5)

where the term in brackets is the positive two-tailed critical value in a
central t distribution with N — 1 degrees of freedom at the o level of
statistical significance. Suppose we find in a sample of 25 cases that M =

100.00 and s = 9.00. The standard error is
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sm = 9.00/25'2 = 1.80
and t;.q.i1, 05 (24) = 2.064. The 95% confidence interval for p is thus
100.00 £ 1.80 (2.064)

or 100.00 + 3.72, which defines the interval 96.28-103.72. The 99% confi-
dence interval for L is constructed the same way except t; .y 01 (24) = 2.797:

100.00 + 1.80 (2.797)
or 100+ 5.03, which defines the interval 94.97—-105.03. The 99% confidence

interval is wider than the 95% confidence interval based on the same statistic
because a greater margin of error is allowed.

Let us consider now the correct interpretation of the 95% confidence
interval for p derived earlier, 96.28-103.72:

1. This interval defines a range of outcomes that should be consid-
ered equivalent to the observed result (M = 100.00) given the
amount of expected sampling error at the 95% confidence level.

2. It also provides a reasonable estimate of the population mean.
That is, u could be as low as 96.28 or it could be as high as
104.72, again at the 95% confidence level.

3. Of course, there is no guarantee that | is actually included
in the confidence interval. We could construct the 95% confi-
dence interval around the mean in another sample, but the
center or endpoints of this new interval will probably be
different compared with the original. This is because confi-
dence intervals are subject to sampling error, too.

4. However, if 95% confidence intervals are constructed around
the means of all random samples drawn from the same popula-

tion, then 95/100 of them will include p.

The last point gives a more precise definition of what we mean by
“95% confidence level” or “95% confident” from a frequentist or long-run
relative-frequency view of probability as the likelihood of an outcome over
repeatable events under constant conditions except for random error. This
view also assumes that probability is a property of nature that is independent
of what the researcher believes. In contrast, a subjectivist or subjective degree-
of-belief view defines probability as a personal belief the researcher has about
nature that is independent of nature’s true state. The same view also does
not distinguish between repeatable and unrepeatable (unique) events
(Oakes, 1986; Reichardt & Gollob, 1997). Although researchers in their
daily lives probably take a subjective view of probabilities, it is the frequentist
definition that generally underlies sampling theory.
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A researcher is probably more interested in knowing the probability
that a specific 95% confidence interval contains W than in knowing that
95/100 of all such intervals do. From a frequentist view, this probability for
the unique confidence interval of our example, 96.28-103.72, is either O
or 1.0. That is, this interval either contains [t or it does not. Thus, it is
generally incorrect from this perspective to say that the interval 96.28-103.72
has a probability of .95 of including p1. Reichardt and Gollob (1997) noted
that this kind of specific probability inference and the related specific confidence
inference that one is 95% confident that the interval includes [ is permitted
only in a very particular circumstance, which is that every possible value
of W is considered equally likely before the study is conducted. In Bayesian
estimation, which is based on a subjectivist view of probability, the same
circumstance is described by the principle of indifference, which says that in
the total absence of information about the parameter, equal probabilities
are assumed for all possible values. However, rarely do we have absolutely
no information about likely or even plausible values for the population
mean. In contrast, percentages associated with Bayesian confidence intervals
are interpreted as probabilities that the parameter lies within the interval.
This is what most researchers really want to know but generally cannot
get from a traditional confidence interval. The fundamentals of Bayesian
estimation are considered in chapter 9.

There is a kind of compromise language for describing traditional
confidence intervals that “splits the difference” between frequentist and
subjectivist views of probability. Applied to our example, it goes like this:
The unique interval 96.28-103.72 estimates p, with 95% confidence. This
statement may not be incorrect from a frequentist perspective because it is
not quite a specific confidence inference. It also gives a nod toward the
subjectivist view because it associates a degree of belief with a specific
interval. Like other compromises, however, it may not please purists who
hold one view of probability or the other.

The issues raised about the proper interpretation of percentages associ-
ated with unique confidence intervals foreshadow similar difficulties in inter-
preting probabilities (p values) from statistical tests. Part of the problem is a
clash between the long-run relative-frequency view of probability generally
assumed by these tests and a subjective view of probability held by perhaps
most researchers who use them. Another is the gap between what researchers
really want to know and what a p value from astatistical test actually tells them.

Confidence Intervals for p, — p,
The standard error in a distribution of differences (contrasts) between

pairs of means from independent samples selected from different popula-
tions is
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where 6} and 6% are the population variances and n; and n, are the sizes
of each sample (group). If we assume homogeneity of population variance
(i.e., 67 = 63), the expression for the standard error reduces to

1 1
O, - M, = 02(— + —) 2.7

noon

where o* is the common population variance. This variance is usually
unknown, so the standard error is estimated by

1 1
SM, - My = \[sP (— + —) (2.8)
where s is the pooled within-groups variance, which is the average of the

two group variances weighted by the degrees of freedom. It’s equation is

s% _ i?\;/x/ - (n; — 1)5% + (ny — 1)5% (2.9)

ng+ny—2

where SSy and dfyy are, respectively, the pooled within-groups sum of squares
and degrees of freedom. The latter can also be expressed as dfy = df; + df; =
N — 2. Only in balanced designs can s also be calculated as the average
of the two group variances, or (st + s3)/2.

The general form of a confidence interval for p; — p; based on the
difference between independent means is

(M — My) £ s, - M, [tzait, o (N = 2)] (2.10)

where M| — M, is the observed mean contrast and N — 2 is the pooled
within-groups degrees of freedom (dfy) of the positive two-tailed critical
value of t at the a level of statistical significance. Suppose in a balanced
two-group design where n = 5 we observe

M; — M, = 2.00, s} = 7.50, s5 = 5.00

which implies s = (7.50 + 5.00)/2 = 6.25. The standard error for the

contrast is

sm, - My = [6.25 (1/5 + 1/5)]'* = 1.58
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and .1, 05 (8) = 2.306. The 95% confidence interval for the mean con-
trast is

2.00 + 1.58 (2.306) or 2.00 £ 3.65 (2.11)

which defines the interval —1.65-5.65. Based on these results we can say
that iy — W, could be as low as —1.65 or as high as 5.6, with 95% confidence.
Please note that this interval includes zero as a reasonable estimate of
Wy — ;. This fact is subject to misinterpretation. For example, it may be
incorrectly concluded that p; = U, because zero falls between the lower and
upper bounds of the confidence interval. However, zero is only one value
within a range of estimates of I — |3, so in this sense it has no special
status in interval estimation for this example. Besides, the confidence interval
itself is subject to sampling error, so zero may not be included within the
95% confidence interval for pu; — W, in a replication. It is the range of
overlap between the two confidence intervals (if any) that would be of
greater interest than whether zero is included in one interval or the other.
These issues are elaborated next.

Now let us consider confidence intervals for contrasts between depen-
dent means. Below we use the symbol Mp to refer the average difference
score when two dependent samples are compared. A difference score is
computed as D = X; — X; for each of the n cases in a repeated-measures
design or for each of the n pairs of cases in a matched-groups design.
(Difference scores are also called gain scores or change scores.) If D = 0, there
is no difference; any other value indicates a higher score in one condition
than in the other. The average of all the difference scores equals the depen-
dent mean contrast, or Mp = M; — M;. The standard error of Mp is

ob _

- Sp
O'MD— 7——\/—1_1

where the 65 and o, are, respectively, the population variance and standard
deviation of the difference scores. The variance o takes account of the
population correlation of the scores between the conditions, which is desig-
nated in Equation 2.13 as pp;. Assuming homogeneity of variance, the
variance of the difference scores is

(2.12)

ob = 26X(1 - py2) (2.13)

where o is the common population variance. When there is a stronger
subjects effect—cases maintain their relative positions across the conditions—
P12 approaches 1.00. This reduces the variance of the difference scores,
which in turn reduces the standard error of the dependent mean contrast
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(Equation 2.12). It is this subtraction of consistent individual differences
from the standard error that makes confidence intervals based on dependent
mean contrasts generally narrower than confidence intervals based on con-
trasts between unrelated means. It also explains the power advantage of the
t test for dependent samples over the ¢ test for independent samples, which
is considered next. However, these advantages are realized only if p;; > 0.
Otherwise, confidence intervals and statistical tests may be wider and less
powerful (respectively) for dependent mean contrasts.

The population variance of the difference scores, 63, is usually un-
known, but it is often estimated as

2
smp = 2 = 2 (2.14)

where sand sp are, respectively, the sample variance and standard deviation
of the difference scores. The former is calculated as

sh=st + 5§ — 2 covypy (2.15)
where cowvy; is covariance of the observed scores across the conditions. It is
the product of the cross-conditions correlation and the within-conditions
standard deviations:

Covy =712 81 82 (216)
As 11, approaches 1.00, the variance s gets smaller, which in turn decreases
the estimated standard error of the dependent mean contrast.
The general form of a confidence interval for [p is
Mp % sy, [t2-0ait, o (n ~ 1)] (2.17)
Suppose for a dependent samples design we observe the following data:
M; =M, = 2.00, st = 7.50, s5 = 5.00, 112 = .735

Given the above information,

sh = 7.50 + 5.00 - 2 (.735) (7.50"%) (5.00%2) = 3.50
smp, = (3.50/5)"7 = 837

The value of t;.q, 05 (4) is 2.776, so the 95% confidence interval for pp is

2.00 £ .837 (2.776) or 2.00 + 2.32 (2.18)
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which defines the interval —.32—4.32. Please note that the 95% confidence
interval assuming a dependent-samples design is narrower than the 95%
confidence interval based on the same means and variances for an indepen-
dent-samples design, which is —1.65-5.65. (Compare Equations 2.11 and
2.18.) This result is expected because 1q; is relatively high (.735) for the
dependent-samples design (r; is presumed to be zero when the samples are
independent).

Confidence Intervals for Other Kinds of Statistics

Many statistics other than means have complex distributions. For
example, distributions of sample proportions for a dichotomous variable are
symmetrical only if the population proportion is T = .50; the same is true
for the Pearson correlation r only if the population correlation is p = 0.
Other statistics have complex distributions because they estimate more than
one population parameter. This includes some widely used effect size indexes
such as standardized mean differences, which for contrasts between inde-
pendent means generally estimate & = ([; — W;)/0, the ratio of the popula-
tion mean difference over the common population standard deviation.
(Chapter 4 considers standardized mean differences in detail.)

Until recently, confidence intervals for statistics with complex distribu-
tions have been estimated with approximate methods. One such method
involves confidence interval transformation (Steiger & Fouladi, 1997) in which
the statistic is mathematically transformed into units that are normally
distributed. The confidence interval is built by adding and subtracting from
the transformed statistic the product of the standard error in the transformed
metric and the appropriate positive two-tailed critical value of the normal
deviate z. The lower and upper bounds of this interval are then transformed
back into the metric of the original statistic, and the resulting interval
may be asymmetrical around that statistic. The construction of confidence
intervals for p based on the Fisher’s Z transformation of r is an example of
this approach, which is covered in many statistics textbooks (e.g., Glass &
K. Hopkins, 1996, pp. 357-358). Other transformation-based methods for
constructing confidence intervals for the population parameters estimated
by effect size statistics are introduced in later chapters.

Another approximate method builds confidence intervals directly
around the sample statistic and are thus symmetrical about it. The width
of the interval on either side is a product of the two-tailed critical value
of a central test statistic and an estimate of the asymptotic standard error,
which estimates what the standard error of the statistic would be in a large
sample (e.g., N > 500). However, if the researcher’s sample is not large,
the estimated standard error based on this approach may not be very accurate.
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Another drawback to this method is that the distributions of some sample
statistics, such as the multiple correlation R, are so complex that a computer
is needed to derive the estimated standard error. Fortunately, there are
increasing numbers of computer programs for calculating confidence inter-
vals, some of which are mentioned later.

A more exact method for constructing confidence intervals for statistics
with complex distributions is noncentrality interval estimation (Steiger &
Fouladi, 1997). It also deals with situations that cannot be handled by
approximate methods. This method is based on noncentral test distributions
that do not assume that the null hypothesis is true. A bit of perspective is
in order: Families of central distributions of t, F, and %? are special cases
of noncentral distributions of each test statistic just mentioned. Compared to
central distributions, noncentral distributions have an additional parameter
called the noncentrality parameter. This extra parameter basically indicates
the degree of departure from the null hypothesis. For example, central ¢
distributions are described by a single parameter, the degrees of freedom,
but noncentral t distributions are described by both the degrees of freedom
and a noncentrality parameter. If this parameter equals zero, the resulting
distribution is the familiar and symmetrical central t distribution. As the
value of the noncentrality parameter is increasingly positive, the noncentral
t distributions described by it become increasingly positively skewed (e.g.,
Cumming & Finch, 2001, fig. 5). The same thing happens but in the
opposite direction for negative values of the noncentrality parameter for
t distributions.

Noncentrality interval estimation is impractical without relatively so-
phisticated computer programs for iterative estimation. Until just recently,
such programs have not been widely available to applied researchers. A
notable exception in a commercial software package for general statistical
analyses is the Power Analysis module by ]. Steiger in STATISTICA
(StatSoft Inc., 2003), which can construct noncentral confidence intervals
based on several different types of statistics (Steiger & Fouladi, 1997). This
includes many of the standardized indexes of effect size introduced in later
chapters. There are now also a few different stand-alone programs or scripts
(macros) for noncentrality interval estimation, some available for free
through the Internet. These programs or scripts are described in chapter 4,
and the Web site for this book also has links to corresponding download
pages.

Later chapters demonstrate the calculation of both approximate and
more exact noncentral confidence intervals for standardized effect size in-
dexes. The technique of bootstrapping, a method for statistical resampling,
can also be used to construct confidence intervals. Chapter 9 reviews the
rationale of bootstrapping.
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LOGIC OF STATISTICAL SIGNIFICANCE TESTING

A brief history of NHST was given earlier. This section outlines the
basic rationale and steps of NHST as it is often practiced today. The fol-
lowing review lays the groundwork for understanding limitations of
NHST considered in the next chapter.

Contexts and Steps

There are two main contexts for NHST, reject—support (RS) and accept—
support (AS). The former is the most common and concerns the case in
which rejection of the null hypothesis supports the researcher’s theory. The
opposite is true in AS testing: It is the failure to reject the null hypothesis
that supports what the researcher actually believes. Listed next are the main
steps of NHST for both RS and AS testing. Each step is discussed in the
sections that follow with emphasis on points that are not as well known as

they should be.

1. Based on the research question, formulate the first of two
statistical hypotheses, the null hypothesis H,.

2. Formulate the second statistical hypothesis, the alternative
hypothesis H;.

3. Set the level of statistical significance o, which is the probabil -
ity of a Type [ error.

4. Collect the data and determine its probability p under Hy with
a statistical test. Reject Hy if p < oL

Null Hypotheses

The null hypothesis is a default explanation that may be rejected later
given sufficient evidence. In RS testing, this default explanation is the
opposite of the researcher’s theory; in AS testing, the null hypothesis reflects
the researcher’s theory. In either RS or AS testing, the null hypothesis is
usually a point hypothesis that specifies the numerical value of at least one
population parameter. There are two different kinds of null hypotheses (J.
Cohen, 1994). A nil hypothesis says that the value of a population parameter
is zero or the difference between two or more parameters is zero. Examples
of nil hypotheses are presented next:

Hopp=0 Hoepy-pp=0  Hpp=0

Nil hypotheses are usually statements of absence, whether of an effect,
difference, or association. In contrast, a non-nil hypothesis asserts that a
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population parameter is not zero or that the difference between two or more
parameters is not zero. It typically assumes a non-zero effect, difference, or
association. Examples of non-nil hypotheses are given next:

H()Z Up = 10.00 H()Z w—Hz = 5.00 Hot p= .30

Nil hypotheses as default explanations are generally most appropriate
when it is unknown whether effects or relations exist at all, such as in new
research areas where most studies are exploratory. However, nil hypotheses
are less suitable when it is known a priori that an effect is probably not
zero. This is more likely in established research areas. For instance, it is
known that women and men differ in certain personality characteristics
(e.g., Feingold, 1994). Specification of Hy: p; — Mz = O (i.e., Ho: 1y = W)
when testing gender differences in these characteristics may set the bar too
low because this nil hypothesis is probably false. Accordingly, rejecting it
is not an impressive scientific achievement. There are also situations where
specification of a nil hypothesis is clearly indefensible. One example is using
a nil hypothesis to test a reliability coefficient for statistical significance.
For example, Abelson (1997a) noted that declaring a reliability coefficient
to be nonzero based on such a test is the “ultimate in stupefyingly vacuous
information” (p. 121). This is because what is really important to know is
whether a reliability coefficient is acceptably high for a specific purpose,
such as ryyx > .90 when a test is used for individual assessments that determine
access to treatment resources.

Nil hypotheses are tested much more often in the social sciences than
non-nil hypotheses. This is true even in established research areas where a
nil hypothesis is often a “straw man” argument. There are at least three
reasons for this puzzling situation: Many researchers are unaware of the
possibility to specify non-nil hypotheses. Statistical software programs usually
test only nil hypotheses. This means that tests of non-nil hypotheses must
be computed by hand. Unfortunately, this is generally feasible only for
relatively simple non-nil hypotheses, such as Ho: l1; — 1, = 5.00, which can
be evaluated without difficulty with the ¢ test.

Alternative Hypotheses

This second statistical hypothesis complements Hg. In RS testing, the
alternative hypothesis H; represents the researcher’s theory; in AS testing,
it does not. Unlike the null hypothesis, the alternative hypothesis is typically
a range hypothesis that specifies a range of values for the population parame-
ter(s). The two kinds of alternative hypotheses are directional (one-tailed,
one-sided) and nondirectional (two-tailed, two-sided). A nondirectional alter-
native hypothesis predicts any result not specified in Hg, but a directional
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alternative hypothesis specifies a range of values on only one side of the point
prediction in Hy. For example, given Hg: [, = |, there is only one possible
nondirectional alternative hypothesis, Hy: ; # L, but two possible direc-
tional alternatives, Hy: 1y > W, or Hy: 1y < .

The choice between a nondirectional or directional Hj is supposed to
be made before the data are collected. If there are a priori reasons to expect
a directional effect, the appropriate directional H; should be specified;
otherwise, a nondirectional H; may be a safer bet. The choice between a
directional or nondirectional H; affects the results of statistical tests as
follows: It is easier to reject Hy when a directional H; is specified and the
data are in the same direction. If Hy is actually false, there is also greater
statistical power compared to a nondirectional H;. However, if a directional
H, is specified but the data indicate an effect in the opposite direction,
then one is supposed to fail to reject Hy even if the results are very inconsis-
tent with it. In practice, however, these conventions are not always followed.
For example, it is sometimes not possible to reject Hy for a nondirectional
Hj but it is possible for a directional H;. A researcher who initially specified
a nondirectional H; may “switch” to a directional alternative hypothesis to
reject the null hypothesis. It also happens that researchers “switch” from
one directional H; to another depending on the data, again to reject Hy.
Some would consider changing Hy or H; based on sample results a kind of
statistical “sin” that is to be avoided. Like admonitions against other kinds
of sins, they are not always followed.

Level of Type 1 Error

Alpha () is the probability of making a Type I error; more specifically,
it is the conditional prior probability of rejecting Hy when it is actually true
(Pollard, 1993). Alpha is a prior probability because it is specified before
the data are collected, and it is a conditional probability because Hy is
assumed true. In other words, '

o = p (Reject Hy | Hp true) (2.19)

where the symbol “|” means assuming or given. Alpha can also be understood
as the probability of getting a result from a random sample that leads to
the incorrect decision to reject the null hypothesis. All these descriptions
of o are also long-run, relative-frequency statements about the probability
of a Type I error.

Conventional levels of o in the social sciences are either .05 or .01.
When other levels are specified, they tend to be even lower, such as o =
.001. It is rare for researchers to specify o levels higher than .05. The main
reason is editorial policy: Manuscripts may be rejected for publication if

“l”
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o > .05. This policy would make more sense if the context for NHST were
always RS testing where a Type I error is akin to a false positive because
the evidence is incorrectly taken as supporting the researcher’s theory. As
noted by Steiger and Fouladi (1997), the value of o should be as low as
possible from the perspective journal editors and reviewers, who may wish
to guard against incorrect claims. In AS testing, however, they should worry
less about Type I error and more about Type II error because false claims
in this context arise from not rejecting Hy. Insisting on low values of o in
this case may facilitate publication of erroneous claims.

[t is important to realize that o sets the risk of a Type | error for a
single hypothesis test. However, rarely is just one hypothesis tested. When
multiple statistical tests are conducted, there is also an experimentwise (family-
wise) probability of Type I error, designated below as Ogy. It is the likelihood
of making one or more Type [ errors across a set of tests. If each individual
test is conducted at the same level of o, then

ogw = 1 ~ (1 — Q) (2.20)

where c is the number of tests, each conducted at the o level of statistical
significance. In this equation, the term (1 — o) is the probability of not
making a Type 1 error for any individual test; (1 — o)° is the probability of
making no Type I errors across all tests; and the whole expression is the
likelihood of committing at least one Type I error among the tests. We
need to understand a couple of things about this equation. If only one
hypothesis is tested, then oy = o. If there are multiple tests, this equation
is accurate only if the hypotheses or outcome variables are perfectly uncorre-
lated. If not, the estimated rate of experimentwise Type [ error given by
this equation will be too low. The result generated by the equation is the
probability of one or more Type I errors, but it does not indicate how many
Type I errors may have been committed (it could be 1, or 2, or 3 ... ) or
on which hypothesis tests they occurred. Suppose that 20 statistical signifi-
cance tests are conducted each at a = .05 level in the same sample. The
experimentwise Type I error rate is

Qpyw = 1- (1 - .05)20 = .64

In other words, the risk of a making a Type I error across the whole set of
20 tests is 64%, given the assumptions just stated.

There are two basic ways to control experimentwise Type [ error:
Reduce the number of tests or lower o for each one. The former can be
realized by honing one’s questions down to the most substantively meaningful
(prioritize the hypotheses). This also means that “fishing expeditions” where
essentially every effect is tested are to be avoided. Another way to reduce
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the number of hypotheses is to use multivariate methods, which can test
hypotheses across several variables at once. There is a relatively simple
method to set o for individual tests called the Bonferroni correction: Divide
a target value of Ogw by the number of tests, and set the corrected level of
statistical significance o* for each individual test to the value of this ratio.
Suppose a researcher wishes to limit the experimentwise risk of Type I error
to 10%. If a total of 20 tests are planned, then a* = .10/20 = .005 for each
individual test. Other methods are considered in chapter 6. However, readers
should know that not all methodologists believe that controlling experiment-
wise Type I error is a generally desirable goal in the social sciences. This
opinion stems from the apparently low general statistical power of social
science research, an issue discussed later.

Like the choice between a directional and nondirectional Hj, the
decision about o is supposed to be made before the data are collected. For
example, if o = .01 but the estimated probability of the data under Hy is
.03, one is supposed to fail to reject Hy. However, the temptation to increase
o (or o*) from .01 to .05 to reject Hy may be strong in this case. Increasing
o based on the data is another form of statistical sin that occurs in the
real world.

Statistical Tests

The most widely used test statistics in the social sciences are probably
the t, F, and xz statistics, but there are many others. Although different in
their applications, assumptions, and distributions, all such tests do basically
the same thing: A result is summarized with a sample statistic. The difference
between the statistic and the value of the corresponding population parame-
ter(s) specified in the null hypothesis is compared against an estimate of
sampling error. A computer program for general statistical analyses will
convert test statistics to probabilities based on the appropriate theoretical
central test distribution. These probabilities are often printed in program
output under the column heading p, which is the same abbreviation used
in many journal articles. One should not forget that p actually stands for
the conditional probability

p (Data | Hy true)

which should be understood as the likelihood of the sample result or one
even more extreme assuming the null hypothesis is true. Both p and o are
derived in the same sampling distribution and are properly interpreted as
long-run, relative-frequency probabilities. Unlike o, however, p is not the
conditional prior probability of a Type I error because it is computed for a
particular sample result. To differentiate the two probabilities, Gigerenzer

40 FUNDAMENTAL CONCEPTS



(1993) referred to p as the exact level of significance. If this exact significance
level is less than the conditional prior probability of a Type I error (p <
o), then Hj is rejected and the result is considered statistically significant
at that level of o If o = .05 and p = .032, for example, then Hj is rejected,
the result is taken as statistically significant at the .05 level, and its exact
level of statistical significance is .032.

It can be shown that many test statistics can be expressed as the product

Test statistic = f (N) x ES index (2.21)

where f (N) is a function of sample size for the particular test statistic and
ES Index is an effect size index that expresses the degree of discrepancy
between the data and H; in a standardized metric (R. Rosenthal, 1994).
Various standardized effect size indexes are introduced in later chapters, but
for now consider two implications of this equation:

1. Holding sample size constant, the absolute values of test statis-
tics generally increase with no upper bound and their p values
approach zero as the effect size increases.

2. Holding constant a non-zero effect size, increasing the sample
size causes the same change in test statistics and p values.

These implications explain how it is possible for even trivial effects
to be statistically significant in large samples. They also explain how even
large effects may not be statistically significant in small samples. In other
words, statistical significance does not imply that an effect is large, important,
or even interesting. By the same token, one cannot conclude that the
absence of statistical significance indicates a small or unimportant effect.

That p values from statistical tests (a) are both conditional and long-
run, relative-frequency probabilities and (b) measure sample size as well as
effect size makes them apparently difficult to correctly interpret. Evidence
that p values are in fact widely misunderstood in the behavioral sciences
like psychology is considered in the next chapter.

POWER

Power is the conditional prior probability of making the correct decision
to reject Hy when it is actually false, or

Power = p (Reject Hy | Hp false) (2.22)

A Type II error, on the other hand, occurs when the sample result leads
to the failure to reject Hy when it is actually false. The probability of
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a Type II error is usually represented by P, and it is also a conditional
prior probability:

B = p (Fail to reject Hy | Hp false) (2.23)
Because power and 3 are complementary, or
Power + B = 1.00 (2.24)

whatever increases power decreases the probability of a Type Il error and vice
versa. Summarized next are factors that affect the power of statistical tests:

1. The lower the level of a, the lower is power. Thus, reducing
the chance of a Type I error increases the likelihood of a Type
Il error. However, there are other ways to increase power
besides increasing oL.

2. Power is greater in larger samples. This fact is demonstrated
below for the test statistics ¢, F, and 2.

3. Power is greater when H; is directional and the population
effect is in the same direction. If the two disagree, however,
power is essentially zero.

4. Study design: (a) Correlated designs are generally more power-
ful than independent-samples designs. Blocking designs and
covariate analyses may also increase power. (b) Balanced de-
signs are generally more powerful than unbalanced designs.
(c) Tests for effects of fixed factors are usually more powerful
than tests for effects of random factors.

5. Power declines as the reliability of the scores in a particular
sample is lower. With lower score reliability comes higher error
variance, which makes it more difficuit to detect a real effect.

6. Parametric tests such as t and F are generally more powerful
than nonparametric tests. See Siegel and Castellan (1988) for
information about nonparametric tests.

7. In general, the larger an effect in the population for a given
design, the easier it is to detect in samples. However, the
magnitude of the real effect that can theoretically be observed
is somewhat under the control of the researcher. For example,
a longer, more intense intervention may potentially have a
larger effect than a shorter, less intense intervention.

A power analysis gives the probability of rejecting Hy. There are two
kinds. An a priori power analysis is conducted before the data are collected.
It involves (a) specification of the study’s planned characteristics, such as

42 FUNDAMENTAL CONCEPTS



the level of o and the sample size; and (b) estimation of the expected
magnitude of the population effect. The latter may be based on theory,
results of previous empirical studies, or an educated guess. If the researcher
is uncertain about the population effect size, power can be calculated for a
range of estimates. A variation is to specify a desired level of power and
then estimate the minimum sample size needed to obtain it. A post hoc
power analysis is conducted after the data are collected. The observed effect
size is treated as the population effect size, and the probability of rejecting
the null hypothesis given the study’s characteristics is estimated. However,
a post hoc analysis that shows low power is more like an autopsy than a
diagnostic procedure. That is, it is better to think about power before it is
too late.

In the past, researchers conducted power analyses by consulting special
tables presented in sources such as J. Cohen (1988). Now there are several
computer programs for power analysis on personal computers. Some of
these programs, such as the Power Analysis module of STATISTICA, use
noncentral test distributions, which are generally necessary for correct power
estimates. Power analysis programs assume the user knows something about
the effect size indexes described in later chapters.

Estimated power levels no higher than .50 are problematic. If power
is only .50, the probability of rejecting Hy when it is false is no greater than
guessing the outcome of a coin toss. In fact, tossing a coin instead of actually
conducting a study would be just as likely to give the correct decision and
would save time and money, too (F. Schmidt & Hunter, 1997). Unfortu-
nately, the results of several reviews indicate that the typical power of
social science research may be no greater than about .50 (e.g., Sedlmeier
& Gigerenzer, 1989). When power estimates are broken down by whether
estimated effect sizes are small, medium, or large—specific definitions of
these adjectives are given in chapter 4—their values are about .20, .50, and
.80, respectively. Power for the study of large effects, .80, is certainly better
than for the others listed but still results in a Type II error rate of 20%.
Increasing sample sizes would address the problem of low power, but the
number of additional cases necessary to reach even a power level of .80
when studying effects of small or medium magnitude may be so great as to
be practically impossible (F. Schmidt, 1996). This is a critical limitation of
NHST in the social sciences.

The concept of power does not stand by itself without NHST. As
statistical tests play a smaller role in our analyses, the relevance of power
will also decline. If statistical tests are not used at all, the whole idea of
power is meaningless. Besides, it is a stronger scientific result to observe the
same effect at p < .10 across two different smaller samples than to find p <
.05 in one larger sample.
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OVERVIEW OF SPECIFIC STATISTICAL TESTS

Reviewed next are essential characteristics of three widely used test
statistics in the behavioral sciences, the t and F statistics for means and the
x? statistic for two-way contingency tables. The F statistic is part of a family
of techniques known as the analysis of variance (ANOVA), but note that
the F statistic is not synonymous with ANOVA. That is, we can conduct
an ANOVA without computing the F statistic, but not vice versa. It is
reviewed only for designs with a single fixed factor, but its basic logic
generalizes to other kinds of designs with continuous outcome measures
(chapters 6 and 7). The t statistic is discussed only for designs with two
conditions, such as treatment versus control. It is important for readers to
know that the t, F, and %’ statistics are not reviewed for their own sakes.
This is because they are subject to the general drawbacks of all NHST
methods that are considered in the next chapter. These shortcomings are
so serious that it is recommended that the continued use of statistical tests
as the primary inference tool in the behavioral sciences is not acceptable.
However, familiarity with the sample descriptive statistics that contribute
to the t, F, and xz statistics gives one a head start toward understanding
effect size estimation. It is also possible in many cases to compute effect
size indexes from these test statistics. Please also note that the sampling
distributions of the t, F, and y? tests described are, respectively, the central
t, central F, and central %* distributions in which the null hypothesis is
assumed to be true. In later chapters readers will learn more about noncentral
t and noncentral F distributions in which the null hypothesis is assumed
to be false. These distributions are required for calculating exact confidence
intervals based on certain kinds of standardized indexes of effect size.

t TESTS FOR MEANS

The t tests reviewed compare means from either two independent or
dependent samples. Both are actually special cases of the F test for means.
Specifically, t* = F when both statistics are computed for the same mean
contrast for a nil hypothesis. The statistical assumptions of the t tests for
independent versus dependent samples are the same as those of the corres-
ponding F tests and are discussed later.

The general form of the ¢ statistic for a contrast between independent
means is

(M) — M) — (U — 1)
M, - M,

t(N-2) = (2.25)
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where N — 2 is the pooled within-groups degrees of freedom (dfy), M| — M;
and sy, - M, are, respectively, the observed mean contrast and its standard

error (Equation 2.8), and y1; — l; is the population mean difference specified
in the null hypothesis. If the latter is predicted to be zero, a nil hypothesis
is tested; otherwise a non-nil hypothesis is tested.

The t statistic for a dependent mean contrast has the same overall form:

(n—1) = Mp—Hp (2.26)

SMD

where the degrees of freedom equal the group size (n) minus 1, Mp and
s, are, respectively, the observed average difference score and its standard

error (Equation 2.14), and pp is the population average difference score
specified in the null hypothesis. For a nil hypothesis, up = 0, and this term
drops out of the equation.

Assuming a nil hypothesis, both forms of the ¢ statistic defined earlier
express a mean contrast as the proportion of its standard error. If ¢ = 1.50,
for example, the first mean is 1% standard errors higher than the second,
but note that the sign of t is arbitrary because it depends on the direction
of subtraction between the two means. It is important to realize that the
standard error metric of the t test is affected by sample size, which is
demonstrated now.

This is explained in Tables 2.1 and 2.2, described next. Table 2.1
presents the means and variances of two groups where M; — M; = 2.00.
Table 2.2 reports the results of the independent samples ¢ test for the data
in Table 2.1 at three different group sizes, n = 5, 15, and 30, for a nondirec-
tional H;. (Readers are encouraged to reproduce these results.) Please note
in Table 2.2 that the value of the pooled within-groups variance for these
data, s5 = 6.25, is unaffected by group size. This is not true for the standard
error of M; — M3, which, as expected, gets smaller as n increases. This causes
the value of t to go up and its probability to go down for the larger group
sizes. Consequently, the ¢ statistic for n = 5 does not indicate a statistically
significant contrast at the .05 level, but it does for the two larger group
sizes. Results for the latter indicate less expected sampling error, but not a

TABLE 2.1
Means and Variances for Two Independent Samples
Group
1 2
M 13.00 11.00
& 7.50 5.00
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TABLE 2.2
Results of the Independent Samples t Test for the Data in Table 2.1 at
Three Different Group Sizes

Group size (n)

Statistic 5 15 30
SM1 - Mo 1.58 913 645

t 1.26 2.19 3.10
daf 8 28 58

P 243 .037 .003

b tail, .05 2.306 2.048 2.002
95% ClI for pq — po -1.64-5.64 .13-3.87 .71-3.29

Note. For all analyses, M; — M, = 2.00 and s% = 6.25. Cl = confidence interval.

different or more substantial mean contrast. This reduction in sampling
error is also evident in the 95% confidence intervals about the observed
mean difference: Their widths decrease as n gets larger.

The standard error metric of the ¢t test is also affected by whether the
means are independent or dependent. This is demonstrated next. Table 2.3
presents raw scores and descriptive statistics for a small data set where the
observed mean difference is 2.00. Reported in Table 2.4 are the results of
two different ¢t tests and 95% confidence intervals for the data in Table 2.3.
The first analysis assumes n = 5 cases in each of two unrelated samples, but
second analysis assumes n = 5 pairs of scores across two dependent samples.
Only the second analysis takes account of the positive cross-conditions
correlation for these data, r;; = .735. Observe in Table 2.4 the narrower
95% confidence interval, the higher value of t, and its lower p value in the
dependent samples analysis relative to the independent samples analysis of
the same data.

TABLE 2.3
Raw Scores and Descriptive Statistics for Two Samples
Condition

1 2

9 8

12 12

13 11

15 10

16 14
M 13.00 11.00
& 7.50 5.00

Note. In a dependent-samples analysis, ry, = .735 and = s = 3.50.
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TABLE 2.4
Results of the Independent Samples t Test and the Dependent Samples
t Test for the Data in Table 2.3

Standard 95% ClI
Analysis error for p; — pp t df
Independent samples 1.58 -1.64-5.64 1.262 8
Dependent samples 837 .32-4.32 2.38° 4

Note. Cl = confidence interval. For both analyses, M; — M, = 2.00.
8p = .243. bp = .076.

The results reported in Tables 2.2 and 2.4 show a special correspon-
dence between 95% confidence intervals based on mean contrasts and results
of the t test conducted with the same data at the .05 level for a nil hypothesis
and a nondirectional alternative hypothesis: The confidence interval in-
cludes zero if Hy is not rejected, but it does not include zero if Hy is rejected.
This relation is not surprising because the same basic information that goes
into a confidence interval goes into a statistical test. However, much of this
information is hidden if all that is reported is a test statistic and its p value.
A mathematically sophisticated reader may be able to construct a confidence
interval from the test statistic by solving for the standard error, but simply
reporting the confidence interval makes this information accessible to all.

An important point should be made: Thompson (2002b) and others
noted that it is erroneous to equate confidence intervals and statistical tests
because of the special correspondence between them, mentioned previously.
This is because the most informative use of confidence intervals compares
them across different studies, not whether a particular interval includes zero.
This most informative use concerns replication, something that results of
statistical tests in a single study cannot address. The same author also makes
the point that statistical tests cannot be conducted without a null hypothesis,
but no hypothesis is required for a confidence interval. These ideas are
elaborated in the next chapter.

F TESTS FOR MEANS

The ¢t statistic compares only two means. Such contrasts are focused
comparisons, and they address specific questions, such as whether treatment
is superior to control. All focused comparisons are single-df, directional
effects. The F statistic can also analyze focused comparisons—recall that
¢ = F for a mean contrast. The F statistic, but not ¢, can also be used in
omnibus comparisons, which simultaneously compare at least three means
for equality. Suppose that factor A has a = 3 levels. The omnibus effect of
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A has two degrees of freedom (dfs = 2), and the overall F test of this effect
evaluates the following nil and nondirectional alternative hypotheses:

Ho:py =py=u3  and  Hp:py # 1y # Y3 (ice., not H)

Rejecting Hp in favor of H) for the previous example says only that the
differences among the observed means M, M, and M3 are unlikely assuming
equal population means. This result alone is often not very informative. That
is, a researcher may be more interested in a series of focused comparisons, such
as the contrast of the first level of A with the second (e.g., Hp: 1 = Wy,
H;i: wy > W), which break down the omnibus effect into specific directional
effects. Accordingly, it is common practice to either follow an omnibus
comparison with focused comparisons or forego the omnibus comparison
and analyze only focused comparisons.

The logic of F as a test statistic for the omnibus comparison in a design
with a single fixed factor A with two or more levels is explained next. There
are separate sections about omnibus F statistics for designs with independent
samples and for designs with dependent samples. The presentations for
correlated designs are more technical. However, readers interested in meth-
ods for independent samples can skip the sections about correlated designs
without difficulty.

Independent Samples F Test

The general form of the F statistic for the omnibus effect in a single-
factor design with independent samples is

F (i, df0) = s (227)

where dfs and dfy are, respectively, the degrees of freedom for the numerator
and denominator of F. The former equals the number of levels of factor A
minus one, or dfs = (a —1), and the latter is the total within-groups degrees
of freedom, or

a

dfy = idf,: Y (n-1)=N-a (2.28)

i=1 i=1

The numerator of F is the between-conditions (groups) mean square. Its
equation is

. (M; = M7)?
SS_A_,-Z‘ln( T)

- (2.29)

MSA =

a-1
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where SS4 is the between-conditions sum of squares, n; and M, are, respec-
tively, the size and mean of the ith condition, and Mt is the mean for the
total data set. The latter is the grand mean, the average of all N scores. The
value of Mt can also be computed as the weighted average of the condition
means or only in a balanced design as the arithmetic average of the condition
means. Please note in this equation that group size contributes only to the
numerator of the between-conditions variance, SS4. The implication of this
fact is demonstrated next.

The numerator of F, MS,, reflects group size and sources of variability
that give rise to unequal group means, such as a systematic effect of factor
A or sampling error. It is the error term (denominator) of F, the pooled within-
conditions mean square MSy, that measures only unexplained variance. This
is because cases within the same condition are treated alike, such as when
patients in a treatment group are all given the same dosage of the same
drug. Because drug is a constant for these patients, it cannot account for
individual differences among them. The equation for the error term is

S i (2
SSw i; df; (si)
dfy ~ &

2 df

i=1

MSy = (2.30)

where df; and s? are, respectively, the degrees of freedom (i.e., n; — 1) and
variance of the ith group. When there are only two groups, MSy = s
(Equation 2.9), and only in a balanced design can MSy also be computed
as the arithmetic average of the individual within-groups variances. Please
note in this equation that group size contributes to both the numerator and
denominator of MSy, which effectively cancels out its effect on the error
term of F.

The total sums of squares, SSt, reflects the amount of variability in
the total data set. It is the sum of squared deviations of the individual scores
from the grand mean; it also equals SS, + SSy. We will see in later chapters
that SSt is important for effect size estimation with descriptive measures of
association in essentially any comparative study where ANOVA is used.

Presented in Table 2.5 are the means and variances of three indepen-
dent samples, and reported in Table 2.6 are results of the one-way F test
for these data at three different group sizes, n = 5, 15, and 30. Observe that
across all three ANOVA source tables in Table 2.6, the value of the error
term is constant, MSy, = 5.50. The dependence of MS, and F on group
size is obvious: Both increase along with the group size, which also progres-
sively lowers the probability values for F from p = 429 forn =5 to p =
.006 for n = 30. This change in p values occurs even though the group
means and variances are constant across all analyses.
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TABLE 2.5
Means and Variances for Three Independent Samples

Group
1 2 3
M 13.00 11.00 12.00
& 7.50 5.00 4.00
TABLE 2.6
Results of the Independent Samples F Test at Three Different Group
Sizes for the Data in Table 2.5
Source SS df MS F
n=5
Between (A) 10.00 2 5.00 912
Within (error) 66.00 12 5.50
Total 76.00 14
n=15
Between (A) 30.00 2 15.00 2.73°
Within (error) 231.00 42 5.50
Total 261.00 44
n=30
Between (A) 60.00 2 30.00 5.45°
Within (error) 478.50 87 5.50
Total 538.50 89

ap=.429. Pp=.077. °p=.0086.

Weighted- Versus Unweighted-Means Analysis

The standard F statistic described earlier is used in a weighted-means
analysis. This is because the squared deviation of each condition mean from
the grand mean is weighted by group size when MSy, the numerator of F,
is computed (Equation 2.29). If the design is unbalanced, the means from
the bigger groups get a larger weight. This is not a problem if unequal study
group sizes reflect unequal population group sizes. An unweighted-means
analysis may be preferred if unequal group sizes are a result more of sampling
artifacts. All means are given the same weight in this method. This is
accomplished by (a) computing the grand mean as the arithmetic average
instead of the weighted average of the group means and (b) substituting an
average group size for the actual group sizes in the equation for MS,. This
average group size is the harmonic mean:
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(2.31)

where n; is the actual size of the ith group. Note that a weighted-means
analysis and an unweighted-means analysis generate the same value of F in
a balanced design.

Assumptions of the Independent Samples F Test

It is stated in many introductory statistics textbooks that the assump-
tions of the F test in designs with independent samples and fixed factors
include independence of the observations, normal population distributions,
and equal population variances. The latter is the assumption of homogeneity
of variance, and it is necessary whenever error terms include variances
averaged across different conditions (e.g., Equation 2.30). However, there
are related requirements that may not be explicitly stated in introductory
textbooks. These include the requirements that all levels of each fixed factor
are included in the experiment and that treatments are additive and have
no affect on the shapes or variances of population treatment distributions
(Winer, Brown, & Michels, 1991). If a treatment is studied that is expected
to affect both the average level and variability of cases, the latter requirement
may be violated. Altogether these requirements are more restrictive than
many researchers realize.

The p values from the F test are computed under these assumptions.
If these assumptions are violated, then the p values of these tests—and
decisions based on them, namely whether to reject H—may not be accurate.
If observed p values wind up being too low because of violation of assump-
tions, there is a positive bias because Hj is rejected more often than it should.
In the RS context for statistical tests, this implies that the researcher’s
hypothesis is supported more often than it should be. It can also happen
that observed p values can be too high because of violation of assumptions,
which may reduce power.

There is a relatively large literature about the consequences of violating
the assumptions of statistical tests in general and the F test in particular in
fixed-effects ANOVA. It is beyond the scope of this section to review this
literature in detail, so only an overview is presented; readers are referred to
Winer et al. (1991, pp. 100-110) and a review article by Glass, Peckham,
and Sanders (1972) for more information. The independence assumption
is critical because nonindependence can seriously affect both p values and
power regardless of whether the group sizes are equal or unequal. This
requirement should generally be seen as an essential property of the research
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design. It was believed that the normality assumption is generally unimpor-
tant in that it can be violated with relative impunity with little effect on
p values or power. It was also believed that the F test is relatively insensitive
to variance heterogeneity. However, recent work by Wilcox (1987, 1998)
and others indicate that (a) even relatively small departures from normality
can sometimes distort the results of the standard t or F tests; (b) there can
be serious positive bias in these tests when the ratio of the largest over the
smallest within-groups variance is 9 or greater; and (c) the degree of inaccu-
racy in p values may be greater when the group sizes are small and unequal
or when heterogeneity is associated with one outlier group than when it is
spread across all the groups (Keppel, 1991). There are versions of both the
t and F tests for independent samples that do not assume normality or
homogeneity of variance (e.g., Winer et al., 1991, pp. 66—69; Wilcox, 1987),
but they are not used nearly as often as the standard t and F tests based on
these assumptions.

Reviewed in the next chapter is evidence that the assumptions of t,
F, and other statistical tests seem to be infrequently met or evaluated in
applied behavioral research. This is another serious shortcoming of the use
of statistical tests in the behavioral sciences.

Dependent Samples F Test

The between-conditions variance, MS,, and the pooled within-condi-
tions variance, MSyy, are computed the same way regardless of whether the
samples are independent or dependent (Equations 2.29-2.30). However,
the latter no longer reflects just unexplained variance when the samples
are dependent, so it is not the error term for the omnibus F statistic in a
correlated design. This is because of the subjects effect, which in a one-
way design is manifested in positive covariances between every pair of
conditions. When the independent variable has three or more levels, the
average covariance across all pairs of conditions, M, estimates the subjects
effect for the whole design. Removing this effect from the pooled within-
conditions variance (literally, MSy, — M,,) gives the error term for F in a
one-way design with dependent samples. This error term reflects inconsistent
performance across the conditions. This inconsistency may be a result of
random variation or to a nonadditive effect, which means that the indepen-
dent variable does not have the same relative impact on all cases. In other
words, there is some characteristic of participants that moderates the effect
of factor A, either amplifying or diminishing it. For example, a drug may
be more effective for older patients than younger patients. This moderator
effect is also known as a person X treatment interaction.

In an additive model, which assumes no true person X treatment interac-
tion, the error term of the dependent samples F statistic is presumed to
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reflect only random error. In some sources, this error term is designated as
MS,.,, where the subscript refers to residual variance. However, an additive
model is probably unrealistic for many within-subjects factors in the behav-
ioral sciences. A nonadditive model assumes a true person X treatment interac-
tion, and the error term in this model may be called MSy4 , 5, where the
subscript reflects this assumption. This notation is used later. Unfortunately,
it is not possible to separately estimate variability because of random error
versus a true person X treatment interaction when each case is measured
once in each condition, which is typical in one-way within-subjects designs.
This implies that MS,; = MS, , 5 in the same data set, so the distinction
between them is more conceptual than practical. Cases in which the assump-
tion of additive versus nonadditive models makes a difference in effect size
estimation are considered in chapter 6.

We can now define the general form of the omnibus F test for single-
factor designs with dependent samples assuming a nonadditive model:

MS
F(dfa dfaxs) = 375, - (2.32)

where dfa s = (@ — 1) (n — 1) and MS, . s = MSyw — M_,,. The latter can
also be expressed as

SSaxs  SSw — SS

MSsxs = =
AS T s dfw - dfs

(2.33)

where SSg is the sum of squares for the subjects effect with dfs = n—1
degrees of freedom. Equation 2.33 shows the removal of the subjects effect
from the pooled within-conditions variability in a correlated design, which
is the same basic subtraction that generates the error term of the dependent
samples ¢ statistic (Equation 2.15). Equation 2.33 also shows the decomposi-
tion of the total within-conditions sums of squares into two parts, one
because of the subjects effect and the other associated with the error term,
or SSW = §S¢ + SSAxS-

The F test for dependent samples has the same potential power advan-
tage over the F test for independent samples as the t test for dependent
samples has over its independent samples counterpart. This is demonstrated
with the data for three samples presented in Table 2.7. The results of two
different F tests conducted with these data are reported in Table 2.8. The
first analysis assumes n = 5 cases in each of three independent samples, and
the second analysis assumes n = 5 triads of scores across three dependent
samples. Only the second analysis takes account of the positive correlations
between each pair of conditions, which range from .730 to .839 (Table 2.7).
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TABLE 2.7
Raw Scores and Descriptive Statistics for Three Samples

Condition
1 2 3
9 8 10
12 12 11
13 11 13
15 10 11
16 14 15
M 13.00 11.00 12.00
A 7.50 5.00 4.00

Note. In a dependent samples analysis, ri; = .735, rj3 = .730, and ;3 = .839.

Observe the higher F and lower p values for the dependent samples analysis
even though the group means and variances are constant.

Assumptions of the Dependent Samples F Test

The same assumptions of the independent samples F test—
independence, normality, and homogeneity of variance—apply to the
dependent samples F test. However, there are additional assumptions that
concern the correlations between multiple measures obtained from the same
cases (or sets of matched cases). When a within-subjects factor has at least
three levels, these assumptions are relatively complicated and quite difficult
to meet in practice. An additional requirement is that of sphericity or circular-
ity, which assumes that the population variances of the difference scores
between every pair of conditions are equal. This assumption is critical

TABLE 2.8
Results of the Independent Samples F Test and the Dependent Samples
F Test for the Data in Table 2.7

Source Ss df MS F
Independent samples analysis
Between (A) 10.00 2 5.00 .91
Within (error) 66.00 12 5.50
Total 76.00 14
Dependent samples analysis
Between (A) 10.00 2 5.00 3.53°
Within 66.00 12 5.50
Subjects (S) 54.67 4 13.67
A x S (error) 11.33 8 1.42
Total 76.00 14

ap=.429. bp=.080.
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because even relatively minor violations of this assumption may lead to
rejecting Hy too often (i.e., resulting in a positive bias). There are statistical
tests intended to detect departure from sphericity, but they have been
criticized for restrictive assumptions of their own, such as normality. Some
methodologists suggest that the sphericity requirement may not be tenable
in most behavioral studies and that researchers should direct their efforts
to controlling bias (Keppel, 1991). There are basically five options for dealing
with the sphericity assumption that are briefly summarized next; see H.
Keselman, Algina, and Kowalchuk (2001), Max and Onghena (1999), or
Winer et al. (1991, pp. 239-273) for more information:

1. Assume maximal violation of sphericity, compute F in the
usual way, but compare it against a higher critical value. This
critical F has only 1 and n — 1 degrees of freedom; the standard
critical F for comparing a dependent means has a — 1 and
(a—1) (n—1) degrees of freedom. This method has been
called the Geisser—Greenhouse conservative test or the Geisser—
Greenhouse correction.

2. Estimate the degree of departure from sphericity with a statistic
called estimated epsilon, €. This statistic ranges from 1/(a — 1),
which indicates maximal departure to 1.00, which in turn
indicates no violation of sphericity. The degrees of freedom
for the critical value for F are then taken as € (a— 1) and £
{a — 1)(n — 1), which makes the test more conservative for
<1.00. There are somewhat different forms of € that may be
called the Box correction, the Geisser—Greenhouse epsilon,
or the Huynh—Feldt epsilon.

3. Conduct focused comparisons between pairs of condition
means instead of the omnibus comparison This implies that
each contrast has its own specialized error term (i.e., it is not
MS 4« for the whole design). Because these unique error terms
are based on data from only two conditions, the sphericity
requirement does not apply.

4. Analyze data from all levels of the factor with multivariate
analysis of variance (MANOVA), which also does not assume
sphericity. In this approach, difference scores between adjacent
levels of factor A are analyzed as multiple, correlated outcome
variables (e.g., Stevens, 1992, chap. 13).

5. Use the statistical resampling method of bootstrapping to gen-
erate an empirical F test for repeated measures data. (Boot-
strapping as an alternative to traditional statistical tests is
discussed in chapter 9, this volume). In a recent Monte Carlo
analysis, Berkovits, Hancock, and Nevitt (Z000) found that
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this method is relatively robust against violation of the spheric-
ity assumption.

All of these options are concerned in large part with the estimation
of accurate p values in correlated designs. Considering the limitations of p
values outlined in the next chapter, perhaps an even better choice is to move
away from traditional statistical tests to model-fitting techniques suitable for
repeated-measures data, such as structural equation modeling or hierarchical
linear modeling, among others. This point is elaborated later.

Analysis of Variance as Multiple Regression

All forms of ANOVA are nothing more than special cases of multiple
regression (MR), which itself is just an extension of bivariate regression
that analyzes one or more predictors of a continuous dependent variable.
These predictors can be either continuous or categorical variables. Categori-
cal predictors are represented in regression equations with special codes that
each correspond to a single df contrast (i.e., a focused comparison) between
the levels of that predictor. It is also possible in MR to estimate interaction
effects between continuous or categorical predictors. In theory, one needs
only a software program for MR to conduct any kind of ANOVA. The
advantage of doing so is that the output of regression programs usually
includes correlations, partial correlations, or standardized regression coeffi-
cients (beta weights), all of which are standardized measures of effect size.
In contrast, software programs for ANOVA may print only source tables,
and the F and p values in these tables measure both effect size and sample
size (e.g., Table 2.6). The disadvantage of using MR programs instead of
ANOVA programs is that the coding required for some kinds of designs,
especially ones with repeated-measures factors, can become complicated. In
contrast, ANOVA programs are typically easier to use because no special
coding of the factors is required by the user. Fortunately, there are some
straightforward ways to extract information about effect size from ANOVA
source tables that are demonstrated in later chapters.

Entire books are written about the relation between ANOVA and
MR (e.g., Keppel & Zedeck, 1989), so it is not possible to deal with this issue
in substantive detail. However, readers should be aware of this alternative to
using ANOVA to analyze means and estimate effect size.

x* TEST OF ASSOCIATION

Whether there is a statistical relation between two categorical variables
is the question addressed by the % test of association. A two-way contingency
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TABLE 2.9
Results of the Chi-Square Test of Association for the Same Proportions
at Different Group Sizes

QOutcome

Observed Frequencies

Group n Recovered Not recovered Recovery rate 2 (1)
n=40
Treatment 40 24 16 .60 3.202
Control 40 16 24 40
Total 80 40 40
n=280
Treatment 80 48 32 .60 6.40°
Control 80 32 48 .40
Total 160 80 80

P= 074  °p=.011.

table summarizes the data analyzed by this test. Presented in the top half
part of Table 2.9 is a 2 X 2 cross-tabulation that shows the frequencies of
treatment and control cases {(n = 40 each) that either recovered or did not
recover. A total of 24 cases in the treatment group recovered, or 60%.
Among control cases, 16 cases recovered, or 40%. The recovery rate among
treated cases is thus 20% higher than among untreated cases.

The ? test of association for two-way contingency tables takes the form

T c — 2
xz(r—l,c—1)=zz(i°‘if—feif)— (2.34)
i=1lj=1 &

ij
where the degrees of freedom are the product of the number of rows (r)
minus one and the number of columns (¢} minus one, foij is the observed

frequency for the cell in the ith row and jth column, and feij is the expected

frequency for the same cell under the nil hypothesis that the two variables
are unrelated. There is a quick way to derive by hand the value of f. for
any cell: Divide the product of the row and column totals for that cell
by the total number of cases, N. It is that simple. The statistical assumptions
of the x? test of association include independence of the observations,
classification of each observation into one and only one category (i.e.,
contingency table cell), and a sample size large enough so that the
minimum expected value across the cells is about 5 for tables with more
than a single degree of freedom or about 10 for tables with a single degree
of freedom.

For the 2 X 2 cross-tabulation in the top half of Table 2.9, the expected
frequency for each cell is f, = (40 x 40)/80 = 20. This shows a pattern where
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outcome is unrelated to treatment status because the expected recovery rate
is the same for both groups, 50% (20/40). After application of this equation,
the results are %% (1) = 3.20, p = .074, so the nil hypothesis that group
membership and recovery status are unrelated is not rejected at the .05
level. The effect of increasing the group size but keeping all else constant
on the % test is demonstrated in the bottom part of Table 2.9. Reported
there are results of the % test for the same proportions but a larger group
size, n = 80. The null hypothesis is now rejected at the .05 level—yx? (1) =
6.40, p = .011—even though the improvement in recovery rate for treated
versus control cases is unchanged, 20%.

Other common applications of the %* test not described include a
goodness-of-fit test for categorical variables and a test for correlated propor-
tions, among others. All tests just mentioned are also sensitive to sample size.

STATISTICAL TESTS AND REPLICATION

Statistical tests provide a framework for making a dichotomous
decision—reject or fail to reject Hy—about sample results in the face of
uncertainty. This uncertainty is sampling error, which is estimated in some
way by essentially all statistical tests. Of course, any decision based on a
statistical test may not be correct (e.g., a Type I or Type Il error). In any
science, though, it is replication that is the ultimate arbiter: No matter how
intriguing a result from a single study, it must be replicated before it can
be taken seriously. Replication also is the ultimate way to deal with the
problem of sampling error. Indeed, statistical tests are unnecessary with
sufficient replication.

There is a much stronger tradition of replication in the natural sciences
than in the social sciences. It is also true that statistical tests are infrequently
used in the natural sciences. Whether this association is causal is a matter
of debate. Some authors argue that the widespread use of statistical tests in
the social sciences works against the development of a stronger appreciation
for replication (e.g., Kmetz, 2000; F. Schmidt & Hunter, 1997). There are
probably other factors that contribute to the difference in emphasis on
replication across the social and natural sciences (Kupfersmid, 1988), but the
possibility that statistical tests is one of them warrants careful consideration.
Replication and meta-analysis as a method for research synthesis are consid-
ered in chapter 8.

CONCLUSION

Qutlined in this chapter is a basic vocabulary for comparative studies
and the logic of interval estimation for statistics with simple distributions,
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such as means, versus those with complex distributions, such as some effect
size indexes. Confidence intervals for the former are constructed with central
test statistics, but the latter may require noncentral test statistics. Special
software tools are also typically needed for noncentral confidence intervals.
A confidence interval based on a statistic sets a reasonable lower and upper
bounds for the corresponding population parameter, but there is no guarantee
that the value of the parameter is included in a particular confidence interval.
The essential logic of statistical tests in general and characteristics of the
t and F tests for means and the %’ test for two-way contingency tables in
particular was also reviewed. Any statistical test measures both effect size
and sample size. This is why neither the values of test statistics or their
associated probabilities say much useful about effect size. Additional limita-
tions of statistical tests are considered in the next chapter.
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WHAT'S WRONG WITH
STATISTICAL TESTS—
AND WHERE WE GO FROM HERE

Statistics is a subject of amazingly many uses and surprisingly few effec-
tive practitioners.

—B. Efron and R. Tabshirani (1993, p. xiv)

This chapter considers problems with null hypothesis significance test-
ing (NHST). The literature in this area is quite large. D. Anderson, Burnham,
and W. Thompson (2000) recently found more than 300 articles in different
disciplines about the indiscriminate use of NHST, and W. Thompson (2001)
lists more than 400 references about this topic. As a consequence, it is
possible to cite only a few representative works. General reviews of the
controversy about NHST in the social sciences include Borenstein (1998),
Nickerson (2000), and Nix and Barnette (1998). Examples of works more
critical of NHST include ]J. Cohen (1994); Gigerenzer (1998a, 1998b);
Gliner, Morgan, Leech, and Harmon (2001); and Kruegar (2001), and
examples of works that defend NHST include Abelson (1997a, 1997b);
Chow (1998a, 1998b); Harris (1997c); and Mulaik, Raju, and Harshman
(1997).

After review of the debate about NHST, I argue that the criticisms
have sufficient merit to support the minimization or elimination of NHST

The author wishes to thank Richard S. Herrington, as well as the anonymous reviewers, for
suggestions in this chapter.
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in the behavioral sciences. I offer specific suggestions along these lines.
Some concemn alternatives that may replace or supplement NHST and thus
are directed at researchers. Others concern editorial policies or educational
curricula. Few of the recommendations given are original in that many have
been made over the years by various authors. However, as a set they deal
with issues often considered in separate works. For simplicity, the context
for NHST assumed is reject—support (RS) instead of accept—support (AS).
The RS context is more common, and many of the arguments can be
reframed for the AS context. Exercises for this chapter can be found on

this book’s Web site.

NHST OUTCOMES ARE INTERPRETED
AS SOMETHING THEY ARE NOT

People are by nature good at pattern recognition. We find evidence
for this in almost every aspect of human life, whether it is the apparently
innate preference of infants for visual stimuli that resemble a human face
or the use of language by adults to construct a social reality. There are
probably deep evolutionary roots of our ability to find meaning in the world
around us. This ability is also at the core of some personality theories. For
instance, Rollo May (1975) wrote,

Creative people . . . do not run away from non-being, but by encounter-
ing and wrestling with it, force it to produce being. They knock on
silence for answering music; they pursue meaninglessness until they
force it to mean. (p. 93)

Our pattern recognition ability is so well-developed that sometimes
we see too much meaning in otherwise random events. Sagan (1996) de-
scribed several examples, including one that involved an early satellite
photo of a hill in a place called Cydonia on Mars that resembles a human
face. Some people took this formation as evidence for a vanished civiliza-
tion. Later satellite images of the same hill showed pretty clearly that it
was carved by natural forces such as wind erosion, but the tendency to see
something recognizable in randomness is strong. By virtue of their train-
ing or personal dispositions, scientists may be extraordinarily good at pat-
tern recognition, which also makes them subject to the potential error of
seeing too much meaning in certain events. This seems to be true about
NHST, because many common fallacies about it involve exaggerating
what can be inferred from statistical tests. These incorrect inferences may
be a source of cognitive misdirection that hinders progress in behavioral
research.
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Misinterpretations of p Values

Next we consider common misunderstandings about the probabilities
generated by statistical tests, p values. Let us first review their correct inter-
pretation. Recall that statistical tests measure the discrepancy between a
sample statistic and the value of the population parameter specified in the
null hypothesis, Hy, taking account of sampling error. The empirical test
statistic is converted to a probability within the appropriate central test
distribution. This probability is the conditional probability of the statistic
assuming Hy is true (see chap. 2, this volume). Other correct interpretations
for the specific case p < .05 include the following:

1. The odds are less than 1 to 19 of getting a result from a random
sample even more extreme than the observed one when Hy
is true.

2. Less than 5% of test statistics are further away from the mean
of the sampling distribution under Hy than the one for the
observed result.

3. Assuming Hj is true and the study is repeated many times,
less than 5% of these results will be even more inconsistent
with Hg than the observed result.

That is about it. Other correct definitions may be just variations of
those listed. The range of correct interpretations of p values is thus actually
quite narrow. Let us refer to any correct definition as p (D | Hp), which
emphasizes probabilities from statistical tests as conditional probabilities of
the data (D) given the null hypothesis.

Presented next are common misinterpretations for the case p < .05.
Some of them arise from forgetting that p values are conditional probabilities
or reversing the two events represented by p values, D and Hy. Reasons
why each is incorrect are also given below:

Fallacy Number 1

A p value is the probability that the result is a result of sampling error;
thus, p < .05 says that there is less than a 5% likelihood that the result
happened by chance. This false belief is the odds-against-chance fantasy
(Carver, 1978). It is wrong because p values are computed under the assump-
tion that sampling error is what causes sample statistics to depart from the
null hypothesis. That is, the likelihood of sampling error is already taken
to be 1.00 when a statistical test is conducted. It is thus illogical to view
p values as measuring the probability of sampling error. This fantasy together
with others listed later may explain the related fallacy that statistical tests
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sort results into two categories, those a result of chance (Hj is not rejected)
and others a result of “real” effects (Hj is rejected). Unfortunately, statistical
tests applied in individual studies cannot make this distinction. This is
because any decision based on NHST outcomes may be wrong (i.e., a Type |
or Type II error).

Fallacy Number 2

A p value is the probability that the null hypothesis is true given the
data; thus, p < .05 implies p (Hy | D) < .05. This is the inverse probability
error (J. Cohen, 1994) or the Bayesian Id’s wishful thinking error (Gigerenzer,
1993), and it stems from forgetting that p values are conditional probabilities
of the data, or p (D |Hp), and not of the null hypothesis, or p (Hg| D). The
latter is the posterior probability of the null hypothesis in light of the data,
and it is probably what researchers would really like to know. A simplified
form of Bayes’s theorem shows us that p (D | Hp) from a statistical test and
the posterior probability of the null hypothesis are in fact related:

b (Ho| D) - XLEEIHD (3.1)

In Equation 3.1, p (Hy) is the prior probability that the null hypothesis is
true before the data are collected, and p (D) is the prior probability of the
data irrespective of the truth of the null hypothesis. That is, given the p
value from a statistical test along with estimates of p (Hg) and p (D), we
could derive with this equation p (Hg | D), the posterior probability of the
null hypothesis. Unfortunately, those who use traditional statistical tests do
not usually think about prior probabilities. If pressed to specify these values,
they may venture a guess, but it may be viewed as subjective. In contrast,
a Bayesian approach specifically estimates the posterior probability of the
hypothesis, not just the conditional probability of the data under that
hypothesis. There are also ways to estimate prior probabilities that are not
wholly subjective. Chapter 9 considers the Bayesian approach to hypothe-
sis testing.

Fallacy Number 3

If the null hypothesis is rejected, p is the probability that this decision
is wrong; thus, if p < .05, there is less than a 5% chance that the decision
to reject the null hypothesis is a Type I error. This fallacy is another kind
of inverse probability error that Pollard (1993) described as confusing the
conditional prior probability of a Type I error, or

o = p (reject Hp | Hp)
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with the conditional posterior probability of a Type I error given that the
null hypothesis was rejected, or:

p (Ho | reject Hy)

Pollard uses Bayes’s theorem to show it is not generally possible to estimate
p (Ho| reject Hp) from o. On a more intuitive level, the decision to reject
the null hypothesis in an individual study is either correct or incorrect, so
no probability is associated with it. Only with sufficient replication could
we discern whether a specific decision to reject Hy was correct.

Fallacy Number 4

The complement of p, 1 — p, is the probability that the alternative
hypothesis is true given the data, or p (H;|D). Thus, p < .05 says that the
likelihood that H; is true is greater than 95%. This erroneous idea is the
validity fallacy (Mulaik et al., 1997) or the valid research hypothesis fantasy
(Carver, 1978). The complement of p is a probability, but it is just the
likelihood of getting a result even less extreme under Hy than the one
actually found. Accordingly, complements of p have nothing directly to do
with the posterior probability of H;.

Fallacy Number 5

The complement of p is the probability that a result will replicate
under constant conditions; thus, p < .05 says that the chance of replication
exceeds 95%. This is the replicability or repeatability fallacy (Carver, 1978).
Another variation for p < .05 is that a replication has a 95% probability
of yielding a statistically significant result, presumably in the same direction
as in the original study. If this fallacy were true, knowing the probability
of finding the same result in future replications would be very useful. Alas,
a p value is just the probability of a particular result under a specific hypothe-
sis. As noted by Carver, replication is a matter of experimental design and
whether an effect actually exists in the population. It is thus an empirical
question for future studies and not one directly addressed by statistical tests
in a single study.

Readers should note, however, that there is a sense in which p values
concern replication. Greenwald, Gonzalez, Harris, and Guthrie (1996) made
the point that p values in an original study are monotonically related to the
statistical power of replications. A monotonic relation is typically ordinal
or nonlinear; thus, there is not a uniform correspondence between p values
and the probabilities of null hypothesis rejections in replications. Specifi-
cally, without special graphs like ones presented by Greenwald et al., one
cannot directly convert a p value to the likelihood of repeating a null
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hypothesis rejection. This is a subtle point. It is probably best to keep in mind
that p values have little to do with replication in the usual scientific sense.

Mistaken Conclusions After Making a Decision About
the Null Hypothesis

There are also many false conclusions that may be reached after decid-
ing to reject or fail to reject Hy based on p values. Most require little
explanation about why they are wrong:

Fallacy Number 1

A p value is a numerical index of the magnitude of an effect; thus,
low p values indicate large effects. This misconception could be called the
magnitude fallacy. Smaller p values indicate lower conditional probabilities
of the data, given the required assumption that the null hypothesis exactly
describes the population (J. Cohen, 1994), but that is about all that can
be said without other kinds of analyses such as effect size estimation. This
is because statistical tests and their p values measure sample size and effect
size (e.g., Table 2.2), so an effect of trivial magnitude needs only a large
enough sample to be statistically significant. If the sample size is actually
large, low p values just confirm a large sample, which is a tautology
(B. Thompson, 1992). Now, results that are truly of large magnitude may
also have low p values—it is just that one cannot tell much by looking at
p values alone.

Fallacy Number 2

Rejection of the null hypothesis confirms the alternative hypothesis
and the research hypothesis behind it. This meaningfulness fallacy actually
reflects two conceptual errors. First, the decision to reject Hy in a single
study does not imply that H; is “proven.” Second, even if the statistical
hypothesis H; is correct, it does not mean that the substantive hypothesis
behind it is also correct. For example, Arbuthnot (1710) studied the birth
records for London for 82 consecutive years (1629-1710). More boys than
girls were born every single year during this time. For example, in 1629
there were 5,218 registered births of boys compared with 4,683 births of
girls. Based on all these data, Arbuthnot rejected the hypothesis that equal
proportions of babies are boys versus girls. In modern terms, he rejected the
non-nil hypothesis Hy: © = .50, where @ is the population proportion of
boys in favor of the directional alternative hypothesis Hy: ® > .50. However,
Arbuthnot’s substantive hypothesis was that because of divine providence,
more boys are born to compensate for higher numbers of male deaths in
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wars, accidents, and the like so that, in the end, “every Male may have a
Female of the same Country and suitable Age” (1710, p. 188). Arbuthnot
was correct about the statistical hypothesis H, but his substantive hypothesis,
although colorful, does not correspond to the actual underlying cause of
unequal numbers of newborn boys versus girls: Sperm with Y chromosomes
swim faster than those with X chromosomes and arrive in greater numbers
to fertilize the egg.

The distinction between statistical and substantive hypotheses is cru-
cial. They differ not only in their levels of abstraction (statistical: lowest;
scientific: highest), but also have different implications following rejection
of Hy. If Hy and H; reflect only statistical hypotheses, there is little to do
after rejecting Hy except replication. However, if H; stands for a scientific
hypothesis, the work just begins after Hy is rejected. Part of the work involves
pitting the research hypothesis against other substantive hypotheses also
compatible with the statistical hypothesis H;. If these other hypotheses
cannot be ruled out, the researcher’s confidence in the original hypothesis
must be tempered. It may also be necessary to conduct additional studies

that attempt to falsify equivalent models. This is the strategy of strong
inference (Platt, 1964).

Fallacy Number 3

Failure to reject a nil hypothesis means that the population effect size
is zero. This is not a valid inference for a few reasons. One is the basic
tenet of science that absence of evidence is not evidence of absence. Also,
the decision to fail to reject a nil hypothesis may be a Type Il error. For
example, there may be a real effect, but the study lacked sufficient power
to detect it. Given the relatively low overall power of behavioral research,
this is probably not an infrequent event. Poor research design or use of
flawed measures can also lead to Type 1I errors.

Fallacy Number 4

Failure to reject the nil hypothesis Hy: L | = )L ; means that the two
populations are equivalent. Suppose that an established treatment known
to be effective is compared with a new treatment that costs less. It is incorrect
to conclude that the two treatments are equivalent if the nil hypothesis
Hg: L1 = W3 is not rejected. The inference of equivalence would be just as
incorrect if this example concerned reliability coefficients or proportions in
two groups that were not statistically different (Abelson, 1997a; B. Thomp-
son, 2003). To rephrase the tenet cited eatlier, the absence of evidence for
differences is not evidence for equivalence. Proper methods for equivalence
testing are described later.
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Fallacy Number 5

Rejecting the null hypothesis confirms the quality of the experimental
design. Poor study design can create artifactual effects that lead to incorrect
rejection of Hy. Also, plain old sampling error can lead to Type I errors
even in well-controlled studies.

Fallacy Number 6

If the null hypothesis is not rejected, the study is a failure. This
misconception is the mirror image of the preceding one. Although improper
methods or low power can cause Type Il errors, failure to reject Hy can also
be the product of good science. For example, some claims based on initial
studies are incorrect, which means that replication will lead to negative
results. Readers may recall an announcement a few years ago by researchers
who claimed to have produced cold fusion (a low energy nuclear reaction)
with a relatively simple laboratory apparatus. Other scientists were unable
to replicate the phenomenon, and the eventual conclusion was that the
claim was premature (Taubes, 1993).

Fallacy Number 7

Rejection of Hy means that the underlying causal mechanism is
identified. This misinterpretation is related to the ones discussed to this
point. It should be obvious by now that a single Hj rejection does not prove
a presumed causal effect represented by the statistical hypothesis H;.

Fallacy Number 8

The failure to replicate is the failure to make the same decision about
Hj across studies. P. Dixon and O'Reilly (1999) refer to this idea as the
reification fallacy. Under this sophism, a result is considered not replicated
if Hyp is rejected in the first study but not in the second study. However,
this view ignores sample size, effect size, and the direction of the effect
across the two studies. Suppose a group mean difference is found in an
initial study and a nil hypothesis is rejected. The exact same group mean
difference is found in a replication study, but Hy is not rejected because of
a smaller sample size. We actually have positive evidence for replication
even though different decisions about Hy were made across the two studies.

Widespread Nature of Misinterpretations
There is evidence that many of the false beliefs just described are

common even among professional researchers and educators. For instance,
Qakes (1986) asked 70 academic psychologists to state their usually adopted
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TABLE 3.1
Usually Adopted Interpretations of p < .01 by 70 Academic Psychologists

Statement f %

1. The null hypothesis is absolutely disproved. 1 14
2. The probability of the null hypothesis has been found. 32 45.7
3. The experimental hypothesis is absolutely proved. 2 29
4. The probability of the experimental hypothesis can be deduced. 30 42.9
5. The probability that the decision taken is wrong is known. 48 68.6
6. A replication has a .99 probability of being significant. 24 34.3
7. The probability of the data given the null hypothesis is known. 8 11.3

Note. From Statistical Inference (p. 81), by M. Oakes, 1986, New York: Wiley. Copyright 1986 by John
Wiley and Sons. Reprinted with permission.

interpretations of p < .0l. The respondents could offer more than one
interpretation. Of the seven statements listed in Table 3.1, only the last is
correct, but just 8 of 70 participants (11%) reported it. Almost 50% endorsed
statements 2 and 4 in the table that p values indicate the conditional
probability of Hy (inverse probability error) or H; (valid research hypothesis
fallacy), respectively. The majority of the respondents said in error that p
values are posterior probabilities of Type I error, and about one third said
that the complements of p values indicate the likelihood of replication
(repeatability fallacy).

Lest one think that Oakes’s results are specific to an unrepresentative
group of NHST-challenged academic psychologists, results of other surveys
of professionals or near-professionals in the social sciences indicate similar,
apparently widespread misunderstandings (e.g., Mittag & B. Thompson,
2000; Nelson, R. Rosenthal, & Rosnow, 1986). Tversky and Kahneman
(1971) described a kind of cognitive distortion among psychologists they
called the belief in the law of small numbers. This belief holds that (a) even
small samples are typically representative of their respective populations,
and (b) statistically significant results are likely to be found in replication
samples half the size of the original. The belief in the law of small numbers
is probably just as widespread in other social science disciplines as in
psychology.

One also need not look very hard in published sources to find errors
similar to those in Table 3.1. ]. Cohen (1994) listed several distinguished
authors who have made such mistakes in print, including himself. This book
probably contains similar kinds of errors. Dar, Serlin, and Omer (1994)
noted that several prominent psychotherapy researchers who published in
some of the best peer-reviewed journals in this area made similar mistakes
over a period of three decades. At first glance, this situation seems puzzling.
After all, many academicians and researchers have spent hundreds of hours
studying or teaching NHST in statistics courses at both the undergraduate
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and graduate levels. Why does this rather large investment of educational
resources and effort not have more apparent success?

Two factors warrant comment. The first is that NHST is not the most
transparent of inference systems. Pollard and others noted that it is difficult
to explain the logic of NHST and dispel confusion about it. Some of the
language of NHST is very specific and unnatural. For example, the word
significant implies in natural language that something is important, notewor-
thy, or meaningful, but not in NHST. There may also be inherent contradic-
tions in the hybrid of the Fisher and Neyman-Pearson models on which
contemporary NHST is based (P. Dixon & O'Reilly, 1999; Gigerenzer,
1993). Another problem is a general human weakness in reasoning with
conditional probabilities, especially ones best viewed from a relative fre-
quency perspective (e.g., ]. Anderson, 1998).

NHST DOES NOT TELL US WHAT
WE REALLY WANT TO KNOW

Many of the fallacies about NHST outcomes reviewed concern things
that researchers really want to know, including the probability that Hy or
H, is true, the likelihood of replication, and the chance that the decision
taken to reject Hy is wrong, all given the data. Using R to stand for replica-
tion, this wish list could be summarized as:

p (Ho|D), p (H;|D), p (R|D), and p (Ho | Reject Ho)

Unfortunately, statistical tests tells us only p (D|Hp). As noted by J. Cohen
(1994), however, there is no statistical technique applied in individual
studies that can fulfill this wish list. (A Bayesian approach to hypothesis
testing is an exception; see chap. 9, this volume.) However, there is a
method that can tell us what we really want to know, but it is not a statistical
technique; rather, it is replication, which is not only the best way to deal
with sampling error, but replication is also a gold standard in science (see
chap. 2, this volume). This idea is elaborated next and again in chapter 8.

NIL HYPOTHESES ARE USUALLY FALSE

Nil hypotheses are the most common type tested in the social sciences.
However, it is very unlikely that the value of any population parameter is
exactly zero, especially if zero implies the complete absence of an effect,
association, or difference (e.g., Kirk, 1996). For example, the population
correlation (p) between any two variables we would care to name is probably
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not zero. It is more realistic to assume nonzero population associations or
differences (see chap. 2, this volume). Meehl (1990) referred to these nonzero
effects as a “crud factor” because, at some level, everything is related to
everything else; Lykken’s (1968) term ambient correlational noise means basi-
cally the same thing. Although exact values of the crud factor are unknown,
correlations may depart even further from zero for variables assessed with
the same measurement method. Correlations that result in common method
variance may be as high as .20 to .30 in absolute value.

If nil hypotheses are rarely true, rejecting them requires only sufficiently
large samples. Accordingly, (a) the effective rate of Type I error in many
studies may be essentially zero, and (b) the only kind of decision error is
Type 1. Given that power is only about .50 on average, the typical probability
of a Type II error is also about .50. F. Schmidt (1992, 1996) made the
related point that methods to control experimentwise Type I error, such as
the Bonferroni correction, may reduce power to levels even lower than .50.
It should be said that, as point hypotheses, non-nil hypotheses are no more
likely to be true than nil hypotheses. Suppose that a non-nil hypothesis is
Hy: p = .30. The true value of the population correlation may be just as
unlikely to be exactly .30 as zero. However, non-nil hypotheses offer a more
realistic standard against which to evaluate sample results, when it is practical
to actually test them.

Perhaps most p values reported in the research literature are associated
with null hypotheses that are not plausible. For example, D. Anderson et
al. (2000) reviewed the null hypotheses tested in several hundred empirical
studies published from 1978 to 1998 in two prominent environmental sci-
ences journals. They found many biologically implausible null hypotheses
that specified things such as equal survival probabilities for juvenile and
adult members of a species or that growth rates did not differ across species,
among other assumptions known to be false before the data were collected.
I am unaware of a similar survey of null hypotheses in the social sciences,
but it would be surprising if the results would be appreciably different.

SAMPLING DISTRIBUTIONS OF TEST STATISTICS ASSUME
RANDOM SAMPLING

Lunneborg (2001) described this issue as a mismatch between statistical
analysis and design. The p values for test statistics are estimated in sampling
distributions that assume random sampling from known populations. These
are the same distributions in which standard errors for traditional confidence
intervals are estimated. Random sampling is a crucial part of the population
inference model, which concerns the external validity of sample results.
However, most samples in the social sciences are not randomly selected—
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they are samples of convenience. In experimental studies, it is the randomiza-
tion model, which involves the random assignment of locally available cases
to different conditions, that is much more common than the population
inference model. Reichardt and Gollob (1999) suggested that results of
standard statistical tests yield standard errors that are too conservative (too
large) when randomized cases are from convenience samples. They described
a modified t test that assumes the population size equals total number of
cases, N = n; + ny. Lunneborg (2001) described the use of bootstrapping
to construct empirical sampling distributions for randomization studies based
on convenience samples. Bootstrapping is described in chapter 9.

Bakan (1966) argued that the ideal application of NHST is manufactur-
ing, not the social sciences. Essentially any manufacturing process is suscepti-
ble to random error. If this error becomes too great, such as when pistons
are made too big relative to the cylinders in car engines, products fail. In
this context, the null hypothesis represents a product specification that is
reasonable to assume is true, samples can be randomly selected, and exact
deviations of sample statistics from the specification can be accurately mea-
sured. It may also be possible in this context to precisely estimate the costs
of certain decision errors. All of these conditions rarely hold in behavioral
research. As the saying goes, one needs the right tool for the right job.
Perhaps NHST is just the wrong tool in many behavioral studies.

STATISTICAL ASSUMPTIONS OF NHST METHODS ARE
INFREQUENTLY VERIFIED

Statistical tests usually make certain distributional assumptions. Some
are more critical than others, such as the sphericity requirement of the
dependent samples F test. If critical assumptions are violated, p values may
be wrong. Unfortunately, it seems that too many researchers do not provide
evidence about whether distributional assumptions are met. H. Keselman
et al. (1998) reviewed more than 400 analyses in studies published from
1994 to 1995 in major education research journals, and they found relatively
few articles that verified assumptions of statistical tests. Max and Onghena
(1999) found a similar neglect of statistical issues across 116 articles in
speech, language, and hearing research journals. These surveys reflect an
apparently substantial gap between NHST as described in the statistical
literature and its use in practice. Results of more quantitative reviews also
suggest that there may be relatively few instances in practice when widely
used methods such as the standard F test give accurate results because of
violations of assumptions (e.g., Lix, J. Keselman, & H. Keselman, 1996).
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NHST BIASES THE RESEARCH LITERATURE

There is a sense that journal editors are not interested in publishing
studies without Hj rejections. This perception is supported by (a) comments
by past editors of respected journals about favoring studies with Hy rejections
(e.g., Melton, 1962); (b) survey results that show that behavioral researchers
are unlikely to submit studies without Hy rejections for publication (e.g.,
Greenwald, 1975); and (c) the more causal observation that the large
majority of published studies contain Hy rejections. The apparent bias for
studies with statistically significant results presents the difficulties enumer-
ated and discussed next:

1. The actual rate of Type I error in published studies may be much
higher than indicated by o.. Suppose that a treatment is no more
effective than control (the nil hypothesis is true) and 100
different studies of the treatment are each conducted at o =
.05. Of the 100 ¢ tests of the treatment versus control mean
contrasts, a total of five are expected to be statistically signifi-
cant. Suppose these five studies are published, but authors of
the other 95 decide not to submit their studies or do so but
without success. The actual rate of Type 1 error among the
five published studies is 100%, not 5%. Also, the only studies
that got it right—the 95 where Hy was not rejected—were
never published. Clark (1976) made a similar point: Because
researchers find it dificult to get their failures to replicate
published, Type I errors, once made, are difficult to correct.

2. The reluctance to submit or publish studies with no statistically
significant results leads to a “file drawer problem.” This term is
from R. Rosenthal (1979), and it refers to studies not submitted
for publication or presented in another forum, such as confer-
ences. It is thought that many file drawer studies contain no
H, rejections. If an effect is actually zero, results of such studies
are more scientifically valid than published studies that reject
nil hypotheses.

3. Published studies overestimate population effect sizes. Without
large samples to study small- or medium-sized effects, it may
be difficult to get statistically significant results because of low
power. When Hp is rejected, it tends to happen in samples
where the observed effect size is larger than the population
effect size. If only studies with Hj rejections are published,
the magnitude of the population effect size winds up being
overestimated. An example illustrates this point. Table 3.2

INTRODUCTORY CONCEPTS 73



TABLE 3.2
Results of Six Hypothetical Replications

Reject nil
Study M- M, s? s3 1 (38) hypothesis? 95% CI
1 2.50 17.50 16.50 1.91 No -.53-6.53
2 4.00 16.00 18.00 3.07 Yes 1.36-6.64
3 2.50 14.00 17.25 2.00 No -.03-5.03
4 4.50 13.00 16.00 3.74 Yes 2.06-6.94
5 5.00 12.50 16.50 4.15 Yes .56-7.44
6 2.50 15.00 17.00 1.98 No —-.06-5.06
Average: 3.58 Range of 2.06-5.03

overlap:

Note. For all replications, n = 20, o = .05, and H, is nondirectional. Cl = confidence interval.

summarizes the results of six different hypothetical studies
where two of the same conditions are compared on the same
outcome variable. Note that results of the independent samples
t test leads to rejection of a nil hypothesis in three studies
(50%), but not in the rest. More informative than the number
of Hj rejections is the average value of M| — M, across all six
studies, 3.58. This result may be a better estimate of u; — [z
than the mean difference in any individual study. Now suppose
that results from the three studies with Hj rejections in the
table (studies 2, 4, and 5) are the only ones published. The
average value of M| — M; for these three studies is 4.22, which
is greater than the average based on all six studies.

NHST MAKES THE RESEARCH LITERATURE DIFFICULT
TO INTERPRET

If there is a real effect but power is only .50, about half the studies
will show positive results (Hy rejected) and the rest negative results (Hy
not rejected). If somehow all studies are published, the box score of positive
and negative results will be roughly equal. From this perspective, it would
appear that the research literature is inconclusive (e.g., Table 3.2). Because
power is generally about .50 in the social sciences, it is not surprising that
only about half of the studies in some areas yield positive results (F. Schmidt,
1996). This is especially true in “soft” behavioral research where theories
are neither convincingly supported or discredited but simply fade away as
researchers lose interest (Meehl, 1990). Part of the problem comes from
interpreting the failure to reject a nil hypothesis as implying a zero population
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effect size. Such misinterpretation may also lead to the discarding of treat-
ments that produce real benefits.

There may be other negative consequences of using NHST outcomes
to sort studies by whether their results are statistically significant. I have
heard many psychology students say, “Research never proves anything.”
These same students have probably recognized that “the three most com-
monly seen terms in the [soft social science] literature are ‘tentative,’ ‘prelimi-
nary,’ and ‘suggest.” As a default, ‘more research is needed’ ” (Kmetz, 2000,
p- 60). It is not only a few students who are skeptical of the value of
research. Clinical psychology practitioners surveyed by Beutler, R. Williams,
Wakefield, and Entwistle (1995) indicated that the clinical research litera-
ture was not relevant for their work. Similar concerns about research rele-
vance have been expressed in education (D. W. Miller, 1999). These unen-
thusiastic views of research are the antithesis of the attitudes that academic
programs try to foster.

NHST DISCOURAGES REPLICATION

Although | am unaware of data that supports this speculation, a survey
would probably find just as many behavioral researchers as their natural
science colleagues who would endorse replication as a critical activity.
Nevertheless, there is a sense that replication is given short shrift in the
social sciences compared to the natural sciences. There is also evidence
that supports this concern. Kmetz (1998) used an electronic database to
survey about 13,000 articles in the area of organizational science and about
28,000 works in economics. The rates of studies specifically described as
replications in each area were .32% and .18%, respectively. Comparably
low rates of nominal replications have also been observed in psychology
and education journals {e.g., Shaver & Norton, 1980).

The extensive use of NHST in the social sciences and resulting cogni-
tive misdirection may be part of the problem. For example, if one believes
that p < .01 implies that the result is likely to be repeated more than 99
times out of 100, why bother to replicate? A related cognitive error is the
belief that statistically significant findings should be replicated, but not ones
for which Hy was not rejected (F. Schmidt & Hunter, 1997). That NHST
makes research literatures look inconclusive when power is low may also
work against sustained interest in research topics.

Perhaps replication in the behavioral sciences would be more highly
valued if confidence intervals were reported more often. Then readers of
empirical articles would be able to see the low precision with which many
studies are conducted. That is, the widths of confidence intervals for behav-
ioral data are often, to quote J. Cohen (1994, p. 1002), “so embarrassingly
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large!” Relatively wide confidence intervals indicate that the study contains
only limited information, a fact that is concealed when only results of
statistical tests are reported (F. Schmidt & Hunter, 1997). This reality
is acknowledged by the aspect of meta-analytic thinking that does not
overemphasize outcomes of statistical tests in individual studies (see chap. 1,
this volume).

NHST OVERLY AUTOMATES THE REASONING PROCESS

Social science researchers and students alike seem to universally
understand the importance of precise operationalization. The method of
NHST offers many of the same apparent advantages in the realm of
inference: It is a detailed, step-by-step procedure that spells out the
ground rules for hypothesis testing (see chap. 2, this volume). It is also
a public method in that its basic rules and areas for researcher discretion
are known to all. One of the appeals of NHST is that it automates
much of the decision-making process. It may also address a collective
need in the social sciences to appear as objective as the natural sciences.
However, some critics claim that too much of our decision making has
been so automated. Some of the potential costs of letting statistical tests
do our thinking for us are summarized next.

1. Use of NHST encourages dichotomous thinking. The ultimate
outcome of a statistical test is dichotomous: Hj is either
rejected or not rejected. This property may encourage dichot-
omous thinking in its users, and nowhere is this more
evident than for p values. If o = .05, for instance, some
researchers see a result where p = .06 as qualitatively
different than one where p = .04. These two results lead
to different decisions about Hp, but their p values describe
essentially the same likelihood of the data (Rosnow & R.
Rosenthal, 1989). More direct evidence of dichotomous
thinking was described by Nelson et al. (1986), who asked
researchers to rate their confidence in results as a function
of p values. They found a relatively sharp decline in rated
confidence when p values were just above .05 and another
decline when p values were just above .10. These changes
in confidence are out of proportion to changes in continuous
p values.

That NHST encourages dichotomous thinking may also
contribute to the peculiar practice to describe results where
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p is just above the level of o as “trends” or “approaching
significance.” These findings are also typically interpreted
along with statistically significant ones. However, results with
p values just lower than o, such as p = .04 when o = .05, are
almost never described as “approaching nonsignificance” and
subsequently discounted. There is a related tendency to attri-
bute the failure to reject Hy to poor experimental design rather
than to the invalidity of the substantive hypothesis behind
H; (Cartwright, 1973).

. Use of NHST diverts attention away from the data and the mea-
surement process. If researchers become too preoccupied with
H, rejections, they may lose sight of other, more important
aspects of their data, such as whether the variables are properly
defined and measured. There is a related misconception that
reliability is an attribute of tests rather than of the scores for
a particular population of examinees (B. Thompson, 2003).
This misconception may discourage researchers from reporting
the reliabilities of their own data. Interpretation of effect size
estimates also requires an assessment of the reliability of the
scores (Wilkinson & the Task Force on Statistical Inference
[TESI], 1999).

. The large investment of time to learn NHST limits exposure to
other methods. There is a large body of statistical methods other
than NHST that can deal with a wide range of hypotheses
and data, but social science students generally hear little about
them, even in graduate school. The almost exclusive devotion
of formal training in statistics to NHST leaves little time for
learning about alternatives. Those who become professional
researchers must typically learn about these methods on their
own or in workshops.

. The method of NHST may facilitate research about fad topics that
clutter the literature but have little scientific value. Meehl’s (1990)
observations on soft psychology research topics with short
shelf lives were mentioned earlier. The automatic nature of
NHST has been blamed by some authors as a contributing
factor: With very little thought about a broader theoretical
rationale, one can collect data from a sample of convenience
and apply statistical tests. Even if the numbers are random,
some of the results are expected to be statistically significant.
The objective appearance and mechanical application of
NHST may lend an air of credibility to studies with otherwise
weak conceptual foundations.
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NHST IS NOT AS OBJECTIVE AS IT SEEMS

The level of o and the forms of Hy (nil versus non-nil) and the
alternative hypothesis (directional versus nondirectional) should be specified
before the data are collected. This does not always happen in practice.
Under a strict view, this is paramount to cheating. Even under a less
demanding standard, the ability to change the rules to enhance the outcome
makes the whole process seem more subjective than objective. Selective
reporting of results, such as only those where Hy was rejected, presents a
similar problem.

MANY NHST METHODS ARE MORE CONCERNED
WITH GROUPS THAN INDIVIDUALS

Statistical tests that analyze means, such as t and F, are concerned
with group statistics. They provide little information about individuals
within these groups. Indeed, within-groups variances contribute to the error
terms of both t and F. However, there are times when it is crucial to
understand the nature of individual differences within groups. For instance,
it can happen that the group mean difference is statistically significant, but
there is substantial overlap of the two frequency distributions. This suggests
that the difference at the group level does not trickle down to the case
level. Some methods of effect size estimation introduced in chapter 4 analyze
differences at the case level.

NHST AND SCHOOLS OF PROBABILITY

In the fields of mathematics, statistics, and philosophy of science,
there are several different schools of thought about probabilities, including
classical, frequentist, and subjective, among others. There are also deep and
long-standing divisions between these schools about the exact meaning of
probabilities and their proper interpretation. These debates are complex
and highly nuanced, and whole books have been written on the subject
(e.g., Hogben, 1957). For these reasons, these debates cannot be summarized
in this section. However, readers should know that NHST is associated
with only some of these schools of thought about probability; specifically,
ones that view probabilities as relative frequencies of repeatable events that
can be empirically observed or approximated with theoretical sampling
distributions. The method of NHST also uses little previous knowledge
other than to assume that Hy is true. But in no way does NHST represent
a consensual view of probability either within or outside the social sciences.
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CONTINUED USE OF NHST IS A RESULT OF INERTIA

Several critics have described the continued use of NHST as an empty,
ritualized practice, one carried out with little reflection. Education in social
science statistics that fails to inform about alternatives may encourage the
belief that there is no other way to test hypotheses (F. Schmidt & Hunter,
1997). This belief is unfounded. It is also worth noting that some of the
most influential work in psychology, including that of Piaget, Pavlov, and
Skinner, was conducted without rejecting null hypotheses (Gigerenzer,
1993). The natural sciences have thrived despite relatively little use of
statistical tests.

Others note the general difficulty of changing established methods in
science. A familiar, well-entrenched method is like a paradigm, and changing
paradigms is not quick or easy (Kuhn, 1996). Such change sometimes awaits
the passing of an older generation of scholars and its replacement with
younger colleagues who are not as set in their ways. Recall that the adoption
of NHST as the standard for hypothesis testing in psychology took about
20 vyears (see chap. 1, this volume).

IS THERE ANYTHING RIGHT WITH NHST?

The litany of criticisms of NHST reviewed in this chapter raise the
question of whether there is anything right about NHST. However, NHST
is not without its defenders. Some positive aspects of NHST are enumerated
and discussed next.

1. If NHST does nothing else, it addresses sampling error. Sampling
error is one of the core problems of behavioral research. For
all the limitations of p values, they are at least derived taking
account of sampling error. Accordingly, some behavioral re-
searchers see NHST as addressing an important need and thus
may be less like passive followers of tradition than supposed
by critics. Any proposed alternative to NHST must deal with
the problem of sampling error lest it be seen as irrelevant to
the needs of these researchers. Critics of NHST rightly point
out that confidence intervals convey more information about
sampling error than test statistics and p values. They also
suggest that excessive preoccupation with statistical tests is
one reason why confidence intervals are not reported more
often. However, confidence intervals are subject to some of
the same kinds of inference errors as NHST. Abelson (1997a)
made this point in a lighthearted way by describing the “law
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of diffusion of idiocy,” which says that every foolish practice
of NHST will beget a corresponding practice with confidence
intervals. However, just because a confidence interval can be
interpreted in some ways like a statistical test does not mean
that it must be.

Confidence intervals are not a magical alternative to NHST.
However, interval estimation in individual studies and replica-
tion together offer a much more scientifically credible way
to address sampling error than the use of statistical tests in
individual studies. Consider again the data in Table 3.2 for
six hypothetical replications. A 95% confidence interval about
the observed mean contrast is reported for each replication.
Each interval estimates sampling error, but itself is also subject
to sampling error. The range of overlap among the six confi-
dence intervals is 2.06 to 5.03. This information is more useful
than knowing that a nil hypothesis was rejected in 3/6 studies.
F. Schmidt (1996) and others have noted that even if our
initial expectations regarding parameters are very wrong, we
will eventually discover our error by plotting the related confi-
dence intervals across studies.

. Misinterpretations of NHST are not the fault of the method. De-

fenders of NHST generally acknowledge widespread misinter-
pretations. They also note that such misunderstandings are
the responsibility of those who use it (Krantz, 1999). Critics
may counter that any method with so much apparent potential
to be misconstrued by so many intelligent and highly educated
users must ultimately assume some of the blame.

. More careful use of technical terms may avoid unwarranted conno-

tations. An area of suggested reform concerns the language
used to report the results of statistical tests (e.g., D. Robinson
& Levin, 1997). For example, some have suggested that the
term significant should always be qualified by the word statisti-
cally—which may prompt readers to distinguish between statis-
tical significance and substantive significance (B. Thompson,
1996)—and that exact p values should be reported instead of
just whether they are less than or greater than «, such as:

t (20) = 2.40, p = .026

instead of

t (20) = 2,40, p < .05

STATISTICAL TESTS



The latter recommendation has some problems, however. The
possibility that p values are incorrect in many behavioral stud-
ies was mentioned earlier, so their reporting to three- or four-
decimal accuracy may give a false impression. In large samples,
p values are often very low, such as .000012, and reporting
such small probabilities may actually encourage misinterpreta-
tion. It must also be said that these kinds of suggestions have
been made many times over the past 50 years with little
apparent impact. Critics would probably feel little conviction
that any of the modifications just described would ameliorate
the limitations of NHST for most applications in the social
sciences. For them, the following expression may be pertinent:
You can put candles in a cow pie, but that does not make it
a birthday cake.

. Some research questions require a dichotomous answer. The final
outcome of NHST is the decision to reject or fail to reject
Ho. There are times when the question that motivates the
research is also dichotomous, including, for instance, should
this intervention program be implemented? Is this drug more
effective than placebo? The method of NHST addresses
whether observed effects or relations stand out above sampling
error, but it is not as useful for estimating the magnitudes of
these effects {Chow, 1996). There are also times when theories
predict directions of effects but not their specific magnitudes.
One reading instruction method may be believed to be more
effective than another by some unknown amount, for example.
The testing of theories that predict directions but not amounts
is also probably more typical in the social sciences than in
the natural sciences. However, it is always useful to measure
the magnitude of an effect. Indeed, if we cannot think about
magnitudes, then we may never get to theories that predict
magnitudes instead of just directions. Estimating the average
size of an effect with meta-analysis instead of counting the
numbers of Hy rejections is also a better way to synthesize
results across a set of studies (chap. 8, this volume).

. Nil hypotheses are sometimes appropriate. The criticism that nil
hypotheses are typically false was discussed earlier. As noted
by Frick (1995), D. Robinson and Wainer (2002), and others,
there are cases when the assumption of a zero effect is justified.
For example, there may be no reason in a complex study to
predict an effect when just one independent variable is
manipulated.
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6. The method of NHST is a gateway to statistical decision (utility)
theory. In this approach—well known in fields such as
engineering and environmental studies—probabilities of
Type I and Type II errors are weighted by estimated costs
of each kind of mistake. The net anticipated gains and
losses are then evaluated to make rational decisions about
alternative actions in the face of uncertainty. In contrast
to NHST, the probability of a Type I error is not arbitrarily
set to either .05 or .0l in statistical decision theory. The
latter method may be able to detect long-term negative
consequences of an intervention even while statistical tests
are unable to reject the nil hypothesis of no short-term
effect (Johnson, 1999). Statistical decision theory is a very
powerful method if it is possible to estimate the costs of
different decisions in dollars, life expectancy, or some other
quantitative, objective metric. This is not usually possible
in behavioral research.

VARIATIONS ON NHST

This section identifies some specialized methods that are modifications
of the basic NHST model. These methods may avoid some of the problems
of traditional statistical tests and can be very useful in the right situation.
It is possible to give only brief descriptions, but interested readers can look
to the works cited next for more information.

Range Null Hypotheses and Good-Enough Belts

As mentioned, any point null hypothesis is probably false. Serlin
(1993) described the specification of Hy as a range hypothesis that
indicates the values of the population parameter considered equivalent
and uninteresting. The alternative hypothesis is still a range hypothesis,
but it specifies a minimum result based on substantive considerations
that is necessary for additional analysis. These ranges for Hy and H; are
called good-enough belts, which implies that one hypothesis or the other
is considered supported within predefined margins. The specification of
range null hypotheses in the social sciences is relatively rare—a notable
exception is the evaluation of model fit in structural equation modeling
(e.g., Kaplan, 2000, chap. 6)—and there is some question whether this
approach would make any practical difference (Cortina & Dunlap, 1997).
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Equivalence Testing

Equivalence testing is better known in pharmacological research and
the environmental and biological sciences. It deals with the problem of
establishing equivalence between two groups or conditions. For example, a
researcher may wish to determine whether a generic drug can be substituted
for a more expensive drug. In traditional NHST, the failure to reject Hy:
W = W is not evidence that the drugs are equivalent. In one form of
equivalence testing, a single point null hypothesis is replaced by two range
subhypotheses. Each subhypothesis expresses a range of Wu; — W, values
that corresponds to substantive mean differences. For example, the pair of
subhypotheses

H.: {Holi (lll b l,Lz) < -10.00
* 1Ho,: (11 — Ka) > 10.00

says that the population means cannot be considered equivalent if the
absolute value of their difference is greater than 10.00. The complementary
interval for this example is the equivalence hypothesis

~10.00 < (W — W) < 10.00

which is a good-enough belt for the equivalence hypothesis. Standard statisti-
cal tests are used to contrast the observed mean difference against each of
these one-sided null hypotheses for a directional alternative hypothesis.
Only if both range subhypotheses are rejected at the same level of o can
the compound null hypothesis of nonequivalence be rejected. The same
decision can also be reached on the basis of a confidence interval around
the observed mean difference. In the approach just outlined, Type I error
is the probability of declaring two populations or conditions to be equivalent
when in truth they are not. In a drug study, this risk is the patient’s (consum-
er’s) risk. McBride (1999) showed that if Type [ error risk is to be the
producer’s instead of the patient’s, the null hypothesis appropriate for this
example would be

Hy: —10.00 < (1 — wy) < 10.00
and it would be rejected if either the lower end of a one-sided confidence
interval about the observed mean difference is greater than 10.00 or the

upper end of a one-sided confidence interval is less than —10.00. Rogers,
K. Howard, and Vessey (1993) introduced equivalence testing to social
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scientists, and P. M. Dixon (1998) described its application in risk
assessment.

Inferential Confidence Intervals

Tryon (2001) proposed an integrated approach to testing means for
statistical difference, equivalence, or indeterminancy (neither statistically
different or equivalent). It is based on inferential confidence intervals, which
are modified confidence intervals constructed around individual means. The
width of an inferential confidence interval is the product of the standard
error of the mean (Equation 2.4) and a two-tailed critical ¢ value reduced
by a correction factor that equals the ratio of the standard error of the mean
difference (Equation 2.8) over the sum of the individual standard errors.
Because values of this correction factor range from about .70 to 1.00, widths
of inferential confidence intervals are generally narrower than those of
standard confidence intervals about the same means.

A statistical difference between two means occurs in this approach
when their inferential confidence intervals do not overlap. The probability
associated with this statistical difference is the same as that from the standard
t test for a nil hypothesis and a nondirectional alternative hypothesis. In
other words, this method does not lead to a different conclusion than
standard NHST, at least in difference testing. Statistical equivalence is
concluded when the maximum probable difference between two means is less
than an amount considered inconsequential as per an equivalence hypothe-
sis. The maximum probable difference is the difference between the highest
upper bound and the lowest lower bound of two inferential confidence
intervals. For example, if the 10.00 to 14.00 and 12.00 to 18.00 are the
inferential confidence intervals based on two different means, the maximum
probable difference is 18.00 — 10.00 = 8.00. If this difference lies within the
range set by the equivalence hypothesis, statistical equivalence is inferred. A
contrast neither statistically different or equivalent is indeterminant, and
it is not evidence for or against any hypothesis. Tryon claimed that this
method is less susceptible to misinterpretation because (a) the null hypothe-
sis is implicit instead of explicit, (b) the model covers tests for both differ-
ences and equivalence, and (c) the availability of a third outcome—statistical
indeterminancy—may reduce the interpretation of marginally nonsignifi-
cant differences as “trends.” It remains to be seen whether this approach
will have a positive impact.

Three-Valued Logic

Kaiser (1960) may have been one of the first social science authors
to suggest substituting three-valued logic for the standard two-valued (dichoto-
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mous) logic of NHST. Briefly, three-valued logic allows split-tailed alterna-
tive hypotheses that permit statistically significant evidence against a sub-
stantive hypothesis if the direction of the observed effect is not as predicted.
This is basically a simultaneous test of two directional alternative hypotheses,
one for and the other against the research hypothesis. The third kind of
test is for a standard nondirectional alternative hypothesis. Harris (1997b)
provides a very clear, contemporary description of three-valued logic, but
notes that it has not been used much.

WHAT DO WE DO NOW? BUILDING A BETTER FUTURE

After considering criticisms of statistical tests, we can choose one of
the following courses of action:

1. Do nothing; that is, continue using statistical tests just as we
have for the past 50 years.

2. Stop using statistical tests entirely. Stop teaching them in
university courses. Effectively ban their use by refusing to
publish studies in which they are used. Although this option
sounds hypothetical or even radical, some highly respected
researchers have called for such a ban (e.g., Hunter, 1997; F.
Schmidt, 1996).

3. Chart a course between the two extremes listed, one that calls
for varying degrees of use of statistical tests—from none to
somewhat more pivotal, depending on the research context,
but with strict requirements for their use.

The first option is not acceptable because there are negative implica-
tions for the advancement of behavioral research that rule out doing nothing.
A ban on statistical tests in psychology journals does not seem imminent
in the short term, but the fact that some journals require the reporting of
effect sizes is an effective ban on the use of statistical tests by themselves
(see chap. 1, this volume). The first two options are thus excluded.

QOutlined next are recommendations based on the third option. They
are intended as a constructive framework for change. It is assumed that
reasonable people could disagree with some of the specifics put forward.
Indeed, a lack of consensus has characterized the whole debate about NHST,
so no single set of recommendations will satisfy everyone. Even if the reader
does not endorse all the points outlined, he or she may at least learn new
ways of looking at the controversy about statistical tests or, even better,
data, which is the ultimate goal of this book.

The main theme of the recommendations can be summarized like this:
The method of NHST may have helped us in psychology and related
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behavioral sciences through a difficult adolescence during which we struggled
to differentiate ourselves from the humanities while at the same time we
strived to become more like our primary role model, the natural sciences.
However, just as few adults wear the same style of clothes, listen to the
same types of music, or have the same values they did as teenagers, behavioral
research needs to leave its adolescence behind and grow into new ways of
doing things. Arrested development is the only alternative.

Recommendations

Specific suggestions are listed and then discussed afterward:

1. Only in very exploratory research where it is unknown whether
effects exist may a primary role for NHST be appropriate.

2. If statistical tests are used, (a) information about power must
be reported, and (b) the null hypothesis must be plausible.

3. Inanykind of behavioral research, it is not acceptable anymore
to describe results solely in terms of NHST outcomes.

4. Drop the word “significant” from our data analysis vocabulary.
Use it only in its everyday sense to describe something actually
noteworthy or important.

5. It is the researcher’s responsibility to report and interpret,
whenever possible, effect size estimates and confidence inter-
vals for primary results. This does not mean to report effect
sizes only for Hy rejections.

6. It is also the researcher’s responsibility to demonstrate the

substantive (theoretical, clinical, or practical) significance of

the results. Statistical tests are inadequate for this purpose.

Replication is the best way to deal with sampling error.

8. Education in statistical methods needs to be reformed, too.
The role of NHST should be greatly deemphasized so that
more time can be spent showing students how to determine
whether a result has substantive significance and how to repli-
cate it.

9. Researchers need more help from their statistical software to
compute effect sizes and confidence intervals.

~

A Primary Role for NHST May Be Suitable Only in Very
Exploratory Research

The ability of NHST to address the dichotomous question of whether
relations are greater than expected levels of sampling error may be useful
in some new research areas. Considering the many limitations of NHST
discussed, the period of this usefulness should be brief. Given evidence that
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an effect exists, the next steps should involve estimation of its magnitude
and evaluation of its substantive significance, both of which are beyond the
range of what NHST can tell us. More advanced study of the effect may
require model-fitting techniques, such as structural equation modeling (e.g.,
Kline, 1998), hierarchical linear modeling (e.g., Raudenbush & Bryk, 2002),
or latent class analysis (e.g., Hagenaars & McCutcheon, 2002), among other
techniques that test models instead of just individual hypotheses. It should
be the hallmark of a maturing research area that NHST is not the primary
inference tool.

Report Power for Any Use of Statistical Tests, and Test Only Plausible
Null Hypotheses

The level of power reported should be a priori power, not observed
power (see chap. 2, this volume; also Wilkinson & TESI, 1999). It is
especially important to report power if most of the results are negative—
that is, there were few Hj rejections. This is because readers of an empirical
study should be able to tell whether the power of the study is so low (e.g.,
< .50) that negative results are expected. Knowing that Hy was rejected is
useful only if that hypothesis is plausible. Also, one minus power is the
probability of a Type II error, which can only occur if Hy is not rejected
when there is a real effecc. We probably see so few examples of reporting
power in the research literature when the results are mainly negative because
of bias toward only publishing studies with Hj rejections. In a less biased
literature, however, information about power would be more relevant. Low
p values that exaggerate the relative infrequency of the results are expected
under implausible null hypotheses. If it is feasible to test only a nil hypotheses
but a nil hypothesis is implausible, interpretation of the results of statistical
tests should be accordingly modified.

It Is Not Acceptable to Describe Results Only on the Basis of
NHST Outcomes

All of the shortcomings of NHST considered provide the rationale
for this recommendation. For journal editors and reviewers, NHST outcomes
should also not be the primary consideration for deciding whether to accept
or reject submissions for publication.

Stop Using the Word “Significant” in Connection With NHST

In hindsight, the choice of the word “significant” to describe the event
p < o was very poor. Although statisticians understand that significant in
NHST does not imply a large or important effect, the use of this word may
foster false beliefs among nonstatisticians. Accordingly, we in the behavioral
sciences should “give” this word back to the general public and use it only
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as does everyone else—to denote importance, meaningfulness, or substantial-
ness. Use of just the word “statistical” when Hjy is rejected should suffice.
For instance, rejection of the hypothesis Hy: p = O could be described as
evidence for a statistical association or correlation between the variables,
and rejection of the hypothesis Hy: [t | = L ; could be described as evidence
for a statistical mean difference (Tryon, 2001). Calling an effect statistical
implies that it was observed, but not also noteworthy. Of course, statistical
effects may also be meaningful effects, but this is a not a question for NHST.
The simple phrasing just suggested also seems preferable to the expression
“statistically reliable” to describe Hy rejections. This is because one connota-
tion of reliable is repeatable, but p values say nothing directly about the
chances of replication. At the very least, if the word significant is used in
an oral or written interpretation of the results, it should always be preceded
by the qualifier “statistical” (B. Thompson, 1996).

Whenewver Possible, Researchers Should Be Obliged to Report and Interpret
Effect Sizes and Confidence Intervals

That increasing numbers of journals require effect size estimates sup-
ports this recommendation (see chap. 1, this volume). Reporting confidence
intervals for effect size estimates is even better: Not only does the width
of the confidence interval directly indicate the amount of sampling error
associated with an observed effect size, it also estimates a range of effect
sizes in the population that may have given rise to the observed result.
However, it is recognized that it is not always possible to compute effect
sizes in certain kinds of complex designs or construct confidence intervals
based on some types of statistics. However, effect size can be estimated and
confidence intervals can be reported in most behavioral studies.

Researchers Should Also Be Obliged to Demonstrate the Substantive
Significance of Their Results

Null hypothesis rejections do not imply substantive significance. Thus,
researchers need other frames of reference to explain to their audiences why
the results are interesting or important. A quick example illustrates this
idea. In a hypothetical study titled “Smiling and Touching Behaviors of
Adolescents in Fast Food Restaurants,” effects were statistically significant,
but might not be deemed substantively important to many of us, especially
if we are not adolescents, or do not frequent fast food restaurants. It is
not easy to demonstrate substantive significance, and certainly much more
difficult than using p values as the coin of the social scientific realm. Estima-
tion of effect size gives a starting point for determining substantive signifi-
cance; so does consulting meta-analytic works in the area (if they exist). It
is even better for researchers to use their domain knowledge to inform the
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use of the methods just mentioned (Kirk, 1996). These ideas are elaborated
in the next chapter.

Replication Is the Best Way to Deal With Sampling Error

The rationale for this recommendation is also obvious. It would make
a very strong statement if journals or granting agencies required replication.
This would increase the demands on the researcher and result in fewer
published studies. The quality of what would be published might improve,
however. A requirement for replication would also filter out some of the
fad social science research topics that bloom for a short time but then
quickly disappear. Such a requirement could be relaxed for original results
with the potential for a large impact in their field, but the need to replicate

studies with unexpected or surprising results is even greater (D. Robinson
& Levin, 1997).

Education in Statistical Methods Should Be Much Less NHST-Centric and
More Concerned With Replication and Determining Substantive Significance

The method of NHST is often presented as the pinnacle in many
introductory statistics courses. This situation is reinforced by the virtually
monolithic, NHST-based presentation in many undergraduate-level statis-
tics textbooks. Graduate courses often do little more than inform students
about additional NHST methods and strategies for their use (Aiken et al.,
1990). The situation is little better in undergraduate psychology programs,
which emphasize traditional approaches to analysis (i.e., statistical tests)
and have not generally kept pace with changes in the field (Frederich,
Buday, & Kerr, 2000). It is also true that many statistics textbooks still do
not emphasize methods beyond traditional statistical tests, such as effect
size (e.g., R. Capraro & M. Capraro, 2002).

Some topics already taught in introductory courses should be given
more prominence. Many effect size indexes are nothing more than correla-
tions, proportions of standard deviations, or percentages of scores that fall
at certain points. These are all basic kinds of statistics covered in many
introductory courses. However, their potential application outside classical
descriptive or inferential statistics is often unexplained. For example, stu-
dents usually learn about the t test for comparing independent means. These
same students often do not know about the point-biserial correlation, 7y,
In a two-sample design, r,, is the correlation between a dichotomous inde-
pendent variable (group membership) and a quantitative dependent variable.
It is easily derived from the t test and is just a special case of the Pearson
correlation r.

Less emphasis on NHST may also encourage students to choose simpler
methods of data analysis (e.g., Wilkinson et al., 1999). Doing so may help
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them appreciate that NHST is not necessary to detect meaningful or notewor-
thy effects, which should be obvious to visual inspection of relatively simple
kinds of statistics or graphical displays (J. Cohen, 1994). The description
of results at a level closer to the data may also help students develop better
communication skills. This is important for students who later take up
careers where they must explain the implications of their results to policy
makers (McCartney & R. Rosenthal, 2000).

We also need better integration between courses in research methods
and statistics. In many undergraduate programs, these subjects are taught
in separate courses, and there may be little connection between the two.
The consequence is that students learn about data analysis methods without
getting a good sense of their potential applications. This may be an apt
time to rethink the partition of the teaching of research skills into separate
statistics and methods courses.

Statistical Software Should Be Better at Computing Effect Sizes and
Confidence Intervals

Most general statistical software programs are still very NHST-centric.
That more of them now optionally print at least some kinds of effect size
indexes is encouraging. Considering these discussions, however, perhaps
results of statistical tests should be the optional output. Literally dozens of
effect size indexes are available (e.g., Kirk, 1996), and at least some of the
more widely used indexes should be available in computer program output
for every analytical choice. It should also be the case that for a given
analytical choice, several different effect sizes are options. Many contempo-
rary general statistical programs also optionally print confidence intervals
for population means or regression coefficients, but they should also give
confidence intervals for population effect sizes. It was mentioned that special
computational methods required for exact confidence intervals for effect
sizes have only recently become more widely available, but one hopes that
these algorithms will soon be incorporated into general statistical packages.

CONCLUSION

Statistical tests have been like a collective Rorschach inkblot test for
the social sciences: What we see in them has had more to do with wish
fulfillment than what is really there. This collective magical thinking has
impeded the development of psychology (and related areas) as a cumulative
science. There is also a mismatch between the characteristics of many
behavioral studies and what is required for results of statistical tests to be
accurate. That is, if we routinely specified plausible null hypotheses, studied
random samples, checked distributional assumptions, estimated power, and

90 STATISTICAL TESTS



understood the correct meaning of p values, there would be no problem
with statistical tests as our primary inference tool. None of these conditions
are generally true in the behavioral sciences. I offered several suggestions
in this chapter, all of which involve a much smaller role—including none
whatsoever—for traditional statistical tests. Some of these suggestions in-
clude the computation of effect sizes and confidence intervals for all effects
of interest, not just ones in which a null hypothesis is rejected, and evaluation
of the substantive significance of results, not just their statistical significance.
Replication is the most important reform of all.
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PARAMETRIC EFFECT SIZE INDEXES

Statistical significance is the least interesting thing about the results.
You should describe the results in terms of measures of magnitude—not

just, does a treatment affect people, but how much does it affect them.
—Gene V. Glass (quoted in Hunt, 1997, pp. 29-30)

This chapter introduces effect size estimation in comparative studies
with continuous outcome variables. It also reviews conceptual issues and
potential limitations of effect size estimation in general. Research designs
considered in this chapter compare only two independent or dependent
samples. Readers more interested in methods for independent samples can
skip the sections about dependent samples without difficulty. Supplemental
readings about effect size estimation in two-group multivariate designs plus
exercises with answers for this chapter are available on the Web site for

this book.

CONTEXTS FOR EFFECT SIZE ESTIMATION

There are five main contexts for effect size estimation. The first is
when units of the outcome variable are arbitrary rather than meaningful.
Examples of meaningful scales include salaries in dollars, athletic perfor-
mance in seconds, and survival time in years. The substantive (theoretical,
clinical, or practical) significance of group differences on variables with
meaningful scales is usually more apparent than when the scale is arbitrary.
An example of an arbitrary scale is the total score on a checklist of true—false
items. Because item responses can be coded using any two different numbers,
the total score is arbitrary. Even standard scores for such measures are
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arbitrary because one score metric can be substituted for another. Standard-
ized effect size statistics can be computed to interpret group differences when
the scale of the outcome variable is arbitrary.

A second context is the comparison of results across outcomes measured
on different scales. Suppose that the same two conditions are compared in
two different studies. The outcome variable in each study reflects the same
construct, but the standard deviation is 10.00 in the first study and 100.00
in the second. The observed mean contrast—the unstandardized mean
difference—is M| — M; = 3.00 in both studies. This result actually represents
a larger effect size in the first study than in the second. This is because a
mean contrast of 3.00 corresponds to about a third of a standard deviation
in the first study (3.00/10.00) but to only 3% of a standard deviation
in the second (3.00/100.00). The ratios just given are standardized mean
differences, and they express mean contrasts in a common metric, as the
proportion of a standard deviation. Standardized mean differences and other
standardized effect size indexes provide a common language for comparing
results measured on different scales.

A third context is a priori power analysis, which requires specification
of the expected population effect size magnitude (see chap. 2, this volume).
These estimates are often expressed as population versions of the effect size
indexes introduced later. The fourth context is meta-analysis, which typically
describes the central tendency and variability of standardized effect sizes
across a set of studies. To understand power analysis or meta-analysis, one
needs to know how effect size is measured. The fifth context involves
statistical tests. The use of both methods together can help resolve two
interpretational quandaries that can arise if statistical tests are used alone:
Effects of trivial magnitude can lead to rejection of the null hypothesis
when the sample size is large, and it may be difficult to reject the null
hypothesis in small samples even for large effects (see chap. 2, this volume).
The measurement of the magnitude of an effect apart from the influence
of sample size distinguishes effect size estimation from statistical tests.

TERMS AND IDEAS ABOUT EFFECT SIZE

Terminology about effect size estimation in the literature is not consis-
tent: Different names or symbols for the same effect size index are sometimes
used in different sources, and the same name or symbol may be used by
different authors to refer to different effect size indexes. For example, the
symbol d is used in some sources (including this book) to refer to a generic
sample standardized mean difference, but in other sources it refers to a
population parameter or to a particular kind of sample standardized mean
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difference. Indeed, the very term effect size is used with somewhat different
connotations. These inconsistencies make it difficult for newcomers.

Effect Size Versus Cause Size

Effect size refers to the magnitude of the impact of the independent
variable on the dependent variable. It can also be described as the degree
of association or covariation between the two. The first description is more
applicable in experimental designs, and the second is more suitable for
nonexperimental designs. Regardless of the design, effect size is measured
on the dependent variable. Cause size, on the other hand, refers to the
independent variable and specifically to the amount of change in it that
produces a given effect on the dependent variable (Abelson, 1997a). If
levels of a factor represent drug dosage, for instance, the amount of increase
in dosage associated with a certain behavior change is the cause size. The
idea of cause size is most relevant when the factor is experimental and its
levels quantitative. It also plays a role in deciding whether an effect size
that seems small is actually important.

Families of Effect Sizes

There are two broad families of effect size indexes for comparative
studies with continuous outcomes, standardized mean differences, and mea-
sures of association (Maxwell & Delaney, 1990). R. Rosenthal (1994) de-
scribed these same two categories as, respectively, the d family and the
r family when we are referring to sample statistics, and Huberty (2002)
distinguished them as, respectively, group difference indexes and relationship
indexes. Both families of indexes are metric-free effect sizes that can be used
to compare results across different studies or variables measured in different
units (B. Thompson, 2002b).

The population parameter estimated by a sample standardized mean
difference is

5 = HIO_*MZ (4.1)

where the numerator is the population mean contrast and the denominator is
a population standard deviation. There is more than one possible population
standard deviation for a comparative study. For example, 6* could be the
standard deviation in just one of the populations (e.g., 0* = 0;) or under
the homogeneity of variance assumption it could be the common population
standard deviation (i.e., 0% = 6; = 0; = O).
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The form of a generic sample standardized mean difference is

_M-M

d e

(4.2)

where the numerator is the observed mean contrast and the denominator—
also known as the standardizer—is an estimator of 6* that is not the same
in all kinds of d statistics. This is because there is more than one population
standard deviation that can be estimated. In other words, specific types of d
statistics differ in their standardizers, and a standardizer estimates a particular
population standard deviation. To understand what a specific type of d
statistic measures, one needs to know which population standard deviation
its standardizer approximates.

Putting aside for now the issue of how standardizers for specific kinds
of d statistics are calculated, the basic interpretation of d is straightforward:
If d = .50, for example, then M is half a standard deviation higher than
M;. The sign of d is arbitrary because the direction of the subtraction
between the means is arbitrary. Always indicate the meaning of its sign
when reporting d; also explain how its standardizer was derived. This need
arises because of the absence of universal names and symbols for d. Note
that d can exceed 1.00 in absolute value. For example, d = 4.00 says that
the mean contrast is four standard deviations large. However, it is relatively
rare in behavioral studies to find mean differences so large.

Presented in the top part of Table 4.1 are the results of two hypothetical
studies in which the same group contrast is measured on variables with
different scales. The unstandardized mean difference is larger in the first
study (75.00) than in the second (11.25), but the estimated population
standard deviation is greater in the first study (100.00) than in the second
(15.00). Because d; = d; = .75, we conclude equal effect size magnitudes in
standard deviation units. Reported in the bottom part of the table are
results of two other hypothetical studies with the same unstandardized mean
difference, 75.00. Because the standard deviation in the third study (500.00)
is greater than in the fourth (50.00), we conclude unequal effect sizes because
d; = .15 and d4 = 1.50. Specifically, the mean difference in the third
study is one tenth the magnitude of that in the fourth study in standard
deviation units.

A measure of association describes the amount of the covariation be-
tween the independent and dependent variables. It is expressed in an un-
squared metric or a squared metric. (The metric of d is unsquared.) An
unsquared measure of association is typically a sample correlation. For in-
stance, the Pearson correlation r indicates the observed strength of the
relation between two continuous variables, and the square of r () is the
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TABLE 4.1
Standardized Mean Differences for Two Different Sets of Hypothetical
Group Contrasts

Study M -M & d
Different mean contrasts, same effect size

1 75.00 100.00 .75

2 11.25 15.00 .75
Same mean contrast, different effect sizes

3 75.00 500.00 15

4 75.00 50.00 1.50

proportion of explained (shared) variance. The latter estimates the parameter
p?. A sample measure of association for a comparative study where two
independent samples (e.g., treatment and control) are compared on a contin-
uous outcome is the point-biserial correlation 7. (This coefficient is de-
scribed later.) This statistic is a special case of the Pearson r, which is in
turn a special case of the sample multiple correlation R. The latter can be
calculated when there are two or more independent or dependent samples
(see chap. 2, this volume).

In comparative studies in which the analysis of variance (ANOVA)
is used, the square of R (R?) is often called the correlation ratio or estimated
eta-squared (fi?). The symbol fi? is used below instead of R?, but do not
forget that | is just a squared sample correlation. The parameter estimated
by fi? is m?, the proportion of total population variance accounted for by
an effect of interest when all factors are fixed. The general form of 1 is

2

nZ — Gc:gfect (43)

where the denominator is the variance of the dependent variable computed
about the population grand mean and the numerator is the variance due
to the effect of interest.

Because of capitalization on chance, the statistic fi? is a positively biased
estimator of 1%, which means that the expected (average) value of 7? is
greater than that of . When a sample correlation or squared correlation
such as ? is calculated, its value reflects all possible predictive power. In
doing so, it takes advantage of variability that may be idiosyncratic in the
sample. This is a greater problem when the sample size is small. There are
numerous methods for comparative studies that generate corrected estimates
of n? that are generally functions of %, the number of conditions or their
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variances, and group size. Two bias-adjusted estimators from the ANOVA
literature for designs with fixed factors are estimated omega-squared (G?)
and estimated epsilon-squared (&%). Please note that some sources use the
symbols n?, @’, and €’ to refer to sample statistics. This is potentially
confusing because lowercase Greek letters without the hat symbol (*) usually
refer to population parameters (e.g., |1, 6). It is generally true for the same
data that §? > &% > @’, but their values converge in large samples. Many
other corrected estimates of p? are described in the regression literature.
Some of these shrinkage-corrected squared multiple correlations (R?) adjust
for bias not only in the present sample but also in future, hypothetical
replications.

Unfortunately, different methods for adjusting squared sample correla-
tions for bias do not all yield identical estimates of the population proportion
of explained variance for the same data. There is also limited consensus
about which method is best for a particular case. Bias corrections are also
unnecessary in large samples. For all these reasons, adjusted estimates of n?
or p? are not covered in great detail in this book. An exception is made
for @, which next to i? is one of the most commonly reported measures
of association in comparative studies where ANOVA is used and the factors
are fixed. It is introduced in chapter 6. See Olejnik and Algina (2000)
and Snyder and Lawson (1993) for more information about bias-adjusted
estimates of n? or p.

A squared sample correlation such as fi% is in a squared metric,
and it tells us the observed proportion of explained variance. A measure
of association in a squared metric is also called a variance-accounted-for
effect size. Unless a correlation is zero, its square is less than its original
(unsquared) absolute value. For example, if r = .20, then r* = .20 =
.04. Because squared correlations can make some effects look smaller
than they really are in terms of their substantive significance, some
methodologists prefer unsquared correlations (e.g., R. Rosenthal et al,
2000). For example, it may not seem impressive to explain only 4% of
the variance, but an effect so “small” in a squared metric can actually
be important. Hunter and F. Schmidt (1990) and R. Rosenthal (1994)
described several examples in medicine, education, and other areas
where potentially valuable findings may have been overlooked because
of misinterpretation of variance-accounted-for effect sizes. Some statistical
properties of measures of association are easier to understand by referring
to a squared metric, however.

Kirk (1996) described a category of miscellaneous effect size indexes
that include some statistics not described in this book, including the binomial
effect size display and the counternull value of an effect size; see R. Rosenthal
et al. (2000) for more information.
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LEVELS OF ANALYSIS

The d and r families of indexes describe effect size at the group level.
As a consequence, they do not directly reflect the status of individual cases,
and there are times when effects at the group level do not tell the whole
story. However, it is possible to evaluate group differences at the case level.
This type of analysis involves comparison of the proportions of scores in
different groups that fall above or below certain reference points. These
proportions may be observed or predicted, and the reference points may be
relative, such as the median of one group, or more absolute, such as a cutting
score on an admissions test. Huberty (2002) referred to these statistics as
group overlap indexes, and they are usually appropriate for communication
with audiences who are not researchers. In contrast, one needs to know
something about at least descriptive statistics to understand standardized
mean differences or correlations. There is an old saying that goes, “The
more you know, the more simply you should speak.” Case-level analysis can
help a researcher do just that for general audiences.

STANDARDIZED MEAN DIFFERENCES

This section introduces particular standardized mean differences for
comparing independent or dependent means. It also deals with interval
estimation for standardized mean differences.

Two Independent Samples

Two different specific kinds of sample standardized mean differences
for univariate group mean contrasts are described, Hedges’s g and Glass’s
A. For reasons given, g may be the most generally useful.

The population parameter estimated by g is 8 = (L, — U;)/0, where
the denominator is the common population standard deviation; that is, it
is assumed that 6; = 6; = 6. The equation for g is

g= =t (4.4)
S

where the standardizer is the square root of the pooled within-groups vari-
ance, sz The latter is an unbiased estimator of 6 and assumes homogeneity
of population variance. Its equation is
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sz=SSW=(n1—1)S%+(ﬂz—1)S%
b dfw/ ny +n; — 2

(4.5)

where SSy and dfy are, respectively, the total within-groups sums of squares
and degrees of freedom, n; and n; are the group sizes, and s? and s} are the
group variances.

Another way to compute g requires only the group sizes and the value
of the independent samples ¢ statistic for a nil hypothesis (see Equation 2.25):

1 1
g=t n_1+n_2 (46)

This equation is handy when working with secondary sources that do not
report sufficient group descriptive statistics to use Equations 4.4 and 4.5.
Solving Equation 4.6 for t represents this test statistic as the product of g,
a standardized effect size index, and a function of sample size (see chap. 2,
this volume). It is also possible to transform the correlation 7, to g for the

same data:
dfw ) (1 1 )
I, o
=" V(l _ Tgb n + n (4.7)

Hedges’s g is a positively biased estimator of 8. However, the magnitude
of this bias is slight unless the group size is quite small, such as n < 20.
Hedges (1982) gave the following approximate unbiased estimator of &:

& = (1 - Mf;—_l)g (4.8)

where the expression in parentheses in Equation 4.8 is a correction factor
applied to g. For n = 10, for example, the correction factor equals .9578,
but for n = 20 it is .9801. For even larger group sizes, the correction factor
is close to 1.0, which implies little adjustment for bias.

Before we can go further, we must deal with a notational problem about
sample standardized mean differences. Many people use the term Cohen’s
d to refer to Hedges’s g or other sample standardized mean differences. This
association is probably based on J. Cohen’s (1988) book about power analysis,
but it is technically incorrect. This is because the symbol d in J. Cohen’s
book refers to 8, the population standardized mean difference, whereas the
symbol d; in the same work refers to the statistic g. To make matters even
more confusing, some authors such as R. Rosenthal et al. (2000) use the
term Cohen’s d to refer to the sample statistic (M; — M;)/Sp, where the
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denominator is the square root of SSy/N. In contrast, the denominator of
g is sp, the square root of SSy/dfy (see Equation 4.5). Because Sp is generally
smaller than sp for the same data, it is also true that (M; — M;)/Sp is generally
larger than g = (M; — M;)/sp in absolute value. However, values of the two
statistics just mentioned are similar except in small samples, and they are
asymptotically equal in large samples. For these reasons, we do not consider
the statistic (M; — M,)/Sp in later discussions.

The parameter estimated by Glass’s A is the ratio of the population
mean contrast over the standard deviation of just one of the popula-
tions, usually that of the control condition. In this case A estimates & =
(L1 = M2)/Oconuol, and the equation for A is

_M-M

Scontrol

A (4.9)

Because the standardizer of A comes from only one group, homogeneity of
variance is not assumed. Glass’s A may be preferred over Hedges’s g when
a treatment is expected to affect both central tendency and variability.
Suppose most treated cases improve, others show no change, but some get
worse, perhaps because of the treatment itself. Such a pattern may increase
the variability of treated cases compared to untreated cases. Glass’s A based
on the control group standard deviation describes in this case the effect of
treatment only on central tendency.

Suppose that the two groups do not correspond to treatment versus
control and their variances are heterogeneous, such as s7 = 400.00 and s =
25.00. Rather than pool these dissimilar group variances for g, the researcher
opts for A. Now, which group standard deviation goes in the denominator?
The choice is critical because it determines the value of A. For example,
given M| — M; = 5.00, the two possible results for this example are

A, = 5.00/400.00"2 = 25
and
A, = 5.00/25.00"% = 1.00

The statistic A; indicates a mean difference four times larger in standard
deviation units than A;. However, both results are equally correct if there
are no conceptual grounds to choose one group standard deviation or the
other as the standardizer. It would be best in this case to report both possible
values of A, not just the one that gives the most favorable result.

When the group variances are reasonably similar, g is preferred over
A. This is because the standardizer of g is based on more information, the
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TABLE 4.2
Means and Variances for Two Independent Samples

Condition
1 2
M 13.00 11.00
s 7.50 5.00

variances of two groups instead of just one. If the ratio of the largest over
the smallest group variance exceeds, say, 4.0, then pooling them makes less
sense, so Glass’s A may be preferred in this case.

Olejnik and Algina (2000) noted that the denominators of g and A
estimate the full range of variation for experimental factors, but perhaps
not for individual-difference factors. Suppose that women and men are
compared on a quantitative variable. If there is a gender effect, both the
pooled within-groups variance s and the separate group variances reflect a
partial range of individual differences. The full range is estimated by the
total variance s# = SSt/dfr, where the numerator is the total sum of squares
across both genders and the denominator is the total degrees of freedom,
N - 1. Gender-mean contrasts standardized against s would be smaller in
absolute value than when the standardizer is sp for g or the standard deviation
of either women or men for A, assuming a gender effect. Although it is not
common practice to compute standardized mean differences in two-group
designs as (M; — M,;)/st, readers should be aware of this option. However,
whether denominators of d estimate partial versus full ranges of variability
is a crucial problem in factorial designs (chap. 7, this volume).

Table 4.2 presents descriptive statistics for two independent samples,
where M; — M; = 2.00 and s} = 6.25. Table 4.3 reports results of the t test
and values of the d statistics described previously for the data in Table 4.2
at three different group sizes, n = 5, 15, and 30. The ¢ test clearly shows
the influence of group size. In contrast, g = .80 for all three analyses and
is in general invariant to group size, keeping all else constant, including
the relative proportion of n; to n; in unbalanced designs. The approximate
unbiased estimator 0 is generally less than g, but their values converge as
n increases. The two possible values of A for these data are A; = .73 based
on s; = 7.50"2 = 2.74 from the first group and A; = .89 based on s; = 5.001% =
2.24 from the second group.

Two Dependent Samples

Recall from chapter 2 that the symbols tp and Mp are used in this
book to refer, respectively, to the population-dependent mean contrast and
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TABLE 4.3
Results of the ¢ Test and Effect Size Indexes at Three Different Group
Sizes for the Data in Table 4.2

Group size (n)

Statistic 5 15 30
t test
t 1.26 219 3.1
dfy 8 28 58
p .243 .037 .003
Standardized mean differences
g .80 .80 .80
5 72 78 79
Aq .73 73 73
A .89 .89 .89

Point-biserial correlation
Iop 41 .38 .38

Note. For all analyses, M; - M, = 2.00 and sf, = 6.25, and p values are two-tailed for a nil hypothesis.

a sample estimator of lp. Standardized mean differences in correlated designs
are also called standardized mean changes or standardized mean gains. There
are two different methods to standardize an observed mean contrast in
these designs. The first method does so just as one would in a design with
independent samples. For example, one possibility is to calculate Hedges’s g.
This statistic in a correlated design is computed as g = Mp/sp, where the
denominator is the pooled within-conditions standard deviation that as-
sumes homogeneity of variance (Equation 4.5). The parameter estimated
by g in a correlated design is & = Lp/d, where the denominator is the common
population standard deviation, just as in an independent samples design.
However, the homogeneity assumption may not be tenable in a repeated-
measures design when treatment is expected to appreciably change the
variability among cases from pretest to posttest. A better alternative in this
case is Glass's A, where the denominator in a correlated design is the standard
deviation from the pretest condition, which estimates population variability
before treatment. Please note that S. Morris (2000) referred to the statistic
just described, Mp/s;, as Becker’s g instead of Glass’s A.

The second method to compute a standardized mean change in a
correlated design is to divide Mp by sp, the standard deviation of the
difference scores. This standard deviation takes account of the cross-condi-
tions correlation r;; (Equation 2.15), but the standard deviations sp and s,
(or s3) do not. (They actually assume it is zero.) If 7y, is reasonably high
and positive, it can happen that sp is quite smaller than the other standard
deviations just mentioned. This implies that the standardized mean change
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based on sp can be quite larger than in absolute value than the standardized
mean change based on either sp or s; (or s;) for the same contrast. The
ratio Mp/sp also estimates a different parameter compared to g and A. It is

Ho (4.10)

§-— MDD
o V2(1 - p12)

where 6 and py; are, respectively, the common population standard deviation
and cross-conditions correlation. Please note in this equation that the de-
nominator is less than 6 when p;; > .50. In contrast, g estimates the
parameter Up/G in a correlated design.

A drawback to calculating standardized mean changes in correlated
designs as Mp/sp is that the scale of sp is that of the difference scores,
not the original scores. An example from Cumming and Finch (2001, pp.
569-570) illustrates this problem: A verbal ability test is administered before
and after an intervention to the same people. Standard scores on the test
are based on the metric where in the general population the mean is 100.00
and the standard deviation is 15.00. The observed standard deviations in
the study at both occasions are also 15.00 (i.e., s; = s; = sp = 15.00). The
standard deviation of the difference scores across the two occasions is sp =
7.70, about half that of the original scores. The observed mean change is
Mp = 4.10 in favor of the intervention. If our natural reference for thinking
about scores on the verbal ability measure is their original standard deviation,
it makes most sense to report a standardized mean change as 4.10/15.00 =
.27 instead of as 4.10/7.70 = .53. This is true even though the latter standard-
ized effect size estimate is about twice as large as the former.

Glass, McGaw, and M. Smith (1981) and others suggested that the
choice in correlated designs between a standardizer based on original scores
versus difference scores should reflect substantive considerations in the
research area. For example, a standardized mean change based on sp may
be preferred in an intrinsically repeated-measures design where the emphasis
is on the measurement of change. In contrast, Cortina and Nouri (2000)
argued that d should have a common meaning regardless of the design,
which implies that the standardizer in correlated designs should be in the
metric of the original scores. This advice seems sound for nonintrinsically
repeated-measures designs where the same factor could theoretically also be
studied with unrelated groups. This is the approach emphasized in this book.

With two exceptions, Equations 4.4 through 4.9 for standardized mean
differences in independent samples designs can be used to calculate standard-
ized mean changes in correlated designs. The first exception is Equation
4.6, which generates Hedges's g from the independent samples ¢ statistic.
Dunlap, Cortina, Vaslow, and Burke (1996) show that the corresponding
equation in a correlated design is
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B 25123
g= t'\’————n(s% 5 (4.11)

where the test statistic in Equation 4.11 is the dependent samples ¢ statistic
for a nil hypothesis (see Equation 2.26). For the special case where s7 = s3,
Equation 4.11 reduces to g = t [2(1 — r12)/n}"2. The second exception is
Equation 4.7, which coverts r,, to g, but 1y, is for independent samples. Other
kinds of correlation effect sizes for correlated designs are discussed later.

Table 4.4 presents a small data set, where M; — M, = 2.00, s} = 6.25,
and n = 5. If we assume that scores in each row come either from the same
case or from matched cases, then r;; = .735 and s = 3.50. The dependent
samples ¢ statistic for a nil hypothesis for these data is t (4) = 2.38. Hedges’s
g for these data is

g = 2.00/6.25"2 = 2.38 {[2 (3.50)}/[5 (7.50 + 5.00)]}'2 = .80

which is the same result in Table 4.3 for the independent samples analysis
of the same group means and variances for n = 5. The standardized mean
change based on sp is 2.00/3.50"2 = 1.07, which as expected is greater than
g for the same contrast.

The following sections deal with interval estimation based on standard-
ized mean differences. The first section covers traditional confidence inter-
vals for 8, and the second section deals with exact confidence intervals for
3. The method of bootstrapping provides an alternative way to obtain
confidence intervals based on observed effect sizes (see chap. 9, this volume).

TABLE 4.4
Raw Scores and Descriptive Statistics for Two Samples
Condition

1 2

9 8

12 12

13 11

15 10

16 14
M 13.00 11.00
s 7.50 5.00

Note. In a dependent samples analysis, r;z = .735 and s3 = 3.50.
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Traditional Confidence Intervals for &

Distributions of d are complex because these statistics estimate the ratio
of two different parameters, the population mean contrast and a population
standard deviation (Equation 4.1). Therefore, a traditional confidence inter-
val for § is approximate. The width of a traditional confidence for 8 is the
product of the appropriate two-tailed critical value of the central test statistic
7 (i.e., the normal deviate) and an asymptotic standard error. The latter is
the estimated standard error of d in a large sample. The general form of a
traditional confidence for § is

d + s (22.ail, o) (4.12)

where s, is the asymptotic standard error of d and 2.4, o is the positive
two-tailed critical value of z at the o level of statistical significance. Table
4.5 lists three equations for asymptotic standard errors of Hedges’s g and
Glass’s A. The first two equations in the table assume independent samples,
but the third equation for g takes account of the cross-conditions correlation
712 when the means are dependent. Two examples of the use of these
equations to construct approximate 95% confidence intervals for & are
presented next.

Suppose that n = 30 for each of two unrelated samples and g = .80
for the observed mean contrast. Using Equation 4.6, we can determine that
t (58) = 3.10 for these data. We estimate the standard error of g with the
first equation in Table 4.5 as:

s, = [.80%/(2 x 58) + 60/(30 x 30)]' = .0722'* = 2687

TABLE 4.5
Asymptotic Standard Errors for Standardized Mean Differences
Statistic Equation
Means treated as independent
g ¢ N
2dfw nny
A AZ N

2(np - 1) * mny

Means treated as dependent

2(1 - np)

'\JI2(ngi 1) * n

Note. The equation for A assumes that s, is the standardizer; ry, = cross-conditions correlation.
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The value of 2.1, 05 is 1.96, so the approximate 95% confidence interval

for & is
.80 + .2687 (1.96) or .80 + 53

which defines the interval .27—1.33. Thus, the data are just as consistent
with a population effect size as low as 8 = .27 as they are with a population
effect size as high as 8 = 1.33, with 95% confidence. This wide range of
imprecision is mainly a result of the relatively small sample size (N = 60).

Now let us assume the same group size (n = 30) and observed effect size
(g = .80) but for a correlated design where the cross-conditions correlation is
r12 = .75. We estimate the standard error of g taking account of ry; with
the last equation in Table 4.5 as:

s, = {.80%[2(30 — 1)] + 2(1 —.75)/30}'* = .0277'* = .1664

As expected, the estimated standard error for g = .80 is lower in the correlated
design (.1664) than in the design with independent samples (.2687) because
of the relatively high value of r;; in the former. This also means that the
approximate 95% interval for § in the correlated design:

.80 £ .1664 (1.96) or .80 + .33

which defines the interval .47-1.13, is narrower than the corresponding
interval in the independent samples design (.27-1.33) for the same value
of g. However, because the group size is not large in this example (n = 30),
the asymptotic standard errors on which these intervals are based may not
be very accurate.

Exact Confidence Intervals for 8

Methods to construct exact confidence intervals for  when the estima-
tor of effect size is Hedges’s g are outlined next, but note that a computer
program is needed. Exact confidence intervals for 8 are based on noncentral
t distributions. Recall that the standard t tests for means are based on central
¢ distributions with a single parameter (df ) in which the null hypothesis is
assumed to be true. Also recall that a noncentral t distribution has two
parameters, df and the noncentrality parameter. This latter quantity is desig-
nated as ncp, although it is actually a population parameter.! It indicates

'A real notational problem must be mentioned. The symbol 8 is used in this book and many other
non-mathematical works to refer to the population standardized mean difference. The same symbol is
also used in the mathematical literature for the noncentrality parameter for ¢ and other noncentral
test distributions (e.g., Steiger & Fouladi, 1997). For this reason, Cumming and Finch (2001} used
the symbol A instead of & to refer to the noncentrality parameter, but the former is used in this
book and related works to refer to Glass’s standardized mean difference.
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the degree to which the null hypothesis is false. If the null hypothesis is
true, then ncp = 0 and the resulting distribution is a symmetrical central ¢
distribution with the same df. As the null hypothesis becomes increasingly
false, ncp departs further from zero. Noncentral t distributions where ncp >
0 are positively skewed, and noncentral ¢t distributions where ncp < 0 are
negatively skewed (see chap. 2, this volume).

Assuming an independent samples design, the value of ncp for non-
central t is related to the population effect size 8 = (U; — W)/ and the

group sizes as follows:
_ nmn;
ncp = 8 4 ’—nl ey (4.13)

When the null hypothesis is true, 8 = 0 and ncp = 0; otherwise, 6 # 0 and
ncp has the same sign as 8. Equation 4.13 can be rearranged to express the
population effect size as a function of the noncentrality parameter and
group size:

n + n;

(4.14)

8 = nc
P nny

Steiger and Fouladi (1997) showed that if we can obtain a confidence
interval for ncp, then we can also obtain a confidence interval for 8 using
the confidence interval transformation principle (see chap. 2, this volume).
In theory, we first construct a 100 (1 — )% confidence interval for ncp
based on the data. The lower and upper bounds of this interval are in ncp
units. Next we convert the lower and upper bounds of the interval for ncp
using Equation 4.14 to & units. The resulting interval is the 100 (1 — )%
confidence interval for 8.

In practice, though, it is not straightforward to construct a confidence
interval for ncp, at least not without a computer program. The lower bound
of a 100 (1 — )% confidence interval for ncp, ncpy, is the value of the
noncentrality parameter for the noncentral ¢ distribution in which the ob-
served ¢ statistic (i.e., from the independent samples ¢ test) falls at the 100
(1 — o/2)th percentile. The upper bound, ncpy, is the value of the non-
centrality parameter for the noncentral ¢ distribution in which the observed
t falls at the 100 (0/2)th percentile. If oo = .03, for example, then the
observed t falls at the 97.5th percentile in the noncentral ¢ distribution
where the noncentrality parameter equals ncp; . The same observed t also
falls at the 2.5th percentile in the noncentral t distribution where the
noncentrality parameter equals ncpy. However, we need to find which partic-
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ular noncentral t distributions are most consistent with the data, and it is
this problem that can be solved with the right computer program. The use
of three different programs to do so is demonstrated next.

Suppose that n = 30 for each of two unrelated samples, g = .80 and
t (58) = 3.10. (These are the same data for the first example in the previous
section. ) J. Steiger’s Power Analysis module of STATISTICA (StatSoft Inc.,
2003) has a distribution calculator for noncentral t, F, and %* distributions. It
is easy to use because of a relatively simple graphical user interface. To get
the lower bound of the 95% confidence interval for ncp for this example,
just enter observed t = 3.10, df = 58, and cumulative probability = .975 in
the appropriate boxes under the parameters heading, click the “delta” radio
button under the “compute” heading to specify estimation of the noncentral-
ity parameter, and then click the compute button to the far right. (Delta
refers to the noncentrality parameter in this program.) The number 1.04844
will then appear in the box for delta. In other words, the observed statistic
3.10 falls at the 97.5th percentile in the noncentral ¢t distribution, where
df = 58 and the noncentrality parameter equals 1.04844. The latter is also
the lower bound of the 95% confidence interval—that is, ncp; = 1.04844.
To get the upper bound of the 95% confidence interval for ncp, repeat the
previous steps, except enter .025 in the cumulative probability box under
the parameters heading. After clicking on the compute button, the
number 5.12684 will appear in the delta box. This result says that the
observed statistic 3.10 falls at the 2.5th percentile in the noncentral ¢
distribution where df = 58 and the noncentrality parameter is 5.12684.
The latter is also the upper bound of the 95% confidence interval—
that is, ncpy = 5.12684.

The 95% confidence interval for ncp for this example is thus 1.04844—
5.12684. Equation 4.14 shows us that multiplying each of these endpoints
by the following quantity

[(30 + 30)/(30 x 30)]'2 = .25820

converts them to 8 units. The resulting interval, .27071-1.32374—or .27—
1.32 at two-decimal accuracy—is the exact 95% confidence interval for 8.
Thus, the observed effect size of g = .80 is just as consistent with a population
effect size as low as 8 = .27 as it is with one as high as 8 = 1.32, with 95%
confidence. This rather wide range of imprecision is a result of the relatively
small sample size (N = 60). The traditional 95% confidence for & calculated
in the previous section for the same data is .47-1.13. The approximate
interval is narrower, but it assumes a large sample.

A second computer tool that is handy for constructing confi-
dence intervals for 8 is the SAS noncentrality function TNONCT in the
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SAS/STAT program (SAS Institute, 2000). This function returns the value
of the noncentrality parameter given the observed t, its df, and a specified
percentile in a noncentral t distribution. Some programming in SAS syntax
is required, but it is not too difficult for a two-group design. The top part
of Table 4.6 presents the SAS syntax for calculation of the lower and upper
bounds of exact 95% confidence intervals for ncp and 8 using the data from
the earlier example. The bottom part of Table 4.6 reports the output from
SAS/STAT after running the program listed in the top part of the table.
The exact 95% confidence interval for 8 calculated by SAS/STAT for the
example data, .27071-1.32374, is the same result we calculated earlier using
a different computer tool. The SAS syntax in Table 4.6 can be reused
by substituting the values in boldface with the appropriate values from a
new sample.

Two other computer tools do all the work for you—that is, they directly
calculate endpoints of exact confidence intervals in 8 units. These programs
include the STATISTICA Power Analysis module, which can also calculate
noncentral confidence intervals for several different kinds of population

TABLE 4.6
SAS Syntax to Compute an Exact 95% Confidence Interval for & in
Designs With Two Independent Samples and Output

Syntax

data noncentral_ci_for_delta;

/* two-group design */

/* data */
t=3.10;
df=58;
nl=30;
n2=30;

/* lower, upper bounds for ncp */
ncp_lower=tnonct (t,df, .975) ;
ncp-upper=tnonct (t,df, .025) ;

/* lower, upper bounds for delta */
delta_lower=ncp_lower*sqgrt ((nl+n2)/(ni*n2));
delta_upper=ncp_upper*sqrt ( (nl+n2)/(nl*n2)) ;

output;
run;
proc print;
run;
Output
ncp— ncp— delta_ delta_
Obs t df nl n2 lower upper lower upper

i 3.1 58 30 30 1.04844 5.12684 0.27071 1.32374
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effects sizes, including for & in one- and two-sample designs. Another program
that calculates exact confidence intervals for 8 in the same designs is Explor-
atory Software for Confidence Intervals (ESCI; Cumming, 2002),” which
runs under Microsoft Excel. The ESCI program is also structured as a tool
for teaching concepts about noncentral test statistics, confidence intervals,
and meta-analytic thinking. Both programs just mentioned assume that the
observed effect size is Hedges’s g when there are two unrelated samples. In
a correlated design, both programs calculate exact confidence intervals for
d only when the mean contrast is standardized against sp, the standard
deviation of the difference scores. Cumming and Finch (2001) noted that
distributions of dependent-mean contrasts standardized against either sp, the
pooled within-groups standard deviation, or against the standard deviation of
one of the individual groups are complex and follow neither central nor
noncentral ¢ distributions. An approximate confidence interval is needed
in this case (see the previous section).

Limitations

Possible limitations of d statistics considered next apply to all designs
considered in this book, not just two-sample designs. Heterogeneity of
within-conditions variances across studies can limit the value of d as a
standardized effect size index. Suppose that M| — M; = 5.00 in two different
studies with the same outcome variable. The pooled within-conditions vari-
ance in the first study is 625.00 but is only 6.25 in the second. As a
consequence, Hedges’s g for these two studies reflects the difference in
their variances:

g = 5.00/625.00"% = .20
and
g = 5.00/6.25"% = 2.00

These results indicate a mean difference tenfold standard deviations greater
in the second study than in the first, even though both statistics refer to
the same mean contrast. In this case, the unstandardized result M; — M; =
5.00 is a better statistic to compare across the two studies than d. This
suggestion is also consistent with a preference for unstandardized statistics
when comparing results of regression analyses across samples with appreciably
unequal variances.

A trial version can be downloaded from http://www.latrobe.edu.au/psy/escifindex.html
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The relative insensitivity of d statistics to sample size is a potential
shortcoming. Suppose that Hedges’s g = 2.00. According to interpretive
conventions discussed later, a group mean difference of this magnitude may
indicate a “large” difference. However, if we then learn that n = 5, we
should not get too excited about this result until it is replicated, among
other considerations. Other limitations of effect size indexes in general are
considered later.

MEASURES OF ASSOCIATION

The r family effect size indexes discussed next assume a fixed factor.
In a squared metric they all estimate 1 with positive bias. Later chapters
introduce bias-adjusted measures of association and special indexes for ran-
dom factors.

Two Independent Samples

The observed strength of the relation between a dichotomous factor
and a continuous outcome is measured by the point-biserial correlation, ry,.
It can be derived using the standard equation for the Pearson correlation
7 if group membership is coded as O or 1 or any two different numbers.
However, it may be more convenient to use one of the methods de-
scribed next.

A conceptual equation is

M1 - Mz
= |/~ 15
Tpb ( '—SST/N) bq (4 )

where (SS/N)2 is the standard deviation of the total dataset computed
with the sample size in the denominator and p and g are the proportions
of cases in each group (p + g = 1.0). Note that the expression in Equation
4.15 in parentheses is actually a d statistic, where the standardizer estimates
the full range of variability on the outcome variable. It is the multiplication
of this d statistic by the standard deviation of the dichotomous factor,
(p )", that transforms the whole expression to correlation units. The sign
of 7, is arbitrary because the direction of the subtraction between the two
means is arbitrary. Always indicate the meaning of the sign of 7,

It may be handier to compute 1, from the independent samples ¢
statistic for a nil hypothesis:

gy = ——— (4.16)

NE + dfyy
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The absolute value of 7,3, can also be derived from the independent samples
F test of the mean contrast:

N N ST
[ron| = Frdiy - \ss, =1 (4.17)

Equation 4.17 shows 1, as a special case of 1}, which is the square root of
the ratio of the between-groups sums of squares, SSa, over the total sum of
squares. (Equation 4.17 also shows that 7%, = fi* in a two-group design.)
Unlike 7, however, 1] is an unsigned correlation, so it is insensitive to the
direction of the mean difference. It is also possible to convert Hedges’s g
o Tpp:

g
Tob = (418)
" NE + dfy (Uny + Uny)

Equation 4.18 is useful when a secondary source reports g in a two-sample
design but a correlation effect size is desired.

The population parameter estimated by 3, is 1%, which for a design
with a single fixed factor A and a > 2 independent samples takes the form

2 2
ek o G (4.19)

2 2 2
Owr Oyt GCc

where the numerator is the variance of the population means py, p;, ..., pa
around the grand mean U, and the denominator is the total variance of all
scores around 1. The difference o2, — Gﬁ equals 6%, the variance of the
scores taken about their respective population means (the within-population
variance); it is also the error variance. The parameter 1 is thus the propor-
tion of total variability that is accounted for by population means. The
terms that make up n? are population variance components, and the whole
ratio ) = 6302, is estimated with positive bias by 2 = SSA/SSt. We will
see in later chapters that there are other estimators of the proportion of
total explained variance besides % that are adjusted for bias (e.g., ®) or
suitable for designs with random factors.

In some sources it is said that the maximum absolute value of r, is
about .80. However, this is true only if groups were formed by dichotomizing
a continuous independent variable (Hunter & Schmidt, 1990). This practice
is generally not a good idea—MacCallum, Zhang, Preacher, and Rucker
(2002) showed that dichotomizing continuous predictors may lead to inaccu-
rate estimates of their true relation with outcome. However, similar problems
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can arise when continuous predictors are categorized to form more than
just two levels. Quantitative predictors are better analyzed with regression
than ANOVA (see chap. 2, this volume). If groups are formed by random
assignment or by a characteristic of the cases, absolute values of 7y, can
approach 1.00.

The correlation r, is affected by the proportion of cases in one group
or the other, p and q. It tends to be highest in balanced designs. As the
design becomes more unbalanced, holding all else constant, r,, approaches
zero. Suppose that M; — M; = 5.00 and (SS/N)2 = 10.00 in each of two
different studies. The first study has equal group sizes, or p; = g; = .50. The
second study has 90% of its cases in the first group and 10% in the second
group, or p; = .90 and ¢, = .10. Using Equation 4.15, we get

Tob; = (5.00/10.00) (.50 x .50)*
Tob, = (5.00/10.00) (.90 x .10)"*

.50 (.50) = .25
.50 (.30) = .15

The values of these two point-biserial correlations are different even though
the mean contrast and total standard deviation are the same. Thus, ., may
not be directly comparable across studies with dissimilar relative group sizes.

Look back to Table 4.3. The lower part of this table reports the values
of 1, for the means and variances in Table 4.2 at three different group sizes,
n =5, 15, and 30. For the smallest group size, 7, = .41, but for the larger
group sizes, 1, = .38. This pattern illustrates a characteristic of 1, and other
sample correlations that approach their maximum absolute values in very
small samples. In the extreme case where the size of each group isn = 1 and
the two scores are not equal, 7, = + 1.00. This happens out of mathematical
necessity and is not real evidence for a perfect association. Taking the value
of rp, in Table 4.3 for the larger group sizes as the most reasonable, we can
say that the correlation between group membership and outcome is .38
and that the former explains about .38% = .144, or 14.4% of the total
observed variance.

Two Dependent Samples

The correlation 7, is for designs with two independent samples. When
the samples are dependent, we can instead calculate the correlation coeffi-
cient of which r,, is a special case, ). It is derived the same way in correlated
designs as in designs with independent samples, f| = (SSA/SSt)2. However,
there is concern that | may not be directly comparable when the same
factor is studied in two different designs, one with dependent samples and
the other with independent samples (Keppel, 1991). This is because the
composition of SSt is different in the two designs. In an independent samples
analysis it is true that
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SST = 8§54 + SSw (4.20)

where SSy is the sums of squares for the error term of the independent
samples F test. In a dependent samples analysis, however, it is the case that

S$§t = S84 + SSg + SSAxS (4.21)

where SS, . s is the sum of squares for the error term of the dependent
samples F test assuming a nonadditive model and SSs is the sum of squares
for the subjects effect (see chap. 2, this volume). Comparing Equations 4.20
and 4.21, we can see that SSt reflects only one systematic effect (A) when
the means are independent, but two (A, S) when the means are dependent.

There is a partial correlation effect size for within-subjects designs with
a single fixed factor that removes the subjects effect from the total variance.

It is
A ’ SSa
partial | = S5+ SSaLs (4.22)

where the denominator under the radical in Equation 4.22 represents only
one systematic effect (A). This denominator can also be expressed as

SSA + SSA xS = SST - SSS (423)

which more clearly shows the removal of the subjects effect from total
variance. The parameter estimated by partial i) in a single-factor within-
subjects design is

2
L ,_ O
partial 1} ———”—Gﬁ + ol (4.24)

where the denominator in Equation 4.24 reflects one source of systematic
variance (the population A effect) and error variance. (Compare Equations
4.19 and 4.24.) If the two samples are independent, however, the parameters
N’ and partial n? are identical and f? = partial i for the same data.

If the subjects effect in a correlated design is relatively large, then
partial f} can be substantially greater than 1} for the same contrast. This is
not contradictory because the two statistics estimate the correlation between
the factor and outcome relative to two different variances, total observed
variance (f}) versus an adjusted total variance (partial 7j). These different
reference points may pose no real interpretive dilemma in an intrinsically
repeated-measures design. Otherwise, it may be 7} in a nonintrinsically
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repeated-measured design that is actually more directly comparable with 7y,
from a between-subjects design with the same factor and dependent variable.

Please refer back to the small data set in Table 4.4, where n = 5,
M;—-M; = 2.00, and r; = .735 in a dependent samples analysis. It is left
as an exercise for the reader to conduct the dependent samples ANOVA
for these data to confirm the following results:

SSa = 10.00, SSw = 50.00, SSs = 43.00, SS4 s = 7.00, and SSt = 60.00
From the information given previously, we compute
i = (10.00/60.00)72 = 41

which says that the correlation between factor A and outcome is .41 and
that about .41% = .168, or 16.8% of the total variance is explained. We also
compute from the above sums of squares

partial = ) [10.00/(10.00 + 7.00)]% = .77

which says that the correlation between the factor and outcome is .77 after
removing the subjects effect and that about .77% = .593, or 59.3% of the
residual variance is explained. The results for 1] and partial 1} are so different
for these data because most of the within-condition variation is a result of

the subjects effect (SSy = 50.00, SSs = 43.00).
Confidence Intervals

There are approximate methods to construct a traditional confidence
interval for p when the correlation effect size is the Pearson r for two
continuous variables. The method that is probably the most widely known
is based on the confidence interval transformation principle. It builds confi-
dence intervals around the Fisher’s Z transformation of . Pearson correlations
transformed to Fisher Z units tend to be normally distributed. The endpoints
of a confidence interval around the Z transformation of r are then converted
back to correlation units, and the resulting interval is the approximate
confidence interval for p. This method is demonstrated in many statistics
textbooks (e.g., Glass & K. Hopkins, 1996, pp. 357-358). Another approxi-
mate method by Hunter and F. Schmidt (1990) builds an approximate
confidence interval for p directly in correlation units.

The problem with these approximate methods is that they may not
be accurate when the correlation effect size is 7y, instead of r. This may be
especially true in unbalanced designs. There are more accurate methods

described by Fidler and B. Thompson (2001), Smithson (2001), and Steiger
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and Fouladi (1992) that construct noncentral confidence intervals for 12
in designs with independent samples and fixed factors when the observed
effect size is fi? (of which 7y is a special case). These intervals are based
on noncentral F distributions, which have three parameters in designs with a
single fixed factor A and independent samples, df o, dfyy, and the noncentrality
parameter. The interpretation of the noncentrality parameter for noncentral
F distributions is similar to that for noncentral t distributions. The general
method for obtaining an exact confidence interval for 1)? is also similar to
that for obtaining an exact confidence interval for 3. First, the confidence
interval for the noncentrality parameter of F that is best supported by the
data is obtained using a specialized computer program. Assuming the 95%
level of confidence, the lower bound of this interval, ncpy, is the noncentrality
parameter of the noncentral F distribution in which the observed F for
the contrast falls at the 97.5th percentile. The upper bound, ncpy, is the
noncentrality parameter of the noncentral F distribution in which the
observed F falls at the 2.5th percentile. The endpoints of the interval
ncpr—ncpy are then converted to 1? units. Specifically, the lower bound of
the 95% confidence interval for n? equals the ratio ncpy /(ncpy + N), and
the upper bound equals the ratio ncpy/(ncpy + N). An example follows.

We will use the same basic data as for the corresponding examples in
previous sections. For two unrelated samples in a balanced design, n = 30,
Hedges’s g = .80, and t (58) = 3.10. Using Equation 4.18 to convert g for
these data to a correlation effect size, we get 1y, = | = 379, and * =
.142. Thus, a group mean difference .80 standard deviations in magnitude
corresponds to a variance-accounted-for effect size of about 14.2%. The F
(1, 58) statistic for the mean contrast is 9.60, the square of the t statistic.
The distribution calculator for noncentral F in the Power Analysis module
of STATISTICA was used to obtain the upper and lower bounds of the
95% confidence interval for the noncentrality parameter. The observed F
statistic for this example falls at the 97.5th percentile in the noncentral
F distribution with the corresponding degrees of freedom and where the
noncentrality parameter is 1.09473, and it falls at the 2.5th percentile in
the noncentral F distribution where the noncentrality parameter is 26.26713.
Thus, the 95% confidence interval for the noncentrality parameter is
1.09473-26.26713. The endpoints of this interval are converted to 1) units
as follows:

1.09473/(1.09473 + 60) = .01792
26.26713/(26.26713 + 60) = .30449

The 95% confidence interval for 12 for this example is .01792-.30449, or
.018-.304 at three-decimal accuracy. Therefore, the observed effect size of

fi? = .142 is just as consistent with a population variance-accounted-for
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TABLE 4.7
SAS Syntax to Compute an Exact 95% Confidence Interval for n? in
Designs With Independent Samples and a Single Fixed Factor and Output

Syntax

data noncentral_ci_for_eta_squared;
/* one-way between-subjects design */
/* data */

F=9.61;

dfl=1;

df2=58;

/* lower, upper bounds for ncp */
ncp_lower=fnonct (F,df1,df2, .975);
ncp_upper=fnonct (F,df1l,df2, .025) ;

/* lower, upper bounds for rho-squared */
rho_sqg_lower=ncp_lower/ (ncp_lower+df1+df2+1}) ;
rho_sq_upper=ncp_upper/ (ncp_upper+df1+df2+1) ;

output;
run;
proc print;
run;
Output
ncp— ncp— rho_sq_ rho_sqg_

Cbs F df1 df2 lower upper lower upper

1 9.61 1 58 1.09794 26.2844 0.017970 0.30463

effect size as low as 1.8% as it is with a population variance-accounted-for
effect size as high as 30.4%. The range of imprecision is quite wide because
of the relatively small sample size (N = 60).

Other computer tools for obtaining noncentral confidence intervals
in two-group designs with fixed factors are briefly mentioned. The top part
of Table 4.7 presents the SAS syntax that uses the noncentral F function
FCONCT to calculate the 95% confidence interval for n? with the data
from the previous example. The bottom part of the table lists the output
from SAS/STAT, which agrees with the results described earlier. The syntax
in Table 4.7 can be re-used by substituting the values in boldface with
the corresponding values from a new sample. This syntax is also good for
calculating confidence intervals for 12 based on the omnibus effect or for
partial n? in designs with three or more independent samples and a single
fixed factor (chap. 6, this volume).

Noncentral confidence intervals for p? based on squared-sample multi-
ple correlations (R?) are calculated by the Power Analysis module of STA-
TISTICA and by the freely available program R2 by Steiger and Fouladi

(1992).> Both programs anticipate a general regression analysis where a

http://www.interchg.ubc.cafsteiger/homepage.htm
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continuous criterion is regressed on a set of predictors that are continuous
or categorical. However, both programs can also compute confidence inter-
vals for ? in comparative studies where the samples are independent. All
that is needed is a lictle modification to program input. Just enter the value
of 2 in dialogs that request the value of R%, and count each degree of
freedom for the effect as a predictor in dialogs that request the number of
predictor variables. Suppose that £ = .20 in a two-group design. The number
of predictor variables is 1 because the group contrast is a single-df effect.
Smithson (2001)* described a freely available script (macro) for computing
confidence intervals for n % in comparative studies with independent samples
and fixed factors that runs under version 10 or higher of SPSS (SPSS, 1999).

There is a paucity of computer tools that calculate confidence intervals
for n? or partial n? in correlated designs. This is mainly because the distribu-
tions of effect sizes in such designs tend to be quite complex and may follow
neither central nor noncentral test distributions. Although this situation
will probably change in the future, for now it is not practically possible to
obtain exact confidence intervals based on variance-accounted-for effect
sizes in some designs with dependent samples.

Limitations

These remarks concern measures of association in general, not just
those for two-sample designs such as r,,. Some potential limitations were
mentioned earlier: Correlations can be affected by sample variances and
whether the samples are independent versus dependent, the design is bal-
anced versus unbalanced, or the factors are fixed versus random. They also
tend to increase in absolute value as more levels of the independent variable
are added to the design, such as when four dosages of a drug are studied
instead of just two. Thus, values of measures of association are to some
extent under the control of the researcher. Study artifacts that may distort
sample correlations include attrition of cases, range restriction, categoriza-
tion of continuous variables, and measurement error (Hunter & F. Schmidt,
1994). The latter means that use of measures with poor psychometric charac-
teristics may result in artificially low observed correlations. Baugh (2002)
gave a succinct description of ways to correct correlation effect sizes for
measurement error, and B. Thompson (2002a) gave similar information for d.

Some researchers see standardized mean differences as potentially less
problematic than measures of association. It is true that d statistics may
depend less on the particular study design, at least when their standardizers
are computed the same way across different designs. To be fair, d statistics

*hetp:ffwww.anu.edu.au/psychology/staff/mike/Clstuff/CLhtm!

EFFECT SIZE ESTIMATION IN COMPARATIVE STUDIES 121



have their own potential problems, and study artifacts like measurement
error can distort d, too. Measures of association also have some advantages
over d in multifactor designs (chap. 7, this volume). Additional limitations
of standardized effect size indexes in general are considered later.

CASE-LEVEL ANALYSES OF GROUP DIFFERENCES

Standardized mean differences and measures of association describe
effect size at the group level. The methods outlined next describe effects
at the case level with either observed or predicted proportions of scores
from two different groups that fall above or below certain reference points.
A total of four different case-level analyses are reviewed. The first is based
on observed proportions of scores that fall within areas of overlap versus
nonoverlap between two frequency distributions, and the second concerns
relative observed proportions of scores that fall within the tails (extremes)
of the combined frequency distribution. The third analysis generates propor-
tions of scores predicted to fall at various points given the observed mean
difference and within-groups variances, and the fourth is based on estimated
error rates in the statistical classification of individual cases.

Measures of Overlap

Figure 4.1 presents three pairs of frequency distributions that each
illustrate one of ]J. Cohen’s (1988) measures of overlap, U;, U;, and Us.
All three distribution pairs in the figure show a higher mean in the second
group than in the first, normal distributions, and equal group sizes and
variances. The shaded regions in Figure 4.1(a) depict areas where the two
distributions do not overlap, and U is the proportion of scores across both
groups within these areas. The difference 1 — Uj is thus the proportion of
scores within the area of overlap. If the group mean contrast is zero, then
U; = 0. A mean difference so large that no scores overlap is indicated by
U; = 1.00, so the range of U; is 0-1.00. Figure 4.1(b) illustrates U, the
proportion of scores in the lower group exceeded by the same proportion
in the upper group. If the mean difference is zero, U, = .50 because the
two frequency distributions are identical; if U, = 1.00, all scores in the
lower group are exceeded by all scores in the upper group (i.e., U; = 1.00).
The range of U, is thus .50—1.00. Figure 4.1(c) represents Us, the proportion
of scores in the lower group exceeded by the typical score in the upper
group, usually the median. The Uj statistic has the same range as U,,
.50-1.00. If Uy = .50, the two distributions are identical; if Us = 1.00, the
means are so different that the typical score in the upper group exceeds all
scores in the lower group.
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M, (c) M,

Figure 4.1. J. Cohen’s (1988) measures of distribution overlap, U,, U;, and Us.
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In actual data sets, U,, U;, and Uj are derived by inspecting frequency
distributions. For U, count the total number of scores from one group
outside the range of the other group and divide this number by N. For Us,
locate the typical score of the upper group in the frequency distribution of the
lower group and find the proportion of scores below this point. Computing U,
is not so straightforward: Unless both frequency distributions have the same
shape, interpolation is needed to find the points in both distributions where
the proportion of scores in the upper group exceeds the same proportion
in the lower group. This can be tedious if done by hand. There is also a
potential problem with Uj: If the range of the outcome variable is limited,
the propottion of nonoverlapping scores may be zero even if the mean
difference is substantial.

It is also possible in graphical displays about group means to give
information about overlap at the case level. Wilkinson and the Task Force
on Statistical Inference (1999) give a simple example reproduced in Figure
4.2. Panel A shows means for two hypothetical groups in a format often
used to show the results of a t test. Panel B adds to the line graphic 95%
confidence intervals shown as vertical bars above and below each mean. It
also shows individual scores as circles. This representation shows the degree
of overlap of the two groups at the case level. There are other graphical
techniques for showing both group- and case-level information, including
box plots, and stem-and-leaf displays, among other techniques of exploratory
data analysis (e.g., Tukey, 1977).
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Figure 4.2. A graphical display of group means only (A) versus one that shows means,
confidence intervals, and scores for individual cases (B). From “Statistical Methods
in Psychology Journals: Guidelines and Explanations,” by L. Wilkinson and the Task
Force on Statistical Inference, 1999, American Psychologist, 54, p. 602. Copyright
1999 by the American Psychological Association. Reprinted with permission.
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Tail Ratios

There are two kinds of tail ratios. A right-tail ratio (RTR) is the relative
proportion of scores from two different groups that fall in the upper extreme
of the combined frequency distribution. Likewise, a left-tail ratio (LTR) is
the relative proportion of scores that fall in the lower extreme of the
combined distribution. Because left- and right-tail ratios are computed with
the largest portion in their numerators, their values are 21.0. For example,
RTR = 2.00 says that cases from one group are twice as likely to have scores
in the right tail of the combined distribution than cases in the other group.
Tail ratios have no upper bound, but the higher their value, the more the
two distributions differ in the extremes.

Tail ratios are usually computed based on cutting points relative to
the mean and standard deviation of the total data set. This mean is the
grand mean, My, and the total standard deviation is st = (SSt /dfr)". Figure
4.3 illustrates a RTR for two normal distributions with the same variance
but where M; > M. The cutting point in the figure is M1 + 5T, one standard
deviation above the grand mean. The symbol p; stands for the proportion
of scores in the lower distribution that exceed the cutting point, and p; is
the proportion of scores in the upper distribution above the same point.
The RTR for the figure is p;/p; = 1.0. Right-tail ratios can be calculated
relative to other cutting points, such as Mt + 2 st, or two standard deviations
above the grand mean. Left-tail ratios are defined according to cutting points
below the grand mean. Although a left-tail ratio is not illustrated in the
figure, it would estimate the relative overrepresentation of scores from the
lower group in the left-tail of the combined distribution. For symmetrical
distributions with equal variances, left- and right-tail ratios are equal for
cutting points the same relative distance from the grand mean.

Maccoby and Jacklin (1974) reported the following descriptive statis-
tics for samples of young women (ny = 3,139) and young men (ny; = 3,028)
on a test of verbal ability, respectively:

My = 103.00, s, = 219.00 and My = 100.00, s = 202.00
The mean of the total data set is
Mr = [3,139 (103.00) + 3,028 (100.00)] /6,167 = 101.5270
Four-decimal accuracy for the total mean and right-tail ratios is used in
computations that follow to avoid excessive rounding error. The total sum

of squares is computed as the total of the between-groups sums of squares
and the within-groups sums of squares (see Equations 2.29—-2.30):
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Figure 4.3. The right tail ratio p./p, relative to a cutting point one standard deviation
above the grand mean.

SSt = 3,139 (103.00 — 101.5270)* + 3,028 (100.00 — 101.5270)*
+ 3,138 (219.00) + 3,027 (202.00)
= 13,871.25 + 1,298,676.00 = 1,312,547.25

The total standard deviation is
st = (1,312,547.25/6,166)'72 = 14.59

so the cutting point one standard deviation above the mean of the combined
distribution is

Mt + st = 101.53 + 14.59 = 116.12

The z equivalents of a score of 116.12 in the separate distributions for young
women and young men are, respectively:

2w = (116.12 - 103.00)/219.00'2 = .89
and
v = (116.12 — 100.00)/202.0012 = 1.13
Assuming normal distributions, the proportion of scores to the right of =

.89 for the young women is .1867. A lower proportion of scores are higher
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than z = 1.13 for the young men, .1292. Given these proportions, the right-
tail ratio for this example is

RTR = .1867/.1292 = 1.45

Thus, young women are about 1Y times more likely than young men to
have verbal test scores more than one standard deviation above the grand
mean; see Feingold (1995) for additional examples. The method described
may not give accurate results if the distributions are not reasonably normal.
One should instead analyze the frequency distributions of each group to
find the exact proportions of scores beyond the cutting point.

Common Language Effect Size

McGraw and Wong's (1992) common language effect size (CL) is the
predicted probability that a random score from the upper group exceeds a
random score from the lower group. If two frequency distributions are identi-
cal, CL = .50, which says that it is just as likely that a random score from
the upper group exceeds one from the lower group as the opposite. As the
two frequency distributions become more distinct, the value of CL increases
up to its theoretical maximum of 1.00, which says that any score from the
upper group exceeds all scores from the lower group. The range of CL is
thus .50-1.00. Derivation of CL is based on theoretical distributions of
differences between pairs of random scores from the two groups. This implies
that one needs neither the group frequency distributions nor access to the
raw data to compute CL.

Suppose that M, > M; for two unrelated groups. The expected average
difference between pairs of random scores from the two groups equals the
lower mean subtracted from the upper mean, M, — M;, and the variance
of the differences is the sum of the within-groups variances, sf + s3. If both
distributions are normal, the theoretical differences are normally distributed,
too. Within this theoretical distribution, one finds the z equivalent of a
difference score of zero, which is

0-(M; = M))

cL =
st + s}

Differences between pairs of random scores above the point marked by
zcp are all positive, which implies X; > X;. Thus, the total proportion of
observations to the right of 7o in a normal curve is the probability that a
random score from the upper group exceeds one from the lower group.

(4.25)
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Let us calculate 7o for the data from Maccoby and Jacklin (1974)
described earlier, where My = 103.00, s§ = 219.00, My = 100.00, and
s = 202.00:

2L = —(103.00 — 100.00)/(219.00 + 202.00)2 = —3.00/421.00"* = —.15

The proportion of scores to the right of = —.15 in a normal curve is .5596,
so CL = .56. Thus, in any random pairing of young people of different
gender, the probability that the woman has the higher verbal ability score
is .56. See McGraw and Wong (1992) for additional examples.

McGraw and Wong (1992) studied the effects of skew, kurtosis, and
heterogeneity of variance on the accuracy of CL values generated by the
computational method described earlier. Given moderate skew or kurtosis
and within-groups variances that differed by a factor of up to 4.0, they found
that the absolute error in CL was generally less than .10. Of course, even
more extreme departures from normality or homogeneity of variance may
lead to even greater error.

Error Rates in Classification Analysis

Hess, Olejnik, and Huberty (2001) described the application of two
different statistical methods that estimate the degree of group overlap
through classification analysis. These methods for two-group univariate com-
parisons are univariate discriminant function analysis (DFA)-—also known
as predictive discriminant analysis or just discriminant analysis—and logistic
regression (LR). Both methods can be extended to compare more than two
groups across more than one variable (i.e., they are multivariate methods).
[t is beyond the scope of this section to describe these methods in detail,
but the assumptions of DFA are generally more strict. These include normal
distributions and homogeneity of population variances and covariances. See
Silva and Stam (1995) and Wright (1995) for more information about DFA
and LR.

In both univariate DFA and LR, group membership is considered the
criterion and the continuous variable the predictor, which is opposite of
their usual status in techniques such as ANOVA. Both methods also option-
ally include a classification phase in which conditional probabilities of group
membership are estimated for every case. These predicted probabilities are
based in part on the degree of overlap between the group frequency distribu-
tions. Suppose that a particular case is estimated to be more similar to cases
in its own group than to those in the other group. The observed and predicted
group memberships for this particular case are the same, so the classification
is correct. Two groups are perfectly distinct at the case level if the percentage
of correct classification across all cases—the hit rate—is 100%. Perfect classi-
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fication also means an error rate of zero. As distribution overlap increases,
there will be more and more cases where the observed and predicted group
memberships disagree. Maximum overlap between two groups is indicated
by a hit rate that is no higher than that expected by chance (random
classification).

Huberty and Lowman (2000) described the case-level statistic I that
measures improvement over chance classification. Its general form is

_(I_He)_(l—Ho)_Ho_He
I= - H, “I-oH, (4.26)

where H, and 1 — H,, are, respectively, the observed cross-group hit rate
and error rates, and H, and 1 — H, are, respectively, the corresponding rates
expected by chance. That is, I estimates the proportionate reduction in the
error rate compared to that of random classification. One definition of H,
given by Huberty and Lowman is the proportional chance criterion, which
says that the chance hit rate equals the sum of the products of the prior
probabilities of the group and their sizes divided by the total number of
cases across all groups. Prior probabilities are the expected relative sizes of
the populations from which the samples were drawn. They are expressed
as proportions and sum to 1.0 across the groups. For a two-group design:

_ pring + prymy
H, = N (4.27)

where pry and pr; are the prior probabilities of the two groups. For example,
given pr; = .50, n; = 100, pr, = .50, and n; = 75 and assuming random
classification, the expected chance hit rate is

H, = [.50 (100) + .50 (75)]/175 = 87.50/175 = .50

and the expected chance error rate is also .50. If the observed cross-group
classification hit rate is .60, then

I = (.60 — .50)/.50 = .20

which says that the observed error rate of .40 is 20% less than that expected
by random classification. Huberty and Lowman suggested that I < .10 may
indicate a “low” (smaller) effect, whereas I > .35 may indicate a “high”
(larger) effect, both at the case level. Some cautions about guidelines for
interpreting qualitative effect size magnitudes are discussed momentarily.
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RELATION OF GROUP-LEVEL EFFECT SIZE
TO CASE-LEVEL PROPORTIONS

Under the assumptions of normality, homogeneity of variance, and
large and equal group sizes, the case-level proportions described earlier
are functions of effect size magnitude at the group level. The first column
in Table 4.8 shows selected values of d in the range 0-4.00. (Because
Hedges’s g and Glass’s A are asymptotically equal under these assumptions,
no distinction is made between them.) Listed in the remaining columns
of the table are values of 7, and case-level proportions that correspond
to d in each row under the conditions stated earlier. Reading each row
of the table gives a case-level perspective on a group mean difference of a
particular magnitude. For example, if d = .50, the expected value of 7y, is
.24 (6% explained variance). For the same effect size, we expect at the case
level that:

1. About one third of all scores are not in the area of overlap
between the two frequency distributions (U, = .33).

2. The upper 60% of the scores in the group with the highest
mean exceeds the same proportion in the other group
( Uz = 60)

3. The typical score in the upper group is higher than about 70%
of the scores in the lower group (U; = .69).

4. A random score from the upper group will exceed a random
score from the other group about 64% of the time (CL = .64).

5. A score from the upper group is a little more than twice
as likely to fall more than one standard deviation above
the grand mean than a score from the lower group (RTR =

2.17).

However, the relations summarized in Table 4.8 hold only under
the assumptions of normality, homogeneity of variance, and a balanced
design with large samples. Otherwise it can happen that the group
statistics d or 7y, tell a different story than case-level proportions. Consider
the situation illustrated in Figure 4.4 for two symmetrical distributions.
The distributions have the same central tendency, so d = 7, = 0.
However, the tail ratios are not also generally 1.00. Because the first
distribution is more variable than the second, scores from it are overrepre-
sented in both extremes of the combined distribution. If the researcher
wants only to compare the central tendencies, this disagreement between
the tail ratios and the group statistics d and 7y, may not matter. In a
selection context where a cutting point is based on the combined
distribution, the tail ratios would be of critical interest.
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TABLE 4.8
Relation of Selected Values of the Standardized Mean Difference to the
Point-Biserial Correlation and Case-Level Proportions

Group level Case level

d I U, U, U, CL RTR
0 0 0 500 .500 500 1.00
10 05 007 520 540 .528 1.16
20 10 148 540 579 556 1.36
.30 15 213 .560 618 584 1.58
40 20 274 579 655 611 1.85
50 24 .330 599 691 638 2.17
.60 29 .382 618 726 664 255
.70 33 430 637 .758 690 3.01
.80 37 A74 655 .788 714 3.57
.90 A1 516 674 816 738 425
1.00 45 554 691 841 760 5.08
1.25 53 638 734 .894 812 8.14
1.50 .60 707 773 .933 .856 13.56
1.75 .66 764 .809 .960 892 23.60
2.00 71 811 841 977 921 43.04
2.50 78 882 .894 .994 961 b
3.00 .83 928 .933 .999 .983 —b
3.50 87 .958 .960 —a .993 b
4.00 .89 977 977 —A .998 b

Note. CL = common language effect size; RTR = right tail ratio for a cutting point one standard deviation
above the grand mean.
2> .999. > 99.99.

% Group 2

Group 1

M, = M,

Figure 4.4. Two distributions with the same central tendency but different variances.
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INTERPRETIVE GUIDELINES FOR EFFECT SIZE MAGNITUDE
AND CAUTIONS

This section provides guidelines for interpreting effect size indexes and
also some possible shortcomings of these guidelines. I also consider how to
avoid fooling yourself in effect size estimation.

Questions

When researchers first learn about effect size indexes such as d or 7,
some of the questions they ask are, What is a large effect? A small effect?
A substantive (important) effect? J. Cohen (1988) devised what are probably
the best known guidelines for describing qualitative effect size magnitudes
that seem to answer the first two questions. The descriptor medium in these
guidelines corresponds to a subjective average effect size magnitude in the
behavioral science literature. The other two descriptors are intended for
situations where neither theory nor previous empirical findings differentiate
between small versus large effects. These guidelines are also fraught with
the potential problems noted by J. Cohen and mentioned later. Table 4.9
presents J. Cohen’s interpretive guidelines for absolute values of d and 7,
assuming normality, homogeneity of variance, and large and equal group
sizes. To summarize,

1. A small-sized mean contrast corresponds to d = .20 or 1, =
.10 (1% explained variance);

2. A medium-sized difference corresponds to d = .50 or 1, = .25
(6% explained variance); and

3. A large-sized difference corresponds to d = .80 or 7y,
(16% explained variance).

40

For the sake of comparison, J. Cohen’s interpretive guidelines for the Pearson
correlation r are also shown in Table 4.9.

Cautions

Cautions about the interpretive guidelines in Table 4.9 are summa-
rized next:

1. These guidelines are not empirically based. This is why
J. Cohen encouraged researchers to look first to the empirical
literatures in their areas before using them.

2. The descriptors small, medium, and large are not intended to
be applied rigidly. For example, it would be silly to refer to
d = 49 in one study as a small-sized effect but to d = .51 in
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TABLE 4.9
J. Cohen’s Interpretive Guidelines for Standardized Mean Differences
and Correlations

Qualitative Statistic

description d I r
Small .20 10 10
Medium .50 25 30
Large .80 40 50

another study as a medium-sized effect. Rigid thinking about
effect-size magnitudes should be avoided.

3. If the group sizes are unequal or the distributions have different
shapes, the relation between d and 7y, assumed in Table 4.9
may not hold. For example, it is possible to find d = .50 and
rob = .10 for the same mean contrast. The former corresponds
to a medium-sized effect under J. Cohen’s guidelines, but the
latter corresponds to a small-sized effect. However, both statis-
tics describe the same result.

4. The definitions do not apply across all behavioral research
areas. This is because what may be considered a large effect
in one area may be modest in another.

5. The definitions in Table 4.9 may be more suitable for nonex-
perimental studies than experimental studies. Typical effect
size magnitudes may be greater in experimental studies because
of lower error variance.

6. In more mature research areas, meta-analytic studies offer the
most convenient and systematic way to operationally define
smaller versus larger effect sizes (chap. 8, this volume). If no
meta-analytic studies are available, the researcher may be able
to compute effects sizes indexes for published studies. Only in
new areas with few published studies may there be little choice
other than to use generic interpretive guidelines.

7. The real benefit from reporting standardized effect sizes comes
not from comparing them against arbitrary guidelines but in-
stead from comparing effect sizes directly with those reported
in previous studies (B. Thompson, 2002b; Wilkinson & TFSI,
1999). This is part of meta-analytic thinking.

What Is a Substantive Effect?

The third question about effect size magnitude listed at the beginning
of this section—what is a substantive result’—is probably the toughest.
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This is because demonstration of an effect’s significance, whether theoretical,
practical or clinical, calls for more discipline-specific expertise than the
estimation of its magnitude (Kirk, 1996). For example, an effect that could
be described as large according to the guidelines in Table 4.9 may not also
have substantive significance. For example, the average gender difference
in height is about two standard deviations in magnitude (d = 2.00). Is this
large difference also a substantive one? The answer clearly depends on the
research context. In terms of general psychological adjustment, the large
gender difference in height is probably irrelevant. In the context of automo-
bile safety, however, the gender difference in height may be critical. Remem-
ber a problem with the front air bags in automobiles manufactured before
the late 1990s: Their deployment force could injure or kill a small-stature
driver or passenger, which presents a greater risk to women. In cars with
“intelligent” air bag systems that vary deployment force according to driver
weight, a large gender difference in height is less important.

By the same logic, effects gauged to be small according to Table 4.9
are not necessarily unimportant. Prentice and D. T. Miller (1992) described
contexts for when small effects may be noteworthy. These include situations
where minimal manipulation of the independent variable results in some
change in the outcome variable—that is, a small cause size nevertheless
produces an observable effect size—or an effect is found for an outcome
variable that is theoretically unlikely to be influenced by the factor. It can
also happen that effect sizes in early stage research are larger than in later
research. This may occur as researchers shift their attention from determining
whether an effect exists to study of more subtle mechanisms of the effect
at boundary conditions (Fern & Monroe, 1996). Recall the concern that
variance-accounted-for effect sizes (measures of association in a squared
metric) can make some effects look smaller than they really are in terms
of real importance. It is not uncommon for some health-related effects, such
as that of taking aspirin daily to reduce the risk of a cardiac condition, to
explain only about 2% of the total variance. Some important and beneficial
public health policies have been made on the basis of such “weak” effects
(Gage, 1978).

In general, effect size magnitudes that are “unimportant” may be ones
that fall within the margins of measurement error. Even this general defini-
tion does not always hold, however. For example, the difference in vote
totals for the two major candidates in the 2000 presidential election in the
United States was within the margin of error for vote counting in certain
key precincts, but these small differences determined the outcome. In con-
trast, effect sizes magnitudes that are important should not only stand out
from measurement error, they must also have theoretical, practical, or clinical
implications given the research context. Unfortunately, just as there is no
absolute standard for discriminating between small versus large effects, there
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is also none for determining whether a particular effect size is important
applicable across different research areas. Part of the challenge of a new
research area is to develop benchmarks for theoretical or practical signifi-
cance. An awareness of typical effect size magnitudes in one’s research area
helps as does an appreciation of the need to examine effects at both the
group and case levels.

The idea of clinical significance needs some elaboration. There is a
specific set of methods for evaluating clinical significance. As the name
suggests, the term clinical significance refers to whether an intervention makes
a meaningful difference in an applied setting. A related idea is whether,
after treatment, a typical afflicted case is indistinguishable from a typical
nonafflicted case (P. Kendall & Grove, 1988). Clinical significance can be
evaluated at both the group and case levels. There are specific statistical
conventions for describing clinical significance at the group level. They
involve criterion contrasts between two groups that represent a familiar differ-
ence on an outcome variable of interest, such as patients with the same
illness who have the most severe symptoms versus those with the least severe
symptoms or patients who require inpatient treatment versus outpatient
treatment (Lipsey & Wilson, 2000). A variation is a normative contrast
where a clinical group is compared with a nonclinical (normal) group. The
magnitude of the difference between the two criterion groups is measured
with a standardized mean difference. The numerator of this criterion contrast
effect size is typically computed by subtracting the mean in the lowest
functioning group from the mean in the highest functioning group.

The criterion contrast effect size can be used as a benchmark against
which to compare observed effect sizes for a treatment. Suppose that the
criterion groups are patients with the same illness who have the least versus
most severe symptoms, and the criterion contrast effect size is d = .80 before
any treatment is given. Some treatment for the illness is evaluated, and the
magnitude of the effect of treatment relative to control is d = .40. The
observed effect size for treatment is one half the magnitude of the criterion
contrast effect size, or .40/.80 = .50. That is, the treatment effect is equivalent
to closing half the gap between the most severe and least severe patients.
Please note that a treatment can have clinical significance but not statistical
significance or vice versa. See Ogles, M. Lambert, and Masters (1996) for
more information about the evaluation of clinical significance.

Kirk (1996) noted that the evaluation of practical significance is ulti-
mately a qualitative judgment. This judgment should be based on the re-
searcher’s knowledge of the area, but it will also reflect the researcher’s
personal values and societal concerns. This is not unscientific because the
evaluation of all findings in science involves some degree of subjectivity.
It is better to be open about this fact, however, than to base such decisions
solely on “objective” statistical tests, which are unsuited to evaluate practical

EFFECT SIZE ESTIMATION IN COMPARATIVE STUDIES 135



significance. See B. Thompson (2002a) for additional discussion of these
issues.

HOW TO FOOL YOURSELF WITH EFFECT SIZE ESTIMATION

Some ways to mislead yourself with effect size estimation were men-
tioned earlier but are summarized altogether in this section. There are
probably other paths to folly, but one hopes the major ones are included
below; see Fern and Monroe (1996) and Lenth (2001) for more information:

1. Measure effect size magnitude only at the group level (ignore
the case level).

2. Apply generic definitions of effect size magnitude without
first looking to the empirical literature in one’s area.

3. Believe that an effect size judged as large according to generic
interpretive conventions must be an important result and
that a small effect is unimportant.

4. Ignore the critical question of how theoretical or practical
significance should be gauged in one’s research area.

5. Conduct effect size estimation only for results that are statisti-
cally significant.

6. Believe that effect size estimation somehow lessens the need
for replication.

7. Report values of effect size indexes only as point estimates;
that is, forget that effect size indexes are subject to sampling
error, too.

8. Forget that effect size for fixed factors is specific to the particu-
lar levels selected for study. Also forget that effect size is in
part a function of the design of the study.

9. Forget that standardized effect sizes encapsulate other quanti-
ties or characteristics, including the unstandardized effect
size, error variance, and experimental design. These are all
crucial aspects in the planning of the study and must not
be overlooked.

10. As a journal editor or reviewer, substitute effect size magni-
tude for statistical significance as a criterion for whether a
work is published.

SOFTWARE FOR EFFECT SIZE ESTIMATION

Many effect size indexes can be computed with a hand calculator given
a few descriptive statistics. This is fortunate because software programs for
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general statistical analyses are still not as helpful as they should be for effect
size estimation. There is also a small but growing number of specialized
programs designed as tools for effect size estimation. Some of these programs
were mentioned earlier, including the Power Analysis module of STATIS-
TICA, ESCI, R2, and the Smithson (2001) scripts for SPSS. Another
software tool described in more detail in chapter 6 is PSY by Bird, Hadzi-
Pavlovic, and Isaac (2000), a freely available program that calculates approxi-
mate confidence intervals based on unstandardized or standardized contrasts
in factorial designs with continuous outcome variables.” Other programs
that compute effect sizes are intended for researchers who conduct meta-
analyses. These programs often feature the capabilities to estimate, record,
document, and organize effect size indexes computed for large numbers of
studies. An example of a recent program of this type is Effect Size (ES) by
Shadish, Robinson, and Lu (1999).° The ES program accepts many different
forms of input data and computes for all a common effect size index, d.
However, the ES program does not calculate confidence intervals for 8.

RESEARCH EXAMPLES

Examples of effect size estimation at both the group and case levels
in three actual empirical studies are presented next. The first two examples
concern the comparison of independent groups and the third concerns a
repeated-measures design.

Demographic and Referral Status Effects on Teacher Ratings

Data for this example are from Wingenfeld, Lachar, Gruber, and Kline
(1998), who collected teacher ratings on the Student Behavior Survey (SBS)
within samples of regular education students (n = 1,173; 49% boys; 50%
younger than 12 years old) and students referred to school or clinical psychol-
ogists (n = 601; 69% boys; 47% younger than 12 years old). The SBS has
11 primary scales, including four that assess academic strengths and seven
that reflect adjustment problems. Wingenfeld et al. estimated the relative
magnitudes of gender, age, and referral status effects on SBS scores within
and across both samples. Because of relatively large group sizes, virtually all
of the t tests had low p values. Wingenfeld et al. instead reported Hedges’s g
for all contrasts. Results are summarized in Table 4.10 for selected SBS scales.

Overall magnitudes of demographic effects on teacher ratings are about
.20 to .30 standard deviations in absolute value. Within both samples,

Shttp://www.psy.unsw.edu.au/research/PSY .htm
®A trial version can be downloaded from http://www.assess.com/Software/ES. htm
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TABLE 4.10
Standardized Mean Differences for Selected Scales on the Student
Behavior Survey by Gender, Age, and Referral Status

Contrasts®
Gender Age Referral

Scale Reg Ref Reg Ref status
Positive adjustment

Academic Performance .18 .20 .26 15 1.46

Academic Habits 34 42 -.04 -.06 .92

Social Skills .32 .46 .06 .06 .73
Poor adjustment

Health Concerns .15 .08 -.34 A7 -4

Social Problems =25 -.42 -17 .02 -.76

Physical Aggression -.36 -.54 -.36 -.05 -.63

Behavior Problems -.44 -.13 -.16 15 -72

Note. Reg = regular education sample; Ref = referred sample. From “Development of the Teacher—
Informant Student Behavior Survey,” by S. A. Wingenfeld, D. Lachar, C. P. Gruber, and R. B. Kline, 1998,
Journal of Psychoeducational Assessment, 16, p. 236. Copyright 1998 by The Psychoeducational Corpora-
tion. Reprinted with permission.

Directions of subtraction are Mgins — Maoys: Meiz yrs — Me12 yes; @Nd Mpeg — MRer.

girls have generally higher means than boys on scales that reflect positive
classroom adjustment (e.g., g = .18 for the Academic Performance scale in
the regular education sample) and lower averages on scales that indicate
behavior problems (e.g., g = —42 for the Social Problems scale in the referred
sample). These results are expected. The magnitudes of age effects tend to
be even smaller than those of gender and less consistent. Referral status
effects are generally about .70 to .80 standard deviations in magnitude and
thus greater than demographic effects. Regular education students have
higher means on scales that reflect positive adjustment (e.g., g = 1.49 for
the Academic Performance scale) and lower averages on scales that measure
poor adjustment (e.g., g = —.72 for the Behavior Problems scale). Overall,
SBS scales are more sensitive to students’ referral status than to their demo-
graphic characteristics. The practical significance of the group-level differ-
ences just described are considered in the test’s manual (Lachar, Wingenfeld,

Kline, & Gruber, 2000).
Gender Differences in Basic Math Skills

The data set for this example can be downloaded from this book’s
Web site. At the beginning of an undergraduate course in introductory
statistics, I administered to a total of 667 students (M age = 23.3 years, s =
6.6 years; 77% women, 23% men) a 17-item test of basic math skills. Their
scores had no bearing on subsequent course grades. The left side of Table
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4.11 presents descriptive statistics by gender for the number of items correct.
The right side lists effect size indexes and case-level proportions for the
gender contrast. The men performed somewhat better (M = 11.49, or 67.6%
correct) than the women (M = 10.37, or 61.0% correct). The mean difference
is .36 standard deviations in magnitude, and the exact 95% confidence
interval for & is .18-.55. The observed gender difference measured by g is
just as consistent with a population effect size as low as two-tenths of a
standard deviation in magnitude as it is with a population effect size as high
as about half a standard deviation in magnitude, with 95% confidence. The
correlation between gender and test scores is .15, and the proportion of
total explained variance is .02 with the exact 95% confidence interval for
1’ of .01-.05. The observed effect size measured by i is thus just as consistent
with a population percentage of explained variance as low as 1% as it is
with a population percentage of explained variance as high as 5%, with
95% confidence. These effect size magnitudes at the group level are consis-
tent with other findings of gender differences in quantitative skills (e.g.,
Hyde, Fennema, & Lamon, 1990).

The case-level proportions in Table 4.11 except CL and I were com-
puted from the frequency distributions presented in Table 4.12 by gender.
(Readers should verify these results using interpolation.) The median score
for men of 11.98 exceeds about 70% of all scores for women (U; = .69),
and in about 60% of random pairings of men and women, the man is
expected to have the higher score (CL = .60). Men are also about Y3 times
more likely than women to have a score more than one standard deviation
above the grand mean (RTR = 1.35). Results of a univariate DFA where
the math skills test is the predictor indicate an overall correct classification
rate of 54.7%. A total of 103/153 men (67.3%) were correctly classified,
but only 262/514 women (51.0%) were so classified. Assuming equal prior
probabilities of men and women, the proportionate reduction in the error
rate compared to chance classification is [ = (.547 —.50)/.50 = .094, or 9.4%.

TABLE 4.11
Descriptive Statistics and Effect Size Indexes for the Gender Contrast on a
Test of Basic Math Skills

Effect size

Group level Case level
Group n M s Mdn t(665) g rw U CL RTR [/

Men 153 11.49 857 11.98 395° .36® .15° 69 .60 1.35 .094
Women 514 10.37 10.21 10.43

Note. CL = common language effect size; RTR = right tail ratio for the cutting point 13.80, which is one
standard deviation above the mean of the combined distribution; / = improvement over chance
classification.

ap <.001. P°Exact 95% confidence interval for § is .18—.55. °Exact confidence interval for n? is .01-.05.
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TABLE 4.12
Frequency Distributions of Math Test Scores for Men and Women

Men Women
Score f % f %
17 2 100.0 6 100.0
16 6 98.7 20 98.8
15 16 94.6 31 94.9
14 14 84.3 38 88.9
13 32 75.2 39 81.5
12 32 60.8 50 73.9
11 11 39.9 68 73.9
10 15 32.7 65 51.0
9 11 22.9 57 38.3
8 5 15.7 47 27.2
7 5 124 32 18.1
6 9 9.2 26 11.9
5 3 3.3 12 6.8
4 2 1.3 15 45
3 0 0] 4 1.6
2 0 0 2 8
1 0 0 1 4
0] 0 0 1 2

Note. Percentages are cumulative.

This result corresponds to a low effect size (I < .10) at the case level in
Huberty and Lowman’s (2000) guidelines.

What is the practical significance of the somewhat stronger basic math
skills of the men in this sample? Perhaps the best way to address this question
is to look at course outcome at the end of the semester. A satisfactory
outcome was defined as a final letter grade of C or better, but earning a
grade of D (marginal pass), F (failed), or dropping out was considered
unsatisfactory. Proportions of men and women with these two different
outcomes are

Satisfactory Unsatisfactory
Men 197 203
Women 57 243

We see that men had a 4% advantage over women in the rate of satisfactory
outcomes. This association between gender and dichotomous course outcome
is not a statistical one: x* (1) = 1.08, p = .299. However, the lack of statistical
significance would be irrelevant if replication bears out a relative male
advantage of roughly the same magnitude. Another question is whether a
relative male advantage in introductory statistics (if any) is actually a result
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of stronger basic math skills than women. That is, competing explanations
such as greater interest in the subject must be considered.

Effect of Caffeine on 2000-Meter Rowing Performance

Bruce et al. (2000) evaluated in a repeated-measures design the effect
of a moderate dose of caffeine—the equivalent of about 2 to 4 cups of
coffee—on the 2000 meter (m) rowing performance times in seconds (s)
of eight competitive male rowers. The rowers were actually tested under
three different conditions: placebo and two different doses of caffeine, 6
and 9 mg'kg™'. Because the effects of both doses of caffeine on rowing times
were similar, Bruce et al. averaged data from the two caffeine conditions
and compared these results with those from the placebo condition. These
data, provided by C. R. Bruce (personal communication, August 22, 2001),
are summarized in the upper left side of Table 4.13. The rowers completed
the distance an average of 4.38s faster in the caffeine condition than in
the placebo condition. Because four seconds could make a big difference
in finish order for competitive 2000-m rowers, this finding is practically
significant, irrespective of the statistical significance.

Because the outcome variable for this example is measured in a mean-
ingful scale (time), there is little need for metric-free effect size indexes.
For pedagogical value, however, we consider both kinds of standardized
mean changes for this correlated design. The reduction in rowing time from
the placebo to the caffeine condition is one third of a standard deviation
in the metric of the original performance times (Hedges's g = .33). This
result ignores the substantial subjects effect apparent in the cross-conditions
correlation of r; = .95. The ratio of the mean change over the standard
deviation of the differences in rowing times across the conditions takes
account of this correlation and equals .90, almost three times as large as g
for the same effect. The exact 95% confidence interval for & based on the
observed standardized mean change of .90 is .05-1.71. That is, the observed
standardized effect size is just as consistent with a population effect size as

TABLE 4.13
Performance Times in Seconds to Row 2000 Meters Under Placebo and
Caffeine Conditions

Effect Size
Condition M s? Mo (@) g My/sp
Placebo 415.39 211.12 4.38 2,552 .33 .90P

Caffeine 411.01 146.47

Note. r; = .95, s§ = 23.63.
ap = .038. PExact 95% confidence interval for § is .05-1.71.
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low as & = .05 as it with a population effect size as high as & = 1.71, with
95% confidence. This range of imprecision is so wide because of the very
small sample size (n = 8). Of the two sample standardized mean changes
reported, only g would be directly comparable to d from a study where the
effect of caffeine versus placebo is tested with unrelated groups.

CONCLUSION

This chapter introduced basic principles of effect size estimation and
two families of effect size indexes for continuous outcomes: standardized
mean differences and measures of association. Denominators of standardized
mean differences for contrasts between independent means, such as Hedges’s
g and Glass’s A, are standard deviations in the metric of the original scores.
It was recommended that the denominators of standardized mean changes
in nonintrinsically repeated-measures designs be similarly scaled. Descriptive
measures of association considered in this chapter are all forms of the
correlation 1, the square root of the sums of squares for the contrast over
the total sums of squares. When the two samples are dependent, it is also
possible to compute partial 1, the correlation between the factor and out-
come controlling for the subjects effect. Case-level analyses of proportions
of scores from one group versus another group that fall above or below
certain reference points can illuminate practical implications of difference
at the group level. Although estimating the magnitude of an effect is part
of determining its substantive significance, the two are not synonymous.
The next chapter introduces effect size indexes for categorical outcomes.
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NONPARAMETRIC EFFECT
SIZE INDEXES

The whole of science is nothing more than a refinement of everyday
thinking.
—Albert Einstein (1973, p. 283)

Some outcomes are categorical instead of continuous. The levels of a
categorical outcome are mutually exclusive, and each case is classified into
just one level. Nonparametric effect size indexes for categorical outcomes
that are widely used in areas such as medicine, epidemiology, and genetics
are introduced in this chapter. They are also frequently analyzed in meta-
analysis. Note that some of these indexes can also be estimated in techniques
such as log-linear analysis or logistic regression (W. Rodgers, 1995; Wright,
1995). Doing so bases nonparametric effect size indexes on an underlying
statistical model. In contrast, the same indexes computed with the methods
described later should be considered descriptive statistics. Exercises with
answers for this chapter are available on this book’s Web site.

CATEGORICAL OUTCOMES

The simplest categorical outcomes are binary variables (dichotomies)
with only two levels, such as relapsed or not relapsed. When two groups
are compared on a dichotomy, the data are frequencies that are represented
in a 2 X 2 contingency table, also known as a fourfold table. Categorical
variables can also have more than two levels, such as agree, disagree, and
uncertain. The size of the contingency table is larger than 2 x 2 if two groups
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are contrasted across more than two outcome categories. Only some effect
size indexes for 2 X 2 tables can be extended to larger tables. These same
statistics can also be used when three or more groups are compared on a
categorical outcome.

The levels of a categorical variable are either unordered or ordered.
Unordered categories do not imply a rank order. Examples of unordered
categories include those for ethnicity or marital status. Ordered categories—
also called multilevel ordinal categories—imply a rank order. The Likert-type
response format strongly agree, agree, disagree, or strongly disagree is an example
of ordered categories. There are specialized methods for ordered categories
(Darlington, 1996), but they are not as well developed or known as for
unordered categories. As a consequence, they are not discussed in detail.
One alternative is to rescale ordered categories to interval data and then
apply methods for parametric variables. Another approach collapses multi-
level categories into two clinically meaningful, mutually exclusive outcomes.
Estimation of effect size magnitude is then conducted with methods for
fourfold tables.

Another framework that analyzes data from fourfold tables is the sensi-
tivity, specificity, and predictive value model. Although better known in
medicine as a way to evaluate the accuracy of screening tests for disease,
this approach can be fruitfully applied to psychological tests that screen for
problems such as depression or learning disabilities (e.g., Glaros & Kline,
1988; Kennedy, Willis, & Faust, 1997). Because screening tests are not
usually as accurate as more individualized and costly diagnostic methods,
not all persons with a positive screening test result really have the disorder
the test is intended to detect. Likewise, not everyone with a negative test
result is actually free of the disorder. The 2 x 2 table analyzed is the cross-
tabulation of screening test results (positive—negative) and true status (disor-
der—-no disorder), and “effect sizes” concern the estimated accuracies of
positive and negative test results.

EFFECT SIZE INDEXES FOR 2 x 2 TABLES
Various effect size indexes for fourfold tables are introduced next. I also
discuss how to construct confidence intervals for the population parameters
estimated by these indexes.
Parameters
A total of four parameters that reflect the degree of relative risk for

an undesirable outcome across different populations are introduced next.
These same parameters can also be defined when neither level of outcome
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dichotomy corresponds to something undesirable, such as agree—disagree.
The idea of “risk” is just replaced by that of comparing relative proportions
for the two different outcomes. See Fleiss (1994) and Haddock, Rindskopf,
and Shadish (1998) for more detailed presentations.

Suppose in a comparative study that treatment and control groups are
to be compared on the dichotomy relapsed—not relapsed. The proportion
of cases that relapse in the treatment population is ©ty, and 1 — 7t is the
proportion that do not relapse. The corresponding proportions in the control
population are, respectively, mc and 1 — me. The simple difference between
the two probabilities, e — 7T, is the population risk difference, also called
the proportion difference. So defined, tc — 7 = .10 indicates a relapse rate
10% higher in the control population than in the treatment population.
Likewise, e — it = —.20 indicates a higher relapse rate in the treatment
population by 20%.

The population risk ratio—also called the rate ratio—is the ratio of
the proportions for the undesirable outcome, in this case relapse. It is defined
as Tc/mr. If this ratio equals 1.30, for example, the risk for relapse is 1.3
times higher in the control population than in the treatment population.
Likewise, if the risk ratio is .80, the relapse risk among treated cases is only
80% as great as that among control cases. The risk ratio thus compares the
proportionate difference in relapse risk across the two populations.

The population odds ratio is designated below as ®, but note that the
symbol “0’” refers to a different parameter for a continuous outcome (see
chap. 4, this volume). The parameter  is the ratio of the within-populations
odds for the undesirable outcome. The odds for relapse in the control
population equals Q¢ = ntc /(1 — i), the corresponding odds in the treat-
ment population equals Qr = T /(1 — 7r), and the odds ratio equals
® = Q¢ /Qr. Suppose that e = .60 and 7t = .40. The odds for relapse in
the control population are Q¢ = .60/.40 = 1.50; that is, the chances of
relapsing are 1% times greater than not relapsing. The odds for relapse in
the treatment population are Qr = .40/.60 = .67; that is, the chances of
relapsing are two thirds that of not relapsing. The odds ratio is ® = Q/Qr =
1.50/.67 = 2.25, which means that the odds for relapse are 2% times higher
in the control population than in the treatment population.

The population Pearson correlation between the treatment—control
and relapsed—not relapsed dichotomies is the @ coefficient, which equals:

_ Tcr TNR — TeNR TR (5.1)

VTRCe TTe TR TNR

The subscripts C, T, R, and NR mean control, treatment, relapsed, and not
relapsed. The proportions in the numerator represent the four possible
outcomes and thus sum to 1.0. For example, Ty is the probability of being
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in the control population and relapsing, and g is the probability of being
in the treatment population and not relapsing. The subscript “-” indicates
a total (marginal) proportion. For example, nic. and 7t. are, respectively,
the relative proportions of cases in the control and treatment populations,
and they sum to 1.0. Likewise, m.g and T.g are, respectively, the relative
proportions of cases across both populations that relapsed or did not relapse,
and they also sum to 1.0.

Statistics and Evaluation

Table 5.1 presents a 2 x 2 table for the contrast of treatment and
control groups on the dichotomy relapsed—not relapsed. The letters in the
table stand for observed frequencies in each cell. For example, the size of
the control group is nc = A + B, where A and B, respectively, stand for
the number of untreated cases that relapsed or did not relapse. The size of
the treatment group is ny = C + D, where C and D stand for the number
of treated cases that relapsed or did not relapse, respectively. The total
sample size is thus N=A + B+ C + D.

Table 5.2 presents definitions of sample estimators of the parameters
described in the previous section. These definitions are expressed in terms
of the observed cell frequencies represented in Table 5.1. The population
proportions of cases that relapsed are estimated by the observed proportions
pc and pr, respectively. The sample risk difference (RD) is computed as
RD = pc — pr, and it estimates the population risk difference. The statistic
RD is easy to interpret, but it has a significant limitation: Its range depends
on the values of ¢ and 1. Specifically, the range of RD is greater when
both nc and wtr are closer to .50 than when they are closer to O or 1.0. The
implication is that values of RD may not be comparable across different
studies where the associated values of ¢ and 7t are quite different.

The sample risk ratio (RR) indicates the difference in the observed
proportionate risk for relapse across the control and treatment groups. It is
defined in Table 5.2 as RR = pc /pr. If RR > 1.0, relapse risk is higher
among the untreated cases, and RR < 1.0 indicates higher risk among treated
cases. The statistic RR is also easy to interpret, but it has some drawbacks too.
Only the finite interval 0-1.0 indicates lower risk in the group represented in

TABLE 5.1
A Fourfold Table for an Observed Group Contrast on a Dichotomy
Group Relapsed Not relapsed
Control A B
Treatment c D

Note. The letters A-D represent observed cell frequencies.
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TABLE 5.2
Definitions of Effect Size Statistics for 2 x 2 Contingency Tables

Parameter Statistic Equation
Proportions of undesirable outcome
Tie Pc A/(A + B)
Tr pr CI(C+ D
Comparative risk
Te — 77 RD Pc — pr
/Ty RR _AMA+ B
PdlPT = Z1C+ D)
o = QJ/Qr OR Oc p(‘/(1 - pc) A/B

Measure of association

G AD- BC
@ ¢ = \ZMYN

(A + B)(C + D)(A + O)(B + D)

Note. RD = risk difference; RR = risk ratio; OD = odds ratio. The letters A-D represent observed cell fre-
quencies in Table 5.1. If A, B, C, or D =0 in the computation of OR, add .5 to all cells.

the numerator, but the interval from 1.0 to infinity is theoretically available
for describing higher risk in the other group. The range of possible values of
RR thus vary according to its denominator. Suppose that pr is .40 in one
sample but .60 in another sample. The theoretical range of RR = pc/pr in the
first sample is 0~2.50, but in the second sample it is 0-1.67. This characteristic
limits the value of RR as a standardized index for comparing results across
different samples. This problem can be addressed by analyzing logarithm trans-
formations of RR and then converting the results back to RR units with antilog
transformations. This point is elaborated momentarily.

The sample odds ratio (OR) is the ratio of the within-groups odds.
It is defined in Table 5.2 as the ratio of the odds for relapse in the
control group, oc = pc (1 — pc), over the odds in the treatment group,
ot = pr (1 = pr). In fourfold tables where all margin totals are equal, the
odds ratio equals the squared risk ratio, or OR = RR?. The statistic OR
shares with RR the limitation that the finite interval 0-1.0 indicates
lower risk in the group represented in the numerator, but the interval
from 1.0 to infinity describes higher risk for other group. Analyzing
logarithm transformations of OR and then taking antilogarithms of the
results can deal with this limitation, just as for RR.

A convenient property of OR is that it can be converted to a kind of
standardized mean difference for a fourfold table known as a logit d. A logit
is the natural log (base e = 2.7183) of OR, In (OR). The logistic distribution
is approximately normal with a standard deviation that equals pi/3'/%, which
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is about 1.8138. The ratio of In (OR) over pi/3'” is a logit d that is directly
comparable to a standardized mean difference for a contrast of the same
two groups on a continuous outcome. Shadish, Robinson, and Lu (1999)
showed that the logit d can also be expressed in basically the same form as
a standardized mean difference:

1n(OR) _ In(oc) — In(ot)
pi3 piA\3

where oc and ot are, respectively, the relapse odds in the control and
treatment groups. Suppose that pc = .60 and py = .20, which implies oc =
1.50, ot = .25, and OR = 6.00. The logit d for the group contrast equals:

logit d = (5.2)

logit d = In (6.00)/1.8138 = [In (1.50) — In (.25)]/1.8138 = 9878

Thus, the finding that the odds for relapse are six times higher among
untreated cases corresponds to a treatment effect size magnitude of about
a full standard deviation in logistic units. The Effect Size (ES) program
by Shadish et al. (1999) automatically calculates logit d for dichotomous
outcomes. There are other ways to adjust for dichotomization of the outcome
variable, including arcsine and probit transformations—see Lipsey and Wil-
son (2000, pp. 52-58) for more information.

The sample odds ratio may be the least intuitive index of comparative
risk indexes reviewed, but it probably has the best overall statistical proper-
ties, especially in epidemiological studies of risk factors for disease. This is
because OR can be estimated in prospective studies, in studies that randomly
sample from exposed and unexposed populations, and in retrospective studies
where groups are first formed based on the presence or absence of a disease
before their exposure to a supposed risk factor is determined (Fleiss, 1994).
Other indexes may not be valid in retrospective studies, such as RR, or in
studies without random sampling, such as ¢, which is described next.

The estimator of the population Pearson correlation between two
dichotomies, @, is the sample correlation . It can be calculated using the
standard equation for the Pearson correlation r if the levels of both dichoto-
mies are coded as O or 1. It may be more convenient to calculate @ directly
from the cell frequencies and margin frequencies using the equation in Table
5.2. The theoretical range of ¢ derived this way is —1.00 to +1.00, but the
sign of @ is arbitrary because it is determined by the particular arrangement
of the cells. For this reason, some researchers report absolute values of .
However, keep in mind that effects in 2 X 2 tables are directional. For
example, either treated or untreated cases will have a higher relapse rate
(if there is a difference). The absolute value of @ also equals the square root
of %x*(1)/N, the ratio of the chi-square statistic with a single degree of
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freedom for the fourfold table over the sample size. The relation just described
can be algebraically manipulated to express the contingency table chi-square
statistic as a function of sample size and standardized effect size measure by
¢ (see Table 2.9). The square of @, §?, equals the proportion of variance
in the dichotomous outcome explained by group membership. In fourfold
tables where the row and column marginal totals are all equal (which implies
equal group sizes), the absolute values of the risk difference and the phi
coefficient are identical (RD = ).

The correlation ¢ can reach its maximum absolute value of 1.00 only
if the marginal proportions for rows and columns in a fourfold table are
equal. For example, given a balanced design, the theoretical maximum
absolute value of ¢ is 1.00 only if the marginal proportions for the outcome
dichotomy are also .50. As the row and column marginal proportions diverge,
the maximum absolute value of § approaches zero. This implies that the
value of @ will change if the cell frequencies in any row or column are
multiplied by an arbitrary constant. Because of this characteristic, Darlington
(1996) described ¢ as a margin-bound measure of association; the point-
biserial correlation 7, for continuous outcomes is also margin bound because
of the influence of relative group size (see chap. 4, this volume). The effect
of marginal proportions on  also suggests that it may not be an appropriate
effect size index when sampling is not random (Fleiss, 1994). The correlation
@ also treats the two dichotomous variables symmetrically—that is, its value
is the same if the fourfold table is “flipped” so that the rows become columns
and vice versa. There are other measures of association that differentiate
between predictor and criterion variables, and thus treat the rows and
columns asymmetrically; see Darlington (1996) for more information.

Interval Estimation

Sample estimators of population proportions tend to have complex
distributions, and most methods of interval estimation for them are approxi-
mate and based on central test statistics. Table 5.3 presents equations for
the estimated (asymptotic) standard errors in large samples for each of the
statistics described except the correlation . The equation for the asymptotic
standard error of § is quite complicated; interested readers can find it in
Fleiss (1994, p. 249). The widch of a 100 (1 — )% confidence interval
based on any of the statistics listed in Table 5.3 is the product of its
asymptotic standard error and 2;.,, » the positive two-tailed critical value
of 7 in a normal curve at the o level of statistical significance. Some
examples follow.

Suppose the following results are from a study of the relapse rates
among treated and untreated cases: nc = ny = 100, pc = .60, and pr = .40.
The sample risk difference is RD = .20 in favor of the treatment group.

EFFECT SIZE ESTIMATION IN COMPARATIVE STUDIES 149



TABLE 5.3
Asymptotic Standard Errors for Sample Proportions

Statistic Standard error

Proportions of undesirable outcome

Pc fpc(1 - Pc)
nc

pr pr(1 - pr)

ny

Comparative risk

RD [t = o) i1 - p1)
V ng n
In (RR) 1—pc+1—pT
ncpc T mrpr
In (OR) — i

Nrcpc G -pd) " pr (1 - p

Note. RD = risk difference, RR = risk ratio, and OR = odds ratio, and in = natural log.

Using the third equation in Table 5.3, the asymptotic standard error of RD
is estimated as follows:

srp = {[.60 (1 — .60)]/100 + [.40 (1 — .40)]/100}2 = .0693
The value of ;.11 05 equals 1.96, so the 95% confidence for ¢ — 7t is
.20 +.0693 (1.96) or 20+ .14

which defines the interval .06—.34. Thus, RD = .20 is just as consistent
with a population risk difference as low as .06 as it is with a difference as
high as .34, with 95% confidence.

For the data reported earlier, RR = .60/.40 = 1.50 and OR = (.60/
40)/(.40/.60) = 2.25, both of which indicate higher risk for relapse in the
control group. Distributions of RR and OR are not generally normal, but
natural log transformations of both are approximately normal. Consequently,
the method of confidence interval transformation (see chap. 2, this volume)
can be used to construct approximate confidence intervals based on In (RR)
or In (OR). The lower and upper bounds of these intervals in logarithm
units are then converted back to their original metric by taking their antilogs.
Because the method is the same for both indexes, it is demonstrated below
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only for OR. The log transformation of the observed odds ratio is In (2.25) =
.8109. The estimated standard error of the log-transformed odds ratio calcu-
lated using the fifth equation in Table 5.3 equals

Sin (or) = {1/[100 x .60 (1 —.60)] + 1/[100 x .40 (1 — .40)]3'* = .2887

The approximate 95% confidence interval for In(®), the log population
odds ratio, is

8109 + .2887 (1.96) or 8109 £ .5659

which defines the interval .2450-1.3768 in log units. To convert the lower
and upper bounds of this interval back to the original metric, we take
their antilogs:

In! (.2450) = ¢*%° = 1.2776 and  In7! (1.3768) = ¢!37% = 3.9622

The approximate 95% confidence interval for @ is thus 1.28-3.96 at two-
decimal accuracy. We can say that the observed result OR = 2.25 is just as
consistent with a population odds ratio as low as @ = 1.28 as it is with a
population odds ratio as high as ® = 3.96, with 95% confidence.

EFFECT SIZE ESTIMATION FOR LARGER TWO-WAY TABLES

If the categorical outcome variable has more than two levels or there are
more than two groups, the contingency table is larger than 2 % 2. Measures of
relative risk (RD, RR, OR) can be computed for such a table only if it is
reduced to a 2 x 2 table by collapsing or excluding rows or columns. What
is probably the best known measure of association for contingency tables
with more than two rows or columns is Cramér’s V, an extension of the ¢
coefhcient. lts equation is

B xr—1,c-1)
V_\jmin('r—l,c—l)xN (5.3)

where the numerator under the radical is the chi-square statistic with degrees
of freedom equal to the product of the number of rows (r) minus one and
the number of columns {c) minus one. The denominator under the radical
is the product of the sample size and smallest dimension of the table minus
one. For example, if the table is 3 x 4 in size, then min (3 - 1,4 -1) = 2.
For a 2 x 2 table, the equation for Cramér’s V reduces to that for ¢. For
larger tables, however, V is not technically a correlation coefficient, although
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its range is 0—1.00. Thus, one cannot generally interpret the square of V
as a proportion of explained variance. Because Cramér’s V is a generalization
of @, it is a margin-bound, symmetrical measure of association subject to
the same general limitations as §. See Darlington (1996) for descriptions
of other measures of association for two-way contingency tables.

SENSITIVITY, SPECIFICITY, AND PREDICTIVE VALUE

Suppose for some disorder there is a “gold standard” diagnostic method
that is individualized and relatively expensive, such as a series of laboratory
or psychological tests. There is also a screening test for the disorder that is
not as accurate as the gold standard, but it costs less. For example, it may
be possible to administer the screening test to groups instead of just to
individuals. Screening tests are often continuous measures, such as the blood
concentration of a particular substance or the number of items endorsed on
a questionnaire. Such measures also typically have a cutting point that
differentiates between a positive (clinical) result that predicts the presence
of the disorder versus a negative (normal) result that predicts its absence.
Distributions on screening tests of groups with the disorder and without the
disorder tend to overlap. This situation is illustrated in Figure 5.1 in which
the group with the disorder has a higher mean than the group without the
disorder. Also depicted in the figure is a cutting point that differentiates
positive and negative screening test results. Note that some of the cases
with the disorder have negative test results; likewise, some of the cases
without the disorder have positive test results. The two sets of scores just
described represent potential diagnostic errors.

The fourfold table in the top part of Table 5.4 represents the relation
between screening test results (positive—negative) and actual status as deter-
mined by a gold standard diagnostic method (disorder—no disorder). The
letters in the table stand for observed cell frequencies. For example, the
letter A represents the number of cases with the disorder who obtain a
positive screening test result, and D represents the number of cases without
the disorder who obtain negative results. Both cells just described correspond
to correct predictions on the screening test. The other two cells in the
table, B and C, respectively, represent the numbers of false positive and
false negative screening test results.

Defined in the bottom part of Table 5.4 are sensitivity, specificity,
predictive value, and base rate, all computed with cell frequencies repre-
sented in the top part of the table. Sensitivity is the proportion of screening
results from cases with the disorder that are correct, A/(A + C). If sensitivity
is .80, then 80% of test results in this group are valid positives and the rest,
20%, are false negatives. Specificity is the proportion of results from cases

152 NONPARAMETRIC EFFECT SIZE INDEXES



No Disorder Disorder
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Figure 5.1. Distributions of groups with and without a disorder on a continuous
screening test.

without the disorder that are correct, D/(B + D). If specificity is .70, then
70% of the results in this group are valid negatives and the rest, 30%, are
false positives. The ideal screening test is 100% sensitive and 100% specific.
Given overlap of distributions such as that illustrated in Figure 5.1, this
ideal is not attainable. Sensitivity and specificity are determined by the

TABLE 5.4
Definitions of Sensitivity, Specificity, Predictive Value, and Base Rate

True status

Screening
test result Prediction Disorder No disorder

+ Disorder A 2]

- No disorder c D
Statistic Definition
Sensitivity A/fA+C)
Specificity D/AB + D)
Predictive value

Positive (+PV) A/AA + B)
Negative (-PV) D/AC+ D)
Base rate A+ C)(A+ B+ C+ D)

Note. The letters A-D represent observed cell frequencies.
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TABLE 5.5
Positive and Negative Predictive Values at Two Different Base Rates for a
Screening Test 80% Sensitive and 70% Specific

Screening True status Predictive value
test result Disorder No disorder Total +PV -PV
Base rate = .10
M 80 270 350 23 97
- 20 630 650
Base rate = .75
+ 600 75 675 .89 .54
- 150 175 325
Total 750 250 1,000

cutting point on the screening test. Accordingly, the relative costs of either
kind of diagnostic error, false negative or false positive, may be considered
in setting the cutting point.

Sensitivity and specificity affect predictive value, the proportion of
screening test results that are correct, and in this sense it reflects the confi-
dence that diagnosticians can place in screening test results. There are two
kinds of predictive value: positive and negative. Positive predictive value
(+PV) is the proportion of all positive results that are correct—that is,
obtained by cases with the disorder, or A/(A + B) in Table 5.4. Negative
predictive value (—PV) is the proportion of negative test results that are
correct, that belong to people without the disorder, or D/(C + D) in the table.
In general, +PV and —PV are higher as sensitivity and specificity increase.

Predictive value is also influenced by another very important factor,
the base rate (BR), the proportion of all individuals with the disorder, or
BR = (A + C)/N in Table 5.4. The effect of base rate on predictive value
is demonstrated in Table 5.5. Two different fourfold tables are presented
there for hypothetical populations of 1,000 cases and a screening test where
sensitivity is .80 and specificity is .70. For the first fourfold table, BR = .10
because 100/1,000 cases have the disorder, and 80% of them (80) have a
correct test result (positive). A total of 90% of the cases do not have the
disorder (900), and 70% of them (630) have a correct test result (negative).
However, of all positive test results, only 80/350 = 23% are correct, so
+PV = .23. In contrast, the large majority of all negative results are correct,
or 630/650 = 97%, so —PV = .97. Given these predictive values, we can
say that the screening test is quite accurate in ruling out the disorder, but
not in detecting its presence.

If the base rate is not 10%, both predictive values change. This is shown
in the second 2 X 2 cross-tabulation in Table 5.5 for the same screening test
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but for a base rate of 75%. (The base rates of certain parasitic diseases in
some parts of the world are this high.) Of all 675 cases with positive test
results, a total of 600 belong to cases with the disorder, so +PV = 600/
675 = .89. Likewise, of all 325 negative results, a total of 175 are from cases
without the disorder, so =PV = 175/325 = .54. Now more confidence is
warranted in positive screening test results than negative results, which is
just the opposite of the situation for a 10% base rate. In general, +PV
decreases and ~PV increases as the base rate approaches zero. This means
that screening tests tend to be more useful for ruling out the presence of
relatively rare disorders than in correctly predicting their presence. Just the
opposite is generally true for more common disorders: As the base rate
increases, +PV increases and ~PV decreases; that is, the test is now more
useful for detecting the disorder than ruling it out.

The effect of base rate on predictive value is striking but often over-
looked, even by experienced diagnosticians (e.g., Medin & Edelson, 1988).
The most common misunderstanding seems to involve confusing sensitivity
and specificity, which are invariant to base rate, with +PV and —PV, which
are not. This implies that diagnosticians often fail to adjust their estimates
of screening test accuracy for changes in base rates.

RESEARCH EXAMPLES

The three research examples presented next demonstrate effect size
estimation with dichotomous outcomes. The last example concerns the
evaluation of the predictive value of a cutting score for predicting the
presence of attentional or learning problems.

Smoking and the Risk of Coronary Heart Disease

The data for this example are from Glass and K. Hopkins (1996), who
matched 120 employees with coronary heart disease with 120 employees in
the same company without the disease. All workers were then classified
into one of four smoking categories: nonsmoking, less than one pack per
day, one pack per day, and more than one pack per day. These categories
are ordered, but they are analyzed later with methods for unordered catego-
ries. This study is also retrospective because cases were identified based on
the presence or absence of an illness before assessing their level of exposure
to a putative risk factor, smoking. Because the study is retrospective, the
odds ratio is probably the most appropriate effect size index. However, the
other nonparametric indexes discussed earlier are calculated for pedagogi-
cal value.
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TABLE 5.6
Contingency Table for Level of Smoking and Coronary Heart Disease

Coronary
heart disease

Group n Yes No
Smoking (packs/day)

<1 42 19 23

1 64 39 25

> 1 31 20 11

Nonsmoking 103 42 61

Note. From Statistical Methods in Education and Psychology (3rd ed., p. 335}, by G. Glass and K.
Hopkins, 1996, Boston: Allyn and Bacon. Copyright 1996 by Pearson Education. Adapted with permission.

Table 5.6 presents the 4 X 2 cross-tabulation of smoking category and
illness status. The chi-square statistic is ¥*(3) = 9.56, and Cramér’s V =
(9.56/240)% = .20, which describes the overall magnitude of association
between these two variables. To estimate the relative risk for coronary heart
disease, the three smoking categories in Table 5.6 were collapsed into a
single category. The resulting fourfold table is presented in the left side of
Table 5.7. The right side reports values of nonparametric effect size indexes
and corresponding approximate 95% confidence intervals. (Readers should
reproduce these results.)

A total of 78 of 137 smokers have coronary heart disease, so the risk
for this group is ps = 78/137 = .57. Among the 103 nonsmokers, a total of
42 have the disease, so py = 42/103 = .41. The observed risk difference is
RD = .57 — .41 = .16, so smokers have a 16% greater risk for heart disease
than nonsmokers. The approximate 95% confidence interval for the
population risk difference is .03-.29, so RD = .16 is just as consistent with
a population risk difference as low as .03 as it is with a population risk

TABLE 5.7
Fourfold Table for Smokers Versus Nonsmokers for Presence Versus
Absence of Coronary Heart Disease for the Data in Table 5.6

Coronary

heart disease Effect size
Group n Yes No Ps Pn RD RR OR 0]
Smoking 137 78 59 57 41 16%  1.39° 192° 16
Nonsmoking 103 42 61

Note. S = smoking, N = nonsmoking, RD = risk difference, RR = risk ratio, OR = odds ratio, ¥ (1) = 6.14,
p=.013.

aApproximate 95% confidence interval for ng — ny is .03—.29.

bApproximate 95% confidence interval for ns /ny is 1.06—1.84.

SApproximate 95% confidence interval for w is 1.14-3.22.

156 NONPARAMETRIC EFFECT SIZE INDEXES



difference as high as .29, with 95% confidence. The risk ratio is RR =
.57/.41 = 1.39, which says that the rate of disease is about 1.4 times higher
among smokers. The approximate 95% confidence interval for the popula-
tion risk ratio is 1.06-1.84, so RR = 1.39 is just as consistent with a true
risk ratio as low as 1.06 as it is with a true risk ratio as high as 1.84, with
95% confidence. The observed odds ratio is

OR = .57 (1 - .57)/41 (1 — 41) = 1.92

so the odds of heart disease are almost twice as high among smokers as
nonsmokers. The approximate 95% confidence interval for the population
odds ratio is 1.14-3.22. Thus, OR = 1.92 supports a population odds ratio
as low as 1.14 just as well as it does a population odds ratio as high as 3.22
with 95% confidence. All three confidence intervals just reported indicate
a fairly wide margin of imprecision. This is mainly a result of the relatively
small sizes of the groups. The correlation between smoking status and heart
disease status is § = .16, so the former explains about 2.5% of the variance
in the latter. This is a fairly typically variance-accounted-for effect size
magnitude in this area and should not be discounted as “unimportant” (see
chap. 4, this volume).

Driving Outcomes of Youth With Attentional Difficulties

In a prospective study, Woodward, Fergusson, and Horwood (2000)
estimated the relation between attentional problems in adolescence and
later driving records. At age 13 years, a birth cohort of 941 adolescents
were classified into one of five ordered categories based on the extent of
parent or teacher reports of attentional problems. Youth with the lowest
level of rated problems had scores in the bottom 50% of the sample, and
those with highest level had scores in the upper 5%. The driving records
of the study participants were assessed when they were 18 to 21 years of
age. Of the 11 outcomes analyzed by Woodward et al., results for only three
of the categorical driving outcomes are summarized in Table 5.8. In general,
greater attentional problems at age 13 years are associated with worse driving
records later. Values of Cramér’s V for the three 5 X 2 cross-tabulations
implied by the percentages in Table 5.8 range from .10 for injury-related
accidents to .23 for driving without a license. These coefficients may not seem
high, but they are associated with potentially serious or even fatal outcomes.

The four upper categories of attentional problems in Table 5.8 were
collapsed into a single higher attentional problem category (ny = 466) and
compared with the low attention problem category (n; = 475) across the
three dichotomous outcomes. Table 5.9 reports the values of comparative
risk measures and the correlation ¢ for all outcomes. The values of the risk
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TABLE 5.8
Driving Outcomes by Level of Attentional Difficulties

Attentional Difficulties at Age 13 Years

Driving outcome 1 (low) 2 3 4 5 (high) Cramer’s
atage 21 years (1-50)* (51-75) (76-90) (91-95) (96-100) y2(4) v
n 475 185 188 47 46
Injury-related 3.6 4.3 6.4 10.6 10.9 9.45P .10
accident (%)
Arrested for 29 59 8.5 6.4 13.0 14.82° .13
drinking and

driving (%)

Driving without 8.2 10.3 234 27.7 32.6 50.21¢ .23
license (%)

Note. From “Driving Outcomes of Young People With Attentional Difficulties in Adolescence,” by L. J.
Woodward, D. M. Fergusson, and L. J. Horwood, 2000, Journal of the American Academy of Child
and Adolescent Psychiatry, 39, p. 630. Copyright 2000 by Lippincott Williams & Wilkins. Adapted with
permission.

aThe numbers in parentheses are percentile ranges.

bp=.051. °p=.005. % <.001.

difference, RD, and § are all negative, which means that young adults
rated as having low attentional problems in adolescence are at less risk
for problematic driver outcomes than age cohorts rated as having higher
attentional problems. For the same reason, values of the risk ratio, RR, and
the odds ratio, OR, are all less than 1.00. Overall, drivers with histories of
attentional problems in adolescence are about twice as likely to be involved
in risky driving behavior.

Predictive Values of a Cognitive Test Profile in Detecting Learning or
Attentional Problems

Many children referred by their teachers to school psychologists are
administered the Wechsler Intelligence Scale for Children—Third Edition
(WISC-III; Wechsler, 1991). Scores from its 13 tasks contribute to four
factor-based indexes, including Verbal Comprehension, Freedom From Dis-
tractibility, Processing Speed, and Perceptual Organization. Because the
Verbal Comprehension factor reflects language skills and factual knowledge,
scores on it may be depressed for children with learning problems. The four
tasks that make up the Freedom From Distractibility factor and the Processing
Speed factor are identified with the acronym SCAD (Symbol Search, Coding,
Arithmetic, Digit span). All SCAD tasks involve short-term memory, so a
limited attention span may result in lower scores. The four tasks that contrib-
ute to the Perceptual Organization factor involve visual—spatial reasoning, so
scores on this factor may be less affected by learning or attentional problems.
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TABLE 5.9
Effect Size Statistics for Driving Outcomes by Lower Versus Higher Levels
of Attentional Difficulties for the Data in Table 5.8

Attentional difficulties

Outcome at at age 13 years Effect size
age 21 years Lower Higher (1) o) RD RR OR
n 475 466

Injury-related 3.6 6.4 4058 -07 -03 56 .58
accident (%)

Arrested for drinking 29 7.7 10.41* —-11 -05 .38 .40
and driving (%)

Driving without 8.2 195 2530° -16 -11 .42 .48

license (%)

Note. RD = risk difference; RR = risk ratio; and OR = odds ratio.
8p = .044. 5p < .001.

Suppose that the difference score PO — SCAD is computed for an
individual child where PO is the total score across the four visual-spatial
tasks of the Perceptual Organization factor and SCAD is the total score
across the four short-term memory tasks listed earlier. Based on evidence
that children with learning or attentional deficits are more likely to obtain
positive PO — SCAD scores than normal children, the predictive value of
this difference score as a diagnostic indicator is estimated next.

Table 5.10 reports estimated sensitivity and specificity values for the
entire range of positive PO — SCAD differences, 1-18. The sensitivity
values are proportions of children diagnosed with learning or attentional
deficits who obtained PO — SCAD scores greater than or equal to the value
indicated for each row (Prifitiera & Dersh, 1993). The specificity values are
proportions of children in the normative sample of the WISC-III who
obtained difference scores less than or equal to the value indicated in each
row (Kaufman, 1994). For example, PO — SCAD > 9 is a statistical difference
at the .05 level for an individual profile. About 54% of children with
learning—attentional problems obtain PO — SCAD scores of 9 or higher,
but only about (1 ~.84) = .26, or 26% of children in the normative sample
obtain a difference score so high. A score of 12 is required for a statistical
difference at the .01 level for an individual profile. About 37% of children
with learning—attentional problems have PO — SCAD scores so high, but
this is true for only about 1 — .91 = .09, or 9% of normative sample children.
Because practitioners may not interpret a difference between two scores for
the same profile unless it is statistical, only PO — SCAD values 29 and
> 12 are considered.

The predictive value of PO — SCAD 2> 9 as a diagnostic indicator of
learning—attentional problems is analyzed in Table 5.11 for a hypothetical
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TABLE 5.10
Estimated Sensitivity and Specificity Values for Differences Between
Scores on Visual-Spatial and Short-Term Memory Tasks for Normal
and Attentional-Learning Problem Children

Value of (PO-SCAD) Sensitivity® Specificity®
18 A7 .98
17 21 97
16 .23 96
15 .26 96
14 .29 94
13 .33 93
12° 37 N
11 43 89
10 49 86

94 54 84
8 .58 81
7 .63 77
6 65 .74
5 .68 70
4 .74 66
3 .80 .61
2 .82 .56
1 .84 52

Note. PO = sum of the tasks for the Perceptual Organization factor and SCAD = sum of the tasks for Free-
dom from Distractibility factor and Processing Speed factor of the Wechsler Intelligence Scale for Chil-
dren—Third Edition (WISC-IIl; Wechsler, 1991).

aSensitivity values were computed based on data from 164 children classified as either learning-disabled
or as having attention deficit hyperactivity disorder and reported in “Base Rates of WISC-III Diagnostic
Subtest Patterns Among Normal, Learning-Disabled, and ADHD Samples,” by A. Prifitiera and J. Dersh,
1993. In B. A. Bracken and R. S. McCallum (Eds.), Journal of Psychoeducational Assessment Monograph
Series, Advances in Psychological Assessment: Wechsler intelligence Scale for Children—Third Edition, p.
39. Copyright 1993 by the Psychoeducational Corporation. Adapted with permission.

bSpecificity values were computed based on data from 2,158 children in the WISC—Ill normative sample
and reported in Intelligent Testing With the WISC-IIl, by A. S. Kaufman, 1994, New York: Wiley, p. 220.
Copyright 1994 by John Wiley and Sons. Adapted with permission.

°p < .05 for an individual profile.

9p < .01 for an individual profile.

population of 1,000 children at two different base rates, 10% and 25%.
Only the 10% base rate is realistic, but comparing predictive values for the
two different base rates is instructive. For a 10% base rate, assuming sensitiv-
ity is .54 and specificity is .84 for PO — SCAD 2= 9 (Table 5.10), the positive
predictive value is +PV = .27. Thus, the prediction of learning—attentional
problems given a difference between a child’s PO and SCAD scores of 9
or higher will be correct only about a quarter of the time. The negative
predictive value is —PV = .94, which means that the prediction that a child
does not have a learning—attentional problem given a difference score less
than 9 will be correct in the large majority of cases. Considering the relatively
low base rate (10%), a low +PV and a much higher —PV is not surprising.
It is only for the unrealistically high base rate of 25% for learning—attentional
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TABLE 5.11
Estimated Predictive Values for a Difference Between Scores on
Visual-Spatial and Short-Term Memory Tasks of Nine Points at
Two Different Base Rates

Predictive
True status value
Result Learning-attentional No
(PO-SCAD) Prediction problem problem Total +PV -PV
Base rate = .10
>9 Learning-attention 144
problem 54 198 27 .94
<9 No problem 46 756 802
Total 100 900 1,000
Base rate = .25
>9 Learning-attention 120
problem 135 255 53 .84
<9 No problem 115 630 745
Total 250 750 1,000

Note. Sensitivity = .54 and specificity = .84 for (PO-SCAD) > 9; see Table 5.10. PO = sum of the
tasks for the perceptual organization factor and SCAD = sum of the tasks for freedom from distractibil-
ity factor and processing speed factor of the Wechsler Intelligence Scale for Children—Third Edition
(Wechsler, 1991).

problems that the +PV of PO — SCAD 2> 9 just exceeds 50%. The derivation
of predictive values for PO — SCAD 2 12 is left to readers as an exercise,
but values for a 10% base rate are +PV = .31 and =PV = .93. Thus, requiring
a greater positive difference between PO and SCAD does not appreciably
increase +PV for a realistic base rate.

Of course, the diagnosis of learning or attentional problems is not
made on the basis of a single difference score. However, there have been
dozens—if not hundreds—of difference scores such as PO —~ SCAD described
in the cognitive test literature as having potential value for detecting cogni-
tive, learning, or even psychiatric problems. Very few have been analyzed
from the perspective of sensitive, specificity, and predictive value. This is
unfortunate because this framework requires diagnosticians to consider the
effect of base rates on predictive value.

CONCLUSION

This chapter introduced effect size indexes for comparing groups across
categorical outcomes. Some of these indexes measure relative risk across
two different groups for a less desirable outcome versus a more desirable
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outcome, such as recovered—not recovered. These data are summarized in a
fourfold table. The comparative risk index with the best overall psychometric
properties is the odds ratio, the ratio of the within-groups odds for a particular
outcome. The correlation @ for fourfold tables is more problematic. This is
because @ is affected by the marginal proportions for group membership and
the dichotomous outcome. The sensitivity, specificity, and predictive value
framework was also introduced. This approach takes explicit account of the
effect of population base rates on the accuracy of decisions based on a
screening test for the presence or absence of a disorder or condition. In
general, screening tests are not very useful for detecting the presence of a
rare condition, but they may be quite accurate in ruling it out. The opposite
tends to be true when the base rate is closer to 1.0 than 0. The next chapter
considers effect size estimation in comparative studies with three or more
conditions and continuous outcomes.
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EFFECT SIZE ESTIMATION
IN ONE-WAY DESIGNS

It’s all very well in practice,
but it will never work in theory.
—Anonymous management maxim (Larman, 2002, p. 127)

This chapter discusses estimation of effect size magnitude in one-way
designs with at least three conditions and continuous outcome variables.
Greater emphasis is placed on focused comparisons (contrasts) with a single
degree of freedom (df) than on the omnibus comparison of all the means
where df > 2. This is because the latter are often uninformative (see chap.
2, this volume). A large omnibus effect can also be misleading if it is a
result of a single discrepant mean that is not of substantive interest. The
next two sections address contrast specification and effect size estimation
with standardized mean differences for fixed factors. Later sections review
measures of association for fixed or random factors and special issues for
effect size estimation in covariate analyses. A supplemental reading on this
book’s Web site reviews effect size estimation in multivariate one-way designs
with independent samples. Exercises with answers for this chapter are also
available on the Web site.

CONTRAST SPECIFICATION AND TESTS

This section describes the basic rationale of contrast specification. It
can be skipped by readers who are already familiar with this topic; otherwise
it needs close study. A design with a single fixed factor is assumed. Because
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the levels of a random factor are selected by a chance-based method to
enhance generalizability, analysis of the omnibus effect is usually more
appropriate than contrast analyses that compare just two levels at a time.

Specification

A contrast is a directional effect that corresponds to a particular facet
of the omnibus effect. Contrasts are often represented in the statistical
literature with the symbols \ or . The former is a parameter that represents
a weighted sum of population means:

Yy = Zciui (6.1)

i=1

where (cy, ¢3, . . ., ¢,) is the set of contrast weights or coefficients that specifies
the comparison. Application of the same weights to sample means esti-
mates

W= z aM; (6.2)
i=1

The weights that specify a contrast must respect certain rules: They
must sum to zero (X ¢; = 0), and the weights for at least two different means
should not equal zero. Means assigned a weight of zero are excluded from
the contrast, and means with positive weights are compared with means
given negative weights. Suppose factor A has a = 3 levels. The weights
(1, 0, — 1) meet all the requirements stated earlier and specify the contrast

Y= ()M; + (0) M; + (-1) M3 = M| - M3

which is the pairwise comparison of M; with M3 excluding M;. The weights
(=1, 0, 1) just change the sign of y;. In general, the sign of a contrast is
arbitrary. By the same logic, the sets of weights

(¥, 0, =%), (5, 0, =5), and (1.7, 0, ~1.7)

among innumerable others with the same pattern of coefficients all specify
the same pairwise comparison as the set (1, 0, —1). The scale of \jr; will
change depending on which of the sets of weights is applied to the means.
This does not affect statistical tests or measures of association for contrasts
because their equations correct for the scale of the weights.
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However, the scaling of contrast weights is critical if a comparison
should be interpreted as the difference between the averages of two subsets
of means. If so, the weights should make up what Keppel (1991) called a
standard set and satisfy what Bird (2002) called mean difference scaling. The
sum of the absolute values of the coefficients in a standard set is two (Z]c)| =
2.0). This implies for a pairwise comparison that one weight must be +1,
another must be —1, and the rest are all zero. For example, the coefficients
(1, 0, =1) are a standard set for the comparison of M; with M3, but the set
(%, 0, =14) is not.

At least three means contribute to a complex comparison. An example
of a complex comparison is when a control condition is compared with the
average of two treatment conditions. A complex comparison is still a single-
df effect because only two means are compared, at least one of which is
averaged over two or more conditions. A standard set of weights for a
complex comparison is specified as follows: The coefficients for one subset
of conditions to be averaged together each equals +1 divided by the number
of conditions in that subset; the coefficients for the other subset of conditions
to be averaged over all equal —1 divided by the number of conditions in
that subset; and weights for any excluded condition are zero. For example,
the set of coefficients (Y, —1, 14) is a standard set for the contrast

Yo = () My + (1) My + (4) M3 = (M + M3)[2 - M,

which compares M; with the average of M| and M3. However, the weights
(1, =2, 1) are not a standard set for the same comparison because the sum
of their absolute value is 4.0, not 2.0.

Two contrasts are orthogonal if they each reflect an independent aspect
of the omnibus effect; that is, the result in one comparison says nothing
about what may be found in the other. In a balanced one-way design, two
contrasts are orthogonal if the sum of the products of their corresponding
weights is zero, or:

2 crc =0 (6.3)
i=1

In an unbalanced design, two contrasts are orthogonal if

a
Cy; C2.
e (6.4)
i=1 ™
where n; is the number of cases in the ith condition. A pair of contrasts is
nonorthogonal (correlated) if their weights do not satisfy Equation 6.3 in a
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TABLE 6.1
Examples of Orthogonal and Correlated Mean Difference Contrasts

Weights
Contrast c G G Sum
Orthogonal pair
'z 1 0 -1 0
L7 Ve -1 Y 0
Cross-product 5 0 -5 0
Correlated pair
2 Vo —1 Vo 0
V3 1 -1 0 0
Cross-product 5 1 0 1.5

balanced design or Equation 6.4 in an unbalanced design. Correlated con-
trasts describe overlapping facets of the omnibus effect.

Table 6.1 presents the standard sets of weights for two different pairs
of contrasts in a balanced one-way design. The first pair is orthogonal because
the sum of the cross-products of their weights is zero. Intuitively, these
contrasts are unrelated because the two means compared in {f;, M; and M3,
are combined in \jf; and contrasted against a third mean, M;. The second
pair of contrasts in Table 6.1 is not orthogonal because the sum of the
cross-products of their weights is 1.5, not 0. Contrasts \; and 3 are corre-
lated because M; is one the of the two means compared in both.

If every pair in a set of contrasts is orthogonal, the entire set is orthogo-
nal. The maximum number of orthogonal comparisons is limited by the
degrees of freedom of the omnibus effect, dfs = a — 1. The overall A effect
can theoretically be broken down into a — 1 independent directional effects.
Expressed in terms of sums of squares, this is

a-1

SSa= Y, SS, (6.5)

i=1

where SS4 and SS“A,i are, respectively, the sum of squares for the omnibus

effect and the ith contrast in a set of a — 1 orthogonal comparisons. The
same idea can also be expressed in terms of variance-accounted-for effect
sizes:

i = D fig, (6.6)
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where fi% and 1’]‘2‘,l are, respectively, the observed correlation ratios for the
omnibus effect and the ith contrast in a set of all possible orthogonal
contrasts. All the terms mentioned are defined later.

There is generally more than one set of orthogonal comparisons that
could be specified for the same one-way design. For example, contrasts
and {f; in Table 6.1 defined by the weights (1, 0, —1) and (Y2, -1, %),
respectively, make up an orthogonal set for a factor with three levels. A
different pair of orthogonal contrasts is specified by the weights (1, ~1, 0)
and (Y2, 2, —1). In general, any set of a —1 orthogonal contrasts satisfies
Equations 6.5 and 6.6. Statisticians like orthogonal contrasts because of
their statistical independence. However, it is better to specify a set of
nonorthogonal comparisons that addresses substantive questions than a set
of orthogonal comparisons that does not. See B. Thompson (1994) for more
information about orthogonal versus nonorthogonal contrasts.

If the levels of factor A are equally spaced along a quantitative scale,
such as the drug dosages 3, 6, and 9 mg - kg™!, special contrasts called trends
or polynomials can be specified. A trend describes a particular shape of the
relation between a continuous factor and outcome. There are as many
possible trend components as there are degrees of freedom for the omnibus
effect. For example, if a continuous factor has three equally spaced levels,
there are only two possible trends, linear and quadratic. If there are four
levels, an additional polynomial, a cubic trend, may be present. However,
it is rare in behavioral research to observe nonlinear trends beyond a qua-
dratic effect.

There are standard weights for polynomials. Some statistical software
programs that analyze trends automatically generate these weights. Tables
of standard polynomial weights are also available in several statistics text-
books (e.g., Winer, Brown, & Michels, 1991, p. 982). For example, the set
of standard weights for a pure linear trend for a factor with three equally
spaced levels is (—1, 0, 1). The weight of zero in this set can be understood
as the prediction that M, is halfway between M; and M. The set of standard
weights for a pure quadratic trend is (1, =2, 1), and it predicts that M; =
M; and that M; differs from both. More than one trend component may
be present in the data. For example, learning curves often have both linear
and quadratic components. Trends in balanced designs are always orthogonal
and thus are called orthogonal polynomials. Please note that except for linear
trends in one-way designs with two or three samples, the sum of the absolute
values of the weights that define trends is not 2.0; that is, they are not
standard sets. This is not a problem because trends are not generally mean
difference contrasts in the sense discussed earlier. Also, the effect size magni-
tude of trends are usually estimated with measures of association, not stan-
dardized mean differences.
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Statistical Tests

The test statistic for a contrast is ty or Fg. When a nil hypothesis is
tested for the same contrast, t§ = Fy, but t; preserves the sign of the contrast
and can test non-nil hypotheses, too. When the samples are independent,
one can compute a standardized mean difference or a correlation effect size
from either tg or Fy for a nil hypothesis. This makes these test statistics
useful even if a nil hypothesis is probably false.

The form of the t statistic for a contrast between independent
means in either a balanced or unbalanced one-way design is tg(dfw) =
(§ — Wo)/sg, where dfy is the total within-conditions degrees of freedom N
~ a, Yo is value of the contrast specified in the null hypothesis, and s is
the standard error of the contrast. The latter is

sg = A|/MSw (ic—'z) (6.7)

i=1ni

where MSy; is the pooled within-conditions variance (see also Equation
2.30).

The form of the F statistic for a contrast between independent means
is Fy(1, dfw) = SS4/MSy where the numerator equals

$S¢ = =2 (6.8)

The statistical assumptions of the t and F tests for contrasts between indepen-
dent means are described in chapter 2.

The situation is more complicated when the samples are dependent.
The omnibus error term—which may be designated MS 4 , 5 for a nonadditive
model or MS, for an additive model—assumes sphericity, which may be
unlikely in many behavioral studies (see chap. 2, this volume). Error terms
of ty or Fy printed by statistical software programs that analyze data from
correlated designs may be based on scores from just the two conditions
involved in the contrast (e.g., Keppel, 1991, pp. 356-361). These tests are
actually forms of the dependent samples t test, which does not require
sphericity because only two conditions are compared. The form of this ¢
statistic for a contrast in a correlated design is tg(n — 1) = (§ — Wo)/sy,
where the standard error in the denominator is

sb,
Sg = 7"’ (69)
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In Equation 6.9, 51230 is the variance of the contrast difference scores and n

is the group size. A difference score Dy can be computed for each contrast
and for every case in a repeated-measures design or set of matched cases in
a matched-groups design. Each difference score is a linear combination of
the original scores across the levels of the factor weighted by the contrast
coefficients. Suppose in a one-way design with three levels of a repeated-
measures factor A that the coefficients for \; are (V2 —1, ¥2). The scores
across the levels of A for a particular case are 17, 20, and 25. The difference
score for this case on this contrast equals

Dy, = () 17~ (1) 20 + () 25 = 1

Difference scores for the other cases on the same contrast are computed
the same way, and their average for the whole sample equals ;.

The variance s%)@ takes account of the cross-conditions correlation for

that contrast (e.g., Equation 2.15). In general, this variance decreases as
the correlations increase. If the cross-conditions correlations are reasonably
positive, the contrast standard error may be smaller than that which may
be found for the same contrast in a between-subjects design with the same
factor and outcome variable.

Control of Type 1 Error

With the caveats given next, it is useful to know something about
methods to control experimentwise Type I error across multiple comparisons.
Methods for planned comparisons assume a relatively small number of a priori
contrasts, but methods for unplanned comparisons anticipate a larger number
of post hoc tests, such as all possible pairwise contrasts. A partial list of
methods is presented in Table 6.2 in ascending order by degree of protection
against experimentwise Type | error and in descending order by power.
These methods generally use t; or Fy as test statistics but compare them
against critical values higher than those from standard tables (i.e., it is
more difficult to reject Hp). For example, the adjusted level of statistical
significance for an individual comparison (0*) in the Dunn-Bonferroni
methods equals ogyw/k, where the numerator is the rate of experimentwise
rate of Type I (see chap. 2, this volume) and k is the number of contrasts.
If ogw = .05 and k = 10, the level of statistical significance for each
individual contrast is o* = .05/10 = .005 in the Dunn—Bonferroni method.
In unprotected tests of the same 10 contrasts, the level of ¢ would be .05
for each contrast. The methods listed in the table are also associated with
the construction of simultaneous confidence intervals for Y (defined later).
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TABLE 6.2
Partial List of Methods That Control Experimentwise Type | Error for
Multiple Comparisons

Method Nature of protection against experimentwise type | error
Planned comparisons

Unprotected None; uses standard critical values for #, and F,

Dunnett Across pairwise comparisons of a single control group with

each of a — 1 treatment groups
Bechhofer-Dunneit Across a maximum of a — 1 orthogonal a priori contrasts

Dunn—Bonferroni Across a priori contrasts that are either orthogonal or
nonorthogonal

Unplanned comparisons

Newman-Keuls,? Across all pairwise comparisons
Tukey HSDY

Scheffé Across all pairwise and complex comparisons

2Also called Student-Newman—-Keuls.
PHSD = honestly significant difference; also called Tukey A.

See Winer et al. (1991, pp. 140-197) for more information about methods to
control for Type 1 error across multiple comparisons in single-factor designs.

It was mentioned earlier that there is not a clear consensus that control
of experimentwise Type I error is desirable if the power of the unprotected
tests is already low (see chap. 3, this volume). There is also little need to
worry about experimentwise Type 1 error if a relatively small number of
contrasts is specified. Wilkinson and the Task Force on Statistical Inference
(1999) noted that the tactic of testing all pairwise comparisons following
rejection of Hy in the test of the omnibus effect is typically wrong. Not
only does this approach make the individual comparisons unnecessarily
conservative when a classical post hoc method such as the Newman—Keuls
procedure is used, but it is rare that all such contrasts are interesting. The
cost for reducing Type I error across all comparisons is reduced power for
the specific tests the researcher really cares about.

Confidence Intervals for s

Distributions of sample contrasts are simple, and correct confidence
intervals for y can be constructed with central test statistics. The general
form of an individual 100 (1 — )% confidence interval for v is

ﬁl i S‘i’ [%2,[311, a (dferror)] (610)
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The standard error of the contrast, s, is defined by Equation 6.7 when the
samples are independent and by Equation 6.9 when they are dependent. The
term in brackets is the positive two-tailed critical value of t at the o level of
statistical significance with degrees of freedom equal to those of the corres-
ponding analysis of variance (ANOVA) error term for the same contrast. It
is also possible to construct simultaneous confidence intervals—also known as
joint confidence intervals—based on more than one observed contrast. The
width of a simultaneous confidence interval for y is typically wider than that
of the individual confidence interval for y based on the same contrast. This
is because simultaneous confidence intervals take account of multiple compar-
isons—that is, they control for experimentwise Type I error. For example, the
level of o* for a simultaneous confidence interval in the Dunn—Bonferroni
method equals opy/k where k is the number of contrasts. If Oy = .05 and k =
10, the level of statistical significance for the critical ¢ statistic in Equation
6.10 is o* = .05/10 = .005. The resulting simultaneous 99.5% confidence

interval basedonty, .~ will be wider than the corresponding 95% individ-

ual confidence interval based on ty, . for the same comparison. See Bird

ail, .05
(2002) for more information about simultaneous confidence intervals for .

STANDARDIZED CONTRASTS

Contrast weights that are standard sets are assumed next. A standard-
ized mean difference for a contrast is standardized contrast. The parameter
estimated by a sample standardized contrast is 8, = Y/0*, where the numera-
tor is the unstandardized population contrast and the denominator is a
population standard deviation. Recall that there is more than one population
standard deviation for a comparative study. For example, 6* could be the
standard deviation in just one of the populations or, under the homogeneity
of variance assumption, it oculd be the common population standard devia-
tion across all conditions. The form of a generic standardized contrast is
dg = /6*, where the numerator is the observed contrast and the denomina-
tor—the standardizer—is an estimator of 6* that is not the same in all
kinds of dy statistics.

Independent Samples

Three basic ways to estimate 6* in one-way designs with independent
samples are listed next. Olejnik and Algina (2000) described another method
for individual difference factors (see chap. 4, this volume), but it is not used
as often. The first two options are based on methods for two-group designs,
so they may be better for pairwise comparisons than complex comparisons.
The third method is good for either kind of comparison:
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1. Select the standard deviation of only one group, usually the
control group when treatment is expected to affect both central
tendency and variability. This makes dg analogous to Glass’s
A. This method may also be preferred if the within-groups
variances are heterogenous, but it may be necessary to report
more than one value of d for the same contrast.

2. Estimate 6* as the square root of the pooled within-groups
variance for only the two groups being compared (i.e., sp;
Equation 2.9). This makes dy analogous to Hedges’s g. How-
ever, this method ignores the variances in all the other groups.
Another possible drawback is that the standardizer of dy, could
be different for each contrast.

3. Standardize { against the square root of the pooled within-
groups variance for all a groups in the design, MSy. Now d
for different contrasts will all be based on the same estimator
of 6*, which in this case is the common population standard
deviation 6. An implication of this choice is that the standard-
izer (MSy)"”? assumes homogeneity of variance across all con-
ditions.

Given reasonably similar within-groups variances, the third method may
be the best choice. [t generates a standardized contrast that is an extension
of Hedges’s g for designs with three or more groups. For this reason it is
referred to as gg.

The value of g, = ¥/(MSy)'? can also be computed from t; for a
nil hypothesis (Equation 6.7), the contrast weights, and the group sizes
as follows:

a
ot

el

&=ty (6.11)

If the design is balanced, Equation 6.11 reduces to g; = t3(2/n)"? for a
pairwise contrast. Please note that gy takes the sign of t,. If the square root
of Fy is substituted for ty in this equation, gy will be positive regardless of
the direction of the mean contrast.

Table 6.3 presents a small data set for a balanced design where n = 5.
Table 6.4 reports the results of an independent samples ANOVA of the
omnibus effect and two orthogonal contrasts defined by the weights (1, 0, —1)
and (Y4, =1, V2) where

W = M; — M3 = 13.00 — 12.00 = 1.00
W, = (M; + M3)/2 = M; = (13.00 + 12.00)/2 — 11.00 = 1.50

172 EFFECT SIZE ESTIMATION IN ONE-WAY DESIGNS



TABLE 6.3
Raw Scores and Descriptive Statistics for Three Samples

Condition

1 2 3

9 8 10

12 12 11

13 11 13

15 10 11

16 14 15
M 13.00 11.00 12.00
& 7.50 5.00 4.00

Note. In a dependent samples analysis, r, = .735; r;3 = .730; and >3 = .839.

Please note in Table 6.4 that

SSa = SSg, + SSy, = 2.50 + 7.50 = 10.00

which is just as predicted by Equation 6.5. The values of g for the two
contrasts are

gy, = 1.00/5.50* = 4512 (2/5)12 = 43
gy, = 1.50/5.50 = 1.36'2 [.5%/5 + (-1%)/5 + .5%/5]"" = .64

Based on these results, we can say that the difference between M; and M3
is .43 standard deviations large. The size of this effect is somewhat smaller
than that of the contrast between the average of these two means and M,
which is .64 standard deviations in magnitude.

TABLE 6.4
Independent Samples Analysis of the Data in Table 6.3
Effect size
Source SS of MS F e ik Partial 142
Between (A) 10.00 2 5.00 918 — .13 —
¥, = 1.00 2.50 1 250 450 43 .03 .04
y2 = 1.50 7.50 1 7.50 1.36° .64 .10 .10

Within (error) 66.00 12 5.50

Total 76.00 14

Note. The contrast weights for {, are (1, 0, —1) and for Vs, are (2, —1, %2).
2p = .429. %p = .509. °p =.332.
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Dependent Samples

There are three basic ways to calculate a standardized mean change
in a one-way design with dependent samples. They differ only in the choice
of the standardizer:

1. With one exception, use any of the methods described in the
previous section for contrasts between unrelated means. These
methods estimate population standard deviation in the metric
of the original scores, but they ignore the cross-conditions
correlations in a correlated design. The exception is Equation
6.11, which generates g¢ but requires an independent samples
test statistic.

2. Standardize the dependent mean change against the standard
deviation of the contrast difference scores, SD, This option

takes account of the cross-conditions correlation, but it does
not describe change in the metric of the original scores. The
ratio lTI/SDW estimates the parameter W/GDw’ where the denomi-

nator is the population standard deviation of the contrast
difference scores (see Equation 2.13). The ratio {/sp , Ay not

be directly comparable with dy from an independent samples
design with the same factor and outcome variable.

3. Standardize the contrast against the square root of the error
term of Fy. This error term for a dependent contrast is a
residual variance after removing the subjects effect and either
the omnibus effect or the contrast from total variance. How-
ever, the metric of this residual mean square is not generally
that of either the original scores or the contrast difference
scores, so it may not provide a meaningful reference point.
This option is not recommended.

Table 6.5 reports the results of a dependent-samples analysis of the
data in Table 6.3 for the omnibus effect and the same two contrasts analyzed
in Table 6.4. Note that the error terms, F ratios, and p values are all different
across Tables 6.4 and 6.5. However, the values of g, and g, are the same

across both analyses—.43 and .64, respectively. This is because gy is calcu-
lated the same way regardless of the design. The value of the ratio \’fl/SDQ

for each contrast is also reported in Table 6.5. These values are, respectively,
.53 and 1.18, and they are each greater than the corresponding value of g
for the same contrasts. This is expected given the relatively high cross-
conditions correlations for these data, .730-.839 (see Table 6.3).
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TABLE 6.5
Dependent Samples Analysis of the Data in Table 6.3

Effect size
Partial
Source SS df MS F o /s, 2 1
Between (A) 10.00 2 500 353 — — 13 A7
W = 1.00 2.50 1 250 1.76° .43 53 .03 .18
W2 = 3.00 7.50 1 750 528 .64 118 10 40
Within 66.00 5.50

12
Subjects (S) 54.67 4 13.67
A x S (error) 11.33 8 1.42

Total 76.00 14

Note. The conirast weights for ; are (1, 0, —1) and for s, are (Y2, -1, ¥2). The variances of the contrast
difference scores for the data in Table 6.3 are s%m = 3.500 and 5‘2%2 = 1.625.
ip=.080. Pp=.221. °p=.051.

Approximate Confidence Intervals for 8,

Distributions of sample contrasts are simple, but this is not true for
standardized contrasts. When the samples are independent and the observed
effect size is gg, an approximate confidence interval for 8, can be obtained
by dividing the endpoints of the corresponding confidence interval for y
(Equation 6.10) by the square root of MSy, the pooled within-groups vari-
ance. The general form of the resulting interval is

g 55, [, . ()] (6.12)

where the approximate standard error of gy equals

2
i

a
=1 ™

Sgp = (6.13)

i

o

Bird recommends the same method when the samples are dependent
and the observed effect size is gg. This method standardizes the bounds of
the confidence interval for ¥ with a standard deviation in the metric of
the original scores, just as when the samples are independent. The resulting
interval also takes account of the cross-conditions correlations for the con-
trast because the standard error of ¥ does so in a correlated design (Equation
6.9). Another alternative is to standardize the bounds of the confidence
interval for W on the basis of the standard deviation of the contrast difference
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scores, sp, The endpoints of the resulting standardized interval are symmetri-
cal around \'i!/sD‘?, the standardized contrast that expresses change in differ-

ence score units. A drawback to this approach is that the confidence interval
for 3, in a correlated design will not be directly comparable with the
corresponding interval in a design with the same factor and outcome measure
but where the samples are independent.

Refer back to Table 6.4 and look over the results of the independent
samples analysis of the data in Table 6.3. The standard errors of {; = 1.00
and s, = 1.50 are

sg, = {5.50 [1%/5 + O%/5 + (=1)*/5]}"" = 1.48
sq, = {550 [5%/5 + (=1)/5 + 551} = 1.29

Given tg, . o5 (12) = 2.179, the individual 95% confidence intervals for y
based on {r; and \; are, respectively,

1.00 + 1.48 (2.179) or 1.00 * 3.23 with the endpoints —2.23 and 4.32
1.50 £ 1.29 (2.179) or 1.50 £ 2.80 with the endpoints —1.30 and 4.30

If we divide the endpoints of these intervals by the square root of MSy =
5.50, we obtain the approximate 95% confidence intervals for 8. The lower
and upper bounds of the standardized interval based on gy = .43 are,

respectively, —.95 and 1.80, and the corresponding bounds of the interval
based on g, = .64 are, respectively, —.55 and 1.83. The range of imprecision
is so wide because of the small group size (n = 5).

Now look at the results of the dependent samples analysis in Table 6.5

for the same data. The variances of the contrast difference scores are 5123‘? =
1

3.500 and 5123‘32 = 1.625. The standard errors of {; = 1.00 and Vs, = 1.50 are
s9, = (3.500/5)"2 = 837  and sy, = (1.625/5)" = 570

Given ty, . o (4) = 2.776, the individual 95% confidence intervals for y
based on {; and \, are, respectively,

1.00 + .837 (2.776) or 1.00 £ 3.323 with the endpoints —1.323 and 3.323
1.50 + .570 (2.776) or 1.50 £ 1.583 with the endpoints —083 and 3.083

Dividing the endpoints of these intervals for y by the square root of MSy, =
5.50 gives the endpoints of individual approximate 95% confidence intervals
for 8,. The lower and upper bounds of the resulting interval for 3, based
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on gg, = .43 are, respectively, —.564 and 1.417, and the corresponding bounds
of the resulting interval for 8, based on g, = .64 are, respectively, —035

and 1.315. As expected, each of the 95% confidence intervals for ¥ or 8,
in the dependent samples analysis is narrower than the corresponding inter-
val in the independent samples analysis of the same data.

The freely available computer program PSY by Bird, Hadzi-Pavlovic,
and Isaac (2000) automarically constructs individual or simultaneous confi-
dence intervals for W or approximate confidence intervals for §, when the
observed effect size is g in designs with one or more between-subjects or
within-subjects factors.! This program standardizes contrasts based on the
square root of MSy in all the designs it analyzes. It accepts only whole-
number contrast coefficients, but it can automatically rescale them as mean
difference contrast coefficients.

Exact Confidence Intervals for 8,

The rationale to construct an exact individual confidence interval for
3y = Y/o in a design with three or more independent samples when gy is
the observed effect size is similar to that in a two-group design. Briefly, the
population standardized contrast 8, is related to the noncentrality parameter
(ncp) of noncentral ¢ as follows:

&2
&, = nep 2% (6.14)
i= 1M

If we can find a confidence interval for ncp, then we can find one for J,.
The lower bound of a 100 (1 — a)% confidence interval for ncp, ncpy, is
the noncentrality parameter of the noncentral t distribution in which the
observed ¢ty falls at the 100 (1 ~ a/2)th percentile. The upper bound, ncpy,
equals the noncentrality parameter of the noncentral ¢ distribution in which
the observed t; falls at the 100 (0t/2)th percentile. To find which particular
noncentral ¢ distributions cotrespond to ncp. and ncpy, we can use basically
the same computer tools described in chapter 4. Once we have the interval
ncpL—ncpy, we then use Equation 6.14 to convert the endpoints to values
in 8, units. An example follows.

Refer back to Table 6.4, which reports the results of an independent
samples analysis of the data in Table 6.3. The first contrast analyzed is
defined by the weights (1, 0, —1). The standardized contrast is gy, = 43

and the test statistic is Fy (1, 12) = 45. The square root of the latter is

http://www.psy.unsw.edu.aufresearch/PSY.htm
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tg, (12) = .674. The noncentral t distribution calculator of the Power Analysis

module of STATISTICA (StatSoft Inc., 2003) was used to find the lower
and upper bounds of the individual 95% confidence interval for ncp for this

contrast. The observed g, of .674 falls at the 97.5th percentile in the

noncentral ¢ distribution where the noncentrality parameter equals
—1.31766. The same observed ty falls at the 2.5th percentile in the non-

central ¢ distribution where the noncentrality parameter equals 2.63840.
The 95% confidence interval for ncp is thus —1.31766-2.63840. Using
Equation 6.14, the endpoints of this interval are transformed to §, units by
multiplying them by the following quantity:

[13/5 + 0%/5 + (=1)*/5]12 = 63246

The resulting interval, —83336 to 1.66867, which is —.83 to 1.67 at two-
decimal accuracy, is the exact 95% confidence interval for 8,. Thus, the
observed effect size of gy, = -43 is just as consistent with a population effect

size as low as 8, = —.83 as it is with a population effect size as high as 8, =
1.67, with 95% confidence. This wide range of imprecision is a result of
the small group size (n = 5).

The top of Table 6.6 presents a SAS syntax that calculates the lower
and upper bounds of the individual 95% confidence intervals for ncp and
J for the previous example. The lower part of the table reports the output
from SAS/STAT (SAS Institute Inc., 2000) after running the code in the
top part of the table. These lower and upper bounds of the 95% confidence
intervals computed by SAS/STAT are the same as those as derived earlier
for the same data but using a different computer tool. The syntax in Table
6.6 can be reused for any contrast in a three-group design by substituting
the values in boldface with those from a new sample. The same syntax can
be extended for use in designs with four or more groups by making appropriate
modifications (e.g., give values for n4 and c4 when there are four groups,
and include these variables in subsequent equations in the proper places).

Another computer tool for obtaining exact individual confidence inter-
vals for 8, in designs with fixed factors is the Exploratory Software for
Confidence Intervals (ESCI) program by Cumming (2002). When the sam-
ples are independent, ESCI standardizes each contrast based on pooled
within-groups standard deviation from only the conditions compared in the
contrast. When the samples are dependent, ESCI standardizes the contrast
based on sp » the standard deviation of the contrast difference scores. If the

researcher wishes to standardize the dependent mean contrast based on the
square root of MSy, instead of Sp,» an approximate confidence interval for

d, could be calculated instead.
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TABLE 6.6
SAS Syntax to Compute an Exact 95% Confidence Interval for 3, in One-
Way Designs With Independent Samples and Output

Syntax

data noncentral_ci_for_delta psi;
/* one-way between-subjects design */
/* data */
t_contrast=.674; df=12;
nl=5; n2=5; n3i=5;
cl=1; ¢2=0; c3=-1;
/* lower, upper bound for ncp */
ncp-_lower=tnonct {t_contrast, df, .975);
ncp_upper=tnonct {t_contrast, df, .025);
/* lower, upper bounds for delta */
delta_psi_lower=ncp_lower*sqrt (cl**2/nl + c2**2/n2 + c3**2/n3);
delta_psi_upper=ncp_upper*sqrt (cl**2/nl + ¢2**2/n2 + c3**2/n3);

output;

run;
proc print;

run;

Output
ncp— ncp— delta_psi delta_psi

Obs t_contrast df nl n2 n3 ¢l c2 c3 lower upper lower upper

1 0.674 12 5 5 5 1 0-1 -1.31766 2.63840 -0.83336 1.66867

MEASURES OF ASSOCIATION

Descriptive and inferential measures of association are discussed next.
Some differences among them are outlined. The descriptive measure is
the squared sample correlation estimated eta-squared, fj>. The inferential
measures include estimated omega-squared, @’, and the sample intraclass
correlation, Pj, which is already in a squared metric. All the indexes just
mentioned estimate the proportion of total variance explained by an effect,
but they differ in how they do so and their underlying distributional assump-
tions. There are also partial forms of all three measures of association that
remove variance as a result of other sources of between-conditions variability
from the total variance for a comparative study. The statistics fi* and &’
assume a fixed factor, but Py is for a random factor. The latter is typically
calculated only for the omnibus A effect in a one-way design. The statistics
&’ and Py assume a balanced design, but §? does not. Compared to 7%, the
statistic @’ is generally a less biased estimator of the population proportion
of explained variance for a comparative study. However, values of the two
estimators for the same effect converge as the sample size increases, keeping
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all else constant. In a large sample, there is thus no need to prefer & over
. In a smaller sample, though, & may give a more realistic estimate than fi.

Descriptive Measures

The following discussion applies to designs with independent or depen-
dent samples unless otherwise indicated. The statistic i can be computed for
basically any effect in a comparative study with fixed factors and continuous
outcome variables. Its general form is

SS
a2, o effect
Meffect SST (6 15 )

where SSegecc is the sum of squares for the effect and SSt is the total sum
of squares. The value of fi4.. is the proportion of total observed variance
explained by effect, and its square root is the correlation between that effect
and the outcome variable. If the degrees of freedom for the effect are greater
than one, this correlation is a multiple correlation (R).

The parameter estimated with positive bias is Mfece = Ofect/G2or, Where
the numerator is the population variance due to the effect and the denomina-
tor is total population variance. The composition of 62, in a one-way design
with independent samples is 62 + 6% The former variance component is
the variability of the population means that correspond to the omnibus
effect, Wi, Wy, - - -, Mg, around the grand mean L; the latter variance compo-
nent concerns error variance (see chap. 4, this volume). When the samples
are dependent, the total variance also reflects variability because of the
subjects effect for both additive and nonadditive models, and for a non-
additive model only it reflects a person X treatment interaction, too. If
every case is measured just once in each condition, however, it is not pos-
sible to separately estimate error variance and variability as a result of a
person X treatment interaction (see chap. 2, this volume).

If SSefrece = SSa in Equation 6.15 and dfs > 1, then i, is the multiple
correlation between the omnibus effect of factor A and outcome. If the
samples are independent, fj4 can also be computed in a one-way design as

A ’ Fa
Mla = Fa + dfw/dfa (6.16)

where F, is the test statistic for the omnibus effect with df, and dfy degrees
of freedom (Equation 2.27).

The form of estimated-eta for a contrast is fig = (SSQ,/SST)I/Z, which
is the absolute value of the bivariate correlation between the contrast and
outcome. Within the same data set, fig < fja. It is also true that the sum
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of the A values in a set of all possible orthogonal contrasts equals A}
(Equation 6.6). To preserve the sign of the contrast, one can compute the
bivariate correlation ry in a one-way design with independent samples as

’ 1
Ty = Ly m (617)

The correlation between the outcome variable and all noncontrast
sources of between-conditions variability is fpen.¢ = (SSnon,q,/SST)”z, where
SSnon = (884 — SSy). Comparison of fiy and Npen-¢ indicates the relative
importance of a contrast versus all noncontrast effects analyzed together.
Suppose that SS4 = 200.00, df4 = 3, 8S¢ = 5.00, and SS7 = 500.00. Given
these data:

flg = (5.00/500.00)!” = .10
Anony = [(200.00 — 5.00)/500.00]' = .62

In words, the predictive power of the contrast is limited compared to that
of both noncontrast effects evaluated together. We can also say that at least
one of the noncontrast effects must have a higher bivariate correlation with
outcome than V.

The general form of the squared correlation between an effect and
outcome after removing all noneffect sources of between-conditions varia-
tion from total variance is

. 1Al _ SSeffect
partial Nigece S + S5 (6.18)
where SS... is the sums of squares for the effect ANOVA error term. For
the omnibus effect in a one-way design with independent samples, 154 =
partial f{s. This is concretely true because the sums of squares for the error
term of F 4 is SSy, and SS4 + SSy = SS7. Conceptually, there is no systematic
effect besides the omnibus effect that can be removed from total variance.
In a correlated design, however, partial fj5 can be substantially higher than
fla. This is because the former removes the subjects effect from total variance
(see chap. 4, this volume). The parameter estimated by partial Al is
partial Nigeee = Olttect/ (Otecr + OF), the proportion of partial population
variance explained by the effect.

In designs with independent samples, partial fy is the absolute value
of the correlation between the contrast and outcome controlling for all
noncontrast effects. In a correlated design, partial fiy also controls for the
subjects effect. For the same contrast, partial fjg can be substantially higher
than iy and more similar in magnitude to fj for the omnibus effect. This
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is especially true if neither the effect of the contrast nor all noncontrast
effects are relatively small. The square of partial fj; is the proportion of
residual variance explained by the contrast. These proportions are not gener-
ally additive over a set of contrasts, orthogonal or not, because each propor-
tion may refer to a different subset of the total variance. For designs with
unrelated samples, the sign of the contrast is preserved by the following

partial Correlation:
artial Te =t _1— (6 19)
I v ( tlzi‘; } de .

Refer back to Table 6.4 and review the results of an independent
samples analysis of the data in Table 6.3. Computing correlations from
results in Table 6.4, we obtain

fia = (10.00/76.00)12 = 36
flg, = (2.50/76.00)" = .18

flg, = (7.50/76.00)" = 31

That is, the multiple correlation between factor A and the outcome variable
is .36. The bivariate correlation between , (which compares with M; with
the average of M; and M3) and outcome is nearly as large, .31. The bivariate
correlation for §r; (which compares My with M3) is .18. Because the contrasts
are orthogonal,

4 = A5, + A, = 36" = .18 + 31> = .03 + .10 = .13

Thus, of the 13% total variance explained by the omnibus effect, 3% is due
to {; and the rest, 10%, is due to \,. Partial correlation effect sizes for the
same contrasts are

partial fly, = [2.50/(2.50 + 66.00)]' = .19
partial fiy, = [7.50/(7.50 + 66.00)]'"% = .32

which are only slightly larger than the respective values of i for the same
contrasts, .18 and .31. This happens for these data because the effect of {;
is relatively small compared to that of V;, so removing the effects of one
contrast from total variance makes little difference in the correlation of the
other with outcome.

Refer back to Table 6.5 to scan the results of a dependent samples
analysis of the same data. The corresponding values of 1j and its square for

182 EFFECT SIZE ESTIMATION IN ONE-WAY DESIGNS



the omnibus effect, {f;, and {5, are all the same in both the independent and
dependent samples analyses (see Table 6.4). However, the partial correlation
between the omnibus effect and outcome in Table 6.5 is

partial A4 = [10.00/(10.00 + 11.33)]"* = .68

which is substantially higher than the correlation that does not remove the
subjects effect, fj4 = .36. For the same reason, partial Ry is quite a bit larger
than iy for the same contrast in the dependent samples analysis:

fig, = (2.50/76.00)"* = .18 and
partial g, = [2.50/(2.50 + 11.33)]"? = 43

fig, = (7.50/76.00)"2 = 31 and
partial ﬁ‘ifz = [7.50/(7.50 + 11.33)]? = .63

Inferential Measures

The parameters estimated by the inferential measures of association
@®* and P, are, respectively, ®? and pr- To understand these parameters and
their estimators, it helps to know something about ANOVA structural
models. A structural model expresses a hypothetical score as the sum of
population parameters that correspond to sources of variation. The classical
ANOVA structural model in a single-factor design with independent samples
and either a fixed or random factor is

Xy=p+oy+e (6.20)

where Xj; is the jth score in the ith level of the factor, [ is the population
grand mean and a constant part of every score, and €; is a random error
component.” The term @, represents the effect of the ith level of the factor
as a deviation from the grand mean—that is, o; equals the contrast o; =
W — 1. Because the sum of all deviations from the mean is zero, Zoy = 0.
If the nil hypothesis for the omnibus effect is true, all values of o; equal O.

The classical structural model for a design with dependent samples
and either a fixed or random factor for an additive model is

Xi,»=u+oci+1tj+8,-j (6.21)

! An alternative structural model, the cell means model, is not described here; see Kirk (1995, pp.
240-244) for more information.
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where m; represents the subjects effect. The equation for a nonadditive
model is

Xy=1+ 0+ T+ Om; + & (6.22)

where o represents a person X treatment interaction. However, recall that
it is not possible to separately estimate variance because of random error
versus a true person X treatment interaction when cases are measured just
once in each condition. The implication of this statement for effect size
estimation is explained later.

For a given structural model, there is a population variance component
associated with each term except the constant i. The sum of all variance
components for the model equals the total population variance. For example,
the total population variance for a one-way design with independent samples is

Ol = O + of (6.23)

where G2 represents systematic variance due to factor A and 62 designates
error variance. For a one-way design with dependent samples assuming an
additive model, the total population variance is

Ok = OL + o% + of (6.24)

where 62 is the variance due to the subjects effect. Assuming a nonaddi-
tive model:

2

tot

o’ = 0L+ o+ ol + ol (6.25)
where 6%, is the variance due to a person X treatment interaction.

The form of @’ for an effect of a fixed factor is Wi = Oftect/Cor
If we are referring to the omnibus effect, then 0} = 6%/62.; if referring
to a contrast, then 0),%, = 0‘42,/6%0(. There is also partial ®?, which has the general
form 62ec/(O2gecc + 62), where the denominator reflects variance due to the
effect of interest and error variance. In a one-way design with independent
samples, } = partial ®%; otherwise, the value of partial @’ can be greater than
that of ®* for the same effect because only the denominator of the former
controls for other effects. As mentioned, the parameter py for a design with a
random factor usually concerns just the omnibus effect. Its general form is
pr = 6562, which is the same as that of w* for the omnibus effect of a
fixed factor. However, the sample estimators of the variance components
in the numerator or denominator of p; versus @’ are different depending
on the characteristics of the factor and the design. There is also partial p; =
c(c? + o2), which in a correlated design controls for the subjects effect.
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Several advanced textbooks about ANOVA, such as Kirk (1995),
Myers and Well (2002), and Winer et al. (1991), give equations that
express expected sample mean squares as functions of population variance
components. This information is useful for identifying proper ANOVA error
terms for various effects. By “proper” it is meant that the expected mean
square of the error term has all the variance components of the numerator
except that of the effect being tested. From an effect size perspective, how-
ever, it is more interesting to rearrange these equations so that population
variance components can be estimated from the observed mean squares
and other information. Extensive sets of equations for variance component
estimators in Dodd and Schultz (1973) and Vaughn and Corballis (1969)
provide a basis for computing inferential measures of association in various
kinds of designs. It is not always possible to estimate variance components
without bias, and some population variance components cannot be expressed
as unique functions of sample data in some designs. There are heuristic
estimators that may let one get by in the latter case, however.

Readers already know that ANOVA error terms for the same effect
are different in an independent samples design versus a correlated design.
This is because the distributional assumptions for the two ANOVA models
are different (see chap. 2, this volume). For the same reason, estimates of
population variance components for the same effect are different when the
factor is fixed versus random even though the observed mean squares are
calculated the same way. Schuster and von Eye (2001) showed that random-
effects models and repeated-measures models are actually variations of each
other. This is because both allow for dependencies among the observations.
In a random-effects model, observations within the same level are presumed
to be more like each other than observations in different levels. This implies
basically the same covariance model and assumptions that underlie a re-
peated-measures ANOVA.

For example, the general form of the variance component estimator
for any effect in a balanced one-way design with a fixed factor is

A d effec
G%ffect = fa—f;E (MSeffect - MSerror) (626)

where MS.fec and df g are, respectively, the effect mean square and degrees
of freedom, MS,, is the effect ANOVA error term, a is the number of
levels of the factor, and n is the group size. Using Equation 6.26, the variance
component estimator for the omnibus effect is

a —

A2 _ 1 B
O an (MSA MSerror) (627)
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and for a contrast it is
1
~2 _ 1 o
Oy = an (‘SS\V MSerror) (628)
However, when the factor is random, the estimator for the omnibus effect is
1
~2 _ 1 _
Gy = an (MSA MSen’or) (629)

Compare Equations 6.27 and 6.29. For a fixed factor, the ratio 62/62.,, where
62 is based on Equation 6.27 equals &%, but the same ratio equals p; when
the factor is random and &% is based on Equation 6.29. Likewise, the ratio
&L/(62% + 6%) equals partial % when the factor is fixed, but it equals partial
p1 when the factor is random.

Table 6.7 presents equations for variance component estimators for
one-way designs with independent samples. The equations in the top part
of Table 6.7 assume a fixed factor. To calculate @, or partial @2, for
an effect of a fixed factor, just apply the appropriate equations from this
part of the table. For example, the entire equation for ®feey = Glffece/ 2ot
is assembled from the equations for variance component estimators in Table
6.7 as follows:

G)fo - df effecr/ an (MSeffect - MSW)
et (a — IMan (MSs — MSy) + MSy

_ dfeffect (M‘Seffect — MSW)
=7 55, + MSy

(6.30)

This equation is actually good for any effect in a completely between-
subjects design with one or more fixed factors—simply substitute the overall
sample size (N) for the terms an in the right-hand side of Equation 6.30.
Again working with the information in the top part of Table 6.7, the entire
equation for Partial mszect = 6gffect/ (Ggffect + 6%) for any effect in the type
of design just mentioned is

dfeffecJan (MSeffect — MSw)
dfeffecr/an (MSeffect - MSW) + MSW

- dfeffect (Feffect - 1)
dfeffect (F effect — 1) + an

partial &g, =

(6.31)

The equations for variance component estimators in the bottom part of
Table 6.7 assume a single random factor and independent samples. These
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TABLE 6.7
Equations for Variance Component Estimators in One-Way Designs With
Independent Samples

Factor Estimator
Fixed A df.
c‘%ﬂect = ;f;;ect (Mseﬂect - MSW)
o a-—1
62 = an (MS4 — MSy)
8% = L (SSp - MSy)
an w
6: = MSW
601 = 85 + 67
Random 62 = 13 (MS4 - MSy)
&; = MSW
G%Ot = 65 + of

Note. Assumes a balanced design; a = number of levels of factor A; and n = group size.

component equations are assembled to make the entire equation of p; =
02/62,, for the omnibus effect as follows:

A = (MSA - MSW)/‘I’I _ MSA - MSW
PL= (MSs — MSy)n + MSw _ MSa + (n— 1) MSy

(6.32)

An example is presented next.

Suppose that the following results are observed for a balanced design
with a = 3 groups and n = 30 cases in each group: SS, = 60.00, SSy =
478.50, and SSt = 538.50. From these results we can infer that MS,
30.00, MSy = 5.50, and F (2, 87) = 5.45. Assuming a fixed factor, the
observed proportion of total variance explained by the omnibus effect is
Az = 60.00/538.50 = .111, or 11.1%. Using the equations in the top part
of Table 6.7 and Equation 6.30:

2/90 (30.00 - 5.50) _ 2(30.00 - 5.50) _ 090
2/90 (30.00 — 5.50) + 5.50  538.50 + 5.50

~2
A =
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The bias-adjusted estimated percentage of total variance explained by the
omnibus effect is thus 9.0%. As expected, this estimate is lower than that
given by 73 for the same data. Assuming a random factor and using the
equations in the bottom part of Table 6.7 and Equation 6.32, we calculate,

_ (30.00-550)30 _ 3000-550
[~ {30.00 — 5.50)/30 + 5.50 _ 30.00 + (30 — 1) 5.50 _

129

o

Thus, the sample intraclass correlation equals .129, so the estimate of the
percentage of total variance explained by the omnibus effect of the random
factor is 12.9%. This value is different from that of both i3 and &% based
on the same scores because f; assumes a different underlying distributional
model. See Olejnik and Algina (2000) for additional computational
examples.

Tables 6.8 and 6.9 present equations for variance component estimators
for one-way designs with dependent samples. These tables assume that each
case is measured just once in every condition. The equations in Table 6.8
are for an additive model that assumes no person X treatment interaction.
When the factor is fixed, the estimated proportion of total variance explained
by an effect is lece = Gltec/ (6% + 62 + 62), and the proportion of par-
tial variance explained by an effect is partial ®lgec: = 6Zfect/ (Glfiece + 62).
The proportion of explained variance when the factor is random is esti-
mated as p; = 6%/(62 + 6% + 62). All the expressions just given assume
use of the appropriate equation for &2 given a factor that is fixed or
random.

The equations for variance component estimators listed in Table 6.9
are for a nonadditive model that assumes a true person X treatment interac-
tion. When the factor is fixed, it is not possible to calculate unique estimates
of 62, 6%, and o, the population variance components for the subjects
effect, the person X treatment interaction and random error, respectively.
Accordingly, combinations of these parameters are heuristically estimated
by the equations given in the top part of Table 6.9. The total population
variance winds up being estimated as

6%, = 6L + (8% + 8%a) + (6L, + 67) (6.33)

which is actually too large by the factor 6%/a. This implies that 2., =
624ect/6%r, where the denominator as defined by Equation 6.33 is too small
by the same factor (Winer et al., 1991, p. 276). This problem also complicates
calculation of an estimator of partial @, because there is no unique
estimate of 62. The statistic partial i is an alternative in this case. The

bottom part of Table 6.9 presents equations for a nonadditive model in
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TABLE 6.8
Equations for Variance Component Estimators in One-Way Designs With
Dependent Samples for an Additive Model

Factor Estimator
Fixed et = dﬁf,f;"" (MSsiect — MSerror)
82 = aa”n1 (MS4 — MSarre)
&3 = 5‘,—7 (SSs ~ MSer)
52 = 15 (MSs - MSeror)
62 = MSeror

Random 2 1
62 = 7 (MSa ~ MSero)
o 1
Op = a (MSs — MSqror)
66 - MSefl’Of

Note. Assumes a balanced design; MS,, = effect error term; a = number of levels of factor A, and n =
group size.

which the factor is random. Observe in the table that the ANOVA error
term for the effect of interest estimates variability because of both a person
X treatment interaction and random error whether the factor is fixed or
random.

An alternative to ANOVA-based estimation of variance components
in designs with random factors is maximum likelihood estimation. This method
typically uses an iterative algorithm to improve the estimates until certain
statistical criteria are satisfied. It also requires large samples. It is beyond
the scope of this section to describe maximum likelihood estimation in any
detail—see Eliason (1993) for a succinct but technical overview. A problem
that arises with both ANOVA and maximum likelihood methods is negative
variance estimates, which is most likely to happen in small samples or when
the effect size is small. A negative variance estimate is usually interpreted
as though its value were zero.
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TABLE 6.9
Equations for Variance Component Estimators in One-Way Designs With
Dependent Samples for a Nonadditive Model

Factor Estimator
Fixed o df,
0%ﬂect = ;f;,ed (Mseffect - Mserror)
AE - Mserror)
1
0% 8_ (SSP MSerror)
o &1
62 = =2 (MS9)

6% = 62 + (62 + 62/a) + (82, + 69)
Random 82 = % (MSa — MSerror)

62 = 1 (MS5 ~ MSyrr)

52, + 32 = MS,nor

Note. Assumes a balanced design; MS,,,, = effect error term; a = number of levels of factor A; and n=
group size.

Interval Estimation

The measures of association 1%, ®’, and p? all have complex distribu-
tions. Methods for obtaining approximate confidence intervals based on
these statistics are not really amenable to hand computation. The same
computer programs described in chapter 4 for constructing exact confidence
intervals for ? based on noncentral test statistics in two-group designs can
be used in one-way designs with independent samples and fixed factors.
These include a script for SPSS by Smithson (2001), which calculates exact
confidence intervals for N? when the omnibus effect is analyzed and for
partial * when any other effect such as a contrast is analyzed. The SAS
syntax listed in Table 4.7 does the same thing. To reuse this syntax, just
enter the appropriate value of the observed F statistic and its degrees of
freedom for the effect of interest. The Power Analysis module of STATIS-
TICA (StatSoft Inc., 2003) and the R2 program (Steiger & Foudali, 1992)

can also derive exact confidence intervals for 1%
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Fidler and Thompson (2001) give a modification to Smithson’s SPSS
script that constructs noncentral confidence intervals for @?. Fidler and
Thompson also demonstrate methods to construct exact confidence intervals
for p; in one-way designs with independent samples and random factors.
These authors noted that confidence intervals based on variance-accounted-
for effect sizes are typically wider (less precise) when the factor is random
than when it is fixed. This is one of the costs of generalizing beyond the
particular levels randomly selected for study. There is at present a paucity
of computer programs that calculate exact confidence intervals based on
measures of association in correlated designs, but one hopes this situation
will change soon.

EFFECT SIZE ESTIMATION IN COVARIATE ANALYSES

The basic rationale of a covariate analysis was given in chapter 2.
Recommendations in the statistical literature about effect size estimation
in covariate analyses are not consistent. This is probably because effect size
can be viewed from more than one perspective in such analyses. To under-
stand these perspectives, one should know basic principles of the analysis
of covariance (ANCOVA). These principles are outlined next for one-way
designs with a single covariate, but these ideas extend to designs with more
than one factor or covariate. The ANCOVA removes variability from the
outcome variable that is explained by the covariate. This reduces error
variance and may increase the power of statistical tests of group differences
compared to ANOVA. The ANCOVA also yields group means on the
outcome variable adjusted for the covariate. These adjustments reflect (a)
the pooled within-groups regression of the outcome variable on the covariate,
and (b) the amount of deviation of the group covariate mean from the
grand mean. If this deviation is slight, there is little adjustment. Otherwise,
the adjusted means can be substantially higher or lower than the correspond-
ing unadjusted means.

In experimental designs where cases are randomly assigned to condi-
tions, covariate group means differ from each other only by chance. As a
consequence, (a) adjusted group means on the outcome variable tend to be
similar to the unadjusted means, and (b) it may be only the error term that
differs appreciably across ANCOVA and ANOVA results for the same data.
In nonexperimental designs, however, the groups may differ systematically
on the covariate. Suppose that two intact groups are compared on an
outcome measure that reflects social reasoning. The groups also differ in
average 1QQ, which covaries with social reasoning. The ANCOVA compares
the groups on social reasoning controlling for [Q. Because the covariate is
related to both the independent and dependent variables in this case, the
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ANCOVA error term and the adjusted group means can be substantially
different from their ANOVA counterparts. However, unless the IQQ covariate
reflects basically all sources of group differences in social reasoning ability,
the adjusted group means can be incorrect, either too high or too low. If
there is only one covariate, such inaccuracy is rather likely (e.g., Cronbach,
Rogosa, Floden, & Price, 1977). This is why ANCOVA in nonexperimental
designs is a not magical cure for group differences on confounding variables—
see T. Cook and Campbell (1979, chap. 3) or Campbell and Erlebacher
(1975) for excellent reviews.

In designs with independent samples, the ANCOVA has the same
statistical requirements as ANOVA (see chap. 2, this volume) plus two
others. The first is homogeneity of regression, which requires equal within-
populations unstandardized coefficients for predicting the outcome variable
with the covariate. The second is that the covariate is measured without
error (i.e., its scores are perfectly reliable). Violation of either assumption
may lead to inaccurate results. For example, an unreliable covariate in an
experimental design causes loss of statistical power and in a nonexperimental
design may also cause inaccurate adjustment of the means; see Kirk (1995,
chap. 15) or Winer et al. (1991, chap. 10) for more information.

McWhaw and Abrami (2001) conducted a 30-minute workshop for
Grade 11 students about how to find the main ideas in text. One week
later, the same students were randomly assigned to one of two incentive
conditions, extrinsic and intrinsic. Students in both conditions were asked
to find the main ideas in the same 1,000-word passage. Those in the extrinsic
condition were offered a monetary reward if they found 75% of the main
ideas, but students in the intrinsic condition were merely encouraged to
see the task as a challenge. The outcome variable was the number of main
ideas found, and the covariate was the students’ grades in school. Descriptive
statistics for all variables are summarized in Table 6.10. Because the incentive
factor is experimental, it is not surprising that the groups have essentially
equal average grades. The correlation between the incentive factor and
grades is only 73, = .03, and the pooled within-groups correlation between
grades and the reading task is .464. Observed means on the reading task
indicate that the extrinsic motivation group found on average about one
more main idea than the intrinsic motivation group, 3.05 versus 2.08,
respectively. The means on the outcome variable for the extrinsic and
intrinsic conditions controlling for grades are, respectively, 3.02 and 2.11.
The adjusted means are so similar to the observed means because the factor
and covariate are essentially unrelated in this study. _

The top part of Table 6.11 reports the ANOVA source table for the
data in Table 6.10. This analysis ignores the covariate. Key results from the
ANOVA are
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TABLE 6.10
Descriptive Statistics on the Outcome Variable and Covariate for Two
Learning-Incentive Conditions

Incentive condition

Variables Extrinsic Intrinsic
n 37 55
Midterm grades (covariate)
Observed M 75.13 74.58
s 10.69 7.37

Number of main ideas found (outcome variable)

Observed M 3.05 2.08
s 242 2.09
Adjusted M 3.02 2.1

Note. These data are from McWhaw (personal communication, September 20, 2001) and are used with

permission. The pooled within-groups correlation between the covariate and the outcome variable equals
.464, and the pooled within-groups unstandardized coefficient for the regression of the outcome variable

on the covariate equals .1168.

MSy =4.96, F (1, 90) = 4.21, p = .043

The middle part of Table 6.11 presents the traditional ANCOVA source
table for the same data. The symbol “”” designates results adjusted for the co-
variate:

MS{y = 3.94, F (1, 89) = 4.63, p = .034

Note that the ANCOVA error term and probability of the F test of the
incentive factor are both smaller than their ANOVA counterparts. Winer
et al. (1991, p. 780) showed that the ANCOVA error term is related to
the ANOVA error term as follows:

(6.34)

(l—rf,) (N —a)
N-a-1 )

where 2 is the squared pooled within-groups correlation between the covari-
ate and outcome variable. The term in parentheses corrects the ANOVA
error term for the covariate. For this example,

MS{y= 4.96 {[(1 — .464%) (92 — )}/(92 — 2 - 1)} = 3.94
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TABLE 6.11
Analysis of Variance (ANOVA) and Analysis of Covariance (ANCOVA)
Results for the Data in Table 6.10

Source SS df MS F 72
ANOVA
Between (incentive) 20.91 1 20.91 4.212 .045
Within (error) 446.77 90 4.96
Total 467.68 91
Traditional ANCOVA
Between (incentive) 18.25 1 18.25 463" .049
Within (error) 350.63 89 3.94
Total 368.88
ANCOVA-as-regression
Step Predictors R? R2 change F change df, dr,
1 Grades 212 — — — —_
2 Grades, incentive 250 .038 4.63° 1 89

ip=.043. bp=.034.

Other results in Table 6.11 will be described later in this section.

Let us consider estimation of the magnitude of the effect of incentive
condition on the number of main ideas found with a standardized mean
difference. There are two different possibilities for the numerator of dy in
this analysis: the contrast of the two unadjusted means, M; — M;, or means
adjusted for the covariate, M’; — M’;. There are also two different possibilities
for the standardizer: A standard deviation in the metric of the original scores
or in the metric of the adjusted scores. This makes altogether a total of four
different possible forms of dy for the same contrast. In an experimental
design, there should be little difference between M; — M; and M’; - M’";.
Unless the highly restrictive conditions described earlier hold in a nonexperi-
mental design, the value of M’; — M’; may be inaccurate, so M; — M; as
the numerator of dy may be the best overall choice. The most general choice
for a denominator of dy in the metric of the original scores is the square
root of the ANOVA error term, MSy. This term reflects variability due to the
covariate. In contrast, the ANCOVA error term MSg-and related adjusted
variances (e.g., Avery, Cole, Hazucha, & Hartanto, 1985) hold the covari-
ate constant.

Cortina and Nouri (2000) suggested that if the covariate varies natu-
rally in the population to which the results should generalize, selection of
(MSw)"? as the standardizer may be the best choice. This would be true
even if MSy is substantially less than MSy. The grades covariate for the
present example varies naturally among students, so the standardized mean
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difference for the comparison of the extrinsic and intrinsic conditions is
calculated as

go = (M; = Mp)/(MSy) % = (3.05 — 2.08)/4.9612 = .44

There are also different ways to derive measures of association in
covariate analyses. To consider them, refer back to Table 6.11. From the

ANOVA results,
Mz = SSA/SSt = 20.91/467.68 = .045

so incentive explains 4.5% of the total variance in the number of main
ideas found ignoring grades. From the traditional ANCOVA results:

A4’ = SSA/SSt = 18.25/368.88 = .049

which says that incentive explains 4.9% of the variance after the effect of
grades has been removed (i.e., i1 is already a partial correlation ratio).

The results reported in the bottom part of Table 6.11 represent a third
perspective. They are from a hierarchical multiple regression in which the
grades covariate is entered as a predictor of the reading task at step 1 and
incentive condition is entered at step 2. At step 1, the result R} = .212 is
just the squared Pearson correlation between grades and outcome. At step
2, the squared multiple correlation between grades and incentive condition
together with outcome is R} =.250.Froma regression perspective, a covariate
and a factor are just two different predictors of the same criterion, so R =
.250 in this view describes the overall predictive power (25% explained
variance) in a squared metric. The F ratio reported in boldface for the
regression results tests against a nil hypothesis the observed increase in the
overall squared multiple correlation of about .04 because of adding the
incentive factor to the equation. This increase in the overall proportion of
explained variance of about 4% because of incentive is another way to
describe effect size magnitude in a squared metric. The regression results
also explain why X and fi%" are so similar for these data: The effect of
incentive condition is relatively small, so removing the much larger effect
of grades from the total observed variance has relatively little impact. See
Cortina and Nouri (2000) for more examples of effect size estimation in
covariate analyses.

RESEARCH EXAMPLES

Examples of effect-size estimation in three actual one-way designs are
presented next. The first two involve the comparison of independent samples
and the last concerns a repeated-measures design for learning data.
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Cognitive Status of Recreational Ecstasy (MDMA) Users

Ecstasy (MDMA) and related stimulant drugs (MDA, MDEA) are in
a class of “recreational” drugs popular among some adolescents and young
adults. Results of some animal studies indicate neurotoxic effects of high
doses of ecstasy, but whether lower doses impair cognitive functioning in
humans is not yet well understood. Gouzoulis-Mayfrank et al. (2000) re-
cruited 28 ecstasy users who also smoked cannabis and compared their
performance on standard neuropsychological tasks of attention, learning,
and abstract thinking with that of two different control groups of similar
age (M = 23 years) and educational backgrounds, cannabis-only users and
nonusers of either substance. The ecstasy users agreed to abstain from the
drug for at least seven days, which was confirmed by urine analysis on the
day of testing.

Gouzoulis-Mayfrank et al. found numerous statistical group differences
on the neuropsychological tasks but did not estimate their magnitudes.
Table 6.12 presents representative results from this study for two attention
tasks and three of learning or abstract thinking. Reported for each task are
group descriptive statistics, results of the F test for the omnibus comparison,
and the value of g, for each pairwise contrast. All three groups performed
about the same on an attention task of simple reaction time. On a more
demanding selective attention task, the ecstasy users performed worse than
both other groups by about .80 standard deviations. The ecstasy users also
did worse than both other groups on learning tasks and on a task of abstract
thinking by about .80 standard deviations. The magnitudes of the differences
between the cannabis users and nonusers were generally smaller—about .10
standard deviations—except on the verbal learning task where the nonusers
had an advantage of about .40 standard deviations over the cannabis
users.

Gouzoulis-Mayfrank et al. discussed at length the possibility that preex-
isting differences in cognitive ability or neurological status may account for
the finding that the ecstasy users performed generally worse than both
control groups. Leaving aside this critical issue and the equally important
one of whether these results will replicate, let us consider the practical
significance of group differences in cognitive functioning that are about
.80 standard deviations in magnitude. Assuming normal distributions and
homogeneity of variance, it is expected that the typical nonecstasy user will
outperform about 80% of the ecstasy users (U = .79; refer back to Table
4.8). It is also expected that ecstasy users will be underrepresented by a
factor of about 3%2 among those young adults who are more than one
standard deviation above the mean in the combined distribution for learning
and abstract reasoning ability (right-tail ratio = 3.57).
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TABLE 6.12
Cognitive Test Scores for Ecstasy (MDMA) Users, Cannabis Users,
and Nonusers

gy for pairwise
User group contrasts
1 2 3 F
Task ecstasy cannibis nonuser (2,81) p (1-2) (1-3) (2-3)
n 28 28 28

Attention?

Simple M 2189 2211 2187 07 932 -08 .01 .09
(s) (282) (26.3) (27.5)

Selective 5320 4844 4786 723 001 83 .93 .10
(654) (57.9) (484)

Learning and abstract thinking

Verbal® 446  3.71 329 922 <001 .73 113 .4
(79 (115  (1.12)

Visual® 461 4.00 411 212 127 52 42 -09
(96) (1.41) (1.13)

Abstract 2506 2946 2950 729 001 -8 -89 -.0f

thinking® @.10)  (4.19)  (3.64)

Note. From “Impaired Cognitive Performance in Drug Free Users of Recreational Ecstacy (MDMA),” by
E. Gouzoulis-Mayfrank, J. Daumann, F. Tuchtenhagen, S. Peiz, S. Becker, H.-J. Kunert, B. Fimm, and
H. Sasa, 2000, Journal of Neurology, Neurosurgery, and Psychiatry, 68, p. 723. Copyright 2000 by BMJ
Publishing. Adapted with permission.

aScores are in milliseconds; higher scores indicate worse performance.

®Number of learning trials; higher scores indicate worse performance.

°Higher scores indicate better performance.

Basic Math Skills and Outcome in Introductory Statistics

The data set for this example was introduced in chapter 4. Briefly, a
test of basic math skills was administered at the beginning of the semester
to 667 students in introductory statistics courses. The top half of Table 6.13
reports average math test scores by letter grade earned in the course at the
end of the semester or whether students withdrew from the class. The bottom
half of the table reports ANOVA results, effect sizes, and confidence intervals
for the omnibus effect, the contrast of students with satisfactory versus
unsatisfactory outcomes (at least a final letter grade of C versus all other
outcomes, respectively), and all noncontrast effects analyzed together. The
observed standardized mean difference for the contrast is g = .50. The exact
95% confidence interval for 8, based on this result was computed in SAS/
STAT using the syntax in Table 6.6 modified for the data in this example.
This interval is .26-.58, so the finding that students with a satisfactory
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TABLE 6.13
Math Skills Test Scores by Course Outcome Among Introductory
Statistics Students

Course outcome (grades)

Satisfactory Unsatisfactory
Statistic A B C D F Withdrew
n 129 211 171 78 38 40
M 12.02 10.95 10.18 9.58 9.89 9.05
SD 2.95 3.10 2.91 2.84 3.34 3.82
Effect Size
Source SS df MS F [N 7?2 Partial {2
Between (outcome) 51369 5 10273 10.99° — 08¢ —
Weat v, unsat, = 1.54° 26053 1 260.53 27.89Y .50° .04 .04°
Non-Wsat. vs. unsat. 25316 4 6329 678 — 04 .04t
Within (error) 6,176.35 661 9.34
Total 6,690.04 666

Note. The contrast weights for sy vs. unsar. are (15, V5, V5, —V5, =14, —¥4).

&p <.001.  P95% confidence interval (Cl) for v is .97-2.12.

°Exact 95% Cl for 8, is .26-.58. YExact 95% Cl for n2 is .04—.11.

°Exact 95% Cl for partial 12 is .02-.07.  'Exact 95% Cl tor partial n? is .01-.07.

course outcome scored on average one half a standard deviation higher on
the math skills tests than students with an unsatisfactory outcome is just
as consistent with a population effect size as small as 8, = .26 as it is with
a population effect size as large as §, = .58, with 95% confidence.

The overall correlation between grades in statistics and math test
scores is fia = .28, and this association explains about .28% = .08, or 8% of
the total variation in the latter. The exact 95% confidence interval for 1%,
computed with SAS/STAT using the syntax in Table 4.7 modified for this
example, is .04—.11. This means that the observed result i3 = .08 is just as
consistent with a population variance-accounted-for effect size as small as
4% as it is with one as large as 11%, with 95% confidence. About half of
the proportion of explained total variance is a result of the contrast between
students with satisfactory versus unsatisfactory outcomes in the statistics
class (ﬁ%, = .04). The rest is a result of all other noncontrast effects
(ﬁrzlon—q, = .04). Because the values of SSy and SS,,...¢ are so similar for these
data—respectively, 260.53 and 253.16—partial fj; is essentially equal to
the corresponding value of ﬁ‘%, for each effect. The exact 95% confidence
intervals for partial M? reported in Table 6.13 based on each individual
effect were computed in SAS/STAT using the syntax in Table 4.7 modified
for this example. Each of these confidence intervals ranges from about 2 to
7% explained variance.
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TABLE 6.14
Case-Level Analysis of the Relation Between Math Skills and
Qutcome in Statistics

Math Course outcome
score (%) n Satisfactory Unsatisfactory %2 (3) Cramér's V
80-100 133 117 (88.0) 16 (12.0) 30.032 21
60-79 302 230 (76.2) 72 (23.8)
40-59 157 123 (78.3) 72 (23.8)
0-39 75 41 (54.7) 34 (45.3)
2p <.001.

Implications of the results described for the contrast between students
with satisfactory versus unsatisfactory course outcomes were analyzed at the
case level as follows: Scores on the math skills test were partitioned into
four categories according to the percentage of correct items, 0-39, 40-59,
60-79, and 80-100%. This was done to find the level of performance (if
any) that distinguished students at risk for having difficulties in statistics
from their peers. The 4 X 2 crosstabulation presented in Table 6.14 summa-
rizes the relation between the categorized math test variable (rows) and
satisfactory versus unsatisfactory course outcome {columns). Cramér’s V for
this contingency table is .21. The percentages in Table 6.14 indicate the
proportion of students with satisfactory versus unsatisfactory outcomes for
each of the four levels of math test performance. Only about 12% of students
who correctly solved at least 80% of the math test items had unsatisfactory
outcomes. The risk of this negative outcome increases to the point where
about half (45.3%) of the students who correctly solved fewer than 40%
of the math test items had unsatisfactory outcomes.

Analysis of Learning Curve Data

Kanfer and Ackerman (1989) administered to 137 U.S. Air Force per-
sonnel a computerized air traffic controller task presented over six 10-minute
trials where the outcome variable was the number of successful landings. Table
6.15 summarizes the means, standard deviations, and correlations across all
trials. The latter show a typical pattern for learning data in that correlations
between adjacent trials are higher than between nonadjacent trials. This pat-
tern violates the sphericity assumption of statistical tests for comparing three
or more dependent means for equality (see chap. 2, this volume). The task
means over trials show both linear and quadratic trends. The following analysis
estimates the relative magnitudes of these trends.

Table 6.16 reports the results of analyses of the omnibus trials effect,
the linear and quadratic trends of the learning curve, and all other higher
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TABLE 6.15
Descriptive Statistics for a Computerized Air Traffic Controller Task

Trial

1 2 3 4 5 6
M 11.77 21.39 27.50 31.02 32.58 34.20
SD 7.60 8.44 8.95 9.21 9.49 9.62
e 1.00

77 1.00

.59 .81 1.00

.50 72 .89 1.00

.48 .69 .84 91 1.00

.46 .68 .80 .88 .93 1.00

Note. n=137. From “Models for Learning Data,” by M. W. Browne and S. H. C. Du Toit, 1991. In L. M.
Collins and J. L. Hom (Eds.), Best Methods for the Analysis of Change, p. 49, Washington, DC: American
Psychological Association. Copyright 1991 by the American Psychological Association. Adapted with per-
mission.

2 ower diagonal-form matrix.

order trends combined. Probability values of all test statistics are based on the
Greenhouse—Geisser conservative F (1, 136) test, which assumes maximal
violation of sphericity for these data. The magnitudes of all effects are
estimated with @7, using the equations in the top part of Table 6.8 for a
fixed factor and an additive model. The error variance for all effects is
estimated as MS,., = 20.99. (Readers should try to reproduce these results.)
The omnibus effect explains 43% of the total variance in the air traffic
controller task. Because the linear trend itself accounts for 38% of the total
variance, it is plain to see that this polynomial is the most important aspect
of the omnibus effect. The quadratic trend in the learning curve explains
an additional 5% of the total variance, and all other higher order trends
together account for less than 1% of the total variance. The orthogonal
linear and quadratic polynomials together thus accounted for virtually all
of the explained variance.

In their analysis of the same learning curve data, Kanfer and Ackerman
(1989) reduced the unexplained variance even more by incorporating a
cognitive ability test as a predictor of learning in addition to the within-
subjects trials factor. This approach is further elaborated by Browne and Du
Toit (1991), who specified and tested various latent variable models of
Kanfer and Ackerman’s data. These models attempted to predict not only
the mean level of performance over trials but also the shapes and variabilities
of the learning curves of the individual participants and whether the parame-
ters of these curves are predicted by overall cognitive ability. In this approach,
the proportions of explained variance were well over 50%, which is better
than the results reported in Table 6.16. In general, Browne and Du Toit’s
analyses are much more sophisticated than those described here from a
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TABLE 6.16
Analysis of the Learing Curve Data in Table 6.15

Source SS df MS F @
Between (trials) 49,419.08 5 9,883.82 470.88° 43
Wiin = 149.242 43,590.62 1 43,590.62 2,076.73° .38
Wquad = ~58.20° 5,524.43 1 5,524.43 263.19° .05
All other trends 304.04 3 101.35 4.83¢ <.01
Within 64,807.36 816 79.42
Subjects (S) 50,531.23 136 371.55
Residual (error) 14,276.13 680 20.99
Total 114,226.44 821

Note. The contrast weights for ;, are (-5, -3, -1, 1, 3, 5) and for yqaq are (5, -1, 4, 4, -1, 5).
295% confidence interval for vy, is 138.41 to 160.07.

°95% confidence interval for youag is —65.21 to -51.19.

°p<.001. 9p=.030.

traditional ANOVA perspective. They also highlight the potential value
of a model-fitting approach for analyzing learning curve data (e.g., Collins

& Sayer, 2001).

CONCLUSION

It is usually more informative to analyze contrasts than the omnibus
effect in one-way designs. The most general standardized contrast is g¢ =
W/(MSw)'?, where the denominator is the square root of the pooled within-
conditions variance. Descriptive measures of association are all forms of the
sample correlation 1. The coefficient partial 1] removes from total variance
all sources of between-conditions influence besides that of the effect of
interest. Accordingly, partial f] may be substantially greater than 4 for the
same effect. The inferential measures of association @’ and partial &’ are
appropriate for balanced designs with fixed factors. Except in large samples,
& are partial ®* may be appreciably lower than 1 or partial fj (respectively)
for the same effect. The intraclass correlation Py is an appropriate variable-
level effect size index for the omnibus effect in designs with random factors.
The next chapter considers designs with two or more factors.
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EFFECT SIZE ESTIMATION IN
MULTIFACTOR DESIGNS

Creation and preservation don’t do well together.

—Thomas Hardy (1874/1978, p. 295)

Designs with multiple factors and continuous outcomes require special
considerations for effect size estimation. This is because some methods for
one-way designs may not give the best results in multifactor designs, and
ignoring this problem may introduce variation across studies because of
statistical artifacts rather than real differences in effect sizes (S. Morris &
DeShon, 1997). The next two sections describe various kinds of multifactor
designs and review the basic logic of factorial analysis of variance (ANOVA).
Readers already very familiar with factorial ANOVA may skip the latter
presentation, but otherwise it requires careful study. Effect size estimation
with standardized mean differences and measures of association in factorial
designs are considered in the third and fourth sections of this chapter. See
this book’s Web site for exercises with answers for this chapter.

TYPES OF MULTIFACTOR DESIGNS

Multifactor designs arise out of a few basic distinctions, including
whether the factors are (a) between-subjects versus within-subjects, (b)
manipulated (experimental) versus individual difference (nonexperimental)
variables, and (c) whether the relation between the factors is crossed versus
nested. The most common type of multifactor design is the factorial design
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where every pair of factors is crossed. This means that the levels of each
factor are studied in all combinations with levels of other factors. Each
combination is studied with an unrelated group in a completely between-
subjects factorial design—that is, the subjects factor is nested under these
combinations. If cases are randomly assigned to groups, the design is a
randomized groups factorial design, and if at least one factor is an individual
difference variable and the rest are manipulated variables, it is a randomized
blocks design. A mixed within-subjects factorial design—also called a split-plot
or just a mixed design—has both between-subjects and within-subjects factors.
Note that the term mixed-effects model or just mixed model refers to ANOVA
models with both fixed and random factors. In the simplest of mixed designs,
two independent samples are each measured on two different occasions.
The subjects factor in this design is nested under the group factor and
crossed with the repeated-measures factor. If each case in a single sample
is tested under every combination of two or more crossed factors, such as
three learning trials under each of two different incentive conditions, the
design is a factorial repeated-measures design or a completely within-subjects
factorial design. That is, the subjects factor is crossed with all independent
variables.

This chapter deals mainly with factorial designs. However, many of
the principles of effect size estimation for factorial designs extend to the
variations briefly described here. In a replicated experiment, there are nfr
observations in each cell, where r is the number of replications of each
condition. Each set of replicated observations may be collected at different
times or locations compared to the original experiment. Replication is then
treated in the analysis as a random factor. In a hierarchical design, at least
one factor is nested under another. This means that different levels of the
nested factor are studied at each level of the other factor. Suppose that
factor A is drug versus placebo and factor B represents one of four different
patient groups from separate clinics. Patients from the first two clinics are
randomly assigned to receive the drug and the other two groups get the
placebo. The combinations of the two factors in this design are A;B;, A{B,,
A;Bj3, and A;B,. Nested group factors such as B in this example are typically
considered random.

Other kinds of multifactor designs include partial or incomplete factorial
designs. Levels of each factor in these designs may not be studied in every
combination with levels of other factors, and main effects of each factor
may be estimated, but not all possible interaction effects. A Latin-Squares
design, which counterbalances order effects of repeated-measures factors or
allows study of additional factors without an increase in the number of cells
compared to the original factorial study, is perhaps the best known example of
a partial factorial design. See Kirk (1995, chaps. 13—14) for more information
about incomplete designs.
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FACTORIAL ANALYSIS OF VARIANCE

To understand effect size estimation in factorial designs, one needs to
know about factorial ANOVA. This is a broad topic, and its coverage in
applied textbooks is often quite lengthy. These facts preclude a detailed
review. Accordingly, the following presentation emphasizes common princi-
ples of factorial ANOVA across different designs that also inform effect size
estimation. It deals first with concepts in balanced two-way designs and
then extends them to designs with three or more factors or unequal cell
sizes. It also encourages readers to pay more attention to the sums of squares
and mean squares in a factorial ANOVA source table than to F ratios and
p values. See Kirk (1995), Myers and Well (2002), or Winer, D. Brown,
and Michels (1991) for more information about factorial ANOVA.

Basic Distinctions

Factorial ANOV A models are also generated by a few basic distinctions,
including whether the factors are (a) between-subjects versus within-sub-
jects, (b) fixed versus random, and (c) whether the cell sizes are equal or
unequal. Not all of these distinctions are absolutely necessary. For example,
recall that random models and repeated-measures models in ANOVA are
related (see chap. 6, this volume). Schuster and von Eye (2001) showed that
repeated-measures ANOVA models can be estimated with basic computer
programs for factorial ANOVA without special capabilities for handling
repeated observations. In general, the first two distinctions listed affect only
the denominators (error terms) of F tests and their statistical assumptions.
They do not influence the numerators of these tests; that is, effect sums of
squares and mean squares are derived the same way regardless of whether
the factor is between-subjects versus within-subjects or fixed versus random;
see Frederick (1999) for more information.

A basic distinction that cannot be ignored is whether the cell sizes
are equal or unequal. In balanced factorial designs in which all cell sizes
are equal, the main and interaction effects (defined later) are independent.
This means that they can occur in any combination, and results observed
for one effect say nothing about what may be found for another. For this
reason, balanced factorial designs are called orthogonal designs. Independence
of effects in orthogonal designs simplifies their analysis. This is probably
why most introductory presentations about factorial ANOVA consider only
balanced designs. However, many real-world factorial designs are not bal-
anced, especially in applied research (e.g., H. Keselman et al., 1998).

We must differentiate between unbalanced designs with proportional
versus disproportional cell sizes. Consider the two 2 x 3 factorial designs
represented in the table that follows, where the numbers are cell sizes:
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B, B; Bs B, B, B;

Al 5]10]20 Al 5]20]10
A, | 10|20 | 40 A, | 10] 10|50

The cell sizes in the upper left matrix are proportional because the ratios
of their relative values are constant across all rows (1:2:4) and columns
(1:2). The cell sizes are disproportional in the upper right matrix because
their relative ratios are not constant. For example, the cell size ratio in the
first row of the upper right matrix is 1:4:2, but in the second row it is
1:1:5. This distinction is crucial because factorial designs with unequal-but-
proportional cell sizes can be analyzed as orthogonal designs (Keren, 1993).
This is true because equal cell sizes are a special case of proportional cell
sizes.

Disproportional cell sizes cause the factors to be correlated, which
implies that their main effects overlap. The greater the departure from
proportional cell sizes, the greater is this overlap. Accordingly, factorial
designs with disproportional cell sizes are called nonorthogonal designs, and
they require special methods that try to disentangle correlated effects. Unfor-
tunately, there are several different methods for nonorthogonal designs, and
it is not always clear which one is best for a particular study. The choice
among these methods affects statistical tests and effect size estimation with
measures of association. These points are elaborated later.

Factorial designs tend to have proportional cell sizes if either all or
all but one of the factors are experimental. If at least two factors are nonexper-
imental and cases are drawn from a population where these variables are
correlated, the cells sizes may be disproportional. However, this nonorthogo-
nality may be an asset if it reflects disproportional population group sizes.
It may be possible to force equal cell sizes by dropping cases from the
larger cells or recruiting additional participants for the smaller cells, but
the resulting pseudo-orthogonal design may not be representative. Note that
disproportional cell sizes as a result of systematic data loss from a factorial
design that started out with equal cell sizes is a different matter (see chap. 2,
this volume).

Basic Sources of Variability

This section defines basic sources of variability in all factorial designs.
Just as in one-way ANOVA, total variability in factorial ANOVA can be
broken down into two broad components, between and within conditions
(cells). In both kinds of ANOVA, the latter is estimated by the pooled
within-conditions variance MSy, the weighted average of the within-
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conditions variances. For example, the following equation generates MSy,
in any two-way factorial design where none of the cells is empty:

MSy = oW - =1 (7.1)

In Equation 7.1, a and b are, respectively, the number of levels of factors
A and B, SSy and dfy are, respectively, the total within-conditions sums
of squares and degrees of freedom, and df; and s% are, respectively, the
degrees of freedom (n; — 1) and variance of the cell at the ith level of A
and the jth level of B.

The between-conditions variance in a one-way design, MS,, reflects
the effects of factor A, sampling error, and cell size (Equation 2.29). In a
factorial design, the between-conditions variance reflects the main and
interactive effects of all factors, sampling error, and cell size. For example,
the between-conditions variance in a two-way design is designated below as

MSa, B, aB = SH——JS(A’ B.AD (7.2)
A, B, AB

where the subscript indicates the main and interaction effects analyzed

together, and the degrees of freedom equal the number of cells minus one,

or ab — 1. It is only in balanced two-way designs that SSa g ap can be

computed directly as

Mw—

SSa, B, AB = 2, n (M; — M1)? (7.3)
=1

1

where n is the size of all cells, M; is the mean for the cell at the ith level
of A and the jth level of B, and M is the grand mean for the whole design.
It is also only in balanced two-way designs that the total between-conditions
sums of squares can be broken down into unique and additive values for
the individual effects:

SSa, B, aB = SSa + SSp + SSap (7.4)

This relation can also be expressed in terms of variance-accounted-for effect
sizes measured by the correlation ratio:

ﬁzz(x, B, ap = Mia + ik + fiks (7.5)
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Equations 7.4 and 7.5 define orthogonality of the main and interaction
effects in two-way designs.

Effects in Balanced Two-Way Designs

The representation in Table 7.1 shows the observed cell means and
variances and marginal means in a balanced 2 x 3 factorial design. Because
the cell sizes are equal, the marginal means are just the arithmetic averages
of the corresponding row or column cell means. Each marginal mean can
also be computed as the average of the individual scores in the corresponding
row or column. In other words, the marginal means for each factor are
calculated by collapsing across the levels of the other factor. The grand
mean for the whole design is the arithmetic average of all six cell means.
[t can also be computed as the average of the row or column marginal means
or as the average of the abn individual scores.

Conceptual equations for sample main and interaction sums of squares
in balanced two-way designs are presented in Table 7.2. A main effect is
estimated by the difference between the observed marginal means for the
same factor, and the sample sums of squares for that effect is the total of
the weighted squared deviations of the associated marginal means from the
grand mean. For example, if Mj, = M,, in Table 7.1, then the estimated
main effect of A is zero and SS, = 0; otherwise, SS4 > 0, as is the estimated
main effect. Because marginal means are computed by collapsing over the
levels of the other factor, main effects are single-factor effects. Simple main
effects—also called just simple effects—are another kind of single-factor effect,
but they correspond to cell means in the same row or column. There are
as many simple effects of each factor as levels of the other factor. For
example, there are two estimated simple effects of factor B represented in
Table 7.1. One is the simple effect of B at A, and it corresponds to the
three cell means in the first row, M;, M;3, and M;3. If any two of these
means are different, then the estimate of the simple effect of B at this level
of A is not zero. The other estimated simple effect of this factor, B at A,
corresponds to the cell means in the second row, M;;, My, and M;3. The

TABLE 7.1
General Representation of a Balanced 2 x 3 Factorial Design
B, B, B, Row means
Ay M (sh) M, (s%) M (s%) M.,
A My (sh) M, (s%) Mos (s%5) M,,
Column means Mz, Ms, Mp, My

Note. The size of all cells is n.
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TABLE 7.2
Equations for Main and Interaction Effect Sums of Squares in Balanced
Two-Way Designs

Saurce SS df
A 2 —
Y b (Mg, - Mry? 2
=
b
B Y an (Mg, - M)? b-1
j=1
a b
AB S S (M- My My - M2 (@-1)(b-1)
j=1

i=1

Note. The size of all cells is n.

estimated simple effects of factor A correspond to the pair of cell means in
each of the three columns, such as M; versus M;, for the estimated simple
effect of A at B;. Sums of squares for simple effects have the same general
form as for main effects (Table 7.2) except that the former are the total of
the weighted squared deviations of row or column cell means from the
corresponding marginal mean, not the grand mean.

The estimated two-way interaction, AB, corresponds to the cell means
(see Table 7.2). An interaction effect can be understood in a few different
ways. It is a combined or joint effect of the factors on the outcome variable
above and beyond their main effects. It also a conditional effect that, if
present, says that the simple effects of each factor are different across the
levels of the other factor. Interaction effects are also called moderator effects,
and the factors involved in them are moderator variables. Both terms empha-
size the fact that each factor’s influence on the outcome variable changes
across the levels of the other factor when there is interaction. Do not confuse
a moderator effect with a mediator effect, which refers to the indirect effect
of one variable on another through a third (mediator) variable. Mediator
effects can be estimated in structural equation modeling and meta-analysis
(chap. 8, this volume), but not in the ANOVA models discussed in this
chapter; see Shrout and Bolger (2002) for more information.

Suppose we observe the following cell means in a 2 x 3 design:

Bl Bz B3

A 20.00 20.00 20.00
A 10.00 20.00 30.00

Note that the estimated simple effect of B at A; is zero, because the three
cell means in the first row are equal. However, the estimated simple effect
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of B at A, is not zero, because the cell means in the second row are not
equal. It is also true that the three estimated simple effects of A at B are
all different. The equation for MS,p in Table 7.2 estimates the overall
interaction as residual variability of the cell means weighted by their sizes
after the main effects have been removed.

It is true in balanced two-way designs that

b
z SSaacs; = SSa + SSap (7.6)

i=1

2 SSBaca; = SSp + SSap (7.7)

i=1

In words, the total of the sum of squares for all simple effects of each factor
equals the total of the sum of squares for the main effect of that factor and
the interaction. Equations 7.6 and 7.7 also say that when all simple effects
of a factor are analyzed, it is actually the interaction effect and the main
effect of that factor that are analyzed. Given their overlap in sums of squares,
it is usually not necessary to analyze both sets of simple effects, A at B and
B at A. The choice between them should be made on a rational basis,
depending on the perspective from which the researcher wishes to describe
the interaction.

Just as in one-way ANOVA, we can distinguish in factorial ANOVA
between omnibus comparisons where df > 2 and single-df focused compari-
sons (contrasts). We must in factorial ANOVA also distinguish between
single-factor contrasts and interaction contrasts. A single-factor contrast in-
volves the levels of just one factor while we are controlling for the other
factors. There are two kinds, main comparisons and simple comparisons (Keppel,
1991). The former compares two subsets of average marginal means, and
the latter compares two subsets of average cell means. For example, the
observed contrast M;; — My; in Table 7.1 is a simple comparison within
the B at A, simple effect, but the contrast Mg, — Mg, is a main comparison
within the B main effect. Because factor A is dichotomous in this design,
its main and simple effects are also contrasts. If the levels of a quantitative
factor are equally spaced, trend components can be specified instead of
mean difference contrasts. Single-factor comparisons in factorial designs are
specified with contrast coefficients just as they are in one-way designs (see
chap. 6, this volume).

An interaction contrast is specified by a matrix of coefficients the same
size as the original design that are doubly centered, which means that they
sum to zero in every row and column. This property makes the resulting
single-df interaction effect independent of the main effects. The weights
for a two-way interaction contrast can be assigned directly or taken as the
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product of the corresponding weights of two single-factor comparisons, one
for each independent variable. If the interaction contrast should be inter-
preted as the difference between a pair of simple comparisons (i.e., mean
difference scaling), the sum of the absolute value of the contrast coefficients
must be 4.0 (Bird, 2002). This can be accomplished by selecting coefficients
for the comparison on each factor that are a standard set (i.e., their absolute
values sum to 2.0) and taking their corresponding products. Some exam-
ples follow.

In a 2x2 design where all effects are contrasts, a set of weights
that defines the interaction effect directly as a “contrast between [mean
difference] contrasts” (Abelson & Prentice, 1997) is presented in the cells
of the left-most matrix:

By B B, B
Al 1 -1 Al M]] MIZ
A l-11] 1 Ay | My | Mp

Note that the weights are doubly centered and the sum of their absolute
values is 4.0. We can get the same set of weights for this interaction contrast
by taking the corresponding products of the weights (1, —1) for factor A
and the weights (1, —1) for factor B. After applying these weights to the
corresponding cell means in the above right-most matrix, we get

Yap = My = Mj; = My, + My, (7.8)

Rearranging the terms shows that {ag equals (a) the difference between
the two simple effects of A at each level of B and (b) the difference between
the two simple effects of B at each level of A:

Wag = Yaas ~ Waap, = (M1 — My) — (My; — Mp)
= WBaca; — PBara, = (M = Mp) = (My —Myp)  (7.9)

In two-way designs where at least one factor has three or more levels,
an interaction contrast may be formed by ignoring or collapsing across at
least two levels of that factor. For example, the following coefficients define
a pairwise interaction contrast in a 2 X 3 design:

B, B, B;
Ay 1 0 -1
A, -1 0 1
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In the contrast specified, the simple effect of A at B; is compared with
the simple effect of A at Bs. (It is equivalent to say that these weights
specify the contrast of the simple comparison of B; with Bs across the two
levels of A.) The weights for the complex interaction contrast represented
compare B; with the average of B; and Bj across the levels of A:

B, B, B;
A; L -1 Y
A -4 1 -%

It is left for the readers as an exercise on this book’s Web site to show
for a balanced 2 x 3 design that (a) the above two interaction contrasts
are orthogonal, and (b) the sums of squares for the omnibus interaction
can be uniquely decomposed into the sums of squares for each interaction
contrast. The following equation for a balanced design will be handy
for this exercise:

'fl(\T/AB)z (7.10)

SSemp =7~ b
(55

i=1 j=1

If at least one factor is quantitative with equally spaced levels, contrast
weights for an interaction trend may be specified. Suppose in a 2 X 3 design
that factor A represents two different groups of patients and the levels of
factor B are three equally spaced dosages of a drug. The weights for the
interaction contrast presented below

B, B, B;
A, 1 -2 1
A, -1 2 -1

compare the quadratic effect of the drug across the groups. That the sum
of the absolute values of the weights is not 4.0 is not a problem because a
differential trend hypothesis is tested. However, it is still necessary to adjust
the scale of the resulting weighted sum of means if the effect size of the
interaction trend is to be estimated with a standardized mean difference.
Abelson and Prentice (1997) recommend multiplying an unstandardized
interaction contrast in a two-way design by the term
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(7.11)

which corrects for the absolute sizes of the contrast weights before standardiz-
ing it. (How to standardize contrasts in factorial designs is discussed later.)
See Abelson and Prentice (1997) for several examples of tests for differen-
tial trends.

Unlike simple effects, interaction contrasts are not confounded with
the main effects in balanced designs. For this reason, researchers may
prefer to analyze interaction contrasts instead of simple effects when the
main effects are relatively large. It is also possible to test a priori
hypotheses about specific facets of an omnibus interaction through the
specification of interaction contrasts. It is not usually necessary to analyze
both simple effects and interaction contrasts in the same design, so either
one or the other should be chosen as a means to understand an interaction.

If the reader gets the impression that there are numerous effects
that can be analyzed in two-way designs—main, simple, interaction, and
contrasts for any of the aforementioned effects that are omnibus—you
are correct. This is even more true in designs with three or more factors.
One can easily get lost by estimating every possible effect in a factorial
design. It is thus crucial to have a plan that minimizes the number of analyses
while still respecting the essential research hypotheses. Some of the worst
misuses of statistical tests are seen in factorial designs where all possible
effects are tested and sorted into two categories, those found to be
statistical and subsequently discussed at length versus those found to be
nonstatistical and subsequently ignored. These misuses are compounded
when power is ignored. This is because power can be different for all
omnibus effects in a factorial design. This happens because the (a) degrees
of freedom of the F statistic for different effects can be different and
(b) numbers of scores that contribute to different means vary. In a
balanced 2 x 3 design where n = 10, for example, the two means for
the A main effect are each based on 30 scores, but the three means for
the B main effect are each based on 20 scores. The power for the test
of the A main effect may be different for the power of the test of the
B main effect, and the power for the test of the AB effect may be
different still. Estimating a priori power and effect size magnitude can
help to sort substantive wheat from statistical chaff in factorial designs.
It also helps to realize that as the magnitude of interaction effects become
larger compared to those of the main effects, detailed analysis of the
latter becomes increasingly fruitless.
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Tests in Balanced Two-Way Designs

Table 7.3 presents raw scores and descriptive statistics for balanced
2 x 3 designs, where n = 3. The data in the top part of the table are arranged
in a layout consistent with a completely between-subjects design, where
each score comes from a different case. The same layout is also consistent
with a mixed within-subjects (split-plot) design, where the three scores in
each row are from the same case; that is, A is a group factor and B is a
repeated-measures factor. The same data are presented in the bottom part
of the table in a completely within-subjects layout, where the six scores in
each row are from the same case. The following results are obtained after
applying Equations 7.1 and 7.3 and those in Table 7.2 to the data in Table
7.3 in either layout:

SSw = 64.00
SSa. B, aB = SSa + SSp + SSap = 18.00 + 48.00 + 84.00 = 150.00
SSt = 64.00 + 150.00 = 214.00

The results of three different factorial analyses of variance for the data
in Table 7.3 assuming fixed factors are reported in Table 7.4. Results in the
top of Table 7.4 are from a completely between-subjects analysis, results in
the middle of the table come from a split-plot analysis, and the results in
the bottom of the table are from a completely within-subjects analysis. Note
that only the error terms, F ratios, and p values depend on the design. The
sole error term in the completely between-subjects analysis is MSy, and the
statistical assumptions for tests with it are described in chapter 2. In the
split-plot analysis, SSy and dfy; are partitioned to form two different error
terms, one for between-subjects effects (A) and another for repeated-mea-
sures effects (B, AB). Tests with the former error term, designated in the
table as S/A for “subjects within groups under A,” assume homogeneity of
variance for case average scores across the levels of the repeated-measures
factor. The within-subjects error term, B x S/A, assumes that both within-
populations covariance matrices on the repeated-measures factor are not
only spherical but equal; see Kirk (1995, chap. 12) and Winer et al. (1991,
pp- 512-526) for more information. A different partition of SSy in the
completely within-subjects analysis results in sums of squares for three differ-
ent error terms for repeated-measures effects, A x S, Bx S, and AB x S, and
a sum of squares for the subjects effect, S.

Factorial ANOVA generates the same basic source tables when either
one or both factors are considered random instead of fixed. The only differ-
ence is that main effects may not have the same error terms in a random-
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TABLE 7.3
Raw Scores and Descriptive Statistics for Balanced 2 x 3
Factorial Designs

Completely between-subjects or mixed within-subjects layout?

B B B,
8 10 9
7 1 7
A 12 15 11

9.00 (7.00)° | 12.00 (7.00) | 9.00 (4.00)| 10.00

3 5 10
5 5 14
A, 7 8 15

5.00 (4.00) | 6.00 (3.00) | 13.00 (7.00) 8.00

7.00 9.00 11.00 9.00

Completely within-subjects layout

ABy AB, AiBs A.B; A.B, A.B;
8 10 9 3 5 10
7 ik 7 5 5 14
12 15 11 7 8 15

9.00 (7.00) | 12.00 (7.00) | 9.00 (4.00) | 5.00 (4.00) | 6.00 (3.00) | 13.00 (7.00)

2Assumes A is the between-subjects factor and B is the repeated measures factor.
bCell mean (variance).

effects model as in a fixed-effects model. For example, the error term for
the main effects in a completely between-subjects design with two random
factors is MSap, not MSy. However, MSy is still the error term for the
AB effect. Tabachnick and Fidell (2001) gave a succinct, nontechnical
explanation: Because levels of both factors are randomly selected, it is
possible that a special interaction occurred with these particular levels. This
special interaction may confound the main effects, but the ratios

FA = MSA/MSAB and FB = MSB/MSAB

are expected to cancel out these confounds in statistical tests of the main
effects. See Tabachnick and Fidell (2001, p. 665) for error terms for two-
way designs of the kind analyzed in Table 7.4 when at least one factor is
random. Maximum likelihood estimation as an alternative to traditional
ANOVA can also be used in factorial designs with random factors (see
chap. 6, this volume).
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TABLE 7.4
Analysis of Variance Results for the Data in Table 7.3

Source SS af MS F p
Completely between-subjects analysis

Between-subjects effects

A 18.00 1 18.00 3.38 .091

B 48.00 2 24.00 4.50 .035

AB 84.00 2 42.00 7.88 .007
Within cells (error) 64.00 12 5.33

Mixed within-subjects analysis
Between-subjects effects

A 18.00 1 18.00 1.27 .323
Within-subjects effects

B 48.00 2 24.00 26.17 <.001

AB 84.00 2 42.00 45.82 <.001
Within cells 64.00 12 5.33

S/A (error for A) 56.67 4 1417

B x S/A (error for B, AB) 7.33 8 .92

Completely within-subjects analysis
Within-subjects effects

A 18.00 1 18.00 5.68 140

B 48.00 2 24.00 144.00 <.001

AB 84.00 2 42.00 25.20 .005
Within cells 64.00 12 5.33

Subjects (S) 50.33 2 2517

A x 8 (error for A) 6.33 2 3.17

B x S (error for B) .67 4 a7

AB x S (error for AB) 6.67 4 1.67

Note. §S7=214.00 and dfr = 17 for all analyses.

Complete Versus Reduced Structural Models

The complete ANOVA structural model for a completely between-sub-
jects two-way factorial design is

Xijk =nu+ot Bj + (XB,']' T € (7.12)
where Xy is the kth score in the cell at the ith level of factor A and the
jth level of factor B; p is the population grand mean; o;, B;, and of;,
respectively, represent the population main and interaction effects as devia-
tions from the grand mean; and &, is a random error component. This model
is complete because it includes terms for all possible sources of variation; it
is also the model that underlies the derivation of the sums of squares for
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the source table in the top part of Table 7.4. The complete structural models
that underlie the other two source tables in Table 7.4 are somewhat different
because either one or both independent variables are within-subjects factors,
but the general idea is the same. The structural model for a factorial design
also generates predicted marginal and cell means. However, these predicted
means equal their observed counterparts for a complete structural model.
That is, the observed marginal means estimate the population main effects
and the observed cell means estimate the population interaction effect.

[t is possible in some software programs for factorial ANOVA to specify
a reduced structural model that, compared to the complete model, does not
include parameters for all effects. Parameters in the complete model are
typically considered for exclusion in a sequential order beginning with those
for the highest order interaction. If the parameters for this interaction are
retained, the complete model cannot be simplified. For example, the two-
way interaction is the highest order population effect represented in Equation
7.12. If the parameters that correspond to af}; are dropped, the complete
model is reduced to the main effects model

X =P+ o+ B + g (7.13)

which assumes only population main effects. Two consequences arise from
rejection of the complete structural model in favor of the main effects model.
First, the sums of squares for the AB effect are pooled with those of the
total within-cells variability to form a composite error term for tests of the
main effects. Second, the reduced structural model generates predicted cell
means that may differ from the observed cell means. It is also possible that
standard errors of differences between predicted cell means may be less
than those for differences between observed cell means. Accordingly, the
researcher may choose to analyze the predicted cell means instead of the
observed cell means. This choice also affects effect size estimation.

Briefly, there are two grounds for simplifying structural models, rational
and empirical. The first is based on the researcher’s domain knowledge about
underlying sources of variation and the second is based on results of statistical
tests. In the latter approach, parameters for nonstatistical interactions be-
come candidates for exclusion from the model. The empirical approach is
controversial because it capitalizes on sample-specific variation and also
ignores effect size magnitude. The rational approach makes factorial
ANOVA more like a model-fitting method than a strictly exploratory
method; Lunneborg (1994) explored this theme in detail. Researchers who
analyze data in comparative studies with regression computer programs are
probably accustomed to testing complete versus reduced models, but those
who use mainly ANOVA programs may not have the same view.
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Extensions to Designs With Three or More Factors

All of the principles discussed extend to balanced factorial designs
with more than two factors. For example, there are a total of seven estimated
main and interaction effects in a three-way design, including three main
effects (A, B, and C) each averaged over the other two factors, three two-
way interactions (AB, AC, and BC) each averaged over the third factor,
and the highest order interaction, ABC. A three-way interaction means
that the effect of each factor on the outcome variable changes across the
levels of the other two factors. It also means that the simple interactions
of any two factors are not the same across the levels of the third factor
(e.g., the AB effect changes across Cy, Cy, etc.). Omnibus ABC effects can
be partitioned into three-way interaction contrasts. When expressed as a
mean difference contrast, a three-way interaction contrast involves two
levels from each factor. That is, a 2 X 2 X 2 matrix of means is analyzed,
and the sum of the absolute values of the contrast weights that specify it
is 8.0. [t is left as an exercise for the reader on this book’s Web site to show
that the three-way interaction in a 2 x 2 X 2 design equals the difference
between all possible pairs of simple interactions, or

WaBc = WaBarCy — WABaCy; ™ WaC By — WAC a By
=VYpcaua; — WBCa Ay (7.14)

See Keppel (1991, chap. 20) for examples of the specification of three-way
interaction contrasts.

Just as in two-way designs, the derivation of effect sums of squares in
factorial designs with three or more independent variables is the same
regardless of whether the factors are between-subjects versus within-subjects
or fixed versus random. However, there may be no proper ANOVA error
term (see chap. 6, this volume) for some effects given certain combinations
of fixed and random factors in complex designs. There are algorithms to
derive by hand expected mean squares in various ANOVA designs (e.g.,
Kirk, 1995, pp. 402-406), and with such an algorithm it may be possible
in complex designs to pool mean squares and form quasi-F ratios with proper
error terms. Another method is preliminary testing and pooling, where parame-
ters for higher order interactions with random variables may be dropped
from the structural model based on results of statistical tests. The goal is to
find a reduced structural model that generates expected mean squares so
that all effects have proper error terms; see Winer et al. (1991, chap. 5).

Keeping track of error terms that go along with different effects in
complex designs is one of the reasons why the coverage of factorial ANOVA
is often quite lengthy in applied textbooks. Considering the shortcomings
of statistical tests in perhaps most behavioral studies, however, it is probably
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best not to focus too much attention on the F test to the neglect of other,
more useful information in ANOVA source tables.

Nonorthogonal Designs

If all factorial designs were balanced, there would be no need to deal
with the rather difficult technical problem raised. Of particular concern in
this discussion are nonorthogonal designs, unbalanced factorial designs with
disproportional cell sizes. Only two-way nonorthogonal designs are discussed
later, but the basic principles extend to larger nonorthogonal designs.

Nonorthogonal designs pose at least two challenges in their analysis.
The first was mentioned earlier: The factors are correlated, which means
that there is no single, unambiguous way to apportion either the total
between-conditions sums of squares or total proportion of explained variance
to the individual effects (Equations 7.4 to 7.5). The second problem concerns
ambiguity in estimates for means that correspond to main effects. This
happens because there are two different ways to compute marginal means
in unbalanced designs: as arithmetic versus weighted averages of the corres-
ponding row or column cell means. Consider the data in Table 7.5 for a
nonorthogonal 2 x 2 design. The marginal mean for A; can be computed
as the arithmetic average of the cell means in the second row or as the
weighted average of the same cell means, respectively:

(2.00 + 5.57)/2 = 3.79 versus [2 (2.00) + 7 (5.57)]/9 = 4.78

The value to the right is the same one would find working with the nine
raw scores in the second row of the 2 X 2 matrix in Table 7.5. There is no
such ambiguity in balanced designs.

TABLE 7.5
Raw Scores and Descriptive Statistics for a Nonorthogonal 2 x 2
Factorial Design

B, B, Row means
2,34 1,3
A
3.00 (1.00)® 2.00 (2.00) 2.50/2.60°
1,3 4,5 5,6,6,6
A
2.00 (2.00) 5.57 (.95) 3.79/4.78
Column means 2.50/2.60 3.79/4.78 3.14/4.00

aCell mean (variance).
bArithmetic/weighted averages of the corresponding cell means.
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There are many methods for analyzing data from nonorthogonal designs
(e.g., Keren, 1993; Rencher, 1998), too many to describe. Also, statisticians
do not agree about optimal methods for different situations, so it is not
possible to give definitive recommendations. Most of these methods attempt
to correct effect sums of squares for overlap. Unfortunately, they give the
same results only in balanced designs, and estimates from different methods
tend to diverge as the cell sizes become increasingly disproportional. The
choice of method affects both statistical tests and effect size estimation,
especially for the main effects and lower order interactions. Contemporary
software programs for ANOVA that analyze data from nonorthogonal de-
signs typically use by default one of the methods described next. However,
blindly accepting a program’s default method may not always be the best
choice.

An older method for analyzing data from nonorthogonal designs is
unweighted means analysis (see chap. 2, this volume). It comes from the
ANOVA literature and is amenable to hand computation. In this method,
effect sum of squares are computed using the equations for balanced designs
in Table 7.2, except that the design cell size is taken as the harmonic mean
of the actual cell sizes. This average in a two-way design is

S 1 (7.15)
PID Ny

The unweighted means approach estimates marginal means as arithmetic
averages of the corresponding row or column cell means. It also estimates
the grand mean as the arithmetic average of the cell means. A consequence
of weighting all cell: means equally is that overlapping variance is not
attributed to any individual effect. Thus, the unweighted means method
generates adjusted sums of squares that reflect unique predictive power. A
related, regression-based technique called Method 1 by Overall and Spiegel
(1969) estimates effect sums of squares controlling for all other effects.
These sums of squares may be labeled Type lII or unique in the output of
statistical software programs.

The methods just described may be best for experiments designed with
equal cell sizes but where there was random data loss from a few cells. This
is because cells with fewer scores by chance are not weighted less heavily
in either method. In nonexperimental designs, though, disproportional cell
sizes may arise because of a population correlation between the factors. If
so, it may be better for the actual cell sizes to contribute to the analysis.
Two other regression-based methods do just that. They also give higher
priority to one or both main effects compared to the methods described
earlier. Overall and Spiegel (1969) referred to these techniques as Method 2
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and Method 3, and sums of squares generated by them may be labeled in
computer program output as Type II or classical experimental for the former
versus Type I, sequential, or hierarchical for the latter.

In Method 2, sums of squares for the main effects are adjusted for
overlap only with each other, but the interaction sum of squares is corrected
for both main effects. Method 3 does not remove shared variance from the
sums of squares of one main effect (e.g., A), adjusts the sums of squares of
the other main effect for overlap with the first (e.g., B adjusted for A), and
then adjusts the interaction sum of squares for both main effects. It is best
in Method 3 that the researcher instead of the computer chooses the main
effect with the highest priority. This is because some computer programs
assign a default priority based on the order of the factors in the list specified
by the user. If the researcher has no a priori hypotheses about effect priority
but wishes the cell sizes to influence the results, Method 2 should be preferred
over Method 3.

The data from the nonorthogonal 2 x 2 design in Table 7.5 were
analyzed with the three regression-based approaches described earlier, assum-
ing a completely between-subjects design with fixed factors. The results are
summarized in Table 7.6. Observe that the sums of squares for the total
effects, interaction effect, pooled within-cells variability, and total data set
are the same across all three analyses. It is the estimates for the main effects
that change depending on the method. For example, neither main effect is
statistical at the .05 level in Method 1, which adjusts each main effect for
all other effects. The observed proportions of total variance explained by
the individual main effects, i3 = i3 = .09, are also the lowest in this
method. In contrast, both main effects are statistical at the .05 level and
have greater explanatory power in Method 2 and Method 3, which gives
them higher priority compared to Method 1. Please also note in Table 7.6
that only in Method 3—which analyzes the A, B, and AB effects sequentially
in this order—are the sums of squares and j* values additive, but not unique.

Which of the three sets of results in Table 7.6 is correct? From a purely
statistical view, all are because there is no single, nonpareil way to estimate
effect sums of squares in nonorthogonal designs. There may be a preference
for one set of results given a solid rationale about effect priority. Without such
a justification, however, there is no basis for choosing among these results.

STANDARDIZED MEAN DIFFERENCES

Designs in which all factors are fixed are assumed next. Methods for
standardizing contrasts in factorial designs are not as well developed as they
are for one-way designs. This is especially true for simple comparisons and
interaction contrasts as opposed to main comparisons. There is also not
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TABLE 7.6
Results of Three Different Regression Methods for the Data in Table 7.5

Source SS df MS F p 72
Method 1/Type lil2

Total effects (A, B, AB) 36.29 3 12.10 10.33 .002 .76
A adjusted for B, AB 4.48 1 4.48 3.82 .079 .09
B adjusted for A, AB 4.48 1 4.48 3.82 .079 .09
AB adjusted for A, B 14.16 1 14.16 12.09 .006 .30

Method 2/Type I
Total effects (A, B, AB) 36.29 3 12.10 10.33 .002 .76

A adjusted for B 6.89 1 6.89 5.88 .036 14
B adjusted for A 6.89 1 6.89 5.88 .036 14
AB adjusted for A, B 14.16 1 14.16 12.09 .006 .30

Method 3/Type |

Total effects (A, B, AB) 36.29 3 12.10 1033  .002 76
A (unadjusted) 15.24 1 15.24 13.01 .005 32
B adjusted for A 6.89 1 6.89 5.88 .036 14
AB adjusted for A, B 14.16 1 14.16 12.09 .006 30

Note. For all analyses, SSy = 11.71; dfyy = 10; MSy = 1.17; SSr = 48.00; and dfy = 13.
%Overall and Spiegel (1969) method/sums of squares type.

complete agreement across works by Glass, McGaw, and Smith (1981); S.
Morris and DeShon (1997), Cortina and Nouri (2000); and Olejnik and
Algina (2000); among others, that address this issue. It is therefore not
possible to describe a definitive method. However, the discussion that follows
is generally consistent with the overall goal of the works just cited: how to
make standardized contrasts from factorial designs comparable to those that
would have occurred in nonfactorial designs. This means that (a) estimates
for effects of each independent variable in a factorial design should be
comparable to effect sizes for the same factor studied in a one-way design,
and (b) changing the number of factors in the design should not necessarily
change the effect size estimates for any one of them.

Standardized mean differences may be preferred over measures of associ-
ation as effect size indexes if contrasts are the main focus of the analysis.
This is probably more common in designs with only two factors. When
there are three or more independent variables or the factors are random,
measures of association are typically more useful. It is also generally possible
to compute measures of association for several effects analyzed together. For
example, fla, g, ap is the multiple correlation between the outcome variable
and the main and interactive effects of factors A and B. This statistic in a
two-way design would describe the total predictive power with a single
number, which is very efficient. There is no analogous capability with
standardized mean differences. The two families of effect size indexes can
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also be used together; see Wayne, Riordan, and K. Thomas (2001) for
an example.

Standardized contrasts in factorial designs have the same general form
as in one-way designs, dg = /6%, where the denominator (standardizer)
estimates a population standard deviation (see chap. 4, this volume). How-
ever, it is more difficult in factorial designs to figure out which standard
deviation should go in the denominator of dg. This is because what is
probably the most general choice in a one-way design—the square root of
MSy, which estimates the common population standard deviation 6—may
not be the best choice in a factorial design. Also, there is more in the
literature about standardizing main comparisons than simple comparisons
in factorial designs. This is unfortunate because main comparisons may be
uninteresting when there is interaction. It is recommended that main and
simple comparisons for the same factor have the same standardizer. This
makes dy for these two kinds of single-factor contrasts directly comparable.

Single-Factor Contrasts in Completely Between-Subjects Designs

The choice of the standardizer for a single-factor contrast is determined
by (a) the distinction between the factor of interest versus the off-factors,
and (b) whether the off-factors vary naturally in the research population.
Suppose in a two-way design that two levels of factor A are compared. The
factor of interest in this contrast is A, and B is the off-factor. Also suppose
that the off-factor varies naturally in the population. Glass et al. (1981)
referred to such off-factors as being of theoretical interest, and they are more
likely to be individual difference variables than manipulated or repeated-
measures variables. The square root of MSy; from the two-way ANOVA
may not be an appropriate standardizer for comparisons between levels of
the factor of interest in this case. This is because MSy controls for the
effects of both factors, including their interaction. We can see this in the
following expression for a balanced two-way design:

SSw _ SSr— S84 — S8 — SSag
dfw — dfr — dfa — dfs — dfas

MSy = (7.16)

Because MSy, does not reflect variability due to effects of the off-factor
B, its square root may underestimate ©. This implies that dg = {/ (MSy)?
for comparisons where A is the factor of interest may overestimate &, =
y/o in absolute value. A method to compute an adjusted standardizer that
reflects the whole range of variability on the off-factor is described
momentarily.

Now suppose that the off-factor B does not vary naturally in the
population. Such factors are more likely to be manipulated or repeated-

EFFECT SIZE ESTIMATION IN COMPARATIVE STUDIES 223



measures variables than individual difference variables. For example, the
theoretical population for the study of a new treatment can be viewed as
follows: It is either true that every case in the population is given the
treatment or none are given the treatment. In either event there is no
variability because of treatment versus no treatment (Cortina & Nouri,
2000). A repeated-measures factor is not usually considered as varying natu-
rally because time (e.g., pretest—posttest) is not a property of cases. However,
it is important not to assume that manipulated factors never vary naturally.
Suppose the levels of a manipulated factor are different dosages of caffeine
(e.g., chap. 4, this volume). Because levels of caffeine consumption vary
from person to person in the general population, it could be argued that
the caffeine factor varies naturally. Because off-factors that do not vary
naturally are not of theoretical interest (Glass et al., 1981) for the sake of
variance estimation, their effects should not contribute to the standardizer.
This implies that the square root of MSy; from the two-way ANOVA would
be a suitable denominator for dy for contrasts on factor A when the off-
factor B does not vary naturally.

Two different methods to standardize main or simple comparisons that
estimate the full range of variability on an off-factor of theoretical interest
are described next. Both pool the variances across all levels of the factor
of interest, so also they generate dy for single-factor comparisons that is
directly comparable to gg in one-way designs (chap. 6, this volume). They
also yield the same result in balanced designs. The first is the orthogonal
sums of squares method by Glass et al. (1981). It requires a complete two-
way ANOVA source table where the sums of squares are additive. This is
not a problem in balanced designs, but only some methods for nonorthogonal
designs generate additive—but not unique—sums of squares (e.g., Table
7.5). Assuming that A is the factor of interest, the following term estimates
the full range of variability on the off-factor B:

MS _ SSw + SSg + SSap _ S8t — 884
W.BAB T gty + dfs + dfap  dfr — dfa

(7.17)

The subscript for the mean square indicates that variability associated with
the B and AB effects is pooled with error variance. Equation 7.17 also shows
that MSy g, ap in a two-way design has the same form as MSy in a one-
way design, where A is the sole factor. Indeed, the two terms just mentioned
are equal in balanced two-way designs, where MSy, in a one-way ANOVA
is computed after collapsing the data across the levels of the off-factor B.
The reduced cross-classification method by Olejnik and Algina (2000)
does not require a complete two-way ANOVA source table with orthogonal
sums of squares. It also generates unique adjusted-variance estimates in
unbalanced designs. In this method, the researcher creates with a statistical
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software program a reduced cross-classification of the data where the off-
factor of theoretical interest is omitted. Next, a one-way ANOVA is con-
ducted for the factor of interest, and the square root of error term in this
analysis is taken as the standardizer for contrasts on that factor. In balanced
designs, this standardizer equals the square root of MSy g ap computed
with Equation 7.17. A variation is needed when working with a secondary
source that reports only cell-descriptive statistics. The variance MSy g as
can be derived from the means and variances in the original two-way
classification as follows:

2

ey W [dfij (55") + ny (M; — MAi)Z]
MSw B aB = N—-a (7.18)

a

Equation 7.18 is not as complicated as it appears. Its numerator involves
the computation of a “total” sum of squares within each level of the factor
of interest A that reflects the full range of variability on the off-factor B.
This is done by combining cell variances across levels of B and taking
account of the simple effect of B at that level of A. These “total” sums of
squares are added up across the levels of A and then divided by N — a, the
total within-conditions degrees of freedom in the reduced cross-classification
where A is the only factor. The result given by Equation 7.18 in a balanced
design equals MSy p ap computed with Equation 7.17 from the two-way
ANOVA source table. It also equals MSy in the one-way ANOVA for
factor A after collapsing across the levels of factor B.

The methods described for standardizing contrasts that involve one
factor in the presence of an off-factor of theoretical interest can be extended
easily enough to designs with three or more factors. For example, we can
state the following general rule for the reduced cross-classification method:

The standardizer for a single-factor comparison is the square root of
MSy from the cross-classification that includes the factor of interest
and any off-factors that do not vary naturally in the population but
excludes any off-factors that do.

Suppose in a three-way design that A is the factor of interest. Of the
two off-factors, B varies naturally but C does not. According to the rule,
the denominator of dg for main or simple comparisons is the square root of
the MSy, from the two-way ANOVA for the reduced cross-classification
that includes factors A and C but not B. This standard deviation estimates
the full range of variability on off-factor B but not off-factor C. If the design
were balanced, we would get the same result by raking the square root of
the following variance:
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MS _ SSW + SSB + SSAB + SSBC + SSABC
W. B, AB. BC, ABC ™ dfy + dfy + dfap + dfsc + dfasc

(7.19)

which pools the within-conditions variability in the three-way ANOVA
with all effects that involve the off-factor B. As Cortina and Nouri (2000)
noted, however, there is little statistical research that supports the general
rule stated earlier for different combinations of off-factors, some of theoretical
interest but others not, in complex factorial designs. One hopes that such
research will be forthcoming. In the meantime, readers should explain in
written summaries of their analyses exactly how they standardized main or
simple comparisons.

Let us consider an example for a balanced two-way design where factor
A varies naturally in the population but factor B does not. The orthogonal
sums of squares method is demonstrated using the ANOVA source table
in the top part of Table 7.4 for the data in Table 7.3, assuming a completely
between-subjects two-way design. As an exercise readers should apply the
reduced cross-classification method to the same data to show that it generates
the same results. An appropriate standardizer for main or simple comparisons

where A is the factor of interest and B is the off-factor is the square root
of MSy from the two-way ANOVA, which for these data is

MSw = SSw /dfw = 64.00/12 = 5.33

This variance controls for effects of factor B, which is fine because B is not
of theoretical interest for this example. Standardized contrasts for the three
simple effects of A at B are derived as follows:

dy o o p, = (900 - 5.00)/5.3312 = 1.73
b A s, = (12.00 = 6.00)/5.33'7 = 2.60
dy p o, = (9:00 10.00)/5.33'2 = —.19

However, a better standardizer for main or simple comparisons on factor B
(for which A is the off-factor) is the square root of

MSw, a, ap = (SSw + SSa + SSap)/(dfw + dfa + dfap)
= (64.00 + 18.00 + 84.00)/(12 + 1 + 2) = 11.07

This pooled variance is greater than MSy from the two-way ANOVA
because it includes effects of the off-factor A. This example shows that
different sets of simple comparisons in the same factorial design may have
different standardizers. However, the choice of which set of simple compari-
sons to analyze should be based on theoretical grounds, not on whichever
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set would have the smallest standardizer. See Olejnik and Algina (2000)
for more examples.

Some other options to standardize main or simple comparisons are
briefly mentioned. A version of the reduced cross-classification method
demonstrated by Cortina and Nouri (2000) pools the variances from only
the two levels of the factor of interest being compared. This generates dg
in a factorial design that is directly comparable to Hedges'’s g in a one-way
design (see chap. 6, this volume). S. Morris and DeShon (1997) described
a related method that standardizes main effects for dichotomous factors in
factorial designs. It assumes that all off-factors vary naturally, and it derives
a correction term from F ratios and df values in the ANOVA source table
that is applied to the unadjusted effect size f/(MSy)"2. It is also possible
to standardize main or simple comparisons against the square root of the
variance from only one level of the factor of interest, usually a control
condition. This generates dy in a factorial design that is analogous to Glass’s
A in a one-way design. This method may be preferred if treatments are
expected to affect variability or if the within-cells variances are too heteroge-
nous to average together.

Interaction Contrasts in Completely Between-Subjects Designs

Suppose that the within-cells variances in a factorial design are similar
and all contrasts are standardized against the square root of MSy. This
would make sense in a study in which none of the factors vary naturally in
the population (e.g., the design is experimental). The value of d; for a two-
way interaction contrast would in this case equal the difference between
either pair of standardized simple comparisons, row-wise or column-wise.
For example, we would observe the following relation in a 2 x 2 design
where all effects are contrasts:

d‘f’AB = dy, aB d‘VA aBy d“?’B ahA] d‘?’s ar Ay (7.20)

(Compare Equations 7.9 and 7.20.) However, this relation may not hold if
either factor varies naturally in the population. This is because different
sets of simple comparisons can have different standardizers in this case.
Because an interaction is a joint effect, however, there are no off-factors
in such effects; that is, all independent variables involved in interaction are
factors of interest.

Unfortunately, there is relatively little in the statistical literature about
exactly how to standardize an interaction contrast when only some factors
vary naturally. Suppose in a balanced 2 x 2 design that factor B varies
naturally, but factor A does not. Should we standardize {5 against the
square root of MSy; from the two-way ANOVA, or against the square root
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of MSw 5 ag! The former exludes the interaction effect. This seems desirable
in a standardizer for (g, but it also excludes variability due to the B main
effect, which implies that we may underestimate G. The term MSy p ap
reflects variability due to the interaction effect, but standardizers for single-
factor comparisons do not generally reflect variability because of the main
effects of those factors. Olejnik and Algina (2000, pp. 251-253) describe
a way to choose between the variances just mentioned, but it requires
designating one of the independent variables as the factor of interest. This
may be an arbitrary decision for an interaction effect.

It is also possible to compute dy for a three-way interaction contrast,
but it is rare to see standardized contrasts for interactions between more
than two factors. If all comparisons are scaled as mean difference contrasts
and have the same standardizer, we would observe the following relation
in a 2 x 2 x 2 design where all effects are single-df comparisons:

d

tasc = Bap . c By ap c dysc aBy D¢ B,

=d (7.21)

YaBaC;  “MABaC

That is, the standardized three-way interaction equals the difference between
the standardized simple interactions for any two factors across the levels of
the third factor. (Compare Equations 7.14 and 7.21.) This relation may not
hold if different sets of simple interactions have different standardizers,
however.

The uncertainties mentioned should not affect researchers who analyze
simple effects or simple comparisons instead of interaction contrasts as a
way to understand a conditional effect. These same researchers can interpret
the difference between two corresponding standardized simple comparisons
at different levels of the factor of interest as a standardized interaction
contrast. However, the value of this standardized contrast may not be unique
if some factors vary naturally in the population. There should be little
problem in experimental designs where the square root of MSy may be an
appropriate standardizer for all contrasts, and researchers who can specify
a priori interaction contrasts also tend to work with experimental designs.
See Abelson and Prentice (1997) for examples of the analysis of interaction
contrasts in such designs.

Designs With Repeated-Measures Factors

Standardized contrasts can be computed in factorial designs where
some factors are within-subjects just as they are in completely between-
subjects designs—that is, with standardizers in the metric of the original
scores. This is the approach recommended by Olejnik and Algina (2000)
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among others. It makes dy more directly comparable across different factorial
designs, but it ignores the cross-conditions correlations for contrasts on
repeated-measures factors.

A common type of factorial design with repeated measures is the two-
way mixed within-subjects (split-plot) design in which unrelated samples are
compared across two or more measurement occasions. Given homogeneity of
the within-cells variances, the square root of MSy; could be used to standard-
ize all contrasts. This is a natural choice for simple comparisons of the
groups at each measurement occasion because these contrasts are purely
between-subjects effects. However, this standardizer ignores the cross-condi-
tions correlations across the levels of the repeated-measures factor for main
comparisons of the groups. The same problem arises if the square root of
MSy were used to standardize simple effects of the repeated-measures factor
for each group or interaction contrasts. The benefit is that dy for the effects
just mentioned would describe change in the metric of the original scores.
Please note that the difference between the standardized mean changes for
any two groups is a standardized interaction contrast. For example, if the
pretest-to-posttest standardized mean change is .75 for the treatment group
and .10 for the control group, the standardized interaction contrast is (.75
—.10) = .65. That is, the change for the treatment group is .65 standard
deviations greater than the change for the control group. If there are multiple
between-subjects factors arranged in a factorial layout, standardizers in the
metric of the original scores can be computed with the methods described
earlier. The only difference is that the repeated-measures factor is treated
as an off-factor that is not of theoretical interest. The same method can also
be used if multiple within-subjects factors are arranged in a factorial layout.

Some options for computing standardizers that take account of cross-
conditions correlations in two-way mixed designs are briefly described. Stan-
dardizers for group mean changes can be based on the difference scores across
two levels of the repeated-measures factor. This denominator computed can
be computed as sp,, the standard deviation of the contrast difference scores
(e.g., Equation 2.15), separately for each group, and the difference between
/s D¢ for any two groups can be interpreted as a standardized interaction con-
trast in the metric of the difference scores. An alternative denominator for
standardized mean changes is the square root of the weighted average of s,
across all the groups, assuming homogeneity of covariance. Cortina an
Nouri (2000) described a related method to standardize main comparisons
of groups after collapsing the data across levels of a repeated-measures factor.

Interval Estimation

At present most software programs for general statistical analyses do
not compute standardized contrasts in factorial designs much less construct
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confidence intervals for them. The freely available program PSY (Bird,
Hadzi-Pavlovic, & Isaac, 2000) is an exception. It analyzes raw data from
factorial designs with one or more between-subjects factors or one or more
within-subjects factors. However, the program does not distinguish among
multiple between-subjects factors or multiple within-subjects factors. This
means that PSY in its current form is easiest to use in single-factor designs
with independent or dependent samples or in mixed factorial designs with
one between-subjects factors and one within-subjects factors. The PSY pro-
gram standardizes all contrasts against the square root of MSy, and it prints
approximate individual or simultaneous approximate confidence intervals
for 8, (see chap. 6, this volume). It also prints an ANOVA source table.
This is handy for computing a different standardizer for single-factor contrasts
where the off-factor(s) varies naturally in the population. See Bird (2002)
for examples.

The Effect Size program (ES; Shadish, Robinson, & Lu, 1999; also see
chap. 4, this volume) computes standardized mean differences for main
comparisons in completely between-subjects factorial designs with up to
five factors and for comparisons on the group factor in two-way split-plot
designs. In completely between-subjects designs, the standardizer assumes
that all the off-factors vary naturally, but in two-way mixed designs the
standardizer is the square root of MSy. The ES program analyzes different
combinations of summary statistics, such as mean squares and degrees of
freedom for all sources and cell means and sizes, which is necessary when
working with secondary sources. However, this program does not calculate
confidence intervals for .

The software tools for calculating exact confidence intervals for &,
described earlier (chaps. 4 and 6, this volume) are generally for one-way
designs. As the method of noncentrality interval estimation becomes more
widely known, it is expected that these tools will be adapted for more direct
use in factorial designs.

MEASURES OF ASSOCIATION

Descriptive and inferential measures of association for factorial designs
with fixed or random factors are outlined next. The descriptive measures
are based on sample correlations, but the inferential measures estimate
population proportions of explained variance.

Descriptive Measures

The descriptive measure of association estimated eta (1}) has the same
general form in factorial designs as in one-way designs: It is the square root

230 EFFECT SIZE ESTIMATION IN MULTIFACTOR DESIGNS



of SSefrect/SST, where SSegece and SSt are, respectively, the sums of squares
for the effect of interest and the total data set (chap 6, this volume). The
term SSgec: may be computed in a factorial design for a focused compar-
ison, an omnibus comparison, or several effects analyzed together, such as
SS4 B, ag for the total effects in a two-way design. The square of estimated
eta, %, is the proportion of total observed variance explained by the effect.
In a balanced two-way design, the term fi3 g, ap can be uniquely partitioned
into values for {4, W4, and fi4s (Equation 7.5). The correlation between an
effect and outcome controlling for all noneffect sources of between-
conditions variability is partial 7. It is the square root of SSeec/
(SSeffect + SSerror)» where SS.; is the sums of squares for the effect ANOVA
error term. [t is a relatively common practice in factorial designs to report
Ml (or §?) for the total effects and partial | (or its square) for individual
effects. The parameters estimated by 7> and partial fi%, respectively, n? and
partial 1), were described in chapters 4 and 6.

Inferential Measures

The inferential measures of association introduced in chapter 6 for
single-factor designs can also be computed in balanced factorial designs.
These include estimated omega-squared (@®?) for effects of fixed factors and
the intraclass correlation (p;) for effects of random factors. Both statistics
just mentioned estimate the population proportion of total explained vari-
ance. Both are also ratios of variance components of the form GZec/G2o0
where the numerator estimates variability because of the effect of interest
and the denominator estimates total variance. The composition of total
variance is related to the ANOVA structural model for a particular design.
For example, the complete structural model for a completely between-
subjects design is defined by Equation 7.12. The composition of the estimated
total variance for this model is

8%y = 6% + 6} + 6L + 6 (7.22)

where the terms on the right side of the equality sign are, respectively, the
variance components estimators for the A, B, and AB effects and random
error. The form of partial @ and partial p; are also the same; it is Ggec/
(6%4c: + 61), where variance as a result of all other sources of between-
conditions variability other than that as a result of the effect of interest is
removed from the denominator.!

'In mixed-effects factorial designs, Kirk (1995) and others use the symbol @& only for effects of fixed
factors and the symbol f; only for effects of random factors. However, other authors use the latter
symbol only when all factors are random.
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TABLE 7.7
Equations for Variance Components Estimators in Completely Between-
Subjects Two-Way Designs

Estimator Both factors fixed Both factors random A random, B fixed

R df — —

Ot Lot (MS ot ~ MSu)

5 of 1 1

o e (MSa - MSy) or (MSa— MSig) - (MSa = MSw)
o, 1 o

% i (MS5 - MSy) o (MSs - MSpe) 72 (Mg~ MSe)

8% Y48 (115,15 — MS) 1 (MSu5 - MSW) 1 (MS.s - MSy)
abn AB 147 n AB Wi n AB Wi

Note. Assumes a balanced design; a = number of levels of factor A; b = number of levels of factor B, and
n = group size. In all cases, 62 = MSy and &3y = 82 + 63 + 6% + 62

Equations for the variance components estimators that make up ®*
and P; and their partial-variance counterparts depend on the number of
factors in the design and whether the factors are between-subjects versus
within-subjects or fixed versus random. This is because both distinctions
just mentioned affect the underlying distributional theory. For example,
Table 7.7 presents ANOVA-based estimators of variance components for
completely between-subjects two-way designs. An expression for 62, for
a generic effect with df 2 1 is given in the table only for a design in which
both factors are fixed. This is because measures of association are usually
computed only for omnibus effects when the corresponding factor(s) is (are)
random. To derive &7, P1, or either of their partial-variance counterparts for
a completely between-subjects two-way design, just compute the appropriate
variance components using the equations in Table 7.7 and assemble them
in the correct way (see chap. 6, this volume). The statistics & and partial
®* can be calculated more directly using Equations 6.30 and 6.31 in any
balanced factorial design with two or more between-subjects factors.

Table 7.8 presents equations for the direct computation of §; and
partial §; when both factors in a completely between-subjects factorial
design are random. Space limitations preclude listing equations for variance
components estimators for direct computing of ®* or p; in other kinds
of factorial designs; see Dodd and Schultz (1973) or Vaughn and Corballis
(1969). Fortunately, software for general statistical analyses is gradually
getting better at reporting @ or p; in the output of analyses for complex
ANOVA analyses. Variance components estimation with maximum likeli-
hood methods is an alternative to ANOVA-based estimation for designs
with random factors, but large samples are typically needed (see chap. 6,
this volume).
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TABLE 7.8

Equations for Direct Computation of the Intraclass Correlation for Balanced
Completely Between-Subjects Designs With Two Random Factors

Effect Py Partial p,
A a (MSA - MSAB) MSA - MSAB

SST + MSA + MSB - MSAB MSA + bn (MSW) - MSAB
B b (MSg — MSyp) MSg - MS,g

SST + MSA + MSB - MSAB MSB + an (MSw) - MSAB
AB ab (MSag — MSw) MS s - MSy

SST+ MSA + MSB - MSAB

MSAB + (n - 1) MSW

Note. Assumes a balanced design; a = number of levels of factor A; b = number of levels of factor B; and
n = group size.

Table 7.9 reports values of f* and @ for the data in the top part of
Table 7.3 for a 2 X 3 completely between-subjects design, where n = 3 and
fixed factors are assumed. These measures of association are all computed
from the ANOVA source table for these data in the top part of Table 7.4.
The results in Table 7.9 for the total effects—the main and interaction
effects analyzed together—are proportions of total variance, but results for
the individual effects are proportions of partial variance. As expected, values
of & are less than those of fi? for the same effect. For example, the A, B,
and AB effects together explain 70% of the total sample variance (%), but
the adjusted estimate of the population proportion of explained variance is
56% (®?). If we were to assume that both factors are random and then
compute P; for the same data, we would find that the variance component
estimators 85 and &} are both negative. This happens because the mean
squares for both main effects are less than the mean square for the interaction
effect (see Table 7.8). Recall that negative variance component estimates
are usually interpreted as though the values were zero.

TABLE 7.9
Values of Descriptive and Inferential Measures of Association for the Data
in Table 7.3 for a Completely Between-Subjects Design

Effect 72 @?
Total effects .70 .56
A 22 12
B 43 .28
AB 57 43

Note. Assumes both factors are fixed. Results for the total effects are proportions of total variance and for
the individual effects are proportions of partial variance.
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Interval Estimation

The software programs or scripts described in chapter 6 for one-way
designs can also be used to construct confidence intervals based on measures
of association in some kinds of factorial designs. A script for SPSS by
Smithson (2001) calculates exact confidence intervals for n? for the total
effects and exact confidence intervals for partial n? for all other effects in
completely between-subjects factorial designs with fixed factors. Fidler and
Thompson (2001) gave SPSS scripts for calculating exact confidence inter-
vals for w? or partial @ in balanced, completely between-subjects factorial
designs with fixed factors. The R2 program (Steiger & Fouladi, 1992) and
the Power Analysis module of STATISTICA (StatSoft, 2003) can also
derive exact confidence intervals for % in the same kinds of designs. The
latter program can also construct exact confidence intervals for the Root
Mean Square Standardized Effect Size (RMSSE)—which is related to the
noncentrality parameter of the F distribution—in balanced two-way designs;
see Steiger and Fouladi (1997; pp. 246-248) for more information. Burdick
and Graybill (1992) described algorithms for hand computation of approxi-
mate central confidence intervals for p; when the factors are random.

RESEARCH EXAMPLES

Four examples of effect-size estimation in factorial designs are described
in this section. Three examples concern two-way factorial designs, but
another involves a design with three factors. The last example concerns a
mixed design with a between-subjects factor and a repeated-measures factor.

Differential Effectiveness of Aftercare Programs for Substance Abuse

T. Brown, Seraganian, Tremblay, and Annis (2002) randomly assigned
87 men and 42 women who were just discharged from residential treatment
facilities for substance abuse to one of two different 10-week, group-format
aftercare programs, structured relapse prevention (SRP) and 12-step facilita-
tion {TSF). The former stressed rehearsal of skills to avoid relapse and the
latter emphasized the traditional methods of Alcoholics Anonymous. The
top part of Table 7.10 for this 2 x 2 randomized blocks design with fixed
factors reports descriptive statistics for a measure of the severity of alcohol-
related problems given six months later. Higher scores indicate more prob-
lems. An apparent interaction effect is indicated by the data in Table 7.10:
Women who completed the SRP program have relatively worse outcomes
than women who completed the more traditional TSF program. In contrast,
men had similar outcomes regardless of aftercare program type.
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TABLE 7.10

Descriptive Statistics, Analysis of Variance Results, and Effect Sizes for
Severity of Alcohol-Related Problems by Gender and Aftercare

Program Type

Aftercare program

Gender n TSF SRP Row means
10.54 (15.62)? 27.91 (21.50) 18.40
Women
42 23" 19
17.90 (20.12) 16.95 (21.55) 17.47
Men
87 48 39
Column means 15.52 20.54 17.77
Source S8 df MS F dy
Total effects 3,181.33 3 1,060.44 2.63° —
Gender 24.37 1 24.33 <1.00 .04
Program 804.28 1 804.28 2.00° -.25
Gender x program 2,352.69 1 2,352.69 5.84° —
Simple effects of program
Program at women 3,137.53 1 3,137.53 7.79' -.85
Program at men 19.43 1 19.43 <1.00 .05
Within conditions (error) 50,367.22 125 402.94
Total 53,548.55 129

Note. These data are from T. Brown (personal communication, September 20, 2001), and are used with
permission. TSF = 12-step facilitation; SRP = structured relapse prevention.

2Cell mean (standard deviation). ®Cell size.

°p=.053. 9p=.160. °p=.017. 'p=.006.

The bottom part of Table 7.10 reports the ANOVA source table and
standardized contrasts for single-factor effects. The sums of squares are Type
1, and the rationale for their selection is as follows: Men have more problems
because of alcohol use than women, so results for the main effect of gender
(G) were not adjusted for other effects. It was less certain whether one
aftercare program (P) would be more effective than the other, so estimates
for this main effect were adjusted for gender. Standardizers for single-factor
contrasts were computed assuming that the off-factor varies naturally in the
population. This is an obvious choice when the gender is the off-factor.
Because both SRP- and TSF-type aftercare programs exist in the real world,
the aftercare program factor was considered to vary naturally, too.

Although the sums of squares for the main and interaction effects are
additive, they are not unique. Therefore, standardizers were computed with
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Equation 7.18 using the means and variances in the top part of Table 7.10.
For example, the standardized contrast for the main effect of gender is

d@’G = (MGWomen - MGMen)/(MSW, P, GP)I/2
= (18.40 — 17.47)/466.31'2 = .04

where the denominator is the square root of the pooled mean square that
reflects error variance plus effects of the off-factor P (aftercare program).
This variance is computed with Equation 7.18 as follows:

MSw p gp = [22 (15.62%) + 18 (27.91%) + 23 (10.54 — 18.40)*
+ 19 (27.91 - 18.40)* + 47 (20.12%) + 38 (21.55%)
+ 48 (17.90 ~ 17.47)* + 39 (16.95 — 17.47)/(129 - 2)
= 466.31

which as expected is greater than MSy; = 402.94 from the two-way ANOVA
(Table 7.10). It is left for the reader to verify that the standardizer for the
main effect of aftercare program, assuming that gender varies naturally, is
the square root of MSw G gp = 415.27. Thus,

dgp = (15.52 - 20.54)/415.27"2 = —.25

The standardized contrasts reported earlier for the main effects are
actually not very interesting because of the obvious interaction effect. Results
of analyses of the simple effects of aftercare program for women versus men
are also reported in the bottom part of Table 7.10. The standardizer for
these comparisons is the same as that for the main effect of aftercare program,
the square root of MSw G, gp = 415.27. Among the women,

B4p 2o Women = (10.54 — 27.91)/415.27* = -85

which says that the average number of alcohol-related problems reported
by women participants in the SRP aftercare program are almost one full
standard deviation higher than those in the TSF aftercare program. However,
for men,

Ao e Men = (17.90 = 16.95)/415.27"* = .05

which shows a slight advantage in outcome for those men in the TSF
aftercare program. The difference between the two standardized simple
effects is a standardized interaction contrast, or (—85 — .05) = —.90. That
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is, the difference in outcome between the two aftercare programs for women
versus men is almost one full standard deviation in magnitude.

Interpersonal Problem-Solving Skills as a Function of Gender and
Level of Self-Reported Alcohol Use

The data set for this example can be downloaded from this book’s
Web site. Kline and Canter (1994) administered to 499 high school students
anonymous questionnaires about their quantity and frequency of alcohol
use. The students also completed a measure of social skills reasoning, where
higher scores are a better result. The cases were subsequently classified by
gender and four different levels of self-reported alcohol use based on criteria
for adolescents. The cell sizes in this 2 X 4 cross-classification are dispropor-
tional because relatively more young men are classified as heavy drinkers
than young women. The top half of Table 7.11 reports descriptive statistics
on the dependent variable by gender and drinking level. It is not surprising
that mean test scores are higher overall for young women than young men
and lower overall for students classified as heavy drinkers. An interaction
effect is also apparent because the relative weakness in social skills reasoning
is greater for male students classified as heavy drinkers compared to their
same-gender peers than for female students. It is also true that the relative
magnitude of gender differences in social skills reasoning is greater among
students classified as heavy drinkers.

The bottom half of Table 7.11 reports Type II sums of squares for
these data. Because social skills reasoning is expected to vary by both
gender and drinking level, the main effects were given equal priority in
the analysis. Also reported in the table are descriptive variance-accounted-
for effect sizes and exact 95% confidence intervals computed with
Smithson’s (2001) script for SPSS. The value of §j for the total effects
is .32, so0 32% of the total variability in social skills reasoning is explained
by the main and interactive effects together. This observed result is just
as consistent with a population proportion of explained variance for the
total effects as low as * = .26 as it is with a population proportion as
high as n* = .38, with 95% confidence. Each correlation ratio for the
individual effects reported in Table 7.11 is partial A% so their values
are not additive. The main effect of drinking level is the largest individual
effect, explaining 25% of the variance controlling for all other effects
(the exact 95% confidence interval is 19-31%). The second largest effect
is gender, which explains 8% of residual variance (4-12%). Although
the gender x drinking level interaction accounts for about 2% of residual
variance (0—-4%)—which is the smallest relative effect size magnitude—
it should not be concluded that this effect is unimportant.
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TABLE 7.11
Descriptive Statistics, Analysis of Variance Results, and Effect Sizes for
Interpersonal Problem-Solving Skill by Gender and Level of Self-Reported

Alcohol Use
Drinking level Row
Gender n None Light Moderate Heavy means
Young 64.91(8.01)% | 65.38 (6.84) | 61.16 (7.50) | 54.47 (9.03) | 61.26
women - o53 46° 52 100 55
Young 60.56 (8.40) | 59.98 (9.95) | 58.38 (9.36) | 45.59 (11.90) | 54.96
men 246 39 45 84 78
Column
means 62.92 62.88 59.88 49.26 58.15
Source SS df MS F 12
Total effects 19,157.56 7 273679 33.27° .32 (.26-.38)°
Gender 3,278.95 1 3,27895 39.86° .08 (.04-.12)
Drinking Level 13,499.74 3 449991 5470 .25(.19-.31)
Gender x Level 720.20 3 240.07 2.92° .02 (0-.04)
Within-conditions (error)  40,392.07 491 82.27
Total 59,549.63 498

Note. Variance-accounted-effect sizes are proportions of total variance for the total effects and proportions
of partial variance for the individual effects.

2Cell mean (standard deviation). bCell size. ®Exact 95% confidence interval.

9p = <.001. °p = .034.

Earwitness Testimony and Moderation of the Face
Overshadowing Effect

S. Cook and Wilding (1997) reported that identification of the once-
heard voice of a stranger in test conditions that resemble an auditory police
line-up is better if the speaker’s face is not seen at the time of exposure.
They called this result the face overshadowing effect (FOE). S. Cook and
Wilding (2001) evaluated whether the FOE is affected by hearing the voice
more than once or by explicit instructions to attend to the voice instead
of the face. A total of 216 young adults were randomly assigned to one of
eight conditions in this balanced 2 x 2 x 2 experimental design where the
fixed factors are face (present or absent), voice repetition (once or three
times), and instruction (intentional—specifically told to focus on the
voice—or incidental—no specific instructions given). All participants heard
two different voices, one a man’s and the other a woman’s, say two different
sentences. One week later the participants were asked to pick each voice
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out of separate gender voice line-ups. The outcome variable was the number
of correct identifications. Its limited range (0-2) is not ideal, a point ac-
knowledged by S. Cook and Wilding (2001), but the experimental set up
is interesting.

The top part of Table 7.12 reports descriptive statistics on the voice
identification task for the eight possible experimental conditions. S. Cook
and Wilding (2001) did not report a complete ANOVA source table. How-
ever, these results were estimated from the study’s descriptive statistics, and
they are reported in the bottom part of Table 7.12 along with values of
correlation effect sizes. The correlation between the number of correct
identifications and all effects (seven in total) analyzed together is f} = .342;
the total proportion of explained variance is thus .342% = 117, or 11.7%.
The repetition main effect is the best individual predictor (partial i = .300).
As expected, there are more correct identifications when the voice is heard

TABLE 7.12
Descriptive Statistics, Analysis of Variance Results, and Effect Sizes for
Accuracy of Voice Recognition by Instruction, Repetition, and Presence
Versus Absence of the Speaker’s Face

Instruction

Condition Incidental Intentional

Voice once .96 (.65)2 .93 (.68)

Voice three times 1.26 (.76) 1.19 (.62)

Voice once + face .59 (.64) .63 (.69)

Voice three times + face 1.15 (.72) 1.19 (.68)

Source Ss df MS F il

Total effects 12.7590 7 1.8227 3.94° 342
Instruction .0014 1 .0014 <1.00 .004
Face 2.0534 1 2.0534 4.42° 144
Repetition 9.5256 1 9.5256  20.52° .300
Instruction x face .1094 1 .1094 <1.00 .034
Instruction x repetition .0054 1 .0054 <1.00 .007
Face x repetition 1.0584 1 1.0584 2.28¢ 104
Instruction x face x repetition .0054 1 .0054 <1.00 .007

Within cells (error) 96.5473 208 4642

Total 109.3063 215

Note. Cell descriptive statistics are from “Earwitness Testimony: Effects of Exposure and Attention on the
Face Overshadowing Effect,” by S. Cook and J. Wilding, 2001, British Journal of Psychology, 92, p. 621.
Copyright 2001 by the British Psychological Society. Reprinted with permission. Correlation effect sizes are
relative to total variance for the total effects and partial variance for individual effects.

aCell mean (standard deviation); n = 27 for all cells.

bp <001 °p=.037. 9p=.133
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three times instread of just once. The main effect of the face—no face factor
has the second highest individual correlation with outcome (partial 7§ =
.144), and the mean overall correct recognition score is indeed higher when
the face is not present (1.09) than when the face is present (.89).

Effect size correlations for the remaining effects are close to zero except
for the interaction between the face (F) and repetition (R) factor for which
partial f§ = .10. Means on the outcome variable for this two-way interaction
averaged over the instruction factor are

Repeat 1x Repeat 3x

No Face .945 1.225
Face 610 1.170

We can see in this matrix that the size of the FOE is greater when the
voice is heard just once instead of three times. Let us estimate the magnitude
of the change in this effect with a standardized contrast. The value of the
unstandardized interaction contrast based on the previous cell means is

Wrr = 945 — 1.225 — 610 + 1.170 = .280

Assuming that none of the factors vary naturally, standardizing this contrast
against the square root of the ANOVA error term for the whole design,
MSw = 4642, gives us

dog, = -280/.4642'7 = 41

Thus, the magnitude of the FOE is about .4 standard deviations larger given
one repetition of the voice compared to three repetitions. Although this
two-way interaction explains only about 1% of the residual variance, it may
not be a trivial result, especially in a legal context. Because intentional
versus incidental instruction does not appreciably moderate the two-way
interaction just analyzed, S. Cook and Wilding (2001) attributed the FOE
to an involuntary preference for processing face information that is not
overcome on hearing an unfamiliar voice just once.

Effects of Alcohol Education on Recent Drinking Quantity at
Different Times

I collected the data set for this example. A total of 131 senior high

school students were randomly assigned to either a 20-hour alcohol education
course (n; = 72) or a control course of the same duration about general
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health issues (n; = 59). The unequal group sizes are a result of unrestricted
randomization, but there were about equal numbers of male and female
students in each group. A calendar-format measure of the number of alco-
holic beverages consumed over the previous two weeks was administered
to all students on three different occasions, just before the beginning of the
courses (pretest), one month after each course concluded (posttest), and
then three months later (follow-up). The students were unaware of the
schedule for testing.

The top part of Table 7.13 presents descriptive statistics on the recent
drinking measure for this mixed within-subjects design with fixed factors.
Although mean scores increased over time for both groups, this increase is
more pronounced in the control condition. The bottom part of Table 7.13
reports Type 11l sums of squares for the main and interaction effects and
partial correlations with the outcome variable. Unique sums of squares were
selected because the unequal group sizes do not reflect unequal population
group sizes. All p values for tests of within-subjects effects are based on the
Greenhouse—Geisser conservative F (1, 129) test, which assumes maximal
violation of sphericity. The partial correlations between outcome and the
effects of condition, time, and their interaction are, respectively, .17, .23,

and .15.

TABLE 7.13
Descriptive Statistics, Analysis of Variance Results, and Effect Sizes for
Amount of Recent Drinking by Alcohol Education Condition and Time

Time

Condition n Pretest Posttest Follow-up Row means
Control 59 | 3.15(6.36)? | 3.66 (6.80) | 7.15 (7.35) 4.65
Aicohol education 72 | 2.73 (5.90) 2.82 (6.24) | 3.56 (6.55) 3.04
Column means 2.92 3.20 5.18 3.76
Source 5 df MS F Partial 7
Between-subjects

Condition 254.26 1 25426  3.90° A7

S/condition (error) 8,402.48 129 65.14
Within-subjects

Time 449.46 2 224.73 7.21°¢ .23

Condition x time 192.27 2 96.14  3.08Y 15

Time x S/condition (error) 8,040.96 258 31.17
Total 17,286.89 392

Note. The pooled within-groups correlations across measurement occasions are r; = .34; 3 = .22; and
s =.25.
aCell mean (standard deviation). ®p=.050. °p=.008. Yp=.082.
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It is informative to repartition the condition main effect and the
interaction into the three simple effects of condition. These between-subjects
effects concern group differences in recent drinking at each measurement
occasion. Because the within-cells variances are reasonably similar, we can
standardize these contrasts against the square root of MSy, for the whole
design. This variance can be computed as the weighted average of the six
within-cells variances. It can also be derived from sums of squares in the
source table as

MSW = (SSS/condition + SStime X S/condition)/(de/condition + dftime x S/Condition)
= (8,402.48 + 8,040.96)/(129 + 258) = 42.49

Summarized next are results for the three simple effects of condition:

Condition at pretest: SS = 5.72, ¥ = 42, d, = .06
Condition at posttest: SS = 22.88, { = .84, d; = .13
Condition at follow-up: 8§ = 446.53, \y = 3.59, d; = .55

These results indicate that the control group reported higher levels of recent
drinking than the alcohol education group at all three times. The size of
this difference is only 6% of a standard deviation at pretest, but it increases
to about half a standard deviation by the follow-up.

CONCLUSION

Methods to calculate standardized mean differences for contrasts in
factorial designs are not as well-developed as for one-way designs. Standard-
izers for single-factor contrasts should reflect variability as a result of off-
factors that vary naturally in the population, but variability as a result of
effects of off-factors that do not vary naturally should be excluded. Measures
of associations may be preferred in designs with three or more factors or
where some factors are random. They can also evaluate the predictive power
of several effects analyzed together. Descriptive correlation effect sizes are
all based on the sample correlation 1}, and they are computed pretty much
the same way in factorial designs as in one-way designs. In balanced factorial
designs, the inferential measure of association @’ can be derived for effects
of fixed factors, and the intraclass correlation P can be computed for effects
of random factors.
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REPLICATION AND META-ANALYSIS

Scientists have known for centuries that a single study will not resolve
a major issue. Indeed, a small sample study will not even resolve a
minor issue. Thus, the foundation of science is the culmination of
knowledge from the results of many studies.

—Hunter, F. Schmidt, and Jackson (1982, p. 10)

Replication is a critical scientific activity, one not given its due in the
behavioral sciences. Basic kinds of replication are reviewed in the next
section. The rest of this chapter considers meta-analysis as a method for
research synthesis. The goal of this presentation is not to teach the reader
how to conduct a meta-analysis—this is impossible in a chapter-length
presentation. The aim instead is to help the reader appreciate the strengths
and limitations of meta-analysis and encourage meta-analytic thinking. De-
veloping the capacity to think meta-analytically about one’s own research
is important even if one never intends to conduct a formal meta-analysis
(B. Thompson, 2002b). Meta-analytic thinking is also a crucial part of
reform in methods of data analysis and hypothesis testing in the behavioral
sciences (see chap. 1, this volume).

TERMS AND IDEAS ABOUT REPLICATION

This section introduces basic concepts about replication. It also defines
different kinds or degrees of replication.

Context

Thomas S. Kuhn (1996) described science as alternating between two
states. One is the steady state of normal science, characterized by a high
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level of paradigm development. A paradigm is a shared set of theoretical
structures, methods, and definitions that supports the essential activity of
normal science, puzzle solving, the posing and working out of problems under
the paradigm. If a paradigm’s empirical and theoretical structures build on
one another in a way that permits results of current research to extend
earlier work, it provides what Hedges (1987) called theoretical cumulativeness.
The second state involves crises that arise when certain persistent and
important problems, anomalies, cannot be solved under the current paradigm.
These crises may lead to challenges by scholars who may be younger or
have backgrounds in different fields than those who defend the current
paradigm. (See Sulloway, 1997, for an interesting discussion of possible birth
order effects among those who challenged or defended scientific status quos
in the past.) A scientific revolution occurs when the old paradigm is replaced
by a new one. The assumptions of the new paradigm may be so different
that the subsequent course of the discipline is radically altered. It is normal
science that concerns us, in particular its cumulative nature through replica-
tion and synthesis of results.

Replication in the Behavioral Sciences

There is a paucity of reports in the behavioral research literature
specifically described as replications (see chaps. 2 and 3, this volume). The
use of statistical tests as if they estimated the probability of replication and
editorial bias against studies without null hypothesis (Hp) rejections may
exacerbate this problem (see chap. 3, this volume). Authors of behavioral
studies are undoubtedly also aware of editorial preferences for novelty, or
work seen as original or unique. This partiality may discourage replication
that may be seen as a rehash of old ideas (Kmetz, 2000). Hedges (1987)
examined another possible factor: Behavioral research results may simply
be less replicable than those in the natural sciences. That is, the level of what
Hedges called empirical cumulativeness—the observed degree of agreement of
results across different studies—may just be inherently lower for behavioral
data. Hedges (1987) compared the consistency of results in physics research
about the mass and lifetime of stable particles, such as neutrons or protons,
with the consistency of results in the hard area of gender differences in
cognitive abilities and the soft area of effects of educational programs on
achievement. Surprisingly, Hedges (1987) found similar degrees of consis-
tency in the physics and behavioral research areas just mentioned as measured
by a standard index of cross-study variability in results (Q; described later).
Within the limitations of this comparison outlined by Hedges (1987), these
findings suggest that physical science data may not be inherently more
empirically cumulative than behavioral science data.

248 REPLICATION AND META-ANALYSIS



Types of Replication

B. Thompson (1997) distinguishes between internal and external repli-
cation. Internal replication includes statistical resampling and cross-validation
by the original researcher(s). The former combines the cases in the original
data set in different ways to estimate the effect of idiosyncrasies in the
sample on the results. Resampling methods are described in chapter 9, but
resampling is not replication in the usual scientific sense. In cross-validation,
the total sample is divided at random into a derivation sample and a cross-
validation sample, and the same analyses are conducted in each one. In
contrast, external replication is conducted by those other than the original
researcher(s), and it involves new samples collected at different times or
places.

There are two broad contexts for external replication. The first con-
cerns different kinds of replications of experimental studies (Carlsmith,
Ellsworth, & Aronson, 1976; Lykken, 1968). One is an exact or literal
replication where all major aspects of the original study—its sampling meth-
ods, design, and outcome measures—are copied as closely as possible. True
exact replications exist more in theory than practice because it may be
impossible to perfectly duplicate a specific study. When a study is externally
replicated, there may be variations in subjects, equipment, physical settings,
or personnel across laboratories great enough to preclude exact replication.
Another type is operational replication, where just the sampling and experi-
mental methods of the original study are duplicated. Operational replication
tests whether a result can be duplicated by a researcher who follows the
basic recipe in the methods section of the original study.

In balanced replications, operational replications are used as control
conditions. Other conditions in balanced replications may represent the
manipulation of additional substantive variables to test new hypotheses. For
example, a drug condition from an original study could be replicated in a
new study. Additional conditions in the latter may feature the administration
of the same drug at different dosages, other kinds of drugs, or a different
type of treatment. The logic of balanced replication is similar to that of
strong inference, which features the design of studies to rule out competing
explanations (see chap. 3, this volume), and to that of dismantling research.
The latter aims to study the elements of treatments with multiple compo-
nents in smaller combinations to find the ones responsible for treatment
efficacy. There are now several examples of dismantling research in the
psychotherapy outcome literature (e.g., Cahill, Carrigan, & Frueh, 1999).

A final type of replication departs even further from the ideal of exact
replication than operational or balanced replication. A researcher who
conducts a construct replication avoids close imitation of the specific methods
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of the original study. An ideal construct replication would be carried out
by telling a skilled researcher little more than the original empirical result.
This researcher would then specify the design, measures, and data analysis
methods deemed appropriate to test the construct validity of the original
finding—that is, whether it has generality beyond the situation studied in
the original work. A robust phenomenon is indicated if its effect is found
despite variations in study characteristics. On the other hand, the nature
of the phenomenon may actually change depending on how it is measured,
the particular sample studied, or the specific experimental method used.
Without a systematic cataloging of how construct replications differ from
each other, however, it may be difficult to associate study characteristics
with observed changes in the effect.

A second context for replication concerns psychometrics, which seems
to have a stronger tradition of replication compared to other behavioral
research areas. This may be in part a result of the existence of professional
standards that outline benchmarks for establishing score validity (e.g., Amer-
ican Psychological Association, 1999) and legal requirements for the use of
tests in settings such as schools. The demonstration of whether a test is
construct-valid requires more than one line of evidence, which requires at
least construct replication. There is also an appreciation of the need to
cross-validate tests that generate scores based on mathematically weighted
combinations of predictor variables. These weights—usually regression coef-
ficients—are susceptible to capitalization on chance (e.g., Nunnally & Bern-
stein, 1994). It is thus necessary to determine whether their values are
observed in other samples.

RESEARCH SYNTHESIS

The goals and methods of research synthesis are outlined in this section.
The latter include qualitative and quantitative (i.e., meta-analysis) methods.
It is argued that qualitative methods of research synthesis are inadequate.

Goals

Bodies of related research in the behavioral sciences tend to consist
of construct replications instead of the other types considered earlier. As
such, different studies about the same general phenomenon typically feature
different experimental designs, measures, types of samples, or methods of
analysis. Compared to sets of operational or balanced replications, these
kinds of differences among construct replications make it more difficult to
synthesize the results—that is, to get a sense of the status of a literature.
Despite the problems just mentioned, the more intermediate steps of research
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synthesis are basically the same in all sciences: Define the research ques-
tion(s), find as many pertinent studies as possible, critique their designs and
methods and perhaps exclude those with serious flaws, look for bias in
individual studies, and identify factors that account for cross-study variation
in results. A good research synthesis can be invaluable, especially in a rapidly
expanding area where researchers may not be aware of what others are
doing. It thus comes as no surprise that integrative reviews are among the
most widely cited articles in the research literature (Cooper & Hedges,

1994a).
Qualitative Research Reviews

The traditional method for research synthesis is the qualitative or narra-
tive literature review. Such reviews are rational exercises in that their authors
do not use quantitative methods other than vote counting to arrive at
conclusions. Vote counting—also called the box-score method—involves tally-
ing the numbers and directions of Hj rejections versus failures to reject H
across a set of studies. Suppose that a qualitative literature review concerns
whether a treatment is effective. The vote count is the number of studies
with statistical differences between treatment and control that favor the
former versus the number with none. If the box score for the former outcome
is higher than for the latter, the treatment is deemed to be effective; if the
score is tied, the results of the review are deemed inconclusive.

However, vote counting as just described is not a scientifically sound
way to synthesize results across studies (Chalmers & Lau, 1994). This is in
part because it is based on outcomes of statistical tests—p values—that are
subject to all the limitations discussed in chapter 3. For example, tied box
scores are expected when power is only .50, which is typical in behavioral
research. A related problem of traditional literature reviews is that they are
sometimes restricted to published studies. Because of a bias for results with
Hj rejections, however, results of published studies may overestimate the
true magnitude of an effect, among other problems.

Meta-Analysis as a Quantitative Research Synthesis

A primary analysis is conducted by a researcher who conducts an original
(primary) study where statistical methods are used to analyze data from
individual cases. A secondary analysis is conducted with summary statistics
reported in a primary study. Some of the research examples of effect size
estimation described in earlier chapters are secondary analyses. The deriva-
tion of effect size indexes from statistics reported in primary studies is a
crucial part of meta-analysis. In relation to primary and secondary analyses,
meta-analysis is a kind of higher order, tertiary method where the units of
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analysis are published or unpublished studies. Meta-analysis is also distin-
guished by application of some of the same kinds of statistical methods used
in primary studies to accumulate results. For example, it is common in meta-
analysis to summarize the results of a comparative study where the outcome
variable is continuous with a standardized mean difference (d). Doing so
deals with the problem that outcome measures in different studies often
have different scales, and converting all unstandardized comparisons to d
allows results to be directly compared across studies. When d is computed
for each comparison and typically weighted by a function of sample size,
the weighted average d across all studies estimates the overall magnitude
of the effect. The variance among the individual d statistics estimates the
consistency of the results across all studies. The higher this variance, the
less consistent the results, and vice versa.

If a set of studies is made up of exact replications, there may be little
quantitative analysis to do other than estimate the central tendency and
variability of the results. The former could be seen as a better estimate of
the population parameter than the result in any one study, and the latter
could be used to identify individual results that are outliers. Because exact
replications are inherently similar, outliers may be more a result of chance
than systematic differences among studies. This is less certain for operational
replications, and even less so for construct replications. For the latter,
observed variability in results may reflect actual changes in the effect because
of differences in samples, measures, or designs across studies.

Because sets of related studies in the behavioral sciences are generally
made up of construct replications, the explanation of observed variability
in their results is a common goal of meta-analyses in this area. This is
also an aim of a traditional literature review, but the methods of meta-
analysis are not primarily subjective. This is because the meta-analyst tries
to identify and measure characteristics of construct replications that give
rise to variability among their results. These characteristics concern the
kinds of variables listed in Table 8.1. Some of them concern attributes of
samples, settings in which cases are tested, or the type of treatment adminis-
tered. Other factors concern properties of the outcome measures, quality
of the research design, source of funding, professional background(s) of
the author(s), or date of issuance. The latter reflects the potential impact
of temporal factors such as changing societal attitudes on the phenomenon
of interest.

Characteristics of studies such as those listed in Table 8.1 can be
categorized in a few different ways. One is low versus high inference (Hall,
Tickle-Degnen, R. Rosenthal, & Mosteller, 1994). A low-inference character-
istic is one that is readily apparent in the text or tables of a primary study,
such as the measurement method. In contrast, a high-inference characteristic
requires a judgment. The quality of the research design is an example of a
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TABLE 8.1
Examples of Potential Predictors of Study Outcome Coded
in Meta-Analysis

Category Examples

Subjects Mean age, income, 1Q, or iliness length
Proportion men or women, minority group, or diagnosis type
Number of cases

Setting Country or geographic region
Type of clinic (e.g., inpatient or outpatient)
Laboratory or naturalistic observation {(e.g., home visit)

Treatment Duration, frequency, type (e.g., medication or behavioral),
dosage, or method of delivery (e.g., group or individual)
Professional type, level of education, or theoretical orientation

Measures Method of measurement (e.g., self-report or observational)
Informant type (e.g., parent or teacher)
Reactivity of measure (e.g., low or high)
Content area (e.g., internalization or externalization)

Design quality  Internal validity: Appropriate methods for assignment to
conditions (e.g., randomization), presence of appropriate
control groups, safeguards against experimenter expectancies
(e.g., double-blinds)

External validity: Appropriate (i.e., representative) sampling
methods, appropriate handling of missing data

General Design type (e.g., experimental or nonexperimental)
Study presentation forum (e.g., published or unpublished)
Source of funding (e.g., public or private)
Author gender or professional background
Date of issuance (e.g., publication year)

high-inference characteristic because it must be inferred from the informa-
tion reported in the study.

Study factors can also be described as substantive, method, or extrinsic
(Lipsey, 1994). Substantive factors are presumed relevant for understanding
an effect. They include things such as specific features of treatments, subjects,
or settings believed to account for differences in study outcomes. Method
factors concern procedural aspects about how studies are conducted, such
as specific instructions given to participants. The influence of method charac-
teristics may be seen as sources of bias or distortion that confound cross-
study comparison of results. Extrinsic factors are outside of both substantive
and method factors and include things such as author attributes, the form
of publication, and source of funding. Although extrinsic factors by them-
selves may not be expected to directly influence study results, they may
affect decisions that have a bearing on study outcome, such as the choice
of measurement methods in a particular research area. Note that the
classification of study characteristics as substantive, method, or extrinsic
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depends on the research context. For example, Eagley and Carli (1981)
found that author gender predicted the degree of female conformity reported
across different studies of social influence. Author gender may in this case
be seen as substantive rather than extrinsic.

Substantive, method, or extrinsic factors are often conceptualized as
meta-analytic predictors, and study outcome measured with the same stan-
dardized index of effect size is typically the criterion. Each individual pre-
dictor in a meta-analysis is actually a moderator variable, which implies
interaction. This is because the criterion, study outcome, usually represents
the association between the independent and dependent variables in each
study. If observed variation in effect sizes across a set of studies is explained
by a meta-analytic predictor, the relation between the independent and
dependent variables changes across the levels of that predictor. This is
interaction. For the same reason, the terms moderator variable analysis or
meta-regression describe the process of estimating whether factors such as
those listed in Table 8.1 account for cross-study variability in results.

Models of Explanation

Suppose that a set of studies where treatment is compared with control
on a continuous outcome is disaggregated by the levels of a meta-analytic
predictor. If the average effect size changes across the levels of that predictor,
it explains some proportion of the variability in the results. This explanatory
power could be more precisely estimated by a measure of association between
the meta-analytic predictor and study effect size. If there are two meta-
analytic predictors, it is possible that they covary. Suppose across a set of
studies that different variations of the treatment tend to be given to patients
with chronic versus acute forms of an illness. This implies a correlation
between the substantive factors of treatment type and illness chronicity.
The predictive power of each factor just mentioned should be estimated
controlling for the other. This is especially true if substantive and method
or extrinsic factors covary, such as when a particular research design is used
to study a certain type of treatment. In this confounded case, one should
avoid attributing differences in study outcome to the substantive factor alone.

It is also possible for meta-analytic predictors to interact, which means
that they have a joint influence on observed effect sizes. Interaction also
implies that to understand variability in results, the predictors must be
considered together. This is a subtle point, one that requires some elabora-
tion: Each individual predictor in meta-analysis is a moderator variable.
However, the relation of one meta-analytic predictor to study outcome may
depend on another predictor. For example, the effect of treatment type on
observed effect sizes may depend on whether cases with acute versus chronic
forms of an illnesses were studied.
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A different kind of relation between meta-analytic predictors and
study outcome is a mediator effect. Recall that mediator effects are not
moderator (interaction) effects—they are indirect effects that involve at
least one intervening variable that transmits some of the effect of a prior
variable onto a subsequent variable (e.g., Shrout & Bolger, 2002), in
this case study effect size. Suppose that one substantive factor is degree
of early exposure to a toxic agent and another is illness chronicity. The
exposure factor may affect study outcome both directly and indirectly
through its effect on chronicity. Specifically, cases in samples with higher
levels of early exposure may have been ill longer, which in turn affects
study outcome. Illness chronicity is the mediator variable in this instance.
The analysis of mediator (indirect) effects is best known as part of
structural equation modeling. It is not as well known that mediator
effects among substantive, method, or extrinsic factors can be estimated
in meta-analysis, too. The specification of a model with mediation requires
specific a priori hypotheses about patterns of direct and indirect effects.
For this reason, an analysis in which mediator effects are estimated is
called a model-driven or explanatory meta-analysis. This type of meta-
analysis is relatively rare. Accordingly, it is not discussed in more detail,
but see B. Becker and Schram (1994) for more information.

STEPS OF META-ANALYSIS

The basic steps of a meta-analysis are similar to those of a primary
study. In both, these steps may be iterative because it is often necessary to
return to an earlier stage for refinement when problems are discovered at
later stages. These steps are enumerated first and then discussed:

Formulate the research question.

. Collect the data (primary studies).

Evaluate the quality of the data.

Measure the predictors (substantive, method, or extrinsic study
factors) and criterion (study outcome).

Analyze the data (synthesize study results).

Describe, interpret, and report the results.

P

o

Formulate the Research Question
Because it affects all subsequent steps, the formulation of the research

question is just as crucial in a meta-analysis as in a primary analysis. The
basic task is to specify hypotheses and operational definitions of constructs.
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These specifications in meta-analysis should also help to distinguish between
relevant and irrelevant studies. A meta-analysis obviously requires that
research about the topic of interest exists, which raises the question:
How many studies are necessary! A researcher can use meta-analytic
methods to synthesize as few as two results, but more are typically needed.
Although there is no absolute minimum number, it seems to me that
at least 20 different studies would be required before a meta-analysis is
really viable. This assumes that the studies are relatively homogenous
and that only a small number of moderator variables are associated with
study outcome. The failure to find sufficient numbers of studies indicates
a knowledge gap.

Collect the Data

The goal of data collection in meta-analysis is to find every study
within the scope of the research question—that is, to query the population
of relevant studies. (The term universe instead of population is sometimes
used in the meta-analytic literature.) Now, it may be impossible to
actually find all studies in a population (more about this point shortly),
and some of these studies may have defects so severe that their results
must be excluded. But the question of which studies are included versus
excluded is critical because it determines the outcome of the meta-analysis.

Data collection is characterized by searches in multiple sources,
including published works, such as journal articles, books, or reports from
public agencies, and unpublished studies. The latter includes conference
presentations, papers submitted for publication but rejected, graduate
student theses, and technical reports from private agencies. Studies from
each source are subject to different types of bias. For instance, published
studies generally have more Hy rejections and larger effect size magnitudes
than unpublished studies. They may also have most of the Type I errors.
Results from unpublished studies may be prone to distortion because of
design or analysis problems that otherwise may be detected in peer
review. The coding of study source as an extrinsic factor permits direct
evaluation of its effect on study outcome, however. M. Rosenthal (1994)
discussed strategies for finding different kinds of published or unpublished
research studies. In established research areas, computer searches of
electronic databases may identify hundreds or even thousands of potential
studies. Narrowing the search criteria is the only practical way to deal
with this problem. In contrast, too few studies may be found in newer
research areas. If so, the search criteria need to be broadened. Either
tightening or expanding the search criteria also implies reformulation of
the research question (i.e., go back to step 1).
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Evaluate Data Quality

For two reasons, it is crucial to assess the high-inference characteristic
of research quality. The first is to eliminate from further consideration studies
so flawed that their results cannot be trusted. This helps to avoid the garbage
in, garbage out problem in which results from bad studies are synthesized along
with those from sound studies. The other reason concerns the remaining
(nonexcluded) studies, which may be divided into those that are well-
designed versus those with significant limitations. Results synthesized from
the former group may be given greater interpretative weight than those
from the latter group.

The quality of a primary study concerns its validity in three areas:
conceptual, methodological, and statistical (Strube & Hartmann, 1983).
Conceptual validity concerns whether a study actually tests what it is purported
to test. The correct implementation of a treatment is an example of some-
thing that reflects conceptual validity. Methodological validity concerns threats
to a study’s internal and external validity. Statistical validity refers to the use
of proper methods of data analysis. There are some standard systems for
coding research quality in meta-analysis (e.g., Wortman, 1994).

Measure the Predictors and Criterion

This step involves the actual coding of the found studies. This task
may be performed by coders, such as research assistants, who are not the
primary investigators. This may prevent bias because of awareness of the
research question. A statistic that summarizes the results in each study must
also be selected. The most common choice is a standardized effect size index,
such as d for continuous outcomes or the odds ratio for dichotomous outcomes
in comparative studies. It is also possible to combine p values from statistical
tests in primary studies or use formal vote counting, but these methods are
subject to all the limitations of p values and convey little information about
effect size. However, there are times when statistics reported in primary
studies are insufficient to compute effect sizes. Bushman (1994) described
the use of formal vote counting to assess publication bias.

If very different kinds of outcome measures are used across a set of
studies, their results may not be directly comparable even if the same kind
of standardized effect size index is computed in each study. This is an
example of the apples-and-oranges problem. Suppose that gender differences
in aggression are estimated across a set of studies. There are more than one
type of aggressive behavior (e.g., verbal, physical) and more than one way
to measure it (e.g., self-report, observational). An average d statistic that
compares men and women computed across a diverse set of measures of
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aggression may not be very meaningful. This would be especially true if the
magnitude of gender differences changes with the type of aggression or how
it is measured (Knight, Fabes, & Higgins, 1996). One way to deal with the
apples-and-oranges problem is to code the content or measurement method
of the outcome variable and represent this information in the analysis as
one or more method factors. The apples-and-oranges problem can arise with
the meta-analytic predictors, too. This can happen if relevant study factors
are not coded or categories of such factors are overly broad.

It is common in meta-analysis to weight the standardized effect size
for each study by a factor that represents sample size (demonstrated later).
This gives greater weight to results based on larger samples, which are less
subject to sampling error. It is also possible to weight study effect sizes by
other characteristics, such as the reliability of the scores or ratings of the
overall research quality. Hunter and F. Schmidt (1994) described an exten-
sive set of corrections for attenuation in correlation effect sizes for problems
such as artificial dichotomization in continuous outcome variables and range
restriction, but primary studies do not always report sufficient information
to apply these corrections.

There is also the problem of nonindependence of study results. It seldom
happens that each individual result comes from an independent study where
a single hypothesis is tested. In some studies, the same research participants
may be tested with multiple outcome measures. If these measures are intercor-
related, effect sizes across these measures are not independent. Likewise,
effect sizes for the comparison of variations of a treatment against a common
control group are probably not independent. Gleser and Olkin (1994) re-
ferred to the kinds of dependent studies just described as multiple-endpoint
studies and multiple-treatment studies, respectively. Analyzing dependent study
outcomes with methods that assume independence may yield inaccurate
results. Fortunately, statistical techniques are available that handle corre-
lated effect sizes.

Analyze the Data

Lau, lIoannidis, and Schmid (1997) outlined the following iterative
phases of data analysis in meta-analysis:

1. Decide whether to combine results across studies, and define

what to combine.

. Estimate a common (average) effect.

3. Estimate the heterogeneity in results across studies, and at-
tempt to explain it—that is, find an appropriate statistical
model for the data.

4. Assess the potential for bias.

[ )
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The first step in the analysis phase of a meta-analyses is often the
computation of a weighted average effect size. If it can be assumed that the
observed effect sizes estimate a single population effect size (more about
this point later), their average takes the form

k
z w; ES,
Mgs = S— (8.1)

S

i=1

where ES; is the effect size index (e.g., d) for the ith result in a set of k
results and w; is the weight for that effect size. A weight for each effect size
that minimizes the variance of Mg is

w = - (8.2)
SES,

where w; is the inverse of s%gi, the conditional variance (squared standard

error) of an effect size. The conditional variance of an effect size is also
called the within-study variance. The equation for the within-study variance
depends on the particular effect size index (e.g., see Table 4.5), but it
generally varies inversely with sample size. In other words, results based on
bigger samples are given greater weight.

The conditional variance of the weighted average effect size Mgg is
determined by the total number of effect sizes and their weights:

1
S%‘AES =T (83)

i=1

The square root of Equation 8.3 is the standard error of the average weighted
effect size. An approximate 100 (1 — ot)% confidence interval for the popula-
tion average effect size [gs has the following general form:

MEs £ smy (22-cail, o) (8.4)

where 2,_,i1, o is the positive two-tailed critical value of the normal deviate
z at the o level of statistical significance. If a confidence interval for pigs
includes zero and 2 w1, 05 = 1.96, the nil hypothesis that the population
effect size is zero cannot be rejected at the .05 level. This is an example of
a statistical test in meta-analysis.
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The weighting of study effect sizes as described assumes a fixed-effects
model, also called a conditional model. This model assumes that (a) there is
one universe of studies with a single true effect size, and (b) each study
effect size departs from the true effect size only because of within-study
variance (Lipsey & Wilson, 2000). Accordingly, effects sizes in a fixed-
effects model are weighted only by functions of their conditional variances
(Equation 8.2). Between-studies variation in effect size is viewed as system-
atic and a result of identifiable differences between studies such as those
listed in Table 8.1. Generalizations in this model are limited to studies such
as those actually found.

There is a meta-analytic statistical test that evaluates whether the
variability in study effect sizes is great enough to reject the hypothesis that
they estimate a common population effect size. The following homogeneity
test statistic,

k k
Q= Y E M) ks Mgy (8.5)

2
i=1 SES; i=1

equals the sum of the weighted squared differences between the study effect
sizes and their weighted average. It is distributed as a chi-square statistic
(x%) with k — 1 degrees of freedom, where k is the number of effect sizes.
Suppose that Q = 10.00 for a set of 15 effect sizes. The critical value for
xz (14) at the .05 level is 23.69, so the null hypothesis that the 15 results
share a common population effect size is not rejected at the .05 level.
However, the homogeneity hypothesis would be rejected for the same num-
ber of effect sizes if Q = 25.00.

Rejection of the homogeneity hypothesis leaves the meta-analyst with
two basic options:

1. Continue to assume a fixed-effects model but disaggregate
studies by the levels of one or more meta-analytic predictors.
Continue until the homogeneity hypothesis is not rejected
within each category.

2. Specify a random-effects or a mixed-effects model instead of
a fixed-effects model.

The second option implies selection of a different model for error.
There is no single universe of studies or true effect size in a random-effects
model, also called an unconditional model. It assumes that (a) there is a
distribution of population effect sizes (i.e., a different true effect size underlies
each study), and (b) between-studies variation in effect sizes is random and
a result of sources that cannot be identified. A mixed-effects model assumes
that between-studies variation may be a result of both systematic factors
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that can be identified (e.g., Table 8.1) and to random sources that cannot.
Effect sizes in either model are weighted by

*

w; = 6% + w; (86)

where w; is the within-studies variation (Equation 8.2) and &3 is an estimated
population variance component for random between-studies variability.
There are different ways to estimate 3. One method is based on the variance
of the observed effect sizes around the unweighted average effect size, and
another is based on the Q statistic, among others (e.g., Shadish & Haddock,
1994). The estimation of two sources of error variance instead of just one,
as in a fixed-effects model, may improve the prediction of observed effect
sizes. It is also consistent with generalization of the results to studies not
identical to the set of found studies.

Readers should know that there is no clear census that random-effects
or mixed-effects models are clearly superior to fixed-effects models. For
example, a fixed-effects model may be preferred when the found studies are
relatively homogeneous, treatments are precise, or their effects are generally
well-understood (T. Cook, Cooper, Corday, et al., 1992). Part of the task
of the data analysis phase in a meta-analysis is to select an appropriate
model for error variance. Shadish and Haddock (1994) noted that this
choice is not entirely statistical or conceptual, but it should be guided by
the researcher’s domain knowledge.

Statistical techniques for meta-analysis include analogues of the analy-
sis of variance (ANOVA) or multiple regression for weighted effect sizes.
For example, it is possible to disaggregate studies by the levels of two crossed,
categorical study factors and perform a two-way ANOVA on the weighted
effect sizes. This analysis would estimate both main and interaction effects
of the meta-analytic predictors. Statistical tests of these effects are based
on the (Q statistic, not the F ratio. All ANOVA models for effect sizes are
special cases of multiple regression for effect sizes. The latter can include
continuous and categorical meta-analytic predictors in the same equation
and estimate interactions between them. Regression methods also allow
individual predictors or blocks of predictors to be entered into or removed
from the equation in an order specified by the researcher—see Hedges
(1994) and Raudenbush (1994) for more information about both methods
for analyzing effect sizes.

Suppose in a meta-analysis that the nil hypothesis of zero population
effect size has been rejected. There are ways to estimate what is known as
the fail-safe number of file drawer (unpublished) studies not found in the
literature search with an average effect size of zero needed to fail to reject
the nil hypothesis of zero population effect size. R. Rosenthal’s (1979) is
probably the best known method, but there are others. If the estimated
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number of unpublished studies is so large that it is unlikely that so many
studies (e.g., 2,000) with a mean nil effect size could exist, more confidence
in the original result may be warranted. Some authors have criticized the
assumptions that underlie estimates of the fail-safe number of studies, how-
ever (e.g., Qakes, 1986, pp. 157-159).

As is probably obvious by now, many decisions made while analyzing
effect sizes influence the final results of a meta-analysis. [n a sensitivity analysis,
the data are reanalyzed under different assumptions, and the results are com-
pared with the original findings. If both sets of results are similar, the original
meta-analytic findings are robust with regard to the manipulated assump-
tions. Suppose that the criteria for study inclusion are modified in a reason-
able way and a somewhat different subset of all found studies is retained.
If the meta-analysis is repeated with the new subset and the results are not
appreciably different from those under the original criteria, the meta-analytic
results are robust concerning the inclusion criteria. A related tactic evaluates
the effect of excluding or including individual studies in a particular order.
For example, if deleting a single study changes a statistical average weighted
effect size to a nonstatistical effect size, an explanation is needed.

Describe, Interpret, and Report the Results

This stage is similar to that for a primary study, so it needs little
description. R. Rosenthal (1995) offered suggestions for writing and under-
standing a meta-analytic article.

MINI META-ANALYSIS

Table 8.2 presents characteristics and outcomes of nine hypothetical
studies that compare treatment with control. It is assumed across all studies
that (a) treatment is implemented the same way to patients who have the
same illness, and (b) the outcome variable reflects the same construct and
is measured with the same method. Studies listed in Table 8.2 are classified
into three groups by illness chronicity. That is, studies 1 to 3 were conducted
with patients who have a chronic form of the illness, studies 6 to 9 involved
samples with acute forms, and illness duration was intermediate among the
patients in studies 4 and 5. The magnitude of the treatment effect is estimated
with Hedges’s g, where positive values indicate an advantage over control.
Also reported in the table are approximate conditional variances and weights
for each effect size assuming a fixed-effects model.

The sum of the weighted effect sizes across the nine studies in Table
8.2 is Twg = 55.596, and the sum of weights is Zw = 118.464. The average
weighted effect size is thus
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TABLE 8.2
Characteristics and Results of Nine Hypothetical Studies of
Treatment Effectiveness

liness Group size Outcome
Study chronicity Treatment  Control g A w wg
1 Chronic 25 20 -.05 .0900 11.108 -.555
2 Chronic 15 25 .05 1067 9.372 469
3 Chronic 40 40 -10 .0501 19.974 -1.997
4 Intermediate 20 20 .55 .1040 9.617 5.289
5 Intermediate 35 35 .65 .0602 16.598 10.788
6 Acute 30 35 .90 .0683 14634 13.171
7 Acute 15 15 70 1421 7.038 4.927
8 Acute 20 20 .85 .1095 9.132 7.762
9 Acute 45 45 .75 .0476 20.991 15.743
Total 118.464 55.596

Note. The conditional variances for g are estimated with the first equation in Table 4.5.

M, = 55.596/118.464 = .4693

That is, the average weighted treatment effect across the nine studies is just
under .50 standard deviations in magnitude. Its standard error is the square
root of the reciprocal of the sum of the weights across all studies:

Sm, = (1/118.464)"% = 0919

The approximate 95% confidence interval for the population average
weighted effect size is

4693 £ .0919 (1.96) or 4693 + .1801

which defines the interval .29-.65 at two-decimal accuracy. The homogene-
ity test statistic computed for all nine studies is

Q = 11.108 (—.05 — .4693) + 9.372 (.05 — .4693)?
+ ...+ 15.743 (.75 - 4693)* = 17.79

which exceeds the critical value of x* (8) at the .05 level, 15.51. Thus, the
average observed effect size does not seem to estimate a common population
effect size. Inspection of the effect sizes in the table supports this conclusion:
The magnitude of the treatment effect is close to zero in studies 1 to 3
where the patients have chronic forms of the illness, but it is larger in
studies 4 to 9 where patients have conditions of either acute or intermedi-
ate duration.
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Table 8.3 reports the results of a one-way ANOVA conducted with the
weighted effect sizes in Table 8.2. The single factor is illness chronicity, and
its three levels classify the nine studies into three groups: chronic (n; = 3),
intermediate (n; = 2), and acute (n3 = 4). Total variability in a one-way
ANOVA for effect sizes can be broken down into between-groups variability
and within-groups variability, just as in a primary study. The between-groups
variability is tested with the homogeneity test statistic Qp. It equals the
sum of weighted squared deviations of the group mean effect sizes from the
grand mean effect size computed earlier, M, = .4693. The group means are
the average weighted effect sizes across the studies in each category. For
example, the mean effect size and standard error for studies 1 to 3 are

= (=555 + .469 — 1.997)/(11.108 + 9.372 + 19.974)
= —2.063/40.454 = -.0515

&Chronic

M = (1/40.454)172 = 1572

8Chronic

Mean effect sizes for the other two groups of studies are computed in similar
ways. Across the four studies conducted with patients with acute illness,
the size of the average treatment effect is .80 standard deviations, and it is
.61 standard deviations across the two studies conducted with patients with
intermediate illness durations, both at two-decimal accuracy.

Using four-decimal accuracy for mean effect sizes in the computations,
the between-groups homogeneity test statistic is

Qp = 40.454 (—.0515 — .4693)? + 26.215 (.6133 — .4693)?
+ 51.795 (.8032 — .4693)% = 17.29

where the weights for each squared deviation of group mean effect sizes
from the grand mean is the total of the weights for studies in each category.

TABLE 8.3
Average Effect Sizes, Confidence Intervals, and Heterogeneity Test
Results for the Data in Table 8.2

Source af M, Sw, w Q P

Between groups 2 — — —_ 17.29 <.001
Within groups 6 — —_ _ 49 .98
Chronic 2 -05(-.36-26) .1572 40.454 14 .932
Intermediate 1 .61 (.23-.99) .1953 26.215 .06 .806
Acute 3 .80 (.53-1.07) .1389 51.795 .29 .962
Total 8 .47 (.29-.65) .0919 118464 17.79 .023

2Approximate 95% confidence interval.
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This statistic tests the omnibus group effect with two degrees of freedom.
The critical value of ¥ (2) at the .05 level is 5.99, so the nil hypothesis
that the three population effect sizes are equal is rejected.

It is also possible to compute homogeneity test statistics within each
of the three groups of studies. Each statistic tests the hypothesis that a
common population effect size is estimated within each group. It is computed
just as Q for the total data set, except that weighted squared deviations are
taken from the group mean effect size, not the grand mean M,, across all
studies. For example, the homogeneity test statistic for the three studies
conducted with samples of chronically ill patients is computed as follows:

QChronic = 11.108 [-.05 — (—.0515)]* + 9.372 [.05 — (-.0515)]
+19.974 [-.10 - (=.0515))* = .14

The critical value of Xz (2) at the .05 level is 5.99, so the homogeneity
hypothesis is not rejected; that is, the three results in this group seem to
estimate the same population parameter. Within-groups homogeneity test
statistics for the other two sets of studies are computed the same general
way. Their values are Qacuee = -06 and Qpueermed = -29, so the homogeneity
hypothesis is not rejected in any of the groups of studies. Thus, partitioning
studies by level of the illness chronicity factor results in uniform estimates
of population effect size within each group. The sum of the homogeneity
test statistics for each group equals the total within-groups homogeneity
test statistic, or

QW = QChronic + QAcute + antermed =.14 + 06 + .29 = 49

which is distributed as a ? (6) statistic. Therefore, the homogeneity hypothe-
sis for the total within-groups variability in effect sizes is also not rejected.
The sum of the between-groups and total within-groups homogeneity test
statistics equals (within slight rounding error) the test statistic computed
earlier for the total data set, or

Q = QB + QW =17.29 + 49 = 17.78

THREATS TO THE VALIDITY OF A META-ANALYSIS

Both those who promote (e.g., Hunt, 1997) or dismiss (e.g., Eysenck,
1995) meta-analysis would probably agree that it is no less subject to many
of the same problems that can beset the primary studies on which it is
based. Meta-analysis is also subject to additional limitations specific to the
technique. Some examples were already mentioned, including the apples
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and oranges problem and the garbage in, garbage out problem. Other con-
cerns raised by Cooper and Hedges (1994a) and Sohn (1995), among others,
are outlined next.

Although it is useful to know average effect size magnitudes in some
research area, effect size by itself says relatively little about substantive
significance (see chap. 4, this volume). It is also true that explaining a
relatively high proportion of the observed variance in study outcomes with
a set of meta-analytic predictors does not imply that these factors are actually
the ones involved in the underlying processes. It is possible that an alterna-
tive set of factors may explain just as much of the variance or that some
of the measured predictors are confounded with other, unmeasured factors
that are actually more important. Meta-analysis is not a substitute for primary
studies. Despite their limitations, primary studies are still the basic engine
of science. Indeed, a single brilliant empirical or theoretical work could be
worth more than hundreds of mediocre studies synthesized in meta-analysis.
There is concern about the practice of guarding against experimenter bias
by having research assistants code the primary studies. The worry is about
a crowding out of wisdom that may occur if what is arguably the most
thought-intensive part of a meta-analysis—the careful reading of the individ-
ual studies—is left to others.

It is probably best to see meta-analysis as a means to better understand-
ing the current state of a research area than as an end in itself or some
magical substitute for critical thought. Its emphasis on replication, effect
sizes, and the explicit description of study retrieval methods are certainly
an improvement over narrative literature reviews. It also has the potential
to address hypotheses not directly tested in primary studies. If the results
of a meta-analysis help researchers conduct better primary studies, then
little more could be expected.

EXAMPLES OF META-ANALYSES

The idea of applying the statistical methods of primary studies to
synthesize results across studies is not new. Bangert-Drowns (1986) cited
works from the 1930s in which correlations, p values from statistical tests,
or average treatment effects were combined across studies in agriculture,
public health, and other areas. The term meta-analysis is generally attributed
to G. Glass (1976), who along with R. Rosenthal (1976) is widely credited
with furthering contemporary forms of meta-analysis. A synthesis of results
about psychotherapy outcomes by Smith and Glass (1977) is perhaps the
first modern meta-analysis. Features of that analysis included the estimation
of a common effect size index across all studies (d), the classification of
studies by several different meta-analytic predictors (e.g., group vs. individual
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therapy), and the elimination of studies with gross design flaws. Hundreds
of meta-analytic studies have subsequently appeared in the behavioral and
medical research literatures. That meta-analysis is endorsed by many as a
useful way to synthesize results is hard to deny. Indeed, it is difficult to pick
up some research journals without finding at least one meta-analytic article.
Examples that illustrate basic meta-analytic principles follow.

Amplitude of Event-Related Potentials
From Males at Risk for Alcoholism

Polich, Pollock, and Bloom (1994) conducted a meta-analysis about
the P300 component of event-related brain potentials (ERP) as a possible
biological marker of the risk for alcoholism among male adolescents and
young adults. The P300 component is generated when attending to or
discriminating between stimuli. It may reflect physiological processes that
underlie working memory. Polich et al. found and retained a total of about
20 studies where P300 amplitudes of young men with and without positive
family histories for alcoholism were compared. These studies generated a
total of 30 comparisons on different types of tasks. Each result was described
with a d statistic, where positive values indicate lower P300 amplitudes in
the positive family history group than in the negative family history group.
Figure 8.1 presents a reproduction of the figure in Polich et al. that presents
all 30 effect sizes as dots. Each dot is surrounded by horizontal lines that
represent approximate 95% confidence intervals. The style of the horizontal
lines identifies task modality (auditory vs. visual, easy vs. hard). Note in
Figure 8.1 that most d statistics (20/30) are positive, which indicates generally
diminished P300 amplitudes among young men with positive family histories.
Most of the confidence intervals (24/30) include zero, which says that the
box-score is 24 to 6 in favor of the nil hypothesis of a zero population effect
size. This outcome is not surprising considering that the average group size
across all studies is only about 17 (i.e., statistical power is low). However,
the average weighted d statistic across all comparisons is .33, and the 95%
confidence interval based on this result, .18—.49, does not include zero. This
demonstrates how an accumulated result can be greater than the sum of
its parts.

Polich et al. disaggregated individual effect sizes by task modality and
participant age (<17, 218 years old). For easy discrimination tasks, the
average weighted effect sizes for auditory versus visual task modalities are
very similar, .18 and .20 standard deviations, respectively. For difficult tasks,
however, the average effect sizes for auditory versus visual modalities are
.06 and .65 standard deviations, respectively. Mean effect sizes are also
greater in studies with younger samples than older samples, .62 versus .16
standard deviations, respectively. Other analyses by Polich et al. indicated
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Figure 8.1. Standardized mean differences (dots) and 95% confidence intervals
(horizontal lines) for 30 contrasts between young men with and without family histories
for alcoholism on P300 amplitude. From “Meta-Analysis of P300 Amplitude From
Males at Risk for Alcoholism,” by J. Polich, V. E. Pollock, and F. E. Bloom, 1994,
Psychological Bulletin, 115, p. 63. Copyright 1994 by the American Psychological
Association. Adapted with permission.



that the source through which participants with positive family histories
were recruited—whether their fathers were treated for alcoholism versus
not necessarily—did not clearly predict variability in effect size magnitudes.
Overall, differences in average P300 amplitudes between young men with
and without family histories of alcoholism were strongest for difficult visual
tasks and adolescents.

Gender Differences in Personality Characteristics

Feingold (1994) conducted four different meta-analyses to estimate
the magnitudes of gender differences in personality characteristics among
adults. These analyses concerned studies published in three different time
periods—1958-1974, 1975-1983, and 1984-1992; and about four different
traits—self-esteem, internal locus of control, anxiety, and assertiveness.
Disaggregation of studies by publication date allows estimation of temporal
trends in the magnitudes of gender differences in personality characteristics.
Feingold found relatively little variation over time in average weighted d
statistics. For example, assuming positive values indicate higher means for
men than women, the range of weighted average d statistics across the three
time periods is .10 to .16 for self-esteem, .12 to .20 for assertiveness, and
—31 to —.15 for anxiety. Results for internal locus of control were less
consistent: Mean d statistics from studies in the earliest and latest time
periods range from .07-.08, but the average gender difference in studies
from the middle time period is .24 standard deviations in magnitude.

Broadly speaking, there are two possible sources of observed gender
differences in personality characteristics among adults, biological (genetic,
hormonal) and sociocultural (environmental). A tenet of the sociocultural
model is that differential socialization of children contributes to later psycho-
logical differences between men and women. Differential socialization refers
to the encouragement of certain traits or behaviors more for children of
one gender than another. For example, showing interpersonal warmth may
be rewarded more for girls and achievement may be cultivated more for
boys. It is also possible that fathers may make greater differences between
sons and daughters than do mothers. To address inconsistent results of
primary studies and narrative reviews about differential socialization effects,
Lytton and Romney (1991) meta-analyzed results of extant studies in the
area. Their set of retained studies included 158 from North America where
socialization practices for boys and girls were contrasted. Lytton and Romney
partitioned these studies by parent and eight different major socialization
areas, such as warmth, discipline, and gender-typed activities.

Lytton and Romney found clear evidence for a differential socialization
effect in only one area, gender-typed activities. For mothers, the average
weighted effect size in this area is .34 standard deviations, which indicates
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stronger encouragement for sons than daughters. Average effect sizes for
mothers across all other major socialization areas ranged from —.07 to .07
standard deviations. For fathers, the average weighted effect size for encour-
agement of gender-typed activities is .49 standard deviations. In other words,
fathers tend to differentiate somewhat more strongly than mothers between
boys and girls in this area. Fathers also tended to emphasize somewhat more
strongly than mothers’ discipline and restrictiveness for boys than girls, but
the magnitudes of average effects in these areas are modest, just under .20
standard deviations each. In general, these meta-analytic results do not
support the view that differential socialization effects are large, pervasive,
or vary strongly by mothers versus fathers.

Cross-Informant Consistency in Reports
About Children’s Adjustment Status

Clinical assessment of children is characterized by the collection of
observations from multiple informants, including parents, teachers, mental
health workers, other adult observers, and children themselves. Achenbach,
McConaughy, and Howell (1987) retrieved a total of 194 studies where
different combinations of informants provided a score, and cross-informant
agreement was measured with Pearson correlations. The average weighted
correlation for informants with similar relationships to the child were similar
and ranged from .54 for pairs of mental health workers to .64 for pairs of
teachers. Agreement between pairs of informants with different relationships
to the child was generally lower, ranging from a mean correlation of .24
for parent-mental health worker pairs to .42 for teacher—observer pairs.
And overall agreement between child self-reports and those of other infor-
mants were the lowest of all: Mean correlations ranged from .20 for child-
teacher pairs to .27 for child—mental health worker pairs. Correlations were
also disaggregated by child characteristics and type of behavior problems.
Mean average correlations by these categories were generally similar, with
two exceptions: Average agreement was somewhat higher for younger chil-
dren than older children (M, = .51, .41, respectively) and for externalizing
problems than internalizing problems (M, = .41, .32, respectively). Based
on these results, Achenbach et al. argued that child assessment practices
be geared toward the reality of relatively low cross-informant agreement.

CONCLUSION

Meta-analysis has become an important method for research synthesis
in the behavioral sciences, so primary researchers in these areas should
understand its strengths and limitations. Crucial questions about the validity
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of a meta-analysis concern the selection of studies, assessment of their quality
and measurement of their characteristics, computation of a common measure
of outcome—usually a standardized effect size index—how lack of indepen-
dence in results is handled, and the underlying statistical model assumed
in the analysis. Effects of decisions about the areas just mentioned on the
results can be evaluated in a sensitivity analysis. The typical meta-analysis
estimates an average standardized effect size and whether substantive,
method, or extrinsic factors explain variability in results across studies. A
good meta-analysis should summarize the status of a literature and suggest
new directions for primary studies.
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RESAMPLING AND
BAYESIAN ESTIMATION

Put simply, the basic dilemma in all sciences is that of how much to
oversimplify reality.

—H. M. Blalock (1964, p. 8)

The formal theory that underlies traditional statistical tests dates to
the early 1900s. The title of an article by Wilcox (1998) asks the question,
How many discoveries have been lost by ignoring modern statistical meth-
ods? Fortunately, there is a wealth of alternative methods, some based
on contemporary statistical theory. The two methods selected for review,
resampling and Bayesian estimation, are generally unfamiliar in the behav-
ioral sciences. However, both methods are promising for the kinds of prob-
lems studied by many behavioral researchers. Both also support the evalua-
tion of competing models. Please note that entire books are devoted to each
of the techniques considered, so it is not possible in one chapter to describe
them in any substantive detail. Instead, the goal of this presentation is to
make the reader aware of even more alternatives to traditional statistical
tests and provide references for additional study.

RESAMPLING TECHNIQUES

Techniques for resampling—also known as computer-intensive methods—
are forms of internal replication (see chap. 8, this volume) that recombine
the cases in a data set in different ways to estimate statistical precision,
with possibly fewer assumptions about underlying population distributions
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compared to traditional methods. The three methods described—
bootstrapping, the jackknife, and randomization procedures—all work by
instructing the computer to take large numbers of random samples (e.g.,
> 1,000) from an original data set, compute in each generated sample an
estimator, and construct an empirical frequency distribution of that estimator
across all generated samples. The value of the estimator in the original data
set is located in this frequency distribution, and its empirical probability
and standard error can be determined. The properties of the empirical
frequency distribution, such as its central tendency, variability, skewness, or
kurtosis, can be used to construct a confidence interval for the corresponding
parameter. In contrast, traditional methods for interval estimation often
rely on equations for asymptotic (large-sample) standard errors that make
certain distributional assumptions, such as normality (chap. 2, this volume).

Specific Techniques

The technique of bootstrapping, developed by B. Efron in the late 1970s
(e.g., Diaconis & Efron, 1983), is probably the best known and most flexible
of the resampling methods described. The term bootstrapping is from the
expression about lifting oneself up by one’s bootstraps, which itself probably
originates from a story by Rudolph Raspe (1737-1794) about the fictional
Baron Munchausen, who after falling to the bottom of a lake returned
himself to the surface by pulling up on his bootstraps. Perhaps the best
known form of this technique is nonparametric bootstrapping, which makes
no assumptions about the population distribution other than that the distri-
bution of the data reflects its basic shape. It works theoretically by copying
a data set onto itself an infinite number of times and drawing random
samples from this pseudo-population (B. Thompson, 1993b). In practice,
cases from the original data file are randomly selected with replacement to
form a new sample, usually the same size as the original. Because of sampling
with replacement, the same case could be selected more than once, and
the composition of cases can vary across generated samples. When repeated
many times by the computer, bootstrapping constructs an empirical sampling
distribution. A related but older technique is the jackknife. This method
typically excludes one case from each resampling of an original data set,
which makes for a total of N + 1 possible analyses, including the one with
all the cases. Efron and Tibshirani (1993) showed that the jackknife is a
linear approximation to the generally more efficient bootstrap. As a conse-
quence, only bootstrapping is discussed.

The bootstrap method can be implemented with just about any tradi-
tional statistical method. For example, one-variable bootstrap methods concern
the statistical stability of estimators computed in a single sample. These
methods generate bootstrapped confidence intervals based on statistics such as
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means, medians, variances, or skewness indexes in one group. Two-variable
bootstrap methods construct confidence intervals based on statistics from two
variables or groups, such as Pearson correlations or mean contrasts. If the
means are independent, the computer generates pairs of bootstrapped sam-
ples, one taken from each group, and records the mean difference across
the two generated samples. The frequency distribution of mean differences
for all replications is then used to construct a bootstrapped confidence
interval for the mean contrast. There are actually different kinds of boot-
strapped confidence intervals that differ in their assumptions about the
underlying distribution. Bias-corrected bootstrapped confidence intervals make
the fewest assumptions—that is, they are based closely on the empirical
sampling distribution generated from the bootstrapped samples (Lunne-
borg, 2000).

Parametric bootstrapping allows specific assumptions about the parame-
ters of population distributions. Instead of sampling with replacement from
an actual data set, bootstrapped samples of a specified size are drawn from
a probability density function that reflects those parameters. For statistics
with textbook equations for their standard errors, such as means (see chap. 2,
this volume), parametric bootstrapped estimates of standard errors based on
the same assumptions, such as normality, tend to be similar. Bootstrap
estimation used in parametric mode can also approximate standard errors
for statistics where no textbook equation is available (Efron & Tibshirani,
1993), given certain assumptions about the population distribution. These
assumptions can be relaxed when bootstrapping is done in nonparametric
mode. It is nonparametric bootstrapping that is seen more often in the
behavioral sciences, so only this method is considered.

There are also bootstrap versions of many different types of statistical
tests. Consider a bootstrap version of the independent samples ¢ test for a
data set with n; = 30 scores in the first group and n; = 20 scores in the
second group: The computer randomly selects, with replacement, 50 scores
from the total data set. The first 30 of these selections are assigned to the
first bootstrapped sample, and the next 20 scores are assigned to the second.
A ¢ statistic is computed for the mean contrast from each pair of generated
samples. After many replications, the observed value of ¢ in the original
data set is located in the empirical frequency distribution of t values from
the bootstrapped samples. If the probability of the observed ¢ is less than
.05 in the empirical sampling distribution, the null hypothesis of H:
W = W, is rejected at the .05 level. The bootstrap t test just described requires
the same assumptions as the standard t test for independent samples (chap. 2,
this volume), and this is true even though the bootstrap mode is nonpara-
metric. In other words, using a bootstrap version of statistical test does not
free one from the distributional assumptions of the traditional version of
the same test.
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However, the somewhat restrictive assumptions of the independent
samples t test are not necessary if the empirical sampling distribution is
based on the unstandardized mean differences across all pairs of bootstrapped
samples instead of the parametric ¢ statistic. In this case, the null hypothesis
is more general—Efron and Tibshirani (1993) stated it symbolically as Hy:
F = G, where F and G are population distributions, and Sprent (1998)
expressed it conceptually by arguing that there is no differential response
in the measured characteristic between the populations. This null hypothesis
could be false because the means or shapes of distributions F and G are
different.

Related techniques of resampling include randomization procedures,
sometimes called rerandomization. These techniques are related to R. Fisher’s
idea of a permutation test, which dates to the 1930s. This was before
the advent of computers capable of actually conducting it. Contemporary
randomization procedures are typically used in experimental designs with
two conditions, such as randomized clinical trials. Unlike the standard t
test for such designs, randomization procedures do not assume random sam-
pling from known populations, just random assignment of cases in locally
available samples to different conditions. As a consequence, there may be
little concern with estimating population parameters (see chap. 3, this
volume). The computer in a randomization procedure shuffles the scores in
the total data set. Each shuffle may swap pairs of scores across the groups.
With many iterations, this algorithm simulates the effects of chance switches
of scores across the groups, and the empirical sampling distribution is based
on the mean differences across all pairs of generated samples. The observed
mean difference is located in this distribution, and its empirical probability
is determined. If the level of statistical significance is .05 and the empirical
probability of the observed mean difference is less than .05, the null hypothe-
sis of equal population distributions is rejected. The total number of unique
combinations of all the scores over two groups of even moderate size, such
as 50, may be so large that it is not practical even with a computer to
generate all possible combinations. As in bootstrap techniques, one may be
satisfied with at least 1,000 replications, however. See Good (2000) and
Lunneborg (2001) for more information.

A brief example follows. Table 9.1 presents a small data set for a two-
group design where the observed mean difference is 2.00. The standard error
of the mean difference estimated with the textbook formula (Equation 2.8) is

smy - M, = {[(7.33 + 8.00)/2] (1/10 + 1/10)}"2 = 1.238

The width of the traditional 95% confidence interval for p; — W is the
product of the standard error and t;.; 05 (18) = 2.101, or
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TABLE 9.1
Raw Scores and Descriptive Statistics for Two Groups

Group
1 2
25 24
26 25
31 31
29 28
30 26
30 26
31 33
32 28
33 30
33 29
M 30.00 28.00
& 7.33 8.00

2.00 + 1.238 (2.101)

which defines the interval —.60-4.60. The bootstrap module of SimStat
(Provalis Research, 1996)! was used to generate a bias-corrected 95% boot-
strapped confidence interval for ; — [, with the data in Table 9.1. The
empirical sampling distribution of mean differences across 5,000 pairs of
bootstrapped samples is presented in Figure 9.1. The mean of this distribution
is 1.993, its standard deviation is 1.195, and values of its skewness and
kurtosis indexes are, respectively, —.10 and —.08. The standard deviation of
1.195 is actually the bootstrapped estimate of the standard error of the mean
difference. The bias-corrected 95% bootstrapped confidence interval based
on the distribution in the figure is —.40—4.25. This interval is not symmetrical
about 1.993 because the empirical sampling distribution is not symmetrical.
Please note that the traditional and bootstrapped estimates for this example
with means are quite similar, as expected.

The observed ¢ (18) statistic for the mean difference in Table 9.1 is
1.615, which is equivalent to F (1, 18) = 1.615% = 2.609. The two-tailed
p value for both test statistics assuming a standard central distribution is
.124. A bootstrap F test of the mean difference for the data in Table 9.1
was conducted with the freely available program Resampling Procedures
(RP) by D. Howell (2001).2 Figure 9.2 presents the empirical frequency
distribution of F statistics for the mean difference across 5,000 pairs of
bootstrapped samples. The empirical probability of the observed F value of

'An evaluation version can be downloaded from http://www.simstat.com/
See http://www.uvm.edu/~dhowell/StatPages/Resampling/Resampling.html
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Figure 9.1. Empirical sampling distribution for mean differences in 5,000 pairs of
bootstrapped samples for the data in Table 9.1.

2.609 for a nondirectional alternative hypothesis in this distribution is .148,
which is somewhat higher than the p value for the traditional F test for
these data. Both the traditional F test and the bootstrap F test require the
same statistical assumptions for this example (see chap. 2, this volume).

Evaluation

The family of resampling techniques is versatile, and it has seen many
different applications in both the social and natural sciences. That there
are increasing numbers of software tools for resampling techniques also makes
them more accessible to applied researchers. In addition to the programs
mentioned, another includes the stand-alone program for personal computers
Resampling Stats (Resampling Stats, 1999).> There are also add-in versions
of this program that run under Microsoft Excel and MathWorks MATLAB.

The bootstrap technique seems especially well suited for interval esti-
mation when the researcher is either unwilling or unable to make a lot of
assumptions about population distributions. A potential application in this
area is the estimation of confidence intervals for effect sizes, but software

3 A trial version can be downloaded from http://fwww.resample.com/content/software/download
.shetml
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Figure 9.2. Empirical sampling distribution for the F statistic in 5,000 pairs of
bootstrapped samples for the data in Table 9.1.

tools for bootstrap methods do not yet generally compute effect sizes other
than correlations. I am less enthusiastic about using bootstrapping or other
resampling methods to conduct statistical tests. For example, if the null
hypothesis is implausible, the empirical probability of a bootstrapped test
statistic may be too low, just as for traditional statistical tests. Also, both
traditional and bootstrap statistical tests ignore effect size magnitude.

Some possible limitations of resampling techniques are summarized
next:

1. Resampling is not a substitute for external replication (see
chap. 8, this volume).

2. Resampling does not entirely free the researcher from having
to make assumptions about population distributions. That as-
sumptions can be added incrementally in some resampling
methods is a positive feature, however.

3. The “population” from which bootstrap samples are drawn in
nonparametric mode is merely the original data set. If this
data set is small, unrepresentative, or the observations are not
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independent, resampling from it will not somehow fix these
problems. In fact, resampling can magnify the effects of unusual
features in a data set, which can compromise external validity
(J. Rodgers, 1999).

4. The accuracy of resampling estimates may be questionable for
relatively small numbers of iterations, such as < 500. However,
this is not generally a problem on contemporary personal
computers where it may take just moments to execute thou-
sands of iterations.

5. Results of bootstrap analyses are probably quite biased in small
samples, but this is true of many traditional statistical methods,
too. That is, bootstrapping does not cure small sample sizes.

BAYESIAN ESTIMATION

Traditional statistical tests estimate the probability of the data under
a point null hypothesis, or p (D | Hp). Also, the percentage associated with
a traditional 100 (1 — )% confidence interval, such as 95%, is not generally
interpretable as the chance that the interval contains the corresponding
population parameter. Most researchers would rather know the probability
of the hypothesis (not necessarily a point null hypothesis) in light of the
data, or p (H| D), and the probability that a parameter falls within a specific
confidence interval (see chaps. 2 and 3, this volume). These are exactly
the kinds of questions addressed in a Bayesian approach. Since the late 1950s,
Bayesian methods have been widely used in many disciplines, including
economics, computer science, and medicine (e.g., Gatsonis et al., 2001).
Although introduced to psychology in the late 1960s by various authors
(e.g., Edwards, Lindman, & Savage, 1963), Bayesian statistics never really
caught on among behavioral researchers. This is unfortunate because a
Bayesian approach has a lot to offer. Indeed, once some basic fundamentals
are mastered, a Bayesian approach to hypothesis testing and estimation is
much closer to intuitive scientific reasoning than traditional statistical tests.
For example, the following principles are all supported in Bayesian analysis:

1. Not all hypotheses are equally plausible before there is evi-
dence. And implausible hypotheses require stronger evidence
to be supported. This is a basic tenet of science: Extraordinary
claims require extraordinary proof. It was mentioned earlier
that many nil hypotheses tested in the behavioral sciences
are implausible. This results in p values from statistical tests
that are too low, which exaggerates the significance of the
findings (see chap. 3, this volume). In contrast, Bayesian meth-
ods take explicit account of hypothesis plausibility.

280 RESAMPLING AND BAYESIAN ESTIMATION



2. Not all researchers will see the same hypothesis as equally
plausible before data collection. This is a basic fact of science,
if not human nature. The effect of assuming different degrees
of plausibility for the same hypothesis can also be explicitly
estimated in a Bayesian analysis.

3. Data that are not precise will have less sway on the subsequent
plausibility of a hypothesis than data that are more precise.

4. The impact of initial differences in the perceived plausibility
of a hypothesis tend to become less important as results accu-
mulate. That is, open-minded people with different initial
beliefs are generally driven toward the same conclusion as
new results are synthesized along with old ones. The only real
long-term effect of initial differences in belief is that skeptics
will require more data to reach the same level of belief as
those more enthusiastic about a theory (Matthews, 2000).
This is another fact of both science and everyday life.

Two factors may account for the general lack of familiarity with Bayes-
ian methods in the behavioral sciences. One is the almost exclusive focus
on traditional statistical tests in university curricula (chap. 3, this volume).
Another is that Bayesian statistics are associated with a subjectivist rather
than a frequentist view of probability. Recall that a subjectivist view does
not distinguish between repeatable and unrepeatable (unique) events, and
probabilities are considered as degrees of personal belief that may vary from
person to person (see chap. 2, this volume). As outlined, it is necessary in
Bayesian statistics to estimate the prior probability of some hypothesis before
the data are collected, and this prior probability is a personal probability.
There is a perception among those unfamiliar with Bayesian statistics that
these prior probabilities are wholly subjective guesses just “plucked out of
the air,” perhaps to suit some whim or prejudice (Matthews, 2000). In
contrast, traditional statistical tests may be seen as more objective because
they are based on a frequentist view, which does not allow personal
probabilities.

For a few reasons, the perceptions of Bayesian statistics described are
not correct. If absolutely nothing is known about some hypothesis, the
researcher has little choice other than to guess about its plausibility. How-
ever, it is rare for researchers to have absolutely no previous information,
such as results of earlier studies or experience with a particular subject
population, on which to base an estimate of prior probability. There are also
methods from cognitive psychology for eliciting consistent prior probabilities
from content experts about competing hypotheses. These methods try to
avoid common difficulties that arise when people try to reason with probabili-
ties, such as the conjunction fallacy, which occurs when a higher probability
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is estimated for two joint events than for the individual events. . Anderson
(1998, June) gave many examples, including the posing of questions for
content experts in a frequency format instead of a probability format. Har-
sanyi (1983) and others suggested that the probability model that underlies
Bayesian methods in practice is actually between a subjectivist view and a
rationalist view of probability. The latter assumes there are always specific
rational criteria for choosing a unique set of prior probabilities. It is also
true that although traditional statistical tests appear to be objective, their
use requires many subjective decisions (see chaps. 2 and 3, this volume).

It is time for psychology (and related disciplines) to reconsider its
reluctance to explore Bayesian statistics. The next few sections outline the
basic rationale of these statistics, consider a few potential applications, and
identify other barriers to wider use of Bayesian methods in the behavioral
sciences.

General Rationale

Bayesian statistics are a set of methods for the orderly expression and
revision of belief as new evidence is gathered (Edwards et al., 1963). In this
sense, the Bayesian approach is similar to meta-analysis in that both are
methods for research synthesis, but the former specifically includes uncer-
tainty in the analysis. Bayesian statistics are based on Bayes’s theorem, which
is from a posthumous publication (1763) of a letter by Rev. Thomas Bayes
(1702-1761) in the Philosophical Transactions of the Royal Society. It is based
on the mathematical fact that the joint probability of two events, D and
H, is the product of the probability of the first event and the conditional
probability of the second event given the first, or

p(DAH)=p([D)pH|D)=p(H)p(D|H) (9.1)

where the logical connective A designates the conjunction and. Solving
this expression for the conditional probability p (H | D) gives us the basic
form of Bayes’s theorem:

p(H|D) =2 (HL"(S)) H) (9.2)

Assume now that D stands for data and H for hypothesis. The probability
p (H| D) in Equation 9.2 is the posterior probability of the hypothesis, given
the data. This probability is a function of two prior (marginal, unconditional)
probabilities, p (H) and p (D), and a conditional probability called the
likelihood, or p (D | H). The latter is the probability of the data under the

hypothesis, and it is analogous to a p value from a traditional statistical
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test. The term p (H) is the probability of the hypothesis before the data
are collected, and the term p (D) is the probability of the data irrespective
of the truth of the hypothesis. In other words, this equation takes an initial
belief about the hypothesis, p (H), and combines it with information from
the sample to generate an updated belief, p (H | D). Bayes’s theorem also
shows us that the only way to estimate the probability of some hypothesis
in light of the data is through estimation of the prior probability of each
and the likelihood of the data (see chap. 3, this volume).

An example by P. Dixon and O'Reilly (1999) illustrates Bayes’s theo-
rem. Suppose we want to evaluate the probability that it will snow sometime
during the day, given a below-freezing temperature in the morning. In a
certain area, the chance of snow on any particular day of the year is only
10%, so p (H) = .10. The chance of a below-freezing morning temperature
on any particular day is 20%, so p (D) = .20. Of all days it snowed, the
chance of a below-freezing temperature in the morning is 80%, sop (D | H) =
.80. The posterior probability is

p (H|D) = [.10 (.80)]/.20 = .40
That is, there is a 40% chance that it will snow if it is cold in the morning.
Discrete Hypotheses

Suppose that there are k mutually exclusive and exhaustive hypotheses
(H). The sum of their prior probabilities is 1.0, or

k
Y p (H) =10 (9.3)

i=1

In this case, the prior probability of the data in Equation 9.2 can be ex-
pressed as

k
p (D) = ZP (H) p (D|Hy) (9.4)

i=1

which is the sum of the products of the prior probabilities of each of the k
hypotheses and the likelihood of the data under it. An example follows.

Suppose that the distribution of scores on a continuous variable in
some population is normal, the standard deviation is known (o = 12.00),
but the mean (i) is not. There are two competing hypotheses, H; and H;,
that predict that i equals 100.00 versus 110.00, respectively. Assuming no
previous information, each of the two hypotheses is judged to be equally
likely, or
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and the new posterior probabilities for the hypotheses, given both results, are

p (p = 100.00 | M; = 106.00, M, = 107.50) = [.2477 (.0088)}/.1083
=.0201

[.7523 (.1410)}/.1083
9794

p (u = 110.00 | M, = 106.00, M; = 107.50)

If

The posterior probabilities now favor Hj: i = 110.00 even more strongly
over H: p = 100.00 compared to when only the first result was available.
The new posterior odds computed as the ratio of the revised posterior
probability of H; over that of Hj is

Posterior odds; = .9794/.0201 = 48.73

Because of rounding error, the revised posterior odds computed as the product
of the prior odds and the likelihood ratio is just slightly different:

Posterior odds; = .7523/.2477 x .1410/.0088 = 48.66

Note that (a) the prior odds in this second analysis, which is about 3.04,
equals the posterior odds in the first analysis; and (b) the likelihood ratio
in the second analysis, which is about 16.02, is the factor by which the
posterior odds from the first analysis is updated given the second result.

P. Dixon and O'Reilly (1999) give several examples of use of the
likelihood ratio to evaluate competing statistical models, such as different
analysis of variance (ANOVA) or regression models for the same data. They
noted that it is possible in some cases to compute these ratios on the basis
of information available in standard summaries, such as ANOVA source
tables. It may also be possible to correct the likelihood ratio for model
complexity. This is important because more complex models tend to fit the
data better but at the cost of parsimony. P. Dixon and O'Reilly (1999)
suggested that a likelihood ratio that exceeds 10:1 could be regarded as
relatively strong evidence in favor of one model over another. However,
this ratio was not proposed as a formal decision criterion. They also point
out that the most generally cotrect interpretation of a likelihood ratio of
10:1 is that the data are 10 times more likely given one model versus another
model. Only if (a) the prior probabilities of the two models are equal and
(b) the models are of equal complexity would a likelihood ratio of 10:1
indicate that one model is 10 times more likely than another.
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Continuous Random Variables

It is rare that estimation or hypothesis testing is so narrow as described
in the previous example. For instance, researchers do not typically know
the population standard deviation, nor do they generally evaluate competing
hypotheses about discrete values of an unknown population parameter.
Hypotheses are often updated as new information is gathered, too. Unknown
population parameters are often conceptualized as continuous variables, such
as means, proportions, or correlations. In classical statistics, an unknown
continuous parameter is viewed as a constant that should be estimated with
sample statistics. In Bayesian statistics, however, an unknown continuous
parameter 8 is seen as a random variable with its own distribution. (The
symbol @ is presented in italic font to emphasize that it represents a variable,
not a constant.) This distribution summarizes the current state of knowledge
about 0. Its mean (expected value) is the best single guess about the true
value of the parameter, and its variability reflects the amount of uncertainty.
Specifically, wider distributions for 8 reflect greater uncertainty and vice
versa. Accordingly, the reciprocal of the variance may be taken as a measure
of the precision of a distribution for 6. The precision of a sample result can
also be estimated as the reciprocal of its error variance (i.e., the squared
standard error), which is the same principle followed in meta-analysis (see
Equation 8.2).

Prior distributions for @ are typically described by a mathematical
function, f (0). For a noninformative prior distribution, this function will
specify that all possible values of 6 are equally likely. A rectangular distribu-
tion is a special kind of noninformative prior distribution for a random
variable with a fixed range, such as the random population proportion
7 with range 0—1.0. Otherwise, a noninformative prior could be just a flat
distribution with infinite variance, which implies zero precision because
1/ = 0. Informative prior distributions are specified by more complex
functions that define a probability distribution. This distribution may be
modeled after a known probability distribution, such as a normal curve for
random means when the population variance is known or the sample size
is not small or a central t distribution when the population variance is
unknown or the sample size is small.

There are many other known probability distributions, such as the
binomial distribution for proportions and the multivariate normal distribu-
tion for joint random variables such as correlations, and a Bayesian analysis
is much easier if a known distribution can be selected to model the prior
distribution for 8. The same family of known probability distributions—
also called conjugate distributions—may be used in the analysis to specify
the posterior distribution for 8, defined by the function f (8| D), and the
likelihood function for the data, defined by f (D |8). If so, the parameters
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of each conjugate distribution are estimated in the analysis. The selection
of an appropriate probability distribution is a question of statistical model
fitting, and the choice can affect the results. However, the effects of selecting
different distributional models can be evaluated in a sensitivity analysis in
which alternative models are selected.

The mean of the posterior distribution can be seen as the new best
single guess about the true value of 8. Also, the idea of a posterior probability
for a discrete event or hypothesis (Equations 9.2-9.4) is replaced by a
Bayesian confidence interval—also called a Bayesian credible interval or highest
density region—for 6. The percentage associated with a Bayesian confidence
interval, such as 95%, is interpreted as the probability that the true value
of @ is between the lower and upper bounds of the interval. With one
exception, traditional confidence intervals are not to be interpreted this way
(see chap. 2, this volume). The exception occurs when the prior distribution
is flat (uninformative), which implies that the parameters of the posterior
distribution are estimated solely with the sample data. In this case, the
Bayesian confidence interval is asymptotically identical in large samples to
the traditional confidence interval for the unknown parameter, given the
same distributional assumptions. When the prior distribution is informative,
the parameters of the posterior distribution are basically a weighted combina-
tion of those from the prior distribution and those estimated in the sample.
The weights reflect the precision of each source of information. In this
case the Bayesian confidence interval is also generally different from the
traditional confidence interval based on the same result.

Suppose the mean and variance in a normal prior distribution for a
random population mean are, respectively, lip and 3. The precision of this
distribution is prcy = 1/63. The shape of the posterior distribution will be
normal, too, if (a) the distribution of scores in the population is normal
and (b) the sample size is not small, such as N > 50, in which case at least
approximate normality may hold (G. Howard, Maxwell, & Fleming, 2000).
The latter also permits reasonable estimation of the population standard
deviation among cases with the sample standard deviation s. The observed
mean and error variance in a sample are, respectively, M and sj = s%/N,
and the precision of the sample mean is prc, = 1/s%. Given the assumptions
stated earlier, the mean in the posterior distribution, y;, is the weighted
combination of the mean in the prior distribution and the observed mean:

uy = (—P@_—) o + (—‘L) M (9.7)

prco + pre prcg + pres

The variance of the posterior distribution, o7, is estimated as
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1

B prco + pres (98)

1

Note that the relative contribution of new knowledge, the observed mean
M, depends on its precision, prc,, and the precision of all prior knowledge
taken together, which is reflected by prc,.

An example demonstrates the iterative estimation of the posterior
distribution for a random population mean as new data are collected. The
distributional characteristics stated eatlier are assumed. Suppose that the
researcher has no basis whatsoever to make a prior prediction about the
value of g, so a flat prior distribution with infinite variance is specified as
the prior distribution. A sample of 100 cases is selected, and the results are

M, = 106.00, 5, = 25.00, s, = 2.50

The traditional 95% confidence interval for the population mean computed
with L -tail, 05 = 1.96 instead of 2. tail, .05 (99) = 1.98 is

106.00 £ 2.50 (1.96), or 106.00 £ 4.90

which defines the interval 101.10-110.90. The precision of the observed
mean is the reciprocal of the error variance, or prc, = 1/ 2.50% = .16. How-
ever, because the precision of the prior distribution is prcy = 0, the mean
and standard deviation of the posterior distribution given the sample results,
= 106.00 and o7 = 2.50, respectively, equal the observed mean and
standard error, respectively. The Bayesian 95% confidence interval for the
random population mean p calculated in the posterior distribution is

106.00 + 2.50 (1.96) or 106.00 + 4.90

which defines exactly the same interval, 101.10-110.90, as the traditional
95% confidence interval calculated earlier. Based on the data, we can say
that the probability is .95 that the interval 101.10~110.90 includes the true
value of U.

All of the information just described is summarized in the first row of
Table 9.2. The remaining rows in the table give the characteristics of the
prior and posterior distributions and results in three subsequent samples,
each based on 100 cases. For each new result, the posterior distribution
from the previous study is taken as the prior distribution for that result. For
example, the posterior distribution given just the results of the first sample
with the characteristics
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pi = 106.00, 6y = 2.50, and prc; = 1/2.50% = .16
becomes the prior distribution for the results in the second sample, which are
M, = 107.50, s; = 30.00, sy, = 3.00, prc,, = 1/3.00? = .11

The mean and standard deviation in the posterior distribution given the
results in the first and second samples are

= [16/(.16 + .11)] 106.00 + [.11/(.16 + .11)] 107.50 = 106.61
o, = [1/(.16 + .11)]2 = 1.92

In other words, our best single guess for the true population mean has shifted
slightly from 106.00 to 106.61 after the second result, and the standard
deviation in the posterior distribution is reduced from 2.50 before collecting
the second sample to 1.92 after collecting the second sample. Our new
Bayesian 95% confidence interval is 102.85-110.37, which is slightly nar-
rower than the previous Bayesian 95% confidence interval, 101.10-110.90.
The last two rows in Table 9.2 show changes in the prior and posterior
distributions as results from two additional samples are synthesized. Please
observe in the table that the widths of the posterior distributions get
gradually narrower, which indicates decreasing uncertainty with increas-
ing information.

Meta-analysis and Bayesian analysis are both methods for research
synthesis, and it is worthwhile to briefly summarize their relative strengths.
Both methods accumulate evidence about a population parameter of interest
and generate confidence intervals for that parameter. Both methods also
allow sensitivity analysis of the consequences of making different kinds of
decisions that may affect the results. In Bayesian statistics, the basic question
of a sensitivity analysis is whether the posterior results change appreciably
when other reasonable probability models are specified in place of the
original model (Gelman, Carlin, Stern, & Rubin, 1995). If the same basic
posterior results are generated under alternative models, more confidence
is warranted in the robustness of the analysis. Because meta-analysis is
based on traditional statistical methods, it tests basically the same kinds of
hypotheses that are evaluated in primary studies with traditional statistical
tests. This limits the kinds of questions that can be addressed in meta-
analysis. For example, a standard meta-analysis cannot answer the question:
What is the probability that treatment has a beneficial effect? It could be
determined whether zero is included in the confidence interval based on
the average effect size across a set of studies, but this would not address the
question just posed. In contrast, there is no special problem dealing with
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this kind question in Bayesian statistics. A Bayesian approach takes into
account both previous knowledge and the inherent plausibility of the hy-
pothesis, but meta-analysis is concerned only with the former. However, it
is possible to combine both meta-analytical and Bayesian methods in the
same analysis. There are Bayesian models for meta-analysis that allow a
more complete accounting of uncertainty than a standard meta-analysis
based on a random-effects model—see Cornell and Mulrow (1999) for more
information. See also G. Howard et al. (2000) for a discussion of the relative
strengths of traditional statistical tests in primary studies versus meta-analysis
and Bayesian analysis for research synthesis.

Evaluation

There are too many other possible applications of Bayesian analysis
to describe in detail, so only a few are mentioned. There are Bayesian
versions of many standard statistical techniques. For example, there are
Bayesian models for regression, ANOVA, and multivariate analyses, among
others (e.g., Gelman et al., 1995). Unlike traditional applications of these
methods, their Bayesian counterparts take account of prior knowledge about
hypotheses and evaluate sample resuits in light of it. There are also ways
to test point null hypotheses against range alternative hypotheses (P. Lee,
1997), but it seems rather silly to use Bayesian methods in so narrow a way
as traditional statistical tests.

Although Bayesian methods are flexible and can evaluate kinds of
questions that we would really like answered, there are two significant
hurdles to their wider use in the behavioral sciences. The first is the relative
paucity of Bayesian software tools for social scientists. Modules for Bayesian
estimation are not generally available for statistical software packages used
by many behavioral researchers. Commercial Bayesian software packages
tend to be oriented toward other disciplines, such as computer science.
There are a few freely available software tools for Bayesian analysis, including
WinBUGS (Bayesian Inference Using Gibbs Sampling) for personal comput-
ers (BUGS Project, 2003),* a set of demonstration programs by P. Lee (2002)
for the C++ programming language,’ and First Bayes (O’Hagan, 1996), a
program for personal computers that assists the learning of Bayesian
methods.®

The second major obstacle is that many reference works for Bayesian
statistics are quite technical. For example, they often require familiarity
with integral notation for probability distributions and estimation techniques

*See hrtp://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
5See http://www-users.york.ac.uk/~pml1/bayes/book.htm
5See http:/fwww.shef.ac.uk/~st1ao/1b.html
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for the parameters of different kinds of probability distributions. These
presentations are not accessible for applied researchers without strong quanti-
tative backgrounds. However, there are some less technical introductions
to Bayesian methods for behavioral researchers, including a book by Iversen
(1984) and chapters by Pitz (1982) and Winkler (1982). Overall, behavioral
researchers comfortable with structural equation modeling or related types
of model-fitting techniques should be able to manage the basics of Bayesian
estimation. The investment of time to learn these methods by those looking
to free themselves from the constraints of traditional statistical tests is
worthwhile.

CONCLUSION

There are even more methods that could be considered as alternatives
to traditional statistical tests, including the families of robust statistics (Wil-
cox, 1998) and exploratory data analysis (Tukey, 1977), to name just two.
There is no need to avoid moving beyond traditional statistical tests. The
best time for change is now. Let us begin by making that better future for
behavioral research.
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Logic of statistical significance testing,
36-41
alternative hypotheses, 37-38
contexts and steps, 36
level of Type 1 etror, 3840
null hypotheses, 36-37
statistical tests, 4041
Logit d, 147
Long-run relative-frequency view of
probability, 29

Magnitude fallacy, 66

Main comparisons, 210

Main effects model, 217

Manipulated variables, 20

Marginal probability, 282

Margin-bound measure of association,
149

Matched-groups design, 20

Maximum likelihood estimation, 189

Maximum probable difference, 84
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May, Rollo, 62
Meaningfulness fallacy, 66
Mean square, 25
Measures of association, 98, 114-122
confidence intervals, 118-121
dependent samples, 116-118
in factorial designs, 230-234
descriptive, 230-231
inferential, 231-233
interval estimation, 234
independent samples, 114-116
limitations, 121-122
margin-bound, 149
in one-way designs, 179-191
descriptive, 180-183
inferential, 183-190, 187¢, 189,
190c
interval estimation, 190-191
Measures of overlap and group
differences, 122-124, 123f-124f
Mediator effects, 209, 255
Meta-analysis, 96, 133, 247-271
examples of, 266-270
amplitudes of event-related
potentials from males at risk
for alcoholism, 267-269,
268f
cross-informant consistency in
reports about children’s adjust-
ment status, 270
gender differences in personality
characteristics, 269-270
historical background (1976—
present), 12
mini meta-analysis, 262-265, 263t—
264¢
research synthesis, 250-255
goals, 250-251
models of explanation, 254-255
qualitative research reviews, 251
quantitative research synthesis,
251-254, 253¢
software for, 137
steps of, 255-262
analyze data, 258-262
collect data, 256
describe, interpret, report results,
262
evaluate data quality, 257
formulate research question,

255-256



measure predictors and criterion,
257-258
threats to validity of, 265-266

Method 1 (regression-based technique),
220, 221, 222t

Method 2 (regression-based technique),
220-221, 222t

Method 3 (regression-based technique),
221, 222t

Method factors, 253-254

Methodological validity, 257

Metric-free effect sizes, 97

Misinterpretation of null hypothesis. See
Null hypothesis significance
testing (NHST)

Mixed design, 204

Mixed-effects model or mixed model,
204, 231n., 260-261

Mixed within-subjects factorial design,
204, 214, 229

Model-driven analysis, 255

Moderator effects, 209

Moderator variable, 254

Monotonic relation of p values, 65

Multifactor designs. See Factorial designs

Multilevel ordinal categories, 144

Multiple-endpoint studies, 258

Multiple regression, 56

Multiple-treatment studies, 258

Narrative literature review, 251
Negatively biased estimators, 26
Negative predictive value, 154, 154t
Newman—Keuls procedure, 170
Neyman—Pearson model, 67, 70
NHST. See Null hypothesis significance
testing

Nil hypotheses, 36-37

appropriateness of, 81

falsity of, 70-71
Nonadditive model, 5e
Noncentrality interval estimation, 35
Noncentral test distributions, 35
Nondirectional alternative hypothesis, 37
Nonexperimental studies, 20
Nonexperimental variables, 20
Nonindependence of study results, 258
Non-nil hypotheses, 36-37
Nonorthogonal contrasts, 165
Nonorthogonal designs, 206, 219-221

raw scores and descriptive statistics
for, 219t
Nonparametric bootstrapping, 274
Nonparametric effect size indexes, 143—
162. See also Effect size
estimation
categorical outcomes, 143144
examples of, 155-161
driving records of youth with at-
tentional difficulties, 157-158,
158¢
predictive values of cognitive test
profile, 158-161, 159, 161t
smoking and coronary heart
disease, 155-157, 156¢
sensitivity, specificity, and predictive
value, 152-155
definitions of, 153¢
distributions of groups with and
without disorder on continu-
ous screening test, 153f
estimated for score differences on
visual-spatial and short-term
memory tasks, 160t, 161t
predictive values of cognitive test
profile, 158-161, 159¢, 161t
Normal science, 247
Normative contrast, 135
Null hypotheses, 36-37
range null hypotheses, 82
Null hypothesis significance testing
(NHST), 6, 8-9
automated reasoning process as re-
sult of, 76-77
basic rationale and steps of, 36—41.
See also Logic of statistical sig-
nificance testing
bias in tesearch literature toward,
73-74, 87
bias toward groups over individuals,
78
continued use of vs. discarding, 79
criticisms of, 9, 10f, 16, 61-62
fallacies about testing outcomes, 70
framework for change, 85-90
lack of objectivity in, 78
misinterpretations, 62—-70, 80
mistaken conclusions on null
hypothesis, 66-68
of p values, 62-66
widespread nature of, 68—70, 69¢
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NHST, continued
nil hypotheses found false, 70-71
positive aspects of, 79-82
probabilities and, 78
problems with, 61-91
random sampling assumed in sam-
pling distributions, 71-72
recommendations, 86-90
educational changes, 89-90
effect sizes and confidence
intervals, 88
exploratory research as realm for
NHST, 86-87
journal editors’ bias, 87
power, how to report, 87
replication requirement, 89-90
statistical software programs, 90
substantive significance of results
to be demonstrated, 88-89
use of word “significant,” §7-88
replication and, 75-76, 8§9-90
research literature problems caused
by, 74-75
statistical assumptions infrequently
verified, 72
variations on, 8285
equivalence testing, 83-84
inferential confidence intervals,
84
range null hypotheses and good-
enough belts, 82
three-valued logic, 84-85

Observational studies, 20
Odds-against chance fantasy, 63
QOdds ratio, 145
Off-factors, 223
Omnibus comparisons, 47-48
One-variable bootstrap methods, 274
One-way designs, 163-202
contrast specification and tests,
163-178
confidence intervals for v,
170-171
control of Type I error, 169-170,
170t
specification, 164-167
statistical tests, 168—169
covariate analyses and effect size
estimation, 191-195, 193¢
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defined, 22
examples of, 195-201
basic math skills in introductory
statistics, 197-199, 198t-199¢
cognitive status of recreational
ecstasy (MDMA) users, 196,
197¢
learning curve data, analysis of,
199-201, 200t-201t
measures of association, 179-191
descriptive, 180-183
inferential, 183-190
interval estimation, 190-191
standardized contrasts, 171-179
dependent samples, 174-177,
175¢
exact confidence intervals for Sy,
177-178
independent samples, 171-173,
173t
Operational replication, 249
Ordered categories, 144
Orthogonal contrasts, 165-167, 166¢, 172
Orthogonal designs, 205
Orthogonal polynomials, 167
Orthogonal sums of squares, 224

Pairwise comparison, 164
Pairwise interaction contrast, 211
Paradigm, 248
Parametric bootstrapping, 275
Parametric effect size indexes, 95—-142.
See also Effect size estimation
case-level analyses of group
differences, 122-129
common language effect size,
127-128
error rates in classification
analysis, 128-129
graphical display of group means,
124f
measures of overlap, 122-124,
123f
tail ratios, 125-127
guidelines for interpreting, 132-136
cautions, 132-133, 133t
questions, 132
substantive effect, 133-136
levels of analysis, 101
measures of association, 114-122



confidence intervals, 118-121
dependent samples, 116-118
independent samples, 114-116
limitations, 121-122
relation of group-level to case-level,
130131, 131f, 131
standardized mean differences,
101-114
dependent samples, 104-107
exact confidence intervals for §,
109-113
independent samples, 101-104
limitations, 113-114
traditional confidence intervals
for 6, 108-109
Partial factorial designs, 204
p as exact level of significance, 41
Person x treatment interaction, 52-53
Planned comparisons, 169
Point estimation, 26
Polynomials, 167
Population effect sizes, overestimated in
published studies, 73-74, 74t
Population inference model, 71
Population parameters, 25, 256
estimated by sample standardized
mean difference, 96-97, 97f
Population variance components, 115
Positive bias, 51
Positive predictive value, 154, 154t
Posterior probability, 282
Post hoc power analysis, 43
Power, 41-43
recommendation on how to report,
87
Predictive value, 154-155
example of cognitive test profile,
158-161, 159t-161t¢
negative, 154, 154¢
positive, 154, 154¢
positive and negative for screening
test, 153¢
Preliminary testing and pooling, 218
Primary analysis, 251
Principle of indifference, 284
Prior probabilities, 129, 282
Probabilistic revolution, 8
Proportional chance criterion, 129
Proportion difference, 145
Pseudo-orthogonal designs, 206
PSY (computer program), 137, 177, 230

Publication Manual (5th ed., APA),
13-14
Puzzle solving, 248
p values, 7, 9, 41
associated with null hypotheses not
plausible, 71
criticisms of approach, 9-10
from F test, 9-10
misinterpretations of, 62-66
monotonic relation of, 65

Qualitative literature review, 251

Quantitative research synthesis, 251-254,
253t

Quasi-F ratios, 218

R? (correlation ratio), 11
Random-effects factors, 22-23
Randomization model, 72
Randomization procedures, 276
Randomized-blocks designs, 22, 204
Randomized-groups, 20
Randomized groups factorial design, 204
Random samples, 24
Random sampling assumed in sampling
distributions, 71-72
Range hypotheses, 37
Range null hypotheses, 82
Rate ratio, 145
Reduced cross-classification method, 224
Reduced structural model, 217
Reification Fallacy, 68
Reject—support (RS), 36, 39
NHST in context of, 62
Relationship indexes, 97
Repeatability fallacy, 65
Repeated-measures design, 20
factorial designs, 228-229
intrinsically vs. nonintrinsically, 20
Replicability, 65
Replicated experiments, 204
Replication, 247-260
balanced, 249
in behavioral sciences, 247, 248
construct, 249-250
discouraged by NHST, 75-76
exact or literal, 249, 252
external, 249
internal, 249
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Replication, continued
operational, 249
as random factor, 204
recommendation to require, 89-90
statistical tests and, 58
types of replication, 249-250

Rerandomization, 276

Resampling Procedures (RP) (computer
software), 277

Resampling Stats (computer program),
278

Resampling techniques, 273-280. See also
Bayesian estimation

evaluation and limitations of,
278-280
techniques, 274-278

Research. See Journals and published
research

Research synthesis, 250-255

Right-tail ratio (RTR), 125, 126f

Risk difference, 145

Risk ratio, 145

Root Mean Square Standardized Effect
Size (RMSSE), 234

RP (Resampling Procedures) (computer
software), 277

R2 program, 137, 234

S§?= SS/N, 26
Sagan, Carl, 27, 62
Samples of convenience, 24
Sampling and estimation, 24-35
confidence intervals, 28-35. See also
Confidence intervals
point and interval estimation,
26-28
sample statistics as estimators, 25-26
types of samples, 24-25
Sampling distribution, 2728
random sampling assumed in, 71-72
Sampling error and NHST, 79, 89
SAS/STAT, 111-112, 112¢, 120, 120,
178, 179¢, 198. See also
STATISTICA
Secondary analysis, 251
Sensitivity, specificity, and predictive
value, 152-155
definitions of, 153t
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distributions of groups with and
without disorder on continuous
screening test, 153f
positive and negative predictive
values for screening test,
153¢
Sensitivity analysis, 262
Simple comparisons, 210
Simultaneous confidence intervals, 171
Single-df, 47, 210
Single-factor contrast, 210
in completely between-subjects
designs, 223-227
Single-factor designs. See One-way
designs
Smithson scripts for SPSS, 137, 190,
191, 234
Software. See also specific types by name
for Bayesian analysis, 292
for effect size estimation, 136-137
recommendations for statistical
software, 90
Specificity, 152-155
definition of, 153t
distributions of groups with and
without disorder on continuous
screening test, 153f
Sphericity, 54-56, 72, 168
Split-plot design, 204, 214, 229
SPSS. See Smithson scripts for SPSS
Standard error, 27
asymptotic standard errors for
sample proportions, 150t
Standardized contrasts, 171-179
Standardized mean changes, 105
Standardized mean differences,
101-114
confidence intervals for &
exact, 109-113, 112¢
traditional, 108-109
dependent samples, 104-107
in factorial designs, 221-230. See
also Factorial designs
independent samples, 101-104
limitations, 113-114
Standardized mean gains, 105
Standardizers, 98
Standard set, 165
STATISTICA, 43, 111, 112, 119, 120,
137, 178, 190, 234
Statistical decision theory, 82



Statistical significance testing, 36-41.
See also Logic of statistical
significance testing

Statistical tests, 4041, 96

in one-way design, 168-169

Statistical validity, 257

Subjective degree-of-belief view of
probability, 29

Subjects effect, 32

Subjects factors, 23

Substantive factors, 253-254

Tables. See also Effect size estimation
fourfold tables, 143, 144-151
definitions of statistics for, 147t
for observed group contrast on a
dichotomy, 146t
larger than 2 x 2, 151-152
Tail ratios, 125-127, 126f
Task Force on Statistical Inference
(TFSI)
graphical display of group means,
124f
purpose of, 3, 4
report of, 13
Type I error and pairwise
comparisons, 170
Terminology in reporting statistical test
results, 80-81
effect size estimation and, 96—100
recommendation to stop using word
“significant,” 87-88
TFSI. See Task Force on Statistical
Inference
Theoretical cumulativeness, 248
Three-valued logic, 84-85
TNONCT, 111-112
Total sums of squares, 49
Traditional confidence intervals for 8,
108-109

Transformation-based methods, 34
t tests for means, 44—47, 46147t
Two-variable bootstrap methods, 275
Type I errors, 38-40, 64, 68, 71
control in one-way design, 169-170,
170t
equivalence testing and, 83
rate in published studies, 73
weighted by estimated costs of error,
82
Type Il errors, 41-42, 67, 68, 71
weighted by estimated costs of error,
82

Unbiased sample statistics, 25
Unconditional model, 260
Unconditional probability, 282
Uninformative priors, 284
Univariate designs, 22
Universe, 256
Unordered categories, 144
Unplanned comparisons, 169
Unweighted vs. weighted-means analysis,
50-51
Upper confidence limit, 27

Validity fallacy, 65

Valid research hypothesis fantasy, 65
Variance-accounted-for effect size, 100
Vote counting, 251

Web site for supplemental readings,
exercises, etc., 3

Weighted vs. unweighted-means analysis,
50-51

WinBUGS (Bayesian Inference Using
Gibbs Sampling), 292

Within-study variance, 259

Within-subjects design, 20
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