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Preface To The Second Edition

The use of logistic regression modeling has exploded during the
past decade. From its original acceptance in epidemiologic research, the
method is now commonly employed in many fields including but not
nearly limited to biomedical research, business and finance, criminol-
ogy, ecology, engineering, health policy, linguistics and wildlife biol-
ogy. At the same time there has been an equal amount of effort in re-
search on all statistical aspects of the logistic regression model. A lit-
erature search that we did in preparing this Second Edition turned up
more than 1000 citations that have appeared in the 10 years since the
First Edition of this book was published.

When we worked on the First Edition of this book we were very lim-
ited by software that could carry out the kinds of analyses we felt were
important. Specifically, beyond estimation of regression coefficients,
we were interested in such issues as measures of model performance,
diagnostic statistics, conditional analyses and multinomial response data.
Software is now readily available in numerous easy to use and widely
available statistical packages to address these and other extremely im-
portant modeling issues. Enhancements to these capabilities are being
added to each new version. As is well-recognized in the statistical com-
munity, the inherent danger of this easy-to-use software is that investi-
gators are using a very powerful tool about which they may have only
limited understanding. It is our hope that this Second Edition will
bridge the gap between the outstanding theoretical developments and
the need to apply these methods to diverse fields of inquiry.

Numerous texts have sections containing a limited discussion of lo-
gistic regression modeling but there are still very few comprehensive
texts on this subject. Among the textbooks written at a level similar to

ix
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this one are: Cox and Snell (1989), Collett (1991) and Kleinbaum
(1994).

As was the case in our First Edition, the primary objective of the
Second Edition is to provide a focused introduction to the logistic re-
gression model and its use in methods for modeling the relationship
between a categorical outcome variable and a set of covariates. Topics
that have been added to this edition include: numerous new techniques
for model building including determination of scale of continuous co-
variates; a greatly expanded discussion of assessing model performance;
a discussion of logistic regression modeling using complex sample sur-
vey data; a comprehensive treatment of the use of logistic regression
modeling in matched studies; completely new sections dealing with lo-
gistic regression models for multinomial, ordinal and correlated re-
sponse data, exact methods for logistic regression and sample size is-
sues. An underlying theme throughout this entire book is the focus on
providing guidelines for effective model building and interpreting the
resulting fitted model within the context of the applied problem.

The materials in the book have evolved considerably over the past
ten years as a result of our teaching and consulting experiences. We
have used this book to teach parts of graduate level survey courses,
quarter- or semester-long courses, and focused short courses to working
professionals. We assume that students have a solid foundation in linear
regression methodology and contingency table analysis.

The approach we take is to develop the model from a regression
analysis point of view. This is accomplished by approaching logistic
regression in a manner analogous to what would be considered good
statistical practice for linear regression. This differs from the approach
used by other authors who have begun their discussion from a contin-
gency table point of view. While the contingency table approach may
facilitate the interpretation of the results, we believe that it obscures the
regression aspects of the analysis. Thus, discussion of the interpretation
of the model is deferred until the regression approach to the analysis is
firmly established.

To a large extent there are no major differences in the capabilities
of the various software packages. When a particular approach is avail-
able in a limited number of packages, it will be noted in this text. In
general, analyses in this book have been performed in STATA [Stata
Corp. (1999)]. This easy to use package combines excellent graphics
and analysis routines, is fast, is compatible across Macintosh, Windows
and UNIX platforms and interacts well with Microsoft Word. Other
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major statistical packages employed at various points during the prepa-
ration of this text include SAS [SAS Institute Inc. (1999)], SPSS [SPSS
Inc. (1998)], and BMDP [BMDP Statistical Software (1992)]. In gen-
eral, the results produced were the same regardless of which package
was used. Reported numeric results have been rounded from figures
obtained from computer output and thus may differ slightly from those
that would be obtained in a replication of our analyses or from calcula-
tions based on the reported results. When features or capabilities of the
programs differ in an important way, we note them by the names given
rather than by their bibliographic citation.

This text was prepared in camera ready format using Microsoft
Word 98 on a Power Macintosh platform. Mathematical equations and
symbols were built using Math Type 3.6a [Math Type: Mathematical
Equation Editor (1998)].

Early on in the preparation of the Second Edition we made a deci-
sion that data sets used in the text would be made available to readers via
the World Wide Web. The ftp site at John Wiley & Sons, Inc. for the
data in this text is

ftp ://ftp. wiley .com/public/sci_tech_med/logi stic.
In addition, the data may also be found, by permission of John Wiley &
Sons Inc., in the archive of statistical data sets maintained at the Univer-
sity of Massachusetts at Internet address

http://www-unix.oit.umass.edu/~statdata
in the logistic regression section. Another advantage to having a text
web site is that it provides a convenient medium for conveying to read-
ers text changes after publication. In particular, as errata become
known to us they will be added to an errata section of the text's web site
at John Wiley & Sons, Inc. Another use that we envision for the web is
the addition, over time, of additional data sets to the statistical data set
archive at the University of Massachusetts.

We are deeply appreciative of the efforts of our students and col-
leagues who carefully read and contributed to the clarity of this manu-
script. In particular we are indebted to Elizabeth Donohoe-Cook,
Sunny Kim and Soon-Kwi Kim for their careful and meticulous reading
of the drafts of this manuscript. Special thanks also goes to Rita Popat
for helping us make the transition between the software we used for the
first and second editions. We appreciate Alan Agresti's comments on
the section dealing with the analysis of correlated data. Cyrus Mehta
was particularly helpful in sharing key papers and for providing us with
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the LogXact 4 (2000) program used for computations in Section 8.4.
Others contributed significantly to the First Edition and their original
suggestions made this Second Edition stronger. These include Gordon
Fitzgerald, Sander Greenland, Bob Harris and Ed Stanek.

There have been many other contributors to this book. Data sets
were made available by our colleagues, Donn Young, Jane McCusker,
Carol Bigelow, Anne Stoddard, Harris Pastides, and Jane Zapka, as well
as by Doctors Daniel Teres and Laurence E. Lundy at Baystate Medical
Center in Springfield, Massachusetts. Cliff Johnson at NCHS was help-
ful in providing us with a data set from the NHANES III that we used
extensively in Section 6.4 as well as for sharing insights with us into
analytic strategies used by that agency. We are very grateful to Profes-
sor Petter Laake, Section of Medical Statistics at the University of Oslo
and Professeur Roger Salamon of the University of Bordeaux, II who
provided us with support to work on this manuscript during visits to
their universities. Comments by many of our students and colleagues at
the University of Massachusetts, The Ohio State University, the New
England Epidemiology Summer Program, the Erasmus Summer Pro-
gram, the Summer Program in Applied Statistical Methods at The Ohio
State University, the University of Oslo and the University of Bordeaux
as well as at innumerable short courses that we have had the privilege to
be invited to teach over the past ten years, were extremely useful.

Finally, we would like to thank Steve Quigley and the production
staff at John Wiley & Sons for their help in bringing this project to
completion.

DAVID W. HOSMER, JR.
STANLEY LEMESHOW

Amherst, Massachusetts
Columbus Ohio
June, 2000



CHAPTER 1

Introduction to the
Logistic Regression Model

1.1 INTRODUCTION

Regression methods have become an integral component of any data
analysis concerned with describing the relationship between a response
variable and one or more explanatory variables. It is often the case that
the outcome variable is discrete, taking on two or more possible values.
Over the last decade the logistic regression model has become, in many
fields, the standard method of analysis in this situation.

Before beginning a study of logistic regression it is important to
understand that the goal of an analysis using this method is the same as
that of any model-building technique used in statistics: to find the best
fitting and most parsimonious, yet biologically reasonable model to de-
scribe the relationship between an outcome (dependent or response)
variable and a set of independent (predictor or explanatory) variables.
These independent variables are often called covariates. The most
common example of modeling, and one assumed to be familiar to the
readers of this text, is the usual linear regression model where the out-
come variable is assumed to be continuous.

What distinguishes a logistic regression model from the linear re-
gression model is that the outcome variable in logistic regression is bi-
nary or dichotomous. This difference between logistic and linear re-
gression is reflected both in the choice of a parametric model and in the
assumptions. Once this difference is accounted for, the methods em-
ployed in an analysis using logistic regression follow the same general
principles used in linear regression. Thus, the techniques used in linear
regression analysis will motivate our approach to logistic regression. We
illustrate both the similarities and differences between logistic regression
and linear regression with an example.
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Example

Table 1.1 lists age in years (AGE), and presence or absence of evidence
of significant coronary heart disease (CHD) for 100 subjects selected to
participate in a study. The table also contains an identifier variable (ID)
and an age group variable (AGRP). The outcome variable is CHD,
which is coded with a value of zero to indicate CHD is absent, or 1 to
indicate that it is present in the individual.

It is of interest to explore the relationship between age and the
presence or absence of CHD in this study population. Had our outcome
variable been continuous rather than binary, we probably would begin
by forming a scatterplot of the outcome versus the independent vari-
able. We would use this scatterplot to provide an impression of the na-
ture and strength of any relationship between the outcome and the in-
dependent variable. A scatterplot of the data in Table 1.1 is given in
Figure 1.1.

In this scatterplot all points fall on one of two parallel lines repre-
senting the absence of CHD (y = 0) and the presence of CHD (_y = l).
There is some tendency for the individuals with no evidence of CHD to
be younger than those with evidence of CHD. While this plot does de-
pict the dichotomous nature of the outcome variable quite clearly, it
does not provide a clear picture of the nature of the relationship be-
tween CHD and age.

A problem with Figure 1.1 is that the variability in CHD at all ages
is large. This makes it difficult to describe the functional relationship
between age and CHD. One common method of removing some varia-
tion while still maintaining the structure of the relationship between the
outcome and the independent variable is to create intervals for the inde-
pendent variable and compute the mean of the outcome variable within
each group. In Table 1.2 this strategy is carried out by using the age
group variable, AGRP, which categorizes the age data of Table 1.1. Ta-
ble 1.2 contains, for each age group, the frequency of occurrence of
each outcome as well as the mean (or proportion with CHD present) for
each group.

By examining this table, a clearer picture of the relationship begins
to emerge. It appears that as age increases, the proportion of individuals
with evidence of CHD increases. Figure 1.2 presents a plot of the pro-
portion of individuals with CHD versus the midpoint of each age inter-
val. While this provides considerable insight into the relationship be-
tween CHD and age in this study, a functional form for this relationship
needs to be described. The plot in this figure is similar to what one
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Figure 1.1 Scatterplot of CHD by AGE for 100 subjects.

might obtain if this same process of grouping and averaging were per-
formed in a linear regression. We will note two important differences.

The first difference concerns the nature of the relationship between
the outcome and independent variables. In any regression problem the
key quantity is the mean value of the outcome variable, given the value
of the independent variable. This quantity is called the conditional
mean and will be expressed as " E(Y I ;c)" where Y denotes the outcome

Table 1.2 Frequency Table of Age Group by CHD
CHD

Age Group
20-29
30-34
35-39
40-44
45-49
50-54
55-59
60-69

n
10
15
12
15
13
8

17
10

Absent
9

13
9

10
7
3
4
2

Present
1
2
3
5
6
5

13
8

Mean (Proportion)
0.10
0.13
0.25
0.33
0.46
0.63
0.76
0.80

Total 100 57 43 0.43
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Figure 1.2 Plot of the percentage of subjects with CHD in each age
group.

variable and x denotes a value of the independent variable. The quan-
tity E(Y\ x) is read "the expected value of 7, given the value x" In
linear regression we assume that this mean may be expressed as an
equation linear in x (or some transformation of x or Y), such as

This expression implies that it is possible for E(Y\x) to take on any
value as x ranges between -<*> and +°°.

The column labeled "Mean" in Table 1.2 provides an estimate of
E(Y\x). We will assume, for purposes of exposition, that the estimated
values plotted in Figure 1.2 are close enough to the true values of
E(Y\x) to provide a reasonable assessment of the relationship between
CHD and age. With dichotomous data, the conditional mean must be
greater than or equal to zero and less than or equal to 1 [i.e., 0<
E(Y\ x)<l]. This can be seen in Figure 1.2. In addition, the plot shows
that this mean approaches zero and 1 "gradually." The change in the
E(Y I x) per unit change in x becomes progressively smaller as the con-
ditional mean gets closer to zero or 1. The curve is said to be S-shaped.
It resembles a plot of a cumulative distribution of a random variable. It
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should not seem surprising that some well-known cumulative distribu-
tions have been used to provide a model for E(Y I x) in the case when Y
is dichotomous. The model we will use is that of the logistic distribu-
tion.

Many distribution functions have been proposed for use in the
analysis of a dichotomous outcome variable. Cox and Snell (1989) dis-
cuss some of these. There are two primary reasons for choosing the
logistic distribution. First, from a mathematical point of view, it is an
extremely flexible and easily used function, and second, it lends itself to
a clinically meaningful interpretation. A detailed discussion of the in-
terpretation of the model parameters is given in Chapter 3.

In order to simplify notation, we use the quantity K(X) = E(Y\x) to
represent the conditional mean of Y given x when the logistic distribu-
tion is used. The specific form of the logistic regression model we use
is:

A transformation of n( x) that is central to our study of logistic regres-
sion is the logit transformation. This transformation is defined, in terms

/ \g(x) =v '

The importance of this transformation is that g(x) has many of the de-
sirable properties of a linear regression model. The logit, g(x), is linear
in its parameters, may be continuous, and may range from -<» to +<*>,
depending on the range of x.

The second important difference between the linear and logistic
regression models concerns the conditional distribution of the outcome
variable. In the linear regression model we assume that an observation
of the outcome variable may be expressed as y = E(Y\x) + e. The
quantity £ is called the error and expresses an observation's deviation
from the conditional mean. The most common assumption is that £
follows a normal distribution with mean zero and some variance that is
constant across levels of the independent variable. It follows that the
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conditional distribution of the outcome variable given x will be normal
with mean E(Y\ x], and a variance that is constant. This is not the case
with a dichotomous outcome variable. In this situation we may express
the value of the outcome variable given x as y = 7t(x} + e. Here the
quantity £ may assume one of two possible values. If y = 1 then
£ = \-n(x) with probability n(x), and if )> = 0 then £ = -n(x] with
probability 1 - n(x]. Thus, £ has a distribution with mean zero and
variance equal to 7r(;t)[l - n(x)\. That is, the conditional distribution of
the outcome variable follows a binomial distribution with probability
given by the conditional mean, n(x).

In summary, we have seen that in a regression analysis when the
outcome variable is dichotomous:

(1) The conditional mean of the regression equation must be
formulated to be bounded between zero and 1. We have
stated that the logistic regression model, n(x] given in equa-
tion (1.1), satisfies this constraint.

(2) The binomial, not the normal, distribution describes the distri-
bution of the errors and will be the statistical distribution upon
which the analysis is based.

(3) The principles that guide an analysis using linear regression
will also guide us in logistic regression.

1.2 FITTING THE LOGISTIC REGRESSION MODEL

Suppose we have a sample of n independent observations of the pair
(jc(,;y-), / = l,2,...,n, where yt denotes the value of a dichotomous out-
come variable and x-t is the value of the independent variable for the iih

subject. Furthermore, assume that the outcome variable has been coded
as 0 or 1, representing the absence or the presence of the characteristic,
respectively. This coding for a dichotomous outcome is used through-
out the text. To fit the logistic regression model in equation (1.1) to a
set of data requires that we estimate the values of j30 and/31? the un-
known parameters.

In linear regression, the method used most often for estimating un-
known parameters is least squares. In that method we choose those val-
ues of PQ and /?, which minimize the sum of squared deviations of the
observed values of Y from the predicted values based upon the model.
Under the usual assumptions for linear regression the method of least
squares yields estimators with a number of desirable statistical proper-
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ties. Unfortunately, when the method of least squares is applied to a
model with a dichotomous outcome the estimators no longer have these
same properties.

The general method of estimation that leads to the least squares
function under the linear regression model (when the error terms are
normally distributed) is called maximum likelihood. This method will
provide the foundation for our approach to estimation with the logistic
regression model. In a very general sense the method of maximum
likelihood yields values for the unknown parameters which maximize
the probability of obtaining the observed set of data. In order to apply
this method we must first construct a function, called the likelihood
function. This function expresses the probability of the observed data
as a function of the unknown parameters. The maximum likelihood es-
timators of these parameters are chosen to be those values that maximize
this function. Thus, the resulting estimators are those which agree most
closely with the observed data. We now describe how to find these val-
ues from the logistic regression model.

If Y is coded as 0 or 1 then the expression for n(x] given in equa-
tion (1.1) provides (for an arbitrary value of p = (/?0,/3,), the vector of
parameters) the conditional probability that Y is equal to 1 given x. This
will be denoted as P(Y = 1 1 x). It follows that the quantity 1 - n(x) gives
the conditional probability that Y is equal to zero given x, P(Y = 0\x).
Thus, for those pairs (*,-, }>,•), where yi =1, the contribution to the likeli-
hood function is #(*,-), and for those pairs where yi = 0, the contribu-

tion to the likelihood function is 1 -#(.*,•), where the quantity n[xt) de-
notes the value of TU(X) computed at xf. A convenient way to express
the contribution to the likelihood function for the pair (x^y^ is
through the expression

n(XiY'[\-n(Xi)\~
y> . (1.2)

Since the observations are assumed to be independent, the likeli-
hood function is obtained as the product of the terms given in expres-
sion (1.2) as follows:

d.3)
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The principle of maximum likelihood states that we use as our es-
timate of p the value which maximizes the expression in equation (1.3).
However, it is easier mathematically to work with the log of equation
(1.3). This expression, the log likelihood, is defined as

(1.4)

To find the value of p that maximizes L(P) we differentiate L(P) with
respect to /?0 and /J, and set the resulting expressions equal to zero.
These equations, known as the likelihood equations, are:

and
0. (1.6)

In equations (1.5) and (1.6) it is understood that the summation is over /
varying from 1 to n. (The practice of suppressing the index and range
of summation, when these are clear, is followed throughout the text.)

In linear regression, the likelihood equations, obtained by differen-
tiating the sum of squared deviations function with respect to P are lin-
ear in the unknown parameters and thus are easily solved. For logistic
regression the expressions in equations (1.5) and (1.6) are nonlinear in
/30 and fi}, and thus require special methods for their solution. These
methods are iterative in nature and have been programmed into avail-
able logistic regression software. For the moment we need not be con-
cerned about these iterative methods and will view them as a computa-
tional detail taken care of for us. The interested reader may see the text
by McCullagh and Nelder (1989) for a general discussion of the meth-
ods used by most programs. In particular, they show that the solution to
equations (1.5) and (1.6) may be obtained using an iterative weighted
least squares procedure.

The value of p given by the solution to equations (1.5) and (1.6) is
called the maximum likelihood estimate and will be denoted as p. In
general, the use of the symbol "A" denotes the maximum likelihood
estimate of the respective quantity. For example, £(*,) is the maximum

likelihood estimate of #(*,). This quantity provides an estimate of the
conditional probability that Y is equal to 1, given that x is equal to x{.
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Table 1.3 Results of Fitting the Logistic
Regression Model to the Data in Table 1.1
Variable

AGE
Constant

Coeff.
0.111

-5.309

Std. Err.
0.0241
1.1337

z
4.61

-4.68

P>lzl
<0.001
<0.001

Log likelihood = -53.67656

As such, it represents the fitted or predicted value for the logistic regres-
sion model. An interesting consequence of equation (1.5) is that

n

/ =!>(•*/)•

That is, the sum of the observed values of y is equal to the sum of the
predicted (expected) values. This property will be especially useful in
later chapters when we discuss assessing the fit of the model.

As an example, consider the data given in Table 1.1. Use of a lo-
gistic regression software package, with continuous variable AGE as the
independent variable, produces the output in Table 1.3. The maximum

A

likelihood estimates of J30 and /?, are thus seen to be ft0 =-5.309 and
^

$ = 0. 1 1 1 . The fitted values are given by the equation

£-5.309+0.1 l lxAGE

- j+e-5.309+0.111xAGE <

and the estimated logit, g(x), is given by the equation

(1.8)

The log likelihood given in Table 1.3 is the value of equation (1.4)
A A.

computed using j80 and /?,.
Three additional columns are present in Table 1.3. One contains

estimates of the standard errors of the estimated coefficients, the next
column displays the ratios of the estimated coefficients to their esti-
mated standard errors and the last column displays a p-value. These
quantities are discussed in the next section.

Following the fitting of the model we begin to evaluate its ade-
quacy.
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1.3 TESTING FOR THE SIGNIFICANCE OF
THE COEFFICIENTS

In practice, the modeling of a set of data, as we show in Chapters 4, 7,
and 8, is a much more complex process than one of fitting and testing.
The methods we present in this section, while simplistic, do provide es-
sential building blocks for the more complex process.

After estimating the coefficients, our first look at the fitted model
commonly concerns an assessment of the significance of the variables in
the model. This usually involves formulation and testing of a statistical
hypothesis to determine whether the independent variables in the model
are "significantly" related to the outcome variable. The method for
performing this test is quite general and differs from one type of model
to the next only in the specific details. We begin by discussing the gen-
eral approach for a single independent variable. The multivariate case is
discussed in Chapter 2.

One approach to testing for the significance of the coefficient of a
variable in any model relates to the following question. Does the model
that includes the variable in question tell us more about the outcome (or
response) variable than a model that does not include that variable?
This question is answered by comparing the observed values of the re-
sponse variable to those predicted by each of two models; the first with
and the second without the variable in question. The mathematical
function used to compare the observed and predicted values depends on
the particular problem. If the predicted values with the variable in the
model are better, or more accurate in some sense, than when the variable
is not in the model, then we feel that the variable in question is "signifi-
cant." It is important to note that we are not considering the question
of whether the predicted values are an accurate representation of the
observed values in an absolute sense (this would be called goodness-of-
fif). Instead, our question is posed in a relative sense. The assessment of
goodness-of-fit is a more complex question which is discussed in detail
in Chapter 5.

The general method for assessing significance of variables is easily
illustrated in the linear regression model, and its use there will motivate
the approach used for logistic regression. A comparison of the two ap-
proaches will highlight the differences between modeling continuous
and dichotomous response variables.

In linear regression, the assessment of the significance of the slope
coefficient is approached by forming what is referred to as an analysis
of variance table. This table partitions the total sum of squared devia-
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tions of observations about their mean into two parts: (1) the sum of
squared deviations of observations about the regression line SSE, (or
residual sum-of-squares), and (2) the sum of squares of predicted val-
ues, based on the regression model, about the mean of the dependent
variable SSR, (or due regression sum-of -squares). This is just a con-
venient way of displaying the comparison of observed to predicted val-
ues under two models. In linear regression, the comparison of observed
and predicted values is based on the square of the distance between the
two. If y{ denotes the observed value and yt denotes the predicted value
for the /th individual under the model, then the statistic used to evaluate
this comparison is

Under the model not containing the independent variable in question
A.

the only parameter is /30, and /30 = y, the mean of the response variable.
In this case, y. = y and SSE is equal to the total variance. When we in-
clude the independent variable in the model any decrease in SSE will be
due to the fact that the slope coefficient for the independent variable is
not zero. The change in the value of SSE is the due to the regression
source of variability, denoted SSR. That is,

SSR = |
i=l

-\2

In linear regression, interest focuses on the size of SSR. A large value
suggests that the independent variable is important, whereas a small
value suggests that the independent variable is not helpful in predicting
the response.

The guiding principle with logistic regression is the same: Compare
observed values of the response variable to predicted values obtained
from models with and without the variable in question. In logistic re-
gression, comparison of observed to predicted values is based on the log
likelihood function defined in equation (1.4). To better understand this
comparison, it is helpful conceptually to think of an observed value of
the response variable as also being a predicted value resulting from a
saturated model. A saturated model is one that contains as many pa-
rameters as there are data points. (A simple example of a saturated
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model is fitting a linear regression model when there are only two data
points, n = 2.)

The comparison of observed to predicted values using the likeli-
hood function is based on the following expression:

= -21n
(likelihood of the fitted model)

(likelihood of the saturated model)

The quantity inside the large brackets in the expression above is called
the likelihood ratio. Using minus twice its log is necessary to obtain a
quantity whose distribution is known and can therefore be used for hy-
pothesis testing purposes. Such a test is called the likelihood ratio test.
Using equation (1.4), equation (1.9) becomes

"I ^

\-7t;
(1.10)

where ni = n(xi].
The statistic, D, in equation (1.10) is called the deviance by some

authors [see, for example, McCullagh and Nelder (1983)], and plays a
central role in some approaches to assessing goodness-of-fit. The devi-
ance for logistic regression plays the same role that the residual sum of
squares plays in linear regression. In fact, the deviance as shown in
equation (1.10), when computed for linear regression, is identically
equal to the SSE.

Furthermore, in a setting such as the one shown in Table 1.1, where
the values of the outcome variable are either 0 or 1 , the likelihood of the
saturated model is 1. Specifically, it follows from the definition of a
saturated model that ni = yt and the likelihood is

/(saturated model) = J| yf • x (l - y(. f'
y' ] = 1 .

1=1

Thus it follows from equation (1.9) that the deviance is

D = -2 ln(likelihood of the fitted model) . (1.11)

Some software packages, such as SAS, report the value of the deviance
in (1.11) rather than the log likelihood for the fitted model. We discuss
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the deviance in more detail in Chapter 5 in the context of evaluating
model goodness-of-fit. At this stage we want to emphasize that we think
of the deviance in the same terms that we think of the residual sum of
squares in linear regression in the context of testing for the significance
of a fitted model.

For purposes of assessing the significance of an independent vari-
able we compare the value of D with and without the independent vari-
able in the equation. The change in D due to the inclusion of the inde-
pendent variable in the model is obtained as:

G = D(model without the variable) - D(model with the variable).

This statistic plays the same role in logistic regression as the numerator
of the partial F test does in linear regression. Because the likelihood of
the saturated model is common to both values of D being differenced to
compute G, it can be expressed as

= -21n
(likelihood without the variable)

(likelihood with the variable)
(1.12)

For the specific case of a single independent variable, it is easy to
show that when the variable is not in the model, the maximum likeli-
hood estimate of J30 is Infa/n^) where n{ =£y/ and nQ = £(l-yr.) and
the predicted value is constant, njn. In this case, the value of G is:

= -21n

»0

. «'=!

(1.13)

or

(1.14)

Under the hypothesis that /J, is equal to zero, the statistic G follows
a chi-square distribution with 1 degree of freedom. Additional mathe-
matical assumptions are also needed; however, for the above case they
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are rather nonrestrictive and involve having a sufficiently large sample
size, n.

As an example, we consider the model fit to the data in Table 1.1,
whose estimated coefficients and log likelihood are given in Table 1.3.
For these data, n{ = 43 and n0 = 57; thus, evaluating G as shown in
equation (1.14) yields

G = 2{-53.677-[43 ln(43) + 57 ln(57)-100 ln(100)]}

= 2[-53.677- (-68.331)] = 29.31.

The first term in this expression is the log likelihood from the model
containing AGE (see Table 1.3), and the remainder of the expression
simply substitutes n\ and n0 into the second part of equation (1.14).
We use the symbol %2(v) to denote a chi-square random variable with
v degrees-of-freedom. Using this notation, the /?-value associated with
this test is P[#2(l)>29.3l]< 0.001; thus, we have convincing evidence
that AGE is a significant variable in predicting CHD. This is merely a
statement of the statistical evidence for this variable. Other important
factors to consider before concluding that the variable is clinically im-
portant would include the appropriateness of the fitted model, as well as
inclusion of other potentially important variables.

The calculation of the log likelihood and the likelihood ratio test
are standard features of all logistic regression software. This makes it
easy to check for the significance of the addition of new terms to the
model. In the simple case of a single independent variable, we first fit a
model containing only the constant term. We then fit a model contain-
ing the independent variable along with the constant. This gives rise to
a new log likelihood. The likelihood ratio test is obtained by multiply-
ing the difference between these two values by —2.

In the current example, the log likelihood for the model containing
only a constant term is —68.331. Fitting a model containing the inde-
pendent variable (AGE) along with the constant term results in the log
likelihood shown in Table 1.3 of -53.677. Multiplying the difference

in these log likelihoods by —2 gives

-2 x [-68.331 - (-53.677)] = -2 x (-14.655) = 29.31.
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This result, along with the associated p-value for the chi-square distribu-
tion, may be obtained from most software packages.

Two other similar, statistically equivalent tests have been suggested.
These are the Wald test and the Score test. The assumptions needed for
these tests are the same as those of the likelihood ratio test in equation
(1.13). A more complete discussion of these tests and their assumptions
may be found in Rao (1973).

The Wald test is obtained by comparing the maximum likelihood
estimate of the slope parameter, j3t, to an estimate of its standard error.
The resulting ratio, under the hypothesis that ft = 0 , will follow a stan-
dard normal distribution. While we have not yet formally discussed how
the estimates of the standard errors of the estimated parameters are ob-
tained, they are routinely printed out by computer software. For exam-
ple, the Wald test for the logistic regression model in Table 1.3 is pro-
vided in the column headed z and is

JL / . \ —

SE(A) °-024

and the two tailed p- value, provided in the last column of Table 1.3, is
P(|z|>4.6l), where z denotes a random variable following the standard
normal distribution. Hauck and Donner (1977) examined the perform-
ance of the Wald test and found that it behaved in an aberrant manner,
often failing to reject the null hypothesis when the coefficient was sig-
nificant. They recommended that the likelihood ratio test be used.

Jennings (1986a) has also looked at the adequacy of inferences in
logistic regression based on Wald statistics. His conclusions are similar
to those of Hauck and Donner. Both the likelihood ratio test, G, and the
Wald test, W, require the computation of the maximum likelihood esti-
mate for $ .

A test for the significance of a variable which does not require
these computations is the Score test. Proponents of the Score test cite
this reduced computational effort as its major advantage. Use of the test
is limited by the fact that it cannot be obtained from some software
packages. The Score test is based on the distribution theory of the de-
rivatives of the log likelihood. In general, this is a multivariate test re-
quiring matrix calculations which are discussed in Chapter 2.

In the univariate case, this test is based on the conditional distribu-
tion of the derivative in equation (1.6), given the derivative in equation
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(1.5). In this case, we can write down an expression for the Score test.
The test uses the value of equation (1.6), computed using
/30 = ln(«! /«0) and A =0. As noted earlier, under these parameter val-
ues, 7t = nl/n = y. Thus, the left-hand side of equation (1.6) becomes
£.*•();, -y). It may be shown that the estimated variance is

^(l - y]L(xi - x)2 . The test statistic for the Score test (ST) is

ST =

As an example of the Score test, consider the model fit to the data
in Table 1.1. The value of the test statistic for this example is

and the two tailed p- value is P(|Z| > 5.14) < 0.001 . We note that, for this
example, the values of the three test statistics are nearly the same (note:

In summary, the method for testing the significance of the coeffi-
cient of a variable in logistic regression is similar to the approach used
in linear regression; however, it uses the likelihood function for a di-
chotomous outcome variable.

1.4 CONFIDENCE INTERVAL ESTIMATION

An important adjunct to testing for significance of the model, discussed
in Section 1.3, is calculation and interpretation of confidence intervals
for parameters of interest. As is the case in linear regression we can
obtain these for the slope, intercept and the "line", (i.e., the logit). In
some settings it may be of interest to provide interval estimates for the
fitted values (i.e., the predicted probabilities).

The basis for construction of the interval estimators is the same sta-
tistical theory we used to formulate the tests for significance of the
model. In particular, the confidence interval estimators for the slope
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and intercept are based on their respective Wald tests. The endpoints of
a 100(l-a)% confidence interval for the slope coefficient are

(1.15)

and for the intercept they are

(1.16)

where z^a/2 is the upper 100(1 -cr/2)% point from the standard normal
<*.

distribution and SE(-) denotes a model-based estimator of the standard
error of the respective parameter estimator. We defer discussion of the
actual formula used for calculating the estimators of the standard errors
to Chapter 2. For the moment we use the fact that estimated values are
provided in the output following the fit of a model and, in addition,
many packages also provide the endpoints of the interval estimates.

As an example, consider the model fit to the data in Table 1.1 re-
gressing age on the presence or absence of CHD. The results are pre-
sented in Table 1.3. The endpoints of a 95 percent confidence interval
for the slope coefficient from (1.15) are 0.1 11±1. 96x0.0241, yielding
the interval (0.064, 0.158). We defer a detailed discussion of the inter-
pretation of these results to Chapter 3. Briefly, the results suggest that
the change in the log-odds of CHD per one year increase in age is
0.111 and the change could be as little as 0.064 or as much as 0.158
with 95 percent confidence.

As is the case with any regression njodel, the constant term provides
an estimate of the response in the absence of x unless the independent
variable has been centered at some clinically meaningful value. In our
example, the constant provides an estimate of the log-odds ratio of CHD
at zero years of age. As a result, the constant term, by itself, has no use-
ful clinical interpretation. In any event, from expression (1.16), the
endpoints of a 95 percent confidence interval for the constant are
-5.309±1.96xl.l337, yielding the interval (-7.531, -3.087). The
constant is important when considering point and interval estimators of
the logit.

The logit is the linear part of the logistic regression model and, as
such, is most like the fitted line in a linear regression model. The esti-
mator of the logit is
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The estimator of the variance of the estimator of the logit requires ob-
taining the variance of a sum. In this case it is

(1.18)

In general the variance of a sum is equal to the sum of the variance of
each term and twice the covariance of each possible pair of terms
formed from the components of sum. The endpoints of a 100(1 - a)%
Wald-based confidence interval for the logit are

g ( x ) ± z - SE[|(jc)l, (1-19)

where SE[g(;c)] is the positive square root of the variance estimator in
(1.18).

The estimated logit for the fitted model in Table 1.3 is shown in
(1.8). In order to evaluate (1.18) for a specific age we need the esti-
mated covariance matrix. This matrix can be obtained from the output
from all logistic regression software packages. How it is displayed var-
ies from package to package, but the triangular form shown in Table
1.4 is a common one.

The estimated logit from (1.8) for a subject of age 50 is

g(50) = -5.31 + 0.111x50 = 0.240.

The estimated variance, using (1.18) and the results in Table 1.4, is

Var [|(50)] = 1.28517 + (50)2 x 0.000579 + 2 x 50 x (-0.026677) = 0.0650

and the estimated standard error is SE[g(50)] = 0.2549. Thus the end
points of a 95 percent confidence interval for the logit at age 50 are
0.240 ±1.96x0.2550 = (-0.260, 0.740). We discuss the interpretation
and use of the estimated logit in providing estimates of odds ratios in
Chapter 3.

The estimator of the logit and its confidence interval provide the
basis for the estimator of the fitted value, in this case the logistic prob-
ability, and its associated confidence interval. In particular, using (1.7)
at age 50 the estimated logistic probability is
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Table 1.4 Estimated Covariance Matrix of the
Estimated Coefficients in Table 1.3

AGE
Constant

AGE
0.000579

-0.026677

Constant

1.28517

g(SO) -5.31+0.111x50

=0-560 d.20)

and the endpoints of a 95 percent confidence interval are obtained from
the respective endpoints of the confidence interval for the logit. The
endpoints of the 100(l-«)% Wald-based confidence interval for the
fitted value are

(1.21)

Using the example at age 50 to demonstrate the calculations, the lower
limit is

-0.260

-0.260 = 0.435,

and the upper limit is

0.740

= 0.677.

We have found that a major mistake often made by persons new to
logistic regression modeling is to try and apply estimates on the prob-
ability scale to individual subjects. The fitted value computed in (1.20)
is analogous to a particular point on the line obtained from a linear re-
gression. In linear regression each point on the fitted line provides an
estimate of the mean of the dependent variable in a population of sub-
jects with covariate value "*". Thus the value of 0.56 in (1.20) is an
estimate of the mean (i.e., proportion) of 50 year old subjects in the
population sampled that have evidence of CHD. Each individual 50
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year old subject either does or does not have evidence of CHD. The
confidence interval suggests that this mean could be between 0.435 and
0.677 with 95 percent confidence. We discuss the use and interpretation
of fitted values in greater detail in Chapter 3.

One application of fitted logistic regression models that has re-
ceived a lot of attention in the subject matter literature is the use of
model-based fitted values like the one in (1.20) to predict the value of a
binary dependent value in individual subjects. This process is called
classification and has a long history in statistics where it is referred to as
discriminant analysis. We discuss the classification problem in detail in
Chapter 4. We discuss discriminant analysis within the context of a
method for obtaining estimators of the coefficients in the next section.

1.5 OTHER METHODS OF ESTIMATION

The method of maximum likelihood described in Section 1.2 is the es-
timation method used in the logistic regression routines of the major
software packages. However, two other methods have been and may still
be used for estimating the coefficients. These methods are: (1) nonit-
erative weighted least squares, and (2) discriminant function analysis.

A linear models approach to the analysis of categorical data was
proposed by Grizzle, Starmer, and Koch (1969), which uses estimators
based on noniterative weighted least squares. They demonstrate that the
logistic regression model is an example of a general class of models that
can be handled with their methods. We should add that the maximum
likelihood estimators are usually calculated using an iterative reweighted
least squares algorithm, and thus are also "least squares" estimators.
The approach suggested by Grizzle et al. uses only one iteration in the
process.

A major limitation of this method is that we must have an estimate
of n(x] which is not zero or 1 for most values of x. An example where
we could use both maximum likelihood and noniterative weighted least
squares is the data in Table 1.2. In cases such as this, the two methods
are asymptotically equivalent, meaning that as n gets large, the distribu-
tional properties of the estimators become identical.

The discriminant function approach to estimation of the coeffi-
cients is of historical importance as it was popularized by Cornfield
(1962) in some of the earliest work on logistic regression. These esti-
mators take their name from the fact that the posterior probability in the
usual discriminant function model is the logistic regression function
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given in equation (1.1). More precisely, if the independent variable, X,
follows a normal distribution within each of two groups (subpopula-
tions) defined by the two values of y having different means and the
same variance, then the conditional distribution of Y given X = x is the
logistic regression model. That is, if

then P(Y-l\x) = n(x}. The symbol "~" is read "is distributed" and
the " N(/i,cr2)" denotes the normal distribution with mean equal to u,

and variance equal to cr2. Under these assumptions it is easy to show
[Lachenbruch (1975)] that the logistic coefficients are

(1.22)
\o

and

(1.23)

where Oj : = P(Y = ;'), ;' = 0, 1. The discriminant function estimators of
PQ and A are found by substituting estimators for //;, 6j,j= 0, 1 and

cr2 into the above equations. The estimators usually used are /); =*/,
the mean of x in the subgroup defined by y - j, j = 0, 1, Q} = n} I n the

A .A

mean of y with #0 = 1 - 0, and

(72 = (n, - I)*2 ]/(n0 + n, - 2),

where sj is the unbiased estimator of cr2 computed within the subgroup
of the data defined by y = j, j = 0, 1 . The above expressions are for a
single variable x; the multivariable case is presented in Chapter 2.

It is natural to ask why, if the discriminant function estimators are
so easy to compute, are they not used in place of the maximum likeli-
hood estimators? Halpern, Blackwelder, and Verter (1971) and Hosmer,
Hosmer, and Fisher (1983) have compared the two methods when the
model contains a mixture of continuous and discrete variables, with the
general conclusion that the discriminant function estimators are sensitive
to the assumption of normality. In particular, the estimators of the coef-
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ficients for nonnormally distributed variables are biased away from zero
when the coefficient is, in fact, different from zero. The practical impli-
cation of this is that for dichotomous independent variables (which oc-
cur in many situations), the discriminant function estimators will overes-
timate the magnitude of the coefficient.

At this point it may be helpful to delineate more carefully the vari-
ous uses of the term "maximum likelihood," as it applies to the estima-
tion of the logistic regression coefficients. Under the assumptions of
the discriminant function model stated above, the estimators obtained
from equations (1.22) and (1.15) are maximum likelihood estimators.
Those obtained from equations (1.5) and (1.6) are based on the condi-
tional distribution of Y given X and, as such, are actually "conditional
maximum likelihood estimators." Because discriminant function esti-
mators are rarely used anymore, the word conditional has been dropped
when describing the estimators given in equations (1.5) and (1.6). We
use the word conditional to describe estimators in logistic regression
with matched data as discussed in Chapter 7.

In summary there are alternative methods of estimation for some
data configurations that are computationally quicker; however, we use
the method of maximum likelihood described in Section 1.2 through-
out the rest of this text.

1.6 DATA SETS

A number of different data sets are used in the examples as well as the
exercises for the purpose of demonstrating various aspects of logistic
regression modeling. Four data sets used throughout the text are de-
scribed below. Other data sets will be introduced as needed in later
chapters. All data sets used in this text may be obtained from the text
web sites at John Wiley & Sons Inc. and the University of Massachusetts
as described in the Preface.

1.6.1 The ICU Study

The ICU study data set consists of a sample of 200 subjects who were
part of a much larger study on survival of patients following admission
to an adult intensive care unit (ICU). The major goal of this study was
to develop a logistic regression model to predict the probability of sur-
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Table 1.5
Variable

1
2

3
4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

Code Sheet for the ICU Data
Description
Identification Code
Vital Status

Age
Sex

Race

Service at ICU Admission

Cancer Part of Present Problem

History of Chronic Renal Failure

Infection Probable at ICU Ad-
mission
CPR Prior to ICU Admission

Systolic Blood Pressure at ICU
Admission
Heart Rate at ICU Admission
Previous Admission to an ICU
Within 6 Months
Type of Admission

Long Bone, Multiple, Neck,
Single Area, or Hip Fracture
PO2 from Initial Blood Gases

PH from Initial Blood Gases

PCO2 from Initial Blood Gases

Bicarbonate from Initial Blood
Gases
Creatinine from Initial Blood
Gases
Level of Consciousness at ICU
Admission

Codes/Values
ID Number
0 = Lived
1 = Died
Years
0 = Male
1 = Female
1 = White
2 = Black
3 = Other
0 = Medical
1 = Surgical
0 = No
1 =Yes
0 = No
1 =Yes
0 = No
l=Yes
0 = No
l=Yes
mm Hg

Beats/min
0 = No
l=Yes
0 = Elective
1 = Emergency
0 = No
1 =Yes
0= >60
1= <60
0 = > 7.25
1 = < 7.25
0= <45
1 = >45
0= >18
1 = <18
0 = < 2.0
1 = > 2.0
0 = No Coma or

Deep Stupor
1 = Deep Stupor
2 = Coma

Name
ID

STA

AGE
SEX

RACE

SER

CAN

CRN

INF

CPR

SYS

HRA
PRE

TYP

FRA

PO2

PH

PCO

BIC

CRE

LOC
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vival to hospital discharge of these patients. A number of publications
have appeared which have focused on various facets of this problem.
The reader wishing to learn more about the clinical aspects of this study
should start with Lemeshow, Teres, Avrunin, and Pastides (1988). For a
more up-to-date discussion of modeling the outcome of ICU patients
the reader is referred to Lemeshow and Le Gall (1994) and to Le-
meshow, Teres, Klar, Avrunin, Gehlbach and Rapoport (1993). Actual
observed variable values have been modified to protect subject confi-
dentiality.

A code sheet for the variables to be considered in this text is given
in Table 1.5.

1.6.2 The Low Birth Weight Study

Low birth weight, defined as birth weight less than 2500 grams, is an
outcome that has been of concern to physicians for years. This is due
to the fact that infant mortality rates and birth defect rates are very high
for low birth weight babies. A woman's behavior during pregnancy
(including diet, smoking habits, and receiving prenatal care) can greatly
alter the chances of carrying the baby to term and, consequently, of de-
livering a baby of normal birth weight.

Data were collected as part of a larger study at Baystate Medical
Center in Springfield, Massachusetts. This data set contains information
on 189 births to women seen in the obstetrics clinic. Fifty-nine of these
births were low birth weight. The variables identified in the code sheet
given in Table 1.6 have been shown to be associated with low birth
weight in the obstetrical literature. The goal of the current study was to
determine whether these variables were risk factors in the clinic popula-
tion being served by Baystate Medical Center. Actual observed variable
values have been modified to protect subject confidentiality.

1.6.3 The Prostate Cancer Study

A third data set involves a study of patients with cancer of the prostate.
These data have been provided to us by Dr. Donn Young at The Ohio
State University Comprehensive Cancer Center. The goal of the analysis
is to determine whether variables measured at a baseline exam can be
used to predict whether the tumor has penetrated the prostatic capsule.
The data presented are a subset of variables from the main study. Of
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Table 1
Weight
Variable

1
2

3
4

5

6

7

8

9

10

11

.6 Code Sheet for the Variables
Data

Description
Identification Code
Low Birth Weight

Age of Mother
Weight of Mother at Last
Menstrual Period
Race

Smoking Status During
Pregnancy
History of Premature Labor

History of Hypertension

Presence of Uterine Irritability

Number of Physician Visits
During the First Trimester

Birth Weight

in the Low Birth

Codes/Values
ID Number
0 = > 2500 g
1 = < 2500 g
Years
Pounds

1 = White
2 = Black
3 = Other
0 = No
l=Yes
0 = None
1 = One
2 = Two, etc.
0 = No
l=Yes
0 = No
l=Yes
0 = None
l=One
2 = Two, etc.
Grams

Name
ID

LOW

AGE
LWT

RACE

SMOKE

PTL

HT

UI

FTV

BWT

the 380 subjects considered here, 153 had a cancer that penetrated the
prostatic capsule. Actual observed variable values have been modified
to protect subject confidentiality. These data will be used primarily for
exercises. A code sheet for the variables to be considered in this text is
shown in Table 1.7.

1.6.4 The UMARU IMPACT Study

Our colleagues, Drs. Jane McCusker, Carol Bigelow, and Anne Stoddard,
have provided us with a subset of data from the University of Massachu-
setts Aids Research Unit (UMARU) IMPACT Study (UIS). This was a
5-year (1989-1994) collaborative research project (Benjamin F. Lewis,
P.I., National Institute on Drug Abuse Grant #R18-DA06151) com-
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Table 1.7 Code Sheet for the Prostate Cancer Study
Variable Description

1 Identification Code
2 Tumor Penetration of

Prostatic Capsule
3 Age
4 Race

5 Results of the Digital
Rectal Exam

6 Detection of Capsular
Involvement in Rectal

Codes/Values
1 -380
0 = No Penetration
1 = Penetration
Years
1= White
2 = Black
1 = No Nodule
2 = Unilobar Nodule

(Left)
3 = Unilobar Nodule

(Right)
4 = Bilobar Nodule
1 =No
2 = Yes

Name
ID
CAPSULE

AGE
RACE

DPROS

DCAPS

Exam
Prostatic Specific Antigen mg/ml
Value
Tumor Volume Obtained cm3

from Ultrasound
Total Gleason Score 0-10

PSA

VOL

GLEASON

prised of two concurrent randomized trials of residential treatment for
drug abuse. The purpose of the study was to compare treatment pro-
grams of different planned durations designed to reduce drug abuse
and to prevent high-risk HIV behavior. The UIS sought to determine
whether alternative residential treatment approaches are variable in ef-
fectiveness and whether efficacy depends on planned program duration.

We refer to the two treatment program sites as A and B in this text.
The trial at site A randomized 444 participants and was a comparison of
3- and 6-month modified therapeutic communities which incorporated
elements of health education and relapse prevention. Clients in the re-
lapse prevention/health education program (site A) were taught to rec-
ognize "high-risk" situations that are triggers to relapse and were
taught the skills to enable them to cope with these situations without us-
ing drugs. In the trial at site B, 184 clients were randomized to receive
either a 6- or 12-month therapeutic community program involving a
highly structured life-style in a communal living setting. Our col-
leagues have published a number of papers reporting the results of this
study, see McCusker et. al. (1995, 1997a, 1997b).
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Table 1.8 Description of Variables in the UMARU
IMPACT Study
Variable

1
2
3

4

5

6

7

8

9

Description
Identification Code
Age at Enrollment
Beck Depression Score at
Admission
IV Drug Use History at
Admission

Number of Prior Drug
Treatments
Subject's Race

Treatment Randomization
Assignment
Treatment Site

Returned to Drug Use Prior
to the Scheduled End of the
Treatment Program

Codes/Values
1-575
Years
0.000-54.000

1 = Never
2 = Previous
3 = Recent
0-40

0 = White
1 = Other
0 = Short
1 = Long
0 = A
1 = B
1 = Remained Drug

Free
0 = Otherwise

Name
ID
AGE
BECK

IVHX

NDRUGTX

RACE

TREAT

SITE

DFREE

As is shown in the coming chapters, the data from the UIS provide
a rich setting for illustrating methods for logistic regression modeling.
The data presented here are a subset of both variables and subjects of
the data used to demonstrate methods for survival analysis in Hosmer
and Lemeshow (1999). The small subset of variables from the main
study we use in this text is described in Table 1.8. Since the analyses we
report in this text are based on this small subset of variables and sub-
jects, the results reported here should not be thought of as being in any
way comparable to results of the main study. In addition we have taken
the liberty in this text of simplifying the study design by representing
the planned duration as short versus long. Thus, short versus long rep-
resents 3 months versus 6 months planned duration at site A, and 6
months versus 12 months planned duration at site B. The dichotomous
outcome variable considered in this text is defined as having returned to
drug use prior to the scheduled completion of the treatment program.
The original data have been modified in such a way as to preserve sub-
ject confidentiality.
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EXERCISES

1. In the ICU data described in Section 1.6.1 the primary outcome vari-
able is vital status at hospital discharge, STA. Clinicians associated
with the study felt that a key determinant of survival was the patient's
age at admission, AGE.

(a) Write down the equation for the logistic regression model of
STA on AGE. Write down the equation for the logit transfor-
mation of this logistic regression model. What characteristic of
the outcome variable, STA, leads us to consider the logistic re-
gression model as opposed to the usual linear regression model
to describe the relationship between STA and AGE?

(b) Form a scatterplot of STA versus AGE.
(c) Using the intervals [15, 24], [25, 34], [35, 44], [45, 54], [55, 64],

[65, 74], [75, 84], [85, 94] for AGE, compute the STA mean
over subjects within each AGE interval. Plot these values of
mean STA versus the midpoint of the AGE interval using the
same set of axes as was used in Exercise l(b).

(d) Write down an expression for the likelihood and log likelihood
for the logistic regression model in Exercise l(a) using the un-
grouped, n = 200, data. Obtain expressions for the two likeli-
hood equations.

(e) Using a logistic regression package of your choice obtain the
maximum likelihood estimates of the parameters of the logistic
regression model in Exercise l(a). These estimates should be
based on the ungrouped, n = 200, data. Using these estimates,
write down the equation for the fitted values, that is, the esti-
mated logistic probabilities. Plot the equation for the fitted val-
ues on the axes used in the scatterplots in Exercises l(b) and
Kc).

(f) Summarize (describe in words) the results presented in the plot
obtained from Exercises l(b), l(c), and l(e).

(g) Using the results of the output from the logistic regression pack-
age used for Exercise l(e), assess the significance of the slope
coefficient for AGE using the likelihood ratio test, the Wald test,
and, if possible, the Score test. What assumptions are needed for
the p-values computed for each of these tests to be valid? Are
the results of these tests consistent with one another? What is the
value of the deviance for the fitted model?



30 INTRODUCTION TO THE LOGISTIC REGRESSION MODEL

(h) Using the results from Exercise l(e) compute 95 percent confi-
dence intervals for the slope and constant term. Write a sentence
interpreting the confidence interval for the slope.

(i) Obtain the estimated covariance matrix for the model fit in Ex-
ercise l(e). Compute the logit and estimated logistic probability
for a 60-year old subject. Compute a 95 percent confidence in-
tervals for the logit and estimated logistic probability. Write a
sentence or two interpreting the estimated probability and its
confidence interval.

(j) Use the logistic regression package to obtain the estimated logit
and its standard error for each subject in the ICU study. Graph
the estimated logit and the pointwise 95 percent confidence lim-
its versus AGE for each subject. Explain (in words) the simi-
larities and differences between the appearance of this graph
and a graph of a fitted linear regression model and its pointwise
95 percent confidence bands.

2. Use the ICU Study and repeat Exercises l(a), l(b), l(d), l(e) and
l(g) using the variable "type of admission," TYP, as the covariate.

3. In the Low Birth Weight Study described in Section 1.6.2, one vari-
able that physicians felt was important to control for was the weight
of the mother at the last menstrual period, LWT. Repeat steps (a) -
(g) of Exercise 1, but for Exercise 3(c) use intervals [80, 99], [100,
109], [110, 114], [115, 119], [120, 124], [125, 129], [130, 250].
(h) The graph in Exercises 3(c) does not look "S-Shaped". The

primary reason is that the range of plotted values is from ap-
proximately 0.2 to 0.56. Explain why a model for the prob-
ability of low birth weight as a function of LWT could still be
the logistic regression model.

4. In the Prostate Cancer Study described in Section 1.6.3, one variable
thought to be particularly predictive of capsule penetration is the
prostate specific antigen level, PSA. Repeat steps (a) - (g) and (j) of
Exercise 1 using CAPSULE as the outcome variable and PSA as the
covariate. For Exercises 4(c) use intervals for PSA of [0, 2.4], [2.5,
4.4], [4.5, 6.4], [6.5, 8.4], [8.5, 10.4], [10.5, 12.4], [12.5, 20.4],
[20.5, 140].



CHAPTER 2

Multiple Logistic Regression

2.1 INTRODUCTION

In the previous chapter we introduced the logistic regression model in
the univariate context. As in the case of linear regression, the strength
of a modeling technique lies in its ability to model many variables, some
of which may be on different measurement scales. In this chapter we
will generalize the logistic model to the case of more than one inde-
pendent variable. This will be referred to as the "multivariable case."
Central to the consideration of multiple logistic models will be estima-
tion of the coefficients in the model and testing for their significance.
This will follow along the same lines as the univariate model. An addi-
tional modeling consideration which will be introduced in this chapter is
the use of design variables for modeling discrete, nominal scale inde-
pendent variables. In all cases it will be assumed that there is a prede-
termined collection of variables to be examined. The question of vari-
able selection is dealt with in Chapter 4.

2.2 THE MULTIPLE LOGISTIC REGRESSION MODEL

Consider a collection of p independent variables denoted by the vector
xf = \xl,x2,...,xp\. For the moment we will assume that each of these

variables is at least interval scale. Let the conditional probability that the
outcome is present be denoted by P(Y = \ |X) = TT(X). The logit of the
multiple logistic regression model is given by the equation

g(x) = P0+Plx}+P2x2 + ... + Ppxp, (2.1)

in which case the logistic regression model is

31
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If some of the independent variables are discrete, nominal scale
variables such as race, sex, treatment group, and so forth, it is inappro-
priate to include them in the model as if they were interval scale vari-
ables. The numbers used to represent the various levels of these nomi-
nal scale variables are merely identifiers, and have no numeric signifi-
cance. In this situation the method of choice is to use a collection of
design variables (or dummy variables). Suppose, for example, that one
of the independent variables is race, which has been coded as "white,"
"black" and "other." In this case, two design variables are necessary.
One possible coding strategy is that when the respondent is "white," the
two design variables, D\ and D2, would both be set equal to zero; when
the respondent is "black," Dl would be set equal to 1 while D2 would
still equal 0; when the race of the respondent is "other," we would use
D! =0 and D2= 1. Table 2.1 illustrates this coding of the design vari-
ables.

Most logistic regression software will generate design variables, and
some programs have a choice of several different methods. The differ-
ent strategies for creation and interpretation of design variables are dis-
cussed in detail in Chapter 3.

In general, if a nominal scaled variable has k possible values, then
k - 1 design variables will be needed. This is true since, unless stated
otherwise, all of our models have a constant term. To illustrate the no-
tation used for design variables in this text, suppose that the /h inde-
pendent variable * . has kj levels. The kj - 1 design variables will be
denoted as Dj( and the coefficients for these design variables will be

denoted as j3;/,/ = l,2,...,^; -1. Thus, the logit for a model with/? vari-

Table 2.1 An Example of the Coding of the Design
Variables for Race, Coded at Three Levels

Design Variable
RACE £, £2
White 0 0
Black 1 0
Other 0 1
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ables and the y t h variable being discrete would be

When discussing the multiple logistic regression model we will, in gen-
eral, suppress the summation and double subscripting needed to indicate
when design variables are being used. The exception to this will be the
discussion of modeling strategies when we need to use the specific value
of the coefficients for any design variables in the model.

2.3 FITTING THE MULTIPLE LOGISTIC
REGRESSION MODEL

Assume that we have a sample of n independent observations
(x,., >>,•), / = l,2,...,n. As in the univariate case, fitting the model requires

that we obtain estimates of the vector P' = h90, /?,,..., /?;J. The method

of estimation used in the multivariable case will be the same as in the
univariate situation - maximum likelihood. The likelihood function is
nearly identical to that given in equation (1.3) with the only change
being that >T(X) is now defined as in equation (2.2). There will be p + l
likelihood equations that are obtained by differentiating the log likeli-
hood function with respect to the p + \ coefficients. The likelihood
equations that result may be expressed as follows:

and

for j = 1,2,..., p.
As in the univariate model, the solution of the likelihood equations

requires special software that is available in most, if not all, statistical
y\

packages. Let P denote the solution to these equations. Thus, the fitted
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values for the multiple logistic regression model are 7r(x,-), the value of
y\

the expression in equation (2.2) computed using p, and x (.
In the previous chapter only a brief mention was made of the

method for estimating the standard errors of the estimated coefficients.
Now that the logistic regression model has been generalized both in
concept and notation to the multi variable case, we consider estimation of
standard errors in more detail.

The method of estimating the variances and covariances of the es-
timated coefficients follows from well-developed theory of maximum
likelihood estimation [see, for example, Rao (1973)]. This theory states
that the estimators are obtained from the matrix of second partial de-
rivatives of the log likelihood function. These partial derivatives have
the following general form

,l-.r ( (2.3)
°r/ i=l

and

l-*,. (2.4)

for 7, / = 0,1,2,.. .,/? where ni denotes ^(x,). Let the (p + \)x(p + l)
matrix containing the negative of the terms given in equations (2.3) and
(2.4) be denoted as I(P). This matrix is called the observed information
matrix. The variances and covariances of the estimated coefficients are
obtained from the inverse of this matrix which we denote as
Var(P) = I~1(P). Except in very special cases it is not possible to write
down an explicit expression for the elements in this matrix. Hence, we
will use the notation Varl/M to denote the /h diagonal element of this

matrix, which is the variance of /3;, and Covf/^,/?,) to denote an arbi-

trary off-diagonal element, which is the covariance of j8y and fa . The
estimators of the variances and covariances, which will be denoted by

/v / A \ * ^ / * \
Van P), are obtained by evaluating Var(P) at p. We will use Varm ;i

/v / A * \
and Covl/Jy./Jj, 7,/ = 0, 1, 2,..., p to denote the values in this matrix.
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For the most part, we will have occasion to use only the estimated stan-
dard errors of the estimated coefficients, which we will denote as

= Var
/ A \11/2

(ft) (2.5)

for j = 0, 1, 2,..., p. We will use this notation in developing methods
for coefficient testing and confidence interval estimation.

A formulation of the information matrix which will be useful when
discussing model fitting and assessment of fit is ifp) = X'VX where X is

an n by p +1 matrix containing the data for each subject, and V is an n
by n diagonal matrix with general element 7r((l-7r(). That is, the ma-
trix X is

X =

and the matrix V is

I X1\ X22

Xn\ Xn2

V =

0

0 n2(\-n2] ••• 0
: 0 ' - . ':
0 .- 0 *„(!-*„)

Before proceeding further we present an example that illustrates the
formulation of a multiple logistic regression model and the estimation
of its coefficients using a subset of the variables from the data for the
low birth weight study described in Section 1.6.2. The code sheet for
the full data set is given in Table 1.6. As discussed in Section 1.6.2, the
goal of this study was to identify risk factors associated with giving birth
to a low birth weight baby (weighing less than 2500 grams). Data were
collected on 189 women, n, =59 of whom had low birth weight babies
and n0 = 130 of whom had normal birth weight babies. Four variables
thought to be of importance were age, weight of the mother at her last
menstrual period, race, and number of physician visits during the first
trimester of the pregnancy. In this example, the variable race has been
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Table 2.2 Estimated Coefficients for a Multiple Logistic
Regression Model Using the Variables AGE, Weight at Last
Menstrual Period (LWT), RACE, and Number of First
Trimester Physician Visits (FTV) from the Low Birth
Weight Study
Variable
AGE
LWT
RACE_2
RACE_3
FTV
Constant

Coeff.
-0.024
-0.014

1.004
0.433

-0.049
1.295

Std. Err.
0.0337
0.0065
0.4979
0.3622
0.1672
1.0714

z
-0.71
-2.18

2.02
1.20

-0.30
1.21

P>\z\
0.480
0.029
0.044
0.232
0.768
0.227

Log likelihood = -111.286

receded using the two design variables in Table 2.1. The results of fit-
ting the logistic regression model to these data are shown in Table 2.2.

In Table 2.2 the estimated coefficients for the two design variables
for race are indicated by RACE_2 and RACE_3. The estimated logit is
given by the following expression:

+ 0.433 x RACE_ 3 - 0.049 x FTV.

The fitted values are obtained using the estimated logit, g(x) .

2.4 TESTING FOR THE SIGNIFICANCE
OF THE MODEL

Once we have fit a particular multiple (multivariable) logistic regression
model, we begin the process of model assessment. As in the univariate
case presented in Chapter 1, the first step in this process is usually to
assess the significance of the variables in the model. The likelihood ra-
tio test for overall significance of the /? coefficients for the independent
variables in the model is performed in exactly the same manner as in the
univariate case. The test is based on the statistic G given in equation
(1.12). The only difference is that the fitted values, ft, under the model

A

are based on the vector containing /? +1 parameters, P. Under the null
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hypothesis that the p "slope" coefficients for the covariates in the
model are equal to zero, the distribution of G will be chi-square with p
degrees-of-freedom.

Consider the fitted model whose estimated coefficients are given in
Table 2.2. For that model, the value of the log likelihood, shown at the
bottom of the table, is L = -111.286. The log likelihood for the con-
stant only model may be obtained by evaluating the numerator of
equation (1.13) or by fitting the constant only model. Either method
yields the log likelihood L = -117.336. Thus the value of the likeli-
hood ratio test is, from equation (1.12),

G = -2[(-l 17.336) - (-111.286))] = 12.099

and the /?-value for the test is P[#2(5) > 12.099] = 0.034 which is signifi-

cant at the a = 0.05 level. We reject the null hypothesis in this case and
conclude that at least one and perhaps all p coefficients are different
from zero, an interpretation analogous to that in multiple linear regres-
sion.

Before concluding that any or all of the coefficients are nonzero,
we may wish to look at the univariate Wald test statistics,

These are given in the fourth column in Table 2.2. Under the hypothe-
sis that an individual coefficient is zero, these statistics will follow the
standard normal distribution. The p-values are given in the fifth col-
umn of Table 2.2. If we use a level of significance of 0.05, then we
would conclude that the variables LWT and possibly RACE are signifi-
cant, while AGE and FTV are not significant.

If our goal is to obtain the best fitting model while minimizing the
number of parameters, the next logical step is to fit a reduced model
containing only those variables thought to be significant, and compare it
to the full model containing all the variables. The results of fitting the
reduced model are given in Table 2.3.

The difference between the two models is the exclusion of the vari-
ables AGE and FTV from the full model. The likelihood ratio test
comparing these two models is obtained using the definition of G given
in equation (1.12). It will have a distribution that is chi-square with 2
degrees-of-freedom under the hypothesis that the coefficients for the
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Table 2.3 Estimated Coefficients for a Multiple
Logistic Regression Model Using the Variables LWT
and RACE from the Low Birth Weight Study

Variable
LWT
RACE_2
RACE_3
Constant

Coeff.
-0.015

1.081
0.481
0.806

Std. Err.
0.0064
0.4881
0.3567
0.8452

z
-2.36

2.22
1.35
0.95

P>lzl
0.018
0.027
0.178
0.340

Log likelihood = -111.630

variables excluded are equal to zero. The value of the test statistic com-
paring the models in Tables 2.2 and 2.3 is

G = -2[(-ll 1.630) -(-111.286)] = 0.688,

which, with 2 degrees-of-freedom, has a p-value of P[^2(2)>0.688J =

0.709. Since the /?-value is large, exceeding 0.05, we conclude that the
reduced model is as good as the full model. Thus there is no advantage
to including AGE and FTV in the model. However, we must not base
our models entirely on tests of statistical significance. As we will see in
Chapter 5, there are numerous other considerations that will influence
our decision to include or exclude variables from a model.

Whenever a categorical independent variable is included (or ex-
cluded) from a model, all of its design variables should be included (or
excluded); to do otherwise implies that we have recoded the variable.
For example, if we only include design variable Z), as defined in Table
2.1, then race is entered into the model as a dichotomous variable coded
as black or not black. If k is the number of levels of a categorical vari-
able, then the contribution to the degrees-of-freedom for the likelihood
ratio test for the exclusion of this variable will be k -1. For example, if
we exclude race from the model, and race is coded at three levels using
the design variables shown in Table 2.1, then there would be 2 degrees-
of-freedom for the test, one for each design variable.

Because of the multiple degrees-of-freedom we must be careful in
our use of the Wald (W) statistics to assess the significance of the coeffi-
cients. For example, if the W statistics for both coefficients exceed 2,
then we could conclude that the design variables are significant. Alter-
natively, if one coefficient has a W statistic of 3.0 and the other a value
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of 0.1, then we cannot be sure about the contribution of the variable to
the model. The estimated coefficients for the variable RACE in Table
2.3 provide a good example. The Wald statistic for the coefficient for
the first design variable is 2.22, and 1.35 for the second. The likelihood
ratio test comparing the model containing LWT and RACE to the one
containing only LWT yields

G = -2[-(l 14.345) -(-111.630)] = 5.43,

which, with 2 degrees-of-freedom, yields a p-value of 0.066. Strict ad-
herence to the a = 0.05 level of significance would justify excluding
RACE from the model. However, RACE is known to be a "clinically
important" variable. In this case the decision to include or exclude
RACE should be made in conjunction with subject matter experts.

In the previous chapter we described, for the univariate model, two
other tests equivalent to the likelihood ratio test for assessing the signifi-
cance of the model, the Wald and Score tests. We will briefly discuss the
multivariable versions of these tests, as their use appears occasionally in
the literature. These tests are available in some software packages. SAS
computes both the likelihood ratio and score tests for a fitted model and
STATA has the capability to perform the Wald test easily. For the most
part we will use likelihood ratio tests in this text. As noted earlier, we
favor the likelihood ratio test as the quantities needed to carry it out
may be obtained from all computer packages.

The multivariable analog of the Wald test is obtained from the fol-
lowing vector-matrix calculation:

= p'(X'VX)p,

which will be distributed as chi-square with p + l degrees-of-freedom
under the hypothesis that each of the p + l coefficients is equal to zero.

Tests for just the p slope coefficients are obtained by eliminating (3Q
A,

from p and the relevant row (first or last) and column (first or last)
from (X'VX). Since evaluation of this test requires the capability to

perform vector-matrix operations and to obtain p, there is no gain over
the likelihood ratio test of the significance of the model. Extensions of
the Wald test which can be used to examine functions of the coefficients
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are quite useful and are illustrated in subsequent chapters. In addition, the
modeling approach of Grizzle, Starmer, and Koch (1969), noted earlier,
contains many such examples.

The multivariable analog of the Score test for the significance of the
model is based on the distribution of the p derivatives of L(P) with respect
to P. The computation of this test is of the same order of complication as
the Wald test. To define it in detail would require introduction of addi-
tional notation which would find little use in the remainder of this text.
Thus, we refer the interested reader to Cox and Hinkley (1974) or Dobson
(1990).

2.5 CONFIDENCE INTERVAL ESTIMATION

We discussed confidence interval estimators for the coefficients, logit and
logistic probabilities for the simple logistic regression model in Section
1.4. The methods used for confidence interval estimators for a multiple
variable model are essentially the same.

The endpoints for a 100(1 -a)% confidence interval for the coeffi-
cients are obtained from (1.4.1) for slope coefficients and from (1.4.2) for
the constant term. For example, using the fitted model presented in Table
2.3, the 95 percent confidence interval for LWT is

-0.015 ± 1.96 x 0.0064 = (-0.028, - 0.002).

The interpretation of this interval is that we are 95 percent confident that
the decrease in the log-odds per one pound increase in weight of the
mother is between -0.028 and -0.002. As we noted in Section 1.4 many

software packages automatically provide confidence intervals for all model
coefficients in the output.

The confidence interval estimator for the logit is a bit more compli-
cated for the multiple variable model than the result presented in (1.19).
The basic idea is the same, only there are now more terms involved in the
summation. It follows from (2.1) that a general expression for the estima-
tor of the logit for a model containing p covariates is

g(x) = ft + A*i + &*2 +' ' ' + fap - (2-6)

An alternative way to express the estimator of the logit in (2.6) is through
the use of vector notation as g(x) = x'p, where the vector
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P'~ (A) 'A>A' - - - ' / ^ ) denotes the estimator of the p + l coefficients and

the vector xf = (xQ,xl,x2,..^xpJ represents the constant and a set of values

of the p-covariates in the model, where XQ = 1.
It follows from (1.18) that an expression for the estimator of the vari-

ance of the estimator of the logit in (2.6) is

p t * P P

j=Q j=Qk=j+\

We can express this result much more concisely by using the matrix ex-
pression for the estimator of the variance of the estimator of the coeffi-
cients. From the expression for the observed information matrix, we have
that

Var(p)-(X/VX)"1. (2.8)

It follows from (2.8) that an equivalent expression for the estimator in (2.7)
is

= x'(X'VX)~1x . (2.9)

Fortunately, all good logistic regression software packages provide the op-
tion for the user to create a new variable containing the estimated values of
(2.9) or the standard error for all subjects in the data set. This feature
eliminates the computational burden associated with the matrix calcula-
tions in (2.9) and allows the user to routinely calculate fitted values and
confidence interval estimates. However it is useful to illustrate the details
of the calculations.

Using the model in Table 2.3, the estimated logit for a 150 pound white
woman is

g(LWT = 150, RACE = White) = 0.806 -0.015x150 + 1.081x0 + 0.481x0

= -1.444

and the estimated logistic probability is
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-1.444

n(LWT= 150,RACE = White) = - ̂ ^ = 0.191 .

The interpretation of the fitted value is that the estimated proportion of low
birthweight babies among 150 pound white women is 0.191.

In order to use (2.7) to estimate the variance of this estimated logit we
need to obtain the estimated covariance matrix shown in Table 2.4. Thus
the estimated variance of the logit is

Var[g(LWT = 150, RACE = White)] = Var(j30) + (150)2 x Var(0, ) +

(O)2 x Var(ft) + (O)2 x Var(ft ) + 2 x 150 x Cov(ft , ft

= 0.7143 + (150)2x0.000041 + 0x0.2382 + 0x0.1272

+ 2 x 1 50 x (-0.0052) + 2 x 0 x 0.0226 + 2 x 0 x (-0. 1035)

+ 2 x 1 50 x 0 x (-0.000647) + 2 x 1 50 x 0 x 0.000036

+ 2x0x0x0.0532 = 0.0768

and the standard error is SE[g(LWT = ISO, RACE = White)] = 0.2711. The
95 percent confidence interval for the estimated logit is

-1 .444 ± 1 .96 x 0.277 1 = (-1 .988, - 0.901) .

The associated confidence interval for the fitted value is (0.120, 0.289).
We defer further discussion and interpretation of the estimated logit, fitted
values and their respective confidence intervals until Chapter 3.

Table 2.4 Estimated Covariance Matrix of the
Estimated Coefficients in Table 2.3

LWT
LWT
RACE_2

RACE_3
Constant

0.000041
-0.000647

0.000036
-0.00521 1

RACE_2

0.2382

0.0532
0.0226

RACE 3

0.1272
-0.1035

Constant

0.7143
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2.6 OTHER METHODS OF ESTIMATION

In Section 1.5, two alternative methods of estimating the parameters of the
logistic regression model were discussed. These were the methods of non-
iteratively weighted least squares and discriminant function. Each may
also be employed in the multivariable case, though application of the non-
iteratively weighted least squares estimators is limited by the need for
nonzero estimates of n(x) for most values of x in the data set. With a
large number of independent variables, or even a few continuous variables,
this condition is not likely to hold. The discriminant function estimators do
not have this limitation and may be easily extended to the multivariable
case.

The discriminant function approach to estimation of the logistic coef-
ficients is based on the assumption that the distribution of the independent
variables, given the value of the outcome variable, is multivariate normal.
Two points should be kept in mind: (1) the assumption of multivariate
normality will rarely if ever be satisfied because of the frequent occurrence
of dichotomous independent variables, and (2) the discriminant function
estimators of the coefficients for nonnormally distributed independent vari-
ables, especially dichotomous variables, will be biased away from zero
when the true coefficient is nonzero. For these reasons we, in general, do
not recommend its use. However, these estimators are of some historical
importance as a number of the classic papers in the applied literature, such
as Truett, Cornfield, and Kannel (1967), have used them. These estimators
are easily computed and, in the absence of a logistic regression program,
should be adequate for a preliminary examination of your data. Thus, it
seems worthwhile to include the relevant formulae for their computation.

The assumptions necessary to employ the discriminant function ap-
proach to estimating the logistic regression coefficients state that the con-
ditional distribution of X (the vector of p covariate random variables) given
the outcome variable, Y = y, is multivariate normal with a mean vector that
depends on y, but a covariance matrix that does not. Using notation de-
fined in Section 1.5 we say X l y = y ~ yVuf;.,£;.J where \i- contains the

means of the p independent variables for the subpopulation defined by
y = j and X is the p x p covariance matrix of these variables. Under these
assumptions, P(Y = 11 x) = TT(X), where the coefficients are given by:

ffi }
&= In -L -0.5(0, -/lo) I-'Cu, +Mo) (2-10)

v^o;
and
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P^ft-ttOZ"1 , (2-11)

where 6l = P(Y = 1) and 60 = 1 - 0, denote the proportion of the population
with y equal to 1 or 0, respectively. Equations (2.10) and (2.11) are the
multivariable analogs of equations (1.22) and (1.23).

The discriminant function estimators of j80 and |J are found by sub-
stituting estimators for \i^j = 0, 1, L, and 6l into equations (2.10) and

(2.11). The estimators most often used are the maximum likelihood esti-
mators under the multivariate normal model. That is, we let

the mean of x in the subgroup of the sample with y = j, j = 0, 1 .
The estimator of the covariance matrix, Z, is the multivariable exten-

sion of the pooled sample variance given in Section 1.5. This may be rep-
resented as

s=(n0-l)S0+(n1-l)S1

(n + n-2)

where S;, j = 0,1 is the pxp matrix of the usual unbiased estimators of

the variances and covariances computed within the subgroup defined by
y = jj = 0,l.

Because of the bias in the discriminant function estimators when nor-
mality does not hold, they should be used only when logistic regression
software is not available, and then only in preliminary analyses. Any final
analyses should be based on the maximum likelihood estimators of the co-
efficients.

EXERCISES

1. Use the ICU data described in Section 1.6.1 and consider the multiple
logistic regression model of vital status, STA, on age (AGE), cancer
part of the present problem (CAN), CPR prior to ICU admission (CPR),
infection probable at ICU admission (INF), and race (RACE).
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(a) The variable RACE is coded at three levels. Prepare a table show-
ing the coding of the two design variables necessary for including
this variable in a logistic regression model.

(b) Write down the equation for the logistic regression model of STA
on AGE, CAN, CPR, INF, and RACE. Write down the equation
for the logit transformation of this logistic regression model. How
many parameters does this model contain?

(c) Write down an expression for the likelihood and log likelihood for
the logistic regression model in Exercise l(b). How many likeli-
hood equations are there? Write down an expression for a typical
likelihood equation for this problem.

(d) Using a logistic regression package, obtain the maximum likeli-
hood estimates of the parameters of the logistic regression model
in Exercise l(b). Using these estimates write down the equation
for the fitted values, that is, the estimated logistic probabilities.

(e) Using the results of the output from the logistic regression package
used in Exercise l(d), assess the significance of the slope coeffi-
cients for the variables in the model using the likelihood ratio test.
What assumptions are needed for the p-values computed for this
test to be valid? What is the value of the deviance for the fitted
model?

(f) Use the Wald statistics to obtain an approximation to the signifi-
cance of the individual slope coefficients for the variables in the
model. Fit a reduced model that eliminates those variables with
nonsignificant Wald statistics. Assess the joint (conditional) sig-
nificance of the variables excluded from the model. Present the re-
sults of fitting the reduced model in a table.

(g) Using the results from Exercise l(f), compute 95 percent confi-
dence intervals for all coefficients in the model. Write a sentence
interpreting the confidence intervals for the non-constant covari-
ates.

(h) Obtain the estimated covariance matrix for the final model fit in
Exercise l(f)- Choose a set of values for the covariates in that
model and estimate the logit and logistic probability for a subject
with these characteristics. Compute 95 percent confidence inter-
vals for the logit and estimated logistic probability. Write a sen-
tence or two interpreting the estimated probability and its confi-
dence interval.

2. Use the Prostate Cancer data described in Section 1.6.3 and consider the
multiple logistic regression model of capsule penetration (CAPSULE),
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on AGE, RACE, results of the digital rectal exam (DPROS and
DCAPS), prostate specific antigen (PSA), Gleason score (GLEASON)
and tumor volume (VOL).
(a) The variable DPROS is coded at four levels. Prepare a table

showing the coding of the three design variables necessary for in-
cluding this variable in a logistic regression model.

(b) The variable DCAPS is coded 1 and 2. Can this variable be used in
its original coding or must a design variable be created? Explore
this question by comparing the estimated coefficients obtained
from fitting a model containing DCAPS as originally coded with
those obtained from one using a 0-1 coded design variable,
DCAPSnew = DCAPS-l.

(c) Repeat parts l(b) - l(h) of Exercise 1.



CHAPTER 3

Interpretation of the Fitted Logistic
Regression Model

3.1 INTRODUCTION

In Chapters 1 and 2 we discussed the methods for fitting and testing for
the significance of the logistic regression model. After fitting a model
the emphasis shifts from the computation and assessment of significance
of the estimated coefficients to the interpretation of their values. Strictly
speaking, an assessment of the adequacy of the fitted model should pre-
cede any attempt at interpreting it. In the case of logistic regression the
methods for assessment of fit are rather technical in nature and thus are
deferred until Chapter 5, at which time the reader should have a good
working knowledge of the logistic regression model. Thus, we begin
this chapter assuming that a logistic regression model has been fit, that
the variables in the model are significant in either a clinical or statistical
sense, and that the model fits according to some statistical measure of
fit.

The interpretation of any fitted model requires that we be able to
draw practical inferences from the estimated coefficients in the model.
The question being addressed is: What do the estimated coefficients in
the model tell us about the research questions that motivated the study?
For most models this involves the estimated coefficients for the inde-
pendent variables in the model. On occasion, the intercept coefficient is
of interest; but this is the exception, not the rule. The estimated coeffi-
cients for the independent variables represent the slope (i.e., rate of
change) of a function of the dependent variable per unit of change in
the independent variable. Thus, interpretation involves two issues: de-
termining the functional relationship between the dependent variable
and the independent variable, and appropriately defining the unit of
change for the independent variable.

47
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The first step is to determine what function of the dependent vari-
able yields a linear function of the independent variables. This is called
the link function [see McCullagh and Nelder (1983) or Dobson (1990)].
In the case of a linear regression model, it is the identity function since
the dependent variable, by definition, is linear in the parameters. (For
those unfamiliar with the term "identity function," it is the function y =
y.) In the logistic regression model the link function is the logit trans-
formation g(x) = ln{;r(.x:)/[l - #(*)]} = /30 + ft x.

For a linear regression model recall that the slope coefficient, /?,, is
equal to the difference between the value of the dependent variable at
x +1 and the value of the dependent variable at x, for any value of x.
For example, if y(*) = ft +A*» it follows that /?, =y(jc + l)-y(;t). In
this case, the interpretation of the coefficient is relatively straightforward
as it expresses the resulting change in the measurement scale of the de-
pendent variable for a unit change in the independent variable. For ex-
ample, if in a regression of weight on height of male adolescents the
slope is 5, then we would conclude that an increase of 1 inch in height is
associated with an increase of 5 pounds in weight.

In the logistic regression model, the slope coefficient represents the
change in the logit corresponding to a change of one unit in the inde-
pendent variable (i.e., /?, = g(x + l)-g(x)). Proper interpretation of the
coefficient in a logistic regression model depends on being able to place
meaning on the difference between two logits. Interpretation of this
difference is discussed in detail on a case-by-case basis as it relates di-
rectly to the definition and meaning of a one-unit change in the inde-
pendent variable. In the following sections of this chapter we consider
the interpretation of the coefficients for a univariate logistic regression
model for each of the possible measurement scales of the independent
variable. In addition we discuss interpretation of the coefficients in
multivariable models.

3.2 DICHOTOMOUS INDEPENDENT VARIABLE

We begin our consideration of the interpretation of logistic regression
coefficients with the situation where the independent variable is nominal
scale and dichotomous (i.e., measured at two levels). This case provides
the conceptual foundation for all the other situations.

We assume that the independent variable, x, is coded as either zero
or one. The difference in the logit for a subject with x = 1 and x = 0 is
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The algebra shown in this equation is rather straightforward. We present
it in this level of detail to emphasize that the first step in interpreting the
effect of a covariate in a model is to express the desired logit difference
in terms of the model. In this case the logit difference is equal to fi}.
In order to interpret this result we need to introduce and discuss a meas-
ure of association termed the odds ratio.

The possible values of the logistic probabilities may be conveniently
displayed in a 2 x 2 table as shown in Table 3.1. The odds of the out-
come being present among individuals with x = 1 is defined as
7r(l)/[l-7r(l)]. Similarly, the odds of the outcome being present among

individuals with Jt = 0 is defined as 7r(0)/[l-7r(0)]. The odds ratio, de-
noted OR, is defined as the ratio of the odds for x = 1 to the odds for
x = 0, and is given by the equation

*(!)/[!-*(!)] (3.1)

Substituting the expressions for the logistic regression model shown in
Table 3.1 into (3.1) we obtain

Table 3.1 Values of the Logistic Regression Model
When the Independent Variable Is Dichotomous

Outcome
Variable (Y)

y = l

y = 0

Total

Independent Variable (X)

x=l x = 0

J*o+A
TT(\\
K(l] l + e*>+*

\ TT(-\\
1 "W 1+<?/>0+A

ppo
TT(()}v ' \+e^

1 7r(Cl}I 7 t lU 1 — A
V ' l + ̂ o

1.0 1.0
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OR. —

ePo+h
~7T

Hence, for logistic regression with a dichotomous independent variable
coded 1 and 0, the relationship between the odds ratio and the regres-
sion coefficient is

OR = ̂ ' . (3.2)

This simple relationship between the coefficient and the odds ratio is the
fundamental reason why logistic regression has proven to be such a
powerful analytic research tool.

The odds ratio is a measure of association which has found wide
use, especially in epidemiology, as it approximates how much more
likely (or unlikely) it is for the outcome to be present among those with
x = 1 than among those with x = 0. For example, if y denotes the pres-
ence or absence of lung cancer and if x denotes whether the person is a

/\
smoker, then OR = 2 estimates that lung cancer is twice as likely to oc-
cur among smokers than among nonsmokers in the study population.
As another example, suppose y denotes the presence or absence of heart
disease and x denotes whether or not the person engages in regular

/v
strenuous physical exercise. If the estimated odds ratio is OR = 0.5,
then occurrence of heart disease is one half as likely to occur among
those who exercise than among those who do not in the study popula-
tion.

The interpretation given for the odds ratio is based on the fact that
in many instances it approximates a quantity called the relative risk.
This parameter is equal to the ratio 7r(l)/;r(0). It follows from (3.1) that
the odds ratio approximates the relative risk if [l - 7r(0)]/[l - 7r(l)]«1.
This holds when n(x] is small for both x = 1 and 0.

Readers who have not had experience with the odds ratio as a
measure of association would be advised to spend some time reading
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about this measure in one of the following texts: Breslow and Day
(1980), Kelsey, Thompson, and Evans (1986), Rothman and Greenland
(1998) and Schlesselman (1982).

An example may help to clarify what the odds ratio is and how it is
computed from the results of a logistic regression program or from a
2x2 table. In many examples of logistic regression encountered in the
literature we find that a continuous variable has been dichotomized at
some biologically meaningful cutpoint. A more detailed discussion of
the rationale and implications for the modeling of such a decision is
presented in Chapter 4. With this in mind we use the data displayed in
Table 1.1 and create a new variable, AGED, which takes on the value 1
if the age of the subject is greater than or equal to 55 and zero other-
wise. The result of cross classifying the dichotomized age variable with
the outcome variable CHD is presented in Table 3.2.

The data in Table 3.2 tell us that there were 21 subjects with values
(x=l,y= l), 22 with (x = 0, y- 1), 6 with (jc = 1, y = 0), and 51 with (x

= 0, y = 0). Hence, for these data, the likelihood function shown in (1.3)
simplifies to

/(p) = ;r(l)21x [l-w(l)]6x 7r(0)22x [l-^

Use of a logistic regression program to obtain the estimates of (3Q and
/?j yields the results shown in Table 3.3.

The estimate of the odds ratio from (3.2) is OR = e2094 =8.1.
Readers who have had some previous experience with the odds ratio un-
doubtedly wonder why a logistic regression package was used to obtain
the maximum likelihood estimate of the odds ratio, when it could have
been obtained directly from the cross-product ratio from Table 3.2,
namely,

Table 3.2 Cross-Classification of AGE Dichotomized
at 55 Years and CHD for 100 Subjects

CHD(y)
Present (1)
Absent (0)
Total

AGEDOc)
> 55 (1) < 55 (0)

21
6

27

22
51

73

Total
43
57

100
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. .
22/51

Thus j§,=ln[(21/6)/(22/51)] = 2.094. We emphasize here that logistic
regression is, in fact, regression even in the simplest case possible. The
fact that the data may be formulated in terms of a contingency table
provides the basis for interpretation of estimated coefficients as the log
of odds ratios.

Along with the point estimate of a parameter, it is a good idea to
use a confidence interval estimate to provide additional information
about the parameter value. In the case of the odds ratio, OR, for a 2 x 2
table there is an extensive literature dealing with this problem, much of
which is focused on methods when the sample size is small. The reader
who wishes to learn more about the available exact and approximate
methods should see the papers by Fleiss (1979) and Gart and Thomas
(1972). A good summary may be found in the texts by Breslow and
Day (1980), Kleinbaum, Kupper, and Morgenstern (1982), and Roth-
man and Greenland (1998).

The odds ratio, OR, is usually the parameter of interest in a logistic
s*.

regression due to its ease of interpretation. However, its estimate, OR,
tends to have a distribution that is skewed. The skewness of the sam-

yv

pling distribution of OR is due to the fact that possible values range
between 0 and <*>, with the null value equaling 1. In theory, for large

/^
enough sample sizes, the distribution of OR is normal. Unfortunately,
this sample size requirement typically exceeds that of most studies.
Hence, inferences are usually based on the sampling distribution of

lnlORJ = )9j, which tends to follow a normal distribution for much

smaller sample sizes. A 100x(l-a)% confidence interval (CI) estimate
for the odds ratio is obtained by first calculating the endpoints of a con-

Table 3.3 Results of Fitting the Logistic Regression
Model to the Data in Table 3.2

Variable
AGED

Constant

Coeff.
2.094

-0.841

Std. Err.
0.5285
0.2551

z
3.96

-3.30

P>\z\
<0.001
0.001

Log likelihood = -58.9795
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fidence interval for the coefficient, ft, and then exponentiating these
values. In general, the endpoints are given by the expression

As an example, consider the estimation of the odds ratio for the
XV

dichotomized variable AGED. The point estimate is OR = 8.1 and the
endpoints of a 95% CI are

exp(2.094 +1.96 x 0.529) = (2.9,22.9).

This interval is typical of the confidence intervals seen for odds ratios
when the point estimate exceeds 1. The confidence interval is skewed to
the right. This confidence interval suggests that CHD among those 55
and older in the study population could be as little as 2.9 times or much
as 22.9 times more likely than those under 55, at the 95 percent level of
confidence.

Because of the importance of the odds ratio as a measure of asso-
ciation, many software packages automatically provide point and confi-
dence interval estimates based on the exponentiation of each coefficient
in a fitted logistic regression model. These quantities provide estimates
of odds ratios of interest in only a few special cases (e.g., a dichotomous
variable coded zero or one that is not involved in any interactions with
other variables). The major goal of this chapter is to provide the meth-
ods for using the results of fitted models to provide point and confi-
dence interval estimates of odds ratios that are of interest, regardless of
how complex the fitted model may be.

Before concluding the dichotomous variable case, it is important to
consider the effect that the coding of the variable has on the computa-
tion of the estimated odds ratio. In the previous discussion we noted

A. ( n \
that the estimate of the odds ratio was OR = exp(ft l . This is correct

when the independent variable is coded as 0 or 1. Other coding may
require that we calculate the value of the logit difference for the specific
coding used, and then exponentiate this difference to estimate the odds
ratio.

We illustrate these computations in detail, as they demonstrate the
general method for computing estimates of odds ratios in logistic re-
gression. The estimate of the log of the odds ratio for any independent
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variable at two different levels, say x = a versus x = b, is the difference
between the estimated logits computed at these two values,

= Ax(f l-6). (3.3)

The estimate of the odds ratio is obtained by exponentiating the logit
difference,

(3.4)

/ A. \

Note that this expression is equal to expmj 1 only when (a - b) = I . In

(3.3) and (3.4) the notation QR(a,b) is used to represent the odds ratio

}._n(x = a)/[l-7t(x = a)] ^ ^

and when a= 1 and b = 0 we let OR = OR(1,0).
Some software packages offer a choice of methods for coding de-

sign variables. The "zero-one" coding used so far in this section is
frequently referred to as reference cell coding. The reference cell
method typically assigns the value of zero to the lower code for x and
one to the higher code. For example, if SEX was coded as 1 = male and
2 = female, then the resulting design variable under this method, D,
would be coded 0 = male and 1 = female. Exponentiation of the esti-
mated coefficient for D would estimate the odds ratio of female relative
to male. This same result would have been obtained had sex been
coded originally as 0 = male and 1 = female, and then treating the vari-
able SEX as if it were interval scaled.

Another coding method is frequently referred to as deviation from
means coding. This method assigns the value of -1 to the lower code,
and a value of 1 to the higher code. The coding for the variable SEX
discussed above is shown in Table 3.4.
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Table 3.4 Illustration of the Coding of the Design
Variable Using the Deviation from Means Method

SEX (Code)
Male (1)
Female (2)

Design Variable
D

-1
1

Suppose we wish to estimate the odds ratio of female versus male
when deviation from means coding is used. We do this by using the
general method shown in (3.3) and (3.4),

In OR(female, male) = g(female) - g(male)

and the estimated odds ratio is OR(female, male) = exp( 2/3, j . Thus, if we

had exponentiated the coefficient from the computer output we would
have obtained the wrong estimate of the odds ratio. This points out
quite clearly that we must pay close attention to the method used to
code the design variables.

The method of coding also influences the calculation of the end-
points of the confidence interval. For the above example, using the de-
viation from means coding, the estimated standard error needed for

y s / / v \ / N / A \
confidence interval estimation is SElZp,) which is 2xSE(p, I. Thus the

endpoints of the confidence interval are

exp[2A±*,-a/22SE(A)].

In general, the endpoints of the confidence interval for the odds ratio
given in (3.5) are

exp[ A (a -b) ± Z]_a/2\a -b\x SE
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where \a-b\ is the absolute value of (a-b}. Since we can control how
we code our dichotomous variables, we recommend that, in most situa-
tions, they be coded as 0 or 1 for analysis purposes. Each dichotomous
variable is then treated as an interval scale variable.

In summary, for a dichotomous variable the parameter of interest is
the odds ratio. An estimate of this parameter may be obtained from the
estimated logistic regression coefficient, regardless of how the variable is
coded. This relationship between the logistic regression coefficient and
the odds ratio provides the foundation for our interpretation of all lo-
gistic regression results.

3.3 POLYCHOTOMOUS INDEPENDENT VARIABLE

Suppose that instead of two categories the independent variable has
k > 2 distinct values. For example, we may have variables that denote
the county of residence within a state, the clinic used for primary health
care within a city, or race. Each of these variables has a fixed number
of discrete values and the scale of measurement is nominal. We saw in
Chapter 2 that it is inappropriate to model a nominal scale variable as if
it were an interval scale variable. Therefore, we must form a set of de-
sign variables to represent the categories of the variable. In this section
we present methods for creating design variables for polychotomous
independent variables. The choice of a particular method depends to
some extent on the goals of the analysis and the stage of model devel-
opment.

We begin by extending the method presented in Table 2.1 for a
dichotomous variable. For example, suppose that in a study of CHD the
variable RACE is coded at four levels, and that the cross-classification of

Table 3.5 Cross-Classification of Hypothetical Data on
RACE and CHD Status for 100 Subjects
CHD Status
Present
Absent
Total
Odds Ratio
95 % CI

in(dk)

White
5
20
25
1

0.0

Black
20
10
30
8

(2.3, 27.6)
2.08

Hispanic
15
10
25
6

(1.7,21.3)
1.79

Other
10
10
20

Total
50
50
100

4
(1.1, 14.9)

1.39
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Table 3.6 Specification of the Design Variables
for RACE Using Reference Cell Coding with
White as the Reference Group

Design Variables
RACE(Code) RACE_2
White (1)
Black (2)
Hispanic (3)
Other (4)

0
1
0
0

RACE 3
0
0
1
0

RACE 4
0
0
0
1

RACE by CHD status yields the data in Table 3.5. These data are hy-
pothetical and have been formulated for ease of computation. The ex-
tension to a situation where the variable has more than four levels is not
conceptually different, so all the examples in this section use k = 4.

At the bottom of Table 3.5, the odds ratio is given for each race,
using White as the reference group. For example, for Hispanic the esti-
mated odds ratio is 15x20/5x10. The log of each odds ratio is given
in the last row of Table 3.5. This table is typical of what is found in the
literature. The reference group is indicated by a value of 1 for the odds
ratio. These same estimates of the odds ratio may be obtained from a
logistic regression program with an appropriate choice of design vari-
ables. The method for specifying the design variables involves setting
all of them equal to zero for the reference group, and then setting a sin-
gle design variable equal to 1 for each of the other groups. This is il-
lustrated in Table 3.6. As noted in Section 3.2 this method is usually
referred to as reference cell coding and is the default method in many
packages.

Use of any logistic regression program with design variables coded
as shown in Table 3.6 yields the estimated logistic regression coeffi-
cients given in Table 3.7.

A comparison of the estimated coefficients in Table 3.7 to the log
odds ratios in Table 3.5 shows that

ln[<5R(Black, White)] = A = 2.079,

ln[oR(Hispanic, White)] = ft = 1.792,

and
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Table 3.7 Results of Fitting the Logistic
Regression Model to the Data in Table 3.5
Using the Design Variables in Table 3.6

Variable
RACE_2
RACEJ3
RACE_4
Constant

Coeff.
2.079
1.792
1.386

-1.386

Std. Err.
0.6325
0.6466
0.6708
0.5000

z
3.29
2.78
2.07

-2.77

P>lz!
0.001
0.006
0.039
0.006

Log likelihood = -62.2937

ln[oR(Other, White)] = ft = 1.386.

Did this happen by chance? Calculation of the logit difference shows
that it is by design. The comparison of Black to White is as follows:

ln[oR(Black, White)] = |(Black) - g( White)

x(/?ACE_2 = 0)+/32 x(/MC£_3 = 0)

= A.

Similar calculations would demonstrate that the other coefficients esti-
mated using logistic regression are also equal to the log of odds ratios
computed from the data in Table 3.5.

A comment about the estimated standard errors may be helpful at
this point. In the univariate case the estimates of the standard errors
found in the logistic regression output are identical to the estimates ob-
tained using the cell frequencies from the contingency table. For ex-
ample, the estimated standard error of the estimated coefficient for the
design variable RACE_2 is

1 1 1 i f 5

- + — + — + — =0.6325,
5 20 20 10
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A derivation of this result may be found in Bishop, Feinberg, and Hol-
land (1975).

Confidence limits for odds ratios are obtained using the same ap-
proach used in Section 3.2 for a dichotomous variable. We begin by
computing the confidence limits for the log odds ratio (the logistic re-
gression coefficient) and then exponentiate these limits to obtain limits
for the odds ratio. In general, the limits for a 100(1 - a)% CIE for the
coefficient are of the form

The corresponding limits for the odds ratio, obtained by exponentiating
these limits, are as follows:

(3.6)

The confidence limits given in Table 3.5 in the row beneath the esti-
mated odds ratios were obtained using the estimated coefficients and
standard errors in Table 3.7 with (3.6) for j = 1,2,3 with a = 0.05.

Reference cell coding is the most commonly employed coding
method appearing in the literature. The primary reason for the wide-
spread use of this method is the interest in estimating the risk of an
"exposed" group relative to that of a "control" or "unexposed"
group.

As discussed in Section 3.2 a second method of coding design
variables is called deviation from means coding. This coding expresses
effect as the deviation of the "group mean" from the "overall mean."
In the case of logistic regression, the "group mean" is the logit for the

Table 3.8 Specification of the Design Variables for
RACE Using Deviation from Means Coding

Design Variables
RACE(Code) RACE_2
White (1)

Black (2)
Hispanic (3)
Other (4)

_j

1
0
0

RACE 3
-1

0
1
0

RACE 4
-1

0
0
1
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Table 3.9 Results of Fitting the Logistic
Regression Model to the Data in Table 3.5
Using the Design Variables in Table 3.8

Variable
RACE_2
RACE_3
RACE_4
Constant

Coeff.
0.765
0.477
0.072

-0.072

Std. Err.
0.3506
0.3623
0.3846
0.2189

z
2.18
1.32
0.19

-0.33

P>lzl
0.029
0.188
0.852
0.742

Log likelihood = -62.2937

group and the "overall mean" is the average logit over all groups. This
method of coding is obtained by setting the value of all the design vari-
ables equal to -1 for one of the categories, and then using the 0, 1 cod-
ing for the remainder of the categories. Use of the deviation from
means coding for race shown in Table 3.8 yields the estimated logistic
regression coefficients in Table 3.9.

In order to interpret the estimated coefficients in Table 3.9 we
need to refer to Table 3.5 and calculate the logit for each of the four
categories of RACE. These are

£2=ln(20/10) = 0.693, £3 = ln(l 5/10) = 0.405, g4 = ln(lO/10) = 0, and

their average is J = ̂ gj/4- 0.072. The estimated coefficient for de-
sign variable RACE_2 in Table 3.9 is g2 - g = 0.693 - (-0.072) =
0.765. The general relationship for the estimated coefficient for design
variable RACE J is gj-g, for j - 2, 3, 4 .

The interpretation of the estimated coefficients is not as easy or
clear as in the situation when a reference group is used. Exponentiation
of the estimated coefficients yields the ratio of the odds for the particu-
lar group to the geometric mean of the odds. Specifically, for RACE_2
in Table 3.9 we have
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= exp(g2)/exp(£g./4)

= (20 / 10)/[(5/20) x (20/10) x (15/10) x (10/10)]0'25

= 2.15.

This number, 2.15, is not a true odds ratio because the quantities in the
numerator and denominator do not represent the odds for two distinct
categories. The exponentiation of the estimated coefficient expresses
the odds relative to an "average" odds, the geometric mean. The inter-
pretation of this value depends on whether the "average" odds is in fact
meaningful.

The estimated coefficients obtained using deviation from means
coding may be used to estimate the odds ratio for one category relative
to a reference category. The equation for the estimate is more compli-
cated than the one obtained using the reference cell coding. However, it
provides an excellent example of the basic principle of using the logit
difference to compute an odds ratio.

To illustrate this we calculate the log odds ratio of Black versus
White using the coding for design variables given in Table 3.8. The
logit difference is as follows:

ln[6k(Black, White)] = g(Black) - g(White)

= 2f t+f t+f t . (3.7)

To obtain a confidence interval we must estimate the variance of
the sum of the coefficients in (3.7). In this example, the estimator is

Var jlnf OR(Black, White)]! = 4 x Va r (ft) + Va r (ft

) + 4xC6\(ft,ft)

, f t . (3.8)
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Values for each of the estimators in (3.8) may be obtained from output
that is available from logistic regression software. Confidence intervals
for the odds ratio are obtained by exponentiating the endpoints of the
confidence limits for the sum of the coefficients in (3.7). Evaluation of
(3.7) for the current example gives

ln[OR(Black, White)] = 2(0.765) + 0.477 + 0.072 = 2.079.

The estimate of the variance is obtained by evaluating (3.8) which, for
the current example, yields

Var |ln[dk(Black, White)]! = 4(0.351)2 +(0.362)2 +(0.385)2

+ 4(-0.031) + 4(-0.040) + 2(-0.044) = 0.400

and the estimated standard error is

SEJln[oh(Black, White)]! = 0.6325.

We note that the values of the estimated log odds ratio, 2.079, and
the estimated standard error, 0.6325, are identical to the values of the
estimated coefficient and standard error for the first design variable in
Table 3.7. This is expected, since the design variables used to obtain the
estimated coefficients in Table 3.7 were formulated specifically to yield
the log odds ratio relative to the White race category.

It should be apparent that, if the objective is to obtain odds ratios,
use of deviation from means coding for design variables is computa-
tionally much more complex than reference cell coding.

In summary, we have shown that discrete nominal scale variables
are included properly into the analysis only when they have been
receded into design variables. The particular choice of design variables
depends on the application, though the reference cell coding is the easi-
est to interpret, and thus is the one we use in the remainder of this text.
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3.4 CONTINUOUS INDEPENDENT VARIABLE

When a logistic regression model contains a continuous independent
variable, interpretation of the estimated coefficient depends on how it is
entered into the model and the particular units of the variable. For pur-
poses of developing the method to interpret the coefficient for a con-
tinuous variable, we assume that the logit is linear in the variable. Other
modeling strategies that examine this assumption are presented in
Chapter 4.

Under the assumption that the logit is linear in the continuous co-
variate, x, the equation for the logit is g(x] = (3Q + fax. It follows that the
slope coefficient, /?,, gives the change in the log odds for an increase of
"1" unit in ;c, that is, /?, = g(x + }}-g(x) for any value of x. Most often
the value of "1" is not clinically interesting. For example, a 1 year in-
crease in age or a 1 mm Hg increase in systolic blood pressure may be
too small to be considered important. A change of 10 years or 10 mm
Hg might be considered more useful. On the other hand, if the range of
x is from zero to 1, then a change of 1 is too large and a change of 0.01
may be more realistic. Hence, to provide a useful interpretation for
continuous scale covariates we need to develop a method for point and
interval estimation for an arbitrary change of "c" units in the covariate.

The log odds ratio for a change of c units in x is obtained from the
logit difference g(jt + c)-g(jc) = c/3, and the associated odds ratio is ob-
tained by exponentiating this logit difference, OR(c) = OR(jt + c, .x)
= exp(c/2|). An estimate may be obtained by replacing j3, with its

maximum likelihood estimate /3,. An estimate of the standard error
needed for confidence interval estimation is obtained by multiplying the
estimated standard error of fi} by c. Hence the endpoints of the
100(1 -a)% CI estimate of OR(c) are

Since both the point estimate and endpoints of the confidence in-
terval depend on the choice of c, the particular value of c should be
clearly specified in all tables and calculations. The rather arbitrary na-
ture of the choice of c may be troublesome to some. For example, why
use a change of 10 years when 5 or 15 or even 20 years may be equally
good? We, of course, could use any reasonable value; but the goal must
be kept in mind: to provide the reader of your analysis with a clear indi-
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cation of how the risk of the outcome being present changes with the
variable in question. Changes in multiples of 5 or 10 may be most
meaningful and easily understood.

As an example, consider the univariate model in Table 1.3. In that
example a logistic regression of AGE on CHD status using the data of
Table 1.1 was reported. The resulting estimated logit was
|( AGE) = -5.310+ 0.111 x AGE. The estimated odds ratio for an in-

crease of 10 years in age is OR(10) = exp(10x0.111) = 3.03. This indi-
cates that for every increase of 10 years in age, the risk of CHD in-
creases 3.03 times. The validity of such a statement is questionable in
this example, since the additional risk of CHD for a 40 year-old com-
pared to a 30 year-old may be quite different from the additional risk
of CHD for a 60 year-old compared to a 50 year-old. This is an un-
avoidable dilemma when continuous covariates are modeled linearly in
the logit. If it is believed that the logit is not linear in the covariate, then
grouping and use of dummy variables should be considered. Alterna-
tively, use of higher order terms (e.g., JC2,*3,...) or other nonlinear
scaling in the covariate (e.g., log(;t)) could be considered. Thus, we see
that an important modeling consideration for continuous covariates is
their scale in the logit. We consider this in considerable detail in Chap-
ter 4. The endpoints of a 95% confidence interval for this odds ratio
are

exp(10x0.111 ±1.96x10x0.024) = (1.90,4.86).

Results similar to these may be placed in tables displaying the results of
a fitted logistic regression model.

In summary, the interpretation of the estimated coefficient for a
continuous variable is similar to that of nominal scale variables: an esti-
mated log odds ratio. The primary difference is that a meaningful
change must be defined for the continuous variable.

3.5 THE MULTIVARIABLE MODEL

In the previous sections in this chapter we discussed the interpretation of
an estimated logistic regression coefficient in the case when there is a
single variable in the fitted model. Fitting a series of univariate models
rarely provides an adequate analysis of the data in a study since the in-
dependent variables are usually associated with one another and may
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have different distributions within levels of the outcome variable. Thus,
one generally considers a multivariable analysis for a more comprehen-
sive modeling of the data. One goal of such an analysis is to statistically
adjust the estimated effect of each variable in the model for differences
in the distributions of and associations among the other independent
variables. Applying this concept to a multivariable logistic regression
model, we may surmise that each estimated coefficient provides an esti-
mate of the log odds adjusting for all other variables included in the
model.

A full understanding of the estimates of the coefficients from a
multivariable logistic regression model requires that we have a clear un-
derstanding of what is actually meant by the term adjusting, statistically,
for other variables. We begin by examining adjustment in the context
of a linear regression model, and then extend the concept to logistic re-
gression.

The multivariable situation we examine is one in which the model
contains two independent variables — one dichotomous and one con-
tinuous — but primary interest is focused on the effect of the dichoto-
mous variable. This situation is frequently encountered in epidemi-
ologic research when an exposure to a risk factor is recorded as being
either present or absent, and we wish to adjust for a variable such as age.
The analogous situation in linear regression is called analysis of covari-
ance.

Suppose we wish to compare the mean weight of two groups of
boys. It is known that weight is associated with many characteristics,
one of which is age. Assume that on all characteristics except age the
two groups have nearly identical distributions. If the age distribution is
also the same for the two groups, then a univariate analysis would suf-
fice and we could compare the mean weight of the two groups. This
comparison would provide us with a correct estimate of the difference in
weight between the two groups. However, if one group was much
younger than the other group, then a comparison of the two groups
would be meaningless, since at least a portion of any difference ob-
served would likely be due to the difference in age. It would not be
possible to determine the effect of group without first eliminating the
discrepancy in ages between the groups.

This situation is described graphically in Figure 3.1. In this figure
it is assumed that the relationship between age and weight is linear, with
the same significant nonzero slope in each group. Both of these as-
sumptions would usually be tested in an analysis of covariance before
making any inferences about group differences. We defer a discussion
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j=

"3

Age (a)

Figure 3.1 Comparison of the weight of two groups of boys with different
distributions of age.

of this until Chapter 4, as it gets to the heart of modeling with logistic
regression. We proceed as if these assumptions have been checked and
are supported by the data.

The statistical model that describes the situation in Figure 3.1 states
that the value of weight, w, may be expressed as w = {}0 + filx + fi2a,
where jt = 0 for group 1 and x = l for group 2 and "#" denotes age.
In this model the parameter /?, represents the true difference in weight
between the two groups and /?2 is the rate of change in weight per year
of age. Suppose that the mean age of group 1 is a} and the mean age
of group 2 is a2. These values are indicated in Figure 3.1. Comparison
of the mean weight of group 1 to the mean weight of group 2 amounts
to a comparison of w1 to w2. In terms of the model this difference is
(w2 -w1) = j81 + fi2(a2 -£]). Thus the comparison involves not only the
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Table 3.10 Descriptive Statistics for Two Groups of
50 Men on AGE and Whether They Had Seen a
Physician (PHY) (1 = Yes, 0 = No) Within the Last
Six Months

Variable
PHY
AGE

Group 1
Mean Std. Dev.

0.36 0.485
39.60 5.272

Group 2
Mean Std. Dev

0.80 0.404
47.34 5.259

true difference between the groups, ft, but a component, fi2(a2-a}),
which reflects the difference between the ages of the groups.

The process of statistically adjusting for age involves comparing
the two groups at some common value of age. The value usually used is
the mean of the two groups which, for the example, is denoted by a in
Figure 3.1. In terms of the model this yields a comparison of w4 to w3,
(w4 -w3)= ft + / 3 2 ( a - a ) = ft, the true difference between the two
groups. In theory any common value of age could be used, as it would
yield the same difference between the two lines. The choice of the
overall mean makes sense for two reasons: it is biologically reasonable
and lies within the range for which we believe that the association be-
tween age and weight is linear and constant within each group.

Consider the same situation shown in Figure 3.1, but instead of
weight being the dependent variable, assume it is a dichotomous variable
and that the vertical axis denotes the logit. That is, under the model the
logit is given by the equation g(x,a) = ft + ft* + fta. A univariate
comparison obtained from the 2 x 2 table cross-classifying outcome
and group would yield a log odds ratio approximately equal to
ft + (32(a2 -GI). This would incorrectly estimate the effect of group
due to the difference in the distribution of age. To account or adjust
for this difference, we include age in the model and calculate the logit
difference at a common value of age, such as the combined mean, a.
This logit difference is g(x = l,a)-g(x = Q,a) = ft. Thus, the coeffi-
cient ft is the log odds ratio that we would expect to obtain from a uni-
variate comparison if the two groups had the same distribution of age.

The data summarized in Table 3.10 provide the basis for an exam-
ple of interpreting the estimated logistic regression coefficient for a di-
chotomous variable when the coefficient is adjusted for a continuous
variable.
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It follows from the descriptive statistics in Table 3.10 that the uni-
variate log odds ratio for group 2 versus group 1 is

ln(dk) = ln(0.8/0.2) - ln(0.36/0.64) = 1.962,

/\
and the unadjusted estimated odds ratio is OR = 7.11. We can also see
that there is a considerable difference in the age distribution of the two
groups, the men in group 2 being on average more than 7 years older
than those in group 1. We would guess that much of the apparent dif-
ference in the proportion of men seeing a physician might be due to
age. Analyzing the data with a bivariate model using a coding of
GROUP = 0 for group 1, and GROUP = 1 for group 2, yields the esti-
mated logistic regression coefficients shown in Table 3.11. The age-
adjusted log odds ratio is given by the estimated coefficient for group in

>v

Table 3.11 and is /?, =1.263. The age adjusted odds ratio is

OR = exp(1.263) = 3.54. Thus, much of the apparent difference between
the two groups is, in fact, due to differences in age.

Let us examine this adjustment in more detail using Figure 3.1. An
approximation to the unadjusted odds ratio is obtained by exponentiat-
ing the difference w2-w}. In terms of the fitted logistic regression
model shown in Table 3.11 this difference is

[-4.866 + 1.263 + 0.107(47.34)]-[-4.866 + 0.107(39.60)] =

1.263 + 0.107(47.34-39.60).

The value of this odds ratio is

[1.263+0.107(47.34-39.60)] _ o on
w —~ O • \J^s t

The discrepancy between 8.09 and the actual unadjusted odds ratio,
7.11, is due to the fact that the above comparison is based on the differ-
ence in the average logit, while the crude odds ratio is approximately
equal to a calculation based on the average estimated logistic probability
for the two groups. The age adjusted odds ratio is obtained by expo-
nentiating the difference vv4 -w3, which is equal to the estimated coeffi-
cient for GROUP. In the example the difference is

[-4.866 +1.263 + 0.107(43.47)] - [-4.866 + 0.107(43.47)] = 1.263.
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Table 3.11 Results of Fitting the Logistic Regression
Model to the Data Summarized in Table 3.10

-Variable
GROUP

AGE
Constant

Coeff.
1.263
0.107

-4.866

Std. Err.
0.5361
0.0465
1.9020

z
2.36
2.31

-2.56

P>\z\
0.018
0.021
0.011

Log likelihood = -54.8292

Bachand and Hosmer (1999) compare two different sets of criteria
for defining a covariate to be a confounder. They show that the nu-
meric approach used in this Section, examining the change in the mag-
nitude of the coefficient for the risk factor from logistic regression
models fit with and without the potential confounder, is appropriate
when the logistic regression model containing both risk factor and con-
founder is not fully S-shaped. A more detailed evaluation is needed
when the fitted model yields fitted values producing a full S-shaped
function within the levels of the risk factor. This is discussed in greater
detail in Chapter 4.

The method of adjustment when the variables are all dichotomous,
polychotomous, continuous or a mixture of these is identical to that just
described for the dichotomous-continuous variable case. For example,
suppose that instead of treating age as continuous it was dichotomized
using a cutpoint of 45 years. To obtain the age-adjusted effect of
group we fit the bivariate model containing the two dichotomous vari-
ables and calculate a logit difference at the two levels of group and a
common value of the dichotomous variable for age. The procedure is
similar for any number and mix of variables. Adjusted odds ratios are
obtained by comparing individuals who differ only in the characteristic
of interest and have the values of all other variables constant. The ad-
justment is statistical as it only estimates what might be expected to be
observed had the subjects indeed differed only on the particular char-
acteristic being examined, with all other variables having identical distri-
butions within the two levels of outcome.

One point should be kept clearly in mind when interpreting statisti-
cally adjusted log odds ratios and odds ratios. The effectiveness of the
adjustment is entirely dependent on the adequacy of the assumptions of
the model: linearity and constant slope. Departures from these may
render the adjustment useless. One such departure, where the relation-
ship is linear but the slopes differ, is called interaction. Modeling inter-
actions is discussed in Section 3.6 and again in Chapter 4.
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3.6 INTERACTION AND CONFOUNDING

In the last section we saw how the inclusion of additional variables in a
model provides a way of statistically adjusting for potential differences
in their distributions. The term confounder is used by epidemiologists
to describe a covariate that is associated with both the outcome variable
of interest and a primary independent variable or risk factor. When
both associations are present then the relationship between the risk fac-
tor and the outcome variable is said to be confounded. The procedure
for adjusting for confounding, described in Section 3.5, is appropriate
when there is no interaction. In this section we introduce the concept of
interaction and show how we can control for its effect in the logistic re-
gression model. In addition, we illustrate with an example how con-
founding and interaction may affect the estimated coefficients in the
model.

Interaction can take many different forms, so we begin by de-
scribing the situation when it is absent. Consider a model containing a
dichotomous risk factor variable and a continuous covariate, such as in
the example discussed in Section 3.5. If the association between the
covariate (i.e., age) and the outcome variable is the same within each
level of the risk factor (i.e., group), then there is no interaction between
the covariate and the risk factor. Graphically, the absence of interaction
yields a model with two parallel lines, one for each level of the risk fac-
tor variable. In general, the absence of interaction is characterized by a
model that contains no second or higher order terms involving two or
more variables.

When interaction is present, the association between the risk factor
and the outcome variable differs, or depends in some way on the level
of the covariate. That is, the covariate modifies the effect of the risk
factor. Epidemiologists use the term effect modifier to describe a vari-
able that interacts with a risk factor. In the previous example, if the logit
is linear in age for the men in group 1, then interaction implies that the
logit does not follow a line with the same slope for the second group.
In theory, the association in group 2 could be described by almost any
model except one with the same slope as the logit for group 1.

The simplest and most commonly used model for including inter-
action is one in which the logit is also linear in the confounder for the
second group, but with a different slope. Alternative models can be
formulated which would allow for a relationship that is non-linear be-
tween the logit and the variables in the model within each group. In any
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Figure 3.2 Plot of the logits under three different models showing the
presence and absence of interaction.

model, interaction is incorporated by the inclusion of appropriate
higher order terms.

An important step in the process of modeling a set of data is de-
termining whether there is evidence of interaction in the data. This as-
pect of modeling is discussed in Chapter 4. In this section we assume
that when interaction is present it can be modeled by nonparallel
straight lines.

Figure 3.2 presents the graphs of three different logits. In this
graph, 4 has been added to each of the logits to make plotting more
convenient. The graphs of these logits are used to explain what is meant
by interaction. Consider an example where the outcome variable is the
presence or absence of CHD, the risk factor is sex, and the covariate is
age. Suppose that the line labeled /j corresponds to the logit for fe-
males as a function of age. Line /2 represents the logit for males.
These two lines are parallel to each other, indicating that the relationship
between age and CHD is the same for males and females. In this situa-
tion there is no interaction and the log odds ratios for sex (male versus
female), controlling for age, is given by the difference between line /2
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Table 3.12 Estimated Logistic Regression Coefficients, Devi-
ance, and the Likelihood Ratio Test Statistic (G) for an Example
Showing Evidence of Confounding but No Interaction (n - 400)

Model

1
2
3

Constant

0.060
-3.374
-4.216

SEX

1.981
1.356
4.239

AGE

0.082
0.103

SEXxAGE

-0.062

Deviance

419.816
407.780
406.392

G

12.036
1.388

and /], /2 - /,. This difference is equal to the vertical distance between
the two lines, which is the same for all ages.

Suppose instead that the logit for males is given by the line /3.
This line is steeper than the line l}, for females, indicating that the rela-
tionship between age and CHD among males is different from that
among females. When this occurs we say there is an interaction between
age and sex. The estimate of the log-odds ratios for sex (males versus
females) controlling for age is still given by the vertical distance be-
tween the lines, /3 - /,, but this difference now depends on the age at
which the comparison is made. Thus, we cannot estimate the odds ratio
for sex without first specifying the age at which the comparison is being
made. In other words, age is an effect modifier.

Tables 3.12 and 3.13 present the results of fitting a series of logis-
tic regression models to two different sets of hypothetical data. The
variables in each of the data sets are the same: SEX, AGE, and the out-
come variable CHD. In addition to the estimated coefficients, the devi-
ance for each model is given. Recall that the change in the deviance
may be used to test for the significance of coefficients for variables
added to the model. An interaction is added to the model by creating a
variable that is equal to the product of the value of the SEX and the
value of AGE. Some programs have syntax that automatically creates
interaction variables in a statistical model, while others require the user
to create them through a data modification step.

Examining the results in Table 3.12 we see that the estimated coef-
ficient for the variable SEX changed from 1.981 in model 1 to 1.356, a
46 percent decrease, when AGE was added in model 2. Hence, there is
clear evidence of a confounding effect due to age. When the interaction
term "SEXxAGE" is added in model 3 we see that the change in the
deviance is only 1.388 which, when compared to the chi-square distri-
bution with 1 degree of freedom, yields a /?-value of 0.24, which is
clearly not significant. Note that the coefficient for sex changed from
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Table 3.13 Estimated Logistic Regression Coefficients,
Deviance, and the Likelihood Ratio Test Statistic (G)
for an Example Showing Evidence of Confounding and
Interaction (n = 400)

Model
1
2
3

Constant
0.201

-6.672
-4.825

SEX
2.386
1.274

-7.838

AGE

0.166
0.121

SEXxAGE

0.205

Deviance
376.712
338.688
330.654

G

38.024
8.034

1.356 to 4.239. This is not surprising since the inclusion of an interac-
tion term, especially when it involves a continuous variable, usually pro-
duces fairly marked changes in the estimated coefficients of dichoto-
mous variables involved in the interaction. Thus, when an interaction
term is present in the model we cannot assess confounding via the
change in a coefficient. For these data we would prefer to use model 2
that suggests age is a confounder but not an effect modifier.

The results in Table 3:13 show evidence of both confounding and
interaction due to age. Comparing model 1 to model 2 we see that the
coefficient for sex changes from 2.386 to 1.274, an 87 percent de-
crease. When the age by sex interaction is added to the model we see
that the change in the deviance is 8.034 with a p-value of 0.005. Since
the change in the deviance is significant, we prefer model 3 to model 2,
and should regard age as both a confounder and an effect modifier.
The net result is that any estimate of the odds ratio for sex should be
made with reference to a specific age.

Hence, we see that determining whether a covariate, X, is an effect
modifier and/or a confounder involves several issues. The plots of the
logits shown in Figure 3.2 show us that determining effect modification
status involves the parametric structure of the logit, while determination
of confounder status involves two things. First the covariate must be
associated with the outcome variable. This implies that the logit must
have a nonzero slope in the covariate. Second the covariate must be
associated with the risk factor. In our example this is characterized by
having a difference in the mean age for males and females. However,
the association may be more complex than a simple difference in
means. The essence is that we have incomparability in our risk factor
groups. This incomparability must be accounted for in the model if we
are to obtain a correct, unconfounded, estimate of effect for the risk
factor.
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In practice, one method to check for the confounder status of a
covariate is to compare the estimated coefficient for the risk factor vari-
able from models containing and not containing the covariate. Any
"clinically important" change in the estimated coefficient for the risk
factor suggests that the covariate is a confounder and should be in-
cluded in the model, regardless of the statistical significance of its esti-
mated coefficient. As noted above, Bachand and Hosmer (1999) show
that the change in coefficient method does not always provide evidence
that a variable is a confounder and a more detailed evaluation may be
required. We return to this point in Chapter 4.

On the other hand, we believe that a covariate is an effect modifier
only when the interaction term added to the model is both clinically
meaningful and statistically significant. When a covariate is an effect
modifier, its status as a confounder is of secondary importance since the
estimate of the effect of the risk factor depends on the specific value of
the covariate.

The concepts of adjustment, confounding, interaction, and effect
modification, may be extended to cover the situations involving any
number of variables on any measurement scale(s). The dichotomous-
continuous variables example illustrated in this section has the advan-
tage that the results are easily shown graphically. This is not the case
with more complicated models. The principles for identification and
inclusion of confounder and interaction variables in the model are the
same regardless of the number of variables and their measurement
scales.

3.7 ESTIMATION OF ODDS RATIOS IN THE
PRESENCE OF INTERACTION

In Section 3.6 we showed that when there was interaction between a risk
factor and another variable, the estimate of the odds ratio for the risk
factor depends on the value of the variable that is interacting with it. In
this situation we may not be able to estimate the odds ratio by simply
exponentiating an estimated coefficient. One approach that will always
yield the correct model-based estimate is to (1) write down the expres-
sions for the logit at the two levels of the risk factor being compared, (2)
algebraically simplify the difference between the two logits and com-
pute its value (3) exponentiate the value obtained in step 2.

As a first example, we develop the method for a model containing
only two variables and their interaction. In this model, denote the risk
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factor as F, the covariate as X and their interaction as FxX. The logit
for this model evaluated at F = f and X = x is

* • (3-9)

Assume we want the odds ratio comparing two levels of F, F - /J versus
and F = /0, at X = x. Following the three step procedure first we evalu-
ate the expressions for the two logits yielding

g(fl,x) = A>

and

Second we compute and simplify their difference to obtain the log-odds
ratio yielding

Third we obtain the odds ratio by exponentiating the difference ob-
tained at step 2 yielding

Note that the expression for the log-odds ratio in (3.10) does not sim-
plify to a single coefficient. Instead, it involves two coefficients, the dif-
ference in the values of the risk factor and the interaction variable. The
estimator of the log-odds ratio is obtained by replacing the parameters
in (3.10) and (3.11) with their estimators.

We obtain the endpoints of the confidence interval estimator
using the same approach used for models without interactions. We cal-
culate the endpoints for the confidence interval for the log-odds ratio
and then exponentiate the end points. The basic building block of the
endpoints is the estimator of the variance of the estimator of the log-
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odds ratio in (3.10). Using methods for calculating the variance of a
sum we obtain the following estimator,

(3.12)
-/o)f x Var(ft) + 2^ -/0)

Most logistic regression computer packages have the option to provide
output showing estimates of the variances and covariances of the esti-
mated parameters in the model. Substitution of these estimates into
(3.12) obtains an estimate of the variance of the estimated log-odds ra-
tio. The endpoints of a 100 x (!-«)% confidence interval estimator for
the log-odds ratio are:

(3.13)

where the standard error in (3.13) is the positive square root of the vari-
ance estimator in (3.12). We obtain the endpoints of the confidence
interval estimator for the odds ratio by exponentiating the endpoints in
(3.13).

The estimators for the log-odds and its variance simplify in the case
when F is a dichotomous risk factor. If we let f} = 1 and /0 = 0 then the
estimator of the log-odds ratio is

#+ ft*, (3.14)

the estimator of the variance is

Var jlnf OR(F = 1, F = 0, X = jc)l|

(3.15)

and the endpoints of the confidence interval are

(3.16)
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Table 3.14 Estimated Logistic Regression Coefficients,
Deviance, the Likelihood Ratio Test Statistic (G), and the
p-value for the Change for Models Containing LWD and
AGE from the Low Birthweight Data (n = 189)
Model

0
1
2
3

Constant

-0.790
-1.054
-0.027

0.774

LWD AGE LWDxAGE In WB] G P

-117.34
1.054
1.010

-1.944

-113.12
-0.044
-0.080 0.132

-112.14
-110.57

8.44
1.96
3.14

0.004
0.160
0.076

As an example, we consider a logistic regression model using the
low birth weight data described in Section 1.6 containing the variables
AGE and a dichotomous variable, LWD, based on the weight of the
mother at the last menstrual period. This variable takes on the value 1 if
LWT < 110 pounds, and is zero otherwise. The results of fitting a series
of logistic regression models are given in Table 3.14.

Using the estimated coefficient for LWD in model 1 we estimate the
odds ratio as exp(1.054)= 2.87. The results shown in Table 3.14 indi-

cate that AGE is not a strong confounder, Aj3% = 4.2, but it does inter-
act with LWD, p-0.076. Thus, to assess the risk of low weight at the
last menstrual period correctly we must include the interaction of this
variable with the women's age because the odds ratio is not constant
over age.

An effective way to see the presence of interaction is via a graph of
the estimated logit under model 3 in Table 3.14. This is shown in Fig
ure 3.3. The upper line in Figure 3.3 corresponds to the estimated logit
for women with LWD = \ and the lower line is for women with
LWD = 0. Separate plotting symbols have been used for the two LWD
groups. The estimated log-odds ratio for LWD = l versus LWD = 0 at
AGE = x from (3.14) is equal to the vertical distance between the two
lines at AGE = x. We can see in Figure 3.3 that this distance is nearly
zero at 15 years and progressively increases. Since the vertical distance
is not constant we must choose a few specific ages for estimating the
effect of low weight at the last menstrual period. We can see in Figure
3.3 that none of the women in the low weight group, LWD = 1, are older
than about 33 years. Thus we should restrict our estimates of the effect
of low weight to the range of 14 to 33 years. Based on these observa-
tions we estimate the effect of low weight at 15, 20, 25 and 30 years of
age.
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Figure 3.3 Plot of the estimated logit for women with LWD = 1 and for
women with LWD = 0 from Model 3 in Table 3.17.

Using (3.14) and the results for model 3 the estimated log-odds
ratio for low weight at the last menstrual period for a women of AGE =
a is

In OR(LWD = 1,LWD = 0, AGE = a) =-1.944 + 0.132a. (3.17)

In order to obtain the estimated variance we must first obtain the
estimated covariance matrix for the estimated parameters. Since this
matrix is symmetric most logistic regression software packages print the

Table 3.15 Estimated Covariance Matrix for the
Estimated Parameters in Model 3 of Table 3.14
Constant
LWD
AGE
LWDxAGE

0.828
-0.828
-0.353-02
-0.353-01
Constant

2.975
-0.353-01
-0.128
LWD

0.157-02
-0.157-02
AGE

0.573-02
LWDxAGE



COMPARING LOGISTIC REGRESSION AND STRATIFIED ANALYSIS 79

Table 3.16 Estimated Odds Ratios and 95% Confidence
Intervals for LWD, Controlling for AGE

Age
OR

95 % CIE

15
1.04

0.29, 3.79

20
2.01

0.91, 4.44

25
3.90

1.71, 8.88

30
7.55

1.95, 29.19

results in the form similar to that shown in Table 3.15.
The estimated variance of the log-odds ratio given (3.16) is ob-

tained from (3.14) and is

var lnok(LWD = 1, LWD = 0, AGE = a

(3.19)

Values of the estimated odds ratio and 95% CI computed using
(3.16) and (3.19) for several ages are given in Table 3.16. The results
shown in Table 3.16 demonstrate that the effect of LWD on the odds of
having a low birth weight baby increase exponentially with age. The
results also show that the increase in risk is significant for low weight
women 25 years and older. In particular low weight women of age 30
are estimated to have a risk that is about 7.5 times that of women of the
same age who are not low weight. The increase in risk could be as little
as two times or as much as 29 times with 95 percent confidence.

3.8 A COMPARISON OF LOGISTIC REGRESSION
AND STRATIFIED ANALYSIS FOR 2 x 2 TABLES

Many users of logistic regression, especially those coming from a back-
ground in epidemiology, have performed stratified analyses of 2x2 ta-
bles to assess interaction and to control confounding. The essential ob-
jective of such analyses is to determine whether the odds ratios are con-
stant, or homogeneous, over the strata. If the odds ratios are constant,
then a stratified odds ratio estimator such as the Mantel-Haenszel esti-
mator or the weighted logit-based estimator is computed. This same
analysis may also be performed using the logistic regression modeling
techniques discussed in Sections 3.6 and 3.7. In this section we com-
pare these two approaches. An example from the low birth weight data
illustrates the similarities and differences in the two approaches.
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Table 3.17 Cross-Classification of Low Birth
Weight by Smoking Status

SMOKE
1 0 Total

1

LOW
0

Total

30

44

29

86

74 115

59

130

189

Consider an analysis of the risk factor smoking on low birth
weight. The crude (or unadjusted) odds ratio computed from the 2x2
table shown in Table 3.17, cross-classifying the outcome variable LOW
with SMOKE, is OR = 2.02.

Table 3.18 presents these data stratifying by the race of the mother.
We can use these tables as the basis for computing either the Mantel-
Haenszel estimate or the logit-based estimate of the odds ratio.

The Mantel-Haenszel estimator is a weighted average of the stratum

specific odds ratios, OR, =(a( xd,)/(&; xc,), where ait bit c,, and dt are
the observed cell frequencies in the 2x2 table for stratum /'. For exam-
ple, in stratum 1 a} = 19, bx = 4, c, = 33, and d} = 40 and the total num-
ber of subjects is N} =96. The Mantel-Haenszel estimator of the odds
ratio is defined in this case as follows:

MH (3.20)

Evaluating (3.20) using the data in Table 3.18 yields the Mantel
Haenszel estimate

MH
13.067
4.234

= 3.09.
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The logit-based summary estimator of the odds ratio is a weighted
average of the stratum specific log-odds ratios where each weight is the
inverse of the variance of the stratum specific log-odds ratio,

ORL = (3.21)

Table 3.19 presents the estimated odds ratio, log-odds ratio, esti
mate of the variance of the log-odds ratio and the weight, w.

The logit-based estimator based on the data in Table 3.18 is

ORL =exp(7.109/6.582) = 2.95,

Table 3.18 Cross-Classification of Low
Birth Weight by Smoking Status Stratified
by RACE
White

SMOKE
1 0 Total

1
LOW

0

19 4

33 40
Total 52 44

23

73
96

Black

LOW

SMOKE
1 0 Total

1 6

0 4
Total 10

5

11
16

11

15
26

Other
SMOKE
1 0 Total

1
LOW

0

5 20

7 35
Total 12 55

25

42
67
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Table 3.19 Tabulation of the Estimated Odds
Ratios, ln(Estimated Odds Ratios), Estimated
Variance of the ln(Estimated Odds Ratios), and the
Inverse of the Estimated Variance, w, for Smoking
Status Within Each Stratum of RACE

y\
OR

ln(OR)

var[ln(OR)]
w

White
5.758
1.751

0.358
2.794

Black
3.300
1.194

0.708
1.413

Other
1.250
0.223
0.421
2.375

which is slightly smaller than the Mantel-Haenszel estimate. The high
fluctuation in the odds ratio across the race strata suggests that there
may be either confounding or effect modification due to RACE, or
both. In general, the Mantel-Haenszel estimator and the logit based es-
timator are similar when the data are not too sparse within the strata.
One considerable advantage of the Mantel-Haenszel estimator is that it
may be computed when some of the cell entries are zero.

It is important to note that these estimators provide a correct esti-
mate of the effect of the risk factor only when the odds ratio is constant
across the strata. Thus, a crucial step in the stratified analysis is to assess
the validity of this assumption. Statistical tests of this assumption are
based on a comparison of the stratum specific estimates to an overall
estimate computed under the assumption that the odds ratio is, in fact,
constant. The simplest and most easily computed test of the homoge-
neity of the odds ratios across strata is based on a weighted sum of the
squared deviations of the stratum specific log-odds ratios from their
weighted mean. This test statistic, in terms of the current notation, is

Under the hypothesis that the odds ratios are constant, X^ has a chi-
square distribution with degrees-of-freedom equal to the number of
strata minus 1. Thus, we would reject the homogeneity assumption
when XH is large.
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Using the data in Table 3.19 we have X2
H =3.017 which, with 2 de-

grees-of-freedom, yields a /?- value of 0.221. Thus, in spite of the ap-
parent differences in the odds ratios seen in Table 3.19, the logit-based
test of homogeneity indicates that they are within sampling variation of
each other. It should be noted that the p-value calculated from the chi-
square distribution is accurate only when the sample sizes are not too
small within each stratum. This condition holds in this example.

Another test that also may be calculated by hand, but not as easily,
is discussed in Breslow and Day (1980) and is corrected by Tarone
(1985). This test compares the value of af to an estimated expected
value, ef, if the odds ratio is constant. As noted by Breslow (1996) the
correct formula for the test statistic is

The quantity ei is obtained as one of the solutions to a quadratic equa-
tion given by the following formula

1/2

,,.) + (/!«,,. -m u )] -f 4(OR-1) OR n,-m,,.

(3.24)

where nu=at+bit m^i=ai+ci and n0 r-= c(-+ d(.. The quantity OR in
A.

(3.24) is an estimate of the common odds ratio and either ORL or

ORMH may be used. The quantity v, is an estimate of the variance of
fl; computed under the assumption of a common odds ratio and is

(3.25)

If we use the value of the Mantel-Haenszel estimate, ORMH = 3.086 in
(3.23) then the resulting values of e and v are: e} =17.01, v{ =3.56,
e2 =5.91, V2 =1.43, £, =7.16, and V3 =2.33. The value of the Breslow-
Day statistic obtained is X\D =3.11 -0.0081 =3.10, which is similar to
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Table 3.20 Estimated Logistic Regression Coefficients for
the Variable SMOKE, Log-Likelihood, the Likelihood Ratio
Test Statistic (G), and Resulting p-Value for Estimation of
the Stratified Odds Ratio and Assessment of Homogeneity of
Odds Ratios Across Strata Defined by RACE

Model
1
2
3

SMOKE
0.704
1.116
1.751

Log-Likelihood
-114.90
-109.99
-108.41

G

9.83
3.16

df

2
2

P

0.007
0.206

the value of the logit-based test. Some packages, for example SAS, re-
port the value of the first term in (3.23) as the Breslow-Day test

The same analysis may be performed much more easily by fitting
three logistic regression models. In model 1 we include only the vari-
able SMOKE. We then add the two design variables for RACE to obtain
model 2. For model 3 we add the two RACExSMOKE interaction
terms. The results of fitting these models are shown in Table 3.20.
Since we are primarily interested in the estimates of the coefficient for
SMOKE, the estimates of the coefficients for RACE and the RACE
xSMOKE interactions are not shown in Table 3.20.

Using the estimated coefficients in Table 3.20 we have the follow-

ing estimated odds ratios. The crude odds ratio is OR = exp(0.704)

= 2.02. Adjusting for RACE, the stratified estimate is OR = exp(1.116)
= 3.05. This value is the maximum likelihood estimate of the estimated
odds ratio, and it is similar in value to both the Mantel-Haenszel esti-
mate, ORM H= 3.086, and the logit-based estimate, ORL=2.95. The
change in the estimate of the odds ratio from the crude to the adjusted is
2.02 to 3.05, indicating considerable confounding due to RACE.

Assessment of the homogeneity of the odds ratios across the strata
is based on the likelihood ratio test of model 2 versus model 3. The
value of this statistic from Table 3.20 is G = 3.156. This statistic is
compared to a chi-square distribution with 2 degrees-of-freedom, since
two interaction terms were added to model 2 to obtain model 3. This
test statistic is comparable to the ones from the logit-based test, Xj, and
the Breslow-Day test, X\D. If we had used the maximum likelihood es-
timate of the stratified odds ratio, exp(1.116), in computing the
Breslow-Day test, then the resulting statistic would have been equal to
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the Pearson chi-square goodness-of-fit test of model 2, since model 3 is the
saturated model.

The previously described analysis based on likelihood ratio tests may
be used when the data have either been grouped into contingency tables in
advance of the analysis, such as those shown in Table 3.17, or have re-
mained in casewise form. When the data have been grouped it is possible
to point out other similarities between classical analysis of stratified 2x2

tables and an analysis using logistic regression. Day and Byar (1979) have
shown that the 1 degree of freedom Mantel-Haenszel test of the hypothesis
that the stratum specific odds ratios are 1 is identical to the Score test for
the exposure variable when added to a logistic regression model already
containing the stratification variable. This test statistic may be easily ob-
tained from a logistic regression package with the capability to perform
Score tests such as the EGRET or SAS packages.

Thus, use of the logistic regression model provides a fast and effec-
tive way to obtain a stratified odds ratio estimator and to assess easily the
assumption of homogeneity of odds ratios across strata.

3.9 INTERPRETATION OF THE FITTED VALUES

In previous sections in this chapter we discussed use of estimated coeffi-
cients to construct estimated odds in a number of settings typically en-
countered in practice. In our experience this accounts for the vast majority
of the use of logistic regression modeling in applied settings. However
there are situations where the fitted values from the model are equally, if
not more, important. For example, Lemeshow, Teres, Klar, Avrunin,
Gehlbach and Rapoport (1993) used logistic regression modeling methods
to estimate a patient's probability of hospital mortality after admission to
an intensive care unit.. We discussed in Section 1.4 and Section 2.5 the
basic methods for computing the fitted values and confidence interval es-
timates. In this section, we expand on this work and include graphical
presentation of fitted values and confidence bands. In addition we discuss
prediction of the outcome for a subject not in the estimation sample.

As an example consider the model fit to the low birth weight data
shown in Table 2.3. In Section 2.5 we illustrated the computations for a
150 pound white woman. A subject with these values was among the 189
subjects in the data set; thus estimates of the fitted value, logit and standard
error of the logit are readily available from standard output.

Suppose instead that we wanted to present a graph illustrating the ef-
fect of weight of the mother at the last menstrual period on birth weight
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Figure 3.4 Graph of the estimated logit of low weight birth and 95 percent
confidence intervals as a function of weight at the last menstrual period for white
women.

holding race constant and equal to white. To accomplish this we take ad-
vantage of the fact that we can obtain the values of (2.6) and (2.7) for all
subjects in the data set used to fit the model from standard logistic regres-
sion software. The graph for the estimated logit and its confidence bands
is presented in Figure 3.4. The point and interval estimates for the logit are
easily transformed to corresponding point and interval estimates for the
logistic probability using the fundamental relationship between the two,
see (1.19) and (1.21). These are presented in Figure 3.5. Note that we
could have presented graphs for any of the three racial groups or for all
three racial groups on the same graph. We arbitrarily chose the white
mothers in order to keep the graph from getting unnecessarily complicated.
The estimates in the figures are plotted at each observed value of LWT for
the 96 white mothers. The estimated logit and probability decrease due to
the fact that the estimated coefficient for LWT in Table 2.3 is negative.
Note that the confidence bands in Figure 3.4 are narrowest near the mean
value of LWT, approximately 130 pounds. The width increases in the
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same hyperbolic manner seen in similar plots from fitted linear regression
models. The same pattern, transformed, can be seen in Figure 3.5.

Each point, and associated confidence interval, in Figure 3.5 is an es-
timate of the mean of the outcome, low birthweight, among white mothers
of the specified value of LWT. Using the results in Section 2.5 at 150
pounds the point and interval estimates are 0.191 and (0.120, 0.289) re-
spectively. The interpretation is that estimated proportion of low weight
births among 150 pound white women is 0.191 and it could be as low as
0.12 or as high as 0.289 with 95 percent confidence. We would interpret
estimates and confidence intervals at other values of LWT in a similar
manner.

Suppose we wanted to use our fitted model to estimate the probability
of low birthweight for a population of women not represented in the 189 in
the estimation sample. As an example, suppose 150-pound black women.
We obtain the value of the estimated logit from (2.6) using the estimated
coefficients in Table 2.3 as follows

g(LWT = 150, RACE = Black) = 0.806-0.015x150 + 1.081x1 + 0.481x0

= -0.363
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Figure 3.5 Graph of the estimated probability of low weight birth and 95
percent confidence intervals as a function of weight at the last menstrual
neriod for white women.
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and the estimated logistic probability is

-0.363

n(LWT = 150, RACE = Black) = -^-^ = 0.410 .
\ + e '

The interpretation is the same as for patterns of data seen in the estimation
sample. Namely, the model estimates that the 41 percent of 150 pound
black women will have a low birthweight baby.

In order to obtain the confidence interval for this estimate we need to
evaluate (2.7) or (2.9) using the covariance matrix in Table 2.4 with the
data vector x' = (1,150,1,0). The resulting standard error from this com-
putation is

$E[g(LWT = 150, RACE = Black)] = .1725,

yielding a 95 percent confidence interval for the probability of
(0.331, 0.494). The interpretation of this interval is that the proportion of
150 pound black women who give birth to a low weight baby could be as
little as 0.331 or as high as 0.494 (with 95 percent confidence).

As is the case with any regression model we must take care not to
extend model-based inferences out of the observed range of the data. The
range of weight at the last menstrual period among the 26 black mothers is
98 to 241 pounds. We note that 150 pounds is well within this range. It is
also important to keep in mind that any estimate is only as good as the
model it is based on. In this section we did not attend to many of the im-
portant model building details that are discussed in Chapter 4. We have
implicitly assumed that these steps have been performed.

EXERCISES

1. Consider the ICU data described in Section 1.6.1 and use as the outcome
variable vital status (STA) and CPR prior to ICU admission (CPR) as a
covariate.

(a) Demonstrate that the value of the log-odds ratio obtained from the
cross-classification of STA by CPR is identical to the estimated
slope coefficient from the logistic regression of STA on CPR.
Verify that the estimated standard error of the estimated slope co-
efficient for CPR obtained from the logistic regression package is
identical to the square root of the sum of the inverse of the cell fre-
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quencies from the cross-classification of STA by CPR. Use either
set of computations to obtain 95% CI for the odds ratio. What as-
pect concerning the coding of the variable CPR makes the calcula-
tions for the two methods equivalent?

(b) For purposes of illustration, use a data transformation statement to
recede, for this problem only, the variable CPR as follows: 4 = no
and 2 = yes. Perform the logistic regression of STA on CPR
(receded). Demonstrate how the calculation of the logit difference
of CPR = yes versus CPR = no is equivalent to the value of the
log-odds ratio obtained in problem l(a). Use the results from the
logistic regression to obtain the 95% CI for the odds ratio and ver-
ify that they are the same limits as obtained in Exercise l(a).

(c) Consider the ICU data and use as the outcome variable vital status
(STA) and race (RACE) as a covariate. Prepare a table showing
the coding of the two design variables for RACE using the value
RACE = 1, white, as the reference group. Show that the estimated
log-odds ratios obtained from the cross-classification of STA by
RACE, using RACE = 1 as the reference group, are identical to
estimated slope coefficients for the two design variables from the
logistic regression of STA on RACE. Verify that the estimated
standard errors of the estimated slope coefficients for the two de-
sign variables for RACE are identical to the square root of the sum
of the inverse of the cell frequencies from the cross-classification
of STA by RACE used to calculate the odds ratio. Use either set
of computations to compute the 95% CI for the odds ratios.

(d) Create design variables for RACE using the method typically em-
ployed in ANOVA. Perform the logistic regression of STA on
RACE. Show by calculation that the estimated logit differences of
RACE = 2 versus RACE = 1 and RACE = 3 versus RACE = 1 are
equivalent to the values of the log-odds ratio obtained in problem
l(c). Use the results of the logistic regression to obtain the 95% CI
for the odds ratios and verify that they are the same limits as ob-
tained in Exercise l(c). Note that the estimated covariance matrix
for the estimated coefficients is needed to obtain the estimated
variances of the logit differences.

(e) Consider the variable AGE in the ICU data set. Prepare a table
showing the coding of three design variables based on the empiri-
cal quartiles of AGE using the first quartile as the reference group.
Fit the logistic regression of STA on AGE as receded into these
design variables and plot the three estimated slope coefficients ver-
sus the midpoint of the respective age quartile. Plot as a fourth
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point a value of zero at the midpoint of the first quartile of age.
Does this plot suggest that the logit is linear in age?

(f) Consider the logistic regression of STA on CRN and AGE. Con-
sider CRN to be the risk factor and show that AGE is a confounder
of the association of CRN with STA. Addition of the interaction
of AGE by CRN presents an interesting modeling dilemma. Ex-
amine the main effects only and interaction models graphically.
Using the graphical results and any significance tests you feel are
needed, select the best model (main effects or interaction) and jus-
tify your choice. Estimate relevant odds ratios. Repeat this analy-
sis of confounding and interaction for a model that includes CPR
as the risk factor and AGE as the potential confounding variable.

(g) Consider an analysis for confounding and interaction for the model
with STA as the outcome, CAN as the risk factor, and TYP as the
potential confounding variable. Perform this analysis using logis-
tic regression modeling and Mantel-Haenszel analysis. Compare
the results of the two approaches.

2. Use the data from the Prostatic Cancer Study described in Section 1.6.3
to answer the following questions:

(a) By fitting a series of logistic regression models show that RACE is
not a confounder of the PSA CAPSULE odds ratio but is an effect
modifier (at the 10 percent level).

(b) Graph the estimated logits from the interactions model versus PSA
and interpret the two lines that appear on the graph. Use the graph
to illustrate the log-odds of Black versus White for a subject with
PSA = 7. Use the graph to illustrate the log-odds for a 5-unit in-
crease in PSA for Whites and for Blacks.

(c) Estimate the point and 95 percent confidence interval estimates of
the odds ratios corresponding to each of the log-odds illustrated in
problem 2(b). Add the 95 percent confidence bands to the graph of
the estimated logits from the interactions model in Exercise 2(b).
Transform the lines and bands in this plot to obtain a plot of the
estimated probability with its 95 percent confidence bands. Use
the graph to estimate, point and interval, the probability of pene-
tration for both a White and Black with PSA = 7. Interpret the two
point and interval estimates.



CHAPTER 4

Model-Building Strategies and
Methods for Logistic Regression

4.1 INTRODUCTION

In the previous chapters we focused on estimating, testing, and inter-
preting the coefficients in a logistic regression model. The examples
discussed were characterized by having few independent variables, and
there was perceived to be only one possible model. While there may be
situations where this is the case, it is more typical that there are many
independent variables that could potentially be included in the model.
Hence, we need to develop a strategy and associated methods for han-
dling these more complex situations.

The goal of any method is to select those variables that result in a
"best" model within the scientific context of the problem. In order to
achieve this goal we must have: (1) a basic plan for selecting the vari-
ables for the model and (2) a set of methods for assessing the adequacy
of the model both in terms of its individual variables and its overall fit.
We suggest a general strategy that considers both of these areas.

The methods to be discussed in this chapter are not to be used as a
substitute for, but rather as an addition to, clear and careful thought.
Successful modeling of a complex data set is part science, part statistical
methods, and part experience and common sense. It is our goal to pro-
vide the reader with a paradigm that, when applied thoughtfully, yields
the best possible model within the constraints of the available data.

91
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4.2 VARIABLE SELECTION

The criteria for including a variable in a model may vary from one
problem to the next and from one scientific discipline to another. The
traditional approach to statistical model building involves seeking the
most parsimonious model that still explains the data. The rationale for
minimizing the number of variables in the model is that the resultant
model is more likely to be numerically stable, and is more easily gener-
alized. The more variables included in a model, the greater the esti-
mated standard errors become, and the more dependent the model be-
comes on the observed data. Epidemiologic methodologists suggest
including all clinically and intuitively relevant variables in the model,
regardless of their "statistical significance." The rationale for this ap-
proach is to provide as complete control of confounding as possible
within the given data set. This is based on the fact that it is possible for
individual variables not to exhibit strong confounding, but when taken
collectively, considerable confounding can be present in the data, see
Rothman and Geenland (1998), Maldonado and Greenland (1993),
Greenland (1989) and Miettinen (1976). The major problem with this
approach is that the model may be "overfit," producing numerically
unstable estimates. Overfitting is typically characterized by unrealisti-
cally large estimated coefficients and/or estimated standard errors. This
may be especially troublesome in problems where the number of vari-
ables in the model is large relative to the number of subjects and/or
when the overall proportion responding (y = 1) is close to either 0 or 1.
In an excellent tutorial paper, Harrel, Lee and Mark (1996) discuss
overfitting along with other model building issues.

There are several steps one can follow to aid in the selection of
variables for a logistic regression model. The process of model build-
ing is quite similar to the one used in linear regression.

(1) The selection process should begin with a careful univariable
analysis of each variable. For nominal, ordinal, and continuous vari-
ables with few integer values, we suggest this be done with a contingency
table of outcome (y - 0,1) versus the k levels of the independent vari-
able. The likelihood ratio chi-square test with k - \ degrees-of-freedom
is exactly equal to the value of the likelihood ratio test for the signifi-
cance of the coefficients for the k -1 design variables in a univariable
logistic regression model that contains that single independent variable.
Since the Pearson chi-square test is asymptotically equivalent to the
likelihood ratio chi-square test, it may also be used. In addition to the
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overall test, it is a good idea, for those variables exhibiting at least a
moderate level of association, to estimate the individual odds ratios
(along with confidence limits) using one of the levels as the reference
group.

Particular attention should be paid to any contingency table with a
zero cell. This yields a point estimate for one of the odds ratios of ei-
ther zero or infinity. Including such a variable in any logistic regres-
sion program causes undesirable numerical outcomes to occur. These
are addressed in the last section of this chapter. Strategies for handling
the zero cell include: collapsing the categories of the independent vari-
able in some sensible fashion to eliminate the zero cell; eliminating the
category completely; or, if the variable is ordinal scaled, modeling the
variable as if it were continuous.

For continuous variables, the most desirable univariable analysis
involves fitting a univariable logistic regression model to obtain the es-
timated coefficient, the estimated standard error, the likelihood ratio test
for the significance of the coefficient, and the univariable Wald statistic.
An alternative analysis, which is equivalent at the univariable level, may
be based on the two-sample /-test. Descriptive statistics available from a
two-sample Mest analysis generally include group means, standard de-
viations, the / statistic, and its p-value. The similarity of this approach to
the logistic regression analysis follows from the fact that the univariable
linear discriminant function estimate of the logistic regression coeffi-
cient is

and that the linear discriminant function and the maximum likelihood
estimate of the logistic regression coefficient are usually quite close
when the independent variable is approximately normally distributed
within each of the outcome groups, y=0, l s [see Halpern, Blackwelder,
and Verier (1971)]. Thus, univariable analysis based on the t-test
should be useful in determining whether the variable should be included
in the model, since the /?-value should be of the same order of magni-
tude as that of the Wald statistic, Score test, or likelihood ratio test from
logistic regression.

For continuous covariates, we may wish to supplement the evalua-
tion of the univariable logistic fit with some sort of smoothed scatter-
plot. This plot is helpful, not only in ascertaining the potential impor-
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tance of the variable and possible presence and effect of extreme (large
or small) observations, but also its appropriate scale. One simple and
easily computed form of a smoothed scatterplot was illustrated in Figure
1.2 using the data in Table 1.2. Other more complicated methods that
have greater precision are available.

Kay and Little (1987) illustrate the use of a method proposed by
Copas (1983). This method requires computing a smoothed value for
the response variable for each subject that is a weighted average of the
values of the outcome variable over all subjects. The weight for each
subject is a continuous decreasing function of the distance of the value
of the covariate for the subject under consideration from the value of
the covariate for all other cases. For example, for covariate x for the /th
subject we compute

where w (xf,Xj) represents a particular weight function. For example if

we use STATA's scatterplot smooth command, ksm, with the weight op-
tion and band width k, then

w

3 > kV __ V

(xi'xi)= *'-*'

where A is defined so that the maximum value for the weight is < 1 and
the two indices defining the summation, it and iu, include the k percent
of the n subjects with x values closest to xi. Other weight functions are
possible as well as additional smoothing using locally weighted least
squares regression, called lowess in some packages. See Cleveland
(1993) for a more complete discussion of scatterplot smoothing meth-
ods. In general, when using STATA, we prefer to use the lowess option
with a band width of k =80. We plot the triplet (x^y^yj), i.e., observed
and smoothed values of 3; on the same set of axes. The shape of the
smoothed plot should provide some idea about the parametric relation-
ship between the outcome and the covariate. Some packages, including
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STATA, provide the option for plotting the smoothed values on the
logit scale, thus making it a little easier to make decisions about the pos-
sible scale of the covariate.

We discuss and illustrate methods for identification of the scale of
continuous covariates in the logit later in this section.

(2) Upon completion of the univariable analyses, we select variables
for the multivariable analysis. Any variable whose univariable test has a
jp-value < 0.25 is a candidate for the multivariable model along with all
variables of known clinical importance. Once the variables have been
identified, we begin with a model containing all of the selected variables.

Our recommendation that 0.25 level be used as a screening crite-
rion for variable selection is based on the work by Bendel and Afifi
(1977) on linear regression and on the work by Mickey and Greenland
(1989) on logistic regression. These authors show that use of a more
traditional level (such as 0.05) often fails to identify variables known to
be important. Use of the higher level has the disadvantage of including
variables that are of questionable importance at the model building
stage. For this reason, it is important to review all variables added to a
model critically before a decision is reached regarding the final model.

One problem with any univariable approach is that it ignores the
possibility that a collection of variables, each of which is weakly associ-
ated with the outcome, can become an important predictor of outcome
when taken together. If this is thought to be a possibility, then we
should choose a significance level large enough to allow the suspected
variables to become candidates for inclusion in the multivariable model.
The best subsets selection technique, discussed briefly below and in
greater detail in Section 4.4, is an effective model-building strategy for
identifying collections of variables having this type of association with
the outcome variable.

As noted above, the issue of variable selection is made more com-
plicated by different analytic philosophies as well as by different statisti-
cal methods. One school of thought argues for the inclusion of all sci-
entifically relevant variables into the multivariable model regardless of
the results of univariable analyses. In general, the appropriateness of
the decision to begin the multivariable model with all possible variables
depends on the overall sample size and the number in each outcome
group relative to the total number of candidate variables. When the data
are adequate to support such an analysis it may be useful to begin the
multivariable modeling from this point. However, when the data are
inadequate, this approach can produce a numerically unstable multivari-
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able model, discussed in greater detail in Section 4.5. In this case the
Wald statistics should not be used to select variables because of the un-
stable nature of the results. Instead, we should select a subset of vari-
ables based on results of the univariable analyses and refine the defini-
tion of "scientifically relevant."

Another approach to variable selection is to use a stepwise method
in which variables are selected either for inclusion or exclusion from the
model in a sequential fashion based solely on statistical criteria. There
are two main versions of the stepwise procedure: (a) forward selection
with a test for backward elimination and (b) backward elimination fol-
lowed by a test for forward selection. The algorithms used to define
these procedures in logistic regression are discussed in Section 4.3. The
stepwise approach is useful and intuitively appealing in that it builds
models in a sequential fashion and it allows for the examination of a
collection of models which might not otherwise have been examined.

"Best subsets selection" is a selection method that has not been
used extensively in logistic regression. With this procedure a number of
models containing one, two, three variables, and so on, are examined to
determine which are considered the "best" according to some specified
criteria. Best subsets linear regression software has been available for a
number of years. A parallel theory has been worked out for nonnormal
errors models [Lawless and Singhal (1978, 1987a, 1987b)]. We show
in Section 4.4 how logistic regression may be performed using any best
subsets linear regression program.

Stepwise, best subsets, and other mechanical selection procedures
have been criticized because they can yield a biologically implausible
model [Greenland (1989)] and can select irrelevant, or noise, variables
[Flack and Chang (1987), Griffiths and Pope (1987)]. The problem is
not the fact that the computer can select such models, but rather that the
analyst fails to scrutinize the resulting model carefully, and reports such
results as the final, best model. The wide availability and ease with
which stepwise methods can be used has undoubtedly reduced some
analysts to the role of assisting the computer in model selection rather
than the more appropriate alternative. It is only when the analyst under-
stands the strengths, and especially the limitations, of the methods that
these methods can serve as useful tools in the model-building process.
The analyst, not the computer, is ultimately responsible for the review
and evaluation of the model.

(3) Following the fit of the multivariable model, the importance of
each variable included in the model should be verified. This should
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include (a) an examination of the Wald statistic for each variable and (b)
a comparison of each estimated coefficient with the coefficient from the
model containing only that variable. Variables that do not contribute to
the model based on these criteria should be eliminated and a new model
should be fit. The new model should be compared to the old, larger,
model using the likelihood ratio test. Also, the estimated coefficients
for the remaining variables should be compared to those from the full
model. In particular, we should be concerned about variables whose
coefficients have changed markedly in magnitude. This indicates that
one or more of the excluded variables was important in the sense of
providing a needed adjustment of the effect of the variable that re-
mained in the model. This process of deleting, refitting, and verifying
continues until it appears that all of the important variables are included
in the model and those excluded are clinically and/or statistically unim-
portant.

At this point, we suggest that any variable not selected for the
original multivariable model be added back into the model. This step
can be helpful in identifying variables that, by themselves, are not sig-
nificantly related to the outcome but make an important contribution in
the presence of other variables.

We refer to the model at the end of step (3) as the preliminary main
effects model.

(4) Once we have obtained a model that we feel contains the essen-
tial variables, we should look more closely at the variables in the model.
The question of the appropriate categories for discrete variables should
have been addressed at the univariable stage. For continuous variables
we should check the assumption of linearity in the logit.

Assuming linearity in the logit at the variable selection stage is a
common practice and is consistent with the goal of determining whether
a particular variable should be in the model. The graphs for several dif-
ferent relationships between the logit and a continuous independent
variable are shown in Figure 4.1. The figure illustrates the case when
the logit is (a) linear, (b) quadratic, (c) some other nonlinear continuous
relationship, and (d) binary where there is a cutpoint above and below
which the logit is constant. In each of the situations described in Figure
4.1 fitting a linear model would yield a significant slope. Once the vari-
able is identified as important, we can obtain the correct parametric re-
lationship or scale in the model refinement stage. The exception to this
would be the rare instance where the function is U-shaped. Specific
methods to assess scale of continuous variables are discussed in detail
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Figure 4.1 Different types of models for the relationship between the logit
and a continuous variable.

later in this section. We refer to the model at the end of step (4) as the
main effects model.

(5) Once we have refined the main effects model and ascertained
that each of the continuous variables is scaled correctly, we check for
interactions among the variables in the model. In any model an inter-
action between two variables implies that the effect of one of the vari-
ables is not constant over levels of the other. For example, an interac-
tion between sex and age implies that the slope coefficient for age is
different for males and females. The final decision as to whether an
interaction term should be included in a model should be based on sta-
tistical as well as practical considerations. Any interaction term in the
model must make sense from a clinical perspective.

We address the clinical plausibility issue by creating a list of possi-
ble pairs of variables in the model that have some scientific basis to in-
teract with each other. The interaction variables are created as the
arithmetic product of the pairs of main effect variables. We add the in-
teraction variables, one at a time, to the model containing all the main
effects and assess their significance using a likelihood ratio test. We feel
that interactions must contribute to the model at traditional levels of sta-
tistical significance. Inclusion of an interaction term in the model that is
not significant typically increases the estimated standard errors without
changing the point estimates. In general, for an interaction term to alter
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both point and interval estimates, the estimated coefficient for the inter-
action term must be statistically significant.

We refer to the model at the conclusion of step (5) as the prelimi-
nary final model. Before we use any model for inferences we must as-
sess its adequacy and check its fit. We discuss these methods in Chapter
5.

As noted in step (4), an important step in refining the main effects
model is to determine whether the model is linear in the logit for con-
tinuous variables. We discuss two methods to address this problem: (1)
design variables and (2) fractional polynomials.

In step (1) we mentioned that one way to examine the scale of the
covariate is to use a scatterplot smooth, plotting the results on the logit
scale. Unfortunately scatterplot smoothing methods are not easily ex-
tended to multivariable models and thus have limited applicability in the
model refinement step. However, it is possible to extend the grouping
type smooth shown in Figure 1.2 to multivariable models.

The procedure is easily implemented within any logistic regression
package and is based on the following observation. The difference,
adjusted for other model covariates, between the logits for two different
groups is equal to the value of an estimated coefficient from a fitted lo-
gistic regression model that treats the grouping variable as categorical.
We have found that the following implementation of the grouped
smooth is usually adequate for purposes of visually checking the scale
of a continuous covariate.

First, using the descriptive statistics capabilities of most any statisti-
cal package, obtain the quartiles of the distribution of the variable. Next
create a categorical variable with 4 levels using three cutpoints based on
the quartiles. Other grouping strategies can be used but one based on
quartiles seems to work well in practice. Fit the multivariable model re-
placing the continuous variable with the 4-level categorical variable. To
do this, 3 design variables must be used with the lowest quartile serving
as the reference group. Following the fit of the model, plot the esti-
mated coefficients versus the midpoints of the groups. In addition, plot
a coefficient equal to zero at the midpoint of the first quartile. To aid in
the interpretation we connect the four plotted points. Visually inspect
the plot and choose the most logical parametric shape(s) for the scale of
the variable.

The next step is to refit the model using the possible parametric
forms suggested by the plot and choose one that is significantly differ-
ent from the linear model and makes clinical sense. It is possible that
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two or more different parametrizations of the covariate will yield similar
models in the sense that they are significantly different from the linear
model. However, it is our experience that one of the possible models
will be more appealing clinically, thus yielding more easily interpreted
parameter estimates.

Another more analytic approach is to use the method of fractional
polynomials, developed by Royston and Altman (1994), to suggest
transformations. We wish to determine what value of xp yields the best
model for the covariate. In theory, we could incorporate the power, p,
as an additional parameter in the estimation procedure. However, this
greatly increases the complexity of the estimation problem. Royston
and Altman propose replacing full maximum likelihood estimation of
the power by a search through a small but reasonable set of possible
values. Hosmer and Lemeshow (1999) provide a brief introduction to
the use of fractional polynomials when fitting a proportional hazards
regression model. This material provides the basis for our discussion of
its application to logistic regression.

The method of fractional polynomials may be used with a multi-
variable logistic regression model, but, for sake of simplicity, we de-
scribe the procedure using a model with a single continuous covariate.
The logit, that is linear in the covariate, is

where ji denotes the vector of model coefficients. One way to general-
ize this function is to specify it as

*(*,P) = A>

The functions /*}(*) are a particular type of power function. The value

of the first function is Fl(x) = xp>. In theory, the power, /?,, could be
any number, but in most applied settings it makes sense to try to use
something simple. Royston and Altman (1994) propose restricting the
power to be among those in the set p = {-2,-1,-0.5,0,0.5,1,2,3}, where
/?, = 0 denotes the log of the variable. The remaining functions are de-
fined as
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Plzr^ xl>Pj*Pj-\r •( JC) = •

for 7 = 2,..., 7 and restricting powers to those in £?. For example, if we
chose 7 = 2 with p, = 0 and p2 = -0.5, then the logit is

As another example, if we chose 7 = 2 with pl - 2 and p2
 = 2 , then the

logit is

The model is quadratic in x when 7 = 2 with pl = 1 and p2 = 2 . Again,
we could allow the covariate to enter the model with any number of
functions, 7; but in most applied settings an adequate transformation
may be found if we use 7 = 1 or 2.

Implementation of the method requires, for 7 = 1, fitting 8 models,
that is, p} e (p . The best model is the one with the largest log likeli-
hood. The process is repeated with 7 = 2 by fitting the 36 models ob-
tained from the distinct pairs of powers, that is, (pi ,p2)£pxp, and the
best model is again the one with the largest log likelihood.

The relevant question is whether either of the two best models is sig-
nificantly better than the linear model. Let L(l) denote the log likeli-
hood for the linear model, that is, 7 = 1 and p} = 1 , and L(p} ) denote

the log likelihood for the best 7 = 1 model and L(p,,p2) denote the log
likelihood for the best 7 = 2 model. Royston and Altman (1994) sug-
gest, and verify with simulations, that each term in the fractional poly-
nomial model contributes approximately 2 degrees of freedom to the
model, effectively one for the power and one for the coefficient. Thus,
the partial likelihood ratio test comparing the linear model to the best
7 = 1 model,
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is approximately distributed as chi-square with 1 degree of freedom un-
der the null hypothesis of linearity in x. The partial likelihood ratio test
comparing the best J = 1 model to the best J = 2 model,

G[P\ . (P\ ' Pi )] = ~2{L(P\ ) ~ L(P\ > Pi

is approximately distributed as chi-square with 2 degrees of freedom
under the null hypothesis that the second function is equal to zero.
Similarly, the partial likelihood ratio test comparing the linear model to
the best J = 2 model is distributed approximately as chi-square with 3
degrees of freedom. Note that to keep the notation simple, we use p{ to
denote the best power both when J = 1 and as the first of the two powers
for J = 2 . These are not likely to be the same numeric value in prac-
tice.

The only software package that has fully implemented the method
of fractional polynomials is STATA. In addition to the method de-
scribed above, STATA' s fractional polynomial routine offers the user
considerable flexibility in expanding the set of powers searched; how-
ever, in most settings the default set of values should be adequate.

The previous discussion introduced the basic approach to the use
of fractional polynomials in the setting of a simple univariable logistic
regression model. In practice most models are multivariable and can
contain numerous continuous covariates, each of which must be
checked for linearity. Recently Royston and Ambler (1998, 1999) ex-
tended the original fractional polynomial software in STATA to incor-
porate an iterative examination for scale with multivariable models. The
default method incorporates recommendations discussed in detail in
Sauerbrei and Royston (1999). In our discussion of the method we as-
sume that the fractional polynomial analysis will not incorporate any
variable selection. That is, all the covariates remain in the model. The
variables are ordered by the Wald statistics with the most significant (i.e.,
smallest /?-value) first. The following two step procedure is performed
on each covariate that is being checked for the scale in the logit. The
first step is the 3 degree-of-freedom test of the best J =2 versus the lin-
ear model, G[l, (pi,p2 )]• If this test is not significant at a user-specified
level of significance, a^ , then the covariate is modeled as linear in the

logit. If the test is significant, the second step is the 2 degree-of-
freedom test of the best J =2 versus the best J - 1 fractional polyno-
mial models, G[p{, (p\,p2}\ If this test is significant at the a^ level

then the best J = 2 model is chosen, otherwise the best J - 1 model is
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chosen. After checking each covariate, the process recycles through
each covariate using the results of the first cycle in the sense that covari-
ates not being checked are included in the model using the results from
the first cycle. The purpose of recycling is to ascertain whether a trans-
formation of one covariate changes the transformation of one or more
of the other covariates. The process keeps cycling until no further
transformations are indicated. It is rare for the method to require more
than two cycles and it usually stops after one cycle.

In an applied setting, we recommend that if a more complicated
model is selected for use then it should provide a statistically significant
improvement over the linear model, and it is vital that the transformation
make clinical sense.

Kay and Little (1987) suggest another method for examining the
scale of continuous covariates. They illustrate how examination of the
marginal distribution of the continuous covariates within outcome
groups may help suggest the appropriate scale. For example, they show
that if the distribution of a particular covariate, X, is normal within each
outcome group but with different means and variances, then a linear
term, X, and a quadratic term, X2, are needed in the logit. This pa-
rametrization corresponds to a fractional polynomial with J = 2 and
/?! = 1 and p2=2- If X follows a gamma distribution, skewed right,
then we need to include X and ln(X) in the model, equivalently a frac-
tional polynomial with 7 = 2 and p{ =1 and p2 =0. If X follows a beta
distribution with different parameters within outcome groups, then in-
clusion of lr\(X) and ln(l - X) is necessary to correctly model the co-
variate. Due to the need for ln(l - X) this parametrization cannot be
expressed in terms of a fractional polynomial. This should be kept in
mind as occasionally one encounters a covariate with a fixed range. For
example we may use the logistic probability from one model as a co-
variate in a second model. The approach of Kay and Little may be
most useful for continuous variables when there are enough observa-
tions within each outcome group to obtain an accurate approximation to
the distribution of the covariate.

Another approach to scale selection that can be thought of as a
non-parametric generalization of fractional polynomials is to fit a gen-
eralized additive model. Hastie and Tibshirani (1986, 1987, and 1990)
discuss the use of a generalized additive model for the analysis of bi-
nary data. The results of fitting such a model may be used to plot an
adjusted non-parametrically smoothed estimate of the effect of a covari-
ate. The plot can then be visually checked for nonlinearity and a possi-
ble parametric transformation. The models are quite sophisticated and
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require considerable experience to be used effectively. For these rea-
sons we do not consider them in any detail. In addition, their use re-
quires special software not typically available in most packages.
Royston and Ambler (1998) have written a module that may be used in
conjunction with STATA to fit additive models.

Before proceeding to an example illustrating the proposed method
for building a logistic regression model we need to discuss one special
type of variable that does occur reasonably often in practice. Consider
a study in which subjects are asked to report their lifetime use of ciga-
rettes. All the non-smokers report a value of zero. A one-half pack-a-
day smoker for 20 years has a value of approximately 73,000 cigarettes.
What makes this covariate unusual is the fact that the zero value occurs
with a frequency much greater than expected for a fully continuous
distribution. In addition, the non-zero values typically exhibit right
skewness. Robertson, Boyle, Hsieh, Macfarlane, and Maisonneuve
(1994) show that the correct way to model such a covariate is to include
two terms, one that is dichotomous recording zero versus non-zero and
one for the actual recorded value. Thus, the logit for a univariable
model is

where d =0 if x=0 and d = 1 if x>0. The advantage of this param-
eterization is that it allows us to model two different odds ratios,

and

Note that during the modeling process we still need to check the scale in
the logit for the positive values of the covariate.

Example

As an example of the model-building process, consider the analysis
of the UMARU IMPACT study (UIS). The study is described in Sec-
tion 1.6.4 and a code sheet for the data is shown in Table 1.8. Briefly,
the goal of the analysis is to determine whether there is a difference
between the two treatment programs after adjusting for potential con-
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Table 4.1 Univariable Logistic Regression Models for the
UIS (n = 575)

Variable

AGE
BECK
NDRGTX
IVHX_2
IVHX_3
RACE
TREAT
SITE

Coeff.

0.018
-0.008
-0.075
-0.481
-0.775

0.459
0.437
0.264

Std. Err.

0.0153
0.0103
0.0247
0.2657
0.2166
0.2110
0.1931
0.2034

s*.
OR
1.20*
0.96+

0.93
0.62
0.46
1.58
1.55
1.30

95 % CI

(0.89, 1.62)
(0.87, 1.06)
(0.88, 0.97)
(0.37, 1.04)
(0.30, 0.70)
(1.04, 2.39)
(1.06, 2.26)
(0.87, 1.94)

G

1.40
0.64

11.84

13.35
4.62
5.18
1.67

P
0.237
0.425

<0.001

0.001
0.032
0.023
0.197

*: Odds Ratio for a 10 year increase in AGE
+: Odds Ratio for a 5 point increase in BECK

founding and interaction variables. One outcome of considerable pub-
lic health interest is whether or not a subject remained drug free for at
least one year from randomization to treatment (DFREE in Table 1.8).
A total of 147 of the 575 subjects (25.57%), considered in the analyses
presented in this text, remained drug free for at least one year. The
analyses in this chapter are primarily designed to demonstrate specific
aspects of logistic model building. Hosmer and Lemeshow (Chapter 5,
1999) present an analysis based on the actual length of time to return to
drug use. The analyses in this chapter and in Hosmer and Lemeshow
(1999) should not be considered definitive. One should see the papers
written by our colleagues cited in Section 1.6.4 for more detailed analy-
ses of the UIS data and a discussion of study results.

The results of fitting the univariable logistic regression models to
these data are given in Table 4.1. In this table we present, for each vari-
able listed in the first column, the following information. (1) The esti-
mated slope coefficient(s) for the univariable logistic regression model
containing only this variable, (2) The estimated standard error of the
estimated slope coefficient, (3) The estimated odds ratio, which is ob-
tained by exponentiating the estimated coefficient. For the variable
AGE the odds ratio is for a 10-year increase and for Beck depression
score (BECK) the odds ratio is for a 5-point increase. This was done
since a change of 1 year or 1 point would not be clinically meaningful.
(4) The 95% CI for the odds ratio. (5) The likelihood ratio test statistic,
G, for the hypothesis that the slope coefficient is zero. Under the null
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Table 4.2 Results of Fitting a Multivariable
Model Containing the Covariates Significant at
the 0.25 Level in Table 4.1
Variable
AGE
NDRGTX
IVHX_2
F/HX_3
RACE
TREAT
SITE
Constant

Coeff.
0.050

-0.062
-0.603
-0.733

0.226
0.443
0.149

-2.405

Std. Err.
0.0173
0.0256
0.2873
0.2523
0.2233
0.1993
0.2172
0.5548

z
2.91

-2.40
-2.10
-2.90

1.01
2.22
0.68

-4.34

P>lzl
0.004
0.016
0.036
0.004
0.311
0.026
0.494

<0.001
Log likelihood = -309.6241

hypothesis, this quantity follows the chi-square distribution with 1 de-
gree of freedom, except for the variable IVHX, where it has 2 degrees of
freedom. (6) The significance level for the likelihood ratio test.

With the exception of Beck score there is evidence that each of the
variables has some association (/?<0.25) with the outcome, remaining
drug free for at least one year (DFREE). The covariate recording his-
tory of intravenous drug use (IVHX) is modeled via two design vari-
ables using "1 = Never" as the reference code. Thus its likelihood ra-
tio test has two degrees-of-freedom. We begin the multivariable model
with all but BECK. The results of fitting the multivariable model are
given in Table 4.2.

The results in Table 4.2, when compared to Table 4.1, indicate
weaker associations for some covariates when controlling for other vari-
ables. In particular, the significance level for the Wald test for the coef-
ficient for SITE is p = 0.494 and for RACE is p = 0.311. Strict adher-
ence to conventional levels of statistical significance would dictate that
we consider a smaller model deleting these two covariates. However,
due to the fact that subjects were randomized to treatment within site we
keep SITE in the model. On consultation with our colleagues we were
advised that race is an important control variable. Thus on the basis of
subject matter considerations we keep RACE in the model.

The next step in the modeling process is to check the scale of the
continuous covariates in the model, AGE and NDRGTX in this case.
One approach to deciding the order in which to check for scale is to
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Figure 4.2 Univariable lowess smoothed logit versus AGE.

rank the continuous variables by their respective significance levels.
Results in Table 4.2 suggest that we consider AGE and then NDRGTX.

To explore the scale of AGE we use three different methods: (1) a
univariable smoothed scatterplot on the logit scale, (2) design variables
based on the quartiles of the distribution and (3) the method of frac-
tional polynomials. We begin with the lowess smoothed univariable
logit shown in Figure 4.2. This plot shows a linear increase from age 20
to about age 40 and then a steeper linear increase to age 56. Overall,
the plot supports treating AGE as linear in the logit.

Results from an analysis using design variables with the first quar-

Table 4.3 Results of the Quartile Analyses of AGE from the
Multivariable Model Containing the Variables Shown in the
Model in Table 4.2

Quartile
Midpoint
Number
Coeff.

95 % CI

1
24
148
0.0

2
30.5
144

-0.166
(-0.74, 0.40)

3
35.5
166

0.469
(-0.06, 1.00)

4
47.5
117

0.596
(-0.02, 1.21)
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Figure 4.3 Plot of estimated logistic regression coefficients versus
approximate quartile midpoints of AGE.

tile as the reference group are shown in Table 4.3 and Figure 4.3. The
coefficients in Table 4.3 show an initial decrease followed by an in-
crease in the log odds. The results do not conclusively support linearity
in the logit for AGE nor do they rule it out. One possible scaling sug-
gested by these results is to create a dichotomous covariate at the me-
dian. This suggestion is based on the observation that zero is well within
the confidence interval for the coefficient for the second quartile and
zero is barely contained in the confidence intervals for the other two
coefficients. In addition, there is considerable overlap in the confidence
intervals for the coefficients for the third and fourth quartiles. Wald
tests, left as an exercise, support these observations. However, the quar-
tile analysis is not an especially powerful diagnostic tool. Its strength is
that it is easily explained to and understood by subject matter scientists.

The results of the fractional polynomial analysis are presented in
Table 4.4. A detailed description of the results is as follows:

(1) The significance level in the second line of Table 4.4, p =
0.003 is for the single degree-of-freedom likelihood ratio test
of a model not containing AGE versus the model containing
AGE as a single linear term, e.g. the model in Table 4.2.

(2) The significance level in the third line of Table 4.4, p = 0.545,
is for the single degree-of-freedom likelihood ratio test of a
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model containing AGE as a single linear term versus the model
containing AGE3, i.e., G = 0.366 and Pr[^2(l)>0.366]=0.545.

(3) The significance level in the fourth line of Table 4.4, p -
0.945 is for the two degree-of-freedom likelihood ratio test of
a model containing AGE3 versus the model containing AGE"2

and AGE3, i.e., G = 618.882-618.769 = 0.113 and
Pr[£2(2)>0.113]=0.945.

(4) The likelihood ratio test statistic for the best 7 = 2 model ver-
sus the linear model is G = 619.248-618.769 = 0.479 and its
p-value (not shown in Table 4.4) is Pr[^2(3) > 0.479] = 0.923.

The best non-linear transformations are not significantly different from
the linear model and thus the fractional polynomial analysis supports
treating age as linear in the logit.

In summary, the smoothed logit and fractional polynomial analysis
support treating age as continuous and linear in the logit. The quartile
based design variable analysis, while not conclusive, suggests using a
dichotomous variable with the median age as the cutpoint. Results not
shown, left as an exercise, indicate that modeling age as a dichotomous
variable provides a model that is not better than one treating age as con-
tinuous and linear in the logit. Hence we choose to treat age as con-
tinuous and linear in the logit.

We use the same three methods to assess the scale of NDRGTX and
begin with the univariable smoothed logit in Figure 4.4. The plot shows
an initial increase in the logit at 1 and 2 previous treatments. This is
followed by a nearly linear decrease in the range of 3 to about 15 pre-
vious treatments. The logit appears to have no consistent trend in the

Table 4.4 Summary of the Use of the Method of Fractional
Polynomials for AGE

Not in model
Linear
J =1
7 = 2

df
0
1
2
4

Deviance
627.801
619.248
618.882
618.769

G for Model
vs. Linear

0.000
0.366
0.479

Approx.
p-Value

0.003*
0.545+
0.945*

Powers

1
3

-2, 3
* Compares linear model to model without AGE
+ Compares the 7=1 model to the linear model
# Compares the 7 = 2 model to the 7=1 model
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Figure 4.4 Univariable lowess smoothed logit versus number of previous
drug treatments (NDRGTX).

range from 15 to 40 previous treatments. It is of particular interest to
determine whether the initial increase in the logit is significant or simply
a numerical artifact of the smoothing. We explore this possibility using
a design variable analysis. We choose cutpoints using Figure 4.4 as a
guide. The results of the design variable analysis are shown in Table
4.5 and Figure 4.5.

The results in Table 4.5 and Figure 4.5 agree with the pattern seen
in Figure 4.4 of an increase followed by a progressive decrease in the
logit. Since zero is contained in each of the confidence intervals none

Table 4.5 Results of the Design Variable Analysis of Number of
Previous Drug Treatments (NDRGTX) from the Multivariable
Model Containing the Variables Shown in the Model in Table 4.2

Group
Interval
Number
Coeff.

95 % CI

1
0

79
0.0

2
1-2
173

0.406
(-0.20, 1.01)

3
3-15
294

-0.154
(-0.76, 0.46)

4
16-40

29
-0.585

(-1.80,0.63)
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Figure 4.5 Plot of estimated logistic regression coefficients from Table 4.4
versus the midpoints of number of previous drug treatment groups.

of the coefficients is significantly different from zero. This result does
not agree with the fact that NDRGTX is significant in Table 4.2.

We next use the method of fractional polynomials. The results of
this analysis, presented in Table 4.6, (see Addendum, page 352) suggest
that we consider the J = 2 model as a possible non-linear transforma-
tion of NDRGTX. This model is significantly different from the best
J = 1 model, at the 10 percent level. The significance level of the 7 = 2
model versus the linear model is Pr[#2(3)>5.797] = 0.122, which indi-

cates that the model offers a small improvement over the linear model.
Recall that the goals are to see whether a fractional polynomial trans-
formation of NDRGTX is able to provide a parametric model similar in
shape to the smoothed logit in Figure 4.4, and to determine whether
such a model is significantly better than the linear model from both a
statistical and a clinical perspective.

A graph of the univariable smoothed logit and the two term frac-
tional polynomial model, adjusted for other model covariates, is shown
in Figure 4.6. We explain how the graph was obtained shortly. The
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Figure 4.6 Plot of the univariable lowess smoothed logit (o) and the mul-
tivariable adjusted logit (+) from the 7 = 2 fractional polynomial model versus
number of previous drug treatments (NDRGTX).

fractional polynomial model has the desired shape, a sharp rise followed
by a gradual fall and there is good agreement between the two sets of
plotted points. At this point, we consulted our colleagues to see if the
shape of the two term fractional polynomial model made any clinical
sense. They advised us that, in fact, the basic shape makes sense from a
clinical point of view. Namely, subjects with no previous drug treat-
ments tend to be less likely to return to drug use than subjects with one
or two previous treatments. The rate of return to drug use tends to de-
crease thereafter for larger numbers of treatments. They also found the
fact that this pattern could be described by a parametric function quite
an interesting result. Hence we proceed with the two term fractional
polynomial model. The results of fitting this model are shown in Table
4.7.

The two fractional polynomial transformations are

NDRGFPl =
(NDRGTX +1)

10
and
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Table 4.7 Results of Fitting the Multivariable
Model with the Two Term Fractional Polynomial
Transformation of NDRGTX

Variable
AGE
NDRGFP1
NDRGFP2
IVHX_2
IVHX_3
RACE
TREAT
SITE
Constant

Coeff.
0.054
0.981
0.361

-0.609
-0.724

0.248
0.422
0.173

-2.928

Std. Err.
0.0175
0.2888
0.1099
0.2911
0.2556
0.2242
0.2004
0.2210
0.5867

z
3.11
3.40
3.29

-2.09
-2.83

1.11
2.11
0.78

-4.99

P>lzl
0.002
0.001
0.001
0.036
0.005
0.269
0.035
0.433

<0.001
Log likelihood = -306.7256

NDRGFP2 = NDRGFPl x JiiE?2Z*±!ll
L 10 J

It should be noted that there are several alternative ways of incorporat-
ing fractional polynomial transformed variables. STATA uses a scaled
and centered version. Alternatively, one could use an uncentered trans-
formation or a transformation that is neither centered nor scaled. In this
example, we chose to use the scaled but uncentered transformation
shown above. It should be noted that, in the equations above, 1 is added
to NDRGTX to avoid problems with NDRGTX = 0 and to control the
range of the transformed covariate. We note that the Wald statistics for
the coefficients of NDRGFP1 and NDRGFP2 are statistically significant.

We obtained the plot presented in Figure 4.6 using the following
procedure. First we requested that STATA create and save a new vari-
able containing the values of the smoothed logit plotted in Figure 4.4.
Suppose we named this variable LGTSM. Next, we used the coefficients
in Table 4.7 to compute an estimated logit as a function of NDRGFP1
and NDRGFP2 as follows:

LGTFP = -4.314 + 0.981 x NDRGFP\+036\ x NDRGFP2.

Before plotting, we added the difference between the mean of LGTSM
and LGTFP to the values of LGTFP so that the two plotted variables
would have the same mean, namely,
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LGTFP* = LGTFP + (LGTSM - LGTFP).

We plotted LGTSM and LGTFP* versus the values of NDRGTX to ob-
tain Figure 4.6.

The two curves in Figure 4.6 are quite similar after adjusting for
the difference in the means. This may not always be the case. The low-
ess scatterplot smooth does not take into account all the covariates in the
model whereas the plot of the fractional polynomial does. In addition,

k
" \ i A

we note that we get -4.314 from /?o + i,,A^-» where the summation is
1=1

over all but the fracploy covariate. We could have computed LGTFP
using a different set of typical values for the other covariates (e.g., the
median age and some choice of zero and one for each of the dichoto-
mous covariates). The net effect would have been to change the value
of the constant from -4.314 to some other value. This would have pro-
duced a different mean value for LGTFP and, therefore, a different
value for LGTSM - LGTFP; however, once done, the plot would be
identical to that seen in Figure 4.6.

The current model building example demonstrates that the family
of fractional polynomial transformations provides the ability to model a
surprisingly complex function parametrically. This method is an ex-
tremely powerful analysis tool, the results of which must be examined
carefully using statistical and clinical criteria. It is absolutely vital that
any fractional polynomial transformation makes clinical sense.

Before moving on to assess interactions we check to make sure that
any main effects not included in the model still are neither significant
nor important confounding variables. In this case the only variable not
included in the model is BECK. It was neither significant (p - 0.932)
nor an important confounder when added to the main effects model in
Table 4.7. We used the iterative multivariable fractional polynomial
procedure as a final check or> the scale of AGE and NDRGTX. This
analysis yielded the same results: no need to transform AGE and use the
(-!,-!) transformation for NDRGTX.

The model in Table 4.7 is our main effects model. The next step
in the model building process is to assess the need to include interac-
tions. At this point we recommend that a list be prepared of the clini-
cally plausible interactions that can be formed from the main effects in
the model. This list may or may not consist of all possible interactions.
Our main effects model contains six covariates, hence there are 15 pos-
sible pairwise interactions. We think that each one offers the possibility
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Table 4.9 Preliminary Final Model Containing
Significant Main Effects and Interactions

Variable
AGE
NDRGFP1
NDRGFP2
IVHX_2
IVHX_3
RACE
TREAT
SITE
AGExNDRGFPl
RACExSITE
Constant

Coeff.
0.117
1.669
0.434

-0.635
-0.705

0.684
0.435
0.516

-0.015
-1.429
-6.844

Std. Err.

0.0289
0.4072
0.1169
0.2987
0.2616
0.2641
0.2038
0.2549
0.0060
0.5298
1.2193

z
4.04
4.10
3.71

-2.13
-2.70

2.59
2.14
2.03

-2.53
-2.70
-5.61

P>lzl
<0.001
<0.001
<0.001

0.034
0.007
0.010
0.033
0.043
0.011
0.007

<0.001
Log likelihood = -298.9814

of a clinically plausible modification of the covariate effects. The re-
sults of adding each of the 15 interactions one at a time to the main ef-
fects model in Table 4.7 are presented in Table 4.8 (see Addendum,
page 352).

The results in Table 4.8 show that only the AGExNDRGTX,

AGExTREAT and RACExSITE interactions are significant at the 10

percent level. Next we add these three interactions (i.e., four terms) to
the main effects model. The fit of this model (not presented) yields
Wald statistics for the two coefficients for the AGExNDRGTX interac-

tion that are not significant yet the two degree of freedom likelihood
ratio test for exclusion of the two interaction terms is highly significant,
p = 0.026. We attribute this conflict in results to high correlation be-
tween NDRGFP1 and NDRGFP2. To explore this further we fit a model
(not shown) containing three interaction terms: AGExNDRGFPl,

AGExTREAT and RACExSITE. In this model the Wald statistic for the

AGExTREAT interaction term is not significant, p = 0.113, and the

likelihood ratio test for its exclusion has p = 0.111. Thus we feel that
this interaction term should not be included in the model. We present in
Table 4.9 the results of fitting the model containing the main effects in
Table 4.7 and the two significant interaction terms.

We refer to the model in Table 4.9 as the preliminary final model
as we have not checked its goodness of fit or other diagnostic statistics
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of model adequacy. These methods are presented in detail in Chapter
5. Following the assessment of fit we discuss, in Section 5.5, the inter-
pretation and presentation of the results from a fitted model using our
final model from the UIS as an example.

4.3 STEPWISE LOGISTIC REGRESSION

Stepwise selection of variables is widely used in linear regression. All
the major software packages have either a separate program or an op-
tion to perform this type of analysis. Currently, most, if not all, major
software packages offer an option for stepwise logistic regression. At
one time, stepwise regression was an extremely popular method for
model building. In recent years there has been a shift away from de-
terministic methods for model building to purposeful selection of vari-
ables. However, we feel that the procedure provides a useful and effec-
tive data analysis tool. In particular, there are times when the outcome
being studied is relatively new and the important covariates may not be
known and associations with the outcome not well understood. In these
instances most studies collect many possible covariates and screen them
for significant associations. Employing a stepwise selection procedure
can provide a fast and effective means to screen a large number of vari-
ables, and to fit a number of logistic regression equations simultane-
ously.

Any stepwise procedure for selection or deletion of variables from
a model is based on a statistical algorithm that checks for the "impor-
tance" of variables, and either includes or excludes them on the basis of
a fixed decision rule. The "importance" of a variable is defined in
terms of a measure of the statistical significance of the coefficient for
the variable. The statistic used depends on the assumptions of the
model. In stepwise linear regression an F-test is used since the errors
are assumed to be normally distributed. In logistic regression the errors
are assumed to follow a binomial distribution, and significance is as-
sessed via the likelihood ratio chi-square test. Thus, at any step in the
procedure the most important variable, in statistical terms, is the one that
produces the greatest change in the log-likelihood relative to a model
not containing the variable (i.e., the one that would result in the largest
likelihood ratio statistic, G).

We discussed in Chapter 3 that a polychotomous variable with k
levels is appropriately modeled through its k -1 design variables. Since
the magnitude of G depends on its degrees-of-freedom, any procedure
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based on the likelihood ratio test statistic, G, must account for possible
differences in degrees-of-freedom between variables. This is done by
assessing significance through the p-value for G.

We describe and illustrate the algorithm for forward selection fol-
lowed by backward elimination in stepwise logistic regression. Any
variants of this algorithm are simple modifications of this procedure.
The method is described by considering the statistical computations that
the computer must perform at each step of the procedure.

Step (0): Suppose we have available a total of p possible independ-
ent variables, all of which are judged to be of plausible "clinical" im-
portance in studying the outcome variable. Step (0) begins with a fit of
the "intercept only model" and an evaluation of its log-likelihood, LQ.
This is followed by fitting each of the p possible univariable logistic re-
gression models and comparing their respective log-likelihoods. Let the
value of the log-likelihood for the model containing variable Xj at step

zero be denoted by L^. The subscript j refers to the variable that has

been added to the model, and the superscript (0) refers to the step. This
notation is used throughout the discussion of stepwise logistic regression
to keep track of both step number and variables in the model.

Let the value of the likelihood ratio test for the model containing
Xj versus the intercept only model be denoted by GJ0) =-2^-L^0)J,

and its p-value be denoted by /?j°\ Hence, this p-value is determined

by the tail probability Pr[#2(v)>GJ0)] = pf\ where v = l if x} is con-
tinuous and v = k-l if Xj is polychotomous with k categories.

The most important variable is the one with the smallest p-value. If
we denote this variable by xe , then p^ = min(p{°^, where "min"

stands for selecting the minimum of the quantities enclosed in the
brackets. The subscript " e" is used to denote that the variable is a
candidate for entry at step 1. For example, if variable jc2 had the small-
est p-value, then p^ = min(/?j°M, and e{=2. Just because xe is the

most important variable, there is no guarantee that it is "statistically sig-
nificant." For example, if p^ =0.83, we would probably conclude that
there is little point in continuing this analysis because the "most im-
portant" variable is not related to the outcome. On the other hand, if
p^ = 0.003, we would like to look at the logistic regression containing
this variable and then see if there are other variables that are important
given that x is in the model.
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A crucial aspect of using stepwise logistic regression is the choice
of an "alpha" level to judge the importance of variables. Let pE de-
note our choice where the "E" stands for entry. The choice for pE

determines how many variables eventually are included in the model.
Bendel and Afifi (1977) have studied the choice of pE for stepwise lin-
ear regression, and Costanza and Afifi (1979) have studied the choice
for stepwise discriminant analysis. More recently Lee and Koval (1997)
examined the issue of significance level for forward stepwise logistic
regression. The results of this research have shown that the choice of
pE = 0.05 is too stringent, often excluding important variables from the
model. Choosing a value for pE in the range from 0.15 to 0.20 is
highly recommended.

Sometimes the goal of the analysis may be broader, and models
containing more variables are sought to provide a more complete pic-
ture of possible models. In these cases, use of pE = 0.25 or even larger
might be a reasonable choice. Whatever the choice for pE, a variable is
judged important enough to include in the model if the /?-value for G is
less than pE. Thus, the program proceeds to step (1) if p^ <pE', oth-

erwise, it stops.
Step (1): Step (1) commences with a fit of the logistic regression

model containing xe . Let L^ denote the log-likelihood of this model.
To determine whether any of the remaining p-\ variables are impor-
tant once the variable xe is in the model, we fit the p-l logistic regres-
sion models containing xe and Xj,j = },2,3,...,p andy^e, . For the

model containing ^ and jc; let the log-likelihood be denoted by z£y,
and let the likelihood ratio chi-square statistic of this model versus the

model containing only ^ be denoted by GJI} =-2(1^ -^•}• The p-

value for this statistic is denoted by p^. Let the variable with the small-

est p-value at step (1) be*^ where p^ -minfpj'M. If this value is less

than pE then we proceed to step (2); otherwise we stop.
Step (2): Step (2) begins with a fit of the model containing both

xe^ and*ei. It is possible that once xg2 has been added to the model, xet

is no longer important. Thus, step (2) includes a check for backward
elimination. In general this is accomplished by fitting models that de-
lete one of the variables added in the previous steps and assessing the
continued importance of the variable removed. At step (2) let /I2j de-

note the log-likelihood of the model with * removed. In similar fash-
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ion let the likelihood ratio test of this model versus the full model at step

(2) be G(2) = -l(62l - L{
e
2)

e } and p(2) be its p-value.LJ y ~e, t}c2 l
 ej

To ascertain whether a variable should be deleted from the model
the program selects that variable which, when removed, yields the
maximum /?-value. Denoting this variable as xr , then p;2' =

maxljol2/,/?!^ 1. To decide whether xr should be removed, the program

compares p^to a second pre-chosen "alpha" level, pR, which indi-
cates some minimal level of continued contribution to the model where
"R" stands for remove. Whatever value we choose for pR, it must ex-
ceed the value of pE to guard against the possibility of having the pro-
gram enter and remove the same variable at successive steps.

If we do not wish to exclude many variables once they have entered
then we might use pR = 0.9. A more stringent value would be used if a
continued "significant" contribution were required. For example, if we
used pE =0.15, then we might choose pR = 0.20. If the maximum p-

value to remove, p^\ exceeds pR then jc^ is removed from the model.

If p^is less than/?R then xr remains in the model. In either case the

program proceeds to the variable selection phase.
At the forward selection phase each of the p-2 logistic regression

models are fit containing x , xe and jcy for j = 1,2,3,...p, j *e},e2.

The program evaluates the log-likelihood for each model, computes the
likelihood ratio test versus the model containing only x and xe^ and
determines the corresponding p-value. Let xe denote the variable with

the minimum p-value, that is, p^ = min(pj2M. If this p-value is smaller

than pE, p;, < pE, then the program proceeds to step (3); otherwise, it

stops.
Step (3): The procedure for step (3) is identical to that of step (2).

The program fits the model including the variable selected during the
previous step, performs a check for backward elimination followed by
forward selection. The process continues in this manner until the last
step, step (S).

Step (S): This step occurs when: (1) all p variables have entered the
model or (2) all variables in the model have /?-values to remove that are
less than/?R, and the variables not included in the model have /7-values
to enter that exceed pE. The model at this step contains those variables
that are important relative to the criteria of pE and pR. These may or
may not be the variables reported in a final model. For instance, if the
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chosen values of pE and pR correspond to our belief for statistical sig-
nificance, then the model at step S may well contain the significant vari-
ables. However, if we have used values for pE and pR which are less
stringent, then we should select the variables for a final model from a
table that summarizes the results of the stepwise procedure.

There are two methods that may be used to select variables from a
summary table; these are comparable to methods commonly used in
stepwise linear regression. The first method is based on the p-value for
entry at each step, while the second is based on a likelihood ratio test of
the model at the current step versus the model at the last step.

Let "g" denote an arbitrary step in the procedure. In the first
method we compare pf to a pre-chosen significance level such as a

= 0.15. If the value p^ is less than a, then we move to step q. We

stop at the step when p? exceeds a. We consider the model at the

previous step for further analysis. In this method the criterion for entry
is based on a test of the significance of the coefficient for xe condi-

tional on xe^,xe^...,xe ( being in the model. The degrees-of-freedom
for the test are 1 or k-l depending on whether xe is continuous or

polychotomous with k categories.
In the second method, we compare the model at the current step,

step q, not to the model at the previous step, step q - \ but to the model
at the last step, step (S). We evaluate the p-value for the likelihood ratio
test of these two models and proceed in this fashion until this /?-value
exceeds a. This tests that the coefficients for the variables added to the
model from step q to step (S) are all equal to zero. At any given step it
has more degrees-of-freedom than the test employed in the first
method. For this reason the second method may possibly select a larger
number of variables than the first method.

It is well known that the p-values calculated in stepwise selection
procedures are not /^-values in the traditional hypothesis testing context.
Instead, they should be thought of as indicators of relative importance
among variables. We recommend that one err in the direction of se-
lecting a relatively rich model following stepwise selection. The vari-
ables so identified should then be subjected to the more intensive analy-
sis described in the previous section.

A common modification of the stepwise selection procedure just
described is to begin with a model at step zero which contains known
important covariates. Selection is then performed from among other
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variables. One instance when this approach may be useful is to select
interactions from among those possible from a main effects model.

One disadvantage of the stepwise selection procedures just de-
scribed is that the maximum likelihood estimates for the coefficients of
all variables not in the model must be calculated at each step. For large
data files with large numbers of variables this can be quite time con-
suming. An alternative to a full maximum likelihood analysis that is
available in some packages, for example SAS, selects new variables
based on the Score tests for the variables not included in the model.
Another less time consuming method available in some packages, for
example STATA, is based on a multivariable Wald test first suggested by
Peduzzi, Hardy, and Holford (1980). To date there has been no work
published which has compared these different selection methods al-
though it does seem likely that an important variable would be identi-
fied, regardless of method used. For comparison purposes we present,
in the example, results based on using full maximum likelihood, the
Score test and the Wald test.

Freedman (1983) urges caution when considering a model with
many variables, noting that significant linear regressions may be ob-
tained from "noise" variables, completely unrelated to the outcome
variable. Flack and Chang (1987) have shown similar results regarding
the frequency of selection of "noise" variables. Thus, a thorough
analysis that examines statistical and clinical significance is especially
important following any stepwise method.

As an example, we apply the stepwise variable selection procedure
to the UIS data analyzed using purposeful selection earlier in this chap-
ter. The reader is reminded that this procedure should be viewed as a
first step in the model building process - basic variable selection. Sub-
sequent steps such as determination of scale as described in Section 4.2
would follow. The results of this process are presented in Table 4.10
(see Addendum, page 353) in terms of the /?-values to enter and remove
calculated at each step. These p-values are those of the relevant likeli-
hood ratio test described previously. The order of the variables given
column-wise in the table is the order in which they were selected. In
each column the values below the horizontal line are pE values and val-
ues above the horizontal lines are pR values. The program was run us-
ing pE = 0.15 and pR = 0.20. This particular analysis was performed
using program BMDPLR. One reason we used BMDPLR is it is one of
the few stepwise logistic regression programs that correctly considers the
design variables formed from a polychotomous variable together for
entry or removal from a model.
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Step (0): At step (0) the program selects as a candidate for entry at
step (1) the variable with the smallest p-value in the first column of Ta-
ble 4.10. This is the variable NDRGTX with a p-value of 0.0006. Since
this p-value is less than 0.15, the program proceeds to step (1).

Step (1): At step (1) a model is fit containing NDRGTX. The pro-
gram does not remove the variable just entered since pR > pE and the p-
value to remove at step (1) is equal to the p-value to enter at step (0).
This is true for the variable entered at any step - not just the first step.
The variable with the smallest p-value to enter at step (1) is TREAT with
a value of 0.0249, which is less than 0.15 so the program moves to step
(2).

Step (2): The p-values to remove appear first in each row. The
largest p-value to remove is indicated with an "*". The model con
taining both NDRGTX and TREAT is fit at step (2). The largest p-value
to remove is 0.0249, which does not exceed 0.20, thus the program
moves to the variable selection phase. The smallest p-value to enter
among the remaining variables not in the model is for the variable
IVHX and is 0.0332. This value is less than 0.15 so the program pro-
ceeds to step (3).

Step (3) At step (3) the largest /?-value to remove is 0.0332, which
does not exceed 0.20, thus the program moves to the variable selection
phase. The smallest p-value to enter among the remaining variables not
in the model is for the variable AGE and is 0.0021. This value is less
than 0.15 so the program proceeds to step (4).

Step (4): At step (4) the program finds that the maximum /?-value
to remove is 0.0224 for TREAT. This value is less than 0.20, so
TREAT is not removed from the model. In the selection phase the pro-
gram finds that the minimum /?-value for entry is 0.350 for the variable
RACE. Since this value exceeds 0.15, no further variables may be en-
tered into the model, and the program stops.

Since the program was run with pE = 0.15, a value we believe se-
lects variables with significant coefficients, it is not strictly necessary to
go to the summary table to select the variables to be used in a final
model. However, we illustrate the calculations for the two methods of
variable selection from the summary table in Table 4.11.

For method 1, we compare the /?-value for entry at each step to our
chosen level of significance. For purposes of illustration only we use
the value of 0.03, even though we noted earlier in this section that it is
too stringent for actual practice. The information for method 1 is in the
second panel of Table 4.11.
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Table 4.11 Log-Likelihood for the Model at Each Step and
Likelihood Ratio Test Statistics (G), Degrees-of-freedom (df),
and p -Values for Two Methods of Selecting Variables for a
Final Model from a Summary Table

Variable
Step Entered Log Like.

0 -326.864
1 NDRGTX -320.945
2 TREAT -318.430
3 IVHX -315.025
4 AGE -310.293

Method 1
G df p

11.84 1 <0.001
5.03 1 0.025
6.81 2 0.033
9.46 1 0.002

Method 2
G df p

33.14 5 <0.001
21.30 4 <0.001
16.27 3 <0.001
9.46 1 0.002

The value of the likelihood ratio test for the model at step (0) com-
pared to that containing NDRGTX at step (1) is

G = -2 [-326.864 - (-320.945)] = 11.84.

The /7-value for G is <0.001, which is less than 0.03, so we conclude that
the coefficient for NDRGTX is significant and move to step (2). The p-
value for the variable, TREAT, entered at step (2) is 0.025. This is the
/7-value for the likelihood ratio test of the significance of the coefficient
for TREAT, given that NDRGTX is in the model. The value of the test
statistic is

G = -2 [-320.945- (-318.430)] = 5.03.

Since the p-value for G is less than 0.03 we move to step (3). At
step (3) we find that the value of the likelihood ratio test of the model at
step (3) versus that at step (2) is

G = -2 [-318.430 - (-315.025)] = 6.81,

resulting in a p-value of 0.033. This value is greater than 0.03 so we
conclude that TREAT does not provide a significant addition to the
variables already selected at step (2). Hence, the final model would be
the one with all variables entered through step (2) even though the vari-
able entered at step (4), AGE, has ap-value of less than 0.03.
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The information for method 2 is in the last panel of Table 4.11. In
the second method the model at each step is compared to the model at
the last step via a likelihood ratio test. This is a test of the joint signifi-
cance of variables added at subsequent steps. We again proceed until
the p-value for the test exceeds the chosen significance level. For pur-
poses of illustration only we use 0.03 again. The value of G at step (0)
is

G = -2J-326.864- (-310.293)] = 33.14

with a/7-value of <0.001 based on 5 degrees-of-freedom. Since this p-
value is less than 0.03 we proceed to step (1). At step (1) the test of this
model versus that at the last step is

G = -2 [-320.945 - (-310.293)] = 21.304

with a/?-value of <0.001 based on 4 degrees-of-freedom. Since the p-
value is less than 0.03 we proceed to step (2).

At step (2) the test of this model versus that at the last step is

G = -2[-318.430 - (-310.293)] = 16.27

with a/7-value of <0.001 based on 3 degrees-of-freedom. Since the p-
value is less than 0.03 we proceed to step (3).

At step (3) the test of this model versus that at the last step is

G = -2[-315.025-(-310.293)] = 9.46

with a /?-value of 0.002 based on 1 degree of freedom. This value is
less than 0.03, so we use the model at step (4).

In this example methods 1 and 2 have identified different sets of
variables. Each method provides a test of a different hypothesis at each
step. The number of parameters being tested in method 2 is, except for
the last step, larger than that for method 1. Thus, method 2 may select,
as it does in this example, more variables than method 1. In cases where
this occurs, one should carefully examine the additional variables and
include them if they seem clinically relevant. In this case we would un-
doubtedly opt for the richer model selected by method 2. Again we
wish to emphasize that had we used the recommended level of signifi-
cance of 0.15 both methods suggest the same model.
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At the conclusion of the stepwise selection process we have only
identified a collection of variables which seem to be statistically impor-
tant. Thus, any known clinically important variables, for example
RACE, or variables that must be controlled for due to the design of the
study, such as SITE, should be added before proceeding with the steps
necessary to obtain the final main effects model. As noted earlier, this
should include determining the appropriate scale of continuous covari-
ates.

Once the scale of the continuous covariates has been examined, and
corrected if necessary, we may consider applying stepwise selection to
identify interactions. The candidate interaction terms are those that
seem clinically reasonable given the main effect variables in the model.
We begin at step (0) with the main effects model and sequentially select
from among the possible interactions. We use the summary table to se-
lect the significant interactions using either method 1 or method 2.
Consequently the final model contains previously identified main ef-
fects and significant interaction terms.

As we noted, some packages use various combinations of the com-
putationally more efficient Score and Wald tests. For example, SPSS
uses the score test for selection and the likelihood ratio test for removal
of covariates. SAS also uses the score test to select covariates but uses
individual Wald statistics to check for removal of covariates. STATA
has the option to use the Wald test for both entry and removal of covari-
ates. The results shown in Table 4.12 are from SPSS. At each step, the
p-values from the score test to enter are below the horizontal line. The
p-values for the likelihood ratio test to remove are above the horizontal
line. Since we use these /^-values in exactly the same manner as dis-
cussed in detail when selection for entry and removal is based on the
likelihood ratio test we do not repeat it. Instead we focus on comparing
similarities and differences between the results in Table 4.10 and Table
4.12.

We note that the order of variable entry into the models in Tables
4.10 and 4.12 is different. SPSS (Table 4.12) selects IVHX first, fol-
lowed by AGE, NDRGTX and TREAT. BMDP (Table 4.10) selected
NDRGTX first, followed by TREAT, IVHX and AGE. After four steps,
the variables selected by both methods were the same and no other vari-
ables were significant at the 0.15 level and so were unable to enter the
model at step 5. Thus the composition of the final model selected is the
same using the two approaches. The p-values for entry for the likeli-
hood ratio test in Table 4.10 are quite similar to those for the Score test
in Table 4.12. This is in agreement with the discussion of these two tests
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Table 4.12 Results of Applying Stepwise Variable Selection
Using the Score Test to Select and Maximum Likelihood Test
to Remove Covariates at Each Step to the UIS Data. Results
Are Presented at Each Step in Terms of the p -Values to Enter
(Below the Horizontal Line), and the p-Value to Remove (Above
the Horizontal Line) in Each Column. The Asterisk Denotes
the Maximum p -Value to Remove at Each Step
Variable/Step
IVHX+

AGE
NDRGTX
TREAT
RACE
SITE
BECK

0
0.0012
0.2357
0.0018
0.0231
0.0288
0.1933
0.4262

1
0.0012
0.0068
0.0264
0.0329
0.1462
0.4549
0.7738

2
0.0001
0.0070*
0.0127
0.0253
0.2330
0.4762
0.9630

3
0.0024
0.0029
0.0069*
0.0226
0.2725
0.6231
0.9739

4
0.0027
0.0021
0.0062
0.0224*
0.3470
0.5676
0.9948

+ IVHX is entered with 2 degrees-of-freedom corresponding to its 2 design
variables.

in Chapters 1 and 2. Use of SAS and STATA yields results similar to
those shown in Table 4.12 (results are not presented).

Given a choice, we prefer to use the likelihood ratio test for both
entry and removal as research has shown it has the best statistical prop-
erties. However the results in Table 4.10 and Table 4.12 are typical of
our experience in using stepwise methods. Namely, with different tests
there may be some swapping in the order selected but the total set is
usually the same.

The variables identified using stepwise selection are the same as
those identified earlier by purposeful selection. Therefore, the work
necessary to check the scale of the continuous covariates, NDRGTX and
AGE, is not repeated and we begin stepwise selection of the interactions
listed in Table 4.8.

In order to simplify the presentation somewhat we use the fact that
all sets of interactions involving the two fractional polynomial transfor-
mations of NDRGTX are quite highly correlated. Thus, as was the case
in purposeful selection, we only consider interactions with NDRGFP1.
We note that interactions involving history of IV drug use, IVHX, are
computed using the design variables, IVHX_2 and IVHX_3.

The same software may be used for stepwise selection of interac-
tions as was used for the selection of main effects. The difference is that
all main effect variables are forced into the model at Step (0) and selec-
tion is restricted to interactions. In total there are 15 possible interac-
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Table 4.13 Results of Applying Stepwise Variable Selection
to Interactions from the Main Effects Model from the UIS
Data, Using the Maximum Likelihood Method Presented at
Each Step in Terms of the p-Values to Enter (Below the Hori-
zontal Line), and the p-Values to Remove (Above the Horizon-
tal Line) in Each Column. The Asterisk Denotes the Maxi-
mum p-Value to Remove at Each Step

Variable/Step
RACExSITE
AGExNDRGFPl
AGExTREAT
AGExIVHX
NDRGFPlxTREAT
RACExTREAT
IVHXxRACE
IVHXxSITE
NDRGFPlxIVHX
AGExRACE
IVHXxTREAT
TREATxSITE
NDRGFPlxSITE
AGExSITE
NDRGFPlxRACE

0
0.0035
0.0055
0.0693
0.6910
0.0900
0.3315
0.9798
0.6475
0.3291
0.6568
0.9798
0.8542
0.9587
0.2062
0.3679

1
0.0035
0.0084
0.1174
0.6075
0.1816
0.3449
0.5902
0.4097
0.3726
0.5441
0.9223
0.9591
0.6876
0.2908
0.8855

2
0.0053
0.0084*
0.1110
0.2341
0.1376
0.2885
0.4139
0.4487
0.6063
0.4489
0.9779
0.8706
0.7664
0.6643
0.9521

3
0.0064
0.0080

| 0.1110*
0.2577
0.2837
0.2871
0.3844
0.4610
0.5682
0.5734
0.6271
0.7962
0.8260
0.8583
0.8815

tions listed in Table 4.13 where they are inverse rank ordered by the p-
values at the last step.

The results in Table 4.13 indicate that only 3 interactions entered
the model using the 15 percent level of significance and none were re-
moved at the 20 percent level of significance. These are the same 3 in-
teractions identified previously via purposeful selection. At this point
the analysis proceeds in exactly the same manner as discussed in detail
earlier in this chapter. In that analysis we concluded that only the
RACE by SITE and AGE by NDRGFP1 interactions should be in the
model. Hence the preliminary final model obtained via stepwise selec-
tion turns out to be the same as the one obtained via purposeful selec-
tion. This may not always be the case. In our experience models ob-
tained by these two approaches rarely differ by more than a couple of
variables. In a situation where different approaches yield different
models we recommend proceeding with a combined larger model via
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purposeful selection using both confounding and statistical significance
as criteria for model simplification.

We note that the same three interactions were identified as signifi-
cant when both the Score and Wald test options were used. Thus we do
not present this output or discuss the results.

In conclusion, we emphasize that stepwise selection identifies vari-
ables as candidates for a model solely on statistical grounds. Thus, fol-
lowing stepwise selection of main effects all variables should be care-
fully scrutinized for clinical plausibility. In general, interactions must
attain statistical significance to alter the point and interval estimates from
a main effects model. Thus, stepwise selection of interactions using sta-
tistical significance can provide a valuable contribution to model identi-
fication, especially when there are large numbers of clinically plausible
interactions generated from the main effects.

4.4 BEST SUBSETS LOGISTIC REGRESSION

An alternative to stepwise selection of variables for a model is best sub-
set selection. This approach to model building has been available for
linear regression for a number of years and makes use of the branch
and bound algorithm of Furnival and Wilson (1974). Typical software
implementing this method for linear regression identifies a specified
number of "best" models containing one, two, three variables, and so
on, up to the single model containing all p variables. Lawless and Sing-
hal (1978, 1987a, 1987b) proposed an extension that may be used with
any non-normal model. The crux of their method involves application
of the Furnival-Wilson algorithm to a linear approximation of the cross-
product sum-of-squares matrix that yields approximations to the maxi-
mum likelihood estimates. Selected models are then compared to the
model containing all variables using a likelihood ratio test. Hosmer,
Jovanovic, and Lemeshow (1989) have shown that, for logistic regres-
sion, the full generality of the Lawless and Singhal approach is not
needed. Best subsets logistic regression may be performed in a straight-
forward manner using any program capable of best subsets linear re-
gression. Also, some packages, including SAS, have implemented the
Lawless and Singhal method in their logistic regression modules.

Applying best subsets linear regression software to perform best
subsets logistic regression is most easily explained using vector and ma-
trix notation. In this regard, we let X denote the nx(p + l) matrix
containing the values of all p independent variables for each subject,
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with the first column containing 1 to represent the constant term. Here
the p variables may represent the total number of variables, or those se-
lected at the univariable stage of model building. We let V denote an
nxn diagonal matrix with general element v, =7r f(l-7r,) where fti is
the estimated logistic probability computed using the maximum likeli-

^

hood estimate P and the data for the /' case, x,.
For the sake of clarity of presentation in this section, we repeat the

expression for X and V given in Chapter 2. They are as follows:

n]

22

n2

and

V =

0

0 7T2(l-7r2) ••• 0

; o ' - . ;
0 ... 0 7tn(l-7tn)

As noted in Chapter 2, the maximum likelihood estimate is deter-
mined iteratively. It may be shown [see Pregibon (1981)] that
p = (X/VX)"1X/Vz, where z = Xp+V''r and r is the vector of residuals,

r = (y-n). This representation of p provides the basis for use of linear
regression software. It is easy to verify that any linear regression pack-
age, that allows weights, produces coefficient estimates identical to P
when used with z( as the dependent variable and case weights, v (, equal
to the diagonal elements of V.

To replicate the results of the maximum likelihood fit from a lo-
gistic regression package using a linear regression package, we calculate
for each case, the value of a dependent variable as follows:
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- ft,)

and a case weight

v,. = £,.(!-*,.). (4.2)

Note that all we need is access to the fitted values, n{ , to compute the
values of zf and v, . Next, we run a linear regression program using the
values of z( as the dependent variable, the values of x( for our vector of
independent variables, and the values of v; for our case weights.

Proceeding further with the linear regression, it can be shown that
the residuals from the fit are

and the weighted residual sum-of- squares produced by the program is

which is X2, the Pearson chi-square statistic from a maximum likeli-
hood logistic regression program. It follows that the mean residual
sum-of- squares is s2 = X2/(n — p — 1) . The estimates of the standard er-
ror of the estimated coefficients produced by the linear regression pro-
gram are s times the square root of the diagonal elements of the matrix
(X'VX)" . Thus, to obtain the correct values given in equation (2.5) we
need to divide the estimates of the standard error produced by the linear
regression program by s, the square root of the mean square error (or
standard error of the estimate).

The ability to duplicate the maximum likelihood fit in a linear re-
gression package forms the foundation of the suggested method for
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performing best subsets logistic regression. In particular, Hosmer,
Jovanovic, and Lemeshow (1989) show that use of any best subsets lin-
ear regression program with values of z, in equation (4.1) for the de-
pendent variable, case weights vi shown in equation (4.2), and covari-
ates x-, produces for any subset of q variables the approximate coeffi-
cient estimates of Lawless and Singhal (1978). Hence, we may use any
best subsets linear regression program to execute the computations for
best subsets logistic regression.

The subsets of variables selected for "best" models depend on the
criterion chosen for "best." In best subsets linear regression three cri-
teria have primarily been used to select variables. Two of these are
based on the concept of the proportion of the total variation explained
by the model. These are R2, the ratio of the regression sum-of-squares
to the total sum-of-squares, and adjusted R2 (or AR1}, the ratio of the
regression mean squares to the total mean squares. Since the adjusted
R2 is based on mean squares rather than sums-of-squares, it provides a
correction for the number of variables in the model. This is important,
as we must be able to compare models containing different variables
and different numbers of variables. If we use R2, the best model is al-
ways the model containing all p variables, a result that is not very help-
ful. An obvious extension for best subsets logistic regression is to base
the R2 measures, in a manner similar to that shown in Chapter 5, on de-
viance rather than Pearson chi-square. However, we do not recommend
the use of the R2 measures for best subsets logistic regression. Instead,
we prefer to use the third measure used in best subsets linear regression
that was developed by Mallow (1973). This is a measure of predictive
squared error, denoted Cq. This measure is denoted as Cp by other
authors. We use "q" instead of "p" in this text since the letter p refers
to a total number of possible variables while q refers to some subset of
variables.

A summary of the development of the criterion Cq in linear regres-
sion may be found in many texts on this subject, for example Ryan
(1997). Hosmer, Jovanovic, and Lemeshow (1989) show that when best
subsets logistic regression is performed via a best subsets linear regres-
sion package in the manner described previously in this section, Mal-
low's Cq has the same intuitive appeal as it does in linear regression. In
particular they show that for a subset of q of the p variables

v2 1*
„ X 4" A _ / ,\

C* = (g )""'



132 MODEL-BUILDING STRATEGIES AND METHODS

where X2 =]JM(?/-£,•) /[#,(!-7T,)H, the Pearson chi-square statistic

for the model with p variables and A* is the multivariable Wald test sta-
tistic for the hypothesis that the coefficients for the p-q variables not
in the model are equal to zero. Under the assumption that the model fit
is the correct one, the approximate expected values of X2 and A* are
(n-p-l) and p-q respectively. Substitution of these approximate
expected values into the expression for Cq yields Cq =q + l. Hence,
models with Cq near q + l are candidates for a best model. The best

subsets linear regression program selects as best that subset with the
smallest value of Cq.

Use of the best subsets linear regression package should help select,
in the same way its application in linear regression does, a core of q im-
portant covariates from the p possible covariates. At this point, we sug-
gest that further modeling proceed in the manner described for pur-
poseful selection of variables using a logistic regression package. Users
should not be lured into accepting the variables suggested by a best sub-
set strategy without considerable critical evaluation.

We illustrate best subsets selection with the UIS data. The variables
used were those indicated in Table 1.8. History of previous IV drug
use, IVHX, was coded into the same two design variables, IVHX_2 and
IVHX_3, used in previous sections. A logistic regression package was
used to obtain the estimated logistic probabilities for the model con-
taining all p -1 variables. Following the fit of the full model the values
of z and v were created using equations (4.1) and (4.2). A best subsets
linear regression package was used with z as the dependent variable and
v as the case weights. The possible independent variables were the 6
continuous variables plus two design variables for IVHX, for a total of
8. The best subsets linear regression program used did not have a pro-
vision for the creation of design variables from categorical scaled co-
variates so the design variables for IVHX were created prior to the best
subsets analysis.

In Table 4.14 we present the results of the five best models selected
using Ca as the criterion. In addition to the variables selected, we show

the values of Cq, the values of A*, and the values of the likelihood ratio
test, G, for the variables excluded from the model, the corresponding
degrees of freedom and p-values. We note that the test statistics G and
A* have similar values, as expected, since they test the same hypothesis
and have the same asymptotic distribution.
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Table 4.14 Five Best Models Identified Using Mallow's Cq.
Model Covariates, Mallow's Cq1 the Wald Test (A*), and the
Likelihood Ratio Test for the Excluded Covariates, Degrees-of-
Freedom and p-Value
Model

1
2
3
4
5

Model Covariates Cq

AGE, NDRGTX,

AGE, NDRGTX,

AGE, NDRGTX,

AGE, NDRGTX,

AGE, NDRGTX,

IVHX_2, IVHX_3,

IVXH_2, IVHX_3,

IVHX_2,IVHX_3,

IVHX_2, IVHX_3,

IVHX_3, TREAT

TREAT

TREAT, RACE

TREAT, SITE

TREAT, BECK

4,
5,
6,
6
6

.31

.46

.00

.31

.98

A*
1.35
0.47
1.03
1.35
6.13

G

1
0
1
1
6

.34

.47

.01

.34

.34

df

3
2
2
2
4

P

0.72
0.79
0.60
0.51
0.18

Using only the summary statistics, we would select model 1 as the
best model since it has the smallest value of Cq and the Wald and likeli-

hood ratio tests for the excluded variables are not significant. Note that
four of the five models identified as being "best" include AGE,
NDRGTX, the two design variables for IVHX and TREAT. Thus these
variables are important and should be in any model. The best model
contains neither RACE, which is an important clinical variable, nor
SITE, the study design variable. Hence, we recommend adding RACE
and SITE to model 1 and proceed to the next stage of model develop-
ment.

At this point the model is identical to that already presented in Sec-
tion 4.2 where we focused on scale identification of continuous vari-
ables. Once we have finalized the main effects model, we could employ
best subsets selection to decide on possible interactions.

Some programs, for example SAS's PROC LOGISTIC, provide a
best subsets selection of covariates based on the Score test for the vari-
ables in the model. For example, the best two variable model is the one
with the largest Score test among all two variable models. The output
lists the covariates and Score test for a user specified number of best
models of each size. The difficulty one faces when presented with this
output is that the Score test increases with the number of variables in the
model. Hosmer and Lemeshow (1999) show how an approximation to
Mallow's Cq can be obtained from Score test output in a survival time
analysis. A similar approximation can be obtained from Cq for logistic
regression. First, we assume that the Pearson chi-square statistic is equal
to its mean, e.g. X2 ~(n-p-\). Next we assume that the Wald statistic
for the p-q excluded covariates may be approximated by the differ-



134 MODEL-BUILDING STRATEGIES AND METHODS

ence between the values of the Score test for all p covariates and the
Score test for q covariates, namely A* ~Sp -Sq. This results in the fol-
lowing approximation

_ X + / L

The value of S is the Score test for the model containing all p covari-
ates and is obtained from the computer output. The value of S^ is the
Score test for the particular subset of q covariates and its value is also
obtained from the output. The five best models identified using SAS's
Score test procedure in PROC LOGISTIC are shown in Table 4.15.

The best four models in Table 4.15 are the same models obtained
using the best subsets linear regression method shown in Table 4.14.
We note that the approximate values of Cq in Table 4.15 are quite close

to the values in Table 4.14. The fifth model is the one we eventually
selected when we considered clinical and study design criteria in addi-
tion to best subsets. Thus in this example, the approximation to Cq has

yielded a useful rank ordering of the models.
The advantage of the proposed method of best subsets logistic re-

gression is that many more models can be quickly screened than was
possible with the other approaches to variable identification. There is,
however, one potential disadvantage with the best subsets approach: we
must be able to fit the model containing all the possible covariates. In
analyses that include a large number of variables this may not be possi-

Table 4.15 Five Best Models Identified Using the Score
Test Approximation to Mallow's Cq, (5 8= 32.6798)

Model Model Covariates $q Cq

1 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT

2 AGE, NDRGTX, IVXH_2, IVHX_3, TREAT, RACE

3 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT, SITE

4 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT, BECK

5 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT, RACE, SITE

31.1565

32.0446
31.6135
31.1569
32.6795

4.52
5.63
6.07
6.52
7.00
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ble. Numerical problems can occur when we overfit a logistic regres-
sion model. If the model has many variables, we run the risk that the
data are too thin to be able to estimate all the parameters. If the full
model proves to be too rich, then some selective weeding out of obvi-
ously unimportant variables with univariable tests may remedy this
problem. Another approach is to perform the best subsets analysis
using several smaller "full" models. Numerical problems are dis-
cussed in more detail in the next section.

In summary, the ability to use weighted least squares best subsets
linear regression software to identify variables for logistic regression
should be kept in mind as a possible aid to variable selection. As is the
case with any statistical selection method, the clinical basis of all vari-
ables should be addressed before any model is accepted as the final
model.

4.5 NUMERICAL PROBLEMS

In previous chapters we have occasionally mentioned various numeri-
cal problems that can occur when fitting a logistic regression model.
These problems are caused by certain structures in the data and the
lack of appropriate checks in logistic regression software. The goal of
this section is to illustrate these structures in certain simple situations
and illustrate what can happen when the logistic regression model is fit
to such data. The issue here is not one of model correctness or specifi-
cation, but the effect certain data patterns have on the computation of
parameter estimates.

Perhaps the simplest and thus most obvious situation is when we
have a frequency of zero in a contingency table. An example of such
a contingency table is given in Table 4.16. The estimated odds ratios
and log odds ratios using the first level of the covariate as the reference
group are given in the first two rows below the table. The point esti-
mate of the odds ratios for level 3 versus level 1 is infinite since all
subjects at level 3 responded. The results of fitting a logistic regression
model to these data are given in the last two rows. The estimated coef-
ficient in the first column is the intercept coefficient. The particular
package used does not really matter as many, but not all, packages
produce similar output. One program that does identify the problem is
STATA. It provides an error message that x = 3 perfectly predicts the
outcome and the design variable for x = 3 is not included in the fit of
the model. Other programs may or may not provide some sort of er-
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ror message indicating that convergence was not obtained or that the
maximum number of iterations was used. What is rather obvious, and
the tip-off that there is a problem with the model, is the large estimated
coefficient for the second design variable and especially its large esti-
mated standard error.

A common practice to avoid having an undefined point estimate is
to add one-half to each of the cell counts. Adding one-half may allow
us to move forward with the analysis of a single contingency table but
such a simplistic remedy is rarely satisfactory with a more complex
data set.

As a slightly more complex example we consider the stratified 2
by 2 tables shown in Table 4.17. The stratum-specific point estimates
of the odds ratios are provided below each 2 by 2 table. The results of
fitting a series of logistic regression models are provided in Table 4.18.

In the case of the data shown in Table 4.17 we do not encounter
problems until we include the stratum, z, by risk factor, x, interaction
terms, xxz_2 and ;cxz_3 in the model. The addition of the interaction
terms results in a model that is equivalent to fitting a model with a sin-
gle categorical variable with six levels, one for each column in Table
4.17. Thus, in a sense, the problem encountered when we include the
interaction is the same one illustrated in Table 4.16. As was the case
when fitting a model to the data in Table 4.16, the presence of a zero
cell count is manifested by an unbelievably large estimated coefficient
and estimated standard error.

The presence of a zero cell count should be detected during the
univariable screening of the data. Knowing that the zero cell count is
going to cause problems in the modeling stage of the analysis we could
collapse the categories of the variable in a meaningful way to eliminate
it, eliminate the category completely or, if the variable is at least ordinal
scale, treat it as continuous.

The type of zero cell count illustrated in Table 4.17 results from
spreading the data over too many cells. This problem is not likely to
occur until we begin to include interactions in the model. When it does
occur, we should examine the three way contingency table equivalent
to the one shown in Table 4.17. The unstable results prevent us from
determining whether, in fact, the interaction is important. To assess the
interaction we first need to eliminate the zero cell count. One way to
do this is by collapsing categories of the stratification variable. For ex-
ample, in Table 4.17 we might decide that values of z = 2 and z = 3 are
similar enough to pool them. The stratified analysis would then have
two 2 by 2 tables the second of which results from pooling the tables
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Table 4.16 A Contingency Table with a Zero Cell Count and the
Results of Fitting a Logistic Regression Model to This Data

Outcome / x
1
0

Total
s*.

OR

in(dk)

ft
,/s.
SE

1
7
13
20
1
0

-0.62

0.47

2
12
8

20
2.79

1.03

1.03

0.65

3
20
0

20
inf
inf

11.7

34.9

Total
39
21
60

for z = 2 and z = 3. A second approach is to define a new variable
equal to the combination of the stratification variable and the risk fac-
tor and to pool over levels of this variable and model it as a main effect
variable. Using Table 4.17 as an example, we would have a variable
with six levels corresponding to the six columns in the table. We could
collapse levels five and six together. Another pooling strategy would
be to pool levels three and five and four and six. This pooling strategy
is equivalent to collapsing over levels of the stratification variable. The
net effect is the loss of degrees-of-freedom commensurate with the
amount of pooling. Twice the difference in the log-likelihood for the
main effects only model and the model with the modified interaction
term added provides a statistic for the significance of the coefficients
for the modified interaction term.

The fitted models shown in Tables 4.16 and 4.18 resulted in large
estimated coefficients and estimated standard errors. In some exam-
ples we have encountered, the magnitude of the estimated coefficient
was not large enough to suspect a numerical problem; but the esti-

Table 4.17 Stratified 2 by 2 Contingency Tables
with a Zero Cell Count Within One Stratum

Stratum (z)
Outcome / x

1
0

Total
OR

1
1 0
5 2
5 8
10 10

4

2
1 0
10 2
2 6
12 8

15

3
1 0
15 1
0 4
15 5

inf
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Table 4.18 Results of Fitting Logistic
Regression Models to the Data in Table 4.17

Model
Variable

X

z_2
z_3

xxz_2
*xz_3

Constant

Coeff.
2.77
1.19
2.04

-2.32

1
Std. Err.

0.72
0.81
0.89

0.77

Coeff.

1.39
0.29
0.00
1.32

11.54
-1.39

2
Std. Err.

1.01
1.14
1.37
1.51

50.22
0.79

mated standard error always was. Hence, we believe that the best indi-
cator of a numerical problem in logistic regression is the estimated
standard error. In general, any time the estimated standard error of an
estimated coefficient is large relative to the point estimate we should
suspect the presence of one of the data structures described in this sec-
tion.

A second type of numerical problem occurs when a collection of
the covariates completely separates the outcome groups or, in the ter-
minology of discriminant analysis, the covariates discriminate per-
fectly. For example, suppose that the age of every subject with the
outcome present was greater than 50 and the age of all subjects with
the outcome absent was less than 49. Thus, if we know the age of a
subject we know with certainty the value of the outcome variable. In
this situation there is no overlap in the distribution of the covariates
between the two outcome groups. This type of data has been shown by
Bryson and Johnson (1981) to have the property of monotone likeli-
hood. The net result is that the maximum likelihood estimates do not
exist (see Albert and Anderson (1984) and Santner and Duffy (1986)).
In order to have finite maximum likelihood estimates we must have
some overlap in the distribution of the covariates in the model.

A simple example illustrates the problem of complete separation
and the results of fitting logistic regression models to such data. Sup-
pose we have the following 12 pairs of covariate and outcome, (x,y):
(1,0), (2,0), (3,0), (4,0), (5,0), (x6 = 5.5, or 6.0, or 6.05, or 6.1, or 6.2, or
8.0, ;y6 = 0), (6,1), (7,1), (8,1), (9,1), (10,1), (11,1). The results of fitting
logistic regression models when jn6 takes on one of the values 5.5, 6.0,
6.05, 6.1, 6.2, or 8, using SAS version 6.12 are given in Table 4.19.
When we use *6 = 5.5 we have complete separation and all estimated pa-
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Table 4.19 Estimated Slope ( / 3 v ) , Constant, and Estimated

Standard Errors When the Data Have Complete Separation,
Quasicomplete Separation, and Overlap

Estimates / ;c6

ft/\
SE

A,
SE

5.5
15.1

19.0

-86.7

109.4

6.0
7.8

35.4

-47.0

212.0

6.05
4.3

6.1

-26.2

36.7

6.10
3.6

4.2

-22.0

25.4

6.15
3.2

3.3

-19.5

20.3

6.20
2.9

2.8

-17.8

17.3

8.0
1.0

0.5

-6.1

3.6

rameters are huge, since the maximum likelihood estimates do not exist.
SAS provides a warning but at the same time provides the values of the
estimates at the last iteration, leaving the ultimate decision about how to
handle the output to the user. Similar behavior occurs when the value
of x6 = 6.0 is used. SAS notes this fact and again provides estimates.
When overlap is at a single or a few tied values the configuration was
termed by Albert and Anderson as quasicomplete separation. As the
value of jc6 takes on values greater than 6 the overlap becomes greater
and the estimated parameters and standard errors begin to attain more
reasonable values. The sensitivity of the fit to the overlap depends on
the sample size and the range of the covariate. The tip-off that some-
thing is amiss is, as in the case of the zero cell count, the very large esti-
mated coefficients and especially the large estimated standard errors.
Other programs, including STATA, do not provide output when there is
complete or quasi-complete separation, e.g. x6 = 5.5 or x6=6. In the
remaining cases STATA and SAS produce similar results.

The occurrence of complete separation in practice depends on the
sample size, the number of subjects with the outcome present, and the
number of variables included in the model. For example, suppose we
have a sample of 25 subjects and only five have the outcome present.
The chance that the main effects model demonstrates complete separa-
tion increases with the number of variables we include in the model.
Thus, the modeling strategy that includes all variables in the model is
particularly sensitive to complete separation. Albert and Anderson and
Santner and Duffy provide rather complicated diagnostic procedures
for determining whether a set of data displays complete or quasicom-
plete separation. Albert and Anderson recommend that in the absence
of their diagnostic, one look at the estimated standard errors and if these
tend to increase substantially with each iteration of the fit, that one sus-



140 MODEL-BUILDING STRATEGIES AND METHODS

Table 4.20 Data Displaying Near Collinearity
Among the Independent Variables and Constant

Subject
1
2
3
4
5
6
7
8
9
10

*i
0.225
0.487

-1.080
-0.870
-0.580
-0.640

1.614
0.352

-1.025
0.929

x2

0.231
0.489

-1.070
-0.870
-0.570
-0.640

1.619
0.355

-1.018
0.937

*3

1.026
1.022
1.074
1.091
1.095
1.010
1.087
1.095
1.008
1.057

y
0
i
0
0
0
0
0
1
0
1

pect the presence of complete separation. As noted in Chapter 3 the
easiest way to address complete separation is to use some careful uni-
variable analyses. The occurrence of complete separation is not likely
to be of great clinical importance as it is usually a numerical coinci-
dence rather than describing some important clinical phenomenon. It is
a problem we must work around.

As is the case in linear regression, model fitting via logistic regres-
sion is also sensitive to collinearities among the independent variables
in the model. Most software packages have some sort of diagnostic
check, like the tolerance test employed in linear regression. Neverthe-
less it is possible for variables to pass these tests and have the program
run, but yields output that is clearly nonsense. As a simple example,
we fit logistic regression models to the data displayed in Table 4.20.
In the table xl ~W(0,1) and the outcome variable was generated by
comparing a £7(0,1) variate, w, to the true probability

n(x{) = eXl l{\ + eX]) as follows: if u < n(x}) then y = 1, otherwise y = 0.
The notation N(0,l) indicates a random variable following the stan-
dard normal (mean = zero, variance = 1) distribution and U(a,b) indi-
cates a random variable following the uniform distribution on the in-
terval [a,b]. The other variables were generated from x{ and the con-
stant as follows: *2 =*!+£/((), 0.1) and *3 = 1 +£7(0,0.01). Thus, x{

and jc2 are highly correlated and x3 is nearly collinear with the con-
stant term. The results of fitting logistic regression models using SAS
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Table 4.21 Estimated Coefficients and Standard Errors from
Fitting Logistic Regression Models to the Data in Table 4.20

Var.

*i
*2

X,

Cons.

Std.
Coeff Err.

1.4 1.0

-1.0 0.8

Std.
Coeff. Err.

146.4 277.0
-276.6 276.6

0.37 1.4

Std.
Coeff. Err.

2.74 21.1
-1.79 20.0

Std.
Coeff. Err.

143.0 282.2
-141.5 281.8
-3.62 25.0

3.42 26.2

version 6.12 to various subsets of the variables shown in Table 4.20 are
presented in Table 4.21.

The model that includes the highly correlated variables x{ and x2

has both very large estimated slope coefficients and estimated standard
errors. For the model containing jc3 we see that the estimated coeffi-
cients are of reasonable magnitude but the estimated standard errors
are much larger than we would expect. The model containing all vari-
ables is a composite of the results of the other models. In all cases the
tip-off for a problem comes from the aberrantly large estimated stan-
dard errors.

In a more complicated data set, an analysis of the associations
among the covariates using a collinearity analysis similar to that per-
formed in linear regression should be helpful in identifying the de-
pendencies among the covariates. Belsley, Kuh, and Welsch (1980)
discuss a number of methods that are implemented in many linear re-
gression packages. One would normally not employ such an in-depth
investigation of the covariates unless there was evidence of degradation
in the fit similar to that shown in Table 4.21. An alternative is to use
the ridge regression methods proposed by Schaefer (1986).

In general, the numerical problems of a zero cell count, complete
separation, and collinearity, are manifested by extraordinarily large es-
timated standard errors and sometimes by a large estimated coefficient
as well. New users and ones without much computer experience are
especially cautioned to look at their results carefully for evidence of
numerical problems. Consultation with someone more experienced
may be required to ferret out and solve these numeric problems.
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EXERCISES

1. Selection of the scale for continuous covariates is an important
step in any modeling process. The variable systolic blood pres-
sure at admission, SYS, in the ICU study described in Section 1.6
presents a particularly challenging example. Consider the vari-
able vital status (STA) as the outcome variable and SYS as the co-
variate for a univariable logistic regression model. What is the
correct scale for SYS to enter the model? As a second example,
consider a univariable model with heart rate at ICU admission
(HRA) as the covariate. Repeat this exercise of scale identification
for SYS and HRA using a multivariable model containing these
two variables plus three or four other covariates of your choice.

2. Consider the variable level of consciousness at ICU admission
(LOG) as a covariate and vital status (STA) as the outcome vari-
able. Compare the estimates of the odds ratios obtained from the
cross-classification of STA by LOG and the logistic regression of
STA on LOG. Use LOG = 0 as the reference group for both
methods. How well did the logistic regression program deal with
the zero cell? What strategy would you adopt to modeling LOG in
future analyses?

3. Consider the variable vital status (STA) as the outcome variable
and the remainder of the variables in the ICU data set as potential
covariates. Use each of the variable selection methods discussed
in this chapter to find a "best" model. Document thoroughly the
rationale for each step in each process you follow. Compare and
contrast the models resulting from the different approaches to
variable selection. Note that in all cases the analysis should ad-
dress not only identification of main effects but also appropriate
scale for continuous covariates and potential interactions. Display
the results of your final model in a table. Include in the table
point and 95% CI estimates of all relevant odds ratios. Document
the rationale for choosing the final model.

4. Repeat Exercises 1 and 3 for the Low Birthweight data and the
Prostatic Cancer data.



CHAPTER 5

Assessing the Fit of the Model

5.1 INTRODUCTION

We begin our discussion of methods for assessing the fit of an estimated
logistic regression model with the assumption that we are at least
preliminarily satisfied with our efforts at the model building stage. By this
we mean that, to the best of our knowledge, the model contains those
variables (main effects as well as interactions) that should be in the model
and that variables have been entered in the correct functional form. Now
we would like to know how effectively the model we have describes the
outcome variable. This is referred to as its goodness-of-fit.

If we intend to assess the goodness-of-fit of the model, then we
should have some specific ideas about what it means to say that a model
fits. Suppose we denote the observed sample values of the outcome
variable in vector form as y where y' = (yi,y2>y3>--->yn}- We denote the
values predicted by the model, or fitted values, as y where
y'= (y\,y2^y^-->yn)- We conclude that the model fits if (1) summary
measures of the distance between y and y are small and (2) the
contribution of each pair (y/,)',), / = l,2,3,...,n to these summary measures
is unsystematic and is small relative to the error structure of the model.
Thus, a complete assessment of the fitted model involves both the
calculation of summary measures of the distance between y and y, and a
thorough examination of the individual components of these measures.

When the model building stage has been completed, a series of logical
steps may be used to assess the fit of the model. The components of the
proposed approach are (1) computation and evaluation of overall measures
of fit, (2) examination of the individual components of the summary
statistics, often graphically, and (3) examination of other measures of the
difference or distance between the components of y and y.

143
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5.2 SUMMARY MEASURES OF GOODNESS-OF-FIT

We begin with the summary measures of goodness-of-fit, as they are rou-
tinely provided as output with any fitted model and give an overall indica-
tion of the fit of the model. Summary statistics, by nature, may not provide
information about the individual model components. A small value for one
of these statistics does not rule out the possibility of some substantial and
thus interesting deviation from fit for a few subjects. On the other hand, a
large value for one of these statistics is a clear indication of a substantial
problem with the model.

Before discussing specific goodness-of-fit statistics, we must first
consider the effect the fitted model has on the degrees of freedom available
for the assessment of model performance. We use the term covariate pat-
tern to describe a single set of values for the covariates in a model. For
example, in a data set containing values of age, race, sex and weight for
each subject, the combination of these factors may result in as many differ-
ent covariate patterns as there are subjects. On the other hand, if the model
contains only race and sex, each coded at two levels, there are only four
possible covariate patterns. We note that during model development it is
not necessary to be concerned about the number of covariate patterns. The
degrees-of-freedom for tests are based on the difference in the number of
parameters in competing models, not on the number of covariate patterns.
However, the number of covariate patterns may be an issue when the fit of
a model is assessed.

Goodness-of-fit is assessed over the constellation of fitted values de-
termined by the covariates in the model, not the total collection of covari-
ates. For instance, suppose that our fitted model contains p independent
variables, x' = (jc,,*2,.x3,...,;cy.,j, and let / denote the number of distinct

values of x observed. If some subjects have the same value of x then
J<n. We denote the number of subjects with x = x;- by

m-, j = 1,2,3,..., J. It follows that 2^mj ~n- ^et 7/ denote tne number of
positive responses, y = l, among the m- subjects with x = Xj. It follows

that / ,>>,• = n}, the total number of subjects with y-l. The distribution

of the goodness-of-fit statistics is obtained by letting n become large. If
the number of covariate patterns also increases with n then each value of
rrij tends to be small. Distributional results obtained under the condition

that only n becomes large are said to be based on n-asymptotics. If we fix
J < n and let n become large then each value of m; also tends to become
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large. Distributional results based on each m-} becoming large are said to

be based on m-asymptotics. The difference between these asymptotics and
the need to distinguish between them should become clearer as we discuss
summary statistics in greater detail.

Initially, we assume that J~n, as we expect whenever there is at
least one continuous covariate in the model. This is the case most fre-
quently encountered in practice. It also presents the greatest challenge in
developing distributions of goodness-of-fit statistics.

5.2.1 Pearson Chi-Square Statistic and Deviance

In linear regression, summary measures of fit, as well as diagnostics for
casewise effect on the fit, are functions of a residual defined as the differ-
ence between the observed and fitted value (y-y). In logistic regression

there are several possible ways to measure the difference between the ob-
served and fitted values. To emphasize the fact that the fitted values in
logistic regression are calculated for each covariate pattern and depend on
the estimated probability for that covariate pattern, we denote the fitted
value for the jth covariate pattern as j where

1-fV

where g (x; ) is the estimated logit.

We begin by considering two measures of the difference between the
observed and the fitted values: the Pearson residual and the deviance resid-
ual. For a particular covariate pattern the Pearson residual is defined as
follows:

The summary statistic based on these residuals is the Pearson chi-square
statistic
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* \2

(5.2)

The deviance residual is defined as

1/2

where the sign, + or -, is the same as the sign of

ate patterns with ;y • = 0 the deviance residual is

, (5.3)

• For covari-

and the deviance residual when y^ = m-, is

The summary statistic based on the deviance residuals is the deviance

(5.4)
7=1

In a setting where J = n, this is the same quantity shown in equation
(1.10).

The distribution of the statistics X2 and D under the assumption that
the fitted model is correct in all aspects is supposed to be chi-square with
degrees-of-freedom equal to 7 -(/? + !). For the deviance this statement

follows from the fact that D is the likelihood ratio test statistic of a satu-
rated model with / parameters versus the fitted model with p +1 parame-

ters. Similar theory provides the null distribution of X2. The problem is
that when J~n, the distribution is obtained under rc-asymptotics, and
hence the number of parameters is increasing at the same rate as the sam-
ple size. Thus, /?-values calculated for these two statistics when / ~n,
using the %2(J-p-i) distribution, are incorrect.
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One way to avoid the above noted difficulties with the distributions of
X2 and D when J ~ n is to group the data in such a way that m-
asymptotics can be used. To understand the rationale behind the various
grouping strategies that have been proposed, it is helpful to think of X2 as
the Pearson and D as the log-likelihood chi-square statistics that result
from a 2 x J table. The rows of the table correspond to the two values of
the outcome variable, y = 1,0. The J columns correspond to the J possible
covariate patterns. The estimate of the expected value under the hypothe-
sis that the logistic model in question is the correct model for the cell cor-
responding to the y = 1 row and /h column is m •£ • . It follows that the es-

timate of the expected value for the cell corresponding to the y = 0 row

and jth column is nij\\-n-\. The statistics X2 and D are calculated in the

usual manner from this table.
Thinking of the statistics as arising from the 2 x J table gives some

intuitive insight as to why we cannot expect them to follow the
#2(./-/7-l) distribution. When chi-square tests are computed from a

contingency table the p-values are correct under the null hypothesis when
the estimated expected values are "large" in each cell. This condition
holds under m-asymptotics. Although this is an oversimplification of the
situation, it is essentially correct. In the 2x7 table described above the
expected values are always quite small since the number of columns in-
creases as n increases. To avoid this problem we may collapse the col-
umns into a fixed number of groups, g, and then calculate observed and
expected frequencies. By fixing the number of columns, the estimated ex-
pected frequencies become large as n becomes large. Thus, m-asymptotics
hold. The theory required to derive the distribution of the statistics is not
quite so straightforward but the intuitive appeal of thinking in this manner
is most helpful. The relevant distribution theory presented in a series of
papers by Moore (1971), and Moore and Spruill (1975), considers what
happens to chi-square goodness-of-fit tests when the boundaries forming
the cells are functions of random variables.

5.2.2 The Hosmer-Lemeshow Tests

Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) pro-
posed grouping based on the values of the estimated probabilities. Suppose
for sake of discussion, that J = n. In this case we think of the n columns
as corresponding to the n values of the estimated probabilities, with the
first column corresponding to the smallest value, and the nth column to the
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largest value. Two grouping strategies were proposed as follows: (1) col-
lapse the table based on percentiles of the estimated probabilities and (2)
collapse the table based on fixed values of the estimated probability.

With the first method, use of g = 10 groups results in the first group
containing the n( = nl\0 subjects having the smallest estimated probabili-
ties, and the last group containing the n[Q = nl 10 subjects having the larg-
est estimated probabilities. With the second method, use of g = 10 groups
results in cutpoints defined at the values fc/10, k = 1, 2, ..., 9, and the groups

contain all subjects with estimated probabilities between adjacent cut-
points. For example, the first group contains all subjects whose estimated
probability is less than or equal to 0. 1 , while the tenth group contains those
subjects whose estimated probability is greater than 0.9. For the y = 1 row,
estimates of the expected values are obtained by summing the estimated
probabilities over all subjects in a group. For the _y = 0 row, the estimated
expected value is obtained by summing, over all subjects in the group, one
minus the estimated probability. For either grouping strategy, the Hosmer-

*.

Lemeshow goodness-of-fit statistic, C, is obtained by calculating the Pear-
son chi-square statistic from the g x 2 table of observed and estimated ex-

pected frequencies. A formula defining the calculation of C is as follows:

k — n^n,.}- i (5-5)

where rik is the total number of subjects in the &th group, ck denotes the

number of covariate patterns in the fctn decile,

is the number of responses among the ck covariate patterns, and

is the average estimated probability.
Using an extensive set of simulations, Hosmer and Lemeshow (1980)

demonstrated that, when J = n and the fitted logistic regression model is
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A
the correct model, the distribution of the statistic C is well approximated
by the chi-square distribution with g - 2 degrees of freedom, %2(g-2).

While not specifically examined, it is likely that #2(g-2) also approxi-

mates the distribution when J « n.

An alternative to the denominator shown in equation (5.5) is obtained
if we consider ok to be the sum of independent nonidentically distributed
random variables. This suggests that we should standardize the squared
difference between the observed and estimated expected frequency by

7=1

It is easy to show that

7=1 7=1

In a series of simulations Xu (1996) showed that use of

results in a trivial increase in the value of the test statistic. Thus, in prac-
.A

tice we calculate C using equation (5.5).
Additional research by Hosmer, Lemeshow, and Klar (1988) has

shown that the grouping method based on percentiles of the estimated
probabilities is preferable to the one based on fixed cutpoints in the sense
of better adherence to the %2(g-2) distribution, especially when many of

the estimated probabilities are small (i.e., less than 0.2). Thus, unless
A

stated otherwise, C is based on the percentile-type of grouping, usually
with g = 10 groups. These groups are often referred to as the "deciles of
risk." This term comes from health sciences research where the outcome y
- 1 often represents the occurrence of some disease. Most if not all logis-

s*.

tic regression software packages provide the capability to obtain C and its
p-value, usually based on 10 groups. In addition many packages provide
the option to obtain the 10x2 table listing the observed and estimated ex-
pected frequencies in each decile.
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The results of applying the decile of risk grouping strategy to the es-
timated probabilities computed from the model for UIS study in Table 4.9
are shown in Table 5.1. For example, the observed frequency in the drug
free group, (DFREE = I), for the fifth decile of risk is 16. This value is
obtained from the sum of the observed outcomes for the 58 subjects in this
group. In a similar fashion the corresponding estimated expected fre-
quency for this decile is 12.7, which is the sum of the 58 estimated prob-
abilities for these subjects. The observed frequency for the return to drug
use group, (DFREE = 0), is 58-16 = 42, and the estimated expected fre-
quency is 58-12.7 = 45.3.

The value of the Hosmer-Lemeshow goodness-of-fit statistic com-
puted from the frequencies in Table 5.1 is C = 4.39 and the corresponding
/7-value computed from the chi-square distribution with 8 degrees of free-
dom is 0.820. This indicates that the model seems to fit quite well. A
comparison of the observed and expected frequencies in each of the 20
cells in Table 5.1 shows close agreement within each decile of risk.

Because the distribution of C depends on m-asymptotics, the appro-
priateness of the p-value depends on the validity of the assumption that the
estimated expected frequencies are large. Examining Table 5.1 we see that
only one of the estimated expected frequencies is less than five. In gen-
eral, our point of view is a bit more liberal than those who maintain that
with tables of this size (about 20 cells), all expected frequencies must be

Table 5.1 Observed (Obs) and Estimated Expected
(Exp) Frequencies Within Each Decile of Risk,
Defined by Fitted Value (Prob.) for DFREE = 1 and
DFREE = 0 Using the Fitted Logistic Regression
Model in Table 4.9

Decile
1
2
3
4
5
6
7
8
9
10

Prob.
0.094
0.126
0.163
0.204
0.234
0.279
0.324
0.376
0.459
0.728

DFREE
Obs
4
5
8
11
16
11
18
24
23
27

= 1
Exp
4.1
6.2
8.5
10.4
12.7
14.5
17.5
19.8
23.9
29.3

DFREE = 0
Obs Exp
54
52
50
46
42
46
40
33
35
30

53.9
50.8
49.5
46.6
45.3
42.5
40.5
37.2
34.1
27.7

Total
58
57
58
57
58
57
58
57
58
57
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greater than 5. In this case, we feel that there is reason to believe that the
calculation of the /?-value is accurate enough to support the hypothesis that
the model fits. If one is concerned about the magnitude of the expected
frequencies, selected adjacent rows of the table may be combined to in-
crease the size of the expected frequencies while, at the same time, reduc-
ing the number of degrees-of-freedom.

.A

A few additional comments about the calculation of C are needed.
When the number of covariate patterns is less than n, we have the possibil-
ity that one or more of the empirical deciles will occur at a pattern with

yv

mj,> 1. If this happens then the value of C will depend, to some extent,

on how these ties are assigned to deciles. The results presented in Table 5.1
were obtained using STATA's Ifit command where ties are assigned to the
same decile in such as way as to make the column totals as close to n/\Q as
possible. Other statistical packages may use different strategies to handle
ties. For example, fitting the same model in SAS version 6.12 yielded the

A.

same results shown in Table 4.9 but with C = 2.873 and the corresponding
p-value is 0.9421. The use of different methods to handle ties by different
packages is not likely to be an issue unless the number of covariate pat-
terns is so small that assigning all tied values to one decile results in a huge
imbalance in decile size, or worse, considerably fewer than 10 groups. In

.A

this case the computed value of C may be quite different from one pack-
age to the next. In addition, when too few groups are used to calculate C,
we run the risk that we will not have the sensitivity needed to distinguish
observed from expected frequencies. It has been our experience that when

,A

C is calculated from fewer than 6 groups it will almost always indicate
that the model fits.

A

The advantage of a summary goodness-of-fit statistic like C is that it
provides a single, easily interpretable value that can be used to assess fit.
The great disadvantage is that in the process of grouping we may miss an
important deviation from fit due to a small number of individual data
points. Hence we advocate that, before finally accepting that a model fits,
an analysis of the individual residuals and relevant diagnostic statistics be
performed. These methods are presented in the next section.

Our experience is that a table such as the one presented in Table 5.1
contains valuable descriptive information for assessing the adequacy of the
fitted model over the deciles of risk. Comparison of observed to expected
frequencies within each cell may indicate regions where the model does
not perform satisfactorily.

Other grouping strategies have been proposed which lead to statistics
similar to C. Tsiatis (1980) suggested a goodness-of-fit statistic based on
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an explicit partition of the covariate space into g regions. A categorical
variable with g levels is introduced into the model corresponding to the g
groups. The goodness-of-fit test is the Score test of the coefficients for the
new grouping variable. Tsiatis showed that the Score test for this variable
is based on a comparison of the observed frequency to estimated expected
frequency within each of the g groups. The test has g-1 degrees of free-
dom. This test can be easily carried out in the EGRET and SAS packages.
An alternative in packages not having the capability to perform the Score
test is to use the maximum partial likelihood test for the coefficients for the
g — l design variables. When it is difficult or unclear how to partition the
covariate space into meaningful groups, then an alternative to explicit par-
titioning is to use deciles of risk. Application of the maximum likelihood
test to assess the fit of the model in Table 4.9 using the deciles of risk
shown in Table 5.1 yields a value of 4.89 which, with 9 degrees of free-
dom, gives a p-value of 0.843. Hence, this test also supports the fit of the
model. One disadvantage of using the maximum partial likelihood or
Score test is that actual values of the observed and estimated expected fre-
quencies need not be obtained. These quantities may be useful, when there
is evidence of lack of fit, in indicating those deciles where it is occurring.

The limitation of using the Pearson chi-square statistic with
7-(/? + !) degrees of freedom has generated quite a bit of work on good-
ness-of-fit tests in recent years. Osius and Rojek (1992) extend work by
McCullagh (1985a, 1985b, and 1986) and derive an easily computed large
sample normal approximation to the distribution of the Pearson chi-square
statistic. Su and Wei (1991) propose a test based on cumulative sums of
residuals whose p-value must be determined by complicated and time con-
suming simulations. Le Cessie and van Houwelingen (1991 and 1995)
propose tests based on sums of squares of smoothed residuals whose p-
values may be evaluated using either a normal approximation or an easily
computed scaled chi-square distribution. Stukel (1988) proposes a two
degree of freedom test to ascertain whether a generalized logistic model is
better than a standard model fit to the data. Her test is similar to, but more
easily computed than, the test proposed by Brown (1982), although the
Brown test is automatically computed in BMDP program LR. Hosmer,
Hosmer, le Cessie, and Lemeshow (1997) the distributional properties of
these tests examine via simulations. They recommend that overall assess-
ment of fit be examined using a combination of tests: the Hosmer-
Lemeshow decile of risks test, the Osius and Rojek normal approximation
to the distribution of the Pearson chi-square statistic, and Stukel's test.
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The large sample normal approximation to the distribution of the
Pearson chi-square statistic derived by Osius and Rojek (1992) may be
easily computed in any package that has the option to save the fitted values
from the logistic regression model and do a weighted linear regression.
The essential steps in the procedure when we have J covariate patterns are
as follows:

1. Save the fitted values from the model, denoted as Ttj;, j = 1,2,3,..., J.

2. Create the variable vy = m-fi^ (l - nj.), j = 1,2,3,..., J.

3. Create the variable c = —,j = 1,2,3,..., 7.
vj

4. Compute the Pearson chi-square statistic shown in (5.2)> namely,

5. Perform a weighted linear regression of c, defined in step 3, on x, the
model covariates, using weights v, defined in step 2. Note that the
sample size for this regression is 7, the number of covariate patterns.
Let RSS denote the residual sum-of-squares from this regression.
Some packages, for example STATA, scale the weights to sum to 1.0.
In this case the reported residual sum-of-squares must be multiplied by
the mean of the weights to obtain the correct RSS.

6. Compute the correction factor for the variance, denoted for conven-
ience as A , as follows:

7. Compute the standardized statistic

-JA + RSS
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8. Compute a two-tailed p-value using the standard normal distribution.

Application of the eight-step procedure using the model in Table 4.9
yields X2 =511.781, RSS =189.658, A = 49.667 and

511781-(521-10-1)
V49.667 +189.658

The two-tailed p-value is p = 0.908. Again, we cannot reject the null hy-
pothesis that the models fits.

To carry out the above analysis it is necessary to form an aggregated
data set. This is easy to do in some software packages and impossible in
others. In these latter packages we suggest using a second package to cre-
ate the aggregated data set and then returning to the logistic regression
package with this new data set. The essential steps in any package are: (1)
Define as aggregation variables the main effects in the model. This defines
the covariate patterns. (2) Calculate the sum of the outcome variable and
the number of terms in the sum over the aggregation variables. This pro-
duces yj and m- for each covariate pattern. (3) Output a new data set

containing the values of the aggregation variables, covariate patterns, and
the two calculated variables, y-} and m-.

Weesie (1998) has written a STATA program implementing a method
proposed by Windmeijer (1990) for computing the significance of the
Pearson chi-square statistic using the standard normal distribution. The
approach is similar to the above eight-step procedure but is only appropri-
ate in settings when there are n covariate patterns. Thus it is less general
than the above method.

Windmeijer (1990) points out that both the Pearson chi-square and the
estimator of its variance used to form z in step 7 are quite sensitive to large
or small estimated probabilities. Both values are inflated. He suggests that
subjects with very small or large fitted values, near 0 or 1, be excluded
when using the Pearson chi-square statistic. The default exclusion criteria
in Weesie's STATA program are £<1.0xlO~5 or 7T>(l-1.0xlO~5). In

general we think this is good advice but urge considerable caution and
complete honesty in reporting what was done so as to avoid possible criti-
cism that the data have been tinkered with in order to obtain a good fitting
model.

Stukel (1988) proposes a two degree-of-freedom test that determines
whether two parameters in a generalized logistic model are equal to zero.
Briefly, the two additional parameters allow the tails of the logistic regres-
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sion model (i.e., the small and large probabilities) to be either heav-
ier/longer or lighter/shorter than the standard logistic regression model.
This test is not a goodness-of-fit test since it does not compare observed
and fitted values. However it does provide a test of the basic logistic re-
gression model assumption and in that sense we feel it is a useful adjunct
to the Hosmer-Lemeshow and Osius-Rojek goodness-of-fit tests. The test
has not been implemented in any package; but it can be easily obtained
from the following procedure:

1. Save the fitted values from the model, denoted as 7T,,, j = 1,2,3,..., J.

2. Compute the estimated logit

( \
Y^r- =x;.p, 7 = 1,2,3...,y.

3. Compute two new covariates zly =0.5xg? xl^ >0.5j and z2j =

-0.5 x g;
2 x I(TT, < 0.5), ; = l,2,3,...,y, where l(arg) = l if arg is true

and zero if arg is false. Note that in a setting when all the fitted values
are either less than or greater than 0.5 only one variable is created.

4. Perform the Score test for the addition z, and/or z2
 to tne model. If a

package does not perform the Score test then the partial likelihood ra-
tio test can be used.

Application of the four-step procedure to the fitted model in Table 4.9
yields a value for the partial likelihood ratio test of 3.95 which, with two
degrees of freedom, yields p- 0.139. Again we cannot reject the hy-
pothesis that the logistic regression model is the correct model.

As we have mentioned at various points in this section, a complete
assessment of fit is a multi-faceted investigation involving summary tests
and measures as well as diagnostic statistics. This is especially important
to keep in mind when using overall goodness-of-fit tests. The desired out-
come for most investigators is the decision not to reject the null hypothesis
that the model fits. With this decision one is subject to the possibility of
the Type II error and hence the power of the test becomes an issue. The
simulation results reported in Hosmer, Hosmer, le Cessie and Lemeshow
(1997) indicate that none of the overall goodness-of-fit tests is especially
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powerful for small to moderate sample sizes n<400. One should keep
this firmly in mind when using goodness-of-fit tests.

Before we discuss diagnostic statistics we present a few other meas-
ures of model performance that are often useful supplements to the overall
tests of fit just discussed.

5.2.3 Classification Tables

An intuitively appealing way to summarize the results of a fitted logistic
regression model is via a classification table. This table is the result of
cross-classifying the outcome variable, y, with a dichotomous variable
whose values are derived from the estimated logistic probabilities.

To obtain the derived dichotomous variable we must define a cut-
point, c, and compare each estimated probability to c. If the estimated
probability exceeds c then we let the derived variable be equal to 1; other-
wise it is equal to 0. The most commonly used value for c is 0.5. The ap-
peal of this type of approach to model assessment comes from the close
relationship of logistic regression to discriminant analysis when the distri-
bution of the covariates is multivariate normal within the two outcome
groups. However, it is not limited to this model (e.g., see Efron (1975)).

In this approach, estimated probabilities are used to predict group
membership. Presumably, if the model predicts group membership accu-
rately according to some criterion, then this is thought to provide evidence
that the model fits. Unfortunately, this may or may not be the case. For
example, it is easy to construct a situation where the logistic regression
model is in fact the correct model and thus fits, but classification is poor.
Suppose that P(Y = 1) = 0, and that X ~ #(0,1) in the group with Y = 0 and
X ~ N(n,l) in the group with 7=1 . In this discriminant analysis model
the slope coefficient for the logistic regression model is (see equation
(1.23)) /?, = // and the intercept is (see equation (1.22))

JL
>4)J

The probability of misclassification, PMC, may be shown to be
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Table 5.2 Classification Table Based on the Logistic Regression Model in
Table 4.9 Using a Cutpoint of 0.5

Classified

DFREE = 1
DFREE = 0
Total

Observed
DFREE = 1
Drug Free

16
131
147

DFREE = 0
Returned to Drug Use

11
417
428

Total

27
548
575

Sensitivity = 16/147=10.9%; Specificity=417/428=97.4%

PMC =

M.)< •In

where O is the cumulative distribution function of the N(0,l) distribution.
Thus, the expected error rate is a function of the magnitude of the slope,
not necessarily of the fit of the model. Accurate or inaccurate classifica-
tion does not address our criteria for goodness-of-fit: that the distances
between observed and expected values be unsystematic, and within the
variation of the model. However, the classification table may be a useful
adjunct to other measures based more directly on residuals.

The results of classifying the observations of the UIS using the fitted
model given in Table 4.9 are presented in Table 5.2. The classification
table shown in Table 5.2 is fairly typical of those seen in many logistic re-
gression applications. The overall rate of correct classification is estimated
as 75.3% = 100[(16 + 417)/575]%, with 97.4% (417/428) of the drug free
group (specificity) and only 10.9% (16/147) of the returned to drug use
group (sensitivity) being correctly classified. Classification is sensitive to
the relative sizes of the two component groups and always favors classifi-
cation into the larger group, a fact that is also independent of the fit of the
model. This may be seen by considering the expression for PMC as a
function of 0,. The disadvantage of using PMC as a criterion is that it re-
duces a probabilistic model where outcome is measured on a continuum, to
a dichotomous model where predicted outcome is binary. For practical
purposes there is little difference between the values of n- 0.48 and n-
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0.52, yet use of a 0.5 cutpoint would establish these two individuals as
markedly different.

An important reason why measures derived from a 2x2 classifica-
tion table (such as sensitivity and specificity) should not be used as meas-
ures of model performance is that they depend heavily on the distribution
of the probabilities in the sample. Thus, if two models are being com-
pared, differences between them with respect to sensitivity and specificity
may depend entirely on "patient mix" rather than on the superiority of one
model over another.

In the discussion that follows we must keep in mind the meaning of
probability which is that, among n subjects, each having the same prob-
ability of the outcome of interest, ft, the number who are expected to de-
velop the outcome is nn and the number expected not to develop the out-
come is n(l-n). (This logic formed the basis of the discussion in Section
5.2.2 on goodness-of-fit testing.) Suppose that 0.50 was the cutpoint being
used for classification purposes and suppose that 100 subjects had a prob-
ability n = 0.51. All of these subjects would be predicted to have the out-
come but, assuming the model is well calibrated, 51 of the subjects would
actually develop the outcome whereas 49 would be expected not to de-
velop the outcome. Thus 49 of the 100 patients would be misclassified.

Consider again the 2x2 classification table from the UIS presented
in Table 5.2. An examination of the estimated probabilities of return to
drug use in the two classification groups reveals that among the 27 subjects
predicted to be drug free, probabilities ranged from 0.503 to 0.728, with a
mean of 0.553. Among the 548 subjects predicted to return to drug use,
probabilities ranged from 0.029 to 0.498, with a mean of 0.241. Clearly,
because so many of the subjects in this study have probabilities close to the
cutpoint we expect a considerable amount of misclassification. In Table
5.2 we see that 417 of the 548 subjects predicted to return to drug use actu-
ally did returned to drug use whereas 11 of the 27 subjects predicted to be
drug free were misclassified. Thus, of the total 147 subjects who were ac-
tually drug free, only 16 of them were correctly predicted (i.e., sensitivity =
16/147 = 10.9%).

Suppose now that we keep the prediction unchanged for each subject
but alter the distribution of probabilities among the subjects predicted to
return to drug use and among those predicted not to return to drug use.
The rule we use is:

if n < 0.50, then let n = 0.05

and if ft > 0.50, then let n - 0.95.
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Table 5.3 Classification Table Based on the Logistic Regression Model in
Table 4.9 Using a Cutpoint of 0.5, but All Probabilities n < 0.50 Are
Replaced with 7T = 0.05 and All Probabilities 7T>0.50 Are Replaced with
n = 0.95

Classified

DFREE = 1
DFREE = 0
Total

Observed
DFREE = 1
Drug Free

26
27
53

DFREE = 0
Returned to Drug Use

1
521
522

Total

27
548
575

Sensitivity = 26/53=49.1%; Specificity=521/522=99.8%

Clearly, this modification would reflect a population that was very polar-
ized with respect to their likelihood of remaining drug free. If the model
was well calibrated (i.e., probabilities reflecting the true outcome experi-
ence in the data), then only 5% of those predicted to return to drug use
would actually be misclassified and, similarly, only 5% of those predicted
not to return to drug use would be misclassified. The resulting 2x2 table
would be as presented in Table 5.3. Note that both the sensitivity and
specificity are considerably greater than they were for the actual population
seen in Table 5.2, where there was a wide range of probabilities. The rea-
son for the sensitivity being so low even in this highly polarized population
is that there were relatively few subjects whose probabilities of remaining
drug free were above 0.50.

Now consider a second hypothetical population where

if n < 0.50, then let n = 0.45

and if n > 0.50, then let n - 0.55.

This homogenous population is one where a great deal of misclassification
would be expected. Assuming the probabilities accurately reflect the out-
come experience in these data, the 2x2 table would be as presented in
Table 5.4. Note that the sensitivity and specificity are much worse than
was the case with the actual, heterogeneous, population.

For these reasons, one cannot compare models on the basis of meas-
ures derived from 2x2 classification tables since these measures are com-
pletely confounded by the distribution of probabilities in the samples upon
which they are based. The same model, evaluated in two populations,
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Table 5.4 Classification Table Based on the Logistic Regression Model in
Table 4.9 Using a Cutpoint of 0.5, but All Probabilities n < 0.50 Are
Replaced with n - 0.45 and All Probabilities n > 0.50 are Replaced with
n = 0.55

Classified

DFREE = 1
DFREE = 0
Total

Observed
DFREE = 1
Drug Free

15
301
316

DFREE = 0
Returned to Drug Use

12
247
259

Total

27
548
575

Sensitivity = 15/316=4.7%; Specificity=247/259=95.4%

could give very different impressions of performance if sensitivity or
specificity was used as the measure of performance.

In summary, the classification table is most appropriate when classifi-
cation is a stated goal of the analysis; otherwise it should only supplement
more rigorous methods of assessment of fit.

5.2.4 Area Under the ROC Curve

Sensitivity and specificity rely on a single cutpoint to classify a test result
as positive. A more complete description of classification accuracy is
given by the area under the ROC (Receiver Operating Characteristic)
curve. This curve, originating from signal detection theory, shows how the
receiver operates the existence of signal in the presence of noise. It plots
the probability of detecting true signal (sensitivity) and false signal (1 -
specificity) for an entire range of possible cutpoints.

The area under the ROC curve, which ranges from zero to one, pro-
vides a measure of the model's ability to discriminate between those sub-
jects who experience the outcome of interest versus those who do not. As
an example, consider the model for estimating the probability that a subject
will remain drug free as given in Table 4.9. Suppose that we were inter-
ested in predicting the outcome for each patient. One rule we might try is
the one shown in Table 5.2, where we predict the subject will remain drug
free if Pr(;y = l)>0.50, and predict the subject will return to drug use if
Pr(y = l)<0.50. There are some statistical benefits associated with using

0.5 but we could consider what happens when we use other cutpoints. For
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Table 5.5 Classification Table Based on the Logistic Regression Model in
Table 4.9 Using a Cutpoint of 0.6

Classified

DFREE = 1
DFREE = 0
Total

Observed
DFREE = 1
Drug Free

5
142
147

DFREE = 0
Returned to Drug Use

0
428
428

Total

5
570
575

Sensitivity = 5/147=3.4%; Specificity=428/428=100%

example, suppose that we used a cutpoint of 0.6 instead. This would result
in the classification table shown in Table 5.5, where the sensitivity is only
3.4% but the specificity is 100%. In fact, the same can be done for any
possible choice of cutpoint. Table 5.6 summarizes the results of choosing
all possible cutpoints between 0.05 and 0.60 in increments of 0.05.

If our objective was to choose an optimal cutpoint for the purposes of
classification, one might select a cutpoint that maximizes both sensitivity
and specificity. This choice is facilitated through a graph such as the one
shown in Figure 5.1 where we see that an "optimal" choice for a cutpoint
might be 0.26 as that is approximately where the sensitivity and specificity
curves cross.

Table 5.6 Summary of Sensitivity, Specificity, and 1-Specificity for
Classification Tables Based on the Logistic Regression Model in Table
4.9 using a Cutpoint of 0.05 to 0.60 in Increments of 0.05

Cutpoint
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Sensitivity
99.32%
95.92%
90.48%
81.63%
65.99%
57.14%
40.14%
29.25%
18.37%
10.88%
5.44%
3.40%

Specificity
2.57%

15.19%
31.78%
46.26%
61.21%
72.20%
82.01%
87.38%
92.06%
97.43%
99.30%

100.00%

1 -Specificity
97.43%
84.81%
68.22%
53.74%
38.79%
27.80%
17.99%
12.62%
7.94%
2.57%
0.70%
0.00%
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Figure 5.1 Plot of sensitivity and specificity versus all possible cutpoints in
the UIS.

A plot of sensitivity versus 1 - specificity over all possible cutpoints
is shown in Figure 5.2. The curve generated by these points is called the
ROC Curve and the area under the curve provides a measure of discrimi-
nation which is the likelihood that a subject who remains drug free will
have a higher Pr()> = l)than a subject who returns to drug use. The area

under the ROC Curve in Figure 5.2 is 0.6989.
As a general rule:

this suggests no discrimination (i.e., we
might as well flip a coin)
this is considered acceptable discrimination
this is considered excellent discrimination
this is considered outstanding discrimination.

In practice it is extremely unusual to observe areas under the ROC Curve
greater than 0.9. In fact, as we noted in Chapter 4, Section 5, when there is
complete separation it is impossible to estimate the coefficients of a logis-
tic regression model, yet nearly complete separation would be required for
the area under the ROC Curve to be >90%.

We note here that a poorly fitting model (i.e., poorly calibrated as as-
sessed by the goodness-of-fit measures presented in section 5.2.2) may still

If ROC = 0.5:

If 0.7 < ROC< 0.8:
If O.S<ROC<0.9:
If ROC > 0.9:
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Figure 5.2 Plot of sensitivity versus 1-specificity for all possible
cutpoints in the UIS. The resulting curve is called the ROC Curve.

have good discrimination. For example, if one added 0.25 to every prob-
ability in a good fitting logistic model with good ability to discriminate, the
new model would be poorly calibrated whereas the discrimination would
not be affected at all. We believe that model performance should be as-
sessed by considering both calibration and discrimination.

Another perhaps more intuitive way to understand the meaning of the
area under the ROC Curve is as follows: recall that we let n\ denote the
number of subjects with y = 1 and n0 denote the number of subjects with
y = 0. We then create n{ xn0 pairs: each subject with y = 1 is paired with
each subject with ;y = 0. Of these n} Xn0 pairs, we determine the propor-
tion of the time that the subject with y = I had the higher of the two prob-
abilities. This proportion may be shown to be equal to the area under the
ROC Curve. For example, in the UIS, there were 575 subjects. Of these,
147 remained drug free while 428 did not. A total of 147 x 428 = 62,916
comparisons are made and we count the number of times that the probabil-
ity of remaining drug free is higher for the subject that did remain drug free
than for the subject who did not. (When the probability is the same for
both subjects we add 1/2 to the count.) For these data the count of the
number of times that the subject with y = 1 had a higher probability than
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the subject with y = 0 was 43,972.5. (The reader may recognize that this
count is the Mann-Whitney U statistic for these data.) The ratio
43,972.5 762,916 = .6989 is the area under the ROC curve, the same
value as we obtained before.

5.2.5 Other Summary Measures

For sake of completeness we present a short discussion of R2 measures
that have been proposed for use with logistic regression models. In gen-
eral, these measures are based on various comparisons of the predicted
values from the fitted model to those from model(O), the no data or inter-
cept only model and, as a result, do not assess goodness-of-fit. We think
that a true measure of fit is one based strictly on a comparison of observed
to predicted values from the fitted model. However there may be settings
where the R2 measures can provide useful statistics for comparing com-
peting models fit to the same set of data. Mittlbock and Schemper (1996)
study the properties of 12 different measures using the criteria: (1) the
measure has an easily understood interpretation (2) the squared measure
can attain a lower bound of 0 and an upper bound of 1 and (3) the measure
is consistent with the character of logistic regression (i.e., not being
changed by a linear transformation of model covariates). They recommend
two for routine use: the squared Pearson correlation coefficient of observed
outcome with the predicted probability and a linear regression-like sum-of-
squares R2. All other measures, including some popular likelihood-based
R2 statistics are judged to be inadequate on at least one of their criteria.

In a setting with n covariate patterns the squared Pearson correlation
coefficient is

-i2

X

(5.6)

where y — n — n^n. The linear regression-like measure is
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M n (5.7)

The case of J < n covariate patterns was not considered by Mittlbock and
Schemper (1996). However, the extensions of the two measures to this
setting are

-|2

7=1

x

(5.8)

and

(5.9)

Using the fitted model in Table 4.9 and evaluating the squared Pearson
correlation coefficient defined in (5.6), we obtain r2 =0.0946. The value
of the linear regression like sum-of-squares measure from (5.7) is

R*s =1-(99.061/109.4168) = 0.0946.

The fitted model has 521 covariate patterns. Evaluating the covariate pat-
tern version of the Pearson correlation coefficient in (5.8) yields
rc

2 = 0.3564. The increase from the value of 0.0946 in the J = n case is
due to increased range of y- (0-2) versus y( (0-1) in the values being cor-

related. The sum-of-squares measure is R2
SC =1 -(94.261/104.696)

- 0.0997.
We obtain another version of R2

S when we use log-likelihoods in
place of sums-of-squares. Mittlbock and Schemper (1996) do not recom-
mend it for routine use, as it is not as intuitively easy to explain. However
the measure is calculated in a number of packages under various names
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(e.g., pseudo R2 in STATA). If we let L0 and LP denote the log-
likelihoods for models containing only the intercept and the model con-
taining the intercept plus the p covariates respectively, then the log likeli-
hood-based R2 is

(510)

The maximum value for R^ is obtained when we fit the saturated model.

If J = n then Ls = 0 and we see that R£ is equal to 1 .0. However, if J < n
then the maximum is less than 1 .0. A modification of the statistic that can
attain 1.0 in the J < n case is

- ,

The value of the log-likelihood from the saturated model, Ls, may be
easily obtained from the deviance for the model with p covariates and its
log-likelihood is computed as

LS = LP+0.5D.

Hence, it would seem prudent to calculate Ls whenever J < n and to use

*&•
As an example, we evaluate (5.10) using the fitted model in Table 4.9

and, assuming / = 575, we obtain

R2 = l -298.981 =QQS53
L -326.864

In order to evaluate (5.11) we need the value of Ls using J = 521 covari-
ate patterns. The value of the deviance from (5.2) is D = 530.74 and from
the above expression we obtain

Ls = (-298.981) + 0.5 x (530.74) = -33.611

and

[(-326.864)-(-298.981)]

" [(-326.864)- (-33.611)]
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All the various R2 values for this example are low when compared to
R1 values typically encountered with good linear regression models. Un-
fortunately low R2 values in logistic regression are the norm and this pre-
sents a problem when reporting their values to an audience accustomed to
seeing linear regression values. As we demonstrate throughout this chap-
ter, the fitted model in Table 4.9 is a good model (based on goodness-of-fit
and discrimination). Thus we do not recommend routine publishing of R2

values with results from fitted logistic regression models. However, they
may be helpful in the model building stage as a statistic to evaluate com-
peting models.

5.3 Logistic Regression Diagnostics

The summary statistics based on the Pearson chi-square residuals described
in the previous section provide a single number that summarizes the
agreement between observed and fitted values. The advantage (as well as
the disadvantage) of these statistics is that a single number is used to sum-
marize considerable information. Therefore, before concluding that the
model "fits", it is crucial that other measures be examined to see if fit is
supported over the entire set of covariate patterns. This is accomplished
through a series of specialized measures falling under the general heading
of regression diagnostics. We assume that the reader has had some experi-
ence with diagnostics for linear regression. For a brief introduction to lin-
ear regression diagnostics see Kleinbaum, Kupper, Muller and Nizam
(1998). A more detailed presentation may be found in Cook and Weisberg
(1982) and Belsley, Kuh, and Welsch (1980). Pregibon (1981) provided
the theoretical work that extended linear regression diagnostics to logistic
regression. Since that key paper, work has focused on refining the use of
logistic regression diagnostics in assessing goodness-of-fit. We begin by
briefly describing logistic regression diagnostics. In this development we
assume that the fitted model contains p covariates and that they form J co-
variate patterns. Deriving the diagnostic statistics requires a higher
mathematical level than most of the other material in this text. However,
an understanding of the mathematical development is not required for the
effective application of the diagnostics in practice. Thus, less sophisticated
mathematical readers may wish to skip to Chapter 5, Section 4 where the
discussion of the calculations and uses of the diagnostics begins.

The key quantities for logistic regression diagnostics, as in linear re-
gression, are the components of the "residual sum-of-squares." In linear
regression a key assumption is that the error variance does not depend on
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the conditional mean, £| F; x A However, in logistic regression we have

binomial errors and, as a result, the error variance is a function of the con-
ditional mean:

Thus, we begin with residuals as defined in (5.1) and (5.3) which have
been "divided" by estimates of their standard errors; this may not be en-
tirely obvious in the case of the deviance residual. Let r- and d- denote

the values of the expressions given in equation (5.1) and (5.3), respec-
tively, for covariate pattern x;. Since each residual has been divided by an

approximate estimate of its standard error, we expect that if the logistic
regression model is correct these quantities have a mean approximately
equal to zero and a variance approximately equal to 1. We discuss their
distribution shortly.

In addition to the residuals for each covariate pattern, other quantities
central to the formation and interpretation of linear regression diagnostics
are the "hat" matrix and the leverage values derived from it. In linear re-
gression the hat matrix is the matrix that provides the fitted values as the
projection of the outcome variable into the covariate space. Let X denote
the Jx(p + \] matrix containing the values for all J covariate patterns

formed from the observed values of the p covariates, with the first column
being one to reflect the presence of an intercept in the model. The matrix
X is often called the design matrix. In linear regression the hat matrix is
H = X(X'X) X' ; for example, y = H y . The linear regression residuals,
(y ~ y) ' expressed in terms of the hat matrix are (I - H )y where I is the
/ x J identity matrix. Using weighted least squares linear regression as a
model, Pregibon (1981) derived a linear approximation to the fitted values,
which yields a hat matrix for logistic regression. This matrix is

H = V1/2X(X /VX)~1X /V1/2
( (5.12)

where V is a J xj diagonal matrix with general element
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In linear regression the diagonal elements of the hat matrix are called
the leverage values and are proportional to the distance from \. to the

mean of the data. This concept of distance to the mean is important in lin-
ear regression, as points that are far from the mean may have considerable
influence on the values of the estimated parameters. The extension of the
concept of leverage to logistic regression requires additional discussion
and clarification.

Let the quantity h- denote the /h diagonal element of the matrix H

defined in equation (5.12). It may be shown that

x'j = vj xbj , (5.13)

where

and x'j = \ l , x ] j , x 2 j , . . . x l ) j j is the vector of covariate values defining the^'th

covariate pattern. The sum of the diagonal elements of H is, as is the case
in linear regression, V h} •, = (p + l), the number of parameters in the

model. In linear regression the dimension of the hat matrix is usually n X n
and thus ignores any common covariate patterns in the data. With this
formulation, any diagonal element in the hat matrix has an upper bound of
\/k where k is the number of subjects with the same covariate pattern. If
we formulate the hat matrix for logistic regression as an n x n matrix then
each diagonal element is bounded from above by l/ra; , where m-} is the

total number of subjects with the same covariate pattern. When the hat
matrix is based upon data grouped by covariate patterns, the upper bound
for any diagonal element is 1 .

It is important to know whether the statistical package being used cal-
culates the diagnostic statistics by covariate pattern. For example,
STATA's logistic command uses individual subject data to fit models.
Following estimation it computes all diagnostic statistics by covariate pat-
tern but retains the size of the original data set. Thus all subjects in a par-
ticular covariate pattern have the same covariate values, fitted value and
diagnostic statistics, but each subject has an individual outcome. On the
other hand, SAS's logistic procedure computes diagnostic statistics based
on the data structure in its model statement. If one assumes that there are n
covariate patterns (and the outcome is either 0 or 1) then diagnostic statis-
tics are based on individual subjects. However, if the data have been pre-
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viously collapsed or grouped into covariate patterns and binomial trials
input (y^fnij) is used, then diagnostic statistics are by covariate pattern. In

general, we recommend that diagnostic statistics be computed taking into
account covariate patterns. This is especially important when the number
of covariate patterns, J, is much smaller than n, or if some values of my are

larger than 5. For example, in the final model for the UIS data shown in
Table 4.9 we have 7 = 521 and n = 575. In this situation we definitely
should compute the diagnostic statistics by covariate pattern. If, on the
other hand, we had a model with 7 = 570 and we were using SAS, we
might not go to the trouble to aggregate the data by covariate patterns.

When the number of covariate patterns is much smaller than n there is
the risk that we may fail to identify influential and/or poorly fit covariate
patterns. Consider a covariate pattern with m subjects, _y • = 0 and esti-

mated logistic probability TT;. The Pearson residual defined in equation

(5.1), computed individually for each subject with this covariate pattern, is

Y- =

while the Pearson residual based on all subjects with this covariate pattern
is

which increases negatively as my increases. If m- = 1 and ft- =0.5, then

r- =-1 which is not a large residual. On the other hand, if there were

m- = 16 subjects with this covariate pattern, then r- --4.0 which is quite

large. If we performed the analysis in STATA then the Pearson residual
would be -4.0 for each of the 16 subjects in the covariate pattern. If we

performed the analysis in SAS with a sample of size n then the Pearson
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Figure 5.3 Plot of leverage (h) versus the estimated logistic probability (n} for
a hypothetical univariable logistic regression model.

residual would be -1.0 for all 16 subjects. Thus the diagnostic statistics

are different even though both packages produce the same fitted model.
A major point that must be kept in mind when interpreting the mag-

nitude of the leverage is the effect that v;. has on h- in equation (5.13).

Pregibon (1981) notes that the fit determines the estimated coefficients
and, since the estimated coefficients determine the estimated probabilities,
points with large values of h- are extreme in the covariate space and thus

lie far from the mean. Lesaffre (1986, p. 117) refutes this point, where he
shows that the term v• in the expression for h-} cannot be ignored. The

following example demonstrates that, up to a point, both Pregibon and Le-
saffre are correct.

Figure 5.3 presents a plot of the leverage values versus the estimated
probabilities for a sample of 100 observations from a logistic model with
g(x) = Q.8x and *~W(0,9). Recall that the notation /V(0,9) describes a
variable following a normal distribution with mean zero and variance 9.

We see that the leverage increases as the estimated probability gets
further from 0.5 (x gets further from its mean, nominally zero) until the
estimated probabilities become less than 0.1 or greater than 0.9. At that
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point the leverage decreases and rapidly approaches zero. This example
shows that the most extreme points in the covariate space may have the
smallest leverage. This is the exact opposite of the situation in linear re-
gression, where the leverage is a monotonic increasing function of the dis-
tance of a covariate pattern from the mean. The practical consequence of
this is that to interpret a particular value of the leverage in logistic regres-
sion correctly, we need to know whether the estimated probability is small
(<0.1) or large (>0.9). If the estimated probability lies between 0.1 and 0.9
then the leverage gives a value that may be thought of as distance. When
the estimated probability lies outside the interval 0.1 to 0.9, then the value
of the leverage may not measure distance in the sense that further from the
mean implies a larger value.

A quantity that does increase with the distance from the mean is
bj = Xy(X'VX) x'j. Thus, if we are only interested in distance then we

should focus on bj. A plot of the bj versus the estimated probability for

the example is shown in Figure 5.4. In this Figure we see that b provides

a measure of distance in the covariate space and, as a result, is more like
the leverage values in linear regression. However, since the most useful
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\
oo. o.oo
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.8 .9

Figure 5.4 Plot of the distance portion of leverage (b) versus the estimated logistic
probability ( n } for a hypothetical univariable logistic regression model.
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diagnostic statistics for logistic regression are functions of the full lever-
age, hj, the distance portion, &• , is not discussed further here.

If we use the Pregibon (1981) linear regression-like approximation for

the residual for the y'th covariate pattern, yy:-my.7r(x J \~ n -h-\y-r then

the variance of the residual is

which suggests that the Pearson residuals do not have variance equal to 1
unless they are further standardized. Recall that we denote by ry the Pear-

son residual given in equation (5.1). The standardized Pearson residual for
covariate pattern x^ is

(5.14)

Another useful diagnostic statistic is one that examines the effect that
deleting all subjects with a particular covariate pattern has on the value of
the estimated coefficients and the overall summary measures of fit, X2and
D. The change in the value of the estimated coefficients is analogous to
the measure proposed by Cook (1977, 1979) for linear regression. It is
obtained as the standardized difference between p and P / _ - \ , where these

represent the maximum likelihood estimates computed using all J covariate
patterns and excluding the m} subjects with pattern x; respectively, and

standardizing via the estimated covariance matrix of P. Pregibon (1981)
showed, to a linear approximation, that this quantity for logistic regression
is

(5.15)
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Using similar linear approximations it can be shown that the decrease in
the value of the Pearson chi-square statistic due to deletion of the subjects
with covariate pattern x; is

r2

(5-16)

= r 2 .•y

A similar quantity may be obtained for the change in the deviance,

rh

If we replace rj by dj this yields the approximation

(5,7)

which is similar in form to the expression in equation (5.16).
These diagnostic statistics are conceptually quite appealing, as they

allow us to identify those covariate patterns that are poorly fit (large values
of AX2 and/or AD; ), and those that have a great deal of influence on the

values of the estimated parameters (large values of A(5; ). After identifying

these influential patterns (subjects), we can begin to address the role they
play in the analysis.

Before proceeding to the use of the diagnostics in an example, we
make a few summary comments on what we might expect their application
to tell us. Consider first the measure of fit, AX2. This measure is smallest

when j j and m-K\\} ,] are close. This is most likely to happen when y^ =

0 and ;r(x7)<0.1 or yj = rnj and 7r(xy)>0.9. Similarly AX2 is largest

when yj is furthest from m^fx J. This is most likely to occur if we have

a value of y. = 0 and n(\j ) > 0.9, or with y - = m- and 7t(xj j < 0. 1 . These

same covariate patterns are not likely to have a large A|j since, when

;r(x;)<0.1 or 7r(x;)>0.9, Ap; ~ AX2/zy., and /z; is approaching zero. The
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influence diagnostic, A|3;, is large when both AXj and h- are at least

moderate. This is most likely to occur when 0.1 <^(x7J<0.3, or 0.7 <

7rfx y j<0.9. As we know from Figure 5.3, these are the intervals where

the leverage, hj, is largest. In the region where 0.3 < 7nx ;J<0.7 the

chances are not as great that either AXj or h is large. Table 5.7 summa-

rizes these observations. This table reports what might be expected, not
what may actually happen in any particular example. Therefore, it should
only be used as a guide to further understanding and interpretation of the
diagnostic statistics.

In linear regression essentially two approaches are used to interpret
the value of the diagnostics often in conjunction with each other. The first
is graphical. The second employs the distribution theory of the linear re-
gression model to develop the distribution of the diagnostics under the as-
sumption that the fitted model is correct. In the graphical approach, large
values of diagnostics either appear as spikes or reside in the extreme cor-
ners of plots. A value of the diagnostic statistic for a point appearing to lie
away from the balance of the points is judged to be extreme if it exceeds
some percentile of the relevant distribution. This may sound a little too
hypothesis-testing oriented but, under the assumptions of linear regression
with normal errors, there is a known statistical distribution whose percen-
tiles provide some guidance as to what constitutes a large value. Presuma-
bly, if the model is correct and fits then no values should be exceptionally
large, and the plots should appear as expected under the distribution of the
diagnostic.

In logistic regression we have to rely primarily on visual assessment,
as the distribution of the diagnostics under the hypothesis that the model
fits is known only in certain limited settings. For instance, consider the
Pearson residual, r-. It is often stated that the distribution of this quantity

is approximately /V(0,l) when the model is correct. This statement is only
true when m- is sufficiently large to justify that the normal distribution

provides an adequate approximation to the binomial distribution, a condi-
tion obtained under m-asymptotics. For example, if m- = I then r- has

only two possible values and can hardly be expected to be normally dis-
tributed. Jennings (1986b) has stated this point clearly and with all the
necessary technical details. All of the diagnostics are evaluated by covari-
ate pattern; hence any approximations to their distributions based on the
normal distribution, under binomial errors, depend on the number of sub-
jects with that pattern. When a fitted model contains some continuous
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Table 5.7 Likely Values of Each of the Diagnostic Statistics AX2,

AfJ, and h Within Each of Five Regions Defined by the Value of

the Estimated Logistic Probability (ft)

n
<0.1

0.1—0.3
0.3—0.7
0.7—0.9

>0.9

Diagnostic Statistic

AX2 Ap h

Large or Small Small Small
Moderate Large Large

Moderate to Small Moderate Moderate to Small
Moderate Large Large

Large or Small Small Small

covariates then the number of covariate patterns, J, is of the same order as
n, and m-asymptotic results cannot be relied upon. Thus, in practice, an
assessment of "large" is, of necessity, a judgment call based on experience
and the particular set of data being analyzed. Using the jV(0,l), or
equivalently, the #2(1) distribution for squared quantities may provide
some guidance as to what large is. However, we urge that these percentiles
be used with extreme caution. There is no substitute for experience in the
effective use of diagnostic statistics.

We have defined seven diagnostic statistics which may be divided
into three categories: (1) the basic building blocks, which are of interest in
themselves, but also are used to form other diagnostics, fr ; , Jy,/2; j; (2) de-

rived measures of the effect of each covariate pattern on the fit of the
model, (ry-, AX2, AD,.); and (3) a derived measure of the effect of each co-

variate pattern on the value of the estimated parameters, (Ajj^J. Most lo-

gistic regression software packages provide the capability to obtain at least
one of the measures within each group.

A number of different types of plots have been suggested for use,
each directed at a particular aspect of fit. Some are formed from the seven
diagnostics while others require additional computation. For example, see
the methods based on grouping and smoothing in Landwehr, Pregibon, and
Shoemaker (1984) and Fowlkes (1987). It is impractical to consider all
possible suggested plots, so we restrict attention to a few of the more easily
obtained ones that are meaningful in logistic regression analysis. We con-
sider them to be the core of an analysis of diagnostics. These consist of the
following:
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(1) Plot AXj versus nj

(2) Plot AD; versus nj

(3) Plot Afy versus ft..

Other plots that are sometimes useful include:
(4) Plot bX] versus fy

(5) Plot ADj versus h-}

(6) Plot Ap7 versus hjt

as these allow direct assessment of the contribution of leverage to the value
of the diagnostic statistic. One additional plot that we have found espe-
cially useful is a plot of AXj versus TT; where the size of the plotting sym-

bol is proportional to the size of AP;. This plot is used in the examples

that follow.
To illustrate the use of the diagnostic statistics and their related plots,

we consider the final model for UIS data given in Table 4.9. Recall that
the summary statistics indicated that the model fits. Thus, we do not ex-
pect an analysis of diagnostics to show large numbers of covariate patterns

AX'

30-

20-

10-

0 .2 .4 .6 .8 1
Estimated Logistic Probability

Figure 5.5 Plot of AX2 versus the estimated probability from the fitted model
in Table 4.9, UIS J = 521 covariate patterns.
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7-

AD 3.5-

0-
0 o o<

0 .2 .4 .6 .8

Estimated Logistic Probability

Figure 5.6 Plot of AD versus the estimated probability from the fitted model in
Table 4.9, UIS J = 521 covariate patterns.

being fit poorly. We might uncover a few covariate patterns which do not
fit, or which have considerable influence on the estimated parameters. The
key plots are given in Figures 5.5 to Figure 5.8. We discuss each plot in
turn.

The diagnostics AX2 and AD plotted versus the estimated logistic
probabilities are shown in Figure 5.5 and Figure 5.6, respectively. We pre-
fer to use these plots instead of plots of r. and d- versus n-}. The reasons

for this choice are as follows: (1) When J~n, most positive residuals
correspond to covariate patterns where y^ -m- (e.g., 1) and negative re-

siduals to those with y•• = 0. Hence, the sign of the residual is not useful.

(2) Large residuals, regardless of sign, correspond to poorly fit points.
Squaring these residuals further emphasizes the lack of fit and removes the
issue of sign. (3) The shape of the plot allows us to determine which pat-
terns have yj = 0 and which have y^ = m-}.

The shapes of the plots in Figures 5.5 and 5.6 are similar and show
quadratic like curves. The points on the curves going from the top left to
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.3-

A/J .15-

0-
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•o
•e O

O 0

•«* «o °

0 .2 .4 .6 .8

Estimated Logistic Probability

Figure 5.7 Plot of A|J versus the estimated probability from the fitted model
in Table 4.9, UIS J = 521 covariate patterns.

bottom right corner correspond to covariate patterns with y^ = m-. The
/ „ x 2

ordinate for these points is proportional to I I - K- 1 since m} = 1 for most

covariate patterns. The points on the other curves, going from the bottom
left to top right corner, correspond to covariate patterns with y; =0. The

/ - \2

ordinate for these points is proportional to (0-7F ;) . Covariate patterns

that are poorly fit will generally be represented by points falling in the top
left or top right corners of the plots. We look for points that fall some dis-
tance from the balance of the data plotted. Assessment of this distance is
partly based on numeric value and partly based on visual impression.

In Figure 5.5 we see 1 point (i.e., covariate pattern) that is extremely
poorly fit in the top left corner of the plot, AX2 « 30. There is one other
point that lies a bit away from the others with AX2 -12. These same two
points are easily seen in Figure 5.6.

The range of AX2 is much greater than AD. This is a property of
Pearson versus deviance residuals. Whenever possible we prefer to use
plots of both AX2 and AD versus f t .
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30-

AX2 15-
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o O

0 .2 .4 .6 .8 1
Estimated Logistic Probability

Figure 5.8 Plot of AX2 versus the estimated probability from the fitted model

in Table 4.9 with size of the plotting symbol proportional to Afi, UIS J = 521
covariate patterns.

Aside from the two points noted, the plots show that the model fits
reasonably well. Most of the values of AX2 and AD are less than, or at
least not much larger than, 4. We use 4 as a crude approximation to the
upper ninety-fifth percentile of the distribution of AX2 and AD as, under
m-asymptotics, these quantities would be distributed approximately as
*2(1) with *0

2
95(1) = 3.84.

,A

The influence diagnostic A|5 is plotted versus ft in Figure 5.7. We
see four points that lie somewhat away from the rest of the data. The val-
ues themselves are not especially large, as all are less than 0.3. In our ex-
perience the influence diagnostic must be larger than 1.0 for an individual
covariate pattern to have an effect on the estimated coefficients. However
there are always exceptions and it is good practice to note outlying values

^

of AfJ, regardless of the actual magnitude.
A

We noted in Table 5.7 that the largest values of AP are most likely to
occur when both AX2 and leverage are at least moderately large. However
large values can also occur when either component is large. This is the
case in Figure 5.7 where the covariate pattern with the largest influence
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diagnostic is the one with the largest value of AX2. The other points are in
the region of estimated probabilities where both AX2 and AD can be mod-

erately large.
In Figure 5.8 we plot AX2 versus ft with the size of the symbol pro-

portional to AfJ. This plot allows us to ascertain the contributions of re-
A

sidual and leverage to A|3. The large circle in the top left corner corre-
sponds to the largest value of AX2. Another large circle can be partially
seen at n ~ 0.4. This point has a small value of AX2 but is in the region
where we expect to find maximum leverage.

**.

One problem with the influence diagnostic A0 is that it is a summary
measure of change over all coefficients in the model simultaneously. For
this reason it is important to examine the changes in the individual coeffi-
cients due to specific covariate patterns identified as influential.

Examination of Figures 5.5 to Figure 5.8 identifies four covariate
patterns with outlying values on one or more of the diagnostics statistics.
These include the pattern with large values of AX2 and AD, and three more

with outlying values of AfJ. Information on these patterns is presented in
Table 5.8. The quantity P# in Table 5.8 refers to the covariate pattern
number. This number is somewhat arbitrary, as its value depends on how
the data were aggregated. It should be noted that P# is not the original
study identification code.

The results in Table 5.8 provide examples of what can be learned
about a fitted model through diagnostic statistics. Consider covariate pat-
tern 31. If this covariate pattern is deleted from the data set, we expect to
see a substantial decrease in X2 and a somewhat smaller decrease in D.
However, as shown in Table 5.9, when we delete this covariate pattern and
refit the model the actual observed decrease in the Pearson chi-square sta-
tistic is about 7. This change is much less than the value suggested by the
diagnostic statistic. On the other hand the deviance decreases by about 22
even though the value of the diagnostic statistic suggests the change should
be about 7. It has been our experience that AX2 and AD tend to be mod-
estly positively correlated with actual observed changes when covariate
patterns are deleted. Thus, we recommend that one fit the model with co-
variate pattern(s) deleted to obtain the actual change(s)/effect(s). Even
though covariate pattern 31 has the largest value of A|J, its numeric value
is not large enough for us to expect to see major changes in the estimated
coefficients. As shown in Table 5.9, the maximum change in any coeffi-
cient in the model is less than 10 percent. In summary, covariate pattern
31 is typical of one type of pattern that has a large value of AX2 and AD.
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Namely, the fitted model predicts that it is unlikely for the subject to re-
spond when in fact they do (i.e. n is small and y = 1). While the opposite
type of poor fit (ft is large and y = 0) is not present in the UIS model we
have seen it occur in many other analyses. The exercises at the end of this
chapter contain a number of different problems designed to highlight vari-
ous aspects of the performance of the diagnostic statistics.

The other three covariate patterns described in Table 5.8 have outly-
*.

ing values of Ap relative to the rest of the values of this statistic. The val-
ues of the change in fit diagnostics are modest and the leverage values are
small. As shown in Table 5.9 there are no substantial changes in model fit
or estimated parameters when we delete each pattern.

The last column of Table 5.9 presents the changes when the model
was fit deleting all four covariate patterns (a total of 5 subjects). The col-
lective effect is substantial. Numerous estimated coefficients change by
more than 20 percent and the fit measures, X2 and D, also show substan-
tial decreases. For these reasons one might consider removing these five
subjects from the analysis. We consulted with our colleagues and they
found the covariate values for these five subjects to be quite reasonable and
therefore felt that the subjects should not be deleted. With this decision
made, we can move to the final step, presentation and interpretation of the

Table 5.8 Covariate Values, Observed Outcome (yy), Number (m,-),
Estimated Logistic Probability (n), and the Value of the Four

A 0
Diagnostic Statistics AP, AX , AD, and Leverage (h) for the Four

Most Extreme Covariate Patterns (P#)
p#

AGE
NDRGTX

IHVX
RACE

TREAT
SITE

yj
Wj

ft
A&

AX2

AD
h

31
24
20
2
0
0
1
1
1

0.033
0.277

29.925
6.909
0.009

477
41
0
3
1
0
0
1
1

0.163
0.267

5.403
3.812
0.047

105
26
0
1
1
0
0
2
2

0.403
0.246

3.191
3.916
0.072

468
40
0
3
1
0
0
1
1

0.168
0.236

5.192
3.735
0.044
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model using the fitted model from Table 4.9. However, before doing so,
we use the results seen here as the basis of a short discussion on the rea-
sons for the changes seen in Table 5.9 and a more general discussion of the
role of diagnostic statistics in analysis.

We note that the values of the goodness-of-fit statistic based on
A.

deciles of risk, C, in Table 5.9 are all small and the smallest is for the
original model. In practice, one cannot use C to select a "best" fitting
model from a collection of models that all fit. The statistic shows that each
of the six models shown in Table 5.9 seems to provide an overall fit to the
data.

The net effect of the deletion of the five subjects is an increase in the
coefficients involving age, the number of previous drug treatments and
treatment duration while the coefficient for race decreases. The reason for
the effect on race is that 4 of the five subjects had RACE = Other and re-
mained drug free. Thus once they are removed there is a less pronounced
difference between the two racial groups. All five subjects were on the
shorter duration treatment and all were drug free at 12 months. Thus re-

Table 5.9 Estimated Coefficients from All Data, the Percent Change when
the Covariate Pattern Is Deleted, and Values of Goodness-of-Fit Statistics
for Each Model

Variable

AGE

NDRGFP1

NDRGFP2
INHX_2

IVHX_3

RACE

TREAT
SITE

AGExNDRGFPl

RACExSITE

Constant

Covariate Pattern Deleted
All

Data
0.117

1.669

0.434
-0.635

-0.705

0.684

0.435
0.516

-0.015

-1.429

-6.844

31
8.9

9.6

9.4
8.8

0.5

1.3

5.2
-5.6

9.9

-0.5

7.7

477
5.3

6.3

4.1
0.4

5.6

-5.8

3.6
<0.1

14.6

-3.6

3.3

105
-2.8

-1.6

2.1
0.3

<-0.1

-8.5

7.3
2.9

-8.3

-4.2

-1.3

468
4.8

5.7

3.8
0.7

5.8

-5.9

3.6
0.1

13.1

-3.6

3.0

All
Four
18.0

22.4

21.1
10.6

12.9

-20.3

20.8
-2.3

33.6

-12.5.

14.0

Goodness-of-Fit
D
X2

A

C

511.78
530.74
4.39

489.94
523.62
5.55

511.57
526.85
6.36

508.70
526.88
6.69

511.61
526.94
6.36

482.63
511.11
6.86



184 ASSESSING THE FIT OF THE MODEL

moving these subjects removes some of the "positive" effect of the shorter
treatment and leads to a more pronounced difference between the two lev-
els. The reason for the observed behavior in age and the number of previ-
ous drug treatments is not clear. There is no clear pattern in the ages or
number of previous treatments. In addition these variables interact and the
number of previous drug treatments is highly non-linear in the model.

The model for the UIS data is an example where the model fits well,
and use of diagnostics identified only a few covariate patterns where the
model did not fit, and/or the patterns were influential. Suppose instead that
we have a model where the summary statistics indicate that there is sub-
stantial deviation from fit. In this situation, we have evidence that for
more than a few covariate patterns, j; differs from mfij. One or more of

three things has likely happened: (1) the logistic model does not provide a
good approximation to the correct relationship between the conditional
mean, El Y|x;. 1, and x;, (2) we have not measured and/or not included an

important covariate into the model, or (3) at least one of the covariates in
the model has not been entered in the correct scale. We discuss each of
these in turn.

The logistic regression model is remarkably flexible. Unless we are
dealing with a set of data where most of the probabilities are very small or
very large, or where the fit is extremely poor in an identifiable systematic
manner, it is unlikely that any alternative model will provide a better fit.
Cox (1970) demonstrates that the logistic and other, similar symmetric
models are virtually identical in the region from 0.2 to 0.8. If one suspects,
based on clinical or other reasons (such as graphical presentations, or
Stukel's test, described in Section 5.2.2) that the logistic model is the
wrong one, then careful thought should be given to the choice of the alter-
native model. Particular attention should be given to issues of interpreta-
tion. Are the coefficients clinically interpretable? The approach that tries
all other possible models and selects the "best fitting" one is not recom-
mended, as no thought is given to the clinical implications of the selected
model. In some situations, inadequacy of a fitted logistic model can be
corrected by returning to model building and rechecking variable selection
and scale identification. Model fitting is an iterative procedure. We rarely
obtain a final model on the first pass through the data. However, we must
keep in mind the distinction between getting a model to fit and having the
theoretically correct model.

Some interesting theoretical work has been done by White (1982,
1989) and Hjort (1988, 1999) on the use of maximum likelihood estimation
with a misspecified model. These authors show that the fitted logistic re-
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gression model is the one that minimizes the Kullbeck-Leibler information
distance between the theoretically correct model and the logistic model. In
this sense the fitted logistic regression model is a best approximation to the
true model. Recently, Maldonado and Greenland (1993) examine the inter-
pretation of model coefficients in this setting and conclude that if one fol-
lows a thorough model building paradigm, similar to one presented in
Chapter 4 and this chapter, then the estimated coefficients can provide use-
ful estimates of effect even when the model is somewhat misspecified.
Along these same lines Lin, Pstay and Kronmal (1998) present a method to
quantify the sensitivity of estimates of effect to unmeasured confounders.
It is not clear to us how practical the method may prove to be, as it requires
one to specify the distribution of the model covariates within each level of
the outcome variable.

White (1982, 1989) provides a test for the hypothesis that the fitted
model is the theoretically correct one. The test is elegant but is difficult to
compute in practice and its power has not been adequately studied. Hence,
we recommend that assessment of the adequacy of the fitted logistic model
be performed using the methods suggested in this chapter. When there is
evidence that the logistic model does not fit the data an alternative model
should be selected on the basis of clinical considerations.

When performing an analysis, we hope that the study was designed
carefully so that data on all major covariates were collected. However, it is
possible that the clinical factors associated with the outcome variable are
not well known and in this case a key variable may not be present in the
observed data. The potential biases and pitfalls of this oversight are enor-
mous. Little can be done if this is the case, except to go back and collect
these data. This approach of retroactive data collection is also impractical
in most research situations.

Lack of fit may also occur if the variability in the outcome variable
exceeds what would be predicted by the model and binomial variation.
Much of the work on this problem is motivated by toxicological experi-
ments where a dependence in the observations is present due to the out-
come being measured on littermates having the same parentage, see Hase-
man and Hogan (1975), Haseman and Kupper (1979), Legler and Ryan
(1997), Ryan (1992), and Williams (1975). This source of lack of fit is
often called extrabinomial variation. Another setting where this problem
occurs is where the dependence is due to a general clustering of groups of
responses (e.g., when a treatment is randomly assigned to a group of sub-
jects such as a school or patients of a physician). The clustering can also
be due to repeated observations on subjects over time. This is an active
area of methodological research and several software packages now incor-
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porate the capability to fit appropriately modified logistic regression mod-
els. Because of its practical importance we consider methods for the
analysis of clustered binary data in some detail in Section 8.3.

In summary, one should not proceed to presenting the results from a
fitted model until the fit of model has been thoroughly assessed using both
summary measures and diagnostic statistics.

5.4 ASSESSMENT OF FIT VIA EXTERNAL VALIDATION

In some situations it may be possible to exclude a subsample of our obser-
vations, develop a model based on the remaining subjects, and then test the
model in the originally excluded subjects. In other situations it may be
possible to obtain a new sample of data to assess the goodness-of-fit of a
previously developed model. This type of assessment is often called model
validation, and may be especially important when the fitted model is used
to predict outcome for future subjects. The reason for considering this type
of assessment of model performance is that the fitted model always per-
forms in an optimistic manner on the developmental data set. Harrell, Lee,
and Mark (1996) discuss this within a general model building context. The
use of validation data amounts to an assessment of goodness-of-fit where
the fitted model is considered to be theoretically known, and no estimation
is performed. Some of the diagnostics discussed in Section 5.3
(AX2,AD,Ap) mimic this idea by computing, for each covariate pattern, a
quantity based on the exclusion of the particular covariate pattern. With a
new data set a more thorough assessment is possible.

The methods for assessment of fit in the validation sample parallel
those described in Sections 5.2 and 5.3 for the developmental sample. The
major difference is that the values of the coefficients in the model are re-
garded as fixed constants rather than estimated values.

Suppose that the validation sample consists of nv observations
()>,•,x,.), i = 1,2,...,nv, which may be grouped into Jv covariate patterns. In
keeping with previous notation, let v; denote the number of positive re-
sponses among the m; subjects with covariate pattern x = x; for
j = 1,2,...,JV. The logistic probability for the f" covariate pattern is TC-, the
value of the previously estimated logistic model using the covariate pat-
tern, \j, from the validation sample. These quantities become the basis for
the computation of the summary measures of fit, X2, D, and C, from the
validation sample. Each of these is considered in turn.
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The computation of the Pearson chi-square statistic follows directly
from equation (5.2), with obvious substitution of quantities from the vali-
dation sample. In this case X2 is computed as the sum of Jv independent
terms. If each mp- is large enough to use the normal approximation to

the binomial distribution, then X2 is distributed as %2(JV) under the hy-
pothesis that the model is correct. We expect that in practice the observed
numbers of subjects within each covariate pattern is small, with most
mj; = 1. Hence, we cannot employ w-asymptotics. In this case we can use

results presented in Osius and Rojek (1992) to obtain a statistic that fol-
lows the standard normal distribution under the hypothesis that the model
is correct and Jv is sufficiently large. The procedure is similar to the one
presented in Section 5.2. Specifically one computes the standardized sta-
tistic

X2-J

where

The test uses a two-tailed /7-value based on z.
The same line of reasoning discussed in Section 5.2.2 to develop the

Hosmer-Lemeshow test may be used to obtain an equivalent statistic for
the validation sample. Assume that we wish to use 10 groups composed of
the deciles of risk. Any other grouping strategy could be used with obvi-
ous modifications in the calculations. Let nk denote the approximately

rcv/10 subjects in the kth decile of risk. Let ok = 2^y, be the number of

positive responses among the covariate patterns falling in the &th decile of
risk. The estimate of the expected value of ok under the assumption that

the model is correct is ek
 =2JfnFi'1 wnere tne sum *s over tne covariate

patterns in the decile of risk. The Hosmer-Lemeshow statistic is obtained
as the Pearson chi-square statistic computed from the observed and ex-
pected frequencies

C = y (°k~€k' (518)'
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where nk = m^/n^ . The subscript, v, has been added to C to empha-

size that the statistic has been calculated from a validation sample. Under
the hypothesis that the model is correct, and the assumption that each ek is
sufficiently large for each term in Cv to be distributed as #2(1), it follows
that Cv is distributed as#2(10). In general, if we use g groups then the
distribution is %2(g). In addition to calculating a/?-value to assess overall
fit, we recommend that each term in Cv be examined to assess the fit
within each decile of risk. The comments given in Section 5.2.2 regarding
modification of the denominator of the test statistic, C, in equation (5.5)
also apply to Cv in equation (5.18).

The classification table is the remaining summary statistic that we are
likely to use with the validation sample and then only in instances where
classification is an important use of the model. The classification table is
obtained in exactly the same manner as shown in Section 5.2.3, with the
modification that probabilities are no longer thought of as being estimated.
The resulting table may then be used to compute statistics such as sensitiv-
ity, specificity, positive and negative predictive power. Interpretation of
these quantities depends on the particular situation.

5.5 INTERPRETATION AND PRESENTATION OF THE
RESULTS FROM A FITTED LOGISTIC REGRESSION
MODEL

Once we are satisfied that the fit of the model is adequate, we are ready to
use the model to address the inferential goals of the particular study. In
our experience this almost always involves using the estimates of model
coefficients to obtain estimates of odds ratios. We use the model presented
in Table 4.9, whose fit was checked earlier in this chapter, as an example.
For convenience Table 5.10 presents more detailed results from the fitted
model.

While the model in Table 5.10 is much more complicated than the
typical model one finds in a subject matter journal, it is an excellent exam-
ple for teaching purposes. It contains a dichotomous main effect covariate
(TREAT), a polychotomous main effect covariate (IVHX), two dichoto-
mous covariates and their interaction (RACE and SITE), a linear continu-
ous covariate, a non-linear continuous covariate and their interaction (AGE
and NDRGTX modeled via NDRGFP1 and NDRGFP2). We begin with
the nominal scale covariates that appear only as main effects.
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Table 5.10 Estimated Coefficients, Standard Errors, z-Scores, Two-
Tailed/?-Values and 95% Confidence Intervals for the Final Logistic
Regression Model for the UIS (n = 575)

Variable
AGE
NDRGFP1
NDRGFP2
IVHX_2

IVHX_3

RACE
TREAT
SITE
AGExNDRGFPl

RACExSITE

Constant

Coeff.
0.117
1.669
0.434

-0.635

-0.705

0.684
0.435
0.516

-0.015

-1.429

-6.844

Std. Err.
0.0289
0.4072
0.1169
0.2987

0.2616

0.2641
0.2038
0.2549
0.0060

0.5298

1.2193

z
4.04
4.10
3.71

-2.13

-2.70

2.59
2.14
2.03

-2.53

-2.70

-5.61

P>lzl
<0.001
<0.001
<0.001

0.034

0.007

0.010
0.033
0.043
0.011

0.007

<0.001

95 % CI
0.060, 0.173
0.871, 2.467
0.205, 0.663

-1.220, -0.049

-1.217, -0.192

0.166, 1.202
0.035, 0.834
0.017, 1.016

-0.027, -0.391

-2.468, -0.391

-9.234, -4.454

As shown in Chapter 3 we obtain estimates of the odds ratios and
their confidence intervals for dichotomous covariates (coded zero or one)
and polychotomous covariates, with zero or one reference cell design vari-
ables, by exponentiating their respective coefficients and the end points of
their respective confidence intervals. The odds ratios and confidence
intervals for TREAT and IVHX obtained from the results in Table 5.10 are
presented in Table 5.11.

In the first column of Table 5.11 we indicate the covariate and each of
its levels. The reference level is the one with an odds ratio equal to 1.0.
Some readers may question the need to include all levels, preferring in-
stead to indicate the reference level by exclusion. Either approach is ac-
ceptable; however, we feel the explicit method shown in Table 5.11 is
clearer and thus makes the discussion easier to follow.

The estimate of the odds ratio for treatment is 1.54. The correct inter-
pretation is that the odds of remaining drug free for 12 months for a subject
on the longer duration treatment is estimated to be 1.54 times larger than
the odds for a similar (with respect to the other covariates in the model)
subject on the shorter duration treatment. In many, if not most, subject
matter journals this interpretation would be stated more concisely, but in-
correctly, as subjects on the longer treatment are 1.54 times more likely to
remain drug free for 12 months. The second interpretation relies on the
"odds ratio approximates relative risk" argument. We go into this in more
detail in Chapter 6 where we discuss case-control studies, but it is suffi-
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Table 5.11 Estimated Odds Ratios and 95%
Confidence Intervals for Treatment and History of
IV Drug Use in the UIS (n = 575)

Variable Value
Treatment

Short
Long

IV Drug Use
Never

Previous
Recent

Odds Ratio

1.00
1.54

1.00
0.53
0.49

95 % CI

1.04,2.30

0.30, 0.95
0.30, 0.83

cient at this point to indicate that this is only true when the outcome is
"rare". As a rule of thumb, this argument is likely to be true when the out-
come occurs less than 10 percent of the time. In our example this means
that the logistic probability of remaining drug free should be small. This is
not true since overall 25.6 percent of the subjects remained drug free for 12
months and the range of fitted values is from 0.02 to 0.78. In addition, 21
percent of subjects in the shorter duration treatment group remained drug
free for 12 months. Zhang and Yu (1998) examine the extent to which the
odds ratio over-estimates the relative risk when the outcome is not rare.
Their results show that the over-estimation can be quite pronounced for
odds ratios greater than 2.5 or less than 0.5. How important their results
are in practice depends on how the estimated odds ratio is going to be used.
For example, in our model there is a statistically significant (p = 0.033)
benefit to the longer treatment and, since both interpretations of the esti-
mated odds ratio provide a reasonable statement of this fact, either one
could be used in a paper presenting the results of the study. On the other
hand, if it is vitally important to have an accurate estimate of the increase
in the likelihood of remaining drug free then one should present the odds
ratio using the correct interpretation and attempt to correct the over-
estimation. One can obtain a crude correction to the odds ratio from the
figure in Zhang and Yu (1998). For example, an odds ratio of 1.5 with an
"incidence among the unexposed" of 21 percent corrects to a relative risk
of about 1.3. In our experience the estimated odds ratios from the vast
majority of fitted logistic regression models are used to present "broad-
strokes" estimates of effect and not precise estimates of the increase in the
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likelihood of the event. Thus, in the remainder of this section, we use the
more concise "relative risk" type interpretation of the odds ratio.

The confidence interval estimate in Table 5.11 suggests that odds for
the longer treatment could be as little as 1.04 or as much as 2.3 times as
great as the odds for the shorter treatment.

The estimates of the odds ratios for history of IV drug use in Table
5.11 are both less than 1.0. In our experience new users of logistic regres-
sion modeling have a particularly difficult time in this case. If the odds
ratio is less than one then the covariate is often referred to as "protective"
for the outcome. This statement comes from the fact that in many exam-
ples the 3; = 1 outcome is, in a practical sense, the less desirable of the two
outcomes. If an odds ratio is less than one then the y = 1 outcome is less
likely to occur. In our example the situation is reversed since y = 1 corre-
sponds to the desirable outcome of remaining drug free. Consider a sub-
ject with a history of previous IV drug use, the estimate of the odds ratio in
Table 5.11 is 0.53 with a 95 percent confidence interval of (0.30, 0.95).
The interpretation is that a subject with a history of previous IV drug use is
approximately 0.53 times as likely to remain drug free for 12 months as a
similar subject with no history of previous drug use and the odds could be
as much as 0.3 times or as little as 0.95 times smaller with 95 percent con-
fidence. The odds ratio for recent IV drug use is 0.49 with a 95 percent
confidence interval (0.30, 0.83). Thus a subject with a recent history of
drug use is also about one-half as likely to remain drug free for 12 months
as a subject with no history.

Before leaving our discussion of IVHX we note that the estimates of
the coefficients in Table 5.10, and thus the odds ratios in Table 5.11, are
quite similar for both previous and recent users. This suggests that we
could consider modeling IVHX with a dichotomous covariate coded
"never-ever". The principle of parsimony in modeling (i.e., use as few
parameters as possible) suggests this might be a better model. We specifi-
cally kept the full three-level coding to demonstrate modeling methods
with a multi-category covariate. We leave it as an exercise for the reader
to examine whether we can pool the previous and recent categories and use
the resulting dichotomous covariate.

We now turn to interpreting the results for RACE and SITE, which
interact in our model. The covariate SITE is included to control for the
location of the program and is of less importance to the subject matter team
than possible racial differences. Thus we present in Table 5.12 the esti-
mates of the odds ratios for non-white versus white within the two sites.
The details of estimating odds ratios in the presence of this type of interac-
tion are discussed in Section 3.7 and are not repeated here. However, we
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Table 5.12 Estimated Odds Ratios and 95%
Confidence Intervals for Race within Site in the
UIS (n = 575)
Site Race
Site A

White
Other

SiteB
White
Other

Odds Ratio

1.00
1.98

1.00
0.47

95 % CI

1.18,3.33

0.19,1.18

encourage the reader to verify that the results presented in Table 5.12 come
from appropriately specified logit differences from Table 5.10.

The int2rpretation of the results in Table 5.12 are: (1) A non-white
subject at Site A is almost 2 times more likely to remain drug free for 12
months than a similar white subject. The confidence interval suggests that
the difference could be as little as 1.2 times more likely or as much as 3.3
times more likely. (2) At site B, a non-white subject is estimated to be
0.47 times as likely to remain drug free for 12 months than a similar white
subject. However, the confidence interval for the odds ratio at Site B in-
cludes 1.0 so the difference between the two racial groups is not significant
at this site. As mentioned, we are less interested in comparing sites within
levels of race, but we leave this comparison as an exercise.

We next estimate odds ratios for age and the number of previous drug
treatments. The model is quite complicated in these two covariates but the
process is same as that used to estimate the odds ratios for race within site
in Table 5.12. Namely, we specify the covariate of interest and the levels
for the odds ratio and the value(s) of the interaction variable. For example
we may be interested in calculating the odds ratio for a 5-year increase in
age for subjects with 0, 1, 3 and 6 previous drug treatments holding all
other covariates constant. We follow the basic steps of evaluating the two
logits, taking their difference and exponentiating the result. Since we are
holding IVHX, RACE, TREAT and SITE constant we do not include their
respective coefficients and values in the expressions for the logits. Thus
the abbreviated basic form of the estimated logit in AGE and fractional
polynomial transformation of NDRGTX is:
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g(AGE, NDRGTX) = ft + A ( AGE) + A (NDRGFPl) + P3(NDRGFP2)

+ p4(AGEx NDRGFPl) (5.19)

and, at AGE + 5, it is

+P?I(NDRGFP2) + P4((AGE + 5) x NDRGFPl), (5.20)

where p{,p2,p3, and P4 represent the respective estimated coefficients in
Table 5.10. Recall that the two fractional polynomial covariates are

NDRGFPl =
( NDRGTX + 1Y1

10 )
and

NDRGFP2 = NDRGFPl x ln[NDRGTX + l\
I 10 )

It follows that the estimated logit difference is

g(AGE + 5, NDRGTX) - g(AGE, NDRGTX)

x5x NDRGFPl. (5.21)

The two logits may be complicated but their difference is a simple linear
function of NDRGFPl and the change in age. We estimate the odds ratio
by evaluating (5.21) at values of NDRGFPl at the specified values of
NDRGTX and exponentiating the results. The estimator of the variance of
the logit difference in (5.21) is

xSx NDRGFPl =

- (5.22)

To simplify the notation, we denote the square root of the quantity from
(5.22) as

°'5\ . (5.23)
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Figure 5.9 Estimated odds ratio and 95 percent confidence limits for a five-year
increase in age based on the model in Table 5.10.

The endpoints of the 100 x (1 - a}% confidence interval estimator for the
logit difference are

x 5 + j§4 x 5 x NDRGFPl] ± z}_a/2SE(AGE + 5, AGE) . (5.24)

We obtain the endpoints of the 100 x (!-«)% confidence interval estima-
tor for the odds ratio by exponentiating the endpoints from (5.24). At this
point we have the option of presenting a table of estimated odds ratios and
confidence intervals at various values of NDRGTX, or we can present the
results graphically over a range of values. In this case we feel a graphical
presentation is more effective than a table of results.

Figure 5.9 presents point and interval estimates of the odds ratio for a
five-year increase in AGE for up to 10 previous drug treatments. The
point-wise 95 percent limits are indicated by the vertical bars. The graph
indicates that an older (by 5 years) subject with two or more previous drug
treatments is significantly and progressively more likely to remain drug
free than a younger subject. The estimates of the odds ratio gradually in-
crease to about 1.7 at 10 previous treatments. (Note: The lower bound of
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the confidence interval estimator at two drug treatments is 1.01.) Since the
confidence intervals include 1.0 for fewer than two previous drug treat-
ments we conclude that a five-year increase in age is not significant at
these levels. Only slight additional increases in the odds ratios for a five-
year AGE increase are seen at more than 10 previous drug treatments and,
as such, we chose not to include them in the graph. For example, at 10
previous treatments the estimate of the odds ratio in Figure 5.9 is 1.67 and
the 95 percent confidence interval is (1.26, 2.21). At the maximum of 40
previous treatments we obtain, by the same methods, an estimate of the
odds ratio of 1.76 with a 95 percent confidence interval (1.32, 2.33). We
feel that the graph presented in Figure 5.9 portrays the effect of older age
at the values of previous drug treatments much more clearly than is possi-
ble in a tabulation of this same information.

To complete the presentation of the results we need to describe the
effect of the number of previous drug treatments controlling for age. Since
the model is non-linear in the number of previous drug treatments the ef-
fect must be described at each value. We begin by assessing the effect of
an increase of one previous drug treatment. The abbreviated logit at an
increase of one drug treatment from (5.19) is

g(AGE, NDRGTX +1) = pQ + ft (AGE) + P2(NDRGFPI I)

+ fa(NDRGFP2l) + P4((AGE) x NDRGFPl l), (5.25)

where

pl =

10 J V 10

and

NDRGFP21 = NDRGFPl I x Inf NDRGTX + 2 ].
I 10 j •

The logit difference of (5.25) and (5.19) is

g( AGE, NDRGTX +1) - g(AGE, NDRGTX) =

P2(NDRGFPI I - NDRGFPl)

+ fa(NDRGFP2l - NDRGFP2)

+ P4(AGE) x (NDRGFPl I - NDRGFPl) . (5.26)
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In order to simplify the expressions we let

10 10
and

B = NDRGFP21 - NDRGFP2 = NDRGFPl 1 x
\ V 10

10

It follows that the logit difference in (5.26) is

g(AGE, NDRGTX +1) - g(AGE, NDRGTX)

(5.27)

We obtain estimates of odds ratios by evaluating (5.27) at particular values
of AGE and NDRGTX. The estimates depend, in a fairly complex and not
easily envisioned manner, on both AGE and NDRGTX. Thus we choose a
graphical presentation but, before presenting the graph, we describe how to
obtain the confidence interval estimator.

The estimator of the variance of the logit difference in (5.27) is

and the estimator of the standard error is

yv f /v r A, A .* il 0.5
SE(NDRGTX + 1, NDRGTX) = |Va r [ft A + faB + P4AGE x A ] j .

The endpoints of the 100(1 -«)% confidence interval estimator are
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[g(AGE, NDRGTX +1) - g(AGEy NDRGTX)]

±z^a/2SE(NDRGTX +1, NDRGTX) . (5.28)

We obtain the end points for the confidence interval estimator for the odds
ratio by exponentiating the end points in (5.28).

Due to the complicated nature of the relationship between age and the
number of previous drug treatments we feel that a graph is the best way to
see the effect of increased numbers of drug treatments. Figure 5.10 pre-
sents the estimated odds ratios and associated 95 percent confidence inter-
vals for an increase of one previous drug treatment at ages 20, 25, 30 and
35 (top left to bottom right in the figure). A horizontal line is drawn at 1.0
in each plot to provide a quick way to see whether the odds ratio is signifi-
cantly different from 1.0.

In each plot the odds ratio at NDRGTX = 0 is for one treatment ver-
sus zero treatments. The confidence interval covers 1.0 in all but the plot
for AGE = 35. In this case a 35 year old subject with one previous treat-
ment is significantly more likely to remain drug free for 12 months than a

1.58-

•8•o
O

1

I "

0,33-

1.96'

0.55-

(b) ABC = 25

0 2 4 6 8 1 0
Number of Previous Drue Treatments

(c) Ace = 30

0 2 4 6 8 10
Number of Pievious Drue Ticatmcnts

(d) AKC = 35
2.12'

0.66-
\ \

0.73' 1 «

0 2 4 6 8 1 0
Number of Previous Drug Treatments

0 2 4 6 8 10
Numbei of Pievious Drug Treatments

Figure 5.10 Estimated odds ratios and 95 percent confidence limits for an
increase of one drug treatment from the plotted value of NDRGTX for a subject
of age (a) 20, (b) 25, (c) 30 and (d) 35.
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35 year old with no previous drug treatments. The remaining odds ratios in
each plot compare subjects of a given age having 2 versus 1, 3 versus 2, up
to 11 versus 10 previous treatments. In each plot the lines denoting the
confidence intervals do not contain 1.0, hence the odds ratios are signifi-
cantly less than one. The odds ratios approach 1.0 as the referent number
of drug treatments increases. The overall interpretation is that with each
increment of one drug treatment subjects are significantly more likely to
remain drug free for 12 months. The increment in risk decreases as the
referent number of drug treatments increases. That is, the risk of 1 1 versus
10 (a 10 percent increase) is not as great as the risk of 2 versus 1 (a 50 per-
cent increase). In three of the four plots the smallest odds ratio for re-
maining drug free is for 2 versus 1 previous treatment. Thus the odds of
remaining drug free is greatest for subjects with one previous treatment.
This suggests that we calculate odds ratios comparing each number of pre-
vious drug treatments to a referent value of 1 treatment.

The individual logit difference and its confidence interval for the dif-
ference in the number of previous drug treatments at a particular AGE are
obtained from (5.27) and (5.28) by defining A and B to be the difference in
the fractional polynomial variables for a general value of NDRGTX and
NDRGTX = 1 as follows:

= NDRGFPl-
10

= NDRGFPl-5

and

NDRGFP2-1 — I In10 ; v 10 )
NDRGFP2-5\n-

5

We obtain the odds ratios and their confidence intervals by exponentiating
the results for the logit differences from (5.27) and (5.28) with A and B
defined above. These results are shown in Figure 5.11.

The odds ratios and confidence intervals plotted at 0 in the four plots
in Figure 5.1 1 are the inverse of the odds ratios plotted in Figure 5.10. The
odds ratios plotted at 2 are the same as those plotted at 1 in Figure 5.10.
The others may be shown to be products of the odds ratios in Figure 5.10.
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Figure 5.11 Estimated odds ratios and 95 percent confidence limits
comparing zero, two, three up to 10 previous drug treatments to one
previous treatment for a subject of age (a) 20, (b) 25, (c) 30 and (d) 35.

The general picture that emerges from Figure 5.11 is that at any age sub-
jects with progressively more previous drug treatments are significantly
less likely to remain drug free for 12 months when compared to a subject
with one previous treatment. For older subjects the odds ratio at 0 is also
less than one and is significant at age 35.

In general we conclude that, at most ages, a subject with one previous
drug treatment is most likely to remain drug free for 12 months, that the
odds ratio becomes progressively smaller (further from 1.0) with increas-
ing numbers of previous drug treatments. The figures give an impression
of approaching an age-specific lower bound.

Before we leave this section we make a few comments on model
building. Comparatively speaking the model in Table 5.10 is more com-
plicated than virtually every logistic regression model we have encoun-
tered in the health sciences literature. The typical model in the literature
has a few continuous covariates modeled linearly, a few design variables
and, in rare instances, an interaction. There seems to be some reluctance
on the part of subject matter scientists to consider more complicated mod-
els. We think the reason is a lack of confidence in being able to determine
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when more complicated non-linear terms are needed and, if they are in-
cluded, insecurity on how to interpret the results. What we hope we have
accomplished in Chapters 4 and 5 is to provide a set of methods that can
serve a basic paradigm for model building, model evaluation and model
presentation that will allow the reader to feel confident that he/she has de-
veloped the best possible model within the constraints of the data and to
feel secure in his/her ability to interpret the results of the model, regardless
of how complicated it may appear to be. In particular, we hope that
through the discussion in this section the reader has developed a firm grasp
of the fundamental principal that the estimate of an odds ratio comes from
exponentiating a logit difference.

EXERCISES

1. As is the case in linear regression, effective use of diagnostic statistics
depends on our ability to interpret and understand the values of the
statistics. The purpose of this problem is to provide a few structured
examples to examine the effect on the fitted logistic regression model
and diagnostic statistics when data are moved away from the model
(i.e., poorer fit), and also toward the model (i.e., better fit). Table 5.13
lists values of the independent variable, x, and seven different columns
of the outcome variable, y, labeled "Model." All models fit in this
problem use the given values of x for the covariate. Different models
are fit using the seven different columns for the outcome variable. The
data for the column labeled "Model 0" are constructed to represent a
"typical" realization when the logistic regression model is correct. In
the columns labeled " Model 1" to "Model 3" we have changed some
of the y values away from the original model. Namely some cases
with small values of x have had y changed from 0 to 1 and others with
large values of x have had the y values changed from 1 to 0. For mod-
els labeled "Model -1" and "Model -2" we have moved the y values in

the direction of the model. That is, we have changed y from 1 to 0 for
some small values of x and have changed y from 0 to 1 for some large
values of x. Fit the six logistic regression models for the data in col-
umns "Model -2" to "Model 3." Compute for each fitted model the

values of the leverage, h, the change in chi-square, AX2, and the influ-
ence diagnostic, A|5. Plot each of these versus the fitted values, pre-
dicted logistic probabilities. Compare the plots over the various mod-
els. Do the statistics pick out poorly fit and influential cases? How do
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Table 5.13 Hypothetical Data to Illustrate the Use of
Diagnostic Statistics to Detect Poorly Fit and
Influential Subjects and Complete Separation

X

-5.65

-4.75

-3.89

-3.12

-2.93

-2.87

-1.85

-1.25

-0.97

-0.19

-0.15

0.69
1.07
1.18
1.45
2.33
3.57
4.41
4.57
5.85

-i

0

0

0

0

0

0

0

0

0

1

1

1
1
1
1
1
1
1
1
1

-2

0

0

0

0

0

0

0

1
0

1
1
1
1
1
1
1
1
1
1
1

-1
0

0

0

0

0

0

0

1
0

1
1
1
1
1
0

Model
0

0

0

0

0

0

0

0

1

0

1

1

1
1
1
0
0
1
1
1
1

1
0

0

0

0

0

0

1
1
0

1
1
1
1
1
0
0
1
1
1
1

2

0

1
0

0

0

0

1
1
0

1
1
1
1
1
0
0
1
1
1
1

3

0

1

0

0

0

0

1
1
0

1
1
1
1
1
0
0
1
1
0
1

the estimated coefficients change relative to Model 0? Fit "Model -i."
What happens and why? Refer to the discussion in Section 4.5 on
complete separation.

In the exercises in Chapter 4, Problem 3, multi variable models for the
ICU study were formed. Assess the fit of the model(s) that you feel
was (were) best among those considered. This assessment should in-
clude an overall assessment of fit and use of the diagnostic statistics.
Does the model fit? Are there any particular subjects, or covariate
patterns, which seem to be poorly fit or overly influential? If so, how
would you propose to deal with them?
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3. Repeat Exercise 2 for the models developed for the low birth weight
data and the prostate cancer data in Chapter 4, Exercise 4.

4. Fit the final model for the UIS shown in Table 5.10 and obtain the es-
timated covariance matrix of the estimated coefficients.

5. Use the method of logit differences to estimate the odds ratio for site A
versus B within racial groups.

6. As a more complicated exercise in using the method of logit differ-
ences used in Section 5.5, estimate the odds ratio for a 25 year old
white subject with 1 previous drug treatment, no history of IV drug use
and on the longer treatment at site A compared to a 30 year old non-
white subject with 5 previous drug treatments, a recent IV drug user
and on the shorter treatment at site B. We make no claim that this is a
clinically useful comparison. The purpose of the exercise is to illus-
trate the general applicability of the method of logit differences.

7. Obtain 95 percent confidence intervals for the estimates in Exercises 5
and 6.

8. We noted in Section 5.5 that an argument could be made for combin-
ing the previous and recent levels of IV drug use into one group yield-
ing a dichotomous "never-ever" covariate. Evaluate the model using
this covariate in place of history of IV drug use coded at three levels.
Is the dichotomous covariate significant? Do the coefficients for the
other covariates in the model change? How does the fit of the model
compare with the fit of the original model (Table 5.10)?



CHAPTER 6

Application of Logistic Regression
with Different Sampling Models

6.1 INTRODUCTION

Up to this point we have assumed that our data have come from a simple
random sample. Considerable progress has been made in recent years
to extend the use of the logistic regression model to other types of sam-
pling. In this chapter we begin with a review of the classic cohort study.
Next we consider the case-control study and the stratified case-control
study. We conclude with a section that deals with fitting models when
data come from a complex sample survey. The goals are to briefly de-
scribe some of the mathematics involved in fitting the model, to indicate
how the model can be fit using available software and to discuss the in-
terpretation of the estimated parameters. References to the literature for
more detailed treatment of these topics are provided.

Throughout this chapter we assume that the outcome variable is
dichotomous, coded as 0 or 1, and that its conditional probability given
a vector of covariates is the logistic regression model. In addition, we
assume that the number of covariate patterns is equal to the sample size.
Modifications to allow for replication at covariate patterns are a
notational detail, not a conceptual problem.

6.2 COHORT STUDIES

Several variations of the cohort (or prospective) study are in common
use. In the simplest design, a simple random sample of subjects is cho-
sen and the values of the covariates are determined. These subjects are

203
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then followed for a fixed period of time and the outcome variable is
measured. This type of sample is identical to what is often referred to as
the regression sampling model, in which we assume that the values of the
covariates are fixed and measured without error and the outcome is
measured conditionally on the observed values of the covariates. Under
these assumptions and independence of the observations, the likelihood
function for a sample of size n is

When the observed values of y and the logistic regression model are
substituted into the expression for the conditional probability,
L, (P) simplifies to the likelihood function in equation (1.3).

A modification of this situation is a randomized trial where subjects
are first chosen via a simple random sample and then allocated inde-
pendently and with known probabilities into "treatment" groups.
Subjects are followed over time and the outcome variable is measured
for each subject. If the responses are such that a normal errors model is
appropriate we would be naturally led to consider a normal theory
analysis of covariance model which would contain appropriate design
variables for treatment, relevant covariates, and any interactions between
treatment and covariates deemed necessary. The extension of the likeli-
hood function in equation (6.1) to incorporate treatment and covariate
information when the outcome is dichotomous is obtained by including
these variables in the logistic regression model.

Another modification is for the design to incorporate a stratifica-
tion variable such as location or clinic. In this situation the likelihood
function is the product of the stratum-specific likelihood functions, each
of which is similar in form to L, (P) . We would perhaps add terms to the
model to account for stratum- specific responses. These might include a
design variable for stratum and interactions between this design variable
and other covariates.

In each of these designs we use the likelihood function L, (P) as a
basis for determining the maximum likelihood estimates of the un-
known parameters in the vector p. Tests and confidence intervals for
the parameters follow from well-developed theory for maximum likeli-
hood estimation [see Cox and Hinkley (1974)]. The estimated pa-
rameters may be used in the logistic regression model to estimate the
conditional probability of response for each subject. The fact that the
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estimated logistic probability provides a model-based estimate of the
probability of response permits the development of methods for assess-
ment of goodness-of-fit such as those discussed in Chapter 5. Cham-
bless and Boyle (1985) have extended L^p) to the case where the data
come from a stratified simple random sample.

In some prospective studies the outcome variable of interest is the
time to the occurrence of some event. In these studies the time to event
is now frequently modeled using the proportional hazards model [see
Hosmer and Lemeshow (1999)]. In these situations a method of analy-
sis which is sometimes used is to ignore the actual failure time and
model the occurrence or nonoccurrence of the event via logistic regres-
sion. This method of analysis became a popular way to analyze time to
event data when easily used logistic regression software became avail-
able in the major software packages. However, now that software to fit
the Cox or proportional hazards model is just as available and just as
easy to use, we no longer recommend that logistic regression analysis be
used to approximate a time to event analysis.

6.3 CASE-CONTROL STUDIES

One of the major reasons the logistic regression model has seen such
wide use, especially in epidemiologic research, is the ease of obtaining
adjusted odds ratios from the estimated slope coefficients when sam-
pling is performed conditional on the outcome variables, as in a case-
control study. Breslow (1996) has written an excellent review paper.
Besides tracing the development of the case-control study he describes
the statistical issues and controversies surrounding some famous studies
such as the first Surgeon General's report on smoking and health (Sur-
geon General (1964)). He presents some of the newer innovative appli-
cations involving nesting and matching as well as some of the current
limitations of this study design. We encourage any reader not familiar
with this powerful and frequently employed study design to read this
paper. We only consider the use of logistic regression in the simplest
case-control designs in this section. More advanced applications may
be found in Breslow (1996) and cited references.

As noted by Breslow (1996), Cornfield (1951) is generally given
credit for first observing that the odds ratio is invariant under study de-
sign (cohort or case-control). However, it was not until the work of
Farewell (1979) and Prentice and Pyke (1979) that the mathematical
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details justifying the common practice of analyzing case-control data as
if they were cohort data were worked out.

In contrast to cohort studies, the binary outcome variable in a case-
control study is fixed by stratification. The dependent variables in this
setting are one or more primary covariates, exposure variables in x. In
this type of study design, samples of fixed size are chosen from the two
strata defined by the outcome variable. The values of the primary ex-
posure variables and the relevant covariates are then measured for each
subject selected. The covariates are assumed to include all relevant ex-
posure, confounding, and interaction terms. The likelihood function is
the product of the stratum-specific likelihood functions depend on the
probability that the subject was selected for the sample, and the prob-
ability distribution of the covariates.

It is not difficult algebraically to manipulate the case-control likeli-
hood function to obtain a logistic regression model in which the de-
pendent variable is the outcome variable of interest to the investigator.
The key steps in this development are two applications of Bayes theo-
rem. Since the likelihood function is based on subjects selected, we
need to define a variable that records the selection status for each sub-
ject in the population. Let the variable s denote the selection (s =1) or
non-selection (s = 0) of a subject. The full likelihood for a sample of
size «, cases (j = l) and nQ controls (y =0) is

"0

For an individual term in the likelihood function shown in equation
(6.2) the first application of Bayes theorem yields

The second application of Bayes theorem is to the first term in the nu-
merator of equation (6.3). This yields, when y = 1,

P(y = 0|x) P(s = l|x, y = 0) + P(y = l|x) P(S = l|x, y = l) '
(6.4)
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Assume that the selection of cases and controls is independent of the
covariates with respective probabilities T, and T0 ; then

and

Substitution of TP T0 and the logistic regression model, TT(X), for
P(y = l|x) , into equation (6.4) yields

(6.5)

If we divide the numerator and denominator of the expression on the
right side of equation (6.5) by T0[l-7r(x)], the result is a logistic regres-

sion model with intercept term fa =ln(T,/T0) + /?0. To simplify the no-

tation, let TT*(X) denote the right side of equation (6.5). Since we as-
sume that sampling is carried out independent of covariate values,
P(x|s = l) = P(x) , where P(x) denotes the probability distribution of the
covariates. The general term in the likelihood shown in equation (6.3)
then becomes, for y = l,

(6.6)

A similar term for y = 0 is obtained by replacing TT*(X) by [l-7r*(x)j in

the numerator and P(y = l|j = l) by P(y = 0|5 = l) in the denominator of
equation (6.6). If we let

the likelihood function shown in equation (6.2) becomes

(6.7)
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The first term in equation (6.7), £*(P), is the likelihood obtained when
we pretend the case-control data were collected in a cohort study, with
the outcome of interest modeled as the dependent variable. If we as-
sume that the probability distribution of x, P(x), contains no informa-
tion about the coefficients in the logistic regression model, then maxi-
mization of the full likelihood with respect to the parameters in the lo-
gistic model, TT*(X), is only subject to the restriction that
P(;y, = l\Sj = l) = n} /n and P(;V(- = O ,̂- = lj = nQ/n. The likelihood equa-

tion obtained by differentiating with respect to the parameter /?Q assures
that this condition is satisfied. Thus, maximization of the full likelihood
with respect to the parameters in ?r*(x) need only consider that portion
of the likelihood which looks like a cohort study. The implication of
this is that analysis of data from case-control studies via logistic regres-
sion may proceed in the same way and using the same computer pro-
grams as cohort studies. Nevertheless, inferences about the intercept
parameter /30 are not possible without knowledge of the sampling frac-
tions within cases and controls, TO and T, .

The assumption that the marginal distribution of x contains no in-
formation about the parameters in the logistic regression model requires
additional discussion, as it is not true in one historically important situa-
tion, the normal theory discriminant function model. This model was
discussed briefly in Chapters 1 and 2. When the assumptions for the
normal discriminant function model hold, the maximum likelihood es-
timators of the coefficients for the logistic regression model obtained
from conditional likelihoods such as those in equations (6.2) and (6.7)
are less efficient than the discriminant function estimator shown in
equation (2.11) [see Efron (1975)]. However, the assumptions for the
normal theory discriminant function model are rarely, if ever, attained
in practice. Application of the normal discriminant function when its
assumptions do not hold may result in substantial bias, especially when
some of the covariates are dichotomous variables. As a general rule,
estimation should be based on equations (6.2) and (6.7), unless there is
considerable evidence in favor of the normal theory discriminant func-
tion model.

Prentice and Pyke (1979) have shown that the maximum likelihood
estimators obtained by pretending that the case-control data resulted
from a cohort sample have the usual properties associated with maxi-
mum likelihood estimators. Specifically, they are asymptotically nor-
mally distributed, with covariance matrix obtained from the inverse of
the information matrix. Thus, percentiles from the jV(0,l) distribution
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may be used in conjunction with estimated standard errors produced
from standard logistic regression software to form Wald statistics and
confidence interval estimates. The theory of likelihood ratio tests may
be employed to compare models via the difference in the deviance of
the two models, assuming of course that the models are nested. Scott
and Wild (1986) have shown that inferences based on this approach are
sensitive to incorrect specifications of the logit function. They show
that failure to include necessary higher order terms in the logit produces
a model with estimated standard errors that are too small. These results
are special cases of more general results obtained by White (1982).

Modification of the likelihood function to incorporate additional
levels of stratification beyond case-control status follows in the same
manner as described for cohort data (i.e., inclusion of relevant design
variables and interaction terms). Thus, model building and inferences
from fitted models for case-control data may proceed using the meth-
ods developed for cohort data, as described in Chapters 4 and 5. How-
ever, this approach is not valid for matched or highly stratified data.
Appropriate methods for the analysis of the latter are presented in detail
in Chapter 7.

Fears and Brown (1986) proposed a method for the analysis of
stratified case-control data that arise from a two-stage sample. Breslow
and Cain (1988) and Scott and Wild (1991) provide further discussion
and refinement of the method. This approach requires that we know the
sampling rates for the first stage and the total number of subjects in
each stratum. This information is used to define the relative sampling
rates for cases and controls within each stratum. The ratio of these is
included in the model in the form of an additional known constant
added to the stratum- specific logit. Specifically, suppose we let «; be
the total number of subjects with y = j observed out of a possible Nj
and let the Ath stratum- specific quantities be n-k and Njk, 7 = 0,1 and
k = l,2,.,,K. The relative stratum- specific sampling rates are
Wik=(*ik/Nik)/(ni/Ni) and wQk =(n0k/N0k)/(n0/N0). The Fears and
Brown model uses stratum- specific logits of

k = l,2,...K. This model may be handled with standard logistic regres-
sion software by defining a new variable, typically referred to as an off-
set, which takes on the value ln(w l j t/vt>0jfc) and forcing it into the model
with a coefficient equal to 1 .0.
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Breslow and Cain (1988) show that the estimator proposed by
Brown and Fears is asymptotically normally distributed and derive an
estimator of the covariance matrix. Breslow and Zhao (1988) and Scott
and Wild (1991) point out that the estimated standard errors produced
when standard logistic regression software is used to implement the
Brown and Fears method overestimates the true standard errors. They
provide expressions for a covariance matrix that yields consistent esti-
mates of the variances and covariances of the estimated regression coef-
ficients. The matrix is complicated to compute, as it requires a special
purpose program or a high degree of skill in using a package allowing
matrix calculations such as SAS, STATA or S-Plus. For these reasons
we do not present the variance estimator in detail. We note that Breslow
and Zhao use a slightly different offset, ln[(«u/A^,fc)/(«OJt/A^OJt)], which
yields the same estimates of the regression coefficients but a different
intercept.

Before leaving our discussion of logistic regression in the case-
control setting, we briefly consider the application of the chi-square
goodness-of-fit tests for the logistic regression model presented in Sec-
tion 5.2. The essential feature of these tests is that for a particular co-
variate pattern, the number of subjects with the response of interest
among ra sampled is distributed binomially with parameters m and re-
sponse probability given by the hypothesized logistic regression model.
Recall that for cohort data, the likelihood function was parameterized
directly in terms of the logistic probability. For case-control data, the
function n*(\} is the probability P(;y = l|x,s = l). For a particular co-
variate pattern, conditioning on the number of subjects m observed to
have a given covariate pattern is equivalent to conditioning on the event,
(x,5 = l). Thus, for case-control studies in which the logistic regression
model assumption is correct, the conditional distribution of the number
of subjects responding among the m observed to have a particular co-
variate pattern is binomial with parameters m and ?r*(x). Hence, the
results developed in Chapter 5 based on m-asymptotics also apply.

It is often the case that data from case-control studies do not arise
from simple random samples within each stratum. For example, the de-
sign may call for the inclusion of all subjects with y = 1 and a sample of
subjects with y = 0. For these designs there is an obvious dependency
among the observations. If this dependency is not too great, or if we
appeal to a super-population model [see Prentice (1986)], then em-
ploying a theory that ignores it should not bias the results significantly.
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6.4 FITTING LOGISTIC REGRESSION MODELS TO
DATA FROM COMPLEX SAMPLE SURVEYS

Some of the more recent improvements in logistic regression statistical
software include routines to perform analyses with data obtained from
complex sample surveys. These routines may be found in STATA,
SUDAAN (1997) and other less well-known special purpose packages.
Our goal in this section is to provide a brief introduction to these meth-
ods and to illustrate them with an example data set. The reader who
needs more detail is encouraged to see Korn and Graubard (1990),
Roberts, Rao and Kumar (1987), Skinner, Holt and Smith (1989) and
Thomas and Rao (1987).

The essential idea, as discussed in Roberts, Rao and Kumar (1987),
is to set up a function that approximates the likelihood function in the
finite sampled population with a likelihood function formed from the
observed sample and known sampling weights. Suppose we assume that
the population may be broken into k = 1,2,...,K strata, j = 1,2,...,Mk

primary sampling units in each stratum and i = l,2,...,Nkj elements in
the kjth primary sampling unit. Suppose our observed data consist of
nkj elements from mk primary sampling units from stratum k. Denote

the total number of observations as n = > 7 * n,..,. Denote the•̂̂  K _ i ^^^j j—i *y

known sampling weight for the kjith observation as wkji, the vector of
covariates as x^ and the dichotomous outcome as ykji. The approxi-

mate log-likelihood function is

K mt nkj

k=\ ;=1 /=!

Differentiating this equation with respect to the unknown regression co-
efficients yields the vector of p +1 score equations

X'W(y-Ju) = 0, (6.9)

where X is the n x (p +1) matrix of covariate values, W is an n x n di-
agonal matrix containing the weights, y is the nxl vector of observed

outcomes and TC = Wxm),..., THX^,^ )j is the nxl vector of logistic

probabilities. In theory, any logistic regression package that allows
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weights could be used to obtain the solutions to equation (6.9). The
problem comes in obtaining the correct estimator of the covariance ma-
trix of the estimator of the coefficients. Naive use of a standard logistic
regression package with weight matrix W would yield estimates on the
matrix (X'DX)~ where D = WV is an nxn diagonal matrix with gen-

eral element \vkji xn\x k j i11 —tf (xAyVJ . The correct estimator is

Va" r (p) = (X'DX)"1 S(X'DX)'1, (6.10)

where S is a pooled within-stratum estimator of the covariance matrix of
the left side of equation (6.9). Denote a general element in the vector in

(6.9) as z'kji - x'kji
wkji(yicji ~7U(xkji))^ me sum over tne nkj sampled units in

the y'th primary sampling unit in the kth stratum as zkj,= ^T .* zkji and

their stratum-specific mean as zL =—^" h z k i . The within-stratumF * mt^-' '
estimator for the kth stratum is

-, JS

The pooled estimator is S = ̂  _ (l - fk )SA. The quantity (l - fk) is
called the finite population correction factor where fk =mk/Mk is the
ratio of the number of observed primary sampling units to the total
number of primary sampling units in stratum k. In settings where Mk is
unknown it is common practice to assume it is large enough that fk is
quite small and the correction factor is equal to one.

The likelihood function in (6.8) is only an approximation to the
true likelihood. Thus, we would expect that inferences about model pa-
rameters should be based on univariable and multivariable Wald statis-
tics comparing estimated coefficients to an estimate of their variance
computed from specific elements of (6.10) in the same manner as de-
scribed in Chapter 2. However, simulations in Korn and Graubard
(1990) as well as Thomas and Rao (1987) show that when data come
from a complex sample survey from a finite population, use of a modi-
fied Wald statistic and the F-distribution (details to follow) yield tests
with better adherence to the stated alpha-level. STATA and SUDAAN
report results from these modified Wald tests. The problem is that none
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of the simulations referred to actually examines logistic regression
models fit using continuous and categorical covariates with estimates
obtained from (6.9) and variances from (6.10). Korn and Graubard
appear to use a linear regression with normal errors model and refer to
theoretical results in Anderson (1984) that depend on rather stringent
assumptions of multivariate normality. Thomas and Rao examine mod-
els with a dichotomous or polychotomous outcome and a few categori-
cal covariates. Another problem, in our opinion, is the fact that software
pacakges, for example STATA, use the t-distribution to assess signifi-
cance of Wald statistics for individual coefficients. Given the paucity of
appropriate simulations and theory we are not convinced that there is
sufficient evidence to support the use of the modified Wald statistic with
the F-distribution with logistic regression models. One possible justifi-
cation is that the use of the modified Wald statistic with the F-
distribution is conservative in that significance levels using this approach
are, in general, larger than those obtained from treating the Wald statis-
tics as being multivariate normal for sufficiently large samples (as is as-
sumed in previous chapters). We present results based on both tests in
the example.

The relationship between the Wald test and the modified Wald test
is as follows. Let W denote the Wald statistic for testing that all p slope
coefficients in a fitted model are equal to zero, i.e.,

(6.11)

•*• ^ / A \
where p denotes the vector of p slope coefficients and Var lp is the

V / p x p

pxp sub-matrix obtained from the full (p + l)x(p + l) matrix in equa-
tion (6.10). That is, one leaves out the row and column for the constant
term. The p-value is computed using a chi-square distribution with p
degrees of freedom as p-value = P[#2(/?) > WJ.

The adjusted Wald statistic is

sp

where ^ = 1^ _ mk)~K is the total number of sampled primary sam-

pling units minus the number of strata. The ;?-value is computed using
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an F-distribution with p and (s - p + 1) degrees of freedom as p-value

As an example of a study involving stratification, clustering and
unique sampling weights, we used data from the National Health and
Nutrition Examination Survey (NHANES III), conducted by the Na-
tional Center for Health Statistics (NCHS) between 1988 and 1994.
This was the third in a series of data collection programs carried out by
the NCHS in order to obtain health and nutrition data on the population
of the United States. (NHANES I took place between 1971-74,
NHANES II between 1976-80.) Data were collected via physical ex-
aminations and clinical and laboratory tests. Prevalence data were col-
lected for specific diseases and health conditions. In this survey a multi-
stage probability sample of 39,695 subjects was selected representing
more than 250 million people living in the United States. For purposes
of this example we consider only adults 20 years of age or older. There
were a total of 17,030 subjects in this subset who represented 177.2 mil-
lion adults living in the U.S. at that time. In the NHANES III design, 49
pseudo-strata were created with 2 pseudo-psu's identified within each
such stratum (see NCHS (1996)). These features must be adhered to in
the appropriate analysis of the data.

A code sheet describing the variables used in this example is pre-
sented in Table 6.1. For this example, a dichotomous outcome variable,
HBP, was generated representing whether the subject had high blood
pressure (defined by an average systolic blood pressure PEPMNK1R >
140 mmHg).

It should be noted that the NHANES III, like just about any other
large scale survey, suffers from the fact that complete data are not avail-
able for every subject. This problem is exacerbated in complex sample
surveys since every subject carries along a unique statistical weight rep-
resenting the number of individuals in the population he or she repre-
sents. Hence, if that subject is missing a measurement on just one of the
variables involved in a multi variable problem, then that subject will be
eliminated from the analysis and the sum of the statistical weights of the
subjects remaining will not equal the size of the population for which
inference is to be made.

This problem has been addressed extensively by survey statisticians
and solutions to the problem range from redistributing the statistical
weights of the dropped subjects among the subjects remaining to im-
puting every missing value so that the weights will be preserved. An-
other, perhaps simplistic, approach is simply to run the analyses with the
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Table 6.1 Variables in the NHANES III Data Set
Variable Description Codes / Values Name

1 Respondent Identification
Number

2 Pseudo-PSU
3 Pseudo-stratum
4 Statistical weight
5 Age
6 Sex

7 Race

8 Body Weight
9 Standing Height
10 Average Systolic BP
11 Average Diastolic BP
12 Has respondent smoked >

100 cigarettes in life
13 Does repondent smoke

cigarettes now?
14 Smoking

15 Serum Cholesterol
16 High Blood Pressure

1,2
01-49
225.93 - 139744.9
(in years)
0 = Female
1 = Male
1 = White
2 = Black
3 = Other
(in pounds)
(inches)
(mm Hg)
(mm Hg)
l=Yes
2 = No
l=Yes
2 = No
1 = if HAR1 = 2
2 = ifHARl=l&HAR3=2
3 = ifHARl=l&HAR3=l
mg/100ml
OifPEPMNKIR < 140
1 ifPEPMNKIR > 140

SEQN

SDPPSU6
SDPSTRA6
WTPFHX6
HSAGEIR
HSSEX

DMARACER

BMPWTLBS
BMPHTIN
PEPMNK1R
PEPMNK5R
HAR1

HAR3

SMOKE

TCP
HBP

subjects having complete data and assume that the relationships would
not change had all subjects been used. Because it is our intention in this
book to demonstrate the use of logistic regression analysis with complex
survey data rather than to obtain precise population parameter estimates,
we will follow this simple approach.

A logistic regression model was fit containing HSAGEIR, HSSEX,
two dummy variables for DMARACER, BMPWTLBS BMPHTIN and
two dummy variables for SMOKE. The model was fit using STATA's
svylogit command with dependent variable HBP, pweight=WTPFHX6,
strata=SDPSTRA6 and psu=SDPPSU6. Note that in this first analysis
complete data are available on only 16,963 of the original 17,030
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Table 6.2 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for a
Logistic Regression Model for the NHANES III Study with
Dependent Variable = HBP (n - 16,963)

Variable
HSAGEIR
HSSEX
RACE2
RACE3
BMPWTLBS
BMPHTIN
SMK2
SMK3
CONSTANT

Coeff.
0.081
0.204
0.558
0.044
0.012

-0.059
-0.076

0.061
-4.257

Std. Err.
0.0025
0.0755
0.0744
0.3005
0.0008
0.0126
0.0950
0.1051
0.8040

z
32.49
2.70
7.51
0.15

13.90
-4.70
-0.81

0.58
-5.30

P> Izl

< 0.001
0.009

< 0.001
0.885

< 0.001
< 0.001

0.425
0.564

< 0.001

959
0.076,
0.052,
0.409,

-0.560,
0.010,

-0.085,
-0.267,
-0.150,
-5.873,

fcCI
0.086
0.356
0.708
0.647
0.013

-0.034
0.114
0.272

-2.641

subjects and these represent 176.9 million adults. The results are shown
in Table 6.2.

We assess the overall significance of the model via the multivariable
Wald test and adjusted Wald test for the significance of the eight regres-
sion coefficients in the model. For the model in Table 6.2 the value of
the test in (6.11) is

8x8
= 1806,

IS
o ^ / ~ \where p is the vector of 8 estimated slope coefficients and Var p)

\ /8x8
the 8x8 sub-matrix computed using (6.10). The significance level of
the test is P[#2(8)>1806]<0.001. The value of s for the adjusted Wald

test is 98-49 = 49 and the adjusted Wald test from (6.12) is

p -_ (49-8 + 1)
4 9 x 8

x 1806 = 193.50

and p = P[F(8,42) £ 193.50] < 0.001. Both tests indicate that at least one
of the coefficients may be different from zero.

The results in Table 6.2 indicate, on the basis of the individual p-
values for the Wald statistics, that smoking may not be significant. As
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we noted, the function in equation (6.8) is not a true likelihood func-
tion. Thus, we cannot use the partial likelihood ratio test to compare a
smaller model to a larger model. In this case we must test for the sig-
nificance of the coefficients of excluded covariates using a multivariable
Wald test based on the estimated coefficients and estimated covariance
matrix from the larger model.

Application of the Wald test to assess the significance of the coeffi-
cient for smoking (SMK2 and SMK3) from the model in Table 6.2 uses
the vector of estimated coefficients

P' = (-0.0764019, 0.0610105),

and the 2x2 sub-matrix of estimated variances and covariances ob-
tained from the full 8x8 matrix, not shown, computed using (6.10)

* /A\ _ [0.009018 0.004660'

" 0.004660 0.011036

The Wald test statistic is

1-1

2x2
1 0 = 1.
j

8177,

with ap-value obtained as P[#2(2)>1.8177] = 0.403. The adjusted Wald
test is

p= (49-2 + 1) x
49x2

and p = P[F(2,48) > 0.8903] = 0.4172. We note that the /?-value for the
adjusted Wald test is slightly larger than that of the Wald test; however,
neither is significant. Thus, both tests indicate that we do not have suffi-
cient evidence to conclude that the coefficients for SMOKE are signifi-
cantly different from zero. We now fit the reduced model.

The results of fitting the model deleting SMK2 and SMK3 are
shown in Table 6.3. The first thing we do is to compare the magnitude
of the coefficients in Table 6.3 to those in Table 6.2 to check for con-
founding due to the excluded covariates. As can be seen there is virtu-
ally no difference in the two sets of coefficients suggesting that smoking
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Table 6.3 Estimated Coefficients, Standard Errors,
z-Scores, Two-Tailed p-Values and 95% Confidence Intervals
for a Reduced Logistic Regression Model for the NHANES
III Study with Dependent Variable = HBP (n = 16,964)

Variable

HSAGEIR
HSSEX
RACE2

Coeff.

0.080
0.194
0.572

Std. Err.

0.0027
0.0791
0.0710

z
30.04

2.45
8.05

P > Izl

< 0.001
0.018

< 0.001

95 % CI

0.075, 0.085
0.035, 0.353
0.429, 0.714

RACE3 0.052 0.3007 0.17 0.863 -0.552, 0.656
BMPWTLBS 0.011 0.0008 13.61 < 0.001 0.010, 0.013
BMPHTIN -0.059 0.0127 -4.65 < 0.001 -0.084, -0.033
CONSTANT -4.211 0.7940 -5.30 < 0.001 -5.807, -2.616

is not a confounder of the relationship between any of the remaining
covariates and high blood pressure.

We note that the number of subjects with complete covariate data in
the smaller model is 16,964. Since the increase is so small we are not
going to worry about fitting the models, full and reduced, to different
data. If the sample sizes were substantially different then we would first
fit the smaller model on the smaller sample size to have more compara-
ble results. Then we would fit the model on the larger data set to see
what, if any, changes occur in estimates of the coefficients.

Following the guidelines we have established in previous chapters,
at this point in the analysis we would:

• determine whether the continuous covariates in the model are
linear in the logit.

• determine whether there are any significant interactions among
the independent variables in the model.

• assess model calibration and discrimination through goodness-
of-fit tests and area under the ROC curve.

• examine the case-wise diagnostic statistics to identify poorly fit
and influential covariate patterns.

Unfortunately, none of these procedures is readily available when
modeling data from complex sample surveys. Thomas and Rao (1987)
consider chi-square goodness-of-fit tests and Roberts, Rao and Kumar
(1987) extend the diagnostics discussed in Chapter 5 to the survey sam-
pling setting. However, the tests and diagnostic statistics have not, as yet,
been implemented into any of the commonly available packages. The
computations required to obtain the tests, measures of leverage, h, and
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Table 6.4 Estimated Coefficients, Standard Errors,
z-Scores, Two-Tailed p-Values and 95% Confidence Intervals
for a Logistic Regression Model Containing the Variables in
Table 6.3 but Assuming the Data Come From a Simple
Random Sample. Dependent Variable = HBP (n = 16,964)

Variable
HSAGEIR
HSSEX
RACE2
RACE3
BMPWTLBS
BMPHTIN
CONSTANT

Coeff.
0.070
0.090
0.477
0.092
0.008

-0.045
-3.872

Std. Err.
0.0014
0.0613
0.0509
0.1431
0.0006
0.0085
0.5293

z
49.86

1.48
9.36
0.64

13.74
-5.31
-7.32

P > l z l
< 0.001

0.140
< 0.001

0.522
< 0.001
< 0.001
< 0.001

95%
0.067,

-0.030,
0.377,

-0.189,
0.007,

-0.062,
-4.909,

> C I
0.072
0.211
0.576
0.372
0.010

-0.028
-2.834

the contribution to fit, AX2, are not trivial and require considerable skill
in programming matrix calculations. In addition the version of Cook's
distance is not an easily computed function of leverage and contribution
to fit. Thus, at present, there is little in the way of model checking and
fit assessment that can be done within packages like STATA and
SUDAAN and we use the model in Table 6.3 as our final model.

Statistical analyses of survey data that take the survey design (strati-
fication and clustering) and statistical weights into consideration are
generally called "design-based." When such features are ignored and
the data are handled as if they arose from a simple random sample, the
resulting statistical analyses are termed "model-based." One approach
that analysts have used when dealing with survey data is to estimate pa-
rameters using design-based methods but to use model-based methods
to perform other functions. For example, in this analysis, determination
of linearity of the logit for the continuous covariates in the model, as-
sessment of model calibration and examination of diagnostic statistics
could be carried out by treating the data as if they resulted from a sim-
ple random sample. Any discoveries made in those analyses would then
be implemented in the final design-based analysis. For example, using
fractional polynomial analysis (which, as currently implemented in
STATA, does not take into account survey features) reveals that
HSAGEIR is not linear in the logit and that the appropriate transforma-
tion is to include two terms, x and x3. We also find that BMPWTLBS is
not linear in the logit with recommended transformation ln(x) . This
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knowledge, obtained from the model-based analysis may then be im-
plemented into the more appropriate design-based analysis to obtain the
slope coefficients and estimated odds ratios. Since no methods cur-
rently exist in standard software packages for assessing fit of logistic
models derived from complex sample surveys, a similar strategy may be
used to carry out goodness of fit testing. Coefficients from the design-
based model are used to obtain probabilities of the response for each
subject in the study. STATA facilitates this process by allowing the ex-
ternal coefficients (obtained from the design-based analysis) to be im-
ported and used to compute probabilities of response for which good-
ness-of-fit may be assessed in a model-based environment assuming the
data arose from a simple random sample. Exercises at the end of this
chapter will allow readers to practice some of these methods.

To illustrate the fact that design-based and model-based procedures
may result in different parameter estimates, we present in Table 6.4 the
model corresponding to the one presented in Table 6.3, but using a
model-based analysis that ignores the survey features of stratification,
clustering and unique statistical weights. Although in this example both
modeling approaches produce similar coefficients and associated p-
values, this would not necessarily be true in general - especially if the
sample sizes were somewhat smaller. It should also be noted that for
linear estimates such as means, totals and proportions, design-based
standard errors are typically much larger than model-based standard
errors. In fact, for linear estimates, the design effect (defined as the ra-
tio of the variance under design-based analysis to the variance under
simple random sampling) is typically much larger than 1. This measure
reflects the inflation in variance that occurs due to homogeneity within
clusters and can be expressed as 1 + (n - \)py, where p is the intracluster

correlation coefficient and n is the average number of units in the sam-
pled cluster. These intracluster correlation coefficients can range from
small negative values (when the data within clusters are highly heteroge-
neous) to unity (when the data in clusters are highly correlated). Only
when the data are highly heterogeneous within clusters will the design
effect be less than 1. However, as described by Neuhaus and Segal
(1993), design effects for regression coefficients can be expressed as
1 + (n - l)pxpy. Note that in this expression the intracluster correlation
coefficient for the independent variable is multiplied by the intracluster
correlation coefficient for the dependent variable, both of which are by
definition smaller than 1. As a result, the design effect will be smaller
than that seen for means, totals, or proportions. We also note that since
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Table 6.5 Estimated Odds Ratios and
vals for Variables in Table 6.3 Using
"Model Based" Analysis (n = 16,964)

95% Confidence Inter-
"Design-Based" versus

Variable
HSAGEIR
HSSEX
RACE2
RACES
BMPWTLBS
BMPHTIN

"Design-Based"
Analysis"

Odds Ratio 95% CI
1.083 1.077, 1.089
1.214 1.036, 1.423
1.771 1.536,2.043
1.053 0.576, 1.928
1.012 1.010, 1.013
0.943 0.919, 0.967

''Model-Based"
Analysis

Odds Ratio 95% CI
1.072
1.095
1.611
1.096
1.008
0.956

1.069, 1.075
0.971, 1.235
1.458, 1.780
0.828, 1.451
1.007, 1.010
0.940, 0.972

px and p are not necessarily in the same direction, the product of the
intracluster correlation coefficients could be negative and the resulting
design effect could be smaller than 1.

The estimated odds ratios for the model covariates and their 95
percent confidence intervals under both design-based and model-based
scenarios are presented in Table 6.5. In this table we simply included
all continuous variables as linear terms. The interpretation of the esti-
mated odds ratios and confidence intervals in Table 6.5 is the same as in
earlier chapters. For example, the odds of high blood pressure for
males is estimated to be 1.21 times higher (95% confidence interval:
1.04, 1.44) than the odds of high blood pressure for females, control-
ling for age, race, weight, and height. Although not dramatic in this ex-
ample, the effect of ignoring the survey features is clear since this odds
ratio would only have been 1.10 (95% confidence interval: 0.97, 1.24)
if the data were incorrectly treated as a simple random sample. One in-
terprets the remaining odds ratios and confidence intervals in Table 6.5
in a similar manner.

In summary, we fit logistic regression models to data obtained from
complex sample surveys via an approximate likelihood that incorporates
the known sampling weights. We assess the overall model significance
as well as tests of subsets of coefficients using multivariable Wald or
adjusted Wald tests. However, the interpretation of odds ratios from a
fitted model is the same as for models fit to less-complicated sampling
plans. We note that work needs to be done to make available the meth-
ods of assessing fit and case-wise diagnostics obtained from complex
sample surveys to the typical user of logistic regression software.
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EXERCISES

1. Use the data presented in Breslow and Zhao (1988) to perform the
analyses reported in that paper and the analysis reported in Fears
and Brown (1986).

2. Fit the model in Table 6.3 using the suggested fractional polyno-
mials for HSAGEIR and BMPWTLBS. Use this new, non-linear
model to provide appropriate odds ratio estimates. Use STATA to
import the coefficients from the design-based analysis to compute
probabilities of response and assess goodness-of-fit.

3. Use the data from the NHANES III survey described in Table 6.1
to find the best model for assessing factors associated with high
cholesterol (defined as TCP > 230 mg/lOOmL). Prepare a table of
estimated odds ratios and 95 percent confidence intervals for all
covariates in the final model. Compare results for the design-
based versus the model-based analysis. Assuming the data re-
sulted from a simple random sample, determine whether the con-
tinuous covariates in the model are linear in the logit, determine
whether there are any significant interactions among the inde-
pendent variables in the model, assess model calibration and dis-
crimination, and identify poorly fit and influential covariate pat-
terns. Develop your final design-based model taking into consid-
eration all of these aspects of model development.



CHAPTER 7

Logistic Regression for Matched
Case-Control Studies

7.1 INTRODUCTION

An important special case of the stratified case-control study discussed
in Chapter 6 is the matched study. A discussion of the rationale for
matched studies may be found in epidemiology texts such as Breslow
and Day (1980), Kleinbaum, Kupper, and Morgenstern (1982), Schles-
selman (1982), Kelsey, Thompson, and Evans (1986) and Rothman and
Greenland (1998). In this study design, subjects are stratified on the
basis of variables believed to be associated with the outcome. Age and
sex are examples of commonly used stratification variables. Within
each stratum, samples of cases (y = l) and controls (y = 0) are chosen.
The number of cases and controls need not be constant across strata, but
the most common matched designs include one case and from one to
five controls per stratum and are thus referred to as 1-M matched
studies.

In this chapter we develop the methods for analyzing general
matched studies. Greater detail is provided for the 1-1 design as it is
the most common type of matched study. We also illustrate the meth-
ods for the general 1-M matched study with data from a 1-3 design.

We begin by providing some motivation and rationale for the need
for special methods for the matched study. In Chapter 6 it was noted
that we could handle the stratified sample by including the design vari-
ables created from the stratification variable in the model. This ap-
proach works well when the number of subjects in each stratum is large.
However, in a typical matched study we are likely to have few subjects
per stratum. For example, in the 1-1 matched design with n case-

223
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control pairs we have only two subjects per stratum. Thus, in a fully
stratified analysis with p covariates, we would be required to estimate
n + p parameters consisting of the constant term, the p slope coefficients
for the covariates and the n - 1 coefficients for the stratum-specific de-
sign variables using a sample of size 2n. The optimality properties of
the method of maximum likelihood, derived by letting the sample size
become large, hold only when the number of parameters remains fixed.
This is clearly not the case in any l-M matched study. With the fully
stratified analysis, the number of parameters increases at the same rate as
the sample size. For example, with a model containing one dichoto-
mous covariate it can be shown (see Breslow and Day (1980)) that the
bias in the estimate of the coefficient is 100% when analyzing a
matched 1-1 design via a fully stratified likelihood. If we regard the
stratum-specific parameters as nuisance parameters, and if we are willing
to forgo their estimation, then we can use methods for conditional infer-
ence to create a likelihood function that yields maximum likelihood
estimators of the slope coefficients in the logistic regression model
which are consistent and asymptotically normally distributed. The
mathematical details of conditional likelihood analysis may be found in
Cox and Hinkley (1974).

Suppose that there are K strata with nlk cases and n0k controls in
stratum fc, k = l,2,...,K. We begin with the stratum-specific logistic re-
gression model

where ak denotes the contribution to the logit of all terms constant
within the fcth stratum (i.e., the matching or stratification variable(s)). In
this chapter, the vector of coefficients, p, contains only the p slope coef-

ficients, P' = (j3,,j32,...,/O. It follows from the results in Chapter 3 that

each slope coefficient gives the change in the log-odds for a one unit
increase in the covariate holding all other covariates constant in every
stratum. This is important to keep in mind as the steps, to be described,
in developing a conditional likelihood result in a model that does not
look like a logistic regression model yet it contains the coefficient vec-
tor, P. The fact that the model does not look like a logistic regression
model leads new users to think that estimated coefficients must be modi-
fied in some way before they can be used to estimate odds ratios. This
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is not the case and we pay particular attention in this chapter to estima-
tion and interpretation of odds ratios.

The conditional likelihood for the /cth stratum is obtained as the
probability of the observed data conditional on the stratum total and the
total number of cases observed, the sufficient statistic for the nuisance
parameter. In this setting it is the probability of the observed data rela-
tive to the probability of the data for all possible assignments of n]k

cases and nok controls to nk = n^k + n0k subjects. The number of possi-
ble assignments of case status to nlk subjects among the nk subjects, de-
noted here as ck, is given by the mathematical expression

nk\

Let the subscript j denote any one of these ck assignments. For any as-
signment we let subjects 1 to nlk correspond to the cases and subjects
nlk +1 to nk to the controls. This is indexed by / for the observed data
and by / . for thej th possible assignment. The conditional likelihood is

"<n/=«,, +1
-t "u

(7.2)"«n
The full conditional likelihood is the product of the lk(f>) in (7.2) over
the K strata, namely,

(7.3)

If we assume that the stratum-specific logistic regression model in (7.1)
is correct then application of Bayes theorem to each P(X|)>) term in
(7.2) yields
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"uIK-

Note that when we apply Bayes theorem all terms of the form
exp(c^ )/(l + exp(afc + P'x)) appear equally in both the numerator and

denominator of equation (7.2) and thus cancel out. Algebraic simplifi-
cation yields the function shown in equation (7.4) where P is the only
unknown parameter. The conditional maximum likelihood estimator
for |J is that value that maximizes equation (7.3) when lk(f) is as shown
in equation (7.4). Except in one special case it is not possible to express
the likelihood in (7.4) in a form similar to the unconditional likelihood
in equation (1.4). However, as we noted earlier the coefficients have not
been modified and thus have the same interpretation as those in equa-
tion (7.1).

Software to perform the necessary calculations is available in many
packages. For example STATA has a special conditional logistic re-
gression command. In SAS, one must use a modification of the pro-
portional hazards regression command, PHREG. The calculations for
this chapter were performed using STATA's clogit command. Since
not all packages have special commands for matched studies we show in
the next section how one may use a standard logistic regression software
package to perform the calculations for the 1-1 matched design.

7.2 LOGISTIC REGRESSION ANALYSIS FOR THE
1-1 MATCHED STUDY

The most frequently used matched design is one in which each case is
matched to a single control, thus there are two subjects in each stratum.
To simplify the notation, let \]k denote the data vector for the case and
xQk the data vector for the control in the kth stratum or pair. Using this
notation, the conditional likelihood for the A;th stratum from equation
(7.4) is
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As we described in the previous section when we made the decision
not to estimate stratum-specific covariate effects (i.e., the intercepts) we
changed the likelihood from one modeling the probability of the out-
come to one modeling the probability of the covariate values. Given
specific values for P, x]k and xQk, equation (7.5) is the probability that
the subject identified as the case is in fact the case under the assump-
tions that: (1) we have two subjects one of whom is the case and (2) the
logistic regression model in equation (7.1) is the correct model. For
example suppose we have a model with a single dichotomous covariate
and /? = 0.8. If the observed data are xllc =1 and xQk =0 then the value
of equation (7.5) is

0.8x1

'* (ft" 0.8) = -̂ — ĵ  = 0.690.

Thus, the probability is 0.69 that a subject with x = 1 is the case com-
pared to a subject with x - 0 . On the other hand, if x]k = 0 and xQk = 1
then

0.8x0

=0.310

and the probability is 0.31 that a subject with * = 0 is the case com-
pared to a subject with x - \ ,

It also follows from equation (7.5) that if the data for the case and
the control are identical, x u =x O J t , then 4(p) = 0.5 for any value of P
(i.e., the data for the case and control are equally likely under the
model). Thus, case-control pairs with the same value for any covariate
are uninformative for estimation of that covariate' s coefficient. We use
the term uninformative to describe the fact that the value of the covariate
does not help distinguish which subject is more likely to be the case.
This tends to occur most frequently with dichotomous covariates where
common values, often called concordant pairs, are most likely to occur.
A fact not discussed in this chapter, which can be found in Breslow and
Day (1980), is that the maximum likelihood estimator of the coefficient
for a dichotomous covariate in a univariable conditional logistic regres-
sion model fit to 1-1 matched data is the log of the ratio of discordant
pairs. The practical significance of this is that the estimator may be
based on a small fraction of the total number of possible pairs. We feel
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it is good practice to form the 2x2 table cross-classifying case versus
control for all dichotomous covariates in order to determine the number
of discordant pairs. This is essentially a univariable logistic regression
and univariable analyses of all covariates should be among the first steps
in any model building process. The reader should be aware that if there
are not both types of pairs, (xlk = I,x0k = 0) and (x]k = Q,x0k = l), present
in the data then the estimator is undefined. In this case software pack-
ages will either-remove the covariate from the model or give an imprac-
ticably large coefficient and standard error. This is the same zero cell
problem discussed in Chapter 4, Section 5. The same type of problem
can occur for polychotomous covariates but it involves more complex
relationships than simply a zero frequency cell in the cross-classification
of case versus control (Breslow and Day (1980)).

As we noted, not all software packages have specific commands for
maximizing the conditional log-likelihood. It is possible, with some
data manipulation, to use a standard logistic regression package to
maximize the full conditional log-likelihood for the 1-1 design. We
begin by re-expressing equation (7.5) by dividing its numerator and
denominator by e^*01 yielding

~X<H

(7.6)

The expression on the right side of equation (7.6) is the usual logistic
regression model with the constant term set equal to zero, ft =0, and
data vector equal to the data value of the case minus the data value of
the control, xj =(x1A.-x0/ t). It follows that the full conditional likeli-
hood may be expressed as

'(0=11
I\=n

where yk = 1.
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This observation allows us to use standard logistic regression soft-
ware to compute the conditional maximum likelihood estimates and
obtain estimated standard errors of the estimated coefficients. To do
this we define the sample size as the number of case-control pairs, use as
covariates the differences xj, set the values of the response variable
equal to 1, yk=l, and exclude the constant term from the model. Thus,
from a computational point of view, the 1-1 matched design may be fit
using any logistic regression program. However, the logistic regression
package must allow the user to exclude the constant term and it must
also allow a setting where the outcome is constant. For example
STATA's logit command does allow the user to exclude the constant
term but does not permit the outcome to be constant. SAS's procedure
LOGISTIC allows both.

We have found that the process of creating the differences and set-
ting the outcome equal to 1 can be confusing to new users. As we noted
earlier in this chapter, it is important to distinguish between the model
being fit to the data and the computational manipulations used to apply
standard logistic regression software. The process becomes less con-
fusing when considering modeling strategies if we focus on terms in the
logistic regression model first and then perform the computations nec-
essary to obtain the parameter estimates. A few examples should serve
to illustrate this point.

First consider a dichotomous independent variable coded zero or
one. It generates a single coefficient in the logit, regardless of whether
we enter the variable as a design variable or treat it as if it were continu-
ous. It follows that the difference variable, jc*, computed as the differ-
ence between the two dichotomous variables in the pair, may take on
one of three possible values, (-1, 0, or 1). If we mistakenly thought of

jc* as being the actual data we would have created two design variables.
This should not be done. Instead, the correct method is to treat jc* as if
it were continuous in the model.

As a second example, consider a variable such as race, coded at
three levels. To correctly model this variable in the 1-1 matched de-
sign we would create, for each case and control in a pair, the values of
the two design variables representing race. Then we would compute the
difference between the case and control for each of these two design
variables and treat each of these differences as if they were continuous.

The same process is followed for any categorical covariate. For
example, suppose we wished to examine the scale in the logit of a con-
tinuous variable. One approach illustrated in Chapter 4 is to create de-
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sign variables corresponding to the quartiles of the distribution and then
plot their estimated coefficients. (Note: the quartiles come from the
distribution in the combined sample of 2K observations.) In the
matched study we would do the same thing, with the one intermediate
step of calculating the difference between the three design variables for
case-control pairs. The software package may not have the option to
indicate that these differences in design variables are from the same
variable. Thus, we have to be sure that all three are included in any
model we fit.

One other point to keep in mind is that since the differences be-
tween variables used to form strata are zero for all strata, they do not
enter any model in main effects form. However, we may include inter-
action terms between stratification variables and other covariates, as dif-
ferences in these are likely not to be zero.

In summary, the conceptual process for modeling matched data is
identical to that already illustrated for unmatched data. If we develop
our modeling strategies in the matched 1-1 design as if we had an un-
matched design and then use the conditional likelihood, we will always
be proceeding correctly.

7.3 AN EXAMPLE OF THE USE OF THE LOGISTIC
REGRESSION MODEL IN A 1-1 MATCHED STUDY

For illustrative purposes a 1-1 matched data set was created from the
low birth weight data by randomly selecting for each woman who gave
birth to a low birth weight baby, a mother of the same age who did not
give birth to a low birth weight baby. For three of the young mothers
(age less than 17) it was not possible to identify a match since there were
no remaining mothers of normal weight babies of that age. The data set
consists of 56 age matched case-control pairs. With the exception of the
number of first trimester visits, which has been excluded by us due to its
lack of importance in the earlier analysis, the variables are the same as
those in the low birth weight data set described in Table 1.6. In this ex-
ample the number of prior pre-term deliveries has been coded as a yes
(l)-no (0) variable. Thus, at the initial stage of model building we have
available the following variables: race (RACE), smoking status
(SMOKE), presence of hypertension (HT), presence of uterine irritabil-
ity (UI), presence of previous pre-term delivery (PTD), and the weight
of the mother at the last menstrual period (LWT). The variable AGE is
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available when we evaluate interactions. The data are available on the
two web sites noted in the Preface in a file named LOWBWT11.DAT.

As we noted earlier, the model building in this chapter is done us-
ing STATA's clogit command. Thus, at this point we do not need to
create the difference variables that are required if another package is
used.

The results of fitting univariable models are displayed in Table 7.1.
Only the coefficients for SMOKE and PTD are significant at the five
percent level. The frequencies of the discordant pairs in the last column
indicate that "thin data" may be a problem for each of the nominal
scale covariates but HT more so than the other covariates. We will need
to pay close attention to the estimated standard errors and confidence
interval widths in our multivariable models.

Before fitting multivariable models we note that the "intercept
only" model (or base model) for assessing overall significance in the
1-1 design is a model with likelihood

a value usually not presented in computer output.
Since there are only six variables eligible for inclusion in the

model, we begin model development with all variables in the model. Ta-
ble 7.2 presents the results of fitting this model. We see in Table 7.2
that neither design variable for RACE is significant. In addition, the
value of the partial likelihood ratio test for the exclusion of RACE is
G = 0.885 which, with 2 degrees-of-freedom, yields a p-valuQ of 0.642.
However, RACE may be a confounder of the effects of the other vari-
ables in the model. To assess this, we display the results of fitting the
model without RACE in Table 7.3. Comparing the estimated coeffi-
cients in Table 7.2 and Table 7.3, we see that RACE seems to only mod-
estly confound the association for LWT, whose coefficient changes by
16.7%. Because the change is not too substantial, and because we have
a small sample size (56 pairs), we choose to exclude RACE from the
model. We proceed to the next step in which we identify the correct
scale for LWT.

In general the same methods discussed in Chapter 4 can be used
with matched studies. We demonstrate the use of fractional polynomials
and design variables. The smoothed scatterplots cannot be used unless
we ignore the case-control matches. We comment on breaking the
matches at the end of the section.
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Table 7.1 Univariable Logistic Regression Models for the
1-1 Matched Low Birth Weight Data, n = 56 Pairs

Discordant Pairs
Variable Coeff. Std. Err. OR 95 %CI (n,n,«m)+

LWT
SMOKE
RACE_2
RACE_3
PTD
HT
UI

-0.009
1.012
0.087

-0.029
1.322
0.847
1.099

0.0062
0.4129
0.5233
0.3968
0.5627
0.6901
0.5774

0.91*
2.75
1.09
0.97
3.75
2.33
3.00

(0.81,
(1.22,
(0.39,
(0.45,
(1.24,
(0.60,
(0.97,

1.03)
6
3
2

11,
9.
9

.18)

.04)
• 11)
,30)
.02)
.30)

#
(22,

#
#

(15,
(7,
(12,

8)

4)
3)
4)

+: Discordant Pairs: «]0 = frequency of (x} = 1, JCG = 0),
*: Odds ratio for a 10 pound increase in weight
#: Not relevant

/ \ ^n0] = frequency of (xl = 0, XQ = 1) and OR = nlo/nol

The results of using fractional polynomials to examine the scale of
LWT are presented in Table 7.4. The first p-value, 0.050, in the 5th
column indicates that treating LWT as linear in the logit offers a signifi-
cant improvement over the model not including LWT. The best single
term model uses LWT3 but the second p-value, 0.334, indicates that this
transformation is not significantly better than the linear model. The
best two-term model uses LWT3 and LWT3 x In(LWT). The p-value

Table 7.2 Estimated Coefficients, Estimated
Standard Errors, Wald Statistics and Two-Tailed
p -Values for the Model Containing All Covariates
Variable
LWT
RACE 2
RACE.3
SMOKE
PTD
HT
UI

Coeff.
-0.018

0.571
-0.025

1.401
1.808
2.361
1.402

Std. Err.
0.0101
0.6896
0.6992
0.6278
0.7887
1.0861
0.6962

z
-1.82

0.83
-0.04

2.23
2.29
2.17
2.01

P>lzl
0.068
0.407
0.971
0.026
0.022
0.030
0.044

Log likelihood = -25.7943
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Table 7.3 Estimated Coefficients, Estimated
Standard Errors, Wald Statistics and Two-Tailed
/j-Values for the Model Excluding RACE
Variable
LWT
SMOKE
PTD
HT
UI

Coeff.
-0.015

1.480
1.671
2.329
1.345

Std. Err.
0.0081
0.5620
0.7468
1 .0025
0.6938

z
-1.85

2.63
2.24
2.32
1.94

P>lzl
0.064
0.008
0.025
0.020
0.053

Log likelihood = -26.2369

comparing the best two-term fractional polynomial model to the best
one-term model is 0.860. The value of the likelihood ratio chi-square
test comparing the linear model to the best two-term model is
G = 52.474-51.239 = 1.235, which with 3 degrees-of-freedom yields a

/7-value of 0.745. Thus, we conclude that the fractional polynomial
analysis supports treating LWT as linear in the logit.

The second method we illustrate to assess the scale of LWT is based
on design variables. This method is described in detail in Chapter 4. In
the setting of a matched study the three design variables are created us-
ing the quartiles of the combined distribution of LWT (n = H2). The
quartiles as computed by STATA are <21=106.5, Q2=120 and
<23 = 136.5. We use the first quartile as the reference group.

The model was fit using all the variables shown in Table 7.3 except
LWT, which is replaced by the three design variables for quartiles. The
estimated coefficients for the three design variables are given in Table

Table 7.4 Summary of the Use of the Method of Frac-
tional Polynomials for LWT

Not in model
Linear
7 = 1
J =2

df
0
1
2
4

Deviance
56.299
52.474
51.541
51.239

G for Model
vs. Linear

0.000
0.933
1.235

Approx.
p-Value

0.050*
0.334+

0.860*

Powers

1
3
3, 3

* Compares linear model to model without LWT
+ Compares the J =1 model to the linear model
# Compares the 7 = 2 model to the 7 = 1 model
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Table 7.5 Results of the Quartile Analyses of LWT from
the Multivariable Model Containing the Variables Shown in
the Table 7.3
Quartile
Midpoint
Coeff.
95 % CI

1
93.25
0.0

2
113.25
-0.399

(-1.69, 0.90)

3
128.25
-0.443

(-1.76, 0.87)

4
188.75
-0.889

(-2.11, 0.34)

7.5.
Even though none of the three estimated coefficients in Table 7.5

is significant their decreasing trend does lend support for linearity in the
logit. This is more easily seen by plotting the coefficients versus the
midpoints of the quartiles as shown in Figure 7.1

Thus on the basis of the fractional polynomial analysis and the
confirming evidence from the plot in Figure 7.1 we decide to model
LWT as linear in the logit.

The next step in model development is to assess the possibility of
interactions among the variables. A number of clinically plausible in-

o
U
T3
S
03s

0-

c -.251
.2'5

-.5-

W -.75-

-1-1

93.25 113.5 128.5
Weight at the Last Menstrual Period (LWT)

188.75

Figure 7.1 Plot of the estimated coefficients for the quartiles of LWT
versus the midpoint of the quartile.
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Table 7.6 Likelihood Ratio Test Statistic (G)
and p-Value for Interactions of Interest When
Added to the Main Effects Model in Table 7.3
Interaction
AGExLWT
AGExSMOKE
AGExPTD
AGExHT
AGExUI
LWTxSMOKE
LWTxPTD
LWTxHT
LWTxUI
SMOKExPTD
SMOKExHT
SMOKExUI
PTDxHT
PTDxUI
HTxUI

G
0.50
0.01
0.05
0.35
1.12
0.18
0.06
0.03
0.03

<0.01
0.39
0.15

*

2.56
*

P
0.477
0.910
0.818
0.557
0.290
0.671
0.800
0.868
0.868

> 0.900
0.532
0.699

*

0.110
*

*: Model could not be fit due to zero cells

teractions may be created from the variables in the model. In addition
we examine whether the matching variable, age, interacts with any of the
variables in the model. The potential interaction variables are shown in
the first column of Table 7.6. The remaining columns present the like-
lihood ratio test and its p-value comparing the model containing the
interaction to the main effects model in Table 7.3. Since each interac-
tion generates a single covariate we do not include the degrees-of-
freedom in Table 7.6.

The results in Table 7.6 indicate that none of the interactions is
significant at the 5 percent level. Thus we conclude that we do not need
to include any interactions in our model. We note that two interactions,
PTDxHT and HTxUI, generated at least one cell with a zero frequency
among the discordant pairs and thus the model could not be fit. See
Chapter 4, Section 5 for a more detailed discussion of this type of nu-
merical problem.

We now move to model assessment using the main effects model in
Table 7.3.
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7.4 ASSESSMENT OF FIT IN A MATCHED STUDY

The approach to assessing the fit of a logistic regression model in the 1 -
1 matched design is identical to that described in Chapter 5 for un-
matched designs. We begin by forming a measure of residual variation,
and then use it to explore the sensitivity of the fit to individual case-
control pairs. In the 1-1 matched study the likelihood function is de-
fined in terms of the conditional probability of allocation of observed
covariates to the case and control within each stratum. As discussed in
Section 7.2 the value of the outcome variable when we use the differ-
ences method is y = 1 for all strata (case-control pairs). This corre-
sponds to assigning a conditional probability of 1 to the observed allo-
cation of covariate values to the components of the pairs. The fitted
value is the estimate of this conditional probability under the assump-
tion that the logistic regression model is correct. The number of covari-
ate patterns is always the number of pairs or strata. This implies that
m = 1 for all patterns and measures that were based on m-asymptotics in
the unmatched case cannot be used in 1-1 matched designs. For exam-
ple, it is not possible to extend the Hosmer-Lemeshow chi-square good-
ness-of-fit statistic to the 1-1 matched study design. Zhang (1999) pro-
poses an overall goodness-of-fit test. However, it is not available in any
package and it is not easy to compute. Thus, we do not discuss it in this
section.

Moolgavkar, Lustbader and Venzon (1985), and Pregibon (1984)
have extended the ideas of Pregibon (1981) to matched studies. These
authors show that, for 1-1 matched studies, the logistic regression diag-
nostics may be computed in the same manner as shown in Chapter 5 for
unmatched studies. Bedrick and Hill (1996) present methods for as-
sessing model fit within individual matched sets. Their methods require
exact methods not available in most software packages. Moolgavkar,
Lustbader and Venzon and Pregibon show that we may calculate lever-

A
age, h, standardized residuals, rs, and the measures A/?, AX and AD
using the formulae shown in equations (5.12) - (5.16), where the differ-
ence variable, x* = X j -x0, replaces x and we use the logistic model
shown in equation (7.6).

The Pearson residual is

r = r ~ / M Mi1/2

W1-*)]



ASSESSMENT OF FIT IN A 1-1 MATCHED STUDY 237

and, since in the difference formulation y = l, this simplifies to

r =

where n is the value of equation (7.6) using the estimated parameters.
In this situation large residuals are only possible when the fitted value,
f t , is small. This was the same situation as in the unmatched studies ex-
cept that poor fit was also possible when y = 0 and the fitted value was
large. Other than this, the expected behavior of the diagnostics as a
function of the fitted values is the same for the 1-1 matched study.

At this time we are not aware of a package that has an option to
calculate the diagnostic statistics for any matched design. Thus, the
only option available to us is to create a data set containing the differ-
ence variables and calculate the diagnostic statistics using a standard lo-
gistic regression routine. We used SAS's logistic regression procedure
to calculate the diagnostics for the example in this section.

10-
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Figure 7.2 Plot of AX2 versus the estimated probability from the fitted model
in Table 7.3.
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Figure 7.3 Plot of A|J versus the estimated logistic probability from the fitted
model in Table 7.3.

To illustrate the use of the diagnostics, we apply them to assess the
fit of the model in Table 7.3. The change in the Pearson chi-square,
AX2, and the change in the deviance, AD, due to deleting a particular
pair, show essentially the same thing so we only present the plot for
AX2. Plots of AX2 and A{3 versus the fitted values, f t , are shown in
Figure 7.2 and Figure 7.3.

In Figure 7.2 we see, as expected, that AX2 increases as n de-
creases. Two points have much larger values, greater than 8.0, than the
other points and three others have values between about 3.0 and 5.0.

/\

The plot of Ap in Figure 7.3 shows two values larger than about
0.7 and two more with values between about 0.4 and 0.5. Each of these
four values corresponds to one of the five values identified in Figure
7.2.

In Figure 7.4 we plot AX2 versus n with the size of the plotting
s*

symbol proportional to A|J. The purpose of this plot is to better show

the relationship between Ap, AX2 and the leverage, h. We can see in
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Figure 7.4 Plot of AX2 versus the estimated logistic probability from the fit-
ted model in Table 7.3 with the size of the plotting symbol proportional to A/3.

Figure 7.4 that the two pairs with the largest value of AfJ occur in that
region of the estimated probability scale where leverage is expected to

^

be the largest, namely, 0.2-0.4. Thus for these two points large Afi is
in fact due to moderately large AX2 and leverage. The next two largest
circles in Figure 7.4 correspond to the two pairs with the largest values
of AX2.

The next step in the analysis is to identify the four pairs with large
values of A|J and list their respective data along with the values of the
diagnostic statistics. This step is shown in Table 7.7. The results of fit-
ting the model with each pair deleted are shown in Table 7.8.

Specifically, the data from pair 9 show that the control is 48
pounds lighter than the case and the control smoked during the preg-
nancy and the case did not smoke. The negative sign of the coefficient
for LWT indicates that heavier women are less likely to have a low
weight birth. Thus, deleting a pair where the control is much lighter
should and does increase the protective effect of weight. On the other
hand, the coefficient for SMOKE is positive indicating that women who
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Table 7.7 Pair, Data, Estimated Probability, and the
Three Diagnostic Statistics A|i, AX2, and Leverage (h) for
Four Extreme Pairs

Cont/
Pair Case

9

16

27

34

0
1

0
1
0
1
0
1

LWT

100
148

169
120
95

130
90

128

SMK

1
0
0
1
0
1
1
0

PTD

0
0
1
0
0
0
1
1

HT

0
0
0
0
1
0
0
0

UI

0
0
1
0
0
0
0
0

ft

0.10

0.31

0.20

0.11

Ap

0.50

0.92

1.25

0.42

AX2

9.53

2.92

4.97

8.19

h

0.05

0.24

0.20

0.05

smoke are more likely to have a low weight birth. Deleting a pair
where the control smoked and the case did not should, and in fact does,
increase the coefficient for SMOKE. The actual decrease in the Pear-
son chi-square is less than expected from the value of AX2 in Table
7.7.

When we delete pair 16 we see that the coefficients for PTD and UI
change by over 25 percent. Examining the data in Table 7.7 we see that
in this pair the control had both a prior pre-term delivery and uterine
irritability. Since the coefficients for these covariates are positive these
conditions are more consistent with being a case. Thus deleting this pair
increases the two coefficients. The actual change in the Pearson chi-
square is 4.39, a bit larger than expected from the value in Table 7.7.

The effects of deleting pair 27 are large changes, at least 40 per-
cent, in the coefficients for LWT and HT. The pattern in LWT is similar
to pair 9, a control much lighter than the case. Thus deletion of pair 27
also increases the protective effect of LWT. The pattern in HT is similar
to PTD and UI seen in pair 16. Here the control is hypertensive and the
case is not, thus deletion increases the effect of HT. The fairly large
change in the coefficient for HT, 52.8 percent, is due to the fact that
only 10 of the 56 pairs are discordant in this covariate.

The results when we delete pair 34 are nearly identical to those for
pair 9. The large change in the coefficient for LWT is due to the fact
that the case is 38 Ibs. heavier than the control. Also, the control
smoked while the case did not smoke during the pregnancy. The
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Table 7.8 Estimated Coefficients from Table 7.3, Estimated
Coefficients Obtained When Deleting Selected Pairs, Percent
Change from the All Data Model and Values of Pearson Chi-
Square Statistic

Data
All

Delete 9
% Change
Delete 16
% Change
Delete 27
% Change
Delete 34
% Change

LWT SMOKE
-0.015
-0.019
30.0
-0.013

-16.6
-0.021
39.6

-0.018
24.6

1.480
1.878

26.9
1.391

-6.0
1.389

-6.1
1.855

25.4

PTD
1.671
1.883

12.7
2.11

26.4
1.807
8.2
1.863

11.5

HT
2.329
2.719

16.7
2.407
3.3
3.559

52.8
2.669

14.6

UI
1.345
1.498

11.4
1.762

31.0
1.511

12.3
1.487

10.5

X2

50.76
48.52

46.37

49.00

50.31

change in the Pearson chi-square is small and is much less than that ex-
pected from the value of AX2 in Table 7.7.

The results from deleting each of the four pairs provide good ex-
amples of why it is important to not rely completely on the values of the
diagnostic statistics to predict model changes. We feel it is quite impor-
tant to go through the process of refitting the model, deleting poten-
tially influential and or poorly fit subjects. Our experience has shown

A

that A|J tends to underestimate the actual changes one sees in coeffi-
cients. The behavior of the diagnostic for fit, AX2, is not consistent,
sometimes overestimating the actual change in X2, and in other in-
stances underestimating the change.

As in any model building process the final decision on whether to
include or exclude any data depends on an assessment of the clinical
plausibility of the data. This decision, as always, should be made in
consultation with subject matter experts. We proceed to model inter-
pretation using the full data estimates from Table 7.3.

We present the estimated odds ratios and 95 percent confidence
intervals in Table 7.9. These point and interval estimates are computed
using the estimated coefficients and standard errors in Table 7.3 in ex-
actly the same manner as described in Chapter 3, namely by exponen-
tiating the coefficient and the endpoints of its confidence interval.
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Table 7.9 Estimated Odds Ratios and 95%
Confidence Intervals for Model in Table 7.3

Variable
Weight at Last Menstrual Period*
Smoking During Pregnancy
History of Pre-Term Delivery
History of Hypertension
Presence of Uterine Irritability

Odds
Ratio

0.9
4.4
5.3

10.3
3.8

95 % CI

0.73, 1.01
1.46, 13.21
1.23, 22.97
1.44, 73.28
0.99, 14.95

*: Odds ratio for a 10 pound increase in weight

The interpretation of estimates and confidence intervals for odds
ratios is also the same as described in Chapter 3. Specifically, the odds
ratio for weight at last menstrual period estimates a 10 percent reduction
in risk of a low weight baby per 10 pound increase in weight. The
confidence interval suggests that there could be as much as a 27 percent
decrease in risk or there could be no reduction in risk. The odds ratio
for a history of smoking during pregnancy suggests that women who do
smoke are 4.4 times more likely to have a low weight baby than women
who do not smoke and the increase in risk could be as little as 1.5 times
or as high as 13.2 times with 95 percent confidence. Having a history
of pre-term delivery increases the risk of a low weight baby by 5.3 times
and it could be as little as 1.2 times or as much as 23 times with 95 per-
cent confidence. Women with a history of hypertension have a 10-fold
increase in risk of a low weight baby and the increase in risk could be as
little as 1.4 times or as much as 73.3 times with 95 percent confidence.
Presence of uterine irritability carries a 3.8 fold increase in risk of a low
weight baby. The confidence interval suggests that there could be no
increase to as much as a 15-fold increase in risk.

We note that the confidence intervals are quite wide, especially for
history of hypertension. This is due to the fact, described in the previ-
ous section and shown in Table 7.1, that there are relatively few discor-
dant pairs in this data set.

In summary, the actual process of model building, assessment of fit
and interpretation of odds ratios estimated from the final model is the
same for the 1-1 matched case-control study as in any unmatched
study. The only difference is that we use a conditional likelihood that
eliminates stratum-specific effects from the basic logistic regression
model.
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In closing this section we note that many investigators break the
matched pairs and proceed with the standard analysis as described in
Chapters 4 and 5. Lynn and McCulloch (1992) provide some theoreti-
cal and simulation-based evidence for breaking the matches when the
sample size is large. However, we believe that if data have been col-
lected using a specific matched sampling design then the analysis must
have as its foundation the stratum-specific likelihood shown in equation
(7.2) and the full likelihood in equation (7.3).

We believe that investigators have used what is really an incorrect
analysis for two basic reasons. First, the investigator is not comfortable
with the conditional likelihood approach. He/she thinks that somehow
the model has been changed and one cannot use estimated coefficients
to estimate odds ratios in the usual manner. Second, until recently the
analysis had to be performed using difference variables, a cumbersome
and tedious data management task. We hope that the presentation of the
example in this section convinces investigators that a matched analysis is
no more difficult than an unmatched analysis. While software is avail-
able, developers need to bring current routines for matched analyses to
the same level as their programs for unmatched analyses, especially in
the area of diagnostic statistics for assessment of model adequacy and
fit.

7.5 AN EXAMPLE OF THE USE OF THE LOGISTIC
REGRESSION MODEL IN A l-M MATCHED STUDY

The general approach to the analysis of the l-M matched design and,
for that matter, general matched or highly stratified designs is similar to
that of the 1-1 matched design. As we demonstrated in the previous

two sections the 1-1 matched design may be fit using software for un-
conditional logistic regression in some, but not all, packages. However,
for the l-M design we need software, such as STATA's clogit com-
mand, that maximizes a more general conditional likelihood. The need
for special software can be seen if we examine the contribution to the
likelihood for an individual stratum. In this section, to keep notation
simple and to a minimum, we consider a design where M = 3. The ex-
tension of the methods to other matched designs is not difficult. We let
the value of the covariates for the case in stratum k be denoted by XH

and the values for the three controls be denoted xJt2,xA:3, and x^. The
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contribution to the likelihood for this stratum is obtained by evaluating
the expression shown in equation (7.4) and is

The interpretation of equation (7.7) is same as we described in Section
7.2 for equation (7.5). Given the value of the coefficients it gives the
probability that the subject with data x^, is the case relative to three
controls with data x fc2,x^3, and xk4. We note that if the covariates are
identical for all four subjects then the stratum is uninformative for esti-
mation of the coefficients as 4(P) = 0.25 for any value of p. For an
individual covariate there must be at least one control that has a value
different from the case or the stratum is uninformative for that specific
coefficient. Unfortunately there are no simple expressions involving
discordant pairs for the estimator of the coefficient for a dichotomous
covariate in a univariable model. One descriptive statistic that is useful
for visually assessing the potential for "thin data" for a dichotomous
covariate is the 2 by M+l table cross-classifying the case versus the
sum of the covariate for the controls. The strata that would not contrib-
ute to the analysis would correspond to the counts in the (0,0) and (1,M)
cells. As always, we feel it is good practice to fit univariable models and
use the estimated standard errors and confidence intervals as indirect
evaluation for "thin data".

It is not possible to express the right side of equation (7.7) in the
form of an unconditional logistic regression model. Hence, to perform
an analysis of a 1-M matched design we must use software that obtains
maximum likelihood estimators from a likelihood function whose com-
ponent terms are like those in equation (7.7). We use STATA's clogit
command to fit the models in this section.

To provide a data set for an example and exercises we present a
subset of data from a large study on benign breast disease whose results
have been published. The original data are from a hospital-based case-
control study designed to examine the epidemiology of fibrocystic
breast disease. Cases included women with a biopsy-confirmed diagno-
sis of fibrocystic breast disease identified through two hospitals in New
Haven, Connecticut. Controls were selected from among patients ad-
mitted to the general surgery, orthopedic, or otolaryngologic services at
the same two hospitals. Trained interviewers administered a standard-
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ized structured questionnaire to collect information from each subject
[see Pastides, et al (1983) and Pastides, et al (1985)].

A code sheet for the data is given in Table 7.10. Data are provided
on 50 women who were diagnosed as having benign breast disease and
150 age-matched controls, with three controls per case. Matching was
based on the age of the subject at the time of interview. The data are
available on the two web sites described in the Preface in a file named
BBDM13.DAT.

We consider covariates measuring regular medical check-ups

Table 7.10 Description of Variables in the Benign
Breast Disease 1-3 Matched Case-Control Study
Variable

1
2

3
4

5
6

7

8
9
10
11
12
13
14

Description
Stratum
Observation within Stratum

Age at Interview
Final Diagnosis

Highest Grade in School
Degree

Regular Medical Check-ups

Age at First Pregnancy
Age at Menarche
No. of Stillbirths, Miscarriages etc.
Number of Live Births
Weight of the Subject At Interview
Age at Last Menstrual Period
Marital Status

Codes/Values
1-50
1 = Case
2 - 4 = Control
Years
1 = Case
0 = Control
5-20
0 = None
1 = High School
2 = Jr. College
3 = College
4 = Masters
5 = Doctoral
l=Yes
2 = No
Years
Years
0-7
0-11
Pounds
Years
1 = Married
2 = Divorced
3 = Separated
4 = Widowed
5 = Never Married

Name
STR
OBS

AGMT
FNDX

HIGD
DEG

CHK

AGP1
AGMN
NLV
LIV
WT
AGLP
MST
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Table 7.11 Univariable Logistic Regression
Models for the 1-3 Matched Benign Breast
Disease Study, n = 50 Strata

Variable

CHK
AGMN
WT
MST.2
MST_4
MST 5

Coeff.

-1.245
0.472

-0.035
-0.358
-0.751

1.248

Std. Err.

0.3815
0.1110
0.0086
0.5605
0.7904
0.6059

.A.

OR
0.29
2.57*
0.70+
0.70
0.47
3.48

95 %CI

(0.14, 0.61)
(1.66, 3.97)
(0.59, 0.83)
(0.23, 2.10)
(0.10, 2.22)
(1.06,11.43)

*: Odds ratio for a 2 year increase
+: Odds ratio for a 10 pound increase

(CHK), age at menarche (AGMN), weight at the interview (WT) and
marital status (MST) as an example of model building in a 1-3 matched
study. We leave model development using all study variables as an ex-
ercise. Tabulation of the frequency distribution of marital status showed
that only 6 subjects reported being separated. These subjects are com-
bined with the 20 subjects who reported their status as divorced. The
results of fitting the univariable models are shown in Table 7.11.

The results in Table 7.11 show that having regular check-ups and
increasing weight significantly reduce the odds of having benign breast
disease. Increased age at menarche significantly increases the odds of
benign breast disease. The results for marital status suggest that subjects
who were ever married have the same odds as those currently married.
Women who were never married have significantly increased odds for
benign breast disease compared to women who are currently married.
These results suggest that a more parsimonious model might use a di-
chotomous covariate ever-never married. However, we begin by fitting
the multivariable model containing all the covariates as coded in Table
7.11. These results are shown in Table 7.12.

The results in Table 7.12 agree, at least in terms of direction of ef-
fect and significance, with the univariable models in Table 7.11. The
marital status covariate presents some problems in that only 12 of the
200 subjects report never being married. However there is a significant
increase in risk and, as such, we proceed using the dichotomous covari-
ate never married, NVMR (0 = ever married, 1 = never married). The
results of fitting this model are show in Table 7.13.
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Table 7.12 Estimated Coefficients, Estimated
Standard Errors, Wald Statistics and Two-
Tailed p-Values for the Multivariable Model

Variable
CHK
AGMN
WT
MST_2
MST_4
MST 5

Coeff.
-1.122

0.356
-0.028
-0.203
-0.493

1.472

Std. Err.
0.4474
0.1292
0.0100
0.6473
0.8173
0.7582

z
-2.51

2.76
-2.84
-0.31
-0.60

1.94

P>lzl
0.012
0.006
0.004
0.754
0.548
0.052

Log likelihood = -45.2148

The results in Table 7.13 indicate that each of the covariates is sig-
nificant. In addition, when we compare the values of the coefficients in
Table 7.13 to those in Table 7.12 we see that recoding marital status did
not introduce any confounding. Also, the z-score for the dichotomous
covariate NVMR is about the same order of magnitude as the z-scores
for the other covariates. This provides some evidence that there is ade-
quate data. Thus we proceed to examine the scale of the continuous
covariates AGMN and WT.

The methods to check for the scale of a continuous variable in the
logit for a 1-M design are the same as those illustrated in Section 7.3

for the 1-1 matched study, (i.e., fractional polynomials and quartile de-
sign variables). When we use these methods we find that there is sub-
stantial evidence for keeping both AGMN and WT continuous and lin-

Table 7.13 Estimated Coefficients, Estimated
Standard Errors, Wald Statistics and Two-Tailed p-
Values for the Multivariable Model Using NVMR
Variable
CHK
AGMN
WT
NVMR

Coeff.
-1.161

0.359
-0.028

1.593

Std. Err.

0.4470
0.1279
0.0100
0.7361

z
-2.59

2.81
-2.83

2.17

P>lzl

0.009
0.005
0.005
0.030

Log likelihood = - 45.4390
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ear in the logit. Since the methods are the same and their results do not
demonstrate anything new, we feel that little is to be gained by present-
ing the analysis in detail. We move to considering the need to add in-
teractions to the model in Table 7.13.

We examine the need for interactions using the same method used
for the 1-1 design in the Section 7.3. We feel that there is some clinical
plausibility for interactions involving each of the covariates in the model
as well as ones with the matching variable. We fit models adding each of
these to the main effects model. Two interactions, AGMTxAGMN and

AGMTxNVMR, were significant at approximately the 0.09 level. Since
they were not significant at the 5 percent level and since we have only
50 strata, we chose not to include them in the model. Hence we move to
model assessment and fit using the main effects model in Table 7.13.

7.6 METHODS FOR ASSESSMENT OF FIT IN A l-M
MATCHED STUDY

The approach to assessment of fit in the l-M matched study is similar to
that used in the 1-1 matched study in that it is based on extensions of
regression diagnostics for the unconditional logistic regression model.
The mathematics required to develop these statistics is at a higher level
than other sections of the book. Hence, less sophisticated mathematical
readers may wish to skip this section and proceed to Section 7.7 where
the use of the diagnostic statistics is explained and illustrated. These
diagnostic statistics are derived for a general matched design by Mool-
gavkar, Lustbader and Venzon (1985) and Pregibon (1984). These
authors illustrate the use of the diagnostics only for the 1-1 matched
design. We showed in Section 7.4 that the diagnostics for the 1-1
matched design could be computed using logistic regression software
for the conditional model. Unfortunately, currently available software
for logistic regression in the l-M matched design does not compute
these same diagnostic statistics. The methods needed to obtain them are,
in principle, easy to apply; in practice, the computations necessary to
calculate leverage values are tedious. Once the leverage values are ob-
tained, the values of the other diagnostic statistics are calculated via sim-
ple transformations of available or easily computed quantities. To sim-
plify the notation somewhat we present the methods for the case when M
- 3; that is, M + I - 4.
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The first step is to transform the observed values of the covariate
vector by centering them about a weighted stratum-specific mean. That
is, we compute for each stratum, k, and each subject within each stratum,
7.

4

Xkj ~ Xty ~ /. Xkfikl '
/=!

where

and note that V 0,. = 1. Let X be the n = 4K by p matrix whose/ j -_i k] J r^^m j — i

rows are the values of \kj, k =l,2,...,K and j = 1,2,3,4. Let U be an n
A.

by n diagonal matrix with general diagonal element 9kj. It may be

shown that the maximum likelihood estimate, |J, once obtained can be
re-computed via the equation

= (x'UX)~X'Uz,

/w ^ . / .*. \
where z is the vector z = X'fi+U (y -9], y is the vector of values of the

^

outcome variable ( y = 1 for the case and y = 0 for the controls), and 6
A A

is the vector whose components are 6kj. Recall that dkj is, under the as-
sumption of a logistic regression model, the estimated conditional prob-
ability that subject j within stratum k is a case.

Thus we may recompute the maximum likelihood estimate for the
conditional logistic regression model using a linear regression program
allowing case weights. We use the vector \kj as values of the independ-

ent variables,

z*;=si;P+ J'§



250 MATCHED CASE-CONTROL STUDIES

A

as the values of the dependent variable, and case weight 9kj, for
k = l,2,,..,K, j =1,2,3,4. It follows that the diagonal elements of the
hat matrix computed by the linear regression are the leverage values we
need, namely

hkj=dkjx'kj(x'Vx)~xkj . (7.8)

We note that one must pay close attention to how weights are handled in
the statistical package used for the weighted linear regression. For ex-
ample, SAS's regression procedure outputs the values as defined in
equation (7.8). STATA users need to multiply the leverage values cre-
ated following the weighted regression by 9kj/0to obtain the leverage

values defined in equation (7.8), where 0 = ]T ^. 9kj/[K(M + l)]

is the mean of the estimated logistic probabilities.
The Pearson residual is

and the Pearson chi-square is

k=\ j=\

The standardized Pearson residual is

skj r* , x ll/2 •

In keeping with the diagnostics for the unmatched design we define
the square of the standardized residual as the lack of fit diagnostic

A4 = 4., (7.9)

and the influence diagnostic as
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(7.10)

We feel that the most informative way to view the diagnostic statistics is
•A

via a plot of their values versus the fitted values, Okj . These plots are
similar to those used in Chapter 5 to assess graphically the fit of the un-
conditional logistic regression model and those used in Section 7.4 for
the conditional logistical regression model in the 1-1 matched design.
Examples of these plots are presented in the next section where we as-
sess the fit of the model in Table 7.13.

Moolgavkar, Lustbader and Venzon (1985) and Pregibon (1984)
suggest that one use the stratum-specific totals of the two diagnostics,
AX2andA|J to assess what effect the data in an entire stratum have on
the fit of the model. These statistics are computed as quadratic forms
involving not only the leverage values for the subjects in the stratum but
also those terms in the hat matrix that account for the correlation among
the fitted values. An easily computed approximation to these statistics is
obtained by ignoring the off diagonal elements in the hat matrix. We
feel that the approximations are likely to be accurate enough for practi-
cal purposes. For the kth stratum these are

. (7.11)
7=1

and

(7.12)

Strata with large values of these statistics would be judged to be poorly
fit and/or have large influence respectively. One can use a box plot or a
plot of their values versus stratum number to identify those strata with
exceptionally large values. For these strata the individual contributions
to these quantities should be examined carefully to determine whether
cases and/or controls are the cause of the large values.

We note that the diagnostic statistics described in this section can be
used instead of the diagnostics described in Section 7.4 for the 1-1
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matched study. However, we feel that the diagnostic statistics described
in Section 7.4 are easier to compute since one only needs the difference
variables and the diagnostics can be obtained from available logistic re-
gression software. In addition, the diagnostics in Section 7.4 yield one
value per stratum. The mathematical relationships between the diagnos-
tic statistics in Section 7.4 and the ones described in this section are
quite complex. For example, the stratum totals described in equations
7.10 and 7.11 are not arithmetically equal to the values of AX2 and AJ5
used in Section 7.4. While it may appear that we have two sets of differ-
ent diagnostic statistics they do identify the same strata as being poorly
fit or influential. Thus from a practical point of view one may use ei-
ther set to assess model adequacy.

In identifying poorly fit or influential subjects deletion of the case
in a stratum is tantamount to deletion of all subjects in the stratum.
Without a case a stratum contributes no information to the likelihood
function. If some but not all controls are deleted in a specific stratum
then the stratum may still have enough information to contribute to the
likelihood function. A final decision on exclusion or inclusion of cases
(entire strata) or controls should be based on the clinical plausibility of
the data.

7.7 AN EXAMPLE OF ASSESSMENT OF FIT IN A
l-M MATCHED STUDY

As an example we assess the fit of the model fit to the 1 -3 matched data
from the Benign Breast Disease Study in Table 7.13. The steps in the
process are the same as those demonstrated for 1-1 matched studies.

We begin by examining descriptive statistics for the three diagnos-
tic statistics defined in equations (7.8) to (7.10). These analyses show
(output not presented) that there is one subject, the case in stratum 12,
with an extraordinarily large value for the fit diagnostic statistic,
AY,221 =84.546. This value is so large that it completely obscures the
ability to assess the magnitude of the diagnostic statistic for the other
subjects. Thus, we decide to exclude this subject from the usual plots of
the diagnostic statistics versus the fitted values. The subject is included
when we assess the effect of deletion of subjects on the estimated coeffi-
cients in Table 7.14 and Table 7.15 below.
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Figure 7.5 Plot of AX2 versus the estimated logistic probability from the fitted
model in Table 7.13.

In Figure 7.5 we plot the fit diagnostic, AX2, versus the fitted val-
.A.

ues, 6. We see that there are three cases that are poorly fit with
AX2 >6. These large values occur in the region where #<0.2 and re-
flect cases whose estimated probability of being the case is much smaller
than the fitted values for the controls in that stratum. Note that the val-
ues of AX2 for the controls correspond to the points beginning at the
origin (0,0) rising ever so slightly and end at about 0.9.

Next, we examine the plot of the influence diagnostic statistics ver-
sus the estimated logistic probabilities shown in Figure 7.6. We note
one point with AP = 0.74, lies well above all the other points. We note
three more points, with values between about 0.2 and 0.25, warrant fur-
ther examination and evaluation since they lie away from the other
points.

In order to explore better the relationship between fit, influence
and leverage we plot AX2 versus the estimated logistic probabilities with

A

the size of the plotting symbol proportional to Ap in Figure 7.7. Here
we see that the poorly fit case with the largest influence dominates the
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Figure 7.6 Plot of A/? versus the estimated logistic probability from the fitted
model in Table 7.13.

plot. Also, two of the three additional points identified in Figure 7.6
correspond to the other two poorly fit cases seen in Figure 7.5. The
fourth influential point is not one identified as being especially poorly
fit. In all we have four cases and their controls from these plots to ex-
amine in more detail (there are 5 all together). As we noted in Chapter
5, for fitted logistic regression models leverage typically tends not to be
too large when the fitted values are less than 0.2. This is the case with
the fitted model in Table 7.13. Thus we conclude that the large values
of Ap are due primarily to large values of AX2, with a small to modest
contribution of leverage.

We examined the diagnostic statistics defined in equations (7.11)
and (7.12) in two ways. First, we plotted them versus the corresponding
stratum number. Second, we examined them using box and whisker
plots. Both plots identified the same five strata corresponding to the
strata for the four points identified in Figures 7.5 to 7.7 and the domi-
nant point excluded from these plots. The data for the case and three
controls in these strata are presented in Table 7.14 along with the values
of the diagnostic statistics.



EXAMPLE OF ASSESSING FIT IN A 1-M MATCHED STUDY 255

18-

15-

12-

AX2 9-

6-

3-

0-

0 .25 .5 .75 1
Estimated Logistic Probability

Figure 7.7 Plot of AX2 versus the estimated logistic probability from the fitted
model in Table 7.13 with the size of the plotting symbol proportional to A$.

The next step is to exclude the subjects from the analysis and assess
the effect of the deletions on the fitted model. Each of the five subjects
identified as being poorly fit or influential is a case. Thus, when we de-
lete the subject only the controls are left. Hence, the outcome does not
vary and the stratum is deleted from the analysis. The results of fitting
the model deleting the strata in Table 7.14 are presented in Table 7.15.

Interpreting the results of deleting an individual stratum in a 1-M

matched study is more difficult than for the 1-1 design. The reason is
that each subject in the stratum has his/her own diagnostic statistics yet it
is likely that only one subject is influential and/or poorly fit. The rea-
son^) for a particular subject's influence and/or lack of fit depend(s)
on the relationship between his/her covariates and those of the other M
subjects in the stratum.

We begin with stratum 12. The case in stratum 12 is the poorest fit
with AX,221 =84.5. The results in Table 7.15 show that when stratum 12

yv

is deleted A0% is between about 24 and 26 percent for AGMN and WT.
The estimated logistic probabilities indicate that the third control has the
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Table 7.14 Stratum, Data, Estimated Probability, and
^

the Three Diagnostic Statistics A|J, AX and Leverage
(h) for Five Influential and Poorly Fit Strata

Case /

STR Cont CHK AGMN WT NVMR & A0 AX2 h

10

12

18

24

31

1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0

2
1
2
1
2
1
1
2
2
1
1
1
2
1
1
1
2
2
1
1

12
13
12
16
10
13
11
16
14
14
11
10
15
13
17
15
16
12
13
13

105
115
120
150
170
140
240
100
135
132
205
127
145
140
155
116
156
161
150
115

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0.11
0.39
0.07
0.42
0.01
0.26
0.01
0.72
0.05
0.89
0.01
0.05
0.07
0.12
0.33
0.48
0.17
0.03
0.22
0.58

0.22
0.01
<.01
0.02
0.71
0.02
<.01
0.02
0.73
0.01
<.01
<.01
0.17
<.01
0.01
0.01
0.24
<.01
<.01
0.01

7.21
0.40
0.07
0.45
84.5
0.27
0.01
0.75
17.9
0.90
0.01
0.05
13.2
0.12
0.34
0.49
4.35
0.03
0.22
0.59

0.03
0.02
0.02
0.05
0.01
0.06
0.01
0.03
0.04
0.01
0.01
0.03
0.01
0.01
0.03
0.02
0.05
0.01
0.01
0.02

highest probability of being the case and the case has the lowest (within
round off). The lack of fit diagnostic is large due to the fact yl2^ = 1

A

and On, ~ 0.01. The change in the coefficients for AGMN and WT are
large and positive because we have eliminated a case that has data fa-
voring control status (young age at menarche and heavier weight) and a
control that has data favoring case status (older age at menarche and
lighter weight). There is nothing particularly abnormal about the data
for any of the subjects in stratum 12. Thus, we conclude that we should
not delete the stratum solely on the basis of large AX2.

We see that the results of deleting stratum 18 are similar to those
for stratum 12 in Table 7.15. The case in this stratum has the largest
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Table 7.15 Estimated Coefficients from Table 7.13,
Estimated Coefficients Obtained When Deleting a
Selected Stratum, Percent Change from the All Data
Model and the Pearson Chi-Square

Data
All

Delete 10
Pet. Change

Delete 12
Pet. Change
Delete 18

Pet. Change
Delete 24

Pet. Change
Delete 31

Pet. Change

CHK
-1.161
-1.342

15.6
-1.241

6.8
-1.479

27.3
-1.366

17.6
-1.349

16.2

AGMN
0.359
0.404

12.6
0.452
25.7

0.368
2.4

0.366
2.1

0.312
-13.1

WT
-0.028
-0.025

-9.7
-0.035

23.9
-0.029

3.7
-0.030

5.3
-0.031

12.5

NVMR
1.593
1.685
5.76

1.679
5.4

2.247
41.0

1.687
5.9

1.664
4.5

X2

186.34
178.45

101.51

168.13

172.36

181.38

value of AfJ% and AX2 is also quite large. In particular, we see that the
coefficient for NVMR changes by over 40 percent when the stratum is
deleted. The reason is one of the controls was never married while the
case was married. Additional analysis showed that 38 of the 50 strata
had all four subjects with NVMR = Q and in the remaining 12 only one
subject was never married. In essence we have removed 1/12th of the
data available for estimating the coefficient for NVMR. The coefficient
for CHK changes by about 27 percent. In stratum 18 the case did not
have regular check-ups, CHK = 2, while each of the three controls did
have them. The fact that the estimated coefficient is negative implies
that not having regular check-ups is consistent with control status. Thus,
deleting a stratum that, in a sense, goes against the model induces
change in the direction of the effect, negative. As is the case with stra-
tum 12 all data appear to be reasonable and there is no reason, other
than statistical, to exclude stratum 18.

The diagnostic statistics for stratum 24 indicate that case is poorly
fit. The estimated logistic probability for the case is small and each of
the controls has larger estimated probabilities (two of them much

^

larger). The coefficient for CHK has A|J% around 18 percent. The
coefficient decreases since the case in this stratum did not have regular
check-ups. Changes in the other coefficients are less than 6 percent.
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Table 7.16 Estimated Odds Ratios and 95%
Confidence Intervals for Model in Table 7.13

Variable
Regular Medical Check-ups
Age at Menarche*
Weight*
Never Married

Odds
Ratio
0.31
2.05
0.75
4.9

95 % CI
0.130, 0.752
1.243, 3.386
0.620, 0.917
1.162, 20.821

+: Odds ratio for a 2 year increase in age
*: Odds ratio for a 10 pound increase in weight

Again, there is nothing unusual about the data, we just have a case that
looks a bit more like a control and vice-versa.

The diagnostic statistics for stratum 10 and stratum 31 are similar.
The case is modestly influential and somewhat poorly fit. The estimated
logistic probability for the case is not too large and two of the controls
have much larger estimated probabilities. The coefficient for CHK has
A{J% around 16 percent. The coefficient decreases since the case in
both strata did not have regular check-ups. Changes in the other co-
efficients are less than 15 percent. Again, there is nothing unusual
about the data.

In summary, the diagnostic statistics have proven quite useful for
identifying subjects whose data may be influential in estimating coeffi-
cients and/or may lead to a fitted value more consistent with the opposite
of the observed outcome. In order to interpret the results in the 1-M
design we must simultaneously consider the estimated logistic probabil-
ity of the case and all controls as well as the differences in their data.

We conclude the section by presenting, in Table 7.16, the odds ra-
tios obtained from the fitted model in Table 7.13. These results suggest
that women who do not have regular medical check-ups are at 69 per-
cent lower risk of having benign breast disease than women who do and
this could be as much as a 87 percent decrease or as little as a 25 per-
cent decrease with 95 percent confidence. This may seem like an odd
result at first; but it may be a function of the fact that detection is in-
creased with increasing medical check-ups. Women who experience
older age at menarche are at greater risk of benign breast disease and
the risk doubles for every two year increase. Increasing weight de-
creases the risk of benign breast disease at the rate of about 25 percent
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per 10 pound increase. This could be between 8 and 38 percent with 95
percent confidence. Never being married significantly increases the risk
of disease by a factor of 5 but this factor could be as low as 1.2 based
on the 95 percent confidence interval. Note: In a case such as this
where the right endpoint is quite large we tend to focus more on the
point estimate and left endpoint. The right endpoint is the one most
susceptible to large estimated variance due to limited data.

EXERCISES

1. Data from the 1-3 matched Benign Breast Disease Study are used
in this chapter to illustrate methods for a 1-M matched study. The
data are described in Table 7.10. Find the best logistic regression
model for a 1-1 matched design using the first of the three con-
trols. (Note: It would have been possible to use any one of the
three controls. Designation of the first control was arbitrary.)

2. The example in Sections 7.5 through 7.7 used only a few of the
variables available in the Benign Breast Disease Study. Repeat the
modeling using all the covariates.

In each Exercise the steps in fitting the model should include: (1)
a complete univariable analysis, (2) an appropriate selection of variables
for a multivariable model (this should include scale identification for
continuous covariates and assessment of the need for interactions), (3)
an assessment of fit of the multivariable model, (4) preparation and
presentation of a table containing the results of the final model (this ta-
ble should contain point and interval estimates for all relevant odds ra-
tios), and (5) conclusions from the analysis.



CHAPTER 8

Special Topics

8.1 THE MULTINOMIAL LOGISTIC REGRESSION
MODEL

8.1.1 Introduction to the Model and Estimation of the Parameters

In the previous seven chapters we focused on the use of the logistic re-
gression model when the outcome variable is dichotomous or binary.
The model can be easily modified to handle the case where the outcome
variable is nominal with more than two levels. For example, consider a
study of choice of a health plan from among three plans offered to the
employees of a large corporation. The outcome variable has three lev-
els indicating which plan, A, B or C, is chosen. Possible covariates might
include gender, age, income, family size and others. The goal is to
model the odds of plan choice as a function of the covariates and to ex-
press the results in terms of odds ratios for choice of different plans.
McFadden (1974) proposed a modification of the logistic regression
model and called it a discrete choice model. As a result the model is
frequently referred to as the discrete choice model in business and
econometric literature while it is called the multinomial, polychotomous
or polytomous logistic regression model in the health and life sciences.
We use the term multinomial in this text.

We could use an outcome variable with any number of levels to
illustrate the extension of the model and methods. However, the details
are most easily illustrated with three categories. Further generalization
to more than three categories is a problem more of notation than of
concept. Hence, in the remainder of this section, we consider only the
situation where the outcome variable has three categories.

260
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When one considers a regression model for a discrete outcome
variable with more than two responses, one must pay attention to the
measurement scale. In this section, we discuss the logistic regression
model for the case in which the outcome is nominal scale. We discuss
logistic regression models for ordinal scale outcomes in the next sec-
tion.

We assume that the categories of the outcome variable, K, are coded
0, 1, or 2. In practice one should check that the software package that is
going to be used allows a zero code since we have used packages that
require that the codes begin with 1. Recall that the logistic regression
model we use for a binary outcome variable is parameterized in terms of
the logit of Y = l versus K = 0. In the three outcome category model
we need two logit functions. We have to decide which outcome catego-
ries to compare. The obvious extension is to use Y = 0 as the referent
or baseline outcome and to form logits comparing Y = 1 and Y = 2 to it.
We show later in this section that the logit function for Y = 2 versus
Y = 1 is the difference between these two logits.

To develop the model, assume we have p covariates and a constant
term, denoted by the vector, x, of length p +1 where JCG = 1. We denote
the two logit functions as

P(y =

= Ao+Ai*i+A*
(8.1)

and

= 2|x)

p(y = o|x)

(8.2)

It follows that the conditional probabilities of each outcome category
given the covariate vector are
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P(y = i|x) = —5 ^y, (8.4)

and

'"r—zm- (8-5)

Following the convention for the binary model, we let Jij(x) =

P(Y = j\\) for y = 0,l,2. Each probability is a function of the vector of

2(p + l) parameters P' = (P[,K).
A general expression for the conditional probability in the three

category model is

P(Y=J\X)=

where the vector P0 = 0 and g0(x)= 0-
To construct the likelihood function we create three binary vari-

ables coded 0 or 1 to indicate the group membership of an observation.
We note that these variables are introduced only to clarify the likelihood
function and are not used in the actual multinomial logistic regression
analysis. The variables are coded as follows: if Y= 0 then Y0 = 1, ^ = 0,
and y 2 =0; if Y = 1 then K 0 = 0 , 1^=1, andF 2 =0; and if Y = 2 then
YQ = 0, F, = 0, andY 2 =l . We note that no matter what value Y takes on,

the sum of these variables is 7^ F; = 1. Using this notation it follows

that the conditional likelihood function for a sample of n independent
observations is
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Taking the log and using the fact that iV;,- = 1 fc>r e&ch i, the log-
likelihood function is

The likelihood equations are found by taking the first partial derivatives
of L(p) with respect to each of the 2 ( p + l ) unknown parameters. To

simplify the notation somewhat, we let flr^ =TT ;-(X /). The general form
of these equations is:

(8'7)

for 7 = 1,2 and & = 0,1, 2,..., p, with jc0l- =1 for each subject.
A

The maximum likelihood estimator, P, is obtained by setting these
equations equal to zero and solving for p. The solution requires the
same type of iterative computation that is used to obtain the estimate in
the binary outcome case.

The matrix of second partial derivatives is required to obtain the
information matrix and the estimator of the covariance matrix of the
maximum likelihood estimator. The general form of the elements in
the matrix of second partial derivatives is as follows:

° j k ° j k '

and

for 7 and / = 1, 2 and k and k' = 0, 1, 2, . . . , p . The observed information

matrix, I(p), is the 2 ( p + l ) by 2 ( p + l ) matrix whose elements are the
A

negatives of the values in equations (8.8) and (8.9) evaluated at P. The
estimator of the covariance matrix of the maximum likelihood estimator
is the inverse of the observed information matrix,
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A more concise representation for the estimator of the information
matrix may be obtained by using a form similar to the binary outcome
case. Let the matrix X be the n by p + 1 matrix containing the values of
the covariates for each subject, let the matrix Vy be the n by n diagonal

matrix with general element f t u . — f t A for 7 = 1,2 and i = l,2,3,...,«,

and let V3 be the n by n diagonal matrix with general element
The estimator of the information matrix may be expressed as

where

and

m,
•a !(p)

12

22 J

(8.10)

!(P)22=(X'V2X),

8.1.2 Interpreting and Assessing the Significance of the Estimated
Coefficients

Data from a study undertaken to assess factors associated with women's
knowledge, attitude, and behavior toward mammography have been
made available to us by Dr. J. Zapka of the Division of Preventive and
Behavioral Medicine, University of Massachusetts Medical School. Re-
sults from the full study may be found in Zapka, Stoddard, Maul, and
Costanza, (1991), Costanza, Stoddard, Gaw, and Zapka, (1992) and
Zapka, Hosmer, Costanza, Harris and Stoddard, (1992). The data used
in this text are a subset of the data from the main study and have been
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Table 8.1 Code Sheet for the Variables in the Mammography
Experience Study

Variable Description Codes/Values Name

1 Identification Code
2 Mammography Experience

3 "You do not need a
mammogram unless you
develop symptoms"

4 Perceived benefit of
mammography*

5 Mother or Sister with a
history of breast cancer

6 "Has anyone taught you how
to examine your own breasts:
that is BSE?"

7 "How likely is it that a
mammogram could find a
new case of breast cancer?"

1-412 OBS
0 = Never ME
1 = Within One Year
2 = Over One Year Ago
1 = Strongly Agree SYMPT
2 = Agree
3 = Disagree
4 = Strongly Disagree
5-20 PB

0 = No HIST
1 =Yes
0 = No BSE
1 =Yes

1 = Not likely DETC
2 = Somewhat likely
3 = Very likely

The variable PB is the sum of five scaled responses, each on a four point
scale. (Women with low values perceive the greatest benefit of mammography.

modified to preserve subject confidentiality. The data are described in
Table 8.1 and may be obtained from the two web sites cited in the Pref-
ace.

To simplify the discussion of the estimation and interpretation of
odds ratios in the multinomial outcome setting we need to generalize the
notation used in the binary outcome case to include the outcomes being
compared as well as the values of the covariate. We assume that the out-
come labeled with Y = 0 is the reference outcome. The subscript on the
odds ratio indicates which outcome is being compared to the reference
outcome. The odds ratio of outcome Y = j versus outcome Y - 0 for
covariate values of x = a versus x = b is
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In the special case when the covariate is binary, coded 0 or 1, we sim-
plify the notation further and let OR,. = OR,. (1,0).

We begin by considering a model containing a single dichotomous
covariate coded 0 or 1. In the binary outcome model the estimated
slope coefficient is identical to the log-odds ratio obtained from the 2
by 2 table cross-classifying the outcome and the covariate. As we noted
in the previous section, when the outcome has three levels there are two
logit functions. We define these functions in such a way that the two
estimated coefficients, one from each logit function, are equal to the
log-odds ratios from the pair of 2 by 2 tables obtained by cross-
classifying the y = j and y = 0 outcomes by the covariate with y = 0 as
the reference outcome value.

As a specific example, consider the cross-classification of mam-
mography experience (ME) by HIST displayed in Table 8.2. When we
use ME = 0 as the reference outcome the two odds ratios calculated
from Table 8.2 are

^ 1 9 X 2 2 0 = 3.5,
1 85x14

and

11X220

63x14

The results of fitting a three-category logistic regression model,
using STATA's mlogit command, to these data are presented in Table

y\
8.3. We obtain the values in Table 8.3, labeled OR, by exponentiating
the estimated slope coefficients. We note that they are identical to the

Table 8.2 Cross-Classification of Mammography
Experience (ME) by Family History of Breast Cancer
(HIST) and Estimated Odds Ratios Using Never as the
Reference Outcome Value

HIST
ME

Never (0)
Within 1 Year (1)
Over 1 Year (2)

No(0)

220
85
63

Yes (1)

14
19
11

Total

234
104
74

s\
OR
1.0
3.51
2.74

Total 368 44 412
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Table 8.3 Results of Fitting the Logistic Regression
Model to the Data in Table 8.2

Logit
1

2

Variable
HIST
Constant
HIST
Constant

Coeff.
1.256

-0.951
1.009

-1.250

Std. Err.
0.3747
0.1277
0.4275
0.1429

s\
OR
3.51

2.74

95 % CI
1.685, 7.321

1.187, 6.342

Log-likelihood = - 396.1700

values obtained from Table 8.2. As is the case in the binary outcome
setting with a dichotomous covariate, the estimated standard error of the
coefficient is the square root of the sum of the inverse of the cell fre-
quencies. For example, the estimated standard error of the coefficient
for HIST in the first logit is

i i 1 1°'5
— + — =0.3747,

19 220 85 14

which is identical to the value in Table 8.3.
The endpoints of the confidence interval are obtained in exactly

the same manner as for the binary outcome case. First we obtain the
confidence interval for the coefficient, the endpoints of which are then
exponentiated to obtain the confidence interval for the odds ratio. For
example, the 95% CI for the odds ratio of ME = 1 versus ME = 0 shown
in Table 8.3 is calculated as follows:

exp(l .256 ± 1 .96 x 0.3747) = (1 .685, 7.321) .

The endpoints for the confidence interval for ME = 2 versus ME = 0 in
Table 8.3 are obtained in a similar manner.

We interpret each estimated odds ratios and its corresponding con-
fidence interval as if it came from a binary outcome setting. In some
cases it may further support the analysis to compare the magnitude of
the two estimated odds ratios. This can be done with or without the
support of tests of equality.

The interpretation of the effect of family history on frequency of
screening is as follows: (1) The odds among women with a family his-
tory of breast cancer having a mammogram within the last year is 3.5
times greater than the odds among women without a family history. In
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other words, women with a family history of breast cancer are 3.5 times
more likely to be frequent users of mammography screening than are
women without a family history of breast cancer. The confidence inter-
val indicates that the odds could be a little as 1.7 times or as much as 7.3
times larger with 95 percent confidence. (2) The odds among women
with a family history of breast cancer of having a mammogram more
than one year ago is 2.7 times greater than women without a family
history. Put another way, women with a history of breast cancer are 2.7
times as likely to have had a mammogram over one year ago than are
women without a family history of breast cancer. The odds could be a
little as 1.2 times or as much as 6.3 times larger with 95 percent confi-
dence. Thus we see that having a family history of breast cancer is a
significant factor in use of mammography screening.

We note that the test of the equality of the two odds ratios,
OR, = OR2 , is equivalent to a test that the log-odds for ME = 2 versus
ME = 1 is equal to zero. The simplest way to obtain the point and inter-
val estimate is from the difference between the two estimated slope coef-
ficients in the logistic regression model. For example, using the fre-
quencies in Table 8.2 and the estimated coefficients from Table 8.3 we
have

&i -A ,=1.009 -1.256

= -0.247

= 1 H1X85A

" V19x63j '

The estimator of the variance of the difference between the two coeffi-
/V A

cients, /?21 -/?,,, is

We obtain values for the estimates of the variances and covariances from
a listing of the estimated covariance matrix, which is an option in most,
if not all, packages. As described in Section 8.1 the form of this matrix
is a little different from the covariance matrix in the binary setting.
There are two matrices containing the estimates of the variances and co-
variances of the estimated coefficients in each logit and a third contain-
ing the estimated covariances of the estimated coefficients from the dif-
ferent logits. The matrix for the model in Table 8.3 is shown in Table
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Table 8.4 Estimated Covariance Matrix for the Fitted
Model in Table 8.3

Logit 1
HIST Constant

Logit 2
HIST Constant

Logit 1 HIST 0.1404
Constant -0.0163 0.0163

Logit 2 HIST 0.0760
Constant -0.0045 0.0045

0.1828
-0.0204 0.0204

Log-likelihood = -396.1700

8.4, where Logit 1 is the logit function for ME = 1 versus ME = 0 and
Logit 2 is the logit function for ME = 2 versus ME = 0.

Using the results in Table 8.4 we obtain the estimate of the variance
of the difference in the two estimated coefficients as

Var(ft, - f l j ) = 0.1404 + 0.1828-2x0.0760 = 0.1712.

The endpoints of a 95 percent confidence interval for this difference are

-0.247 ± 1.96 x V0.1712 = (-1.058,0.564).

Since the confidence interval includes zero we cannot conclude that the
log odds for ME = l is different from the log odds for ME = 2.
Equivalently, we can express these results in terms of odds ratios by ex-
ponentiating the point and interval estimates. This yields the odds ratio
for ME = 2 versus ME = l as OR = 0.781 and a confidence interval of
(0.347,1.758). The interpretation of this odds ratio is that the odds of
less recent use is 22 percent lower than the odds of recent use among

yv. y\
women with a family history of breast cancer, i.e., OR2 ~ 0.78 x OR,.

In practice, if there was no difference in the separate odds ratios
over all model covariates then we might consider pooling outcome cate-
gories 1 and 2 into a binary ("ever" versus "never") outcome. We
return to this question following model development in the next section.

We note that in a model with many covariates the extra computa-
tions required for these auxiliary comparisons could become a burden.
In this setting, procedures like STATA's test or lincom are quite help-
ful.
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A preliminary indication of the importance of the variable may be
obtained from the two Wald statistics; but as is the case with any multi-
degree of freedom variable, we should use the likelihood ratio test to
assess significance. For example, to test for the significance of the coef-
ficients for HIST we compare the log-likelihood from the model con-
taining HIST to the log-likelihood for the model containing only the
two constant terms, one for each logit function. Under the null hy-
pothesis that the coefficients are zero, minus twice the change in the log-
likelihood follows a chi-square distribution with 2 degrees of freedom.
In the example, the log-likelihood for the constant only model
is LQ - -402.5990. The value of the statistic is

G = -2 x [-402.5990 - (-396.1700)] = 12.86,

which yields a /?-value of 0.002. Thus, from a statistical point of view,
the variable HIST is significantly associated with a woman's decision to
have a mammogram.

In general, the likelihood ratio test for the significance of the coef-
ficients for a variable has degrees of freedom equal to the number of
outcome categories minus one times the degrees of freedom for the
variable in each logit. For example, if we have a four category outcome
variable and a covariate that is modeled as continuous then the degrees
of freedom is (4-l)xl = 3. If we have a categorical covariate coded at
five levels then the covariate has four design variables within each logit
and the degrees of freedom for the test are (4-l)x(5-l) = 12. This is
easy to keep track of if we remember that we are modeling one logit for
comparing the reference outcome category to each other outcome cate-
gory.

For a polychotomous covariate we expand the number of odds ra-
tios to include comparisons of each level of the covariate to a reference
level for each possible logit function. To illustrate this we consider the
variable DETC modeled via two design variables using the value of 1
(not likely) as the reference covariate value. The cross-classification of
ME by DETC is given in Table 8.5. Using the value of ME = 0 as the
reference outcome category and DETC = 1 as the reference covariate
value, the four odds ratios are as follows:
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Table 8.5 Cross-Classification of Mammography
Experience (ME) by DETC

ME
Never (0)
Within 1 Year (1)
Over 1 Year (2)
Total

1
13
1
4

18

DETC
2
77
12
16

105

3
144
91
54

289

Total
234
104
74

412

(?R(2,i) = = 2.03,1V ' 77x1

(fR(3 fl) =I V ' 144x1

OR2(2,1) = = 0.68,

and

. .
144x4

The results of fitting the logistic regression model to these data are pre-
sented in Table 8.6.

We see that exponentiation of the estimated logistic regression co-
efficients yields the odds ratios formed from 2 by 2 tables obtained

Table 8.6 Results of Fitting the Logistic Regression Model
to the Data in Table 8.5

Logit
1

2

Variable
DETC_2
DETC_3
Constant
DETC_2
DETC_3
Constant

Coeff.

0.706
2.

-2.
-0.

0.
-1.

106
565
393
198
179

Std. Err.

1.0831
1.0463
1.0377
0.6344
0.5936
0.5718

OR
2
8

.03

.22

0.68
1.22

95 % CI

0.242,
1.057,

0.195,
0.381,

16
63

2.
3.

.928

.864

341
901

Log-likelihood = -389.2005
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from the main 3 by 3 contingency table. The odds ratios for logit 1 are
obtained from the 2 by 3 table containing the rows corresponding to
M£ = 0 and ME = \ and the 3 columns. The odds ratios for logit 2 are
obtained from the 2 by 3 table containing the rows corresponding to
ME = 0 and ME = 2 and the 3 columns.

To assess the significance of the variable DETC, we calculate minus
twice the change in the log-likelihood relative to the constant only
model. The value of the test statistic is

G = -2 x [-402.5990 - (-389.2005)] = 26.80

which, with 4 degrees of freedom, yields ap-value of less than 0.001.
Thus, we would conclude that a woman's opinion on the ability of

a mammogram to detect a new case of breast cancer is significantly as-
sociated with her decision to have a mammogram. Examining the esti-
mated odds ratios and their confidence intervals we see that the associa-
tion is strongest when comparing the women who have had a mammo-
gram within the last year, ME-I, to those who have never had one, and
comparing the not likely to very likely response. The interpretation is
that the odds of having a mammogram within the last year among
women who feel that a mammogram is very likely to detect a new case
of breast cancer is 8.22 times larger than the odds among women who
feel that it is not likely that a mammogram can detect a new case of
breast cancer. All other estimated odds ratios have confidence intervals
that include 1.0. The fact that the confidence interval estimates for the
logit of ME = 1 versus ME = 0 are quite wide is a function of the cell
with one subject in Table 8.5. This follows from the fact that the esti-
mated standard errors are equal to the square root of the sum of the in-
verse of the cell counts. For example, the estimated standard error of
the coefficient for the log odds of DETC = 3 versus DETC = 1 in first
logit is

^ / * \ r i i i iia5
SE (jL = — + — + —+ - =1.0463.

v n) [91 13 144 1J

We could compare the two sets of odds ratios over the responses of
DETC in the manner similar to that illustrated for HIST to determine
whether the two logit functions are different. In results not presented,
this test with two degrees-of-freedom has p = 0.045. Thus we conclude
that for DETC we should not combine the ME = 1 and ME = 2 outcome
categories. The fact that this result is different from the result for HIST
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further indicates that a decision to collapse response categories to obtain
a simpler outcome variable should not be made until we do a thorough
modeling of the data.

Continuous covariates that are modeled as linear in the logit have a
single estimated coefficient in each logit function. This coefficient,
when exponentiated, gives the estimated odds ratio for a change of one
unit in the variable. Thus, remarks in Chapter 3 about knowing what a
single unit is, and estimation of odds ratios for a clinically meaningful
change apply directly to each logit function in the multinomial logistic
regression model.

8.1.3 Model-Building Strategies for Multinomial Logistic Regression

In principle, the strategies and methods for multivariable modeling with
a multinomial outcome variable are identical to those for the binary
outcome variable discussed in Chapter 4. The theory for stepwise selec-
tion of variables has been worked out and is available in some packages.
However, the method is not currently available in many of the other
widely distributed statistical software packages, such as STATA. To il-
lustrate modeling and interpretation of the results, we proceed with an
analysis of the data from the mammography study.

Model building in the mammography study is simplified by the
fact that there are only five independent variables and 412 subjects. We
do have a few decisions to make regarding how some of the variables
are going to be entered into the model. In particular, the variable
SYMPT is coded at four levels on an ordinal scale. Traditionally, vari-
ables of this type have either been analyzed as if they were continuous
or categorical. We begin the model-building process with SYMPT
coded into three design variables, using the "strongly agree" response
as the reference value. The variable DETC is coded at three levels and is
ordinal scale. We decided to treat it as poylchotomous with two design
variables using the "not likely" response as the reference value. The
rationale for coding these ordinal scale variables into design variables
rather than treating them as if they were continuous is that the coeffi-
cients for the design variables may be plotted to assess the functional
form of the two logits over the categories. Initially, we treat the variable
PB as if it were continuous and linear in the logits. The results of fitting
the full multivariable model are given in Table 8.7

Examination of the Wald statistics in Table 8.7 suggests that, with
the possible exception of the variable DETC, each of the variables may



274 SPECIAL TOPICS

Table 8.7 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics and Two-Tailed p-Values for the
Full Multivariable Model Fit to the Mammography
Experience Data

Logit
1

2

Variable
SYMPT_2
SYMPT_3
SYMPT_4
PB
HIST
BSE
DETC_2
DETC_3
Constant
SYMPT_2
SYMPT_3
SYMPT_4
PB
HIST
BSE
DETC_2
DETC_3
Constant

Coeff.
0.110
1.925
2.457

-0.219
1.366
1.292
0.017
0.904

-2.999
-0.290

0.817
1.132

-0.148
1.065
1.052

-0.924
-0.691
-0.986

Std. Err.
0.9228
0.7776
0.7753
0.0755
0.4375
0.5299
1.2619
1.1268
1.5392
0.6441
0.5398
0.5477
0.0764
0.4594
0.5150
0.7137
0.6871
1.1118

z
0.12
2.48
3.17

-2.91
3.12
2.44
0.02
0.80

-1.95
-0.45

1.51
2.07

-1.94
2.32
2.04

-1.30
-1.01
-0.89

P>lzl
0.905
0.013
0.002
0.004
0.002
0.015
0.988
0.422
0.051
0.652
0.130
0.039
0.052
0.020
0.041
0.195
0.315
0.375

Log-likelihood = -346.9510

contribute to the model. For the moment we keep all variables in the
model while we examine the coding of the variable SYMPT.

The two estimated coefficients for the design variable SYMPT_2,
which estimate the log odds for agree versus the reference value of
strongly agree, suggest that these two categories are similar since neither
Wald statistic is significant. The sign and magnitude of the estimated
coefficients for the design variables SYMPT_3 and SYMPT_4 suggest
that the log odds of disagree and strongly disagree differ from strongly
agree and are of similar magnitude within each of the two logit func-
tions. To examine this further we performed a Wald test for the equality
of the coefficients for SYMPT_3 and SYMPT_4 within each of the
logits. The p-values for the two tests are p = 0.070 in the first logit and
p = 0.335 in the second logit. These results suggest that we could use a
simpler model that dichotomizes SYMPT into two levels, coded 0 =
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Table 8.8 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics and Two-Tailed p-Values for
the Model Fit Using SYMPTD to the Mammography
Experience Data

Logit
1

2

Variable
SYMPTD
PB
HIST
BSE
DETC_2
DETC_3
Constant
SYMPTD
PB
HIST
BSE
DETC_2
DETC_3
Constant

Coeff.
2.095

-0.251
1.293
1.293
0.090
0.973

-2.704
1.121

-0.168
1.014
1.029

-0.902
-0.670
-0.999

Std. Err.
0.4574
0.0729
0.4335
0.5263
1.1610
1.1263
1.4344
0.3572
0.0742
0.4538
0.5140
0.7146
0.6876
1.0720

z
4.58

-3.44
2.98
2.36
0.08
0.86

-1.89
3.14

-2.27
2.24
2.00

-1.26
-0.97
-0.93

P>lzl
<0.001

0.001
0.003
0.018
0.938
0.388
0.059
0.002
0.023
0.025
0.045
0.207
0.330
0.351

Log-likelihood = -348.7480

strongly agree or agree and 1 = disagree or strongly disagree. The re-
sults of fitting the simpler model are shown in Table 8.8. The new di-
chotomous variable is labeled SYMPTD in the output. Our decision to
use SYMPTD involved four separate Wald tests: Two tested that the co-
efficients for SYMPT_2 are zero and two more tested the equality of the
coefficients for SYMPT_3 and SYMPT_4. The overall four degree-of-
freedom combined Wald test obtained using STATA's test command
with the accumulate option yields W = 3.58 with p = 0.466. This Wald
test is equivalent to the likelihood ratio test comparing the model in Ta-
ble 8.8 to the model in Table 8.7. The value of the test is

G = -2[-348.7480 - (-346.9510)] = 3.5940,

which, with four degrees-of-freedom, yields a p = 0.464. Thus we con-
clude that the more complicated model is no better than the simpler
model using SYMPTD.
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Table 8.9 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics and Two-Tailed p-Values for
the Model Fit Excluding DETC to the Mammography
Experience Data

Logit
1

2

Variable
SYMPTD
PB
HIST
BSE
Constant
SYMPTD
PB
HIST
BSE
Constant

Coeff.
2.230

-0.283
1.297
1.221

-1.789
1.153

-0.158
1.061
0.960

-1.742

Std. Err.
0.4520
0.0713
0.4293
0.5210
0.8471
0.3514
0.0712
0.4527
0.5072
0.8087

z
4.94

-3.96
3.02
2.34

-2.11
3.28

-2.22
2.35
1.89

-2.15

P>lzl
<0.001
<0.001

0.003
0.019
0.035
0.001
0.027
0.019
0.058
0.031

Log-likelihood = -353.0190

The next step is to evaluate the role of DETC in the model. The
results in Table 8.8 show that none of the four Wald statistics is signifi-
cant. We fit a model excluding DETC and the results are shown in Ta-
ble 8.9. The greatest change in a coefficient is 12.7 percent for PB in
logit 1. The next largest change is six percent. The value of the likeli-
hood ratio test of the model in Table 8.9 versus the model in Table 8.8
is G = 8.5421 which, with four degrees-of-freedom, gives p-0.074.
The fact that DETC is at most a marginal confounder of only one coef-
ficient and that the likelihood ratio test is not significant at the 0.05 level
suggests that we should exclude DETC. However, one other possibility
is to explore collapsing DETC into two categories. We note that the ref-
erence group, DETC -1, has a frequency of only 18. Thus we form a
dichotomous variable DETCD, by combining the two categories "not
likely" and "somewhat likely". Note that the new dichotomous vari-
able is equal to the design variable DETC_3. The results of fitting this
model are shown in Table 8.10. We see that coefficient for DETCD has
/? = 0.019 in logit 1 and p= 0.720 in logit 2. The likelihood ratio test
of the model in Table 8.10 versus the model in Table 8.9 is G = 6.9055
which, with two degrees-of-freedom, yields p = 0.032. Thus DETCD
contributes significantly to the model. In addition, the likelihood ratio
test of the model in Table 8.10 versus the model in Table 8.8 has
G =1.6467 which, with two degrees-of-freedom, yields p =0.441. This
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Table 8.10 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics and Two-Tailed p-Values for
the Model Fit Using DETCD to the Mammography
Experience Data

Logit
1

2

Variable
SYMPTD
PB
HIST
BSE
DETCD
Constant
SYMPTD
PB
HIST
BSE
DETCD
Constant

Coeff.
2.095

-0.249
1.310
1.237
0.885

-2.624
1.127

-0.154
1.063
0.956
0.114

-1.824

Std. Err.
0.4574
0.0725
0.4336
0.5254
0.3562
0.9264
0.3564
0.0726
0.4528
0.5073
0.3182
0.8551

Z

4.58
-3.44

3.02
2.35
2.35

-2.83
3.16

-2.12
2.35
1.88
0.36

-2.13

P>lzl
<0.001

0.001
0.003
0.019
0.019
0.005
0.002
0.034
0.019
0.056
0.720
0.033

Log-likelihood = -349.5663

indicates that the model that uses all three categories of DETC is not
better than the model using the dichotomous grouped covariate
DETCD. The largest change in a coefficient when comparing these two
models is eight percent for PB in logit 2. This indicates that use of the
dichotomous covariate gives as good adjustment of the effects of the
other covariates as the full three-category covariate. Based on these re-
sults and tests we decide to use the dichotomous variable DETCD. The
next step is to assess the scale of PB.

In theory we have the same methods available to check the scale of
a continuous covariate in a multinomial logistic regression model as in a
binary model. However, not all methods have been fully implemented
in software packages. In particular, the only method we can use with
current multinomial logistic regression software is the design variable
approach. An alternative is to approximate the fit of a multinomial lo-
gistic model by fitting separate binary models. Begg and Gray (1984)
proposed this approach. For example, in a three group problem we
would fit a model for 7 = 1 versus 7=0 , ignoring the 7 = 2 data, using
a standard logistic regression package for a binary outcome variable
and then fit separately a model for 7 = 2 versus 7 = 0, ignoring the
7 = 1 data. Begg and Gray show that the estimates of the logistic regres-
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Figure 8.1 Plot of the estimated logistic regression coefficients for the quartile
design variables created from PB for Logit 1 (o) and Logit 2 (A).

sion coefficients obtained in this manner are consistent, and under many
circumstances the loss in efficiency is not too great. It has been our ex-
perience that the coefficients obtained from separately fit logistic mod-
els are close to those from the multinomial fit. This suggests that the
individualized fitting approach can be useful for scale selection for
continuous covariates. In particular we can use the software for frac-
tional polynomials and scatterplot smoothing discussed and illustrated
in Chapter 3.

We note that since we can approximate a full multinomial logistic
model by separate binary logistic models, this opens up the possibility
of performing variable selection using the stepwise or best subsets ap-
proaches discussed in Chapter 3. If at all possible, final inferences
should be based on estimated coefficients and estimated standard errors
from fitting the multinomial logistic regression model.

To assess the scale of the variable PB we begin by using the method
of creating design variables. The values of PB are integers and range
from 5 to 17, with relatively few values exceeding 10. PB was broken
into four approximate quartiles corresponding to the values of 5, 6-7,
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8-9 and > 10. The three design variables are formed using PB = 5 as
the reference value. A plot of the estimated logistic regression coeffi-
cients for the three design variables from the two logit functions is
shown in Figure 8.1. We note that the fitted model contained all the
other covariates.

The polygons for the two logit functions in Figure 8.1 show strong
evidence that the logits are linear in PB. In addition we checked the
scale of PB using fractional polynomials by fitting separate binary lo-
gistic regression models. Although not shown, the results indicated that
neither the best m = 1 nor the best m = 2 term fractional polynomial
model improved on the linear model. Hence, we choose to include the
variable PB in the model as continuous and linear in each of the two
logit functions.

As is the case when the outcome variable is binary, the next step in
model development is to assess the need to include interaction terms in
the model. In the mammography experience study each pair of vari-
ables creates a clinically plausible interaction. None of the 10 interac-
tions contributed significantly to the model. Thus, we take as our pre-
liminary final model the one displayed in Table 8.10.

To illustrate the Begg and Gray method of fitting individual logis-
tic regression models we refit the model shown in Table 8.10. The re-
sults of this fit along with the maximum likelihood fit are given in Table
8.11. In Table 8.11 the columns labeled ILR give the estimated coeffi-
cients and estimated standard errors from the individualized logistic re-
gressions and the maximum likelihood estimates are given in the col-
umns labeled MLE.

Comparing the pairs of columns in Table 8.11, one set for esti-
mated coefficients and the other for estimated standard errors, we see
that the method of individual logistic regressions proposed by Begg and
Gray provides a good approximation to both the estimates of the coeffi-
cients and estimates of the standard errors. Thus, in the absence of
software capable of fitting a multinomial logistic regression model, we
could use the results of individual logistic regressions, realizing of
course that the resulting estimates are approximations to the maximum
likelihood estimates.

One problem that we were not faced with in the binary outcome
case but which can be an issue in a multinomial logistic regression
model occurs when a covariate is significant for some but not all logit
functions. If we model using the principle that we would like to mini-
mize the number of parameters, then we should force the coefficients to
be zero in some logit functions and estimate their values for the other
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Table 8.11 Comparison of the Maximum Likelihood
Estimates, MLE, and the Estimates from Individual
Logistic Regression Fits, ILR

Logit
1

2

Variable
SYMPTD
PB
HIST
BSE
DETCD
Constant
SYMPTD
PB
HIST
BSE
DETCD
Constant

MLE
Coeff.

2.095
-0.249

1.310
1.237
0.885

-2.624
1.127

-0.154
1.063
0.956
0.114

-1.824

ILR
Coeff.

2.091
-0.243

1.385
1.363
0.853

-2.765
1.153

-0.154
1.098
0.953
0.099

-1.838

MLE
Std. Err.

0.4574
0.0725
0.4336
0.5254
0.3562
0.9264
0.3564
0.0726
0.4528
0.5073
0.3182
0.8551

ILR
Std. Err.

0.4651
0.0738
0.4683
0.5339
0.3655
09422

0.3566
0.0726
0.4593
0.5097
0.3191
0.8600

logit functions. This strategy is not possible with currently available
multinomial logistic regression software, but can be accommodated us-
ing the individualized logistic regression approach. As in all modeling
situations clinical considerations should play an important role in vari-
able selection.

Finally, if the analysis is performed via individual logistic regres-
sions, we may employ currently available software and use the variable
selection strategies described in Chapter 4 for each logit function.

8.1.4 Assessment of Fit and Diagnostics for the Multinomial Logistic
Regression Model

As with any fitted model, before we use it to make inferences, we should
assess its overall fit and examine the contribution of each subject to the
fit. In multinomial logistic regression, the multiple outcome categories
make this a more difficult problem than was the case with a model for a
binary outcome variable. When we model a binary outcome variable we
have a single fitted value, the estimated logistic probability of the out-
come being present, P(y = l|x). When the outcome variable has three
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categories we have two estimated logistic probabilities, the estimated
probabilities of categories 1 and 2, P(y = l|x) and P(K = 2|x). Lesaffre
(1986) and Lesaffre and Albert (1989) have proposed extensions of
tests for goodness-of-fit and logistic regression diagnostics to the multi-
nomial logistic regression model. However, these methods are not that
easy to calculate using available software. Thus, until software develop-
ers add these methods to their packages we recommend assessing fit and
calculating logistic regression diagnostics using the individual logistic
regressions approach of Begg and Gray.

For an outcome variable with three categories, we suggest assessing
the fit of the two logistic regression models and then integrating the re-
sults, usually descriptively, to make a statement about the fit of the mul-
tinomial logistic regression model. The procedure for assessing the fit
of each individual logistic regression model is described in Chapter 5.
Integration of the results requires thoughtful consideration of the effects
of influential and poorly fit covariate patterns on each logit function.
In particular, covariate patterns that are influential for only one logit
should be examined closely with due consideration to clinical issues be-
fore they are excluded from analyses. While this process requires more
computation than for a single logistic regression model for a binary
outcome variable, there is nothing new conceptually.

We illustrate the methods by considering assessment of fit of the
multinomial logistic regression model shown in Table 8.10 for the
mammography experience study. Summary goodness-of-fit statistics
are presented in Table 8.12 for each of the individual logistic regression
models. Recall that logit model 1 refers to the logistic regression com-
paring the women who had a mammogram within a year of the inter-
view (ME = \) to the women who never had a mammogram (ME = Q)
and logit model 2 compares the women who had a mammogram over 1
year prior to the interview ( M E = 2) to the women who never had a
mammogram (ME = Q). These statistics are calculated using the ob-
served covariate patterns generated by the variables in the model. For
logit model 1 there were J = 14 patterns and for logit model 2 there

Table 8.12 Summary Goodness-of-Fit Statistics
(p -value) for the Individual Logistic Regressions
Logit HL(C) Pearson ( X 2 ) Stukel QS)

1 12.20(0.142) 67.84(0.996) 1.02(0.601)
2 9.62(0.293) 68.83(0.733) 1.86(0.393)
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were 7 = 75 patterns.
The Hosmer-Lemeshow statistics in the first column of Table 8.12

have values of 12.20 (df = 8, p = 0.142) and 9.62 (df = 8, p = 0.293).
The second column of Table 8.12 contains the values of the Pearson
chi-square statistic computed by covariate pattern. The reported p-
values are calculated using the normal approximation discussed in
Chapter 5. The third column of Table 8.12 contains the values of
Stukel's test (see Chapter 5 for details on how it is calculated). The p-
values for all three tests in both logits are not significant, indicating
good overall fit of the model.

The leverage, h, and diagnostic statistics AfJ, AX2, and AD defined
in equations (5.12) and (5.14)-(5.16) were calculated for each covariate
pattern for each of the two individually fit logistic regression models.
Plots similar to those shown in Chapter 5 identified several patterns with
large values for one or more statistics. Information for these patterns is
summarized in Table 8.13. The quantity P# is an arbitrary designation
for covariate pattern within each individually fit model. Its value de-
pends on the order in which the covariate patterns are formed. Pattern
numbers are provided to facilitate discussion of the values of the diag-
nostic statistics.

Examining the diagnostic statistics for logit model 1 we see why
AX2 is quite large for covariate pattern 4. The estimated logistic prob-
ability is small yet the observed probability, 3>///ra,, is 0.5. This differ-
ence generates an extremely large Pearson residual. The deviance re-
sidual, while not quite as large, is also considered significant. The ex-
tremely small value for the leverage is the primary reason that Ap is not
especially large. Based on the clinical plausibility of the observed co-
variates we have little reason to exclude the two subjects in covariate
pattern 4.

Covariate pattern 63 for logit model 1 presents a new challenge in
assessing the fit of a model. The responses to the variables SYMPTD,
HIST, BSE, and DETCD in this pattern are what we might call a "mo-
dal" response. The observed pattern in these variables represents a
woman who disagrees (SYMPTD = 1) with the statement, "You don't
need a mammogram unless you develop symptoms," has no family
history of disease (///*ST = 0), has been taught breast self-examination
(BSE = 1), and believes that it is very likely for mammography to detect
a new case of breast cancer (DETCD = 1). In fact, 149 of the 338 sub-
jects used in fitting logit model 1 had this particular response to these
variables. The single remaining variable to differentiate outcome
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among these subjects is the scaled variable PB and covariate pattern 63
corresponds to PB = 9. For this covariate pattern the value of

^

Ap = 1.733, which is quite large. This agrees with the expectations set
out in Table 5.3 of a pattern with moderate leverage and change in
Pearson chi-square. We would not want to discard data on 18 subjects
representing a fairly common response pattern without first trying to
improve the model. On the other hand, we have little other additional
information in the covariates. Addition of all interaction terms of PB
with the other main effects did not significantly improve the model for
logit 1. There are seven other covariate patterns with the same "mo-
dal" response as pattern 63. The logistic regression model fits each of
these other patterns adequately. For these patterns the value of PB
ranged from 5 to 12 so PB = 9 for pattern 63 is not an extreme re-
sponse.

Before considering the diagnostic statistics for logit model 2, we
point out the fact that covariate pattern 63 in logit model 1 provides an
excellent example of why diagnostics should be calculated by covariate
patterns formed from the main effects in a model rather than for indi-
vidual cases. Had we considered the 18 subjects with covariate pattern

Table 8.13 Covariate Pattern, Data, Observed Outcome
(v^) , Number (wiy), Estimated Logistic Probability ft,

and the Value of the Three Diagnostic Statistics Af),

AX2, AD and Leverage (/*), for Influential or Poorly Fit
Covariate Patterns from Each Individual Logistic
Regression Model

Data / P #
SYMPTD
PB
HIST
BSE
DETCD

y.

mj
ft
Ap
AX2

AD
h

Logit 1
4 63
0 1
6 9
0 0
0 1
0 1

1 11
2 18

0.015 0.345
0.543 1.733

33.585 7.037
5.820 6.586
0.016 0.198

Logit 2
62 63 66

1 1 1
9 10 10
1 0 0
1 0 1
0 0 1

3 1 2
3 1 19

0.496 0.098 0.237
0.956 0.264 0.999
3.818 9.490 2.534
5.268 4.781 3.014
0.200 0.027 0.282
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63 individually an entirely different picture would emerge. First, the
leverage for each of the 18 subjects would be 0.011 = 0.198/18. For the
11 subjects with the response present the diagnostic statistics would have

A.

had values of AX =1.92 and Ap = 0.021, which would indicate some
lack-of-fit but little influence on the estimated coefficients. The 9 sub-
jects with the response absent would have had AX2 = 0.533 and

A

Ap = 0.006, which would support an adequate model. Thus, had we
considered the data on an individual basis, we would have missed an im-
portant source of lack of fit and influence on the estimated coefficients.

Examining the diagnostic statistics in Table 8.13 for logit model 2
we see that pattern 63 is poorly fit. We remind the reader that the com-
putations for the two individual logistic regressions were performed on
separate data sets, thus the pattern numbers for the two models do not
refer to the same covariate patterns. In the case of pattern 63 the esti-
mated logistic probability is quite small yet the observed probability is
1.0. This yields a large residual. The fact that the leverage is small
moderates the effect of the large value of AX2 on the influence meas-
ure. The problem is, as was the case with pattern 4 for logit model 1,
that the observed outcome is just contrary to the model.

A.

Covariate pattern 66 has the largest values of Ap. This pattern also
represents the "modal" response described above in our discussion of
the fit of logit model 1. In the case of logit model 2 a total of 115 of
the 308 subjects used in the analysis had the "modal" response pattern.
We note that for pattern 66 PB = 1Q. Covariate pattern 62 has the sec-
ond largest value of AJJ. In this case there are only 3 subjects with these
values of the four dichotomous covariates and all three had PB = 9.
Both covariate patterns are influential due to the fact AX2 and leverage
are moderately large.

A

In Table 8.13 we see that the patterns with the largest values of AP
have PB equal to 9 or 10. It appears that the response of subjects with
PB in this range is more variable than the logistic model is able to ac-
commodate. The addition of interaction terms involving PB to logit 1
or 2 does not improve either model.

At this point in the analysis we have few options with the available
data. No alternative model was able to improve on the model shown in
Table 8.10. To explore the effect the three influential covariate patterns
have on the model we eliminate the 40 subjects with data corresponding
to covariate pattern 63 in logit 1 and patterns 62 and 66 in logit 2. The
results are presented in Table 8.14.
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Table 8.14 Estimated Coefficients, Estimated Standard
Errors, Wald Statistics and Two-Tailed p-Values for the
Model Fit After Deleting 40 Subjects Corresponding to
Covariate Patterns 62, 63 and 66 in Table 8.13

Logit
1

2

Variable
SYMPTD
PB
HIST
BSE
DETCD
Constant
SYMPTD
PB
HIST
BSE
DETCD
Constant

Coeff.
2.125

-0.216
1.243
1.271
0.883

-2.892
1.191

-0.080
0.606
1.081
0.477

-2.664

Std. Err.

0.4633
0.0854
0.4418
0.5310
0.3691
1.0416
0.3610
0.0786
0.4952
0.5123
0.3404
0.9556

z
4.59

-2.53
2.82
2.39
2.39

-2.78
3.30

-1.02
1.22
2.11
1.40

-2.79

P>lzl
<0.001

0.011
0.005
0.017
0.017
0.005
0.001
0.307
0.221
0.035
0.161
0.005

Log-likelihood = -313.7473

Comparing the estimated coefficients in Tables 8.10 and 8.14, we
see that in logit 1 the magnitude of the coefficients has not changed.
The maximum percent change is 13 percent for PB. However, in logit
2, three of the five coefficients have substantial changes. The coeffi-
cient for PB went from -0.154 to -0.080, a decrease of 48 percent. The
coefficient for HIST went from 1.063 to 0.606, a decrease of 43 per-
cent. The coefficient for DETCD went from 0.114 to 0.477, an increase
of 318 percent. Thus we see that deleting these 40 subjects has a sub-
stantial effect on the estimated odds ratios for ME = 2 versus ME = 0.

The problems encountered in fitting the model to patterns with PB
in the middle of its range point out one of the dangers in using sum-
mary indices. The variable perceived benefit, PB, was created from five
other variables. Considerable variability, and hence, information, about
the responses of individual subjects may be lost. In the current example
a value of PB = 9 or 10 could have been obtained from many possible
combinations of responses to its five component variables. In situations
when the original data are available a prudent strategy would be to re-
move the summary variable and consider the individual components as
covariates.
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Table 8.15 Estimated Odds Ratios and
Intervals for Factors Associated with
Screening

95 Percent Confidence
Use of Mammography

Variable
SYMPTD
PB
HIST
BSE
DETCD

Mammogram Within One
Year versus Never

Odds Ratio 95 % CI
8.12 3.314, 19.911
1.65* 1.239, 2.189
3.71 1.584, 8.669
3.44 1.230, 9.649
2.42 1.206, 4.871

Mammogram Over One Year
Ago versus Never

Odds Ratio 95 % CI
3.09 1.536, 6.208
1.36* 1.024, 1,810
2.90 1.191, 7.033
2.60 0.962, 7.031
1.12 0.601, 2.091

*: Odds ratio for a 2 point decrease in Perceived Benefit

The data for the 40 subjects excluded are not unusual, thus there is
no clinical basis for excluding them from the analysis. Thus, based on
our assessment of model fit and the diagnostic statistics we conclude that
the final model is the one in presented in Table 8.10. Estimated odds
ratios and 95 percent confidence intervals based on this model are
shown in Table 8.15.

The estimated odds ratios in Table 8.15 show that there is an in-
crease in the odds for mammography screening for both frequency of
use categories versus the never category. The point estimates of the
odds ratios are numerically larger for recent versus never reflecting the
greater disparity in the perceived value of mammography screening
between these two groups. In general all five model covariates are asso-
ciated with increased use of screening.

Specifically for the covariate SYMPTD, women who disagree with
the statement "You don't need a mammogram unless you develop
symptoms" are 8.1 times more likely to have had a recent mammogram
and 3.1 times more likely to have had a less recent mammogram when
compared to women who do not disagree with the statement. Both odds
ratios are significant since the confidence intervals do not contain 1.0.

Women with a family history of breast cancer are estimated to be
3.7 times more likely to be recent users and 2.9 times more likely to be
less recent users of mammography screening when compared to women
without a family history. The confidence intervals do not contain 1.0
indicating that the increase is significant.

Having been taught breast self examination is a significant factor in
obtaining mammography in the past year with an odds ratio of 3.4.
The estimated odds ratio for obtaining a mammogram less recently is
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2.6. However the confidence interval indicates that odds ratios between
0.96 and 7 are consistent with the observed data. The results are similar
in direction but smaller for belief that it is very likely that a mammo-
gram can detect a new case of breast cancer.

The covariate PB (Perceived Benefit) has a negative coefficient in
Table 8.10, suggesting that larger values indicate less belief in the bene-
fit of mammography screening. In a case such as this we could estimate
an odds ratio for an increase of 2 points in the score. This odds ratio
would be less than 1 and reflect that "less belief is significantly asso-
ciated with less frequent use. All of the other covariates in the model
have estimated odds ratios greater than 1.0. In order for the odds ratio
for PB to be in a similar direction we estimate the effect for a two point
decrease, a change of-2.0. Thus the estimate of 1.65 for frequent use
is interpreted to mean that for every 2 point decrease in the value of PB
the odds for frequent use of mammography screening is estimated to
increase 1.65 times. Similarly, the estimated odds ratio of 1.36 for less
frequent use indicates that for every 2 point decrease in the score there
is a 1.36-fold increase in the odds ratio.

As indicated in the discussion of the results the real challenge when
fitting a multinomial logistic regression model is the fact that there are
multiple odds ratios for each model covariate. This certainly compli-
cates the discussion. On the other hand, using a multinomial outcome
can provide more complete description of the process being studied.
For example, if we had combined the two frequency of use categories
into an "ever" versus "never" binary outcome then we would have
completely missed the gradation in odds ratios seen in Table 8.15.
From a statistical point of view, one should not pool the outcome cate-
gories unless the estimated coefficients in the logits are not significantly
different from each other. In the case of the model in Table 8.10 the
multivariable Wald test of the equality of the two logits is W = 10.87
which, with 5 degrees-of-freedom, yields p = 0.054. Thus we feel that
there is little statistical justification for a pooled outcome category
analysis.

In summary, fitting and interpreting the results from a multinomial
logistic regression model follows the same basic paradigm as was the
case for a binary model. The difference is that the user should be aware
of the possibility that informative comparative statements may be re-
quired for the multiple odds ratios for each covariate.
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8.2 ORDINAL LOGISTIC REGRESSION MODELS

8.2.1 Introduction to the Models, Methods for Fitting and Interpre-
tation of Model Parameters

There are occasions when the scale of a multiple category outcome is
not nominal but ordinal. Common examples of ordinal outcomes in-
clude variables such as extent of disease (none, some, severe), job per-
formance (inadequate, satisfactory, outstanding) and opinion on a po-
litical candidate's position on some issue (strongly disagree, disagree,
agree, strongly agree). In such a setting one could use the multinomial
logistic model described in Section 8.1. This analysis, however, would
not take into account the ordinal nature of the outcome and hence the
estimated odds ratios may not address the questions asked of the analy-
sis. In this section we consider a number of different logistic regression
models that do take the rank ordering of the outcomes into account.
Each model we discuss can be fit either directly or with some slight
modification of existing statistical software.

It has been our experience that one problem users have with ordi-
nal logistic regression models is that there is more than one logistic re-
gression model to choose from. In the next section we describe and
then compare through an example three of the most commonly used
models: the adjacent-category, the continuation-ratio and the propor-
tional odds models. There is a fairly large literature considering various
aspects of ordinal logistic regression models. A few of the more general
references include the text by Agresti (1990), which discusses the three
models we consider as well as other more specialized models, and the
text by McCullagh and Nelder (1989). Ananth and Kleinbaum (1997),
in a review paper, consider the continuation-ratio and the proportional
odds models as well as three other less frequently used models: the un-
constrained partial-proportional odds model, the constrained partial-
proportional odds model and the stereotype logistic model. Greenland
(1994) also considers the continuation-ratio, the proportional odds
models and the stereotype logistic model.

Assume that the ordinal outcome variable, Y, can take on K +1 val-
ues coded 0,l,2,...,tf. We denote a general expression for the prob-
ability that the outcome is equal to k conditional on a vector, x, of p co-
variates as Pr[Y = k \ x] = 0*(x). If we assume that the model is the mul-

tinomial logistic model in Section 8.1 then $k(x) = Jtk(\) where, for
K = 2 the model is given in equations (8.3) - (8.5). In the context of
ordinal logistic regression models the multinomial model is frequently
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called the baseline logit model. This term arises from the fact that the
model is usually parametrized so that the coefficients are log-odds
comparing category Y = k to a "baseline" category, 7 = 0. As shown
in Section 8.1 the fully parametrized baseline logistic regression model
has Kx(p + \) coefficients. Under this model the logits, as shown in
Section 8.1, are

(8.11)
_;r0(x)_

for k = l,2,...,K.
When we move to an ordinal model we have to decide what out-

comes to compare and what the most reasonable model is for the logit.
For example, suppose that we wish to compare each response to the next
larger response. This model is called the adjacent-category logistic
model. If we assume that the log odds does not depend on the response
and the log odds is linear in the coefficients then the adjacent category
logits are as follows:

(8.12)

for k = \,2,...,K. The adjacent-category logits are a constrained version
of the baseline logits. To see this we express the baseline logits in terms
of the adjacent-category logits as follows:

In w = ln + ln + • • • + In

cW

<»*w
^-iW

= (a,+x'p) + (a2+x'p)

= (a, + a2 + • • • + a, (8.13)

Thus we see that the model in equation (8.13) is a version of the base-
line model in equation (8.11) with intercept /3fc0 = (a, + cc2 H Ha f c )
and slope coefficients pj. = k$. As we show shortly in an example, an
easy way to fit the adjacent-category model is via a constrained baseline
logistic model.
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Suppose instead of comparing each response to the next larger re-
sponse we compare each response to all lower responses that is Y = k
versus Y<k for k = 1,2,..., AT. This model is called the continuation-
ratio logistic model. We define the logit for this model as follows:

K I Y I —/ L I A I —

= ln

(8.14)

for £ = 1,2,...,AT. Under the parametrization in equation (8.14) the
continuation-ratio logits have different constant terms and slopes for
each logit. The advantage of this unconstrained parametrization is that
the model can be fit via K ordinary binary logistic regression models.
We demonstrate this fact via an example shortly. We can also constrain
the model in equation (8.14) to have a common vector of slope coeffi-
cients and different intercepts, namely

rk(\) = ek+x'$. (8.15)

Special software is required to fit the model in equation (8.15). For ex-
ample, Wolfe (1998) has developed a command for use with STATA.
We note that it is also possible to define the continuation ratio in terms
of Y = k versus Y>k for £ = 0,l , . . . ,Af-l. Unfortunately the results
one obtains from the two parametrizations are not equivalent. We prefer
the formulation given in equations (8.14) and (8.15) since, if K = \,
each of the models in equations (8.11) to (8.15) simplifies to the usual
logistic regression model where the odds ratios compare response Y = 1
to response 7 = 0.

The third ordinal logistic regression model we consider is the pro-
portional odds model. With this model we compare the probability of
an equal or smaller response, Y < k, to the probability of a larger re-
sponse, Y > k,
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= ln

P(Y>k\x)

(8.16)

for k = Q,l,...,K-l. We note that in the case when # = 1 the model as
defined in equation (8.16) simplifies to the complement of the usual
logistic regression model in that it yields odds ratios of Y = 0 versus
Y = 1 . We negate the coefficient vector in equation (8.16) to be consis-
tent with software packages such as STATA and other references dis-
cussing this model.

The method used to fit each of the models, except the uncon-
strained continuation-ratio model, is based on an adaptation of the mul-
tinomial likelihood and its log shown in equation (8.6) for K = 2. The
basic procedure involves the following steps: (1) the expressions defin-
ing the model specific logits are used to create an equation defining
<j>k(x) as a function of the unknown parameters. (2) The values of a

K + l dimensional multinomial outcome, z' = (ZQ,Z},...,ZK), are created
from the ordinal outcome as zk = 1 if y — k and zk = 0 otherwise. It
follows that only one value of z is equal to one. The general form of
the likelihood for a sample of n independent observations, (y,,x,. ),

/ =l,2,...,n, is

where we use " p" somewhat imprecisely to denote both the /? slope
coefficients and the K model-specific intercept coefficients. It follows
that the log-likelihood function is

x , . (8.17)

We obtain the MLEs of the parameters by differentiating equation
(8.17) with respect to each of the unknown parameters, setting each of

A

the K + p equations equal to zero and solving for " p". We obtain the
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estimator of the covariance matrix of the estimated coefficients in the
usual manner by evaluating the inverse of the negative of the matrix of

*.

second partial derivatives at "p" .
At this point in the discussion it is not especially worthwhile to

show the specific form of 0^ (x) for each model, the details of the likeli-
hood equations or the matrix of second partial derivatives. Instead, we
focus on a simple example to illustrate the use of the models and to aid
in the interpretation of the odds ratios that result from each of them. As
we noted above, an ordinal scale outcome can arise in a number of dif-
ferent ways. For example, we can create an ordinal outcome by catego-
rizing an observed continuous outcome variable. Alternatively, we may
observe categories that we hypothesize have come from categorizing a
hypothetical and unobserved continuous outcome. This is often a use-
ful way to envision outcome scales in categories ranging from strongly
disagree to strongly agree. Another possibility is that the outcome is a
composite of a number of other scored variables. Common examples
are health status or extent of disease, which arise from many individual
clinical indicators such as the Apgar score of a baby at birth. The Ap-
gar score ranges between 0 and 10 and is the sum of 5 variables, each
scored as either 0, 1, or 2.

The example we use comes from the Low Birth Weight Study (see
Section 1.6.2) where we form a four category outcome from birth
weight (BWT) using cutpoints: 2500g, 3000g and 3500g. This example
is not typical of many ordinal outcomes that use loosely defined "low,"
"medium" or "high" categorizations of some measurable quantity.
Instead, here we explicitly derived this variable from a measured con-
tinuous variable. We make use of this fact when we show how the pro-
portional odds model can be derived from the categorization of a con-
tinuous variable. In addition some of the exercises are designed to ex-
tend this discussion. First, we need to give some thought to the assign-
ment of codes to the outcome variable, as this has implications on the
definition of the odds ratio calculated by the various ordinal models.
The obvious choice is to use the naturally increasing sequence of codes:
0 if BWT < 2500, 1 if 2500 <BWT< 3000, 2 if 3000 < BWT < 3500 and
3 if £WT>3500. This coding is appropriate if we want low or lower
weight as the reference outcome. However this is in the opposite direc-
tion of how we modeled low birth weight in earlier chapters. Thus a
decreasing sequence of codes might make more sense to use for some
ordinal models namely: 3 if BWT<2500, 2 if 2500<BWT<3000, 1 if
3000 <W7< 3500 and 0 when BWT > 3500. With this coding, the
heaviest births are the reference outcome. This is the coding we use for
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Table 8.16 Cross-Classification of the Four
Category Ordinal Scale Birth Weight Outcome
versus Smoking Status of the Mother

Birth Weight
Category

0: BWT > 3500
1:3000<BWT < 3500
2: 2500 < BWT < 3000
3: BWT < 2500

Total

Smoking Status
No (0) Yes (1)

35 11
29 17
22 16
29 30

115 74

Total
46
46
38
59
189

the outcome variable BWT4 in this section. In truth, the actual coding,
for the most part, does not make a difference, as long one is able to fig-
ure out how to correct the signs of the coefficients obtained by software
packages. We illustrate this with examples.

As a starting point consider the cross-classification of BWT4 versus
smoking status of the mother during the pregnancy shown in Table
8.16. The odds ratios for the multinomial or baseline logit model de-
fined in equation (8.11) are

22x11
and

0R(3,0) = ̂ ^^- = 3.29,V ' 29x11

where we use OR(fc,0) to denote the odds ratio of maternal smoking for
BWT4 = k versus BWT4 = 0. The increase in the odds ratio demon-
strates an increase in odds of a progressively lower weight baby among
women who smoke during pregnancy.

The adjacent-category model postulates that the log odds of each
successively higher comparison of the baseline log odds is a constant
multiple of the log odds of Y = \ versus Y = Q. Under the adjacent-
category model, the relationship we require is ln[OR(fc,0)] =
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£xln[OR(l,0)]. The results of fitting the adjacent-category model via a
constrained baseline model are shown in Table 8.17.

We obtain the equations for the adjacent-category logits by using
the algebraic relationship between the constrained baseline and adja-
cent-category models shown in equation (8.13). It follows that the first
estimated adjacent-category logit is identical to the first estimated base-
line logit, namely

a} (SMOKE) = -0.110 + 0.370 x SMOKE .

The estimated coefficient for SMOKE in the second adjacent-category
logit is the same as in the first. The estimated coefficient for logit 2 in
Table 8.17 is twice the value in logit 1 and reflects the constraint placed
on the fitted baseline logit model. It follows from equation (8.13) that
the estimate of the constant term for the second adjacent-category logit
is equal to the difference between the two estimated constant terms in
Table 8.17,

«2 = A>o - Ao = -°-441 ~ (-0.110) = -0.331.

Hence the equation for the second adjacent-category logit is

a2(SMOKE) = -0.331 + 0.370 x SMOKE.

The equation for the third adjacent-category logit is obtained in a simi-
lar manner. In particular the estimated coefficient for SMOKE shown

Table 8.17 Estimated Coefficients, Standard
Errors, z-Scores, Two-tailed /»-Values for
the Fitted Constrained Baseline Model
Logit Variable

1

2

3

SMOKE
constant
SMOKE
constant
SMOKE
constant

Coef. Std. Err.
0.370

-0.110
0.739

-0.441
1.109

-0.175

0.1332
0.2106
0.2664
0.2333
0.3996
0.2495

z
2.77

-0.52
2.77

-1.89
2.77

-0.70

P>\z\
0.006
0.602
0.006
0.059
0.006
0.483

Log-likelihood = -255.6528
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in the third logit in Table 8.17 is three times the estimated coefficient
for the first logit. It follows from equation (8.13) that the estimate of
constant term is a3 = ft0 -/320 = -0.175-(-0.441) = 0.266. Hence the
third estimated adjacent-category logit is

a2 (SMOKE) = 0.266 + 0.370 x SMOKE.

Under the adjacent-category model the estimate of the odds ratio for
smoking status during pregnancy of the mother is

OR(fc, k -1) = exp(0.370) = 1.45

for k = 1,2,3. The interpretation of this estimate is that the odds of a
birth in the next lower weight category among women who smoke dur-
ing pregnancy are 1.45 times the odds among women who do not
smoke.

Since the adjacent-category model is a constrained baseline model
we can test that the two models are not different from each other via a
likelihood ratio test or multivariable Wald test. The log-likelihood for
the fitted baseline model (output not shown) based on the data in Table
8.16 is -255.4859. Thus, the likelihood ratio test is

G = -2[-255.6528 - (-255.4859)] = 0.334

which, with two degrees-of-freedom, gives /? = P(#2(2)>0.334) =

0.846. The two degrees-of-freedom come from the constraints de-
scribed above for adjacent-category logits two and three. In general the
degrees-of-freedom for this test are ((K +1) - 2) x p where K +1 is the
number of categories and p is the number of covariates in each model.
In work not shown we obtained the same result with the Wald test. Thus
we cannot say that the adjacent-category model is different from the
baseline model. Since the adjacent-category model summarizes the ef-
fect of smoking into a single odds ratio we might prefer to use this
model. However, this discussion considered only one covariate and the
final decision in any practical setting should consider all model covari-
ates as well as an evaluation of model fit.

Next we consider the continuation-ratio model. As shown in equa-
tion (8.14) the coefficients for this model yield the log odds for a birth
in the next lower weight category relative to all heavier weight catego-
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Table 8.18 Estimated Coefficients, Standard
Errors, z-Scores, Two-tailed p-Values for the
Fitted Unconstrained Continuation-Ratio Model
Logit

1

2

3

Variable
SMOKE
constant
SMOKE
constant
SMOKE
constant

Coef.
0.623

-0.188
0.508

-1.068
0.704

-1.087

Std. Err.
0.4613
0.2511
0.3991
0.2471
0.3196
0.2147

z
1.35

-0.75
1.27

-4.32
2.20

-5.06

P>lzl
0.177
0.454
0.203
0.000
0.028

<0.001
Log-likelihood =-62.8400+ (-77.7436)+ (-114.9023)

= -255.4859

ries. The unconstrained model described in equation (8.14) can be fit
via a set (3 in this case) of binary logistic regressions. Each fit is based
on a binary outcome, y%, defined as follows:

for k = 1,2,3. The results of fitting the unconstrained continuation-ratio
logit model containing SMOKE are shown in Table 8.18. The results of
the three separate fits are summarized into one single table for purposes
of emphasizing that we have fit a single multiple category outcome.
This model is, in terms of the number of parameters and log-likelihood,
fully equivalent to the unconstrained baseline model. Note that, as
shown at the bottom of Table 8.18, the sum of the values of the log-
likelihoods from the three separate fits is equal to the log-likelihood
from the unconstrained baseline model.

The three estimated coefficients in Table 8.18 are quite similar (all
are approximately 0.6). The estimates indicate that the odds of a birth
in the next lower weight category relative to higher weight categories
among women who smoked during pregnancy is about 1.8 = exp(0.6)
times that of women who didn't smoke.

To test for the equality of the three smoking coefficients, we make
use of the fact that, as a result of the definition of the model, the three
sets of parameter estimates are independent. Thus a simple test for
equality is the two degree-of-freedom chi square statistic
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W2= (0.623-Q.508)2 (0.623 - 0.704)2

[(0.4613)2+(0.3991)2] [(0.4613)2 +(0.3196)2]

which yields p = Pr[#2 (2) > 0.056] = 0.972. Hence we cannot say, at the
0.05 level, that the three coefficients are different and we consider fit-
ting the constrained continuation-ratio logit model in equation (8.15).

The results of fitting this model are shown in Table 8.19. The es-
timate of the odds ratio for smoking during pregnancy is
1.87 = exp(0.627). The wording of the interpretation is the same as that
given for the approximate value from the unconstrained model. This
odds ratio is a bit larger than the estimate of 1.45 obtained under the
adjacent-category model. The reason is that the reference group for the
continuation-ratio model includes all heavier weight categories not just
the next highest, which is used in the adjacent-category model.

In general, the continuation-ratio model might be preferred over
the baseline and adjacent-category model when the conditioning used in
defining and fitting the model makes clinical sense. A common exam-
ple is one where the number of attempts to pass a test or attain some bi-
nary outcome is modeled. The first logit models the log odds of pass-
ing the test the first time it is taken. The second logit models the log
odds of passing the test on the second attempt given that it was not
passed on the first attempt. And this process continues until one is
modeling the Kth attempt. Since this is not a common setting we do not
consider the model in any more detail. Further elaboration and discus-
sion can be found in the references cited in this section.

Probably the most frequently used ordinal logistic regression
model in practice is the constrained cumulative logit model called the
proportional odds model given in equation (8.16). Each of the previ-

Table 8.19 Estimated Coefficients, Standard
Errors, z-Scores, Two-tailed p-Values for the
Fitted Constrained Continuation-Ratio Model

Variable
SMOKE
constantl
constant!
constants

Coef.
0.627

-0.189
-1.114
-1.052

Std. Err.
0.2192
0.2204
0.2129
0.1862

z
2.86

P>lzl
0.004

Log-likelihood = - 255.5594
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ously discussed models for ordinal data compares a single outcome re-
sponse to one or more reference responses (e.g., Y = k versus Y = k — l,
or Y = k versus Y<k). The proportional odds model describes a less
than or equal versus more comparison. For example if the outcome is
extent of disease the model gives the log odds of no more severe out-
come versus a more severe outcome. The constraint placed on the
model is that the log odds does not depend on the outcome category.
Thus inferences from fitted proportional odds models lend themselves
to a general discussion of direction of response and do not have to fo-
cus on specific outcome categories. The results are much simpler to
describe than those from any of the unconstrained models but are of
about the same order of complexity as results from the other con-
strained models.

This consistency of effect across response categories in the propor-
tional odds model is similar to that described for the constrained adja-
cent-category and continuation-ratio models and, as such, should always
be tested. Modifications of the proportional odds model that allow one
or more covariates to have category-specific effects are discussed by
Ananth and Kleinbaum (1997). These "partial" proportional odds
models have not, as yet, seen wide use in practice and we do not con-
sider them further in this text.

One way of deriving the proportional odds model is via categoriza-
tion of an underlying continuous response variable. This derivation is
intuitively appealing in that it allows us to use some concepts from lin-
ear regression modeling. For example, the cutpoints used to obtain the
four category variable BWT4 are 2500, 3000 and 3500 grams. Due to
the way packages handle the proportional odds model it turns out to be
more convenient to code the ordinal outcome so it increases in the same
direction as its underlying continuous response. Thus we define the
outcome BWT4N as follows: 0 if BWT<2500, 1 if 2500<BWT<3000,
2 if 3000 <BWT< 3500 and 3 when BWT > 3500 and the specific cut-
points as cp} =2500, cp2 =3000 and cp3 =3500.

We show in Figure 8.2 a hypothetical line or model,
BWT = A0 + P x LWT, that describes mean birth weight as a function of
mothers weight at the last menstrual period. The interval-specific cod-
ing of the BWT4N outcome variable is shown to the left of the BWT axis
as Y = k for k = 0,1,2,3. The particular values used to obtain the line
are A0 =100 and ft = 20 and are for demonstration purposes only. The
actual linear regression of BWT on LWT could have been used; how-
ever, the resulting graph would not have had as large a range in the
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BWT axis or as steep a slope. It is the idea that is important not the ac-
tual numbers.

Suppose that instead of the usual normal errors linear regression
model we have a model where the errors follow the logistic distribution.
The statistical model for birth weight is BWT = A0 +A, xLWT + crxe,
where <r is proportional to the variance and e follows the standard lo-
gistic distribution with cumulative distribution function

(8.18)

A concise discussion of this distribution may be found in Evans, Hast-
ings and Peacock (1993).

The regression based on the continuous outcome models the mean
of BWT as a function of LWT. In ordinal logistic regression we model
the probability that BWT falls in the four intervals defined by the three
cutpoints shown in Figure 8.2. For example, we show in Figure 8.3 the
underlying logistic distribution for the regression model in Figure 8.2 at

4000-

Y=2

cpr

Y=\

y=o

1500-

BWT =

100 125 150 175

Mother's Weight at the Last Menstrual Period

200

Figure 8.2 Plot of a hypothetical model describing mean birth weight as a
function of mother's weight.



300 SPECIAL TOPICS

LWT = 125. The mean is 2600 grams. The probabilities for the four
ordinal outcomes are the respective areas under this curve. The area
below 2500 is the largest indicating that, among women who weigh 125
pounds, a birth weight less than or equal to 2500 grams (BWT4N = 0)
is the most likely ordinal outcome. However, at 175 pounds the mean
from the regression line is 3600 grams and the probability is largest for
the BWT4N = 3 ordinal outcome and smallest for the BWT4N = 0 or-
dinal outcome. Under the proportional odds model we model the ratios
of cumulative areas defined by the cutpoints.

Consider women who weigh 125 pounds. Under our coding of the
four category ordinal variable BWT4N we have

e<
CP\ ~

= P[e<T,-125xj3] (8.19)

.25-

700 2500 3000 3500

BWT

5000

Figure 8.3 Plot of the hypothetical underlying logistic distribution at
= 125.
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where we let T, = (cp^ - /10 )/cr and /^/1,/cr. Under the assumption of
errors with the distribution function in equation (8.18), the probability
in equation (8.19) is

, -125x/}

, -125x0- (8.20)

It follows from equation (8.20) that

(8.21)

Hence the log odds of a lighter weight baby at this cutpoint among 125
pound women is

In
~V(BWT4N < 0| LWT = 125)"

P(BWT4N>Q\LWT = 125)
In

In

~P(e<T,-125x/?)~
P(e>Tj-12f

" ^,-125x0

I + £?T, -125x0

1

1 + gT, -125x0

>x/3)

(8.22)

which is the proportional odds model in equation (8.16). If we follow
the steps in equation (8.19) to equation (8.22) then we obtain identical
expressions for the other outcome categories. For example, at the cut-
point cp3 we have the log odds

In
P(BWT4N < 2\ LWT = 125)

P(BWT4N>2\LWT =
= ln

P(e>T3-125x

= T3-125xj3.

By similar calculations at BWT4N = l among 175 pound women the
log odds is
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In
P(BWT4N<1\LWT =

P(BWT4N>l\LWT =
= ln

= T2-175x0.

We can follow the same derivation for any covariate, x, and any
number of categories for an ordinal outcome variable, Y, and we obtain
as the log odds for as small or smaller outcome the equation

In
P(Y>k\x)

= ln
P(e<Tk+l-xxp)
P(e>Tk+l-xxp)_

(8.23)

It follows from equation (8.23) that the log of the odds ratio for x =
versus x = x0 is

In
p(Y>k\xl)

-In
P(Y>k\x0)

= -p(xl -x0). (8.24)

How we use the results from a package and equation (8.24) to es-
timate an odds ratio depends on the package used. For example, the
results of fitting the proportional odds model in STATA with outcome
BWT4N and covariate LWT are shown in Table 8.20. Note that the co-
efficient for LWT in Table 8.20 is positive reflecting the direction of the
association seen in Figure 8.3. Hence increasing values of LWT are as-
sociated with increasing values of BWT4N. Thus the output is consistent
with the underlying hypothetical continuous outcome model. The
negative sign in equation (8.24) reflects the fact that under a positive
association the covariate is protective (i.e., negatively associated with
smaller values of the ordinal outcome). Hence the estimate of the effect
of a 10-pound increase in LWT on the odds ratio for as light or lighter
versus a heavier baby is

OR = exp(-0.013 x 10) = 0.88.
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Table 8.20 Results of Fitting the Proportional
Odds Model to the Four Category Birth Weight
Outcome, BWT4N, with Covariate LWT
Variable
LWT
constantl
constant2
constants

Coef.
0.013
0.832
1.707
2.831

Std. Err.
0.0043
0.5686
0.5782
0.6027

z
2.95

P>lzl
0.003

95% CI
0.004, 0.021

Log-likelihood = -255.1477

This estimate implies a 12 percent reduction in the odds for a lower
weight baby per 10-pound increase in weight.

One feature of the proportional odds model that is identical to the
binary logistic model is that we can reverse the direction of the model
by simply changing the signs of the coefficients. For example, if we are
interested in modeling heavier versus lighter weight babies then the es-
timate of the odds ratio for a 10-pound increase in weight is

OR = exp(0.013xlO) = 1.14.

This estimate indicates that there is a 14 percent increase in the odds of
a heavier baby per 10-pound increase in weight.

The output from SAS's logistic procedure is identical to Table
8.20 except that the coefficient for LWT is -0.013 since SAS uses a
model that does not negate the coefficient, [J, in equation (8.16).

As a second example we fit the model containing smoking status of
the mother during pregnancy. Women who smoke during pregnancy
tend to have lower weight births thus the association in the conceptual
underlying continuous model is negative. The results of fitting this
model in STATA are shown in Table 8.21 where the coefficient for
SMOKE is negative. Hence the estimate of the odds ratio for a lower
versus a heavier weight baby is, from equation (8.24),

OR = exp[-(-0.761)] = 2.14.

The interpretation is that women who smoke during pregnancy have 2.1
times the odds of a lower versus a heavier baby than women who do not
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smoke. Similar to the discussion for LWT the estimate of the odds ratio
for a heavier versus lighter weight baby is

OR = exp (-0.761) = 0.47.

The interpretation of this estimate is that the odds of a heavier versus
lighter weight baby are 53 percent less for women who smoke during
pregnancy.

As with other constrained ordinal models, one should check to see
whether the assumption of proportional odds is supported by the data.
This is typically done by comparing the fitted proportional odds model
to the unconstrained baseline logit model via either a score or likelihood
ratio test. The problem with these tests is that the proportional odds
model can not be obtained by placing linear constraints on the coeffi-
cients in the baseline model. While the tests are not completely statisti-
cally correct, they can be used to provide some evidence of model ade-
quacy. The degrees-of-freedom for the comparison is the same as for
the test of the adjacent category versus the baseline model,
((K + \)-2)xp. For example, the likelihood ratio comparison of the

proportional odds model containing smoking status of the mother
shown in Table 8.21 to the baseline logit model is

G = -2[-255.6725 - (-255.4859)] = 0.373,

which, with two degrees-of-freedom, gives p = P(%2(2) > 0.373) = 0.830.

The SAS package uses the score test and obtains a p-value based on two
degrees-of-freedom of 0.644. Thus, on the basis of either test, we can-
not say that the baseline and proportional odds models are different.
Thus, at least for the covariate SMOKE, the inferences from the two

Table 8.21 Results of Fitting the Proportional Odds
Model to the Four Category Birth Weight Outcome,
BWT4N, with Covariate SMOKE
Variable Coef. Std. Err. z
SMOKE -0.761
constant 1 -1.116
constant! -0.248
constants 0.867

0.2719 -2.80
0.1984
0.1819
0.1937

P>lzl 95% CI
0.005 -1.293, -0.228

Log-likelihood = -255.6725
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models are equivalent.
The choice of what model to ultimately use in any problem should

consider which odds ratios are most informative for the problem as well
as an assessment of model adequacy. In the next section we consider a
more complete analysis of the four category birth weight outcome.

8.2.2 Model Building Strategies for Ordinal Logistic Regression
Models

The steps in model building for an ordinal logistic model are the same
as described in Chapter 4 for the binary logistic regression model. Un-
fortunately, however, the full array of modeling tools is not available in
software packages.

For ordinal models we think that a sensible approach to model
building involves the following steps: Perform the usual purposeful or
stepwise selection of main effects. Check for the scale of continuous
covariates using design variables in the ordinal model. In addition, one
could check for nonlinearity using fractional polynomial analyses with
K separate binary regressions of y = k versus y = 0. Any nonlinear
transformation found should, of course, make clinical sense, be rea-
sonably similar across the separate logistic regressions and make a sig-
nificant improvement over treating the covariate as linear in the ordinal
model. Next, check to make sure all omitted covariates are neither sig-
nificant nor confounders of main effects in the model. Lastly, check
the need to include interactions using the usual selection methods. At
this point, check any model assumptions of constant coefficients by
comparing the constrained model to its unconstrained version. As
shown in Section 8.2.1 this can be done via a likelihood ratio compari-
son of the fitted model versus the baseline model. Diagnostic statistics
and goodness-of-fit tests have not been extended for use with ordinal
models. Thus one has to use the separate binary regressions approach.
The big disadvantage of this approach is that one is really not checking
the actual fitted model, only an approximation to it. However this
method may help identify influential and poorly fit subjects. In general
this approach is a bit ad-hoc and all results should be checked by de-
leting identified subjects and refitting the ordinal model. Finally, infer-
ential statements based on estimated odds ratios and their confidence
intervals should be worded in such a way that it is clear which ordinal
model has been used.

Since the basic process is so similar to ones used many times in this
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text we begin with a model for the four-category birth weight outcome
containing the significant main effects. We focus on fitting the propor-
tional odds model. The results of fitting this model are shown in Table
8.22. We include age in the model because of its known clinical im-
portance. In addition we keep the indicator variable for hypertension,
HT, in the model because of its clinical importance and the fact that the
likelihood ratio test for its significance yields /? = 0.046 (work not
shown).

We used three separate binary regressions to check the scale of
AGE and LWT and this analysis supported keeping them linear in the
logit. A check for scale using the quartile design variables for LWT
yielded three similar coefficients suggesting that we consider receding
LWT into a single dichotomous covariate comparing the first quartile to
the other three quartiles. Replacing LWT with this dichotomous covari-
ate yielded a model with a slightly smaller log-likelihood but the coeffi-
cient for HT changed by about 18 percent. Thus it seems that keeping
LWT continuous in the logit gives us nearly as good a model and pro-
vides better adjustment of the effect of HT.

Next we checked for interactions. The only significant interaction
is between LWT and HT with p = 0.044 for the likelihood ratio test and
p - 0.062 for the Wald test of the coefficient. However the estimated

A

coefficient for the main effect of HT is flHT = -5.648 with an estimated

Table 8.22 Results of Fitting the Proportional Odds
model to the Four Category Birth Weight Outcome,
BWT4N

Variable
AGE
LWT
RACE_2
RACE_3
SMOKE
HT
UI
PTD
Constant 1
Constant2
Constants

Coef. Std. Err.
0.001
0.013

-1.471
-0.869
-0.988
-1.194
-0.913
-0.822
-0.495

0.516
1.803

0.0275
0.0049
0.4347
0.3345
0.3150
0.6122
0.4045
0.4174
0.8798
0.8817
0.8914

i P>lzl 95% CI
0.02
2.65

-3
_2

-3
-1
_2
_i

.38

.60

.14

.95

.26

.97

0.982
0.008
0.001
0.009
0.002
0.051
0.024
0.049

-0.053,
0.003,

-2.323,
-1,
-1,
-2,
-1
-1

.535,

.605,

.394,

.706,

.640,

0.054
0.022

-0.619
-0.213
-0.370

0.006
-0.120
-0.004

Log-likelihood = -235.6504
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Table 8.23 Estimates of Odds Ratios for a
Lighter versus a Heavier Birth and 95 Percent
Confidence Intervals Obtained from the Fitted
Proportional Odds Model in Table 8.22

Variable
AGE
LWT
RACE_2
RACE_3
SMOKE
HT
m
PTD

s\
OR

0.99+
0.88+
4.35
2.38
2.69
3.30
2.49
2.28

95% CI
0.582, 1.699
0.803, 0.970
1.857, 10.206
1.237, 4.641
1.448, 4.978
0.994, 10.957
1.127, 5.507
1.004, 5.155

+: Estimate for a 10 year or 10 pound increase

standard error of SEmHT) = 2.5353 indicating considerable numerical

instability largely due to the fact that there are only 12 subjects with
HT = l. Thus we decide not to include this interaction in the model.

Next we check the assumption of proportional odds of the fitted
model in Table 8.22. The likelihood ratio test comparing the baseline
logit model to the proportional odds model is

G = -2 x [(-235.6504) - (-224.7788)] = 21 .7432 .

The degrees-of-freedom for this comparison are ((AT + l)-2)x/? =

(4-2)x8 = 16 and the approximate p- value is P[#2(16)>21.7432] =
0.152. Thus we conclude that we cannot say that the proportional odds
assumption does not hold.

To assess the fit and influence of individual subjects we performed
three separate full assessments of fit based on the binary logistic regres-
sions of BWT4N = k versus BWT4N = 0. The methods are as de-
scribed and illustrated in detail in Chapter 5. The results of this analysis
identified that subjects with identification numbers 98, 132, 133, 138

A

and 188 are highly influential with Ap>l in one of the three binary
regressions. Examination of the data for these subjects yields no un-
usual values. However, two of these subjects are among the twelve with a
history of hypertension. If we remove all five subjects then we do see
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changes of greater than 20 percent in three of the eight coefficients.
However their removal leads to two cells with zero frequency in the
cross-tabulation of BWT4N versus HT. Due to these zero frequency
cells we cannot fit the baseline logit model and hence are unable to test
the proportional odds assumption with the likelihood ratio comparison.
As a result, we decide not to remove any of these subjects and use the
model in Table 8.22 as our final model.

We provide estimates of the odds ratios for a lighter versus a heav-
ier birth and their confidence intervals in Table 8.23. We obtain these
odds ratios as follows: If we follow the usual method of exponentiating
the estimates of the coefficients in Table 8.22 then the odds ratios com-
pare the odds for a heavier versus a lighter birth. A fact we discussed in
detail for LWT is that the output from STATA is set up to be consistent
with an underlying hypothetical continuous response. Namely, positive
coefficients imply a positive association between the covariate and the
hypothetical continuous response. In this example the reverse direction
is a clinically more relevant comparison, lighter versus heavier birth.
Thus the odds ratios we present in Table 8.23 are obtained by exponen-
tiating the negative of the values in Table 8.22.

The results of this analysis show that, after controlling for the age
and weight of the mother, race other than white, smoking during preg-
nancy, history of hypertension, uterine irritability and history of a pre-
term delivery increase the odds of a lighter versus heavier birth. The
increase in the odds ranges from 4.4 times for black versus white race to
2.3 times for history of pre-term delivery. All the estimates are signifi-
cant at the five percent level except history of hypertension, which has
p = 0.051.

We could have selected one of the other ordinal models but we feel
that the proportional odds model provides the most useful clinical de-
scription of the four category ordinal birth weight variable. We leave
fitting the other models as exercises.

8.3 LOGISTIC REGRESSION MODELS FOR THE
ANALYSIS OF CORRELATED DATA

Up to this point in the text we have considered the use of the logis-
tic regression model in settings where we observe a single dichotomous
response for a sample of statistically independent subjects. However,
there are settings where the assumption of independence of responses
may not hold for a variety of reasons. For example, consider a study of
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asthma in children. Suppose the study subjects are interviewed bi-
monthly for one year. At each interview the mother is asked, during the
previous two months, if the child had an asthma attack severe enough to
require medical attention, whether the child had a chest cold, and how
many smokers lived in the household. The date of the visit is also re-
corded. The child's age and race are recorded at the first interview.
The primary outcome is the occurrence of an asthma attack. However,
there is a fundamental lack of independence in the observations due to
the fact that we have six measurements on each child. In this example
each child represents a cluster of correlated observations of the out-
come. The measurements of the presence or absence of a chest cold
and the number of smokers residing in the household can change from
observation to observation and thus are called cluster-specific covari-
ates. The date changes in a systematic way and is recorded to model
possible seasonal effects. The child's age and race are constant for the
duration of the study and are referred to as cluster-level covariates. The
terms clusters, subjects, cluster-specific and cluster-level covariates are
general enough to describe multiple measurements on a single subject
or single measurements on different but related subjects. An example
of the latter setting would be a study of all children in a household.

The goals of the analysis in a correlated data setting are, for the
most part, identical to those discussed in earlier chapters. Specifically,
we are interested in estimating the effect of the covariates on the di-
chotomous outcome via odds ratios. However, the models and estima-
tion methods are a bit more complicated in the correlated data setting.

There is a large and rapidly expanding literature dealing with sta-
tistical research on methods for the analysis of correlated binary data.
Most of the research in this area is at a mathematical level that is well
beyond this text. However software to fit the more common and estab-
lished models for correlated binary data is available in major packages
such as SAS and STATA. Thus the goal of this section is to introduce
the models that can be fit with the major software packages and to dis-
cuss the strengths and limitations of these models as well as the inter-
pretation of model parameters. Two accessible review papers that discuss
the models we consider are Neuhaus, Kalbfleisch and Hauck (1991) and
Neuhaus (1992). Diggle, Liang and Zeger (1994) discuss methods for
the analysis of longitudinal data and consider models for binary data.
Ashby, Neuhaus, Hauck, Bacchetti, Heilbron, Jewell, Segal and Fusaro
(1992) provide a detailed annotated bibliography on methods for ana-
lyzing correlated categorical data. Collett's (1991) excellent text on
modeling binary data discusses methods for analyzing correlated binary
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data at a level comparable to this text. Pendergast, Gange, Newton,
Lindstrom, Palta and Fisher (1996) also review methods for clustered
binary data. Breslow and Clayton (1993) consider mixed models for
generalized linear models. Agresti, Booth, Robert and Caffo (2000)
present a summary of different methods for the analysis of correlated
binary data via random effects models, one of which we discuss in this
section. Their paper considers other models and different data settings
where random effects models can be effectively used. Coull and Agresti
(2000) consider extensions of the logistic-normal mixed model consid-
ered in this section. Rosner (1984) and Glynn and Rosner (1994) con-
sider specialized models for the analysis of paired binary outcomes.

The basic approach with correlated binary data is to try to mimic
the usual normal errors linear mixed effects model. Suppose we are in a
setting with m subjects (or clusters) and n- observations per subject. We
denote the dichotomous outcome variable as Y{j and the vector of co-

variates as x» = \ l t x l j j , x 2 i j , . . . , x p i j ) for they'th observation in the j'th clus-

ter. Note that some of the covariates may be constant within subject and
some may change from observation to observation. At this point we do
not use different notation for each. The most frequently used subject-
or cluster-specific logistic model is the logistic-normal model. In gen-
eral, the model is referred to in the literature as a "cluster-specific"
model as this term is a bit more general than "subject-specific". It de-
scribes the case of multiple observations on a single subject and single
observations on related subjects. For the most part we use the term
cluster-specific rather than subject-specific. Under this model, the cor-
relation among individual responses within a cluster is accounted for by
adding a cluster-specific random effect term to the logit. The equation
for the logit is

a,+xJ.p, (8.25)

where it is assumed that the random effects follow a normal distribution
with mean zero and constant variance, i.e., a, ~ N(0,<r£). In practice the

random effect terms are unobserved and this leads to complications
when we consider estimation of the regression coefficients, P5. We have
added the subscript s to indicate that the coefficients apply to a logistic
regression model that is specific to subjects with random effect a(.
Suppose that in our hypothetical asthma study the coefficient for having
had a chest cold in the previous two months is ln(2). The cluster-
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specific interpretation is that having a cold doubles the odds of a spe-
cific child having a severe asthma attack in the next two months. Alter-
natively, the odds among children with the same value of the unob-
served random effect who had a cold is two times that of those with the
same value of the unobserved random effect who did not have a cold.
The interpretation applies to a specific child or specific unobserved
group of asthmatic children, not to broad groups of asthmatic children.
Since the covariate "having had a cold" can change from month to
month, the within subject interpretation provides a clear estimate of the
increase in the odds for a specific subject. On the other hand, suppose
that race is a dichotomous covariate coded as either white or non-white
and its coefficient is ln(2). The cluster-specific interpretation is that a
non-white child with random effect a{ has odds of a severe asthma at-
tack that is twice the odds of a white child with the same random effect.
Since both the race and random effect are constant within subject and
cannot change, this odds ratio is not likely to be useful in practice.
These two simple examples illustrate that the logistic-normal model is
most likely to be useful for inferences about covariates whose values can
change at the subject level.

The effect of the term a, in equation (8.25) is to increase the cor-
relation among responses within a cluster relative to the correlation be-
tween clusters. The basic idea is that the underlying logistic probabili-
ties for observations of the outcome in a cluster have a common value
of a{. Thus their outcomes will be more highly correlated than the cor-
relation among outcomes when the a.'s are different. The greater the
difference in the values of the a('s the greater the within relative to the
between cluster correlation. The heterogeneity in the a,'s is simply a
function of their variance G2

a. Thus the within-cluster correlation in-
creases with increasing <j£.

An alternative to the cluster-specific model in equation (8.25) is the
population average model. Under this model we average, in a sense,
over the statistical distribution of the random effect and assume that this
process yields the logit

XifiPA . (8.26)

Probabilities based on the logit in equation (8.26) reflect the proportion
of subjects in the population with outcome present among subjects with
covariates xfj. We note that we have not specified the statistical distribu-
tion of the random effects, only that the marginal or population pro-
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portions have logit function given by equation (8.26). The lack of dis-
tributional assumptions presents problems when trying to estimate &PA

that we discuss shortly. The population average model does not make
use of the fact that we may have covariates whose values could be dif-
ferent at different occasions measuring the same subject. For example
the interpretation of a coefficient equal to ln(2) for having had a cold
during the previous two months is that the odds of a severe asthma at-
tack among those who had a cold is twice the odds among those who
did not have a cold. Thus the coefficient describes the effect of the co-
variate in broad groups of subjects rather than in individual subjects. If
the coefficient for race is ln(2) then the log odds of a severe asthma
attack among non-whites is twice that of whites. Since a characteristic
like race cannot change over multiple measurements on the same sub-
ject the population average model is best suited for this covariate and
for others that describe broad groups of subjects.

Both the cluster-specific and population average model may be fit
to data containing subject-specific and cluster-level covariates. The
choice of which model to use should consider what types of inferences
the fitted model is intended to provide. As described via the two covari-
ates "having had a cold" and "race", the cluster-specific model is
most useful when the goal is to provide inferences incorporating indi-
vidual subject covariate values. Alternatively, the population average
model is likely to be more useful in addressing epidemiologic type as-
sessment of exposure effects through outcome experience in larger
groups of subjects.

A third, slightly more specialized, model is the transitional model.
This is a cluster-specific model where one or more of the previously
observed values of the outcome or other covariates is used. For exam-
ple, we might include the observation of whether or not a severe asthma
attack had occurred in the first two months when modeling the event in
the third and fourth months. We illustrate this model with an example
after considering the cluster-specific and population average models in
more detail.

As we alluded to above, estimation in correlated data models is not
as straightforward or easily described as in the uncorrelated data setting
where a likelihood function can be derived from the binomial distribu-
tion. We begin with the population average model. The approach used
is the method of generalized estimating equations, usually abbreviated
as GEE. Liang and Zeger (1986) and Zeger, Liang and Albert (1988)
first used GEE with the population average model.
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The GEE approach uses a set of equations that look like weighted
versions of the likelihood equations shown in Chapters 1 and 2. The
weights involve an approximation of the underlying covariance matrix
of the correlated within-cluster observations. This requires making an
assumption about the nature of the correlation. The default assumption
used by most packages is called exchangeable correlation and assumes
that the correlation between pairs of responses is constant,
Cor(}^, Yn} = p for j^L Three other possible correlation structures

that can be specified in most packages are independent, auto-regressive
and unstructured. Under the independent model Corf 1^,^1 = 0 for
j * I and the GEE equations simplify to the likelihood equations ob-
tained from the binomial likelihood in Chapter 2. We do not consider
this correlation structure further. The auto-regressive structure is ap-
propriate when there is a time or order component associated with the
observations. The correlation among responses depends on the lag be-
tween the observations and is assumed to be constant for equally lagged
observations. Since settings where there is an explicit time component
are a bit specialized we do not consider this type of correlation further
in this text. Under unstructured correlation one assumes that the corre-
lation of the possible pairs of responses is different, Cor^-,^) = pjt for
j * I . At first glance this might seem to be the model of choice. How-
ever, it may be used only after estimating a large number of parameters
that are, for the most part, of secondary importance. In most applica-
tions we are only interested in estimating the regression coefficients and
need to account for correlation in responses to obtain correct estimates
of the standard errors of the estimated coefficients. For this reason
Liang and Zeger (1986) refer to the choice of correlation structure to
use in the GEE as the working correlation. The idea is that one chooses
a correlation structure for estimation that is plausible for the setting and
this structure is then adjusted in the estimator of the variance. It turns
out that, in a wide variety of settings, assuming "exchangeable correla-
tion" gives good results. Thus we develop the GEE method in some
detail using exchangeable correlation as the working correlation.

We need some additional notation to fully describe the application
of GEE to the population average model. We denote the logistic prob-
ability obtained from the logit in equation (8.26) as

(8-27)
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We use two matrices to describe the within-cluster covariance of the cor-
related observations of the outcome variable. The first is a nt x ni di-
agonal matrix containing the variances under the model in equation
(8.27) denoted

A. =di (8.28)

and the second is the n( x nf exchangeable correlation matrix denoted

(8.29)

Using the fact that the correlation is defined as the covariance divided
by the product of the standard deviations it follows that the covariance
matrix in the ith cluster is

,. = A°-5R,(p)A<0.5 (8.30)

where A?5 is the diagonal matrix whose elements are the square roots
of the elements in the matrix in equation (8.28). The contribution to
the estimating equations for the /th cluster is

where D,' = X^A, , X, is the n{ x (p + 1) matrix of covariate values and S,

is the vector withyth element the residual sfj = ()>,•, -ftpA\xij}}' The full

set of estimating equations is

(8.31)

We denote the solution to the GEE in equation (8.31) as $PA. Implicit
in the solution of these equations is an estimator of the correlation pa-
rameter, p. Typically this is based on the average correlation among
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within-cluster empirical residuals and as such it is also adjusted with
A

each iterative change in the solution for PPA .
A useful exercise is to show that under the assumption of no cor-

relation, p = 0, the GEE in equation (8.31) simplify to the likelihood
equations for the multiple logistic regression model shown in Chapters 2
and 3.

A

Liang and Zeger (1986) show that the estimator, $PA, is asymptoti-
cally normally distributed with mean (JPA . They derive, as an estimator
of the covariance matrix, the estimator that is often referred to as the
information sandwich estimator. The "bread" of the sandwich is based
on the observed information matrix under the assumption of exchange-
able correlation. The bread for the /th cluster is

The "meat" of the sandwich is an information matrix that uses empiri-
cal residuals to estimate the within-cluster covariance matrix. The meat
for the ith cluster is

M,. = D;V-'C,.Vr'D,.

= X;Ai(Af5R,.(p)A°5)-'c,.(A°5R,(p)A°T' A,*,' .

where C( is the outer product of the empirical residuals. Specifically,
the jkth element of this n( x n{ matrix is

x

The equation for the estimator is obtained by evaluating all expressions
at the estimator $PA and the respective values of the covariates, namely

We note that some packages may offer the user the choice of using the
information sandwich estimator, also called the robust estimator, in
equation (8.32) or one based on the observed information matrix for
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the specified correlation structure, the bread B,. We think that unless
there is strong evidence from other studies or clinical considerations that
the working correlation structure is correct, one should use the estimator
in equation (8.32).

One can use the estimated coefficients and estimated standard er-
rors to estimate odds ratios and to perform tests for individual coeffi-
cients. Joint hypotheses must be tested using multivariable Wald tests
since the GEE approach is not based on likelihood theory. This does
make model building a bit more cumbersome since in most packages it
is more complicated to perform multivariable Wald tests than likelihood
ratio tests.

It is possible to formulate a likelihood function for the cluster-
specific model described in equation (8.25). If we assume that the ran-
dom effects follow a normal distribution with mean zero and constant
variance, a,-~N(0,a£), then the contribution of the ith cluster to the

likelihood function is

oo-J <* da, (8.33)

and the full log likelihood is

% '•.' •* r * *. 1

(8.34)

The problem is that complicated numerical methods are needed to
evaluate the log likelihood, obtain the likelihood equations and then
solve them. These methods are well beyond the mathematical level of
this text and thus we do not consider them further. We note that in ad-
dition to the typical output about coefficients most packages include an
estimate of the variance of the random effects and an estimate of its
standard error. Newer versions of some major software packages have
the capability to fit models based on the log likelihood in equation
(8.34) (e.g., the NLMIXED procedure in SAS version 8.0 and the
xtlogit command in STATA version 6.0).

Neuhaus, Kalbfleisch and Hauk (1991) and Neuhaus (1992) pre-
sent summary results that compare the magnitude of the coefficients
from the cluster-specific model and population average model. These
authors show, for coefficients whose value is near zero, that
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(8-35)

where p(0) is the intracluster correlation among the observations of the
binary outcome. This result demonstrates that we expect the estimates
from fitted population average models to be closer to the null value,
zero, than estimates from the fitted cluster-specific model. The shrink-
age to the null in equation (8.35) can also be obtained from results ex-
amining the effect of failing to include an important covariate in the
model, see Neuhaus and Jewell (1993) and Chao, Palta and Young
(1997).

We fit models to computer-generated data to illustrate the effect of
the intracluster correlation on the difference between the cluster-specific
and population average coefficients. In each case, the fitted model
contained a single continuous covariate distributed normal with mean
zero, standard deviation 3 and true cluster-specific coefficient Ps = 1 .
The random effects were generated from a normal distribution with
mean zero and standard deviation Ga =0,0.5, 1.0, 1.5,..., 10.0. As we
noted earlier in this section, the intracluster correlation increases with
increasing Ga . In these examples the resulting intracluster correlations,
p(0), range from 0 to about 0.84. For each set of parameter values we
generated data for 200 clusters of size four. Hence the equation of the
logit is g(xij9p3) = ai + xij with i = 1,2,..., 200, 7 = 1,2, 3, 4, ^-#(0,9)

and «, ~N(0,<T^). We fit cluster- specific and population average mod-
els containing the covariate x. The values of the respective estimated
coefficients are plotted versus the intracluster correlation in Figure 8.5.
In addition we plot an approximate population average coefficient ob-

tained using equation (8.35), i.e., fiPA ~ J3s[l- p(Q)].
The results shown in Figure 8.5 demonstrate that the attenuation to

the null described in equation (8.35) holds in this example. We note
that the estimate of the cluster-specific coefficient tends to fluctuate
about the true value of 1.0 with increased variability for large values of
the intracluster correlation. We observed this same general pattern for
varying numbers of clusters and observations per cluster.

Neuhaus (1992) shows that the variability in the estimates of the
coefficients depends on the total sample size and intracluster correla-
tion. In practice, the variability in the estimates of the population aver-
age coefficient depends to a greater extent on the number of clusters
while that of the cluster-specific coefficient depends more on the total
sample size and the intracluster correlation. The results in Neuhaus
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Figure 8.5 Plot of the estimated cluster specific coefficient (D), estimated popu-
lation average coefficient (O) and approximate estimated population average coeffi-
cient (A) versus the intracluster correlation obtained from fitting models with 200
clusters of size 4.

(1992) also show that the Wald statistics for population average coeffi-
cients under exchangeable correlation and the cluster-specific model
should be approximately the same. This result also follows from the
approximation shown in equation (8.25).

As an example, we created a hypothetical data set based on the low
birth weight data described in Section 1.6.2. We excluded the woman
of age 45 years, leaving 188 women. We do not go into the details of
how the data were constructed, as they are not essential to the discussion
of fitting models. A hypothetical additional number of births was gen-
erated for each woman and varied between 1 and 3 yielding an average
number of 2.6 births per woman. We did not retain all the covariates in
the low birth weight data. Instead we retained as cluster-specific covari-
ates, the age of the mother and the weight of the mother at the last men-
strual period associated with each birth. As examples of cluster-level
covariates we kept the race of the mother and smoking status, which was
assumed not to change. The total data set has information on 488
births. One may obtain the data from either of the two web sites listed
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Table 8.24 Listing of the Data for Three Women in the
Longitudinal Low Birth Weight Data Set

ID
1
1
2
2
2
43
43
43
43

OBS
1
2
1
2
3
1
2
3
4

SMOKE
1
1
0
0
0
1
1
1
1

RACE

3
3
1
1
1
2
2
2
2

AGE
28
33
29
34
37
24
30
35
41

LWT
120
141
130
151
144
105
131
121
141

BWT
2865
2609
2613
3125
2481
2679
2240
2172
1853

LOW
0
0
0
0
1
0
1
1
1

in the preface in a file named CLSLOWBWT.DAT. Data for three
mothers are shown in Table 8.24. We note that the identification codes
are not the same as those in the original low birth weight data. We wish
to remind the reader that these data are hypothetical and reflect the sta-
tistical method used to generate them and thus do not reflect actual birth
histories. As we show when we fit models, the data do provide results
typical of cluster-specific and population average models.

In Table 8.24 we see that the woman with ID = 1 had two births.
She smoked during both pregnancies and has RACE = 3 (Other). She
was 28 years old at the first birth and 33 at her second birth. Prior to
her first pregnancy she weighed 120 pounds and prior to her second
pregnancy she weighed 141 pounds. Her first baby weighed 2865
grams and thus has LOW = 0. Her second baby weighed 2609 grams
and also has LOW = 0. The woman with ID = 2 had three births, the
third of which weighed less than 2500 grams and has LOW = 1. The
woman with ID = 43 had four births. She smoked during all four preg-
nancies and has RACE = 2 (Black). She was 24 years old at her first
birth and 41 years old at her fourth birth. Prior to her first pregnancy
she weighed 105 pounds and 141 pounds prior to her fourth preg-
nancy. Each of her last three babies weighed less than 2500 grams and
thus were of low weight. Data for the other 185 women record similar
information on their respective birth histories.

The results of fitting a population average model containing AGE,
LWT and SMOKE (using STATA's xtlogit command with option pa)
are shown in Table 8.25. Estimates of the standard errors are based on
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Table 8.25 Estimated Coefficients, Robust Standard Errors,
Wald Statistics, Two-tailed p-Values and 95 Percent
Confidence Intervals for a Population Average Model with
Exchangeable Correlation

Variable
AGE
LWT
SMOKE
Constant

Coef.
0.058

-0.009
0.702

-1.342

Robust
Std. Err.
0.0195
0.0041
0.2829
0.5895

z
2.99

-2.23
2.48

-2.28

P>lzl
0.003
0.026
0.013
0.023

95% CI
0.0201, 0.0967

-0.0172, -0.0011
0.1472, 1.2562

-2.4975, -0.1866

the robust estimator in equation (8.32). We see that all three covariates
are significant at the five percent level. We defer discussion of estimated
odds ratios from this model until after we present the results from the
cluster-specific model.

The results of fitting the cluster-specific model containing AGE,
LWT and SMOKE (using STATA's xtlogit command with option re)
are shown in Table 8.26. The table contains two panels of output. The
top panel contains the usual results describing the estimates of the coef-
ficients. The bottom panel contains results describing the estimate of
the variance of the random effect. For numerical stability reasons
STATA chooses to estimate the log of the variance described in the row
labeled Ln_Sig2 in Table 8.26. The resulting estimate of the standard
deviation, displayed in the row labeled Sigma, is obtained as the square
root of exponentiation of the estimate of the log variance, e.g.,
4.006 = ^/exp(2.776). The results in the row labeled "Rho" are not the
estimated intracluster correlations, p(0). Instead these values describe
the proportion of the total variance accounted for by the random effect.
Specifically, 0.941= 4.0062/(l+4.0062). The estimate of the intraclus-

ter correlation (obtained using STATA's loneway command with re-
sponse variable LOW and grouping variable ID) is p(0) = 0.606. Other
packages provide similar or equivalent output on the fitted model.

We note that the Wald statistics for the respective coefficients in
Table 8.25 and Table 8.26 are of similar magnitude but are not as close
to each other as theory behind the development of equation (8.35)
would suggest.
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Table 8.26 Estimated Coefficients, Standard Errors, Wald
Statistics, Two-tailed p-Values and 95 Percent Confidence
Intervals for a Cluster-specific Model

Variable
AGE
LWT

SMOKE
Constant
Ln_Sig2
Sigma
Rho

Log Likelihood

Coef. Std. Err.
0.141

-0.015
1.861

-4.642
2.776
4.006
0.941

0.0493
0.0082
0.6392
1.6778
0.3675
0.7361
0.0203

z
2.86

-1.85
2.91

-2.77

P>kl 95% CI
0.004
0.064
0.004
0.006

0.044,
-0.031,

0.608,
-7.931,

2.055,
2.795,
0.887,

0.238
0.001
3.114

-1.354
3.496
5.743
0.971

= -232.9881

The likelihood ratio test of the model in Table 8.26 versus the
usual logistic regression model is used to test H0:<ra =0. In this exam-
ple, twice the difference in the log likelihoods is

G = -2[(-288.7622) - (-232.9881)] = 111.548

and P[#2(1)>111.548]<0.001. The problem with the likelihood ratio
statistic is that the null value, zero, lies on the boundary of the parameter
space, which violates one of the assumptions of the test. Nevertheless,
the statistic may be used to give an indication of the magnitude of the
variance of the random effect. In this example the point estimate, its
corresponding Wald test and the likelihood ratio statistic all suggest sig-
nificant random effect variation.

In order to describe the effect of the intracluster correlation we cal-
culate the approximate estimate from equation (8.35) and present all
three estimates in Table 8.27. The results show that the shrinkage to the
null is well described by the approximation formula. This is particu-
larly interesting in this example as the result in equation (8.35) was de-
rived assuming the true cluster-specific coefficient is near zero. Yet we
see that equation (8.35) provides a good approximation for even the
coefficient for SMOKE. In additional calculations, similar to those
whose results are shown in Figure 8.5, we found that the shrinkage to
the null is well described by equation (8.35) for coefficients as large as
5.0. In general, the approximation improved as the intracluster correla-
tion became larger.
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Table 8.27 Estimated Coefficients From the Cluster-
Specific Model, Population Average Model and the
Approximation to the Population Average Model from
Equation (8.35)

Variable

AGE
LWT

SMOKE

Cluster-
Specific

Coef., A

0.141
-0.015

1.861

Population
Average Coef.,

AA
0.058

-0.009
0.702

Approximate
Pop. Average
A(I-P(O))

0.055
-0.006

0.733

We calculate estimated odds ratios in the usual manner for both
models. They are presented in Table 8.28. One calculates the end-
points for a confidence interval estimate for an odds ratio in the same
manner as used for all other fitted logistic regression models. We have
not included confidence intervals in Table 8.28 since our purpose here
is to compare and contrast the odds ratios from the two models. In
practice, one would use the model that best addresses the study objec-
tives. Results would then include appropriately calculated confidence
intervals.

The interpretation of the estimated odds ratios from a population
average model is a bit easier than for a cluster-specific model. They
compare odds computed from proportions of subjects in the population
at the different levels of the comparison covariate holding all other co-

Table 8.28 Estimated Odds Ratios from the Cluster-
Specific Model and Population Average Model

Variable
AGE+

LWT*
SMOKE

Cluster-
Specific

Odds Ratio
2.024
0.861
6.430

Population
Average

Odds Ratio
1.336
0.914
2.017

+: Odds ratio for a 5 year increase in age
*: Odds ratio for a 10 pound increase in weight
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variates fixed. For example, the estimated population average odds ratio
for smoking during pregnancy (SMOKE) is 2.02. The interpretation is
that the odds of low birth weight computed from the proportion of
women who smoke is twice that based on the proportion of women who
do not smoke, holding age at delivery and weight at the last menstrual
period constant. The population average odds ratio for a five year dif-
ference in age at delivery is 1.34. The interpretation is that the odds of
low birth weight computed from the proportion of women who are five
years older than some reference level for age is 1.34 times higher than
that based on the proportion of women who are at the reference age,
holding weight at the last menstrual period and smoking status constant.
The fact that age is linear in the logit implies this odds ratio holds for a
five year difference at any age. The population average odds ratio for a
10 pound increase in weight at the last menstrual period is 0.91. The
interpretation is that the odds of low birth weight computed from the
proportion of women who are 10 pounds heavier than some reference
level is 9 percent less than the odds of low birth weight based on the
proportion of women who are at the reference weight level, holding age
at pregnancy and smoking status constant. The fact that LWT is linear
in the logit implies this odds ratio holds for a 10 pound difference at
any weight. These estimated odds ratios describe risk of the event via
proportions in the population and as such are more analogous to odds
ratios from the logistic regression models described in Chapter 3. A
fact noted earlier in this section is that the population average model
with p = 0 is the usual logistic regression model. Hence, the population
average model is likely to be the best model when the objectives of the
study are to describe in broad terms the effects of covariates. This
broad interpretation comes at the cost of not using information available
in repeated measurements of a covariate on study subjects.

The interpretation of odds ratios from a fitted cluster-specific
model applies to subjects with a common but unobserved value of the
random effect a,.. This could be a single subject or a group of subjects.
For example the estimate of the cluster-specific odds ratio for smoking
during pregnancy is 6.43. The interpretation is that by smoking during
pregnancy the woman has increased her odds of a low weight baby by
6.43 times the odds if she did not smoke holding age and weight con-
stant. In this case the odds ratio makes sense since smoking during
pregnancy is a modifiable risk factor. However the odds ratio for a
non-modifiable factor such as race is more difficult to interpret. One
would have to resort to comparisons of hypothetical groups of subjects
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with the same random effect who differ in their race holding other co-
variates constant. We leave the details as an exercise.

The estimate of the cluster-specific odds ratio for a five year in-
crease in age is 2.02. The interpretation is that the odds of a woman
having a low weight baby in five years is 2.02 times the odds at the cur-
rent age holding weight and smoking status constant. This estimate
takes full advantage of the fact that we have observed women over at
least a portion of their reproductive years and thus expresses the influ-
ence of chronological aging at the individual level. The same would be
true of any similarly observed longitudinal factor.

The cluster-specific odds ratio for a 10 pound increase in weight is
0.86. The interpretation is that the odds of a woman having a low weight
baby if she gained 10 pounds is 14 percent less than the odds at her
current weight, holding age at pregnancy and smoking status constant.
This odds ratio suggests, likely incorrectly, that by simply gaining
weight a woman can substantially reduce the risk of a low weight baby.
In rough terms, the estimated coefficients in Table 8.26 suggest, incor-
rectly, that a 10 pound increase in weight could counteract a one year
increase in age. In this case, the odds ratio is an artifact of weight gain
of the women in the study over time. What is needed in the model is a
more objective measure of size of the woman such as height or body
mass index. However if the weight gain over time is similar for both
small and large women then the odds ratio correctly estimates the effect
of body size on baby weight among women with the same random ef-
fect and holding all other covariates constant. We leave fitting a cluster-
specific model using weight of the mother at last menstrual period of
the first pregnancy as a cluster-level covariate as an exercise.

The covariates age, weight and smoking status provide good exam-
ples of the strengths and weaknesses of population average and cluster-
specific models. In a sense, the odds ratios for covariates like smoking
status and weight are easier to interpret from population average models
since they describe effects in broad groups of subjects in the popula-
tion. The clear weakness of the population average model is that it can-
not address effects such age. The cluster-specific model is best suited
for this covariate as one does not have to argue that the inferences apply
to some hypothetical and unobservable group of subjects with the same
random effect. However, one must pay close attention to determine
whether covariates measured repeatedly are true longitudinal covariates
or repeated imprecise measures of a non-longitudinal covariate. An
example of this would be body weight when basic body size is actually
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the covariate of interest. Both models address important clinical ques-
tions and have their place in an analysis of clustered binary data.

There are a number of important practical issues that we have not
discussed. Model building issues have been ignored yet they are as vital
in developing models for correlated data as they were with uncorrelated
data. The modeling paradigm presented in detail in Chapter 4 may be
applied with the models discussed in this section. Statistical variable se-
lection methods such as stepwise and best subsets are not currently
available for fitting correlated data models in software packages. Thus
one must use some form of purposeful selection using Wald tests with
the population average model and Wald or likelihood ratio tests with the
cluster-specific model. Checking the scale of continuous covariates is
just as important as with non-correlated data models. One can always
use the method of design variables since computer intensive methods
such as fractional polynomials have not as yet been implemented for
use with correlated data models. An alternative approach would be to
assume the observations are in fact not correlated and use the usual lo-
gistic regression model with fractional polynomials to identify a poten-
tial non-linear transformation. One would then try this transformation
when fitting the appropriate correlated data model. Interactions should
be specified and checked for inclusion in the same manner as described
in Chapter 4. Diagnostic statistics, such as those described in Chapter 5,
have not as yet been extended for use in model checking with correlated
data models. However, one could approximate the analysis by assuming
the observations are not correlated and using the methods in Chapter 5.
Although not specifically developed for this situation, this analysis is
better than not doing any model checking.

One must be careful when fitting cluster-specific models. The nu-
merical methods are sensitive to the number of clusters and cluster size.
The numerical methods seem to work best when the cluster size is not
too large. STATA suggests that cluster sizes should be less than 10 un-
less the intracluster correlation is small. In addition one must be aware
that if the intracluster correlation is quite small then the software may
either fail to converge to a solution or output an estimate of cr^ that is
effectively zero. For example in these settings STATA typically stops
and reports an estimate of the log variance of -14.0. In this case one

should abandon the cluster-specific model in favor of the usual logistic
regression model since the two models are equivalent when cra = 0.
Another potential problem with the cluster-specific model is the log
likelihood in equation (8.34) is based on the assumption that the ran-
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Table 8.29 Estimated Coefficients and Standard Errors
Obtained from STATA, SAS and EGRET

Variable
AGE
LWT
SMOKE
Constant
Sigma

STATA
Coef. Std. Err.

0.141 0.0493
-0.015 0.0082

1.861 0.6392
-4.642 1.6778

4.006 0.7361
LogL = -232.988

SAS
Coef. Std. Err.

0.146 0.0530
-0.022 0.0113

1.816 0.7520
-3.561 1.5872
14.618* 5.0170

LogL= -233.326

EGRET
Coef. Std. Err.

0.166 0.0579
-0.028 0.0112

1.668 0.6879
-3.133 1.4900

3.749 0.6252
LogL = -233.35

*: SAS reports the estimate of the variance

dom effects are distributed normally. This assumption cannot be
checked since we have no observations of the random effect. Thus evi-
dence of lack of fit of a model could be due to a poorly specified sys-
tematic component and/or non-normal random effects. Current soft-
ware does not permit other distributions. Thus, if casewise diagnostic
statistics (assuming independence) provide no indication that the sys-
tematic component of the model is inadequate, then one should proba-
bly abandon the cluster-specific model in favor of the population aver-
age model.

An additional difficulty one may encounter when fitting cluster-
specific models is that different software packages may give different
parameter estimates. The reason is that the solution to the likelihood
equations depends on the particular numerical method used to evaluate
the log likelihood in equation (8.34). In addition, the rules used by the
package to stop the iteration process are not universally applied. For
example, SAS's NLMIX procedure has numerous options and criteria
that the user can specify. However only expert users should consider
using anything but the default settings. STATA's xtlogit command
uses the same basic method to evaluate equation (8.34) as SAS but has
far fewer optimization options. Again we think that modifying these
options should be left to experienced users. A third package, EGRET
(EGRET for windows (1999)), uses an entirely different method to
evaluate equation (8.34). In order to compare these three packages we
show in Table 8.29 the results of fitting the same cluster-specific model
using each program's default settings. We note that none of the esti-
mates has exactly the same value. All the estimates of the coefficients
are within 10 percent of each other, except for LWT. For this covariate



LOGISTIC REGRESSION MODELS FOR CORRELATED DATA 327

the estimate from STATA is 46 percent smaller than the estimates from
SAS and EGRET. However, all three estimates are within two estimated
standard errors of each other. Thus, estimates of the odds ratios for
AGE and SMOKE, while not identical, would certainly convey the same
message. The estimated odds ratios for a 10 pound increase in weight
from STATA, SAS and EGRET are: 0.86, 0.80 and 0.76 respectively.
The estimated reduction in risk ranges from 14 to 24 percent; but their
respective confidence intervals (not shown) have considerable overlap.

Based on the results shown in Table 8.29 and the general sensitivity
of the numerical calculations, we think it is best to proceed cautiously
when fitting cluster-specific models.

It is possible to perform overall tests of fit for correlated data mod-
els. Recent unpublished work by Evans (1998) examined the perform-
ance of the Hosmer-Lemeshow test and extensions of the Pearson chi
square and other tests described in Section 5.2.2 to the correlated data
setting. His results indicate that the usual Hosmer-Lemeshow test may
be used in some settings to assess fit of population average models. In
general, one must avoid using the test when there are many tied or
nearly tied values in the estimates of the probabilities. This is likely to
occur under one or more of the following conditions: the model con-
tains only a few cluster-level covariates, the intracluster correlation
among the responses is large, and settings with a few clusters and few
observations per cluster. If, in a particular setting, none of these condi-
tions holds, then the test can be used. For example, the fitted population
average model in Table 8.25 is based on 188 clusters, each containing
between two and four observations and only moderate intracluster cor-
relation p(0) = 0.606. This represents a setting where the test may be
used. In this case the Hosmer-Lemeshow test and its p-value can be
easily obtained in STATA by using the Ifit command with the beta op-

^
tion. This yields a value of the Hosmer-Lemeshow test of C = 11.67
which, with eight degrees-of-freedom, yields /? = 0.167 that supports
model fit. We do not present the two by ten table of observed and pre-
dicted frequencies as there was close agreement in all ten deciles of risk.

Evans' (1998) extension of the normal approximation to the Pear-
son chi square test requires calculations that are much more complicated
than those required in the usual logistic regression model described in
Section 5.2.2. As such we do not discuss it further in this text. How-
ever, Evans' simulation results show that the test is effective for assessing
fit. Perhaps it will be added to future releases of software packages.

The Hosmer-Lemeshow test may be used with the cluster-specific
model. However its application requires that one use fitted values that
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include an estimate of the random effect term, oct, as well as the regres-
sion coefficients, i.e.,

These fitted values may be obtained from SAS's version 8.0 NLMIXED
procedure. However the Hosmer-Lemeshow test itself is not available in
SAS. We used this test in STATA to check the fit of SAS's version of
the fitted model, shown in Table 8.29. The calculations involve obtain-
ing the estimates of the random effects using the predict option from
within NLMIXED and then calculating the test "by hand". The value

^

of the test is C- 24.70 which, with eight degrees-of-freedom, yields
p- 0.002. Hence we conclude that there is significant evidence of lack
of fit. Examination of the table (not shown) of observed and expected
numbers of low and normal weight births in the 10 deciles of risk
showed that the model underestimated the number of normal weight
births in the top two deciles of risk, ;r>0.88. This result suggests that
the model might be improved. We leave as an exercise examination of
the inclusion of interactions and the affect they have on the fit of the
model.

We note that one should always avoid using the test with a{ = 0 for
all clusters. For example, calculation of the test using a( = 0 with coef-
ficients from the fitted model from STATA in Table 8.26 yields
C = 413.36 with p< 0.001.

Evans' (1998) extension of the normal approximation to the Pear-
son chi square test for the cluster-specific model is considerably more
complicated than the extension to the population average model. As
such we do not discuss it further in this text. Evans' simulations show
the test performs effectively. Hopefully it will be included in future re-
leases of the software packages.

In some settings we may want to include a previously observed
value(s) of the outcome as a covariate(s) for future observations. These
models are typically referred to as transitional models. The logit in this
setting is of the form

x'T+yi_ie. (8.36)
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In this model the coefficient B is the log odds of the /th observation of
the outcome conditional on the value of the previous outcome.

The longitudinal low birth weight data provide the possibility for
several versions of such a covariate. For example, we could model low
birth weight in the second and subsequent births by including a covari-
ate indicating whether the previous birth was of low weight (the model
shown in equation (8.36)). Another possible covariate is whether the
woman ever had a low birth weight baby, (i.e., include z- =

max (yM, v |._2,...,y1) as a covariate in the model). A third version is to

include information on the status of all previous births (i.e., include
j/_],3;,_2,...,>'i in the model for the ith birth). In these models one as-
sumes that including any previously observed value of the outcome ac-
counts for any intracluster correlation and we use the usual logistic re-
gression model to fit the data.

As an example we show in Table 8.30 the results of fitting a model
that includes the value of LOW from the previous birth. We leave fitting
models containing the other two versions of the covariate as exercises.
When we fit this model the sample size is reduced from 488 to 300 since
we exclude the first birth of each woman. There is no previous birth
history for the first birth.

The estimate of the odds ratio for previous birth of a low weight
/s.

baby is OR = 30.4. The interpretation is that the odds of a low weight
birth among women whose previous pregnancy resulted in a low weight
birth is 30 times the odds for women whose previous pregnancy did not
result in a low weight baby, controlling for age, weight and smoking
status. The coefficient estimates for AGE and LWT are about the same
order of magnitude as the estimates from the population average model

Table 8.30 Estimated Coefficients, Standard Errors, Wald
Statistics, Two-tailed p-Values and 95 Percent Confidence
Intervals for a Fitted Logistic Regression Model Containing
the Covariate Previous Birth of Low Weight, (n = 300)

Variable
AGE
LWT
SMOKE
PREVJLOW
Constant

Coef.
0.080

-0.017
1.687
3.415

-2.491

Std. Err.
0.0338
0.0066
0.3613
0.3892
1.2596

z
2.38

-2.54
4.67
8.77

-1.98

P>lzl
0.017
0.011

<0.001
<0.001

0.048

95%
0.014,

-0.030,
0.979,
2.652,

-4.960,

CI
0.146

-0.004
2.395
4.177

-0.022
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in Table 8.25 while the estimate of the coefficient for SMOKE is closer
to that of the cluster-specific model in Table 8.26. The odds ratio for
previous birth of low weight may seem unrealistically large but in any
case it is the dominant factor in the model.

In practice we think that transitional models should only be used in
settings where there is an explicit time ordering in the repeated observa-
tions of the outcome.

In summary, the cluster-specific and population average models
provide useful and powerful modeling tools when observations of the
outcome variable are correlated. The correlation must be due to recog-
nizable factors in the design of the study that allow one to explicitly
identify clusters, or sets of observations, that are correlated and those
that are uncorrelated. The cluster-specific model is likely to be most
useful for describing the effect of covariates that are repeatedly meas-
ured on the same subject. The population average model is best suited
to describe the effect of covariates that are constant within clusters.
However, both models may be fit with both types of covariates. One
must pay particular attention to signs of numerical problems when fit-
ting cluster-specific models. These include failure of the program to
converge to a solution and a "zero" estimate of the variance of the
random effect.

Logistic regression models for correlated binary data is an area of
active statistical research with new developments appearing on a regular
basis. As these developments become accepted in the statistical com-
munity as being sound and worthwhile modeling tools, developers of
software packages can be expected to add them to their routines.

8.4 EXACT METHODS FOR LOGISTIC REGRESSION
MODELS

The methods used for testing and inference up to this point in the text
have assumed, in addition to other mathematical assumptions, that the
sample size is sufficiently large for parameter estimates to be normally
distributed and for the likelihood ratio and Wald tests to follow chi
square and normal distributions, respectively. There may be occasions
where one would like to fit a logistic regression model but the sample
size is such that these large sample assumptions are clearly not justified.
Recent advances in computational methods now make it possible to fit
models in such settings.
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The problem of fitting a logistic regression model and then making
inferences and tests about the parameters when the sample size is small
is a complicated version of Fisher's exact test for a 2x2 contingency
table. Cox and Snell (1989) note that the extension of the theory of
Fisher's exact test to logistic regression models has been known since
the 1970's. However the computations required are extremely complex
and were considered impractical until efficient algorithms were devel-
oped by Tritchler (1984), Hirji, Mehta, and Patel (1987 and 1988) and
Hirji (1992). Mehta and Patel (1995) review the theory and provide a
number of insightful examples. The exact methods have been incorpo-
rated into the statistical software package, LogXact 4 for Windows
(2000). We use this package to fit the models in this section.

The central idea behind the theory of exact methods for logistic
regression is to construct a statistical distribution that can, with efficient
algorithms, be completely enumerated. The starting point in this proc-
ess is to construct a conditional likelihood similar to that used in Chap-
ter 7 for matched studies. Assume we have n independent observations
of a binary outcome and a vector of p + l covariates (i.e.,

(v(,x(), / = 1,2,...,«). We assume that the functional form of the logit is

g(x,p) = ̂ y'_ Xjftj with jc0=l. In settings where we are primarily in-

terested in the slope coefficients we consider the intercept, P0, as the

nuisance parameter and condition on its sufficient statistic, n{ = ^T ._ v ( .

As shown in Mehta and Patel (1995) the resulting conditional likelihood
is

/€/?

where R denotes the collection of

n\

possible allocations of 0 and 1 to (ji.Vj,...,^) such that «j =^._ y,.

The form of the likelihood in equation (8.37) suggests that the suffi-
cient statistic for /J, is
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(8-38)

(Cox and Hinkley (1974) present a discussion of sufficient statistics and
their role in conditional inference.) Let the vector of sufficient statistics

for the slope coefficients be denoted by 't' = ( f j , f 2 » •• •»*,,)• The exact

distribution of the collection of p sufficient statistics is given by the
equation

, , _P(T; =f,,r2 =*2>...,r, = /,)=— - V"1, ' v (8.39)

where c(i) denotes the number of possible allocations of 0 and 1 to

(y],y2,...,;y,)) such that */=yV_ ?,••*,; and 5 denotes the set of alloca-

tions of 0 and 1 to (yi,y2,...,yB) such that «i=^._y, and

Uj : = _ y^ denotes the resulting value of the jth sufficient statistic for

the /th allocation. The distribution in equation (8.39) is used to obtain
point and confidence interval estimates of the regression coefficients as
well as tests of hypotheses that coefficients are equal to zero. The cal-
culations required for the multi variable problem are quite complex.
Thus we illustrate the exact methods with a model containing a single
dichotomous covariate.

As an example, suppose we wish to model risk factors for having a
low birth weight baby among women 30 years or older in the low birth
weight study described in Section 1.6.2. There are 27 such women and
4 had a low birth weight baby. It is clear that, with only 27 observations
and four LOW = 1 outcomes, we should not use methods requiring large
sample sizes for their validity. Consider the covariate recording the
number of previous pre-term deliveries dichotomized into none (0) or
at least one (1) and denoted PTD. The cross-classification of LOW by
PTD is shown in Table 8.31.

The results in Table 8.31 show that the observed value of the suffi-
cient statistic for the intercept term is t0 - 4 and for the coefficient for
PTD it is f, = 2 . The later result follows from the fact that only two
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Table 8.31 Cross-Classification of Low
Birth Weight (LOW) by History of Pre-term
Delivery (PTD) Among Women 30 Years of
Age or Older

LOW
0
1

Total

PTD
0
19
2

21

1
4
2
6

Total
23
4

27

subjects had LOW = l a n d PTD = l (i.e., 2 = 10̂  xPID,). It

follows from equation (8.39) that the exact probability is

ueS

The possible values of the sufficient statistic are t} =0,1,2,3,4. Thus the
term c(t{) describes the number of possible allocations of 23 values of
zero and 4 values of one to 27 subjects with the resulting value of

t} = ^T ̂  LOWf x PTD{. For example, with the help of LogXact 4, we

obtain these and they are in the column labeled "Count" in Table 8.32.
There we see that are 5985 sequences of 23 zeros and 4 ones, where

0 = ̂ ._ LOWjXPTDj. The simplest exact inferential question is a test

of the hypothesis that A =0. The values of equation (8.40) under the
null hypothesis are given in the last column in Table 8.32. These prob-
abilities are calculated using the fact that 1 = exp(r, x 0) and S contains
17,550 sequences. Thus the first probability is

P( r=0) =-̂ §1 = 0.34103,u ; 17550

and the others are calculated in a similar manner. We calculate the two
tailed p-value by summing the probabilities in Table 8.32 over values of
the sufficient statistic that are as likely, or less likely, to have a smaller
probability than the observed value of / = 2. Thus we obtain
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Table 8.32 Enumeration of the Exact Probability
Distribution of the Sufficient Statistic for the
Coefficient of PTD

>1
0
1
2
3
4

Total

Count:
c(t)

5985
7980
3150
420
15

17550

Probability
Under

H 0 :A=0

0.34103
0.45469
0.17949
0.02393
0.00086

1.0

p = 0. 17949 + 0.02393 + 0.00086 = 0.20428.

We note that the value is identical to the two sided p- value for Fisher's
exact test computed from Table 8.31. In this case we cannot conclude
that having a history of pre-term delivery is a significant risk factor for
having a low weight birth among women who are 30 years of age or
older.

The exact conditional maximum likelihood point estimate of the
coefficient is the value that maximizes the probability given in equation
(8.40) which, given the counts in Table 8.32, is

ueS

3150exp(2fl)
7980 exp(l/3, ) + 3 150exp(2A ) + 420 exp(3/3, )

Even in this rather simple example the computations require a package
like LogXact 4. For comparative purposes we show the results from
fitting the conditional exact maximum likelihood estimate (CMLE) as
well as those from fitting the usual logistic regression model in Table
8.33. In this example, as shown in Chapter 3, the usual MLE is simply
the log of the odds ratio from Table 8.31.
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Table 8.33 Results of Fitting the Usual Logistic
Model (MLE) and the Exact Conditional Model
'(CMLE) to the Data in Table 8.31

PTD

Constant

Method
MLE
CMLE
MLE
CMLE

Coeff.
1.558
1.482

-2.251
*

Std.Err.
1.1413
1.1059
0.7434

*

95% CI
-0.679, 3.795
-1.383, 4.370
-0.794, 0.409

*

*: Not computed using CMLE in this case

Both the point estimate of the coefficient for PTD and the estimate
of the associated standard error are slightly smaller when the exact con-
ditional model is used. The endpoints of the confidence internal for the

A. A. I f. \

MLE are obtained in the usual manner as f$} ±l.96SE(pl\, The end-

points of the CMLE are obtained from the following procedure.
Assume that the possible range of the sufficient statistic, given the

observed value of t0, is t^ ^tt< tma]i. In our example the range is
0<? ,<4 . The lower endpoint of a 100(1 ~a)% confidence interval is
the value of /?, such that

*max

a/2 = £ P(7J=*), (8.41)

where tlobs denotes the observed value of £,, 2 in our example, and
P(7] = &) is given in equation (8.40). If tlobs = t^n then the lower limit
is set to -oo. The upper endpoint of a 100(l-a)% confidence interval
is the value of /?, such that

hobs

a/2= Y P(Ti=k). (8.42)

If tlobs = fmax then the lower limit is set to -H». The solutions to equa-
tions (8.41) and (8.42) for a 95 percent confidence interval in our ex-
ample are shown in Table 8.33. We note that the CMLE interval is con-
siderably wider than the MLE interval, reflecting the increased uncer-
tainty in our estimate due to the small sample size.
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Table 8.34 Cross-Classification of Low Birth
Weight (LOW) by Smoking Status of the
Mother during Pregnancy (SMOKE) Among
Women 30 Years of Age or Older

LOW
0
1

Total

SMOKE
0
17
0
21

1
6
4
6

Total
23
4
27

As a second example consider the cross classification of smoking
status during pregnancy versus low birth weight among women 30 years
of age or older shown in Table 8.34. We note that the table contains a
cell with zero frequency. As shown in Chapter 4, Section 5 conven-
tional logistic regression software cannot be used in this case. However
we are able to obtain a two-tailed /?-value, point and confidence interval
estimate using exact methods.

The exact probability distribution under the hypothesis of no effect
due to smoking during pregnancy, $ =0, is shown in Table 8.35. The
/7-value in this case is 0.01197 since no other value had as small or
smaller probability than the observed value of 4. Since the observed
value of the sufficient statistic is 4 = rmax the upper limit of the 95 per-
cent confidence interval is -H>° and the solution to equation (8.41) is
0.308. In settings where tlobs=tmin or t[obs=tmax the CMLE does not

Table 8.35 Enumeration of the Exact Probability
Distribution of the Sufficient Statistic for the
Coefficient of SMOKE

>1
0
1
2
3
4

Total

Count:
c(t)
2380
6800
6120
2040
210

17550

Probability
Under

H 0 :A=0

0.13561
0.38746
0.34872
0.11624
0.01197

1.0
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have a finite solution and Hirji, Tsiatis and Mehta (1989) suggest using
the median unbiased estimator (MUE). This estimator is defined as the
average of the endpoints of a 50 percent confidence interval estimator.
In settings where tlob<! = tmin and the lower limit is -°° the MUE is set
equal to the upper limit of the 50 percent interval. In settings where
l\ohs - 'max and tne upper limit is +<*> the MUE is set equal to the lower
limit of the 50 percent interval. In our example we have tlobs = fmax and

A

the lower limit of the 50 percent interval is fi]MUE =2.510. That is the
solution to equation (8.41) using a = 0.5 is 2.510. Thus use of exact
methods yields point and interval estimates as well as a test of signifi-
cance when none are computable using conventional approaches to
MLE.

We obtain point and interval estimators of odds ratios in the usual
manner by exponentiating the respective estimators for the coefficient.
The odds ratio for smoking during pregnancy obtained from the MUE

s\
is OR = 12.3 and the endpoints of the 95 percent confidence interval are
(1.36, + <»). The interpretation is that the odds of a low weight baby
among women 30 years or older who smoke during pregnancy is 12.3
times the odds of women 30 years or older who do not smoke during
pregnancy and it could be as little as 1.36 times with 95 percent confi-
dence.

One can use exact methods to fit multivariable logistic regression
models and perform tests of subsets of parameters. Thus it is theoreti-
cally possible to use exact methods with the modeling paradigm de-
scribed in detail in Chapter 4. However the required computations are
extensive and can be quite time consuming, even on a fast computer.
Thus we recommend that one restrict use of exact analyses to those set-
tings where the sample sizes are small enough to question the use of the
large sample assumption. The exception to this recommendation might
be a setting where one has a zero frequency cell in an important, for
clinical reasons, dichotomous covariate or a polychotomous covariate
whose categories should not be combined to eliminate the zero fre-
quency.

The exact methods as described above focus on exact CMLE of the
slope coefficients. It is possible to extend the approach to estimation of
all coefficients. The basic idea is the same but one estimates each pa-
rameter conditioning on the sufficient statistic for all other parameters.
The result is a fitted model similar to ones discussed in detail in Chapter
4. As an example we present in Table 8.36 the results of fitting both the
usual and exact logistic models using women 25 years or older in the
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Table 8.36 Results of Fitting the Usual Logistic
Model (MLE) and the Exact Conditional Model
(CMLE) and in the Low Birth Weight Study to
Women 25 Years or Older

LWT

SMOKE

PTD

Constant

Method
MLE
CMLE
MLE
CMLE
MLE
CMLE
MLE
CMLE

Coeff.
-0.019
-0.018

0.249
0.256
1.393
1.310
1.097
0.331

StdErr.
0.0117
0.0113
0.6087
0.5933
0.6687
0.6440
1.5599
0.7381

95% CI
-0.042, 0.004
-0.043, 0.002
-0.944, 1.442
-1.111, 1.567

0.082, 2.703
-0.014, 2.798
-1.961, 4.154
-1.331. 2.105

low birth weight study. The covariates in the model are weight at the
last menstrual period (LWT), smoking status during pregnancy
(SMOKE) and history of prior pre-term delivery (PTD). There are 69
women in this subgroup and 19 low weight births. We note that
LogXact 4 took one hour and thirty minutes to perform the necessary
computations on a 400MHz computer and the optimal amount of
memory needed was 18MB. This shows that even with a small problem
fitting exact logistic regression models requires a fast computer with a
lot of memory and plenty of patience.

The estimates of the slope coefficients in Table 8.36 are similar and
would result in effectively equivalent estimates of their respective odds
ratios. However, the exact confidence intervals are much wider, reflect-
ing the increased variability due to the small sample size. The two esti-
mates of the intercept coefficients appear to be quite different but, in
fact, there is considerable overlap in the two confidence intervals. We
leave as an exercise determining the effect this difference has on the
estimated probabilities.

In addition to fitting all parameters it is possible to evaluate fit and
compute diagnostic statistics as described in Chapter 5 and Chapter 7.
The LogXact 4 package has the capability to compute the Hosmer-
Lemeshow goodness-of-fit test and the casewise diagnostic statistics.
However we do not recommend using the p-value for the Hosmer-
Lemeshow test based on a chi square distribution with eight degrees-of-
freedom as it is based on the large sample assumption that one is trying
to avoid by using exact methods. Instead we suggest that one visually
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check the agreement between the observed and expected frequencies in
the two by ten table. One should examine the diagnostic statistics using
the plots discussed in Chapter 5. Models can then be refit deleting sus-
pect cases. We leave assessing the fit of the model in Table 8.36 as an
exercise.

In summary we feel that exact methods for logistic regression
should be considered when one is fitting models with a small sample
size or unbalanced data that result in zero frequency cells.

8.5 SAMPLE SIZE ISSUES WHEN FITTING
LOGISTIC REGRESSION MODELS

In our experience there are two sample size questions, prospective and
retrospective. The prospective question is: How many subjects do I
need to observe to have specified power to detect that the new treatment
is significantly better than the old or placebo treatment? The retrospec-
tive question is: Do I have enough data to fit this model? There has
been surprisingly little work on sample size for logistic regression. The
available methods to address sample size selection have been imple-
mented in just a few specialty software packages. The key element in
assessing if one has adequate data to fit a particular model involves the
number of events per covariate. Recent research by Peduzzi, Concato,
Kemper, Holford and Feinstein (1996) provides some guidance. In this
Section we consider methods for choosing a sample size first and then
discuss the importance of having an adequate number of events per co-
variate.

The basic sample size question is as follows: What sample size does
one need to test the null hypothesis that a particular slope coefficient is
equal to zero (without loss of generality we assume it is the first of p
covariates in the model) versus the alternative that it is equal to some
specified value, i.e., H0:/3j =0 versus Ha:j3, = /?*. If the logistic regres-
sion model is to contain only this single dichotomous covariate, then
one may use conventional sample size methods to test for the equality
of two proportions (see Fleiss (1981) or Lemeshow, Hosmer, Klar and
Lwanga (1990)). Alternatively one may use results in Whitemore
(1981) for a logistic regression model containing a single dichotomous
covariate. The difference in the two approaches is that the former is
based on the sampling distribution of the difference in two proportions
and the later on the sampling distribution of the log of the odds ratio.
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We illustrate the two approaches using the data from the UMARU
IMPACT Study (UIS) described in Section 1.6.4. Suppose that we con-
sider these data as being either pilot data or data from an earlier study.
We use it to help us determine what sample size we would need in a new
study to test for a 50 percent increase in the odds of remaining drug
free for one year for the longer versus the shorter treatment. In terms
of the logistic regression model the null and alternative hypotheses are
H0:j8, =ln(l) = 0 versus Ha:j8, =ln(1.5). To determine the sample size
with either approach we need an estimate of the response probability
under the shorter treatment, PQ =P(Y = l| x = 0). Cross classifying the

outcome variable (DFREE) by the treatment covariate (TREAT) results
in the observation that 21.4 percent of those on the shorter duration
treatment remained drug free for 12 months. We round this down to 20
percent and use this as our response probability. The response prob-
ability yielding an odds ratio of 1.5 is

= 0.2728
.5x0.2

Thus, stated in terms of proportions the null and alternative hypotheses
are H0 : P0 = /} = 0.2 and Ha:P0 =0.2, P{ =0.2728.

The sample size one needs in each of two groups for a one sided
test at the a level of significance of H0 : P0 = P} and power 1-6 for the
alternative Ha:P0 < jF| is given by the equation

where P = (P0 + Pl)/2 and Zi_a and Zj_0 denote the upper a and 6 per-
cent points respectively of the standard normal distribution. We use a
one sided test here for better comparability with the results in White-
more (1981). For a two sided test one would use z,_a/2

 in place of Zj_a

in equation (8.43).
Thus the number we would need in our two treatment groups for a

5 percent level test to have power 80 percent is
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n =
_ (l .645V2 x 0.2364 x 0.7636 + 0.842V0.2 x 0.8 + 0.2728 x 0.7272)2

~ (0.2728 -0.2)2

= 420.29,

or 421 subjects in each group for a total sample size of approximately
842 subjects.

Whitemore (1981) approaches the sample size problem via the
sampling distribution of the Wald statistic for the estimate of the logistic
regression coefficient. For a univariable logistic regression model con-
taining a single dichotomous covariate, jc, coded 0 or 1 the total sample
size needed to test H0:/Jj =0 versus Ha:/?, = /3* is

+ — +Zi flj + '
n 1-™' -

* = (l + 2P0)x^ " po-2 y • (8-44)
"oA

where 7C = P(X = 0) denotes the fraction of subjects in the study ex-
pected to have x = 0. In our example we want the sample size for an
odds ratio of 1.5 or $ =ln(1.5) and we plan to use equal numbers of
subjects in the two treatment groups. Thus the value of equation (8.44)
with n - 0.5 is

n = (l + 2x0.2)x
1.645 J— + —+ 0.842,

0.5 0.5 \ 0.5 0.5e[ln(L5)]

T
0.2x[ln(1.5)]2

(l .645 x 2 + 0.842V2 + 2 x 0.6666 )2

'.
0.2x0.1644

= 992.19.

This suggests that, rounding up to be divisible by 2, we would need ap-
proximately 994 subjects or 497 in each group. This is 76 more sub-
jects per group than the sample size given by equation (8.43). The dif-
ference in the two sample sizes stems from a number of assumptions
made by Whitemore to obtain equation (8.44). This equation is derived
under the assumption that the logistic probabilities are small. The lead
term in equation (8.44) is proposed as a way to adjust the sample size
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when this is not the case. To our knowledge no research has been pub-
lished that compares the results from equations (8.43) and (8.44) in a
systematic manner. Our recommendation for univariable models is that
one should use equation (8.43) as it relies on fewer assumptions than
equation (8.44).

If the single covariate we plan to include in the model is continu-
ous, then we may use results for this setting derived by Whitemore
(1981) and Hsieh (1989). We must assume that the covariate is stan-
dardized to have mean 0 and standard deviation 1.0. Thus the logistic
regression coefficient is the effect of a one standard deviation increment
in the unstandardized covariate. The sample size needed for a one sided
test, at the a level of significance and power 1-0, of H0:/?, =0 versus

Ha: j8, = j3* is given by the equation

. .
n = (1 + 2P0<5) x J - — 3 - , (8.45)

where

8 = ,a - . (8.46)

and P0 is the value of the logistic probability evaluated at the mean of
the standardized covariates, i.e.,

(8.47)

As an example, suppose we consider the covariate age in the UIS
study and ignore all of the other covariates. In these data the mean age
of the subjects is approximately 32 years with a standard deviation of 6
years. We would like to determine what sample size we would need in
order to be able to detect that the effect of a one standard deviation in-
crease in age is a 50 percent increase in the odds of remaining drug free
(i.e., (3* =ln(1.5)). To obtain an estimate of P0 in (8.47) we fit a uni-
variable logistic regression model containing the standardized covariate

AGES = (AGE -32)/6. The estimate of the intercept term is J30 -
-1.079 (results not shown) and equation (8.47) becomes
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-1.079

pn - JL _ = 0 25

The value of equation (8.46) in this example is

1 + e-0.25[ln(1.5)

and the sample size from equation (8.45)

= 1.24

n = (l + 2x0.25xl.24)x r r,
0.25[ln(1.5)p

= 237.19.

This result suggests that if the true effect of age is to increase by 50 per-
cent the odds of remaining drug free for every increment of 6 years,
then we need a total 238 subjects in our study. This same result may
also be obtained from Table II in Hsieh (1989). In addition it may also
be obtained from the PASS 6.0 (1996) software package.

However it is extremely rare in practice to have final inferences
based on a univariable logistic regression model. The major problem is
that the only sample size results currently available are for multivariable
models containing continuous covariates that are assumed to be distrib-
uted normal, exponential or Poisson. For example Hsieh's multivari-
able adaptation of equation (8.45) suggests using the sample size given
by the equation

where p2 is the squared multiple correlation of the covariate of interest,
*!, and the remaining p~\ covariates in the model. This is the equa-
tion used by the PASS 6.0 package.

In spite of these rather stringent assumptions we think that one can
use a modification of equation (8.45) or equation (8.48) as a first step
in obtaining an approximate sample size in practical settings (i.e., ones
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Table 8.37 Results of Fitting a Logistic
Regression Model to the UIS Data (n = 575)

Variable
AGES
NDRGTXS
IVHX_2
IVHX_3
RACE
TREAT
Constant

Coef.
0.306

-0.316
-0.593
-0.760

0.208
0.439

-1.041

Std. Err.
0.1038
0.1283
0.2864
0.2490
0.2215
0.1991
0.2097

z
2.94

-2.46
-2.07
-3.05

0.94
2.20

-4.96

P>z
0.003
0.014
0.038
0.002
0.347
0.028

<0.001

where models are fit containing a mix of continuous and discrete co-
variates).

As a first multivariable example we consider the sample size needed
to test for an age effect of ln(1.5) per 6 year increment where we also
include the number of previous drug treatments, history of IV drug use,
race and treatment in the model. In this example we consider treatment
to be just another potential confounder of the age effect. The results of
fitting a logistic regression model to the UIS data with age standardized,
AGES = (AGE -32)/6, and number of previous drug treatments stan-
dardized, NDRGTXS = (NDRGTX-5)/5 are shown in Table 8.37.

Based on the results in Table 8.37 the estimated probability of re-
maining drug free with all covariates equal to zero is

-1.041

In this case a subject with all covariates equal to zero corresponds to a
subject who is 32 years old, has had 5 previous drug treatments, no pre-
vious history of IV drug use, is white and on the shorter treatment.

Suppose we perform our test at the a = 0.05 level and would like
power 1-0 = 0.8. Use of a multiple linear regression package with
AGES as the dependent variable and the remaining variables as covari-
ates yields R2 =0.1473. The value of equation (8.46) is the same as that
determined for the univariable model, 5 = 1.24, and the sample size
from equation (8.48) is
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0 + 2x0*1x1*)
(1-0.1473) 0.261 x[ln(1.5)f

Thus application the Hsieh modification of the Whitemore formula sug-
gests that only about 271 subjects are needed to have 80 percent power
to test for the stated effect of age. We note that if the average fitted lo-
gistic probability is approximately equal to P0= 0.261 then we would
expect to have 71 "events" or subjects who remain drug free for 12
months. We comment on the importance of this number shortly.

As a second multivariable example we consider sample size for a
study where treatment is the main covariate of interest. What sample
size is necessary to have 80 percent power to detect a treatment coeffi-
cient ln(1.5) when we adjust for age, the number of previous drug
treatments, history of IV drug use and race? Application of Hsieh 's
correction factor for multiple covariates to equation (8.44) yields sam-
ple size

n = v " / x v : • / . (8.49)

In this case, since the covariate of interest is dichotomous, we suggest
using one of the R2 measures discussed in Chapter 5. One possibility is
the squared correlation between the values of the dichotomous covariate
and fitted values from a logistic regression of this covariate on all other
variables in the model (i.e., the value of equation (5.6)). In our exam-

ple this yields p2 =(0.1123)2 =0.0126. Thus the multivariable adjusted
sample size from equation (8.49) is

1.645J— + — + 0.842 -J..\JT^<I -- 1 r \j.u-rt* i i f i7iT\l

(1 + 2x0.261) I \0.5 0.5 ^0.5 Q.5e[]n(L5)]

(1-0.0126) X 0.261 x[ln(1.5)f

(l .645 x 2 + 0.842V2 + 2X0.6666)
'

0.261x0.1644
= 836.86 .



346 SPECIAL TOPICS

This suggests that, rounding up to be divisible by 2, a total sample size
of about 838, or 419 per treatment group would be required.

There are a number of potential problems with the sample size
formula in equation (8.49). One is the ad-hoc use of the Hsieh's cor-
rection factor to account for multiple covariates. A second problem
involves the earlier noted discrepancy in sample sizes suggested by
equation (8.43) and equation (8.44). We think that the sample size
suggested by equation (8.49) may be unnecessarily large but could be
the starting point for a more in depth sample size analysis using pilot
data do some model fitting. For example, one way to assess the preci-
sion obtained from modeling with a sample of 838 subjects is to con-
struct a pseudo-study by combining the original 575 subjects with a
random sample of 263 of the 575 subjects. We would then fit the pro-
posed multivariable logistic regression model and examine the estimated
coefficient for treatment, its estimated standard error, Wald statistic and
p-value. These results can be used to provide guidance as to how sig-
nificant the results may be expected to be in the new, larger study. Ide-
ally we would repeat this process a number of times to obtain an ap-
proximate sampling distributions of the estimated quantities. If in the
end we think the estimated standard error is too small and confidence
intervals are too narrow then we would repeat the process using a
smaller sample size. This could be repeated until we had empirical evi-
dence that the sample size provides about the desired precision in the
multivariable model.

A second consideration, and one relevant to any model being fit, is
the issue of events per covariate. Peduzzi, Concato, Kemper, Holford
and Feinstein (1996) examine the issue of how many events per covari-
ate are needed to obtain reliable estimates of regression coefficients
when fitting a logistic regression model. Peduzzi et. al. consider single
term main effects models. In order to extend their ideas to more com-
plex models that may have multiple terms for a number of covariates,
we prefer to use the terminology events per parameter. In general the
relevant quantity is the frequency of the least frequent outcome,
m = mm(nl,nQ). In our experience this is usually the number of sub-
jects with the event present, y = 1 but it could just as well be the number
with the event absent, >> = 0. Peduzzi et. al. show that a minimum of 10
events per parameter are needed to avoid problems of over estimated
and under estimated variances and thus poor coverage of Wald-based
confidence intervals and Wald tests of coefficients. Thus the simplest
answer to the "do I have enough data" question is to suggest that the
model contain no more than /? + l<min(n,,n0)/10 parameters. For ex-
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ample in the UIS study we have 147 = min(147,428) events. The rule of
10 suggests that models should contain no more than 14 parameters.
The model fit in Chapter 4 and evaluated in Chapter 5, see Table 5.10,
using the UIS data contains 11 parameters. Note that with the sample
size of 271 that we obtain when the goal is to test the coefficient age we
expect about 71 events. In this case the rule of 10 suggests that models
should contain no more than 7 parameters.

As is the case with any overly simple solution to a complex prob-
lem, the rule of 10 should only be used as a guideline and a final de-
termination must consider the context of the total problem. This in-
cludes the actual number of events, the total sample size and most im-
portantly the mix of discrete, continuous and interaction terms in the
model. Peduzzi et. al. considered only discrete covariates and provide
no information about the bivariate distributions of outcome by covari-
ates. We think that the ten events per parameter rule may work well for
continuous covariates and discrete covariates with a balanced distribu-
tion. However, we are less certain about its applicability in settings
where the distribution of discrete covariates is weighted heavily to one
value. Here one may require that the minimum observed frequency be,
say 10, in the contingency table of outcome by covariate. Research is
needed to determine if 10 is too stringent a requirement.

In summary, having an adequate sample size is just as important
when fitting logistic regression models as any other regression model.
However, the performance of model-based estimates may be determined
more by the number of events rather than the total sample size.

EXERCISES

1. Data from the mammography experience study are described in
Section 8.1. Use a subset of these data and fit a multinomial logistic
regression model. For example, you may choose to use only the
first 200 subjects. The purpose of the exercise is to obtain practice
when there are more than two categories of outcome. Hence, any
alternative strategy for identifying a subset of subjects is acceptable.

2. The data for the low birth weight study are described in Section
1.6.2. These data are used in Section 8.2 to illustrate ordinal logis-
tic regression models via the four category outcome BWT4,
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OifflWT>3500

1 if 3000 <BWT< 3500

2 if 2500 < B WT< 3000

3if#WT<2500.

Use the outcome variable BWT4 and fit the multinomial or baseline
logistic regression model.

In each of the above problems the steps in fitting the model should
include: (1) a complete univariate analysis, (2) an appropriate se-
lection of variables for a multivariate model (this should- include
scale identification for continuous covariates and assessment of the
need for interactions), (3) an assessment of fit of the multivariate
model, (4) preparation and presentation of a table containing the re-
sults of the final model (this table should contain point and interval
estimates for all relevant odds ratios), and (5) conclusions from the
analysis.

3. Using the final models identified in problems 1 and 2 compare the
estimates of the coefficients obtained from fitting the multinomial
logistic regression model to those obtained from fitting the adja-
cent-category, continuation-ratio and proportional odds ordinal lo-
gistic regression models. For the mammography experience data
recede the outcome variable, ME, to 0 = Never, 1 = Over one year
ago and 2 = Within one year in order that its codes increase with
frequency of use.

4. The following exercise is designed to enhance the idea expressed in
Figure 8.2 and Figure 8.3 that one way to obtain the proportional
odds model is via categorization of a continuous variable.
(a) Form the scatter plot of BWT versus LWT.
(b) Fit the linear regression of BWT on LWT and add the estimated

A.

regression line to the scatterplot in 4(a). Let A0 denote the es-
A

timate of the intercept, Aj the estimate of the slope and s the
root mean squared error from the linear regression.

(c) It follows from results for the logistic distribution that the rela-
tionship between the root mean squared error in the normal er-
rors linear regression and the scale parameter for logistic errors
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linear regression is approximately <7 = sV3/7T. Use the results
from the linear regression in 4(b) and obtain <7.

(d) Use the results from 4(b) and 4(c) and show that the estimates

presented in Table 8.20 are approximately f, = (2500-A0)/<7,

£2 = (3000-A0)/<7, f3 = (3500-A0)/(7 and 0, = A,/d.

(e) By hand draw a facsimile of the density function shown in Fig-
ure 8.3 with the three vertical lines at the values 2500, 3000 and
3500. Using the results in equation (8.20), equation (8.21) and
the estimates in Table 8.20 compute the value of the four areas
under the hand-drawn curve. Using these specific areas demon-
strate that the relationship shown in equation (8.22) holds at
each cutpoint.

(f) Repeat problem 4.5 for LWT = 135 and show by direct calcula-
tion using areas under the two curves that the relationship in
equation (8.24) holds at each cutpoint.

5. Using the data from the longitudinal low birth weight study and
considering all the covariates (be sure to consider the possibility of
interactions among the covariates):
(a) Find the best cluster-specific and population average models.
(b) Evaluate the fit of the two models obtained in problem 5(a).
(c) Prepare separate table for each model obtained in 5(a) contain-

ing estimates of the odds ratios with 95 percent confidence in-
tervals.

(d) Compare the interpretation of the point estimates of the odds
ratios from the cluster-specific model and population average
model.

6. Using the cluster-specific and population average models obtained
in problem 5(a) explore alternative ways of including the weight of
the mother at the last menstrual period. For example, one alterna-
tive is to use the weight at the first birth as a cluster level covariate.
Others representations are possible. For each alternative fit the
cluster-specific and population average model, estimate an odds ra-
tio for weight and compare their interpretation.

7. Using the covariates in the population average model obtained in
problem 5(a) explore alternative ways of including history of a low
birth weight baby. For reach model compute and interpret the esti-
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mate of the odds ratio and a 95 percent confidence interval for the
previous low birth weight covariate. Recall that we fit these models
using the usual logistic regression model.
(a) Fit the model that adds the outcome of the previous birth to the

model. In this problem explore the use of two versions of this
covariate: one that assigns a missing value for the first birth and
one that assigns a value of zero to the first birth.

(b) Fit the model that includes a dichotomous covariate indicating if
any previous birth was of low weight. In this problem explore
the use of two versions of this covariate: one that assigns a
missing value for the first birth and one that assigns a value of
zero to the first birth.

8. Using the data from the ICU Study described in Chapter 1, Section
1.6.1, attempt to fit the usual logistic regression model containing
type of admission (TYP) using subjects 25 years of age or younger.
Why does the usual MLE have problems in this example? Fit the
exact logistic regression model. Compute the point and 95 percent
confidence interval estimates of the odds ratio.

9. Repeat problem 8 fitting models containing systolic blood pressure
(SYS).

10. Evaluate the fit of the usual and exact logistic regression models
shown in Table 8.36.

11. Consider the low birth weight study. What sample size would be
needed in a new study to be able to detect that the odds of a low
birth weight baby among women who smoke during pregnancy is
2.5 times that of women who do not smoke, using a 5 percent type I
error probability and 80 percent power?

12. Consider the low birth weight study. What sample size would be
needed in a new study to be able to detect that the odds of a low
birth weight baby decrease at a rate of 10 percent per 10 pound in-
crease in weight at the last menstrual period, using a 5 percent type I
error probability and 80 percent power?

13. Repeat problem 11 assuming that you plan to use a model that
contains age, weight of the mother at the last menstrual period and
race.
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14. Repeat problem 12 assuming that you plan to use a model that
contains age, smoking status during pregnancy and race.

15. If the sample size obtained in problems 13 or 14 is larger than the
original study size of 189 then use the suggested method for ob-
taining a larger study to explore the effect the larger study size has
on estimated coefficients, standard errors and confidence intervals.
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Tables 4.6,4.8.4.10
Table 4.6 Summary of the Use of the Method of Fractional
Polynomials for NDRGTX

Not in model
Linear
7=1
7=2

df
0
1
2
4

Deviance
626.176
619.248
618.818
613.451

G for Model
vs. Linear

0.000
0.430
5.797

Approx.
p-Value

0.008*
0.5 12+
0.068*

Powers

1
0.5

-l.-l
* Compares linear model to model without NDRGTX.
+ Compares the J -I model to the linear model
# Compares the / = 2 model to the J = 1 model

Table 4.8 Log-likelihood, Likelihood Ratio Test Statistic
(G), Degrees of Freedom (df), and p-Value for Interactions of
Interest When Added to the Main Effects Model in Table 4.7.

Interaction
Main Effects Model
AGExNDRGTX*
AGExIVHX
AGExRACE
AGExTREAT
AGExSITE
NDRGTX'xIVHX
NDRGTX'xRACE
NDRGTX'xTREAT
NDRGTX'xSITE
IVHXxRACE
IVHXxTREAT
IVHXxSITE
RACExTREAT
RACExSITE
TREATxSITE

Log-Likelihood
-306.7256
-302.8314
-306.3559
-306.6269
-305.3410
-305.9265
-304.0092
-304.6541
-305.2580
-306.7239
-305.8361
-306.7051
-306.2910
-306.2541
-302.4533
-306.7087

G

7.79
0.74
0.20
2.76
1.60
5.43
4.14
2.94
0.01
1.78
0.04
0.87
0.94
8.54
0.03

df

2
2
1
1
1
4
2
2
2
2
2
2
1
1
1

p- value

0.020
0.691
0.657
0.096
0.206
0.246
0.126
0.231
0.998
0.411
0.980
0.648
0.332
0.004
0.854

*: All Interactions involving NDRGTX are formed using
NDRGFP1 and NDRGFP2

352
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Table 4.10 Results of Applying Stepwise Variable Selection
Using the Maximum Likelihood Method to the UIS Data
Presented at Each Step in Terms of the p -Values to Enter, Be-
low the Horizontal Line, and the p-Value to Remove, Above
the Horizontal Line in Each Column. The Asterisk Denotes
the Maximum p-Value to Remove at Each Step.
Variable/Step
NDRGTX
TREAT
IVHX
AGE
RACE
SITE
BECK

0
0.0006
0.0229
0.0013
0.2371
0.0315
0.1968
0.4250

1
0.0006
0.0249
0.0273
0.0458
0.0663
0.3644
0.5582

2
0.0006
0.0249*
0.0332
0.0356
0.0914
0.3382
0.5436

3
0.0164
0.0312
0.0332*
0.0021
0.2107
0.4987
0.7744

4
0.0062
0.0224
0.0027

1 0.0021*
0.1350
0.5688
0.9938
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Additive models. 103-104
Adjacent-category logistic model. 289. 293-295.

297-298
Adjustment, statistical, 65. 67. 69
Algorithms, variable selection, 96
Analysis of covariance. 65
Analysis of variance table, 11-12
Asthma study, correlated data analysis, 309-312
Asymptotically equivalent, 21
Asymptotic distribution, 132
Auto-regressive model, correlated data analysis,

313

Baseline logit model. 289
Best subsets linear regression, model-building:

applications, generally. 128-129
interaction, 136-137
matrix notation, 128-131
multivariable analysis. 132
overfitting. 134-135
sum-of-squares. 130-131
univariable stage. 129-130
UIS case illustration, 132-135
variable selection, 96
vector notation, 128-129

Binary logistic models, 1, 278, 307-308
Binomial distribution. 7. I 16
BMDPLR. 121-122
Breslow-Day test. 83-84

Calibration, goodness-of-fit assessment, 159
Case-control studies:

components of. 189-190, 205-210
matched, see Matched case-control studies

Chi-square distribution:
best subsets logistic regression, 133

fitted logistic regression, 72, 82, 85
logistic regression, 14, 16

Chi-square test, variable selection:
benefits of, 92-93, 102
stepwise logistic regression, 116

Classification, 21
Classification tables, goodness-of-fit assessment,

156-160. 188
Clustering, 185-186
Cluster-level covariates, 309
Cluster-specific model, correlated data analysis,

310-312,316-317,320-328
Coefficients, generally:

correlated, see Correlated data analysis
testing for significance of, 11-17
in variable selection, 97

Cohort studies, 203-205
Collinearity, 140-141
Complex sample surveys, fitting logistic

regression models to data from. 211 -221
Conditional exact maximum likelihood estimate

(CMLE), 334-337
Conditional maximum likelihood estimators, 23
Conditional mean, 4, 6-7, 168
Confidence interval:

estimation, see Confidence interval estimation
in goodness-of-fit assessment, 191, 195-198
Wald-based, 19-20

Confidence interval estimation:
fitted logistic regression, 52-53, 55, 62, 88
logistic regression, 17-21
multiple logistic regression, 35,40-42

Confidence limits, 59
Confounding:

fitted logistic regression, 70-74
goodness-of-fit assessment, 185

369
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Confounding (continued)
\ ariable selection. 128

Constrained cumulative logit model. 297
Contingency table. 92-93
Continuation-ratio logistic model. 290. 295-298
('ontinuous covariates:

jioodness-of-fit. 175-176
\ariableselection.93-94, 103, 126

( ontinuous independent \ ariable:
fitted logistic regression. 63-64. 67, 97
variable selection, 97

( ontinuous variables:
defined. 22
independent, see Continuous independent

variable
variable selection. 93

Coronary heart disease (CHD) study:
fitted logistic regression. 51-53, 56-57, 64.

71-72
logistic regression. 2-7

Correlated data analysis:
cluster-sped fie. 310-312. 316-317. 320-328
population average model. 311-323, 329-330
subject-specific. 310. 312
transitional model. 312

Covariance matrix:
case-control studies. 206-210
correlated data analysis. 315
fitted logistic regression. 78
logistic regression. 19
multiple logistic regression. 34, 41-43

Covariate pattern:
defined. 144
diagnostics and. 169. 172-183
goodness-of-fit assessment. 178-179, 182.

282-287
model-building strategies, 138

Cox model. 205, 331-332

Data sets:
ICU study. 23-25
low birth weight study. 25
prostate cancer study, 25-26
UMARU IMPACT study. 26-28

Degrees-of-freedom:
complex sample surveys, 214
correlated data analysis. 328
exact computation methods, 338
fitted linear regression, 72, 82-83, 85
goodness-of-fit assessment. 154
multinomial logistic regression. 275
multiple logistic regression. 38-39
ordinal logistic regression model, 295. 304
stepwise logistic regression, 116, 120

variable selection and, 92, 102, 116
Dependent outcome, I
Design matrix, 168
Design variables:

fitted logistic regression, 60-61
multiple logistic regression, 32, 38

Deviance, Pearson, 145-147, 152-154, 179
Deviation from mean coding, 59
Deviation from means, 54
Diagnostics:

basic building blocks. 176-178
coefficient estimation, 182
confounding. 185
correlated data analysis, 325-326
covariate patterns. 172-183
design matrix, 168-169
distribution theory. 175
leverage values, 169-172. 177
maximum likelihood estimate (MLE). 184-185
multinomial logistic regression model.

280-287
Pearson chi-square statistic. 174
residuals. 178-179
residual sum-of-square. 167-168
UIS case study. 184

Dichotomous covariate. 339-340
Dichotomous independent variable, fitted logistic

regression. 48-56
Dichotomous logistic regression. 1.43
Discrete choice model. 260
Discrete variables, 22. 33
Discriminant analysis, 21, 138
Discriminant function:

analysis, see Discriminant function analysis
multiple logistic regression, 43-44

Discrimination, goodness-of-fit assessment. 160,
163

Distribution functions. 5-6
Due regression sum-of-squares, 12
Dummy variables. 32

Effect modifier. 70
EGRET. 85, 152.326-327
Error:

estimated standard. 138-139
fitted logistic regression, 58
logistic regression. 6-7
multiple logistic regression. 34. 42

Estimation methods:
logistic regression models. 21-23
multinomial logistic regression. 264-273

Events per parameter, 346
Exchangeable correlation, correlated data

analysis. 313
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Exchangeable correlation matrix, 314
Explanatory variables, 1
External validation, goodness-of-fit, 186-188
Extrabinomial variation, 185

F-distribution, 213-214
Fisher's exact test, 334
Fit assessment:

exercises, 200-202
external validation, 186-118
logistic regression diagnostics, 167-186
1-M matched study, 248-259
1-1 matched study, 236-243
results, interpretation and presentation of,

188-200
summary measures of goodness-of-fit, see

Goodness-of-fit assessment factors
Fitted logistic regression model, interpretation of:

confounding, 70-74
continuous independent variable, 63-64
dichotomous independent variable, 48-56
exercises, 88-90
fitted values, 85-88
interaction, 70-74
link function, 48
multivariable model, 64-69
odds ratio, estimation in presence of

interaction, 74-79
polychotomous independent variable, 56-72
2 x 2 tables, stratified analysis compared with,

79-85
Fitted values, fitted logistic regression, 85-88
Fitting:

assessment of, see Fit assessment; Goodness-
of-fit assessment

correlated data analysis, 320, 326-330
multinomial logistic regression, 279-287
ordinal logistic regression model, 291-292
stepwise logistic regression, 117-120

Fractional polynomials, variable selection,
100-103. 109, 111

F-test, 116
Furnival-Wilson algorithm, 128

GEE (generalized estimating equations), 312-316
Generalized additive model, variable selection,

103-104
Goodness-of-fit:

assessment of, see Goodness-of-fit assessment
factors

defined, 143
fitted logistic regression, 85
logistic regression, generally, 11,13
sample size issues, 339-347

Goodness-of-fit assessment factors:
classification tables, 156-160, 188
Hosmer-Lemeshow tests, 147-156, 327, 338
interaction, 188-189
interpretation of, 164, 183-184
Pearson chi-square statistic and deviance,

145-147, 152-154, 181,218,327
Pearson correlation coefficient, 164-165
ROC Curve, area under, 160-164

Grouping, goodness-of-fit, 176

Hat matrix, 168
Homogeneity test, 82-83
Hosmer-Lemeshow tests, 147-156, 187, 327, 338

ICU study, 23-25
Identity function, 47
Independent model, correlated data analysis, 313
Independent variables:

continuous, 63-69
fitted logistic regression, 47, 54
dichotomous, 48-56
logistic regression, 1-2,6-7, 14
polychotomous, 56-62

Information sandwich estimator, 315
Interaction:

best subsets linear regression, 136-137
defined, 69
fitted logistic regression, 70-74, 98
goodness-of-fit assessment, 188-189
stepwise logistic regression, 125-128
variable selection, 98-99

Intercept coefficient, 47, 135

Least squares:
logistic regression, 7-8
multiple logistic regression, 43

Leverage values, goodness-of-fit assessment,
169-172, 177

Likelihood equations, 8, 33
Likelihood function:

logistic regression model, generally, 8
multinomial logic regression, 262
multiple logistic regression, 33
sampling models, 206, 209, 212

Likelihood ratio:
defined, 13
multinomial logistic regression, 276-277
ordinal logistic regression model, 305-307
stepwise linear regression, 117
test, see Likelihood ratio test
variable selection and, 92, 117

Likelihood ratio test:
correlated data analysis, 321
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Likelihood ratio test (continued)
goodness-of-fil assessment, 146
logistic regression, 13, 15-16
multiple logistic regression, 37
variable selection, 97, 120

Limits, fitted logistic regression, 59
Linear regression model, logistic distinguished

from with. 1, 6-7
Link function, fitted logistic regression. 47-48
Log likelihood function:

best subsets linear regression, 123
case-control studies, 211
correlated data analysis, 316
logistic regression model, generally, 8, 15
multinomial logistic regression, 270
multiple logistic regression, 34

Logistic distribution, generally, 6
Logistic regression model:

coefficients, testing for significance of, 11-17
confidence interval estimation, 17-23
data sets, 23-28
estimation methods, 21-23
exact methods for, 330-339
example of, 2-7
exercises, 29-30
fitting, 7-10
interpretation of, see Fitted logistic regression

model
model-building strategies, see Model-building

strategies
purpose of, 1
sample size issues, 339-347

Logit:
fitted logistic regression, 48, 67, 70-71,

73-75
logistic regression, 17-19
multiple logistic regression, 31-32, 40, 42
transformation. 6. 48
variable selection, 97

Log-odds ratio:
fitted linear regression, 63-64, 67-68, 75-76,

79
linear regression, 18

LogXact4. 331,334, 338
Low birth weight study:

correlated data analysis, 318-330
fitted linear regression, 77, 80, 86-88
logistic regression, 25
matched case-control study, 230-243
multiple logistic regression, 35-38
ordinal logistic regression model, 292-308

Main effects model, 98
Mammography experience study, 265-287

Mantel-Haenszel estimator, 79-80, 82-83, 85
m-asymptotics, 145, 147, 150, 175-176, 187,210
Matched case-control studies

characteristics of, 223-226
1-M matched study, 243-248
1-1 matched study, 226-248

Matrix notation, best subsets logistic regression,
128-129. See also specific types of
matrices

Maximum likelihood estimation (MLE):
best subsets linear regression, 128, 130-131
case-control studies, 208, 226
fitted logistic regression, 63, 84
goodness-of-fit assessment, 173, 184
logistic regression, 8-10, 23
matched case-control studies, 226-227
multiple logistic regression, 33
multinomial logistic regression, 263
ordinal logistic regression models, 291
stepwise logistic regression, 121
variable selection, 100

Median unbiased estimator (MUE), 337
Model-building strategies:

best subsets, 128-135
covariates, 138
exercises, 142
fitting, 140
numerical problems, 135-141
overfitting, 135-136
pooling, 136-137
stepwise logistic regression, 116-128
variable selection, 92-116

Multinomial logistic regression model:
components of, 260-264
coefficient estimation, 264-273
fit assessment, 280-287
model-building strategies, 273-280

Multiple logistic regression:
confidence interval estimation, 40-42
estimation methods, 43-44
exercises. 44-46
fitting the, 33-36
model, 31-33
testing for significance of, 36-40

Multivariable analysis, variable selection,
95-96

Multivariable logistic regression model:
fitted, 64-69
sample size, 346-347

n x n diagonal matrix, 212
n-asymptotics, 144, 176
NHANES (I/II/MO, 214
Noise variables, 121
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Noniterative weighted least squares, 21
Normal distribution:

diagnostics. 175
logistic regression model, 6-7, 18
stepwise logistic regression, 116
variable selection and, 93

Null distribution. 146

Odds ratio:
adjusted, 69
defined, 49
correlated data analysis, 322-325
fitted logistic regression, 51-55, 68, 74-79, 81,

83-84
goodness-of-fit assessment, 188-190,

194-195
matched case-control studies, 224
multinomial logistic regression, 265-266

1-1 matched study:
example of, 230-235
goodness-of-fit assessment, 236-243
logistic regression analysis for, 226-230

I -M matched study:
example of, 243-248
goodness-of-fit assessment, 248-259

Ordinal logistic regression models:
components of, 288-305
model-building strategies, 305-308

Osius-Rojek goodness-of-fit test, 155
Outcome variable, defined, 7. See also specific

types of regression models
Overfitting, 92, 134-135

Partial likelihood ratio test, 101-102
Partial proportional odds model, 298
PASS 6.0, 343
p coefficients, 36
Pearson chi-square statistic, goodness-of-fit

assessment, 145-147, 152-154, 187,218,
327. See also Chi-square distribution;
Chi-square test

Pearson correlation coefficient, goodness-of-fit
assessment, 164-165

Pearson deviance, goodness-of-fit assessment,
145-147, 152-154

Polychotomous independent variable, fitted
regression analysis, 56-72

Polychotomous logistic regression, 260
Polychotomous variables, variable selection, 116
Pooling, 136-137
Population average model, correlated data

analysis, 311-323, 329-330
Prediction, goodness-of-fit assessment, 160
Predictor variables, 1

Preliminary final model, 99
Preliminary main effects model, 97
Probability distribution, exact methods, 334-336
PROC LOGISTIC, 133-134
Proportional hazards regression model, 100-101,

205
Proportional odds model, 297-298
Prostate cancer study, 25-26
/j-value:

best subsets logistic regression, 131-132
computation methods, generally, 333
goodness-of-fit assessment, 146, 152, 154,

188
logistic regression model, 16-17, 37
stepwise logistic regression, 117-120, 125
sampling models and, 213-214

Quasicomplete separation, 139

R2, 131, 164-167,345
Random effects models, correlated data analysis,

310,320
Random variable, cumulative distribution, 5-6
Recycling, in variable selection, 102-103
Reference cell coding, 54, 57, 59
Refinement stage, in variable selection, 97
Refitting, 97, 99, 339
Regression coefficients, 220
Regression diagnostics, defined, 167. See also

Diagnostics
Regression sampling model, defined, 204. See

also Sampling models
Residual sum-of-squares, 12-13, 167-168
Response variable, 1,12
Risk factor studies:

computational methods, generally, 332
correlated data analysis, 323-324
goodness-of-fit assessment, 152
multivariable logistic regression, 69, 74

Robust estimator, 315-316
ROC (Receiver Operating Characteristic) Curve,

goodness-of-fit assessment, 160-164

Sample size:
adjustment of, 341
continuous covariates, 343-345
dichotomous covariates, 339-341
multivariable logistic regression, 343-347
univariable logistic regression, 343
Wald statistic, 341-342

Sample surveys, complex, 211-221
Sampling models:

case-control studies, 205-210
cohort studies, 203-205
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Sampling models (continued)
complex sample surveys, fitting logistic

regression models to data from, 211-221
exercises, 222
NHANES case illustration, 214-221

SAS package, 85, 121, 125, 133, 139, 149, 152,
169-170, 229, 237, 304, 309, 326-327

Saturated model, 12-13
Scatterplot, 94, 107
Score test (ST):

best subsets logistic regression, 133
fitted logistic regression, 85
goodness-of-fit assessment, 152, 155
logistic regression, 16
multiple logistic regression, 39-40
variable selection, 125

Simulation tests. 152, 155
Slope coefficient, confidence interval:

logistic regression, 17-18,48
multiple logistic regression, 37,40

Smoking and health study, 205. See also
NHANES (I/ l l / I l f)

Smoothing, goodness-of-fit, 176
Software programs/packages:

additive models, 104
best subsets linear regression, 96, 133-134
correlated data analysis, 309, 316, 319-320,

325-327
fitted logistic regression, 85
fractional polynomials, 102
generally, 331
goodness-of-fit assessment, 151, 153-154,

169-170
logistic regression, 15-16, 19
matched case-control studies, 228-229, 233,

243-244, 248, 250
model-building, 139
multinomial logistic regression, 266, 269, 277
multiple logistic regression, 32
ordinal logistic regression models, 302-304,

308
sample size, 343
sampling models, 205, 211 -213, 219-220
stepwise logistic regression, 121, 125
variable selection, 94-95, 102, 104, 121, 125

SSE, 12-13
S-shaped curve, 5, 69
SSR, 12
STATA, 94-95, 102, 121, 125, 135, 139, 151,

153-154. 169-170,211-213,219-220,
229. 243-244, 250, 266, 269, 302-304,
308-309, 316, 319-320, 325-327

Statistical significance, in variable selection, 116,
128

Stepwise logistic regression, model-building:
benefits of, 116
continuous covariates, 125-126
fitting, 117-120
interactions, 126-128
likelihood ratio. 122-123
statistical significance, 116, 124
variable selection, 96, 116-118, 120-122

Stratified analysis:
case-control studies, 206, 209
fitted logistic regression compared with, 79-85
model-building and, 136-137

Stukel's test, 152, 184
Subject-specific model, correlated data analysis,

310,312
SUDAAN, 211-212, 219
Sum-of-squares:

best subsets logistic regression, 130-131
goodness-of-fit assessment, 165

Transitional models, correlated data analysis,
312,328

Mest. 93
2 > < 2 tables, generally:

classification, 159-160,228
contingency, 331
fitted logistic regression compared with

stratified analysis, 79-85
model-building strategies, 136-137

Type 11 error, 155

UMARU IMPACT study (UIS), logistic
regression illustration-

overview, 26-28
sample size, 339
variable selection, 104-116

Univariable analysis, 92-93
Univariate models, fitted linear regression, 64
Unstructured model, correlated data analysis, 313
U-shaped function, 97

Validation data, see External validation
Values, fitted, 85-88
Variable selection, in model-building:

case illustration, UIS study, 104-116
chi-square test, 92-93, 102
continuous covariates, 93-94
continuous variables, 93
fractional polynomials, 100-103
generalized additive model, 103-104
independent variables, 97-98
interaction, 98-99
multivariable analysis, 95-96
overfilling, 92
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univariable analysis and, 92-93, 95
stepwise procedure, 96, 116-128
weighted average, 94

Vectors:
best subsets logistic regression, 128-129
confidence interval estimation, 40-41

Verifying, variable selection, 97

Wald-based confidence interval, 19-20
Wald statistic, see Wald test statistic

correlated data analysis, 318
Wald tests:

complex sample surveys, 213,216, 221
correlated data analysis, 316
logistic regression, 16, 18
multiple logistic regression, 37, 39

statistic, see Wald test statistic
variable selection, 125

Wald test statistic:
best subsets logistic regression, 132
correlated data analysis, 318
logistic regression model, generally, 16
multinomial logistic regression, 270, 273
multiple logistic regression, 38-39
variable selection, 97, 102, 115-116

Weighted average, 94
Weighted least squares linear regression, 168
Weighted linear regression, 153
Working correlation, 313

Zero cell, 93, 136, 139
Zero-one coding, 54
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