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Preface

Many interesting economic models cannot be solved analytically using the

standard mathematical techniques of Algebra and Calculus. This is often true

of applied economic models that attempt to capture the complexities inherent

in real-world individual and institutional economic behavior. For example, to

be useful in applied economic analysis, the conventional Marshallian partial

static equilibrium model of supply and demand must often be generalized

to allow for multiple goods, interegional trade, intertemporal storage, and

government interventions such as tari�s, taxes, and trade quotas. In such

models, the structural economic constraints are of central interest to the

economist, making it undesirable, if not impossible, to \assume an internal

solution" to render the model analytically tractable.

Another class of interesting models that typically cannot be solved ana-

lytically are stochastic dynamic models of rational, forward-looking economic

behavior. Dynamic economic models typically give rise to functional equa-

tions in which the unknown is not simply a vector in Euclidean space, but

rather an entire function de�ned on a continuum of points. For example, the

Bellman and Euler equations that describe dynamic optima are functional

equations, as often are the conditions that characterize rational expectations

and arbitrage pricing market equilibria. Except in a very limited number

of special cases, these functional equations lack a known closed-form solu-

tion, even though the solution can be shown theoretically to exist and to be

unique.

Models that lack closed-form analytical solution are not unique to eco-

nomics. Analytically insoluble models are common in biological, physical,

and engineering sciences. Since the introduction of the digital computer, sci-

entists in these �elds have turned increasingly to numerical computer meth-

ods to solve their models. In many cases where analytical approaches fail,

numerical methods are often used to successfully compute highly accurate ap-

vi
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proximate solutions. In recent years, the scope of numerical applications in

the biological, physical, and engineering sciences has grown dramatically. In

most of these disciplines, computational model building and analysis is now

recognized as a legitimate subdiscipline of specialization. Numerical analy-

sis courses have also become standard in many graduate and undergraduate

curriculums in these �elds.

Economists, however, have not embraced numerical methods as eagerly

as other scientists. Many economists have shunned numerical methods out

of a belief that numerical solutions are less elegant or less general than those

obtained from algebraic models. The former belief is a subjective, aesthetic

judgment that is outside of scienti�c discourse and beyond the scope of this

book. The generality of the results obtained from numerical economic mod-

els, however, is another matter. Of course, given an economic model, it is

always preferable to derive an explicit algebraic solution|provided such a so-

lution exists. However, when essential features of an economic system being

studied cannot be captured neatly in an algebraically soluble model, a choice

must be made. Either essential features of the system must be ignored in or-

der to obtain an algebraically tractable model, or numerical techniques must

be applied. Too often Economists chose algebraic tractability over Economic

realism.

Numerical economic models are often unfairly criticized by economists on

the grounds that they rest on speci�c assumptions regarding functional forms

and parameter values. Such criticism, however, is unwarranted when strong

empirical support exists for the speci�c functional form and parameter val-

ues used to specify a model. Moreover, even when there is some uncertainty

about functional forms and parameters, the model may be solved under a

variety of assumptions in order to assess the robustness of its implications.

Although some doubt will persist as to the implications of a model outside the

range of functional forms and parameter values examined, this uncertainty

must be weighed against the lack of relevance of an alternative model that

is algebraically soluble, but which ignores essential features of the economic

system of interest. We believe that it is better to derive economic insights

from a realistic numerical model of an economic system than to derive irrel-

evant results, however general, from an unrealistic, but tractable algebraic

model.

Despite the resistance placed by the economics profession as a whole, an

increasing number of economists are becoming aware of the potential ben-

e�ts of numerical economic model building and analysis. This is evidenced
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by the recent introduction of journals and an economic society devoted to

the sub-discipline of computational economics. The growing popularity of

computational economics, however, has been impeded by the absence of ade-

quate textbooks and computer software. The methods of numerical analysis

and much of the available computer software have been largely developed for

non-economic disciplines, most notably the physical, mathematical, and com-

puter sciences. The scholarly literature can also pose substantial barriers for

economists, both because of its mathematical prerequisites and because its

examples are unfamiliar to economists. Many available software packages,

moreover, are designed to solve problems that are speci�c to the physical

sciences.

This book attempts to address, in a number of ways, the diÆculties

typically encountered by economists attempting to learn and apply numeri-

cal methods. First, this book emphasizes practical numerical methods, not

mathematical proofs, and focuses on techniques that will be directly useful

to economic analysts, not those that would be useful exclusively to physical

scientists. Second, the examples used in the book are drawn from a wide

range of sub-specialties of economics and �nance, both in macro- and micro-

economics, with particular emphasis on problems in agricultural, �nancial,

environmental, and macro- economics. And third, we include with the text-

book a library of computer utilities and demonstration programs to provide

interested researchers with a starting point for their own computer models.

We make no attempt to be encyclopedic in our coverage of numerical

methods or potential economic applications. We have instead chosen to de-

velop only a relatively small number of techniques that can be applied easily

to a wide variety of economic problems. In some instances, we have deviated

from the standard treatments of numerical methods in existing textbooks in

order to present a simple consistent framework that may be readily learned

and applied by economists. In many cases we have elected not to cover cer-

tain numerical techniques when we regard them to be of limited bene�t to

economists, relative to their complexity. Throughout the book, we try to ex-

plain our choices clearly and to give references to more advanced numerical

textbooks where appropriate.

The book is divided into two major sections. In the �rst seven chapters,

we develop basic numerical methods, including root �nding, complementar-

ity, �nite-dimensional optimization, numerical integration, and function ap-

proximation methods. In these chapters, we develop appreciation for basic

numerical techniques by illustrating their application to partial equilibrium
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and optimization models familiar to most economists. The last �ve chap-

ters of the book are devoted to methods for solving and estimating dynamic

stochastic models in economic and �nance, including dynamic programming,

rational expectations, and arbitrage pricing models in discrete and continu-

ous time.

The book is aimed at both graduate students, advanced undergraduate

students, and practicing economists. We have attempted to write a book

that can be used both as a classroom text and for self-study. We have

also attempted to make the various sections reasonably self-contained. For

example, the sections on discrete time continuous state models are largely

independent from those on discrete time discrete state models. Although this

results in some duplication of material, we felt that this would increase the

usefulness of the text by allowing readers to skip sections.

Although we have attempted to keep the mathematical prerequisites for

this book to a minimum, some mathematical training and insight is necessary

to work with computational economic models and numerical techniques. We

assume that the reader is familiar with ideas and methods of linear algebra

and calculus. Appendix A provides an overview of the basic mathematics

used throughout the text. Furthermore, in an attempt to make the book

modular in organization, some of the mathematics used in studying speci�c

classes of dynamic models is developed in the text as needed. Examples

include the basic theory of Markov processes, dynamic programming, and,

for continuous time models, Ito stochastic calculus.

One barrier to the use of numerical methods by economists is lack of

access to functioning computer code. This presents an apparent dilemma

to us as textbook authors, given the variety of computer languages avail-

able. On the one hand, it is useful to have working examples of code in the

book and to make the code available to readers for immediate use. On the

other hand, using a speci�c language in the text could obscure the essence

of the numerical routines for those unfamiliar with the chosen language. We

believe, however, that the latter concern can be substantially mitigated by

conforming to the syntax of a vector processing language. Vector processing

languages are designed to facilitate numerical analysis and their syntax is

often simple enough that the language is transparent and easily learned and

implemented. Due to its facility of use and its wide availability on university

campus computing systems, we have chosen to illustrate algorithms in the

book using Matlab and have provided an extensive library of Matlab utilities

and demonstration programs to assist interested readers develop their own
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computational economic applications. In the future, we plan to make avail-

able these programs available in other popular languages, including Gauss

and Fortran.

Our ultimate goal in writing this book is to motivate a broad range of

economists to use numerical methods in their work by demonstrating the

essential principles underlying computational economic models across sub-

disciplines. It is our hope that this book will help broaden the scope of eco-

nomic analysis by helping economists to solve economic and �nancial models

that heretofore they were unable to solve within the con�nes of traditional

mathematical economic analysis.



Chapter 1

Introduction

1.1 Some Apparently Simple Questions

Consider the constant elasticity demand function

q = p
�0:2

:

This is a function because for each price p there is an unique quantity de-

manded q. Given a hand-held calculator, any economist could easily compute

the quantity demanded at any given price.

An economist would also have little diÆculty computing the price that

clears the market of a given quantity. Flipping the demand expression about

the equality sign and raising each side to the power of �5, the economist

would derive a closed-form expression for the inverse demand function

p = q
�5
:

Again, using a calculator any economist could easily compute the price that

will exactly clear the market of any given quantity.

Suppose now that the economist is presented with a slightly di�erent

demand function

q = 0:5 � p�0:2 + 0:5 � p�0:5;

one that is the sum a domestic demand term and an export demand term.

Using standard calculus, the economist could easily verify that the demand

function is continuous, di�erentiable, and strictly decreasing. The economist

once again could easily compute the quantity demanded at any price using

1



CHAPTER 1. INTRODUCTION 2

a calculator and could easily and accurately draw a graph of the demand

function.

However, suppose that the economist is asked to �nd the price that clears

the market of, say, a quantity of 2 units. The question is well-posed. A casual

inspection of the graph of the demand function suggests that its inverse is

well-de�ned, continuous, and strictly decreasing. A formal argument based

on the Intermediate Value and Implicit Function Theorems would prove that

this is so. An unique market clearing price clearly exists.

But what is the inverse demand function? And what price clears the mar-

ket? After considerable e�ort, even the best trained economist will not �nd

an answer using Algebra and Calculus. No apparent closed-form expression

for the inverse demand function exists. The economist cannot answer the

apparently simple question of what the market clearing price will be.

Consider now a simple model of an agricultural commodity market. In

this market, acreage supply decisions are made before the per-acre yield and

harvest price are known. Planting decisions are based on the price expected

at harvest:

a = 0:5 + 0:5 �Ep:

After the acreage is planted, a random yield ~y is realized, giving rise to a

supply

q = a � ~y:

The supply is entirely sold at a market clearing price

p = 3� 2q:

Yield is exogenous and distributed normally with a mean of 1 and a variance

of 0.1.

Most economists would have little diÆculty deriving the rational expec-

tations equilibrium of this market model. Substituting the �rst expression

into the second, and then the second into the third, the economist would

write

p = 3� 2(0:5 + 0:5 �Ep) � ~y:

Taking expectations on both sides

Ep = 3� 2(0:5 + 0:5 � Ep);
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she would solve for the equilibrium expected price Ep = 1. She would con-

clude that the equilibrium acreage is a = 1 and the equilibrium price distri-

bution has a standard deviation of 0.4.

Suppose now that the economist is asked to assess the implications of

a proposed government price support program. Under this program, the

government guarantees each producer a minimum price, say 1. If the market

price falls below this level, the government simply pays the producer the

di�erence per unit produced. The producer thus receives an e�ective price of

max(p; 1) where p is the prevailing market price. The government program

transforms the acreage supply relation to

a = 0:5 + 0:5 �Emax(p; 1):

Before proceeding with a formal mathematical analysis, the economist ex-

ercises a little economic intuition. The government support, she reasons, will

stimulate acreage supply, raising acreage planted. This will shift the equilib-

rium price distribution to the left, reducing the expected market price below

1. Price would still occasionally rise above 1, however, implying that the

expected e�ective producer price will exceed 1. The di�erence between the

expected e�ective producer price and the expected market price represents a

positive expected government subsidy.

The economist now attempts to formally solve for the rational expec-

tations equilibrium of the revised market model. She performs the same

substitutions as before and writes

p = 3� 2(0:5 + 0:5 �Emax(p; 1)) � ~y:

As before, she takes expectations on both sides

Ep = 3� 2(0:5 + 0:5 � Emax(p; 1)):

In order to solve the expression for the expected price, the economist

uses a fairly common and apparently innocuous trick: she interchanges the

max and E operators, replacing Emax(p; 1) with max(Ep; 1). The resulting

expression is easily solved for Ep = 1. This solution, however, asserts the

expected market price and acreage planted remain unchanged by the intro-

duction of the government price support policy. This is inconsistent with the

economist's intuition.

The economist quickly realizes her error. The expectation operator can-

not be interchanged with the maximization operator because the latter is
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a nonlinear function. But if this operation is not valid, then what mathe-

matical operations would allow the economist to solve for the equilibrium

expected price and acreage?

Again, after considerable e�ort, our economist is unable to �nd an answer

using Algebra and Calculus. No apparent closed-form solution exists for

the model. The economist cannot answer the apparently simple question of

how the equilibrium acreage and expected market price will change with the

introduction of the government price support program.

1.2 An Alternative Analytic Framework

The two problems discussed in the preceding section illustrate how even sim-

ple economic models cannot always be solved using standard mathematical

techniques. These problems, however, can easily be solved to a high degree

of accuracy using numerical methods.

Consider the inverse demand problem. An economist who knows some

elementary numerical methods and who can write basic Matlab code would

have little diÆculty solving the problem. The economist would simply write

the following elementary Matlab program:

p = 0.25;

for i=1:100

deltap = (.5*p^-.2+.5*p^-.5-2)/(.1*p^-1.2 + .25*p^-1.5);

p = p + deltap;

if abs(deltap) < 1.e-8, break, end

end

disp(p);

He would then execute the program on a computer and, in an instant, com-

pute the solution: the market clearing price is 0.154. The economist has used

Newton's root�nding method.

Consider now the rational expectations commodity market model with

government intervention. The source of diÆculty in solving this problem is

the need to evaluate the truncated expectation of a continuous distribution.

An economist who knows some numerical analysis and who knows how to

write basic Matlab code, however, would have little diÆculty computing

the rational expectation equilibrium of this model. The economist would

replace the original normal yield distribution with a discrete distribution

that has identical lower moments, say one that assumes values y1; y2; : : : ; yn
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with probabilities w1; w2; : : : ; wn
. After constructing the discrete distribution

approximant, which would require only a single call to a library routine, call

it qnorm, the economist would code and execute the following elementary

Matlab program:1

[y,w] = qnwnorm(10,1,0.1);

a = 1;

for it=1:100

aold = a;

p = 3 - 2*a*y;

f = w'*max(p,1);

a = 0.5 + 0.5*f;

if abs(a-aold)<1.e-8, break, end

end

disp(a);disp(f);disp(w'*p)

In an instant, the program would compute and display the rational expec-

tations equilibrium acreage, 1.10, the expected market price, 0.81, and the

expected e�ective producer price, 1.19. The economist has combined Gaus-

sian quadrature techniques and �xed-point function iteration methods to

solve the problem.

1The qnorm, is discussed in Chapter 4.



Chapter 2

Linear Equations

The linear equation is the most elementary problem that arises in computa-

tional economic analysis. In a linear equation, an n � n matrix A and an

n-vector b are given, and one must compute the n-vector x that satis�es

Ax = b:

Linear equations arise, directly or indirectly, in most computational eco-

nomic applications. For example, a linear equation may be solved when

computing the steady-state distribution of a discrete-state stochastic eco-

nomic process or when computing the equilibrium prices and quantities of

a multicommodity market model with linear demand and supply functions.

Linear equations also arise as elementary tasks in solution procedures de-

signed to solve more complicated nonlinear economic models. For example,

a nonlinear partial equilibrium market model may be solved using Newton's

method, which involves solving a sequence of linear equations. And the Euler

functional equation of a rational expectations model may be solved using a

collocation method, which yields a nonlinear equation that in turn is solved

as a sequence of linear equations.

Various practical issues arise when solving a linear equation numerically.

Digital computers are capable of representing arbitrary real numbers with

only limited precision. Numerical arithmetic operations, such as computer

addition and multiplication, produce rounding errors that may, or may not,

be negligible. Unless the rounding errors are controlled in some way, the

errors can accumulate, rendering a computed solution that may be far from

correct. Speed and storage requirements are also important considerations in

the design of a linear equation solution algorithm. In some applications, such

6
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as the stochastic simulation of a rational expectations model, linear equations

may have to be solved millions of times. And in other applications, such as

computing option prices using �nite di�erence methods, linear equations with

a very large number of variables and equations may be encountered.

Over the years, numerical analysts have studied linear equations exten-

sively and have developed algorithms for solving them quickly, accurately,

and with a minimum of computer storage. In most applied work, one can

typically rely on Gaussian elimination, which may be implemented in various

di�erent forms depending on the structure of the linear equation. Iterative

methods o�er an alternative to Gaussian elimination and are especially eÆ-

cient if the A matrix is large and consists mostly of zero entries.

2.1 L-U Factorization

Some linear equations Ax = b are relatively easy to solve. For example, if A

is a lower triangular matrix,

A =

2
66664
a11 0 0 : : : 0

a21 a22 0 : : : 0

a31 a32 a33 : : : 0

a
n1 a

n2 a
n3 : : : a

nn

3
77775 ;

then the elements of x can be computed recursively using forward-substitution:

x1 = b1=a11

x2 = (b2 � a21x1)=a22
x3 = (b3 � a31x1 � a32x2)=a33
...

x
n

= (b
n
� a

n1x1 � an2x2 � : : :� ann�1xn�1)=ann:

This may be written more compactly using summation notation as

x
i
=

 
b
i
�

i�1X
j=1

a
ij
x
j

!
=a

ii
8i:

In the vector processing language Matlab, this may be implemented as fol-

lows:



CHAPTER 2. LINEAR EQUATIONS 8

for i=1:length(b)

x(i)=(b(i)-A(i,1:i-1)*x(1:i-1))/A(i,i);

end

If A is an upper triangular matrix, then the elements of x can be computed

recursively using backward-substitution.

Most linear equations encountered in practice, however, do not have a

triangular A matrix. In such cases, the linear equation is often best solved

using the L-U factorization algorithm. The L-U algorithm is designed to

decompose the A matrix into the product of lower and upper triangular

matrices, allowing the linear equation to be solved using a combination of

backward and forward substitution.

The L-U algorithm involves two phases. In the factorization phase, Gaus-

sian elimination is used to factor the matrix A into the product

A = LU

of a row-permuted lower triangular matrix L and an upper triangular matrix

U . A row-permuted lower triangular matrix is simply a lower triangular

matrix that has had its rows rearranged. Any nonsingular square matrix can

be decomposed in this way.

In the solution phase of the L-U algorithm, the factored linear equation

Ax = (LU)x = L(Ux) = b

is solved by �rst solving

Ly = b

for y using forward substitution, accounting for row permutations, and then

solving

Ux = y

for x using backward substitution.

Consider, for example, the linear equation Ax = b where

A =

2
4 �3 2 3

�3 2 1

3 0 0

3
5 and b =

2
4 10

8

�3

3
5 :
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The matrix A can be decomposed into the product A = LU where

L =

2
4 1 0 0

1 0 1

�1 1 0

3
5 and U =

2
4 �3 2 3

0 2 3

0 0 �2

3
5 :

The matrix L is row-permuted lower triangular because upon interchang-

ing the second and third rows, a lower diagonal matrix results. The matrix

U is upper triangular. Solving L � y = b for y using forward substitution

involves �rst solving for y1, then for y3, and �nally for y2. Given the solu-

tion y = (10; 7;�2)0, the linear equation Ux = y can the be solved using

backward substitution, yielding the solution of the original linear equation,

x = (�1; 2; 1).
The L-U factorization algorithm is faster than other linear equation so-

lution methods that are typically presented in elementary linear algebra

courses. For large n, it takes approximately n3=3 + n
2 long operations (mul-

tiplications and divisions) to solve an n � n linear equation using L-U fac-

torization. Explicitly computing the inverse of A and then computing A�1b

requires approximately n3 + n
2 long operations. Solving the linear equation

using Cramer's rule requires approximately (n+1)! long operations. To solve

a 10�10 linear equation, for example, L-U factorization requires exactly 430

long operations, whereas matrix inversion and multiplication requires ex-

actly 1100 long operations and Cramer's rule requires nearly 40 million long

operations.

Linear equations arise so frequently in numerical analysis that most nu-

merical subroutine packages and software programs include either a basic

subroutine or an intrinsic function for solving a linear equation using L-U

factorization. In Matlab, the solution to the linear equation Ax = b is re-

turned by the statement x = A n b. The `n', or \backslash", operator is
designed to solve the linear equation using L-U factorization, unless a special

structure for A is detected, in which case Matlab may implicitly use another,

more eÆcient method. In particular, if Matlab detects that A is triangular

or permuted triangular, it will dispense with L-U factorization and solve the

linear equation directly using forward or backward substitution. Matlab also

uses special algorithms when the A matrix is positive de�nite.

Although L-U factorization is the best general method for solving a linear

equation, situations can arise in which alternative methods may be preferable.

For example, in many computational economic applications, one must solve
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a series of linear equations, all having the same A matrix, but di�erent b vec-

tors, b1; b2; : : : ; bm. In this situation, it is often computationally more eÆcient

to directly compute and store the inverse of A �rst and then compute the

solutions x = A
�1
b
j
by performing only direct matrix-vector multiplications.

Whether explicitly computing the inverse is faster than L-U factorization de-

pends on the size of the linear equation system n and the number of times,

m, an equation system is to be solved. Computing x = A n b
j
a total of m

times involves mn
3

3
+ mn

2 long operations. Computing A�1 once and then

computing A�1b
j
a total of m times requires n3+mn2 long operations. Thus

explicit computation of the inverse should be faster than L-U factorization

whenever the number of equations to be solved m is greater than three or

four. The actual breakeven point will vary across numerical analysis pack-

ages, depending on the computational idiosyncrasies and overhead costs of

the L-U factorization and inverse routines implemented in the package.

2.2 Gaussian Elimination

The L-U factors of a matrix A are computed using Gaussian elimination.

Gaussian elimination is based on two elementary row operations: subtract-

ing a constant multiple of one row of a linear equation from another row,

and interchanging two rows of a linear equation. Either operation may be

performed on a linear equation without altering its solution.

The Gaussian elimination algorithm begins with matrices L and U ini-

tialized as L = I and U = A, where I is the identity matrix. The algorithm

then uses elementary row operations to transform U into an upper triangu-

lar matrix, while preserving the permuted lower diagonality of L and the

factorization A = LU :

Consider the matrix

A =

2
664

2 0 �1 2

4 2 �1 4

2 �2 �2 3

�2 2 7 �3

3
775 :

The �rst stage of Gaussian elimination is designed to nullify the subdiagonal

entries of the �rst column of the U matrix. The U matrix is updated by

subtracting 2 times �rst row from the second, subtracting 1 times the �rst

row from the third, and subtracting -1 times the �rst row from the fourth.
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The L matrix, which initially equals the identity, is updated by storing the

multipliers 2, 1, and -1 as the subdiagonal entries of its �rst column. These

operations yield updated L and U matrices:

L =

2
664

1 0 0 0

2 1 0 0

1 0 1 0

�1 0 0 1

3
775 U =

2
664

2 0 �1 2

0 2 1 0

0 �2 �1 1

0 2 6 �1

3
775 :

After the �rst stage of Gaussian elimination, A = LU and L is lower trian-

gular, but U is not yet upper triangular.

The second stage Gaussian elimination is designed to nullify the subdiag-

onal entries of the second column of the U matrix. The U matrix is updated

by subtracting -1 times second row from the third and subtracting 1 times

the second row from the fourth. The L matrix is updated by storing the

multipliers -1 and 1 as the subdiagonal elements of its second column. These

operations yield updated L and U matrices:

L =

2
664

1 0 0 0

2 1 0 0

1 �1 1 0

�1 1 0 1

3
775 U =

2
664

2 0 �1 2

0 2 1 0

0 0 0 1

0 0 5 �1

3
775 :

After the second stage of Gaussian elimination, A = LU and L is lower

triangular, but U still is not upper triangular.

In the third stage of Gaussian elimination, one encounters an apparent

problem. The third diagonal element of the matrix U is zero, making it

impossible to nullify the subdiagonal entry as before. This diÆculty is easily

remedied, however, by interchanging the third and fourth rows of U . The

L matrix is updated by interchanging the previously computed multipliers

residing in the third and fourth rows. These operations yield updated L and

U matrices:

L =

2
664

1 0 0 0

2 1 0 0

1 �1 0 1

�1 1 1 0

3
775 U =

2
664

2 0 �1 2

0 2 1 0

0 0 5 �1
0 0 0 1

3
775 :

The Gaussian elimination algorithm terminates with a permuted lower

triangular matrix L and an upper triangular matrix U whose product is the
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matrix A. In theory, Gaussian elimination will compute the L-U factors

of any matrix A, provided A is invertible. If A is not invertible, Gaussian

elimination will detect this by encountering a zero diagonal element in the

U matrix that cannot be replaced with a nonzero element below it.

2.3 Rounding Error

In practice, Gaussian elimination performed on a computer can sometimes

render inaccurate solutions due to rounding errors. The e�ects of rounding

errors, however, can often be controlled by pivoting.

Consider the linear equation�
�L�1 1

1 1

� �
x1

x2

�
=

�
1

2

�
:

where L is a large positive number.

To solve this equation via Gaussian elimination, a single row operation

is required: subtracting �L times the �rst row from the second row. In

principle, this operation yields the L-U factorization�
�L�1 1

1 1

�
=

�
1 0

�L 1

� �
�L�1 1

0 L+ 1

�
:

In theory, applying forward and backward substitution yields the solution

x1 = L=(L+ 1) and x2 = (L + 2)=(L+ 1), which are both very nearly one.

In practice, however, Gaussian elimination may yield a very di�erent re-

sult. In performing Gaussian elimination, one encounters an operation that

cannot be carried out precisely on a computer, and which should be avoided

in computational work: adding or subtracting values of vastly di�erent mag-

nitudes. On a computer, it is not meaningful to add or subtract two values

whose magnitude di�er by more than the number of signi�cant digits that

the computer can represent. If one attempts such an operation, the smaller

value is e�ectively treated as zero. For example, the sum of 0:1 and 0:0001

may be 0:1001, but on a hypothetical machine with three digit precision the

result of the sum is rounded to 0:1 before it is stored.

In the linear equation above, adding 1 or 2 to a suÆciently large L on a

computer simply returns the value L. Thus, in the �rst step of the backward

substitution, x2 is computed, not as (L + 2)=(L + 1), but rather as L=L,

which is exactly one. Then, in the second step of backward substitution,
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x1 = �L(1 � x2) is computed to be zero. Rounding error thus produces

computed solution for x1 that has a relative error of nearly 100 percent.

Fortunately, there is a partial remedy for the e�ects of rounding error in

Gaussian elimination. Rounding error arises in the example above because

the diagonal element �L�1 is very small. Interchanging the two rows at

the outset of Gaussian elimination does not alter the theoretical solution to

the linear equation, but allows one to perform Gaussian elimination with a

diagonal element of larger magnitude.

Consider the equivalent linear equation system after the rows have been

interchanged:�
1 1

�L�1 1

� �
x1

x2

�
=

�
2

1

�
:

After interchanging the rows, the new A matrix may be factored as�
1 1

�L�1 1

�
=

�
1 0

�L�1 1

� �
1 1

0 L
�1 + 1

�
:

Backward and forward substitution yield the theoretical results x1 = 1 �
L
�1 and x2 = L

�1 + 1 + L
�1(1 � L�1). In evaluating these expressions on

the computer, one again encounters rounding error. Here, x2 is numerically

computed to be exactly one as before. However, x1 is also computed to be

exactly one. The computed solution, though not exactly correct, is correct

to the precision available on the computer, and is certainly more accurate

than the one obtained without interchanging the rows.

Interchanging rows during Gaussian elimination in order to make the

magnitude of diagonal element as large as possible is called pivoting. Piv-

oting substantially enhances the reliability and the accuracy of a Gaussian

elimination routine. For this reason, all good Gaussian elimination routines

designed to perform L-U factorization, including the ones implemented in

Matlab, employ some form of pivoting.

2.4 Ill Conditioning

Pivoting cannot cure all the problems caused by rounding error. Some linear

equations are inherently diÆcult to solve accurately on a computer, despite

pivoting. This occurs when the A matrix is structured in such a way that a

small perturbation Æb in the data vector b induces a large change Æx in the
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solution vector x. In such cases the linear equation or, more generally, the

A matrix are said to be ill-conditioned.

One measure of ill-conditioning in a linear equation Ax = b is the \elas-

ticity" of the solution vector x with respect to the data vector b

� = sup
jjÆbjj>0

jjÆxjj=jjxjj
jjÆbjj=jjbjj

:

The elasticity gives the maximum percentage change in the size of the solution

vector x induced by a one percent change the size of the data vector b. If

the elasticity is large, then small errors in the computer representation of the

data vector b can produce large errors in the computed solution vector x.

Equivalently, the computed solution x will have far fewer signi�cant digits

than the data vector b.

The elasticity of the solution is expensive to compute and thus is virtually

never computed in practice. In practice, the elasticity is estimated using the

condition number of the matrix A, which for invertible A is de�ned by

� � jjAjj � jjA�1jj:

The condition number of A is the least upper bound of the elasticity. The

bound is tight in that for some data vector b, the condition number equals

the elasticity. The condition number is always greater than or equal to one.

Numerical analysts often use the rough rule of thumb that for each power

of 10 in the condition number, one signi�cant digit is lost in the computed

solution vector x. Thus, if A has a condition number of 1000, the computed

solution vector x will have about three fewer signi�cant digits than the data

vector b.

Consider the linear equation Ax = b where A
ij
= i

n�j and b
i
= (in �

1)=(i � 1). In theory, the solution x to this linear equation is a vector con-

taining all ones for any n. In practice, however, if one solves the linear

equation numerically using Matlab's `n' operator one can get quite di�erent

results. Below is a table that gives the supremum norm approximation error

in the computed value of x and the condition number of the A matrix for

di�erent n:
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Approximation Condition

n Error Number

5 2.5e-013 2.6e+004

10 5.2e-007 2.1e+012

15 1.1e+002 2.6e+021

20 9.6e+010 1.8e+031

25 8.2e+019 4.2e+040

In this example, the computed answers are accurate to seven decimal up to

n = 10. The accuracy, however, deteriorates rapidly after that. In this ex-

ample, the matrix A is a member of the a class of notoriously ill-conditioned

matrices called the Vandermonde matrices, which can arise in applied nu-

merical work if one is not careful.

Ill-conditioning ultimately can be ascribed to the limited precision of

computer arithmetic. The e�ects of ill-conditioning can often be mitigated

by performing computer arithmetic using the highest precision available on

the computer. The best way to handle ill-conditioning, however, is to avoid

it altogether. This is often possible when the linear equation problem is as an

elementary task in a more complicated solution procedure, such as solving

a nonlinear equation or approximating a function with a polynomial. In

such cases one can sometimes reformulate the problem or alter the solution

strategy to avoid the ill-conditioned linear equation. We will see several

examples of this avoidance strategy later in the book.

2.5 Special Linear Equations

Gaussian elimination can be accelerated for A matrices possessing certain

special structures. Two classes of A matrices that arise frequently in com-

putational economic analysis and for which such an acceleration is possible

are symmetric positive de�nite matrices and sparse matrices.

Linear equations Ax = b in which A is a symmetric positive de�nite arise

frequently in least-squares curve-�tting and optimization applications. A

special form of Gaussian elimination, the Cholesky factorization algorithm,

may be applied to such linear equations. Cholesky factorization requires only

half as many operations as general Gaussian elimination and has the added

advantage that it is less vulnerable to rounding error and does not require

pivoting.
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The essential idea underlying Cholesky factorization is that any symmet-

ric positive de�nite matrix A can be uniquely expressed as the product

A = U
0
U

of an upper triangular matrix U and its transpose. The matrix U is called

the Cholesky factor or square root of A. Given the Cholesky factor of A, the

linear equation

Ax = U
0
Ux = U

0(Ux) = b

may be solved eÆciently by using forward substitution to solve

U
0
y = b

and then using backward substitution to solve

Ux = y:

The Matlab `n' operator will automatically employ Cholesky factorization,

rather than L-U factorization, to solve the linear equation if it detects that

A is symmetric positive de�nite.

Another situation that often arises in computational practice are linear

equations Ax = b in which the A matrix is sparse, that is, it consists largely

of zero entries. For example, in solving di�erential equations, one often en-

counters tridiagonal matrices, which are zero except on or near the diagonal.

When the A matrix is sparse, the conventional Gaussian elimination algo-

rithm consists largely of meaningless, but costly, operations involving either

multiplication or addition with zero. The Gaussian elimination algorithm in

these instances can often be dramatically increased by avoiding these useless

operations.

Matlab has special routines for eÆciently storing sparse matrices and op-

erating with them. In particular, the Matlab command S=sparse(A) creates

a version S of the matrix A stored in a sparse matrix format, in which only

the nonzero elements of A and their indices are explicitly stored. Sparse

matrix storage requires only a fraction of the space required to store A in

standard form if A is sparse. Also, the operator `n' is designed to recog-

nize whether a sparse matrix is involved in the operation and adapts the

Gaussian elimination algorithm to exploit this property. In particular, both

x = S nb and x = Anb will compute the answer to Ax = b. However, the for-

mer expression will be executed substantially faster by avoiding meaningless

operations with zeros.
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2.6 Iterative Methods

Algorithms based on Gaussian elimination are called exact or, more properly,

direct methods because they would generate exact solutions for the linear

equation Ax = b after a �nite number of operations, if not for rounding

error. Such methods are ideal for moderately-sized linear equations, but may

be impractical for large ones. Other methods, called iterative methods can

often be used to solve large linear equations more eÆciently if the A matrix is

sparse, that is, if A is composed mostly of zero entries. Iterative methods are

designed to generate a sequence of increasingly accurate approximations to

the solution of a linear equation, but generally do not yield an exact solution

after a prescribed number of steps, even in theory.

The most widely-used iterative methods for solving a linear equation

Ax = b are developed by choosing an easily invertible matrix Q and writing

the linear equation in the equivalent form

Qx = b+ (Q� A)x

or

x = Q
�1
b + (I �Q�1

A)x:

This form of the linear equation suggests the iteration rule

x
(k+1)  Q

�1
b + (I �Q�1

A)x(k);

which, if convergent, must converge to a solution of the linear equation.

Ideally, the so-called splitting matrix Q will satisfy two criteria. First,

Q
�1
b and Q�1

A should be relatively easy to compute. This is true if Q is

either diagonal or triangular. Second, the iterates should converge quickly

to the true solution of the linear equation. If

jjI �Q�1
Ajj < 1

in any matrix norm, then the iteration rule is a contraction mapping and

is guaranteed to converge to the solution of the linear equation from any

initial value. The smaller the value of the matrix norm jjI � Q
�1
Ajj, the

faster the guaranteed rate of convergence of the iterates when measured in

the associated vector norm.

The two most popular iterative methods are the Gauss-Jacobi and Gauss-

Seidel methods. The Gauss-Jacobi method sets Q equal to the diagonal
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matrix formed from the diagonal entries of A. The Gauss-Seidel method

sets Q equal to the upper triangular matrix formed from the upper triagonal

elements of A. Using the row-sum matrix norm to test the convergence

criterion, both methods are guaranteed to converge from any starting value

if A is diagonally dominant, that is, if

jA
ii
j >

nX
i=1

i6=j

jA
ij
j 8i:

Diagonally dominant matrices arise naturally in many computational eco-

nomic applications, including the solution of di�erential equations and the

approximation of functions using cubic splines, both of which will be dis-

cussed in later sections.

The following Matlab script solves the linear equation Ax = b using

Gauss-Jacobi iteration:

d = diag(A);

for it=1:maxit

dx = (b-A*x)./d;

x = x+dx;

if norm(dx)<tol, break, end

end

Here, the user speci�es the data A and b and an initial guess x for the solution

of the linear equation, typically the zero vector or b. Iteration continues until

the norm of the change dx in the iterate falls below the speci�ed convergence

tolerance tol or until a speci�ed maximum number of allowable iterations

maxit are performed.

The following Matlab script solves the same linear equation using Gauss-

Seidel iteration:

Q = tril(A);

for it=1:maxit

dx = Q\(b-A*x);

x = x+lambda*dx;

if norm(dx)<tol, break, end

end

Here, we have incorporated a so-called over-relaxation parameter, �. Instead

of using x+ dx, we use x+�dx to compute the next iterate. It is often true,

though not universally so, that a value of � between 1 and 2 will accelerate

convergence of the Gauss-Seidel algorithm.
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The Matlab subroutine library accompanying the textbook includes func-

tions gjacobi and gseidel that solve linear equations using Gauss-Jacobi

and Gauss-Seidel iteration, respectively. The following script solves a linear

equation using Gauss-Seidel iteration with default value of 1 for the over-

relaxation parameter:

A = [3 1 ; 2 5];

b = [7 ; 9];

x = gseidel(A,b)

Execution of this script produces the result x=[2;1]. When A=[3 2; 4 1],

however, the algorithm diverges. The subroutines are extensible in that they

allow the user to override the default values of the convergence parameters

and, in the case of gseidel, the default value of the over-relaxation param-

eter.

A general rule of thumb is that if A is large and sparse, then the lin-

ear equation is a good candidate for iterative methods, provided that sparse

matrix storage functions are used to reduce storage requirements and com-

putational e�ort. Iterative methods, however, have some drawbacks. First,

iterative methods, in contrast to direct methods, can fail to converge. Fur-

thermore, it is often diÆcult or computationally costly to check whether a

speci�c problem falls into a class of problems known to be convergent. It

is therefore always a good idea to monitor whether the iterations seem to

be diverging and try something else if they are. Second, satisfaction of the

termination criteria do not necessarily guarantee a similar level of accuracy

in the solution, as measured as the deviation of the approximate solution

from the true (but unknown) solution.

Exercises

1. Plot the function f(x) = 1� e2x on the interval [�1; 1] using a grid of

evenly-spaced points 0:01 units apart.

2. Consider the matrices

A =

2
4 0 �1 2

�2 �1 4

2 7 �3

3
5
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and

B =

2
4 �7 1 1

7 �3 �2
3 5 0

3
5

and the vector

y =

2
4 3

�1
2

3
5 :

(a) Formulate the standard matrix product C = A � B and solve the

linear equation Cx = y. What are the values of C and x?

(b) Formulate the element-by-element matrix product C = A:�B and

solve the linear equation Cx = y. What are the values of C and

x?

3. Using the Matlab standard normal pseudo-random number generator

\randn", simulate a hypothetical time series fy
t
g governed by the struc-

tural relationship

y
t
= 5 + 0:05t+ �

t

for years t = 1960; 1961; : : : ; 2000, assuming that the �
t
are indepen-

dently and identically distributed with mean 0 and standard deviation

0.2. Using only Matlab elementary matrix operations, regress the sim-

ulated observations of y
t
on a constant and time, then plot the actual

values of y and estimated trend line against time.

4. Consider a stationary 3-state Markov chain with transition probability

matrix:

P =

2
4 0:2 0:4 0:4

0:5 0:5 0:0

0:6 0:2 0:2

3
5 :

(a) Is the Markov chain irreducible?

(b) If so, �nd the steady-state distribution.
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You may wish to refer to Appendix A.4 for an introduction to Markov

chain.

5. Solve Ax = b for

A =

2
664

54 14 �11 2

14 50 �4 29

�11 �4 55 22

2 29 22 95

3
775 ; b =

2
664
1

1

1

1

3
775 :

by

(a) L-U decomposition

(b) Gauss-Jacobi iteration

(c) Gauss-Seidel iteration

How many Gauss-Jacobi and Gauss-Seidel iterations are required to

get answers that agree with the L-U decomposition solution to four

signi�cant digits?

6. Use the Matlab function randn to generate a random 10 by 10 matrix

A and a random 10-vector b. Then use the Matlab function flop to

count the number of oating point operations needed to solve the linear

equation Ax = b 1, 10, and 50 times for each of the following algorithms:

(a) x = A n b

(b) x = U n (L n b), computing the L-U factors of A only once using

the Matlab function lu.

(c) x = A
�1
b, computing A�1 only once using the Matlab function

inv.

7. Consider the rational expectations commodity market model of Chap-

ter 1, except now assume that the yield has a simple two point distri-

bution in which yields of 0.7 and 1.3 are equally probable.

(a) Compute the expectation and variance of price without govern-

ment support payments.

(b) Compute the expectation and variance of the e�ective producer

price assuming a support price of 1.
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(c) What is the expected government subsidy per planted acre?

8. Dairy cows can produce milk over 6 lactation cycles. The probability

of replacing a cow with a new one after each cycle is given by

Cycle Prob

1 0.03

2 0.04

3 0.12

4 0.39

5 0.80

6 1.00

(a) What are the proportions of dairy cows in each lactation cycle in

a large population? Draw a histogram.

(b) What is the average lactation cycle of cows in a large population?

9. A �rm operates in an uncertain pro�t environment. The �rm takes an

operating loss of one unit in a bad year, it makes a operating pro�t

of two units in an average year, and it makes an operating pro�t of

four units in a good year. At the beginning of a bad year, the �rm

may elect to shut down, avoiding the operating loss. Although the

�rm faces no �xed costs or shut-down costs, it incurs a start-up cost

0.2 units if it reopens after one or more periods of inactivity. The

pro�t environment follows a stationary �rst-order Markov process with

transition probabilities:

to

bad avg good

bad 0.4 0.5 0.1

from avg 0.3 0.4 0.3

good 0.1 0.5 0.4

(a) Suppose the �rm adopts the policy of staying open regardless of

the pro�t environment in any given year. Given that this is a bad

year, how much pro�t can the �rm expect to make one year from

now, two years from now, three years from now, ten years from

now?
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(b) Suppose the �rm adopts the following policy: (i) in a bad year, do

not operate; (ii) in a good year, operate; and (iii) in an average

year, do what you did the preceding year. Given that this is a bad

year, how much pro�t can the �rm expect to make one year from

now, two years from now, three years from now?

Graph the expected pro�ts for both parts on the same �gure.

10. Prove theoretically that Gauss-Jacobi iteration applied to the linear

equation Ax = b must converge if A is diagonally dominant. You

will need to use the Contraction mapping theorem and the result that

jjMyjj � jjM jj � jjyjj for any square matrix M and conformable vector

y.



Chapter 3

Nonlinear Equations and

Complementarity Problems

One of the most basic numerical operations encountered in computational

economics is to �nd the solution of a system of non-linear equations. Nonlin-

ear equations generally arise in one of two forms. In the nonlinear root�nding

problem, a function f from <n to <n is given and one must compute an n-

vector x, called a root of f , that satis�es

f(x) = 0:

In the nonlinear �xed-point problem, a function g from <n to <n is given and

one must compute an n-vector x called a �xed-point of g, that satis�es

g(x) = x:

The two forms are equivalent. The root�nding problem may be recast as a

�xed-point problem by letting g(x) = x � f(x); conversely, the �xed-point

problem may be recast as a root�nding problem by letting f(x) = x� g(x).
In the related complementarity problem, two n-vectors a and b, with a < b,

and a function f from <n to <n are given, and one must compute an n-vector
x 2 [a; b], that satis�es

x
i
> a

i
) f

i
(x) � 0 8i = 1; : : : ; n

x
i
< b

i
) f

i
(x) � 0 8i = 1; : : : ; n:

The root�nding problem is a special case of complementarity problem in

which a
i
= �1 and b

i
= +1 for all i. However, the complementarity

24
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problem is not simply to �nd a root that lies within speci�ed bounds. An

element f
i
(x) may be nonzero at a solution of the complementarity problem,

provided that x
i
equals one of the bounds a

i
or b

i
.

Nonlinear equations and complementarity problems arise directly in many

economic applications. For example, the typical economic equilibrium model

characterizes market prices and quantities with an equal number of supply,

demand, and market clearing equations. If one or more of the equations is

nonlinear, a nonlinear root�nding problem arises. If the model is generalized

to include constraints on prices and quantities arising from price supports,

quotas, nonnegativity conditions, or limited production capacities, a nonlin-

ear complementarity problem arises.

One also encounters nonlinear root�nding and complementarity prob-

lems indirectly when maximizing or minimizing a real-valued function. An

unconstrained optimum may be characterized by the condition that the �rst

derivative of the function is zero|a root�nding problem. A constrained

optimum may be characterized by the Karush-Kuhn-Tucker conditions|a

complementarity problem. Nonlinear equations and complementarity prob-

lems also arise as elementary tasks in solution procedures designed to solve

more complicated functional equations. For example, the Euler functional

equation of a dynamic optimization problem might be solved using a collo-

cation method, which gives rise to a nonlinear equation or complementarity

problem, depending on whether the actions are unconstrained or constrained,

respectively.

Various practical diÆculties arise with nonlinear equations and comple-

mentarity problems. In many applications, it is not possible to solve the

nonlinear problem analytically. In these instances, the solution is often com-

puted numerically using an iterative method that reduces the nonlinear prob-

lem to a sequence of linear problems. Such methods can be very sensitive to

initial conditions and inherit many of the potential problems of linear equa-

tion methods, most notably rounding error and ill-conditioning. Nonlinear

problems also present the added diÆculty that they may have more than one

solution.

Over the years, numerical analysts have studied nonlinear equations and

complementarity problems extensively and have devised a variety of algo-

rithms for solving them quickly and accurately. In many applications, one

may use simple derivative-free methods, such as function iteration, which is

applicable to �xed-point problems, or the bisection method, which is appli-

cable to univariate root�nding problems. In many applications, however, one
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must rely on more sophisticated Newton and quasi-Newton methods, which

use derivatives or derivative estimates to help locate the root or �xed-point

of a function. These methods can be extended to complementarity problems

using semismooth approximation methods.

3.1 Bisection Method

The bisection method is perhaps the simplest and most robust method for

computing the root of a continuous real-valued function de�ned on a bounded

interval of the real line. The bisection method is based on the Intermediate

Value Theorem, which asserts that if a continuous real-valued function de-

�ned on an interval assumes two distinct values, then it must assume all

values in between. In particular, if f is continuous, and f(a) and f(b) have

di�erent signs, then f must have at least one root x in [a; b].

The bisection method is an iterative procedure. Each iteration begins

with an interval known to contain or to `bracket' a root of f , meaning the

function has di�erent signs at the interval endpoints. The interval is bisected

into two subintervals of equal length. One of the two subintervals must

have endpoints of di�erent signs and thus must contain a root of f . This

subinterval is taken as the new interval with which to begin the subsequent

iteration. In this manner, a sequence of intervals is generated, each half the

width of the preceding one, and each known to contain a root of f . The

process continues until the width of the bracketing interval shrinks below an

acceptable convergence tolerance.

The bisection method's greatest strength is its robustness. In contrast to

other root�nding methods, the bisection method is guaranteed to compute

a root to a prescribed tolerance in a known number of iterations, provided

valid data are input. Speci�cally, the method computes a root to a precision

� in no more than in log((b�a)=�)= log(2) iterations. The bisection method,
however, is applicable only to one-dimensional root�nding problems and typ-

ically requires more iterations than other root�nding methods to compute a

root to a given precision, largely because it ignores information about the

function's curvature. Given its relative strengths and weaknesses, the bisec-

tion method is often used in conjunction with other root�nding methods. In

this context, the bisection method is �rst used to obtain a crude approxima-

tion for the root. This approximation then becomes the starting point for

a more precise root�nding method that is used to compute a sharper, �nal
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approximation to the root.

The following Matlab script computes the root of a user-supplied univari-

ate function f using the bisection method. The user speci�es two points at

which f has di�erent signs, a and b, and a convergence tolerance tol. The

script makes use of the intrinsic Matlab function sign, which returns �1, 0,
or 1 if its argument is negative, zero, or positive, respectively:

s = sign(f(a));

x = (a+b)/2;

d = (b-a)/2;

while d>tol;

d = d/2;

if s == sign(f(x))

x = x+d;

else

x = x-d;

end

end

In this implementation of the bisection algorithm, d begins each iteration

equal to the distance from the current root estimate x to the boundaries

of the bracketing interval. The value of d is cut in half, and the iterate is

updated by increasing or decreasing its value by this amount, depending on

the sign of f(x). If f(x) and f(a) have the same sign, then the current x

implicitly becomes the new left endpoint of the bracketing interval and x is

moved d units toward b. Otherwise, the current x implicitly becomes the

new right endpoint of the bracketing interval and x moved d units toward a.

The Matlab toolbox accompanying the textbook includes a function bisect

that computes the root of a univariate function using the bisection method.

The following script demonstrates how bisect may be used to compute the

cube root of 2, or, equivalently, the root of the function f(x) = x
3 � 2:

f = inline('x^3-2');

x = bisect(f,1,2)

Execution of this script produces the result x = 1.2599. In this example,

the initial bracketing interval is set to [1; 2] and the root is computed to

the default tolerance of 1:5 � 10�8, or eight decimal places. The sequence of
iterates is illustrated in Figure 3.1. The subroutine bisect is extensible in

that it allows the user to override the default tolerance and to pass additional

arguments for the function f ; the subroutine also checks for input errors. The

Matlab operation inline is used here to de�ne the function whose root is

sought.
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Computing Cube Root of 2 by Bisection

Figure 3.1

3.2 Function Iteration

Function iteration is a relatively simple technique that may be used to com-

pute a �xed-point, g(x) = x, of a function from <n to <n. The technique

is also applicable to a root�nding problem f(x) = 0, by recasting it as the

equivalent �xed-point problem g(x) = x� f(x) = x.

Function iteration begins with the analyst supplying a guess x(0) for the

�xed-point of g. Subsequent iterates are generated using the simple iteration

rule

x
(k+1)  g(x(k)):

Since g is continuous, if the iterates converge, they converge to a �xed-point

of g.
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In theory, function iteration is guaranteed to converge to a �xed-point of

g if g is di�erentiable and if the initial value of x supplied by the analyst is

\suÆciently" close to a �xed-point x� of g at which kg0(x�)k < 1. Function

iteration, however, often converges even when the suÆciency conditions are

not met. Given that the method is relatively easy to implement, it is often

worth trying before attempting to use more robust, but ultimately more

complex methods, such as the Newton and quasi-Newton methods that are

discussed in the following sections.

Computation of the �xed point of a univariate function g(x) using func-

tion iteration is graphically illustrated in Figure 3.2. In this example, g

possesses an unique �xed-point x�, which is graphically characterized by the

intersection of g and the 45-degree line. The algorithm begins with the an-

alyst supplying a guess x(0) for the �xed-point of g. The next iterate x(1)

is obtained by projecting upwards to the g function and then rightward to

the 45-degree line. Subsequent iterates are obtained by repeating the projec-

tion sequence, tracing out a step function. The process continues until the

iterates converge.

The Matlab toolbox accompanying the textbook includes a function fixpoint

that computes the �xed-point of a multivariate function using function iter-

ation. The following script computes the �xed point x� = 1 of g(x) = x
0:5 to

a default tolerance of 1:5 � 10�8 starting from the initial guess x = 0:4:

g = inline('x^0.5');

x = fixpoint(g,0.4)

The subroutine fixpoint is extensible in that it allows the user to override

the default tolerance and to pass additional arguments for the function g.

3.3 Newton's Method

In practice, most nonlinear root�nding problems are solved using Newton's

method or one of its variants. Newton's method is based on the principle

of successive linearization. Successive linearization calls for a hard nonlinear

problem to be replaced with a sequence of simpler linear problems whose

solutions converge to the solution of the nonlinear problem. Newton's method

is typically formulated as a root�nding technique, but may be used to solve

a �xed-point problem g(x) = x by recasting it as the root�nding problem

f(x) = x� g(x) = 0.
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Function Iteration

x*x(0) x(1) x(2)

45o

0

x(1)=g(x(0))

x(2)=g(x(1))

x(3)=g(x(2))

Figure 3.2

The univariate Newton method is graphically illustrated in Figure 3.3.

The algorithm begins with the analyst supplying a guess x(0) for the root of

f . The function f is approximated by its �rst-order Taylor series expansion

about x(0), which is graphically represented by the line tangent to f at x(0).

The root x(1) of the tangent line is then accepted as an improved estimate

for the root of f . The step is repeated, with the root x(2) of the line tangent

to f at x(1) taken as an improved estimate for the root of f , and so on. The

process continues until the roots of the tangent lines converge.

More generally, the multivariate Newton method begins with the analyst

supplying a guess x(0) for the root of f . Given x(k), the subsequent iterate

x
(k+1) is computed by solving the linear root�nding problem obtained by

replacing f with its �rst order Taylor approximation about x(k):

f(x) � f(x(k)) + f
0(x(k))(x� x(k)) = 0:
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Figure 3.3

This yields the iteration rule

x
(k+1)  x

(k) � [f 0(x(k))]�1f(x(k)):

The following Matlab script computes the root of a function f using

Newton's method. It assumes that the user has provided an initial guess x

for the root, a convergence tolerance tol, and an upper limit maxit on the

number of iterations. It calls a user-supplied routine f that computes the

value fval and Jacobian fjac of the function at an arbitrary point x. To

conserve on storage, only the most recent iterate is stored:

for it=1:maxit

[fval,fjac] = f(x);

x = x - fjac\fval;

if norm(fval) < tol, break, end

end
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In theory, Newton's method converges if f is continuously di�erentiable

and if the initial value of x supplied by the analyst is \suÆciently" close

to a root of f at which f
0 is invertible. There is, however, no generally

practical formula for determining what suÆciently close is. Typically, an

analyst makes a reasonable guess for the root f and counts his blessings if

the iterates converge. If the iterates do not converge, then the analyst must

look more closely at the properties of f to �nd a better starting value, or

change to another root�nding method. Newton's method can be robust to the

starting value if f is well behaved, for example, if f has monotone derivatives.

Newton's method can be very sensitive to starting value, however, if the

function behaves erratically, for example, if f has high derivatives that change

sign frequently. Finally, in practice it is not suÆcient for f 0 to be merely

invertible at the root. If f 0 is invertible but ill-conditioned, then rounding

errors in the vicinity of the root can make it diÆcult to compute a precise

approximation to the root using Newton's method.

The Matlab toolbox accompanying the textbook includes a function newton

that computes the root of a function using the Newton's method. To illus-

trate the use of this function, consider a simple Cournot duopoly model, in

which the inverse demand for a good is

p = P (q) = q
�1=�

and the two �rms producing the good face cost functions

C
i
(q

i
) = 1

2
c
i
q
2
i
; for i = 1; 2:

The pro�t for �rm i is

�
i
(q1; q2) = P (q1 + q2)qi � C(qi):

If �rm i takes the other's �rms output as given, it will choose its output level

so as to solve

@�
i
=@q

i
= P (q1 + q2) + P

0(q1 + q2)qi � C 0
i
(q

i
) = 0:

Thus, the market equilibrium outputs, q1 and q2, are the roots of the two

nonlinear equations

f
i
(q) = (q1 + q2)

�1=� � (1=�)(q1 + q2)
�1=��1

q
i
� c

i
q
i
= 0; for i = 1; 2:

Suppose one wished to use the function newton to compute for the market

equilibrium quantities, assuming � = 1:6, c1 = 0:6 and c2 = 0:8. The �rst

step would be write a Matlab function that gives the value and Jacobian of

f at arbitrary vector of quantities q:
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function [fval,fjac] = cournot(q)

c = [0.6; 0.8]; eta = 1.6; e = -1/eta;

fval = sum(q)^e + e*sum(q)^(e-1)*q - diag(c)*q;

fjac = e*sum(q)^(e-1)*ones(2,2) + e*sum(q)^(e-1)*eye(2) ...

+ (e-1)*e*sum(q)^(e-2)*q*[1 1] - diag(c);

Making an initial guess of, say q1 = q2 = 0:2, a call to newton

q = newton(f,[0.2;0.2]);

will compute the equilibrium quantities q1 = 0:8396 and q2 = 0:6888 to the

default tolerance of 1:5 � 10�8. The subroutine newton is extensible in that it

allows the user to override the default tolerance and limit on the number of

iterations, and allows the user to pass additional arguments for the function

f , if necessary.

The path taken by newton to the Cournot equilibrium solution from an

initial guess of (0:2; 0:2) is illustrated by the dashed line in Figure 3.4. Here,

the Cournot market equilibrium is the intersection of the zero contours of f1
and f2, which may be interpreted as the reaction functions for the two �rms.

In this case Newton's method works very well, needing only a few steps to

e�ectively land on the root.

3.4 Quasi-Newton Methods

Quasi-Newton methods o�er an alternative to Newton's method for solving

root�nding problems. Quasi-Newton methods are based on the same suc-

cessive linearization principle as Newton's method, except that they replace

the Jacobian f 0 with an estimate that is easier to compute. Quasi-Newton

methods are easier to implement and less likely to fail due to programming

errors than Newton's method because the analyst need not explicitly code

the derivative expressions. Quasi-Newton methods, however, often converge

more slowly than Newton's method and additionally require the analyst to

supply an initial estimate of the function's Jacobian.

The secant method is the most widely used univariate quasi-Newton method.

The secant method is identical to the univariate Newton method, except

that it replaces the derivative of f with a �nite-di�erence approximation

constructed from the function values at the two previous iterates:

f
0(x(k)) �

f(x(k))� f(x(k�1))
x(k) � x(k�1)

:
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This yields the iteration rule

x
(k+1)  x

(k) �
x
(k) � x(k�1)

f(x(k))� f(x(k�1))
f(x(k)):

Unlike the Newton method, the secant method requires two, rather than one

starting value.

The secant method is graphically illustrated in Figure 3.5. The algorithm

begins with the analyst supplying two distinct guesses x(0) and x(1) for the

root of f . The function f is approximated using the secant line passing

through x(0) and x
(1), whose root x(2) is accepted as an improved estimate

for the root of f . The step is repeated, with the root x(3) of the secant line

passing through x(1) and x(2) taken as an improved estimate for the root of f ,

and so on. The process continues until the roots of the secant lines converge.

Broyden's method is the most popular multivariate generalization of the

univariate secant method. Broyden's method generates a sequence of vectors

x
(k) and matrices A(k) that approximate the root of f and the Jacobian f 0 at

the root, respectively. Broyden's method begins with the analyst supplying
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a guess x(0) for the root of the function and a guess A(0) for the Jacobian of

the function at the root. Often, A(0) is set equal to the numerical Jacobian

of f at x(0).1 Alternatively, some analysts use a rescaled identity matrix for

A
(0), though this typically will require more iterations to obtain a solution

than if a numerical Jacobian is computed at the outset.

Given x(k) and A(k), one updates the root approximation by solving the

linear root�nding problem obtained by replacing f with its �rst-order Taylor

approximation about x(k):

f(x) � f(x(k)) + A
(k)(x� x(k)) = 0:

This yields the root approximation iteration rule

x
(k+1)  x

(k) � (A(k))�1f(x(k)):

1Numerical di�erentiation is discussed in Chapter 5.
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Broyden's method then updates the Jacobian approximant A(k) by mak-

ing the smallest possible change, measured in the Frobenius matrix norm,

that is consistent with the secant condition, which any reasonable Jacobian

estimate should satisfy to a �rst order:

f(x(k+1))� f(x(k)) = A
(k+1)(x(k+1) � x(k)):

This yields the iteration rule

A
(k+1)  A

(k) +
f(x(k+1))Æ(k)>

Æ(k)>Æ(k)

where Æ(k) = x
(k+1) � x(k).

In practice, Broyden's method may be accelerated by avoiding the linear

solve. This can be accomplished by retaining and updating the Broyden

estimate of the inverse of the Jacobian, rather than that of the Jacobian itself.

Broyden's method with inverse update generates a sequence of vectors x(k)

and matrices B(k) that approximate the root of f and the inverse Jacobian

f
0�1 at the root, respectively. It uses the root approximation iteration rule

x
(k+1)  x

(k) � B(k)
f(x(k))

and inverse update rule

B
(k+1)  B

(k) + ((Æ(k) � (k))dx>B(k))=(Æ(k)>(k))

where (k) = B
(k)(f(x(k+1)) � f(x(k))). Most implementations of Broyden's

methods employ the inverse update rule because of its modest speed advan-

tage over Broyden's method with Jacobian update.

In theory, Broyden's method converges if f is continuously di�erentiable,

if x(0) is \suÆciently" close to a root of f at which f 0 is invertible, and if A(0)

or B(0) are \suÆciently" close to the Jacobian or inverse Jacobian of f at

that root. There is, however, no generally practical formula for determining

what suÆciently close is. Like Newton's method, the robustness of Broy-

den's method depends on the regularity of f and its derivatives. Broyden's

method may also have diÆculty computing a precise root estimate if f 0 is

ill-conditioned near the root. It is important to also note that the sequence

approximants A(k) and B(k) need not, and typically do not, converge to the

Jacobian and inverse Jacobian of f at the root, respectively, even if the x(k)

converge to a root of f .
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The following Matlab script computes the root of a user-supplied multi-

variate function f using Broyden's method with inverse update. The script

assumes that the user has written a Matlab routine f that evaluates the func-

tion at an arbitrary point and that the user has speci�ed a starting point x,

a convergence tolerance tol, and a limit on the number of iterations maxit.

The script also computes an initial guess for the inverse Jacobian by inverting

the �nite di�erence derivative computed using the toolbox function fdjac,

which is discussed in a later section.

fjacinv = inv(fdjac(f,x));

fval = f(x);

for it=1:maxit

fnorm = norm(fval);

if fnorm<tol, break; end

dx = -fjacinv*fval;

x = x+dx;

fold = fval;

fval = f(x);

temp = fjacinv*(fval-fold);

fjacinv = fjacinv + ((dx-temp)*dx'*fjacinv)/(dx'*temp);

end

The Matlab toolbox accompanying the textbook includes a function broyden

that computes the root of a function using Broyden's method with inverse

update. To illustrate the use of this function, consider the simple Cournot

duopoly model, introduced in the preceding subsection. The �rst step in solv-

ing the model using Broyden's method would be to write a Matlab function

that gives the value of f at arbitrary vector of quantities q:

function fval = f(q)

c = [0.6; 0.8]; eta = 1.6; e = -1/eta;

fval = sum(q)^e + e*sum(q)^(e-1)*q - diag(c)*q;

Note that the function need not return the Jacobian of f because Broyden

method does not require it. Making an initial guess of, say q1 = q2 = 0:2, a

call to broyden

q = broyden(f,[0.2;0.2]);

will compute the equilibrium quantities q1 = 0:8396 and q2 = 0:6888 to

the default tolerance of 1:5 � 10�8. The subroutine broyden is extensible in

that it allows the user to enter an initial estimate of the Jacobian estimate,

if available, and allows the user to override the default tolerance and limit
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on the number of iterations. The subroutine also allows the user to pass

additional arguments for the function f , if necessary.

The path taken by broyden to the Cournot equilibrium solution from

an initial guess of (0:2; 0:2) is illustrated by the dashed line in Figure 3.6.

In this case Broyden's method works well and not altogether very di�erent

from Newton's method. However, a close comparison of Figures 3.4 and

3.6 demonstrates that Broyden's method takes more iterations and follows a

somewhat more circuitous route than Newton's method.
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3.5 Problems With Newton Methods

There are no fail-proof methods for solving multivariate non-linear equa-

tions. Several diÆculties commonly arise in the application of Newton and

quasi-Newton methods. The most common cause of failure of Newton-type

methods is coding errors committed by the analyst. The next most common

cause of failure is the speci�cation of a starting point that is not suÆciently
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close to a root. And yet another common cause of failure is an ill-conditioned

Jacobian at the root. All of these problems can often be mitigated by ap-

propriate action, though they cannot always be eliminated altogether.

There �rst cause of failure, coding error, may seem obvious and not spe-

ci�c to root�nding problems. It must be emphasized, however, that with

Newton's method, the likelihood of committing an error in coding the an-

alytic Jacobian of the function is often high. A careful analyst can avoid

Jacobian coding errors in two ways. First, the analyst could use Broyden's

method instead of Newton's method to solve the root�nding problem. Broy-

den's method is derivative-free and does not require the explicit coding of the

function's analytic Jacobian. Second, the analyst can perform a simple, but

highly e�ective check of his code by comparing the values computed by his

analytic derivatives to those computed using �nite di�erence methods. Such

a check will almost always detect an error in either the code that returns the

function's value or the code that returns its Jacobian.

A comparison of analytic and �nite di�erence derivatives can easily be

performed using the checkjac routine provided with the Matlab toolbox

accompanying this textbook. This function computes the analytic and �nite

di�erence derivatives of a function at a speci�ed evaluation point and returns

the index and magnitude of the largest deviation. The function may be called

as follows:

[error,i,j] = checkjac(f,x)

Here, we assume that the user has coded a Matlab function f that returns

the function value and analytic derivatives at a speci�ed evaluation point x.

Execution returns error, the highest absolute di�erence between an analytic

and �nite di�erence cross-partial derivative of f , and its index i and j. A

large deviation indicates that the either the i; jth partial derivative or the ith

function value may be incorrectly coded.

The second problem, a poor starting value, can be partially addressed by

`backstepping'. If taking a full Newton (or quasi-Newton) step x + dx does

not o�er an improvement over the current iterate x, then one `backsteps'

toward the current iterate x by repeatedly cutting dx in half until x + dx

does o�er an improvement. Whether a step dx o�ers an improvement is

measured by the Euclidean norm kf(x)k = 1
2
f(x)>f(x). Clearly, kf(x)k is

precisely zero at a root of f , and is positive elsewhere. Thus, one may view

an iterate as yielding an improvement over the previous iterate if it reduces

the function norm, that is, if kf(x)k > kf(x + dx)k. Backstepping prevents
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Newton and quasi-Newton methods from taking a large step in the wrong

direction, substantially improving their robustness.

Backstepping, however, has the tendency in some applications to begin

taking very short steps as the iterations approach the root. One way to pre-

vent this from happening is to employ a `safeguarding' strategy. A simple

safeguarding strategy is to seek a reduction in the function norm by repeat-

edly cutting the Newton step in half, but to stop if the norm begins to rise.

This prevents the procedure from getting stuck near the root. The maximum

number of allowable backsteps should be no more than, say, 30, which implies

a minimum step size that is 2�30 or approximately 1e� 9 times the Newton

step.

The following Matlab script computes the root of a function using a safe-

guarded Newton's method. It assumes that the user has speci�ed a maximum

number maxit of Newton iterations, a maximum number maxsteps of back-

step iterations, and a convergence tolerance tol, along with the name of the

function f and an initial value x:

for it=1:maxit

[fval,fjac] = f(x);

fnorm = norm(fval);

if fnorm<tol, return, end

dx = -fjac\fval;

fnormold = inf;

for backstep=1:maxsteps

xnew = x + dx;

fnew = f(x);

fnormnew = norm(fnew);

if fnormold<fnormnew | fnormnew<fnorm, break, end

fnormold = fnormnew;

dx = dx/2;

end

x = x+dx;

end

Safeguarded backstepping may also implemented with Broyden's method,

except that the Jacobian updating procedure must be modi�ed to ensure

that the secant condition is satis�ed. The newton and broyden routines

supplied with the Matlab toolbox accompanying the textbook both employ

safeguarded backstepping.

The third problem, an ill-conditioned Jacobian at the root, occurs less of-

ten, but should not be ignored. An ill-conditioned Jacobian can render inac-

curately computed Newton step dx, creating severe diÆculties for the conver-
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gence of Newton and Newton-type methods. In some cases, ill-conditioning

is a structural feature of the underlying model and cannot be eliminated.

However, in many cases, ill-conditioning is inadvertently and unnecessarily

introduced by the analyst. A common source of avoidable ill-conditioning

arises when the natural units of measurements for model variables yield val-

ues that vary vastly in order of magnitude. When this occurs, the analyst

should consider rescaling the variables so that their values have comparable

orders of magnitude, preferably close to unity. Rescaling will generally lead

to faster execution time and more accurate results.

3.6 Choosing a Solution Method

Numerical analysts have special terms that they use to classify the rates at

which iterative routines converge. Speci�cally, a sequence of iterates x(k) is

said to converge to x� at a rate of order p if there is constant C > 0 such

that

kx(k+1) � x�k � Ckx(k) � x�kp

for suÆciently large k. In particular, the rate of convergence is said to be

linear if C < 1 and p = 1, superlinear if 1 < p < 2, and quadratic if p = 2.

The asymptotic rates of convergence of the nonlinear equation solution

methods discussed earlier are well known. The bisection method converges

at a linear rate with C = 1=2. The function iteration method converges at

a linear rate with C equal to kf 0(x�)k. The secant and Broyden methods

converge at a superlinear rate, with p � 1:62. And Newton's method con-

verges at a quadratic rate. The rates of convergence are asymptotically valid,

provided that the algorithms are given \good" initial data.

Consider a simple example. The function g(x) =
p
x has an unique �xed-

point x� = 1. Function iteration may be used to compute the �xed-point.

One can also compute the �xed-point by applying Newton's method or the

secant method to the equivalent root�nding problem f(x) = x�
p
x = 0.

Starting from x
(0) = 0:5, and using a �nite di�erence derivative for the

�rst secant method iteration, the approximation error jx(k) � x
�j produced

by the three methods are:
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Function Broyden's Newton's

k Iteration Method Method

1 2.9e-001 -2.1e-001 -2.1e-001

2 1.6e-001 3.6e-002 -8.1e-003

3 8.3e-002 1.7e-003 -1.6e-005

4 4.2e-002 -1.5e-005 -6.7e-011

5 2.1e-002 6.3e-009 0.0e+000

6 1.1e-002 2.4e-014 0.0e+000

7 5.4e-003 0.0e+000 0.0e+000

8 2.7e-003 0.0e+000 0.0e+000

9 1.4e-003 0.0e+000 0.0e+000

10 6.8e-004 0.0e+000 0.0e+000

15 2.1e-005 0.0e+000 0.0e+000

20 6.6e-007 0.0e+000 0.0e+000

25 2.1e-008 0.0e+000 0.0e+000

This simple experiment generates convergence patterns that are typical

for the various iterative nonlinear equation solution algorithms used in prac-

tice. Newton's method converges in fewer iterations than the quasi-Newton

method, which in turn converges in fewer iterations than function iteration.

Both the Newton and quasi-Newton methods converge to machine precision

very quickly, in this case 5 or 6 iterations. As the iterates approach the

solution, the number of signi�cant digits in the Newton and quasi-Newton

approximants begin to double with each iteration.

However, the rate of convergence, measured in number of iterations, is

only one determinant of the computational eÆciency of a solution algorithm.

Algorithms di�er in the number of arithmetic operations, and thus the com-

putational e�ort required per iteration. For multivariate problems, function

iteration requires only a function evaluation; Broyden's method with inverse

update requires a function evaluation and a matrix-vector multiplication; and

Newton's method requires a function evaluation, a derivative evaluation, and

the solution of a linear equation. In practice, function iteration tends to re-

quire the most overall computational e�ort to achieve a given accuracy than

the other two methods. However, whether Newton's method or Broyden's

method requires the most overall computational e�ort to achieve convergence

in a given application depends largely on the dimension of x and complexity

of the derivative. Broyden's method will tend to be computationally more
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eÆcient than Newton's method if the derivative is costly to evaluate.

An important factor that must be considered when choosing a nonlinear

equation solution method is developmental e�ort. Developmental e�ort is

the e�ort exerted by the analyst to produce a viable, convergent computer

code|this includes the e�ort to write the code, the e�ort to debug and verify

the code, and the e�ort to �nd suitable starting values. Function iteration

and quasi-Newton methods involve the least developmental e�ort because

they do not require the analyst to correctly code the derivative expressions.

Newton's method typically requires more developmental e�ort because it

additionally requires the analyst to correctly code derivative expressions. The

developmental cost of Newton's method can be quite high if the derivative

matrix involves many complex or irregular expressions.

Experienced analysts use certain rules of thumb when selecting a nonlin-

ear equation solution method. If the nonlinear equation is of small dimension,

say univariate or bivariate, or the function derivatives follow a simple pattern

and are relatively easy to code, then development costs will vary little among

the di�erent methods and computational eÆciency should be the main con-

cern, particularly if the equation is to be solved many times. In this instance,

Newton's method is usually the best �rst choice.

If the nonlinear equation involves many complex or irregular function

derivatives, or if the derivatives are expensive to compute, then the New-

ton's method it less attractive. In such instances, quasi-Newton and func-

tion iteration methods may make better choices, particularly if the nonlinear

equation is to be solved very few times. If the nonlinear equation is to be

solved many times, however, the faster convergence rate of Newton's method

may make the development costs worth incurring.

3.7 Complementarity Problems

Many economic models naturally take the form of a complementary problem

rather than a root�nding or �xed point problem. In the complementarity

problem, two n-vectors a and b, with a < b, and a function f from <n to <n

are given, and one must �nd an n-vector x 2 [a; b], that satis�es

x
i
> a

i
) f

i
(x) � 0 8i = 1; : : : ; n

x
i
< b

i
) f

i
(x) � 0 8i = 1; : : : ; n:
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The complementarity conditions require that f
i
(x) = 0 whenever a

i
< x

i
<

b
i
. The complementarity problem thus includes the root�nding problem as a

special case in which a
i
= �1 and b

i
= +1 for all i. The complementarity

problem, however, is not to �nd a root that lies within speci�ed bounds. An

element f
i
(x) may be nonzero at a solution of a complementarity problem,

though only if x
i
equals one of its bounds. For the sake of brevity, we denote

the complementarity problem CP(f; a; b).

Complementarity problems arise naturally in economic equilibrium mod-

els. In this context, x is an n-vector that represents the levels of certain

economic activities. For each i = 1; 2; : : : ; n, a
i
denotes a lower bound on

activity i, b
i
denotes an upper bound on activity i, and f

i
(x) denotes the

marginal arbitrage pro�t associated with activity i. Disequilibrium arbitrage

pro�t opportunities exist if either x
i
< b

i
and f

i
(x) > 0, in which case an

incentive exists to increase x
i
, or x

i
> a

i
and f

i
(x) < 0, in which case an in-

centive exists to decrease x
i
. An arbitrage-free economic equilibrium obtains

if and only if x solves the complementarity problem CP(f; a; b).

Complementarity problems also arise naturally in economic optimization

models. Consider maximizing a function F : <n 7! < subject to the simple

bound constraint x 2 [a; b]. The Karush-Kuhn-Tucker theorem asserts that

x solves the bounded maximization problem only if it solves the complemen-

tarity problem CP(f; a; b) where f
i
(x) = @F=@x

i
. Conversely, if F is strictly

concave and x solves the complementarity problem CP(f; a; b), then x solves

the bounded maximization problem.

As a simple example of a complementarity problem, consider the well-

known Marshallian competitive price equilibrium model. In this model, com-

petitive equilibrium obtains if and only if excess demand E(p), the di�erence

between quantity demanded and quantity supplied at price p, is zero. Sup-

pose, however, that the government imposes a price ceiling �p that it enforces

through �at or direct market intervention. It is then possible for excess de-

mand to exist at equilibrium, but only if price ceiling is binding. In the

presence of a price ceiling, the equilibrium market price is the solution to the

complementarity problem CP(E; 0; �p).

A more interesting example of a complementarity problem is the single

commodity competitive spatial price equilibrium model. Suppose that there

are n distinct regions and that excess demand for the commodity in region i is

a function E
i
(p

i
) of the price p

i
in the region. In the absence of trade among

regions, equilibrium is characterized by the condition that E
i
(p

i
) = 0 in each

region i, a root�nding problem. Suppose, however, that trade can take place
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among regions, and that the cost of transporting one unit of the good from

region i to region j is a constant c
ij
. Denote by x

ij
the amount of the good

that is produced in region i and consumed in region j and suppose that

this quantity cannot exceed a given shipping capacity b
ij
. In this market,

p
j
� p

i
� c

ij
is the unit arbitrage pro�t available from shipping one unit

of the commodity from region i to region j. When the arbitrage pro�t is

positive, an incentive exists to increase shipments; when the arbitrage pro�t

is negative, an incentive exists to decrease shipments. Equilibrium obtains

only if all spatial arbitrage pro�t opportunities have been eliminated. This

requires that, for all pairs of regions i and j, 0 � x
ij
� b

ij
and

x
ij
> 0 ) p

j
� p

i
� c

ij
� 0

x
ij
< b

ij
) p

j
� p

i
� c

ij
� 0:

To formulate the spatial price equilibrium model as a complementarity

problem, note that market clearing requires that net imports equal excess

demand in each region i:X
k

[x
ki
� x

ik
] = E

i
(p

i
):

This implies that

p
i
= E

�1
i

 X
k

[x
ki
� x

ik
]

!
:

If

f
ij
(x) = E

�1
j

 
kX
[x

kj
� x

jk
]

!
� E�1

i

 
kX
[x

ki
� x

ik
]

!
� c

ij

then x is a spatial equilibrium trade ow if and only if x solves the comple-

mentary problem CP(f; 0; b), where x, f and b are vectorized and written as

n
2 by 1 vectors.

In order to understand the mathematical structure of the complementar-

ity problem, it is instructive to consider the simplest case: the univariate

linear complementarity problem. Figure 3.7a-c illustrate the three possible

subcases when f is negatively sloped. In all three subcases, an unique equi-

librium solution exists. In Figure 3.7a, f(a) � 0 and the unique equilibrium

solution is x� = a; in Figure 3.7b, f(b) � 0 and the unique equilibrium
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solution is x� = b; and in Figure 3.7c, f(a) > 0 > f(b) and the unique equi-

librium solution lies between a and b. In all three subcases, the equilibrium

is stable in that the economic incentive at nearby disequilibrium points is to

return to the equilibrium.

a) f’<0, f(a)<0

0

a b

b) f’<0, f(b)>0

0

a b

c) f’<0, f(a)>0>f(b)

0

a b

d) f’>0

0

a b

Figure 3.7

Figure 3.7d illustrates the diÆculties that can arise when f is positively

sloped. Here, multiple equilibrium solutions arise, one in the interior of the

interval and one at each endpoint. The interior equilibrium, moreover, is

unstable in that the economic incentive at nearby disequilibrium points is to

move away from the interior equilibrium toward one of the corner equilibria.

More generally, multivariate complementarity problems are guaranteed

to possess an unique solution if f is strictly negative monotone, that is, if

(x�y)0(f(x)�f(y)) < 0 whenever x; y 2 [a; b] and x 6= y. This will be true for

most well-posed economic equilibrium models. It will also be true when the

complementarity problem derives from a bound constrained maximization

problem in which the objective function is strictly concave.
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3.8 Complementarity Methods

Although the complementarity problem appears quite di�erent from the or-

dinary root�nding problem, it actually can be reformulated as one. In par-

ticular, x solves the complementarity problem CP(f; a; b) if and only if it

solves the root�nding problem

f̂(x) = min(max(f(x); a� x); b� x) = 0:

A formal proof of the equivalence between the complementarity problem

CP(f; a; b) and its `minmax' root�nding formulation f̂(x) = 0 is straightfor-

ward, but requires a somewhat tedious enumeration of several possible cases,

which we leave as an exercise for the reader. The equivalence, however,

can easily be demonstrated graphically for the univariate complementarity

problem.

Figure 3.8 illustrates minmax root�nding formulation of the same four

univariate complementarity problems examined in Figure 3.7. In all four

plots, the curves y = a�x and y = b�x are drawn with narrow dashed lines,

the curve y = f(x) is drawn with a narrow solid line, and the curve y = f̂(x)

is drawn with a thick solid line; clearly, in all four �gures, f̂ lies between the

lines y = x�a and y = x� b and coincides with f inside the lines. In Figure

3.8a, f(a) � 0 and the unique solution to the complementarity problem is

x
� = a, which coincides with the unique root of f̂ ; in Figure 3.8b, f(b) � 0

and the unique solution to the complementarity problem is x� = b, which

coincides with the unique root of f̂ ; in Figure 3.8c, f(a) > 0 > f(b) and the

unique solution to the complementarity problem lies between a and b and

coincides with the unique root of f̂ (and f). In Figure 3.7d, f is upwardly

sloped and possesses multiple roots, all of which, again, coincide with roots

of f̂ .

The reformulation of the complementarity problem as a root�nding prob-

lem suggests that it may be solved using standard root�nding algorithms,

such as Newton's method. To implement Newton's method for the minmax

root�nding formulation requires computation of the Jacobian Ĵ of f̂ . The

i
th row of Ĵ may be derived directly from the Jacobian J of f :

Ĵ
i
(x) =

�
J
i
(x); for a

i
� x

i
< f

i
(x) < b

i
� x

i
;

�I
i
: otherwise

Here, I
i
is the ith row of the identity matrix.
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0

a) f’<0, f(a)<0

a
0

b) f’<0, f(b)>0

b

0

c) f’<0, f(a)>0>f(b)

a b
0

d) f’>0

a b

Figure 3.8

The following Matlab script computes the solution of the complemen-

tarity problem CP(f; a; b) by applying Newton's method to the equivalent

minmax root�nding formulation. The script assumes that the user has pro-

vided the lower and upper bounds a and b, a guess x for the solution of the

complementarity problem, a convergence tolerance tol, and an upper limit

maxit on the number of iterations. It calls a user-supplied routine f that

computes the value fval and Jacobian fjac of the function at an arbitrary

point x:

for it=1:maxit

[fval,fjac] = f(x);

fhatval = min(max(fval,a-x),b-x);

fhatjac = -eye(length(x));

i = find(fval>a-x & fval<b-x);

fhatjac(i,:) = fjac(i,:);

x = x - fhatjac\fhatval;

if norm(fhatval)<tol, break, end

end
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Using Newton's method to �nd a root of f̂ will often work well. However,

in many cases, the nondi�erentiable kinks in f̂ create diÆculties for Newton's

method, undermining its ability to converge rapidly. One way to deal with

the kinks is to replace f̂ with a function that has the same roots, but is

smoother and therefore less prone to numerical diÆculties. One function

that has proven very e�ective for solving the complementarity problem in

practical applications is Fischer's function

~f(x) = �
+(��(f(x); x� a); x� b);

where

�
�(u; v) = u+ v �

p
u: � u+ v: � v:

(Here, u: � u and
p

represent element-wise vector operations.)

In Figures 3.9a and 3.9b, the functions f̂ and ~f , respectively, are drawn as

thick solid lines for a representative complementarity problem. Clearly, f̂ and
~f can di�er substantially. What is important for solving the complementarity

problem, however, is that f̂ and ~f possess the same signs and roots and that
~f is smoother than f̂ .

0

a) Minimax Formulation

a−x

b−x

f(x)

0

b) Semismooth Formulation

a−x

b−x

f(x)

Figure 3.9

The Matlab toolbox accompanying the textbook includes a function ncpsolve

that solves the complementarity problem by applying Newton's method with

safeguarded backstepping to either the minmax or semismooth root�nding

formulations. To apply this function, one de�nes a Matlab function f that

returns the function value and Jacobian at arbitrary point, and speci�es



CHAPTER 3. NONLINEAR EQUATIONS 50

the lower and upper bounds, a and b, and, optionally, a starting value x. To

solve the complementarity problem using the minmax formulation one writes

the Matlab script x=mcpsolve('f',a,b,x,'minmax'); to solve the comple-

mentarity problem using the semismooth formulation one writes the Matlab

script x=mcpsolve('f',a,b,x,'smooth').

In practice, Newton's method applied to either the minmax root�nding

formulation f̂(x) = 0 or the semismooth root�nding formulation ~f(x) = 0

will often successfully solve the complementarity problem CP(f; a; b). The

semismooth formulation is generally more robust than the minmax formu-

lation because it avoids the problematic kinks found in ~f . However, the

semismooth formulation also requires more arithmetic operations per itera-

tion.

As an example of a complementarity problem for which the semismooth

formulation is successful, but for which the minmax formulation is not, con-

sider the surprisingly diÆcult complementarity problem CP(f; 0;+1) where

f(x) = 1:01� (x� 1)2:

The function f has root at x = 1 �
p
1:01, but this is not a solution to

the complementarity problem because it is negative. Also, 0 is not a solution

because f(0) = 0:01 is positive. The complementarity problem has an unique

solution x = 1 +
p
1:01 � 2:005.

Figure 3.10a displays ~f (dashed) and f̂ (solid) for the complementarity

problem and Figure 3.10b magni�es the plot near the origin, making it clear

why the problem is hard. Newton's method starting at any value slightly less

than 1 will tend to move toward 0. In order to avoid convergence to this false

root, Newton's method must take a suÆciently large step to exit the region

of attraction. This will not happen with ~f because 0 poses an upper bound

on the positive Newton step. With f̂ , however, the function is smooth at its

local maximum near the origin, meaning that the Newton step can be very

large.

To solve the complementarity problem using the semismooth formulation,

one codes the function

function [fval,fjac] = f(x)

fval = 1.01-(1-x).^2;

fjac = 2*(1-x);

and then executes the Matlab script

x = mcpsolve('f',0,inf,'smooth');
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To solve the complementarity problem using the minmax formulation, one

executes the Matlab script

x = mcpsolve('f',0,inf,'minmax');

In this example, the semismooth formulation will succcessfully compute the

solution of the complementarity problem, but the minmax formulation will

not.

Algorithms for solving complementarity problems are still an active area

of research, especially for cases that are not well behaved. Algorithms will

no doubt continue to improve and existing methods vary considerably in

terms of robustness and speed. Our suggestion, however, is to �rst use a well

implemented general purpose root �nding algorithm in conjunction with a

semismooth formulation. This has the virtue of simplicity and requires only

a standard root�nding utility.

Exercises
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1. Consider the function f : <2 7! <2 de�ned by

f1(x) = 200x1(x2 � x21)� x1 + 1

f2(x) = 100(x21 � x2):

Write a Matlab function `func.m' that takes a column 2-vector x as

input and returns f, a column 2-vector that contains the value of f at

x, and d, a 2 by 2 matrix that contains the Jacobian of f at x.

(a) Compute numerically the root of f via Newton's method.

(b) Compute numerically the root of f via Broyden's method.

2. Consider a simple endowment economy with three agents and two

goods. Agent i is initially endowed with e
ij
units of good j and maxi-

mizes utility

U
i
(x) =

2X
j=1

a
ij
(v

ij
+ 1)�1x

vij+1

ij
;

subject to the budget constraint

2X
j=1

p
j
x
ij
=

2X
j=1

p
j
e
ij
:

Here, x
ij
is the amount of good j consumed by agent i, p

j
is the market

price of good j, and a
ij
> 0 and v

ij
< 0 are preference parameters.

A competitive general equilibrium for the endowment economy is a pair

of relative prices, p1 and p2, normalized to sum to one, such that all

the goods markets clear if each agent maximizes utility subject to his

budget constraints.

Compute the competitive general equilibrium for the following param-

eters:
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(i; j) a
ij

v
ij

e
ij

(1,1) 2.0 -2.0 2.0

(1,2) 1.5 -0.5 3.0

(2,1) 1.5 -1.5 1.0

(2,2) 2.0 -0.5 2.0

(3,1) 1.5 -0.5 4.0

(3,2) 2.0 -1.5 0.0

3. Consider the market for potatoes, which are storable intraseasonaly,

but not interseasonaly. In this market, the harvest is entirely consumed

over two marketing periods, i = 1; 2. Denoting initial supply by s and

consumption in period i by c
i
, material balance requires that:

s = c1 + c2:

Competition among storers possessing perfect foresight eliminate inter-

period arbitrage opportunities; thus,

p1 + � = Æp2

where p
i
is equilibrium price in period i, � = 0:2 is per-period unit

cost of storage, and Æ = 0:9 is per-period discount factor. Demand,

assumed the same across periods, is given by

p
i
= c

�5
i
:

Compute the equilibrium period 1 and period 2 prices for s = 1, s = 2,

and s = 3.

4. Provide a formal proof that the complementarity problem CP(f; a; b) is

equivalent to the root�nding problem f̂(x) = min(max(f(x); a�x); b�
x) = 0 in that both have the same solutions.



CHAPTER 3. NONLINEAR EQUATIONS 54

5. CommodityX is produced and consumed in three countries. Let quan-

tity q be measured in units and price p be measured in dollars per unit.

Demand and supply in the three countries is given by:
Demand Supply

Country 1: p = 42� 2q p = 9 + 1q

Country 2: p = 54� 3q p = 3 + 2q

Country 3: p = 51� 1q p = 18 + 1q

The unit costs of transportation are:
to

From Country 1 Country 2 Country 3

Country 1: 0 3 9

Country 2: 3 0 3

Country 3: 6 3 0

(a) Formulate and solve the linear equation that characterizes com-

petitive equilibrium, assuming that intercountry trade is not per-

mitted.

(b) Formulate and solve the linear complementarity problem that

characterizes competitive spatial equilibrium, assuming that in-

tercountry trade is permitted.

(c) Using standard measures of surplus, which of the six consumer

and producer groups in the three countries gain, and which ones

lose, from the introduction of trade.

6. Write a program that solves the following expression for �:

�

Z 1

0

exp(��� �2=2)d� = 1

and demonstrate that the solution is � = 0:8399.



Chapter 4

Finite-Dimensional

Optimization

In this chapter we examine methods for optimizing a function with respect to

a �nite number of variables. In the �nite-dimensional optimization problem,

one is given a real-valued function f de�ned on X � <n and asked to �nd

an x� 2 X such that f(x�) � f(x) for all x 2 X. We denote this problem

max
x2X

f(x)

and call f the objective function, X the feasible set, and x
�, if it exists, a

maximum.1

Finite-dimensional optimization problems are ubiquitous in Economics.

For example, the standard neoclassical models of �rm and individual deci-

sionmaking involve the maximization of pro�t and utility functions, respec-

tively. Competitive static price equilibrium models can often be equivalently

characterized as optimization problems in which a hypothetical social plan-

ner maximizes total surplus. Finite-dimensional optimization problems arise

in econometrics, as in the minimization of the sum of squares or the maxi-

mization of a likelihood function. And one also encounters �nite-dimensional

optimization problems embedded within the Bellman equation that charac-

terizes the solution to continuous-space dynamic optimization models.

There is a close relationship between the �nite-dimensional optimization

problems discussed in this chapter and the root�nding and complementarity

1We focus our discussion on maximization. To solve a minimization problem, one

simply maximizes the negative of the objective function.

55
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problems discussed in the previous chapter. The �rst-order necessary condi-

tions of an unconstrained problem pose a root�nding problem; the Karush-

Kuhn-Tucker �rst-order necessary conditions of a constrained optimization

problem pose a complementarity problem. The root�nding and complemen-

tarity problems associated with optimization problems are special in that

they possess a natural merit function, the objective function itself, which

may be used to determine whether iterations are converging on a solution.

Over the years, numerical analysts have studied �nite-dimensional opti-

mization problems extensively and have devised a variety of algorithms for

solving them quickly and accurately. We begin our discussion with derivative-

free methods, which are useful if the objective function is rough or if its

derivatives are expensive to compute. We then turn to Newton-type methods

for unconstrained optimization, which employ derivatives or derivative esti-

mates to locate an optimum. Univariate unconstrained optimizationmethods

are of particular interest because many multivariate optimization algorithms

use the strategy of �rst determining a linear direction to move in, and then

�nding the optimal point in that direction. We conclude with a discussion

of how to solve constrained optimization problems.

Before proceeding, we review some facts about �nite-dimensional opti-

mization and de�ne some terms. By the Theorem of Wierstrass, if f is

continuous and X is nonempty, closed, and bounded, then f has a maximum

on X. A point x� 2 X is a local maximum of f if there is an �-neighborhood

N of x� such that f(x�) � f(x) for all x 2 N \X. The point x� is a strict

local maximum if, additionally, f(x�) > f(x) for all x 6= x
� in N \ X. If

x
� is a local maximum of f that resides in the interior of X and f is twice

di�erentiable there, then f 0(x�) = 0 and f 00(x�) is negative semide�nite. Con-

versely, if f 0(x�) = 0 and f 00(x) is negative semide�nite in an �-neighborhood

of x� contained in X, then x
� is a local maximum; if, additionally, f 00(x�)

is negative de�nite, then x� is a strict local maximum. By the Local-Global

Theorem, if f is concave, X is convex, and x� is a local maximum of f , then

x
� is a global maximum of f on X.2

2These results also hold for minimization, provided one changes concavity of f to

convexity and negative (semi) de�niteness of f 00 to positive (semi) de�niteness.
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4.1 Derivative-Free Methods

As was the case with univariate root�nding, optimization algorithms exist

that will place progressively smaller brackets around a local maximum of a

univariate function. Such methods are relatively slow, but do not require the

evaluation of function derivatives and are guaranteed to �nd a local optimum

to a prescribed tolerance in a known number of steps.

The most widely-used derivative-free method is the golden search method.

Suppose we wish to �nd a local maximum of a continuous univariate function

f(x) on the interval [a; b]. Pick any two numbers in the interior of the interval,

say x1 and x2 with x1 < x2. Evaluate the function and replace the original

interval with [a; x2] if f(x1) > f(x2) or with [x1; b] if f(x2) � f(x1). A local

maximum must be contained in the new interval because the endpoints of the

new interval are lower than a point on the interval's interior. We can repeat

this procedure, producing a sequence of progressively smaller intervals that

are guaranteed to contain a local maximum, until the length of the interval

is shorter than some desired tolerance level.

A key issue is how to pick the interior evaluation points. Two simple

criteria lead to the most widely-used strategy. First, the length of the new

interval should be independent of whether the upper or lower bound is re-

placed. Second, on successive iterations, one should be able to reuse an

interior point from the previous iteration so that only one new function eval-

uation is performed per iteration. These conditions are uniquely satis�ed by

selecting x
i
= a+ �

i
(b� a), where

�1 =
3�
p
5

2
and �2 =

p
5� 1

2
:

The value �2 is known as the golden ratio, a number dear to the hearts of

Greek philosophers and Renaissance artists.

The following Matlab script computes a local maximum of a univariate

function f on an interval [a; b] using the golden search method. The script

assumes that the user has written a Matlab routine f that evaluates the

function at an arbitrary point. The script also assumes that the user has

speci�ed interval endpoints a and b and a convergence tolerance tol:

alpha1 = (3-sqrt(5))/2;

alpha2 = (sqrt(5)-1)/2;

x1 = a+alpha1*(b-a); f1 = f(x1);

x2 = a+alpha2*(b-a); f2 = f(x2);
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d = alpha1*alpha2*(b-a);

while d>tol

d = d*alpha2;

if f2<f1

x2 = x1; x1 = x1-d;

f2 = f1; f1 = f(x1);

else

x1 = x2; x2 = x2+d;

f1 = f2; f2 = f(x2);

end

end

if f2>f1

x = x2;

else

x = x1;

end

The Matlab toolbox accompanying the textbook includes a function golden

that computes a local maximum of a univariate function using the golden

search method. To apply this function, one de�nes a Matlab function that

returns the value of the optimand at an arbitrary point and speci�es the

lower and upper bounds for the search interval. For example, to compute a

local maximum of f(x) = x cos(x2) � 1 on the interval [0; 3], one executes

the following Matlab script:

f = inline('x*cos(x^2)-1');

x = golden(f,0,3)

Execution of this script yields the result x = 0:8083. As can be seen in Figure

4.1, this point is a local maximum, but not a global maximum in [0; 3]. The

golden search method is guaranteed to �nd the global maximum when the

function is concave. However, as the present example makes clear, this need

not be true when the optimand is not concave.

Another widely-used derivative-free optimization method for multivariate

functions is the Nelder-Mead algorithm. The algorithm begins by evaluating

the objective function at n + 1 points. These n + 1 points form a so-called

simplex in the n-dimensional decision space. This is most easily visualized

when x is 2-dimensional, in which case a simplex is a triangle.

At each iteration, the algorithm determines the point on the simplex with

the lowest function value and alters that point by reecting it through the

opposite face of the simplex. This is illustrated in Figure 4.2 (Reection),

where the original simplex is lightly shaded and the heavily shaded simplex is
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the simplex arising from reecting point A. If the reection succeeds in �nding

a new point that is higher than all the others on the simplex, the algorithm

checks to see if it is better to expand the simplex further in this direction, as

shown in Figure 4.2 (Expansion). On the other hand, if the reection strategy

fails to produce a point that is at least as good as the second worst point, the

algorithm contracts the simplex by halving the distance between the original

point and its opposite face, as in Figure 4.2 (Contraction). Finally, if this

new point is not better than the second worst point, the algorithm shrinks

the entire simplex toward the best point, point B in Figure 4.2 (Shrinkage).

One thing that may not be clear from the description of the algorithm is

how to compute a reection. For a point x
i
, the reection is equal to x

i
+2d

i

where x
i
+ d

i
is the point in the center of the opposite face of the simplex

from x
i
. That central point can be found by averaging the n other point of
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the simplex. Denoting the reection by r
i
, this means that

r
i
= x

i
+ 2

 
1

n

X
j 6=i

x
j
� x

i

!
=

2

n

nX
j=1

x
j
�
�
1 +

1

2

�
x
i
:

An expansion can then be computed as

1:5r
i
� 0:5x

i

and a contraction as

0:25r
i
+ 0:75x

i
:

The Nelder-Mead algorithm is simple, but slow and unreliable. How-

ever, if a problem involves only a single optimization or costly function and

derivative evaluations, the Nelder-Mead algorithm is worth trying. In many

problems an optimization problem that is embedded in a larger problem must

be solved repeatedly, with the function parameters perturbed slightly with

each iteration. For such problems, which are common is dynamic models,
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one generally will want to use a method that moves more quickly and reliably

to the optimum, given a good starting point.

The Matlab toolbox accompanying the textbook includes a function neldmead

that maximizes a multivariate function using the Nelder-Meade method. To

apply this function, one de�nes a Matlab function f that returns the function

value at an arbitrary point and speci�es a starting value x. Consider, for ex-

ample, maximizing the \banana" function f(x) = �(100x2)�x21)2�(1�x1)2,
so-called because its contours resemble bananas. Assuming a starting value

of (1; 0), the Nelder-Meade procedure may be executed in Matlab as follows:

f = inline('-100*(x(2)-x(1)^2)^2-(1-x(1))^2');

x = neldmead(f,[1; 0]);

Execution of this script yields the result x = (1; 1), which indeed is the global

maximum of the function. The contours of the banana function and the path

followed by the Nelder-Meade iterates are illustrated in Figure 4.3.
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4.2 Newton-Raphson Method

The Newton-Raphson method for maximizing an objective function uses suc-

cessive quadratic approximations to the objective in the hope that the max-

ima of the approximants will converge to the maximum of the objective.

The Newton-Raphson method is intimately related to the Newton method

for solving root�nding problems. Indeed, the Newton-Raphson method is

identical to applying Newton's method to compute the root of the gradient

of the objective function.

More generally, the Newton-Raphson method begins with the analyst sup-

plying a guess x(0) for the maximum of f . Given x(k), the subsequent iterate

x
(k+1) is computed by maximizing the second order Taylor approximation to

f about x(k):

f(x) � f(x(k)) + f
0(x(k))(x� x(k)) + 1

2
(x� x(k))>f 00(x(k))(x� x(k)):

Solving the �rst order condition

f
0(x(k)) + f

00(x(k))(x� x(k)) = 0;

yields the iteration rule

x
(k+1)  x

(k) � [f 00(x(k))]�1f 0(x(k)):

In theory, the Newton-Raphson method converges if f is twice contin-

uously di�erentiable and if the initial value of x supplied by the analyst

is \suÆciently" close to a local maximum of f at which the Hessian f
00 is

negative de�nite. There is, however, no generally practical formula for deter-

mining what suÆciently close is. Typically, an analyst makes a reasonable

guess for the maximum of f and counts his blessings if the iterates converge.

The Newton-Raphson method can be robust to the starting value if f is

well behaved, for example, if f is globally concave. The Newton-Raphson

method, however, can be very sensitive to starting value if the function is not

globally concave. Also, in practice, the Hessian f 00 must be well-conditioned

at the optimum, otherwise rounding errors in the vicinity of the optimum

can make it diÆcult to compute a precise approximate solution.

The Newton-Raphson algorithm has numerous drawbacks. First, the al-

gorithm requires computation of both the �rst and second derivatives of the

objective function. Second, the Newton-Raphson algorithm o�ers no guar-

antee that the objective function value may be increased in the direction of



CHAPTER 4. FINITE-DIMENSIONAL OPTIMIZATION 63

the Newton step. Such a guarantee is available only if the Hessian f 00(x(k)) is

negative de�nite; otherwise, one may actually move towards a saddle point

of f (if the Hessian is inde�nite) or even a minimum (if Hessian is positive

de�nite). For this reason, the Newton-Raphson method is rarely used in

practice, and then only if the objective function is globally concave.

4.3 Quasi-Newton Methods

Quasi-Newton methods employ a similar strategy to the Newton-Raphson

method, but replace the Hessian of the objective (or its inverse) with a

negative de�nite approximation, guaranteeing that function value can be in-

creased in the direction of the Newton step. The most eÆcient quasi-Newton

algorithms employ an approximation to the inverse Hessian, rather than the

Hessian itself, in order to avoid performing a linear solve, and employ up-

dating rules that do not require second derivative information to ease the

burden of implementation and the cost of computation.

In analogy with the Newton-Raphson method, quasi-Newton methods use

a search direction of the form

d
(k) = �A(k)

f
0(x(k))

where A(k) is an approximation to the inverse Hessian of f at the kth iterate

x
(k). The vector d(k) is called the Newton or quasi-Newton step.

The more robust quasi-Newton methods do not necessarily take the full

Newton step, but rather shorten it or lengthen it in order to obtain im-

provement in the objective function. This is accomplished by performing a

line-search in which one seeks a step length s > 0 that maximizes or nearly

maximizes f(x(k)+ sd
(k)). Given the computed step length s(k), one updates

the iterate as follows:

x
(k+1) = x

(k) + s
(k)
d
(k)
:

Line search methods are discussed in the following section.

Quasi-Newton method di�er in how the Hessian approximation A
k is

constructed and updated. The simplest quasi-Newton method sets Ak = �I,
where I is the identity matrix. This leads to a Newton step that is identical

to the gradient of the objective function at the current iterate:

d
(k) = f

0(x(k)):
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The choice of gradient as a step direction is intuitively appealing because

the gradient always points in the direction which, to a �rst order, promises

the greatest increase in f . For this reason, this quasi-Newton method is

called the method of steepest ascent. The steepest ascent method is simple

to implement, but is numerically less eÆcient in practice than competing

quasi-Newton methods that incorporate information regarding the curvature

of the objective function.

The most widely-used quasi-Newton methods that employ curvature in-

formation produce a sequence of inverse Hessian estimates that satisfy two

conditions. First, given that

d
(k) � f

00�1(x(k))
�
f
0(x(k) + d

(k))� f 0(x(k))
�
;

the inverse Hessian estimate Ak is required to satisfy the so-called quasi-

Newton condition:

d
(k) = A

(k)
�
f
0(x(k) + d

(k))� f 0(x(k))
�
:

Second, the inverse Hessian estimate A(k) is required to be both symmetric

and negative-de�nite, as must be true of the inverse Hessian at a local max-

imum. The negative de�niteness of the Hessian estimate assures that the

objective function value can be inreased in the direction of the Newton step.

Two methods that satisfy the quasi-Newton and negative de�niteness

conditions are the Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-

Goldfarb-Shano (BFGS) updating methods. The DFP method uses the up-

dating scheme

A A+
dd

>

d>u
�
Auu

>
A

u>Au
;

where

d = x
(k) � x(k�1)

and

u = f
0(x(k))� f 0(x(k�1)):

The BFGS method uses the update scheme

A A+
1

d>u

�
wd

> + dw
> �

w
>
u

d>u
dd

>
�
;
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where w = d� Au:
The BFGS algorithm is generally considered superior to DFP, although

there are problems for which DFP outperforms BFGS. However, except for

the updating formulae, the two methods are identical, so it is easy to imple-

ment both and give users the choice.3

Quasi-Newton methods are susceptible to certain problems. Notice in the

update formulae there is a division by d>u. If this value becomes very small

in absolute value, numerical instabilities will result. It is best to monitor this

value and skip updating A(k) if it becomes too small. A useful rule for what

is too small is

jd>uj < � jjdjj jjujj;

where � is the precision of the computer. An alternative to skipping the

update, used in the following implementation, is to reset the inverse Hessian

approximant to a scaled negative identity matrix.

The following Matlab script computes the maximum of a user-supplied

multivariate function f using the quasi-Newton method. The script assumes

that the user has written a Matlab routine f that evaluates the function at an

arbitrary point and that the user has speci�ed a starting point x, an initial

guess for the inverse Hessian A, a convergence tolerance tol, and a limit

on the number of iterations maxit. The script uses an auxiliary algorithm

optstep to determine the step length (discussed in the next section). The

algorithm also o�ers the user a choice on how to select the search direction (1-

steepest ascent, 2-DFP, 3-BFGS). The algorithm outputs x, solution vector,

if successful:

k = size(x,1);

reset = 0;

[fx0,g0] = f(x);

if abs(g0)<eps, return; end

for it=1:maxit

d = -A*g0; % search direction

if ((d'*g0)./(d'*d)) < eps0 % must go uphill

A = -eye(k)./max(abs(fx0),1); % otherwise use

d = g0./max(abs(fx0),1); % steepest ascent

reset = 1;

3Modern implementations of quasi-Newton methods store and update the Cholesky

factors of the inverse Hessian approximation. This approach is numerically more stable

and computationally eÆcient, but is also more complicated and requires routines to update

Cholesky factors.
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end

[s,fx] = optstep(StepMeth,f,x,fx0,g0,d,maxstep,varargin{:});

if fx<=fx0 % Step search failure

if reset

warning('Iterations stuck in qnewton'), return;

else % Use steepest ascent

A = -eye(k)./max(abs(fx0),1);

d = g0./max(abs(fx0),1);

[s,fx] = optstep(StepMeth,f,x,fx0,g0,d,maxstep,varargin{:});

end

end

d = s*d;

x = x+d;

[fx,g] = f(x);

if ShowIters

fprintf('qnewton: %4i %16.4f %16.4f %16.4f\n',it,fx,norm(d),norm(g)); end

% Test convergence

if all(abs(d)/(abs(x)+eps0)<tol)) | all(abs(g)<eps); return; end

% Update Inverse Hessian

u = g-g0; ud = u'*d;

if SearchMeth==1 | abs(ud)<eps % Steepest ascent

A = -eye(k)./max(abs(fx),1);

reset = 1;

elseif SearchMeth==2; % DFP update

v = A*u;

A = A + d*d'./ud - v*v'./(u'*v);

reset = 0;

elseif SearchMeth==3; % BFGS update

w = d-A*u; wd = w*d';

A = A + ((wd + wd') - ((u'*w)*(d*d'))./ud)./ud;

reset = 0;

end

% Update iteration

fx0 = fx; g0 = g;

end

The Matlab toolbox accompanying the textbook includes a function qnewton

that maximizes a multivariate function using the quasi-Newton method. To

apply this function, one de�nes a Matlab function f that returns the func-

tion value at arbitrary point and speci�es a starting value x. Consider, for

example, maximizing the banana function f(x) = �(100x2)�x21)2�(1�x1)2

assuming a starting value of (1; 0). To maximize the function using the de-

fault DFP Hessian update, one proceeds as follows:
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f = inline('-100*(x(2)-x(1)^2)^2-(1-x(1))^2');

x = qnewton(f,[1;0]);

Execution of this script returns the maximum x = (1; 1) in 18 iterations. To

maximize the function using the steepest ascent method, one may override

the default update method as follows:

optset('qnewton','SearchMeth',1);

x = qnewton(f,[1;0]);

Execution of this script fails to �nd the optimum afer 250 iterations, the de-

fault maximum allowable, returning the nonoptimal value x = (0:82; 0:68).

The path followed by the quasi-Newton method iterates in these two exam-

ples are illustrated in Figure 4.4 and 4.5.
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4.4 Line Search Methods

Just as was the case with root�nding problems, it is not always best to take a

full Newton step. In fact, it may be better to either stop short or move past

the Newton step. If we view the Newton step as de�ning a search direction,

performing a one-dimensional search in that direction will generally produce

improved results.

In practice, it is not necessary to perform a thorough search for the best

point in the Newton direction. Typically, it is suÆcient to assure that succes-

sive quasi-Newton iterations are raising the value of the objective. A number

of di�erent line search methods are used in practice, including the golden

search method. The golden search algorithm is very reliable, but computa-
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tionally ineÆcient. Two alternative schemes are typically used in practice to

perform line searches. The �rst, known as the Armijo search, is similar to the

backstepping algorithm used in root�nding and complementarity problems.

The idea is to �nd the minimum power j such that

f(x+ sd)� f(x)
s

� �f
0(x)>d;

where s = �
j and 0 < � < 0:5. Note that the left hand side is the slope

of the line from the current iteration point to the candidate for the next

iteration and the right hand side is the directional derivative at x in the

search direction d, that is, the instantaneous slope at the current iteration

point. The Armijo approach is to backtrack from a step size of 1 until the

slope on the left hand side is a given fraction, � of the slope on the right

hand side.

Another widely-used approach, known as Goldstein search, is to �nd any

value of s that satis�es

�0f
0(x)>d �

f(x+ sd)� f(x)
s

� �1f
0(x)>d;

for some values of 0 < �0 � 0:5 � �1 < 1. Unlike the Armijo search, which is

both a method for selecting candidate values of the stepsize s and a stopping

rule, the Goldstein criteria is simply a stopping rule that can be used with a

variety of search approaches.

Figure 4.6 illustrates the typical situation at a given iteration. The �gure

plots the objective function, expressed as deviations from f(x), i.e., f(x +

sd)� f(x), against the step size s in the Newton direction d. The objective

function is highlighted and the line tangent to it at the origin has slope

equal to the directional derivative f 0(x)>d. The values �0 and �1 de�ne a

cone within which the function value must lie to be considered an acceptable

step. In Figure 4.6 the cone is bounded by dashed lines with �0 = 0:25

and �1 = 0:75. These values are for illustrative purposes and de�ne a far

narrower cone than is desirable; typical values are on the order of 0.0001 and

0.9999.

A simple strategy for locating an acceptable point is to �rst �nd a point

in or above the cone using step doubling (doubling the value of s at each

iteration). If a point above the cone is found �rst, we have a bracket within

which points in the cone must lie. We can then narrow the bracket using the

golden search method. We call this the bhhhstep approach.



CHAPTER 4. FINITE-DIMENSIONAL OPTIMIZATION 70

−5 0 5 10 15 20

x 10
−4

−4

−2

0

2

4

6

8

10

12
x 10

−5

BHHHSTEP: s = 0.00097656
    STEPBT: s = 0.0010499
GOLDSTEP: s = 0.001054

Step Length Determination

s

f(
x+

sd
)

Figure 4.6

Another approach, stepbt, checks to see if s = 1 is in the cone and, if so,

maximizes a quadratic approximation to the objective function in the Newton

direction constructed from knowledge of f(x(k)), f 0(x(k))d(k), and f(x(k) +

d
(k)). If the computed step s

(k) is acceptable, it is taken. Otherwise, the

algorithm maximizes a cubic approximation to the objective function in the

Newton direction constructed from knowledge of the f(x(k)+s(k)d(k)) and the

three pieces of information used to the construct the quadratic approximant.

stepbt is fast and generally gives good results. It is recommended as the

default lines search procedure for general maximization algorithms.

In Figure 4.6 we have included three stars representing the step lengths de-

termined by stepbhhh, stepbt and our implementation of the golden search

step length maximizer, stepgold (also listed below). stepgold �rst brackets

a maximum in the direction d and then uses the golden search approach to

narrow the bracket. This method di�ers from the other two in that it termi-
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nates when the size of the bracket is less than a speci�ed tolerance (here set

at 0.0004).

In this example, the three methods took 11, 4 and 20 iterations to �nd an

acceptable step length, respectively. Notice that stepbt found the maximum

in far fewer steps than did stepgold. This will generally be true when

the function is reasonably smooth and hence well approximated by a cubic

function. It is diÆcult to make generalizations about the performance of the

step line search algorithm, however. In this example, the step size was very

small, so both stepbhhh and stepgold take many iterations to get the order

of magnitude correct. In many case, if the initial distance is well chosen,

the step size will typically be close to unity in magnitude, especially as the

maximizer approaches the optimal point. When this is true, the advantage

of stepbt is less important. Having said all of that, we recommend stepbt

as a default. We have also implemented our algorithm to use stepgold if

the other methods fail.

4.5 Special Cases

Two special cases arise often enough in economic practice (especially in

econometrics) to warrant additional discussion. The non-linear least squares

and the maximum likelihood problems have objective functions with special

structures that give rise to their own special quasi-Newton methods. The

special methods di�er from other Newton and quasi-Newton methods only

in the choice of the matrix used to approximate the Hessian. Because these

problems generally arise in the context of statistical applications, we alter

our notation to conform with the conventions for those applications. The

optimization takes place with respect to a k-dimensional parameter vector �

and n will refer to the number of observations.

The nonlinear least squares problem takes the form

min
�

1
2
f(�)>f(�)

where f : <k ! <n (the 1
2
is for notational convenience). The gradient of

this objective function is

nX
i=1

f
0
i
(�)>f

i
(�) = f

0(�)>f(�):
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The Hessian of the objective function is

f
0(�)>f 0(�) +

nX
i=1

f
i
(�)

@
2
f(�)

@�@�>
:

If we ignore the second term in the Hessian, we are assured of having a

positive de�nite matrix with which to determine the search direction:

d = �[f 0(�)>f 0(�)]�1f 0(�)>f(�):

All other aspects of the problem are identical to the quasi-Newton methods

already discussed, except for the adjustment to minimization. It is also

worth pointing out that, in typical applications, f(�) is an error terms with

expectation 0. Assuming that the usual central limit assumptions apply to

the error term, the inverse of the approximate Hessian

[f 0(�)>f 0(�)]�1;

can be used as a covariance estimator for �.

Maximum likelihood problems are speci�ed by a choice of a distribution

function for the data, y, that depends on a parameter vector, �. The log-

likelihood function is the sum of the logs of the likelihoods of each of the

data points:

l(�; y) =

nX
i=1

ln f(�; y
i
):

The score function is de�ned as the matrix of derivatives of the log-likelihood

function evaluated at each observation:

s
i
(�; y) =

@l(�; y
i
)

@�
:

(viewed as a matrix, the score function is n� k).
A well-known result in statistical theory is that the expectation of the

inner product of the score function is equal to the negative of the expectation

of the second derivative of the likelihood function, which is known as the

information matrix. Either the information matrix or the sample average of

the inner product of the score function provides a positive de�nite matrix

that can be used to determine a search direction. In the later case the search

direction is de�ned by

d = �[s(�; y)>s(�; y)]�1s(�; y)>1
n
:
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This approach is known as the modi�ed method of scoring. As in the case

of the nonlinear least squares, a covariance estimator for � is immediately

available using

[s(�; y)>s(�; y)]�1:

4.6 Constrained Optimization

The simplest constrained optimization problem involves the maximization of

an objective function subject to simple bounds on the choice variable:

max
a�x�b

f(x):

According to the Karush-Kuhn-Tucker theorem, if f is di�erentiable on

[a; b], then x� is a constrained maximum for f only if it solves the comple-

mentarity problem CP(f 0; a; b):

a
i
� x

i
� b

i

x
i
> a

i
) f

0
i
(x) � 0

x
i
< b

i
) f

0
i
(x) � 0:

Conversely, if f is concave and di�erentiable on [a; b] and x� solves the com-

plementarity problem CP(f 0a; b), then x� is a constrained maximum of f ; if

additionally f is strictly concave on [a; b], then the maximum is unique.

Two bounded maximization problems are displayed in Figure 4.7. In

this �gure, the bounds are displayed with dashed lines and the objective

function with a solid line. In Figure 4.7A the objective function is concave

and achieves its unique global maximum on the interior of the feasible region.

At the maximum, the derivative of f must be zero, for otherwise one could

improve the objective by moving either up or down, depending on whether

the derivative is positive or negative. In Figure 4.7B we display a more

complicated case. Here, the objective function is convex. It achieves a global

maximum at the lower bound and a local, non-global maximum at the upper

bound. It also achieves a global minimum in the interior of the interval.

In Figure 4.8 we illustrate the complementarity problem presented by the

Karush-Kuhn-Tucker conditions associated with the bounded optimization

problems in Figure 4.7. The complementarity problems are represented in

their equivalent root�nding formulation min(max(f 0(x); a � x); b � x) = 0.

In Figure 4.8A we see that the Karush-Kuhn-Tucker conditions possess an
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unique solution at the unique global maximum of f . In Figure 4.8B there

are three solutions to the Karush-Kuhn-Tucker conditions, corresponding to

the two local maxima and the one local minimum of f on [a; b]. These �g-

ures illustrate that one may reliably solve a bounded maximization problem

using standard complementarity methods only if the objective function is

concave. Otherwise, the complementary algorithm could lead to local, non-

global maxima or even minima.
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The sensitivity of the optimal value of the objective function f � to changes

in the bounds of the bounded optimization problem are relatively easy to

characterize. According to the Envelope theorem,

df
�

da
= min (0; f 0(x�))

df
�

db
= max (0; f 0(x�)) :

More generally, if f , a, and b all depend on some parameter p, then

df
�

dp
=
@f

@p
+min

�
0;
@f

@x

�
da

dp
+max

�
0;
@f

@x

�
db

dp
;

where the derivatives of f , a, and b are evaluated at (x�; p).

The most general constrained �nite-dimensional optimization problem

that we consider is

min
a�x�b

f(x); s.t. R(x) S r;

where R : [a; b]! <m.
According to the Karush-Kuhn-Tucker Theorem, a regular point x max-

imizes f subject to the general constraints only if there is a vector � 2 <n

such that (x; �) solves the complementarity problem

CP

� �
f
0(x)� R0(x)�>

R(x)� r

�
;

�
a

p

�
;

�
b

q

��

where

p
i
=

�
0 if i is a \�" constraint
�1 otherwise

and

q
i
=

�
0 if i is a \�" constraint
1 otherwise

:

A point x is regular if the gradients of all constraint functions R
i
that satisfy

R
i
(x) = r

i
are linearly independent.4 Conversely, if f is concave, R is convex

4The regularity conditions may be omitted if either the constraint function R is linear,

or if f is concave, R is convex, and the feasible set has nonempty interior.



CHAPTER 4. FINITE-DIMENSIONAL OPTIMIZATION 76

and (x; �) satis�es the Karush-Kuhn-Tucker conditions, then x solves the

general constrained optimization problem.

In the Karush-Kuhn-Tucker conditions, the �
i
are called Lagrangian mul-

tipliers or shadow prices. The signi�cance of the shadow prices is given by

the Envelope Theorem, which asserts that under mild regularity conditions,

@f
�

@r
= �;

that is, �
i
is the rate at which the optimal value of the objective will change

with changes in the constraint constant r
i
. The sensitivity of the optimal

value of the objective function f
� to changes in the bounds on the choice

variable are given by:

df
�

da
= min

�
0; f 0(x)�R0(x)�>

�
df
�

db
= max

�
0; f 0(x)�R0(x)�>

�
:

The Karush-Kuhn-Tucker complementarity conditions typically have a

natural arbitrage interpretation. Consider the problem of maximizing prof-

its from certain economic activities when the activities employ �xed fac-

tors or resources that are available in limited supply. Speci�cally, suppose

x1; x2; : : : ; xn are the levels of n economic activities, which must be non-

negative, and the objective is to maximize pro�t f(x) generated by those

activities. Also suppose that these activities employ m resources and that

the usage of the ith resource R
i
(x) cannot exceed a given availability r

i
. Then

�
�
i
represents the opportunity cost or shadow price of the ith resource and

MP
j
=

@f

@x
j

�
X
i

�
�
i

@R
i

@x
j

represents the economic marginal pro�t of the jth activity, accounting for

the opportunity cost of the resources employed in the activity. The Karush-

Kuhn-Tucker conditions may thus be interpreted as follows:
x
j
� 0 activity levels are nonnegative

MP
j
� 0 otherwise, raise pro�t by raising x

j

x
j
> 0)MP

j
� 0 otherwise, raise pro�t by lowering x

j

�
�
i
� 0 Shadow price of resource is nonnegative

R
i
(x) � r

i
resource use cannot exceed availability

�
i
> 0) R

i
(x) = r

i
valuable resources should not be wasted
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There are many approaches to solving general optimization problems that

would take us beyond what we can hope to accomplish in this book. Solv-

ing general optimization problems is diÆcult and the best advice we can

give here is that you should obtain a good package and use it. However, if

your problem is reasonably well behaved in the sense that the Karush-Kuhn-

Tucker are both necessary and suÆcient, then the problem is simply to solve

the Karush-Kuhn-Tucker conditions. This means writing the Karush-Kuhn-

Tucker conditions as a complementarity problem and solving the problem

using the methods of the previous chapter.

Exercises

1. Consider the Quadratic Programming problem

max
x

1
2
x
0
Dx+ c

0
x

s:t: Ax � b

x � 0

where D is a symmetric n � n matrix, A is an m � n matrix, b is an

m-vector.

(a) Write the Karush-Kuhn-Tucker necessary conditions as a linear

complementarity problem.

(b) What condition onD will guarantee that the Karush-Kuhn-Tucker

conditions are suÆcient for optimality?

2. A consumer's preferences over the commodities x1, x2, and x3 are char-

acterized by the Stone-Geary utility function

U(x) =

3X
i=1

�
i
ln(x

i
� 

i
)

where �
i
> 0 and x

i
> 

i
� 0. The consumer wants to maximize his

utility subject to the budget constraint

3X
i=1

p
i
x
i
� I
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where p
i
> 0 denotes the price of x

i
, I denotes income, and I �P3

i=1 pii > 0:

(a) Write the Karush-Kuhn-Tucker necessary conditions for the prob-

lem.

(b) Verify that the Karush-Kuhn-Tucker conditions are suÆcient for

optimality.

(c) Derive analytically the associated demand functions.

(d) Derive analytically the shadow price and interpret its meaning.

(e) Prove that the consumer will utilize his entire income.

3. Derive and interpret the Karush-Kuhn-Tucker conditions for the clas-

sical transportation problem:

min

nX
{=1

mX
|=1

x
{|
x
{|

s:t:

nX
{=1

x
{|
� d

|
| = 1; : : : ; m

mX
|=1

x
{|
� s

{
{ = 1; : : : ; n

x
{|
� 0 { = 1; : : : ; n; | = 1; : : : ; m

State suÆcient conditions for the transportation problem to have an

optimal feasible solution.

4. Demand for a commodity in regions A and B is given by:

Region A : p = 200� 2q

Region B : p = 100� 4q

Supply is given by:

Region A : p = 20 + 8q

Region B : p = 10 + 6q:

The transportation cost between regions is $10 per unit.
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Formulate an optimization problem that characterizes the competitive

spatial price equilibrium. Derive, but do not solve, the Karush-Kuhn-

Tucker conditions. Interpret the shadow prices.

5. Consider a vector of n random assets with expected return �
n�1 and

variance �
n�n. Formulate a quadratic program whose solution is the

Markowitz E-V eÆcient portfolio x
n�1 whose expected return is at least

r
�. Derive the Karush-Kuhn-Tucker conditions for the program. In-

terpret the Lagrangian multiplier and explain its relation to the risk

aversion parameter � of the objective function �0�x���x0�x of Freund's
portfolio choice model.

6. Consider the nonlinear programming problem

max
x1;x2

x
2
2 � 2x1 � x21

s:t: x
2
1 + x

2
2 � 1

x1 � 0; x2 � 0:

(a) Write the Karush-Kuhn-Tucker necessary conditions for the prob-

lem.

(b) What points satisfy the Karush-Kuhn-Tucker necessary condi-

tions.

(c) Are the Karush-Kuhn-Tucker conditions suÆcient for optimality?

(d) How do you know that problem possesses an optimum?

(e) Determine the optimum, if any.

7. A tomato processor operates two plants whose hourly variable costs (in

dollars) are, respectively,

c1 = 80 + 2:0x1 + 0:001x21

c2 = 90 + 1:5x2 + 0:002x22;

where x
i
is the number of cases produced per hour at plant i. In order

to meet contractual obligations, he must produce at a rate of at least

2000 cases per hour (x1 + x2 � 2000.) He wishes to do so at minimal

cost.
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(a) Write the Karush-Kuhn-Tucker necessary conditions for the prob-

lem.

(b) Verify that the Karush-Kuhn-Tucker conditions are suÆcient for

optimality.

(c) Determine the optimal levels of production.

(d) Determine the optimal value of the shadow price and interpret its

meaning.

8. Consider the problem of allocating a scarce resource, the total supply

of which is b > 0, among n tasks with separable rewards:

max
x1;x2;:::;xn

f1(x1) + f2(x2) + : : :+ f
n
(x

n
)

s:t: x1 + x2 + : : :+ x
n
� b

x1 � 0; x2 � 0; : : : ; x
n
� 0:

Assume each f
i
is strictly increasing and di�erentiable but not neces-

sarily concave.

(a) How do you know that problem possesses an optimum?

(b) Write the Karush-Kuhn-Tucker necessary conditions.

(c) Prove that the scarce resource will be completely utilized.

(d) Interpret the shadow price associated with the resource constraint.

(e) Given a marginal increase in the supply of the resource, to which

task(s) would you allocate the additional amount.

9. Consider a one-output two-input production function

y = f(x1; x2) = x
2
1 + x

2
2:

Given the prices of inputs 1 and 2, w1 and w2, the minimum cost

of producing a given level of output, �y, is obtained by solving the

constrained optimization problem

min
x1;x2

C = w1 � x1 + w2 � x2

s:t: f(x1; x2) � �y:

Letting � denote the shadow price associated with the production con-

straint, answer the following questions:
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(a) Write the Karush-Kuhn-Tucker necessary conditions.

(b) Find explicit expressions for the optimal x�1, x
�
2, and C

�.

(c) Find an explicit expression for the optimal �� and interpret its

meaning.

(d) Di�erentiate the expression for C� to con�rm that @C
�

@�y
= �

�.

10. A salmon cannery produces Q 1-lb. cans of salmon according to a

technology given by Q = 18K
1
4L

1
3 , where capital K is �xed at 16 units

in the shortrun and labor L may be hired in any quantity at a wage rate

of w dollars per unit. Each unit of output provides a pro�t contribution

of 1 dollar.

(a) Derive the �rm's shortrun demand for labor.

(b) If w = 3, how much would the �rm be willing to pay to rent a

unit of capital.

11. Consider the nonlinear programming problem

min
x1;:::;x4

x
0:25
1 x

0:50
3 x

0:25
4

s:t: x1 + x2 + x3 + x4 � 4

x1; x2; x3; x4 � 0:

(a) What can you say about the optimality of the point (1; 0; 2; 1)?

(b) Does this program possess all the correct curvature properties for

the Karush-Kuhn-Tucker conditions to be suÆcient for optimality

throughout the feasible region? Why or why not?

(c) How do you know that problem possesses an optimal feasible so-

lution?

12. Consider the non-linear programming problem

min
x1;x2

2x21 � 12x1 + 3x22 � 18x2 + 45

s:t: 3x1 + x2 � 12

x1 + x2 � 6

x1; x2 � 0:

The optimal solution to this problem is: x�1 = 3 and x�2 = 3.
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(a) Verify that the Karush-Kuhn-Tucker conditions are satis�ed by

this solution.

(b) Determine the optimal values for the shadow prices �1 and �2

associated with the structural constraints, and interpret ��1 and

�
�
2.

(c) If the second constraint were changed to x1 + x2 � 5, what would

be the e�ect on the optimal values of x1, x2, �1, and �2?

13. Suppose that the probability density function of a non-negative random

variable, y, is

exp(�y
i
=�

i
)=�

i

where �
i
= X

i
� for some observable data X

i
.

(a) Show that the �rst order conditions for the maximum likelihood

estimator of � can be written asX X
i

>
X

i

(X
i
�)2

� =
X X

i

>
y
i

(X
i
�)2

:

(b) Use this result to de�ne a recursive algorithm to estimate �.

(c) Write a Matlab function of the form [beta,sigma]=example(y,X)

that computes the maximum likelihood estimator of � and its

asymptotic covariance matrix �. The function should be a stand-

alone procedure (i.e., do not call any optimization or root-�nding

solvers) that implements the recursive algorithm.

(d) Show that the recursive algorithm can be interpreted as a quasi-

Newton method. Explain fully.

14. Write a Matlab function that is passed a vector of observations (of

positive numbers) and returns the maximum likelihood estimates of �

and their covariance matrix for the two-parameter gamma function:

f(x; �) =
�
�1

2 x
�1�1e��2x

�(�1)
:

Hint: Formulate the problem as a maximization of the log-likelihood.

Note that the �rst and second derivatives of the log of the � function

are the psi and trigamma functions. The Matlab toolbox contains

procedures to evaluate these special functions.
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15. Continuing in the vein of the last problem, reformulate the likelihood

function of the two-parameter Gamma distribution in terms of �1 and

 = �1=�2.

(a) Solve explicitly for the optimal  , and express the likelihood func-

tion in terms of �1 and the data alone.

(b) Write a Matlab function that maximizes the resulting univariate

likelihood function using algorithm golden provided in the tool-

box.

(c) Write a Matlab function that maximizes the resulting univariate

likelihood function using algorithm newton provided in the tool-

box.

(d) The maximum likelihood estimator of � depends on the data

only through Y1 = 1
n

P
n

i=1 xi, the arithmetic mean, and Y2 =

exp( 1
n

P
n

i=1 ln(xi)), the geometric mean (Y1 and Y2 are known as

suÆcient statistics for �). Plot �1 as a function of ln(Y1=Y2).



Chapter 5

Numerical Integration and

Di�erentiation

In many computational economic applications, one must compute the de�nite

integral of a real-valued function f with respect to a \weighting" function w

over an interval I of <n:Z
I

f(x)w(x) dx:

The weighting function may be the identity, w � 1, in which case the integral

represents the area under the function f . In other applications, w may be

the probability density of a random variable ~X, in which case the integral

represents the expectation of f( ~X).

In this chapter, we discuss three classes of numerical integration or nu-

merical quadrature methods. All methods approximate the integral with a

weighted sum of function values:Z
I

f(x)w(x) dx �
nX
i=0

w
i
f(x

i
)

The methods di�er only in how the quadrature weights w
i
and the quadrature

nodes x
i
are chosen. Newton-Cotes methods approximate the integrand f

between nodes using low order polynomials, and sum the integrals of the

polynomials to estimate the integral of f . Newton-Cotes methods are easy

to implement, but are not particularly eÆcient for computing the integral

of a smooth function. Gaussian quadrature methods choose the nodes and

weights to satisfy moment matching conditions, and are more powerful than

84
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Newton-Cotes methods if the integrand is smooth. Monte Carlo and quasi-

Monte Carlo integration methods use `random' or `equidistributed' nodes,

and are simple to implement and very useful if the integration domain is of

high dimension.

In this chapter, we also present an overview of how to compute �nite

di�erence approximations for the derivatives of a real-valued function. As

we have seen in previous chapters, it is often desirable to compute derivatives

numerically because analytic derivative expressions are diÆcult or impossible

to derive, or expensive to evaluate. Finite di�erence methods can also be used

to solve di�erential equations, which arise frequently in dynamic economic

models, especially models formulated in continuous time. In this chapter, we

introduce numerical methods for di�erential equations and illustrate their

application to initial value problems.

5.1 Newton-Cotes Methods

Newton-Cotes quadrature methods are designed to approximate the integral

of a real-valued function f de�ned on a bounded interval [a; b] of the real

line. Newton-Cotes methods approximate the integrand f between nodes

using low order polynomials, and sum the integrals of the polynomials to

form an estimate the integral of f . Two Newton-Cotes rules are widely used

in practice: the trapezoid rule and Simpson's rule. Both rules are very easy

to implement and are typically adequate for computing the area under a

continuous function.

The simplest way to compute an approximate integral of a real-valued

function f over a bounded interval [a; b] � < is to partition the interval

into subintervals of equal length, approximate f over each subinterval using

a straight line segment that linearly interpolates the function values at the

subinterval endpoints, and then sum the areas under the line segments. This

is the so-called trapezoid rule, which draws its name from the fact that the

area under f is approximated by a series of trapezoids.

More formally, let x
i
= a+ ih for i = 0; 1; 2; : : : ; n, where h = (b� a)=n.

The nodes x
i
divide the interval [a; b] into n subintervals of equal length

h. Over the ith subinterval, [x
i�1; xi], the function f may be approximated

by the line segment passing through the two graph points (x
i�1; f(xi�1)) and

(x
i
; f(x

i
)). The area under this line segment de�nes a trapezoid that provides
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an estimate of the area under f over this subinterval:Z
xi

xi�1

f(x) dx �
Z

xi

xi�1

f̂(x) dx =
h

2
[f(x

i�1) + f(x
i
)]:

Summing up the areas of the trapezoids across subintervals yields the trape-

zoid rule:Z
b

a

f(x) dx �
nX
i=0

w
i
f(x

i
)

where w0 = w
n
= h=2 and w

i
= h, otherwise.

The trapezoid rule is simple and robust. Other Newton-Cotes methods

will be more accurate if the integrand f is smooth. However, the trapezoid

rule will often be more accurate if the integrand exhibits discontinuities in its

�rst derivative, which can occur in economic applications exhibiting corner

solutions. The trapezoid rule is said to be �rst order exact because in theory

it exactly computes the integral of any �rst order polynomial, that is, a

line. In general, if the integrand is smooth, the trapezoid rule yields an

approximation error that is O(1=n2), that is, the error shrinks quadratically

with the number of subintervals.

Simpson's rule is based on piece-wise quadratic, rather than piece-wise

linear, approximations to the integrand f . More formally, let x
i
= a+ ih for

i = 0; 1; 2; : : : ; n, where h = (b�a)=n and n is even. The nodes x
i
divide the

interval [a; b] into an even number n of subintervals of equal length h. Over

the jth pair of subintervals, [x2j�2; x2j�1] and [x2j�1; x2j], the function f may

be approximated by the unique quadratic function f̂
j
that passes through the

three graph points (x2j�2; f(x2j�2)) (x2j�1; f(x2j�1)), and (x2j; f(x2j)). The

area under this quadratic function provides an estimate of the area under f

over the subinterval:Z
x2j

x2j�2

f(x) dx �
Z

x2j

x2j�2

f̂
j
(x) dx =

h

3
(f(x2j�2) + 4f(x2j�1) + f(x2j)) :

Summing up the areas under the quadratic approximants across subintervals

yields Simpson's rule:Z
b

a

f(x) dx �
nX
i=0

w
i
f(x

i
)
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where w0 = w
n
= h=3 and, otherwise, w

i
= 2h=3 if i is even and w

i
= 4h=3

if i is odd.

Simpson's rule is almost as simple as the trapezoid rule, and thus not

much harder to program. Simpson's rule, moreover, will yield more accurate

approximations if the integrand is smooth. Even though Simpson's rule is

based on locally quadratic approximation of the integrand, it is third order

exact. That is, it exactly computes the integral of any third order (e.g.,

cubic) polynomial. In general, if the integrand is smooth, Simpson's rule

yields an approximation error that is O(1=n4), and thus falls at twice the

geometric rate as the error associated with the trapezoid rule. Simpson's

rule is the Newton-Cotes rule most often used in practice because it retains

algorithmic simplicity while o�ering an adequate degree of approximation.

Newton-Cotes rules of higher order may be de�ned, but are more diÆcult to

work with and thus are rarely used.

Through the use of tensor product principles, univariate Newton-Cotes

quadrature schemes can be generalized for higher dimensional integration.

Suppose one wishes to integrate a real-valued function de�ned on a rectan-

gle f(x1; x2)ja1 � x1 � b1; a2 � x2 � b2g in <2. One way to proceed, is to

compute the Newton-Cotes nodes and weights f(x1i; w1i)ji = 1; 2; : : : ; n1g for
the real interval [a1; b1] and the Newton-Cotes and weights f(x2j; w2j)jj =

1; 2; : : : ; n2g for the real interval [a2; b2]. The tensor product Newton-Cotes
rule for the rectangle would be comprised of the n = n1 � n2 grid points of

the form f(x1i; x2j)ji = 1; 2; : : : ; n1; j = 1; 2; : : : ; n2g with associated weights

fw
ij
= w1i � w2jji = 1; 2; : : : ; n1; j = 1; 2; : : : ; n2g. This construction princi-

ple can be applied to an arbitrary dimension using repeated tensor product

operations.

In most computational economic applications, it is not possible to deter-

mine a priori how many partition points are needed to compute an integral

to a desired level of accuracy using a Newton-Cotes quadrature rule. One so-

lution to this problem is to use an adaptive quadrature strategy whereby one

increases the number of points at which the integrand is evaluated until the

sequence of estimates of the integral converge. EÆcient adaptive Newton-

Cotes quadrature schemes are especially easy to implement. One simple, but

powerful, scheme calls for the number of intervals to be doubled with each

iteration. Because the new partition points include the partition points used

in the previous iteration, the computational e�ort required to form the new

integral estimate is cut in half. More sophisticated adaptive Newton-Cotes

quadrature techniques relax the requirement that the intervals be equally
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spaced and concentrate new evaluation points in those areas where the inte-

grand appears to be most irregular.

5.2 Gaussian Quadrature

Gaussian quadrature rules are constructed with respect to speci�c weighting

functions. Speci�cally, for a weighting function w de�ned on an interval I �
< of the real line, and for a given order of approximation n, the quadrature

nodes x1; x2; : : : ; xn and quadrature weights w1; w2; : : : ; wn
are chosen so as

to satisfy the 2n `moment-matching' conditions:Z
I

x
k

w(x) dx =

nX
i=1

w
i
x
k

i
; for k = 0; : : : ; 2n� 1:

Integral approximations are then formed using weighted sums of values of f

at selected nodes:Z
I

f(x)w(x) dx �
nX
i=1

w
i
f(x

i
):

Gaussian quadrature over a bounded interval with respect to the identity

weighting function, w � 1, is called Gauss-Legendre quadrature. Gauss-

Legendre quadrature may be used to compute the area under a curve, and

can easily be generalized to integration on higher dimensional spaces us-

ing tensor product principles. By construction, an n-point Gauss-Legendre

quadrature rule will exactly compute the integral of any polynomial of order

2n � 1 or less. Thus, if f can be closely approximated by a polynomial, a

Gauss-Legendre quadrature should provide an accurate approximation to the

integral. Furthermore, Gauss-Legendre quadrature is consistent for Riemann

integrable functions. That is, if f is Riemann integrable, then the approxima-

tion a�orded by Gauss-Legendre quadrature can be made arbitrarily precise

by increasing the number of nodes n.

Gauss-Legendre quadrature is the numerical integration method of choice

when f possesses continuous derivatives, but should be applied with great

caution otherwise. If the function f possesses known kink points, it is of-

ten possible to break the integral into the sum of two or more integrals of

smooth functions. If these or similar steps do not produce smooth integrands,



CHAPTER 5. INTEGRATION AND DIFFERENTIATION 89

Table 5.1: Errors for Selected Quadrature Methods

Trapezoid Simpson Gauss-

Function Degree Rule Rule Legendre

exp(�x) 10 1.36e+001 3.57e-001 8.10e-002

20 3.98e+000 2.31e-002 2.04e-008

30 1.86e+000 5.11e-003 1.24e-008

(1 + 25x2)�1 10 8.85e-001 9.15e-001 8.65e-001

20 6.34e-001 6.32e-001 2.75e+001

30 4.26e-001 3.80e-001 1.16e+004

jxj0:5 10 7.45e-001 7.40e-001 6.49e-001

20 5.13e-001 4.75e-001 1.74e+001

30 4.15e-001 3.77e-001 4.34e+003

then Newton-Cotes quadrature methods may be more eÆcient than Gaus-

sian quadrature methods because they limit the error caused by the kinks

and singularities to the interval in which they occur.

When the weighting function w is the continuous probability density for

some random variable ~X, Gaussian quadrature has a very straightforward

interpretation. In this context, Gaussian quadrature essentially `discretizes'

the continuous random variable ~X by constructing a discrete random variable

with mass points x
i
and probabilities w

i
that approximates ~X in the sense

that both random variables have the same moments of order less than 2n:
nX
i=1

w
i
x
k

i
= E( ~Xk) for k = 0; : : : ; 2n� 1:

Given the mass points and probabilities of the discrete approximant, the

expectation of any function of the continuous random variable ~X may be ap-

proximated using the expectation of the function of the discrete approximant,

which requires only the computation of a weighted sum:

Ef( ~X) =

Z
f(x) w(x) dx �

nX
i=1

f(x
i
)w

i
:

For example, the three-point Gauss-Hermite approximation to the standard

univariate normal distribution ~Z is characterized by the condition that its
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The 0th through 5th moments match those of the standard normal: are E ~Z0 =

1, E ~Z1 = 0, E ~Z2 = 1, E ~Z3 = 0, E ~Z4 = 3, and E ~Z5 = 0. One can easily

verify that these conditions are satis�ed by a discrete random variable with

mass points x1 = �
p
3, x2 = 0, and x3 =

p
3 and associated probabilities

w1=1/6, w2 = 2=3, and w3 = 1=6.

Computing the n-degree Gaussian nodes and weights is a non-trivial task

which involves solving the 2n nonlinear equations for fx
i
g and fw

i
g. EÆcient,

specialized numerical routines for computing Gaussian quadrature nodes and

weights are available for di�erent weighting functions, including virtually all

the better known probability distributions, such as the uniform, normal,

gamma, exponential, Chi-square, and beta distributions. Gaussian quadra-

ture with respect to the identity weight is called Gauss-Legendre quadrature;

Gaussian quadrature with respect to normal probability densities is called

Gauss-Hermite quadrature.1

As was the case with Newton-Cotes quadrature, tensor product princi-

ples may be applied to univariate Gauss-Hermite quadrature rules to develop

quadrature rules for multivariate normal distributions. Suppose, for exam-

ple, that ~X is a d-dimensional normal random variable with mean vector �

and variance-covariance matrix �. Then ~X is distributed as �+ ~ZR where R

is the Cholesky square root of � (e.g., � = R
0
R) and ~Z is a row d-vector of

independent standard normal variates. If fz
i
; w

i
g are the degree n Gaussian

nodes and weights for a standard normal variate, then a nd degree approx-

imation for ~X may be constructed using tensor products. For example, in

two dimensions the nodes and weights would take the form

x
ij
= (�1 +R11zi +R21zj; �2 +R12zi +R22zj)

and

p
ij
= p

i
p
j
:

The Gaussian quadrature scheme for normal variates may also be used to

develop a reasonable scheme for discretizing lognormal random variates. By

de�nition, ~Y is lognormally distributed with parameters � and �2 if, and only

if, it is distributed as exp( ~X) were ~X is normally distributed with mean � and

variance �2. It follows that if fx
i
; w

i
g are Gauss-Hermite nodes and weights

1Most numerical analysis books use the term Gauss-Hermite quadrature to refer to the

standard weighting function w(x) = exp(�x2), which di�ers from the standard normal

density only by a multiplicative constant of integration.
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for a Normal(�; �2) distribution, then fy
i
; w

i
g, where y

i
= exp(x

i
), provides a

reasonable discrete approximant for a Lognormal(�; �2) distribution. Given

this discrete approximant for the lognormal distribution, one can estimate

the expectation of a function of ~Y as follows: Ef( ~Y ) =
R
f(y) w(y) dy �P

n

i=1 f(yi)wi
This integration rule for lognormal distributions will be exact

if f is a polynomial of degree 2n� 1 and less in log(y) (not in y).

5.3 Monte Carlo Integration

Monte Carlo integration methods are motivated by the Strong Law of Large

Numbers. One version of the Law states that if x1; x2; : : : are independent

realizations of a random variable ~X and f is a continuous function, then

lim
n!1

1

n

nX
i=1

f(x
i
) = Ef( ~X)

with probability one.

The Monte Carlo integration scheme is thus a simple one. To com-

pute an approximation to the integral of f( ~X), one draws a random sample

x1; x2; : : : ; xn from the distribution of ~X and sets

Ef( ~X) �
1

n

nX
i=1

f(x
i
):

Matlab o�ers two intrinsic random number generators. The routine rand

generates a random sample from the uniform(0,1) distribution stored in ei-

ther vector or matrix format. Similarly, the routine randn generates a ran-

dom sample from the standard normal distribution stored in either vector or

matrix format. In particular, a call of the form x=rand(n) or x=randn(n)

generates a random sample of n realizations and stores it in a row vector.

The uniform random number generator is useful for generating random

samples from other distributions. Suppose ~X has a cumulative distribution

function

F (x) = Pr( ~X � x)

whose inverse has a well-de�ned closed form. If ~U is uniformly distributed

on (0; 1), then

F
�1( ~U)
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is distributed as ~X. Thus, to generate a random sample x1; x2; : : : ; xn from

the ~X distribution, one generates a random sample u1; u2; : : : ; un from the

uniform distribution and sets x
i
= F

�1(u
i
).

The standard normal random number generator is useful for generating

random samples from related distributions. For example, to generate a ran-

dom sample of n lognormal variates, one may use the script
x = exp(mu+sigma*randn(n));

where mu and sigma are the mean and standard deviation of the distribution.

To generate a random sample of n d-dimensional normal variates one may

use the script
x = randn(n,d)*chol(Sigma)+mu(ones(n,1),:);

where Sigma is the d by d variance-covariance matrix and mu is the mean

vector in row form.

A fundamental problem that arises with Monte Carlo integration is that

it is almost impossible to generate a truly random sample of variates for any

distribution. Most compilers and vector processing packages provide intrinsic

routines for computing so-called random numbers. These routines, however,

employ iteration rules that generate a purely deterministic, not random, se-

quence of numbers. In particular, if the generator is repeatedly initiated at

the same point, it will return the same sequence of `random' variates each

time. About all that can be said of numerical random number generators is

that good ones will generate sequences that appear to be random, in that

they pass certain statistical tests for randomness. For this reason, numer-

ical random number generators are often more accurately said to generate

sequences of `pseudo-random' rather than random numbers.

Monte Carlo integration is easy to implement and may be preferred over

Gaussian quadrature if the a routine for computing the Gaussian mass points

and probabilities is not readily available or if the integration is over many

dimensions. Monte Carlo integration, however, is subject to a sampling er-

ror that cannot be bounded with certainty. The approximation can be made

more accurate, in a statistical sense, by increasing the size of the random

sample, but this can be expensive if evaluating f or generating the pseudo-

random variate is costly. Approximations generated by Monte Carlo integra-

tion will vary from one integration to the next, unless initiated at the same

point, making the use of Monte Carlo integration in conjunction within other

iterative schemes, such as dynamic programming or maximum likelihood es-

timation, problematic. So-called quasi Monte-Carlo methods can circumvent

some of the problems associated with Monte-Carlo integration.
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5.4 Quasi-Monte Carlo Integration

Although Monte-Carlo integration methods originated using insights from

probability theory, recent extensions have severed that connection and, in the

process, demonstrated ways in which the methods can be improved. Monte-

Carlo methods rely on sequences fx
i
g with the property that

lim
n!1

b� a
n

1X
i=1

f(x
i
) =

Z
b

a

f(x) dx:

Any sequence that satis�es this condition for arbitrary (Riemann) integrable

functions can be used to approximate an integral on [a; b]. Although the Law

of Large Numbers assures us that this is true when the x
i
are independent

and identically distributed random variables, other sequences also satisfy

this property. Indeed, it can be shown that sequences that are explicitly

non-random, but instead attempt to �ll in space in a regular manner exhibit

improved convergence properties.

There are numerous schemes for generating equidistributed sequences.

The best known are the Neiderreiter, Weyl, and Haber. The followingMatlab

script generates equidistributed sequences of length n for the unit hypercube:

eds_pp=sqrt(primes(7920));

i=(1:n)';

switch upper(type(1))

case 'N' % Neiderreiter

j=2.^((1:d)/(d+1));

x=i*j;

x=x-fix(x);

case 'W' % Weyl

j=eds_pp(1:d);

x=i*j;

x=x-fix(x);

case 'H' % Haber

j=eds_pp(1:d);

x=(i.*(i+1)./2)*j;

x=x-fix(x);

end

The Matlab toolbox accompanying the textbook includes a function qnwequi

that generates the equidistributed nodes for integration over an arbitrary

bounded interval in a space of arbitrary dimension. The calling sequence

takes the form
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[x,w] = qnwequi(n,a,b,type);

where x are the nodes, w are the weights, n is the number nodes and weights,

a is the vector of left endpoint, b is the vector of right endpoints, and type

refers to the type of equidistributed sequence (`N'-Neiderrieter, `W'-Weyl,

and `H'-Haber). For example, suppose one wished to compute the integral of

exp(x1+ x2) over the rectangle [1; 2]� [0; 5] in <2. On could invoke qnwequi

to generate a sequence of, say, 1000 equidistribued Neiderrieter nodes and

weights and form the weighted sum:
[x,w] = qnwequi(1000,[1 0],[2 5],'N');

integral = w'*exp(x(:,1)+x(:,2));

Two-dimensional examples of the sequences generated by qnwequi are

illustrated in Figure 5.1. Each of the plot shows 16; 000 values. It is evident

that the Neiderreiter and Weyl sequences are very regular, showing far less

blank space than the Haber sequence or the pseudo-random sequence. This

demonstrates that it is possible to have sequences that are not only uniformly

distributed in an ex ante or probabilistic sense but also in an ex post sense,

thereby avoiding the clumpiness exhibited by truly random sequences.

Figure 5.2 demonstrates how increasing the number of points in the Nei-

derreiter sequence progressively �lls in the unit square.

To illustrate the quality of the approximations, Table 5.2 displays the

approximation error for the integralZ 0

�1

Z 0

�1
exp

�
� 1

2
x
2
1x

2
2

�
dx1 dx2;

the solution of which is �=2. It is clear that the method requires many

evaluation points for even modest accuracy and that large increases in the

number of points reduces the error very slowly.2

5.5 Numerical Di�erentiation

The most natural way to approximate a derivative is to replace it with a

�nite di�erence. The de�nition of a derivative,

f
0(x) = lim

h!0

f(x + h)� f(x)
h

;

2Part of the problem may be due to truncation of the domain of integration to [�8; 0]�
[�8; 0].
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Figure 5.1: Alternative Equidistributed Sequences

Table 5.2: Approximation Errors for Alternative Quasi-Monte

Carlo Methods

n Neiderreiter Weyl Haber Pseudo Random

1000 0.08533119 0.03245903 0.08233608 0.21915134

10000 0.01809421 0.00795709 0.00089792 0.01114914

100000 0.00110185 0.00051383 0.00644085 0.01735175

250000 0.00070244 0.00010050 0.00293232 0.00157189

suggests a natural way to do this. One can simply take h to be a small

number, knowing that, for h small enough, the error of the approximation

will also be small. On �rst blush, one may be tempted to pick an h as small as
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Figure 5.2: Fill in of the Neiderreiter Sequence

possible, the machine in�nitesimal. However, too small a choice of h renders

the approximation susceptible to rounding error. The selection of the step h

is thus a nontrivial matter.

The study of �nite di�erence approximations can be put on a �rm basis

using Taylor approximations. We know, for example, that

f(x+ h) = f(x) + f
0(x)h +O(h2);

where O(h2) means that other terms in the expression are expressible in

terms of second or higher powers of h. If we rearrange this expression we see

that

f
0(x) = [f(x + h)� f(x)]=h +O(h):
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(since O(h2)=h = O(h)), so that the approximation to the derivative f 0(x)

that has an O(h) error. This is the simplest form of a forward di�erence

approximation; the \forward" referring to the fact that we approximate f 0

by evaluating at x and x+h, where h is some positive amount. The analogous

backward di�erence approximation

f
0(x) = [f(x)� f(x� h)]=h+O(h)

also o�ers an approximation of order O(h).

Consider now the two second order Taylor expansions:

f(x+ h) = f(x) + f
0(x)h + f

00(x)
h
2

2
+O(h3)

and

f(x� h) = f(x)� f 0(x)h+ f
00(x)

h
2

2
+O(h3):

If we subtract one of these from the other, rearrange, and divide by h, we

get

f
0(x) =

f(x+ h)� f(x� h)
2h

+O(h2):

This is the simplest of the centered �nite di�erence approximations. Its error

is O(h2). The centered �nite di�erence approximation is thus theoretically

more accurate than either one-sided approximation.

Di�erence approximations for higher order derivatives can be found using

the same approach. For our purposes a centered di�erence approximation to

the second derivative will suÆce. Again, we start with a Taylor approxima-

tion, this time of third order:

f(x+ h) = f(x) + f
0(x)h + f

00(x)
h
2

2
+ f

(3)(x)
h
3

6
+O(h4)

and

f(x� h) = f(x)� f 0(x)h+ f
00(x)

h
2

2
� f (3)(x)

h
3

6
+O(h4)

Adding these together cancels the odd ordered terms. Rearranging we get

f
00(x) =

f(x + h)� 2f(x) + f(x� h)
h2

+O(h2):
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Thus we have centered di�erence approximations to both f
0(x) and f

00(x)

that have O(h2) errors.

The second problem is how h should be chosen. As with convergence

criteria, there is no one rule that always works. If h is made too small,

round-o� error can make the results meaningless. On the other hand, too

large an h provides a poor approximation, even if exact arithmetic is used.

This is illustrated in Figure 5.3, which displays the errors in approximating

the derivative of exp(x) at x = 1 as a function of h. The approximation

improves as h is reduced to the point that it is approximately equal to
p
�

(the square root of the machine precision), shown as a star on the horizontal

axis. Further reductions in h actually worsen the approximation because of

the inaccuracies due to inexact arithmetic. This gives credence to the rule of

thumb that, for one-sided approximations, h should be chosen to be of sizep
� relative to x. When x is small, however, it is better not to let h get too

small. We suggest the rule of thumb of setting

h = max(x; 1)
p
�:
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Figure 5.3

Figure 5.4 shows an analogous plot for two-sided approximations. It is

evident that the error is minimized at a much higher value of h, at approxi-
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mately 3
p
�. A good rule of thumb is to set

h = max(x; 1) 3
p
�

when using two-sided approximations.
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There is a further, and more subtle, problem. If x + h cannot be repre-

sented exactly but is instead equal to x + h + e, then we are actually using

the approximation

f(x+h+e)�f(x+h)
e

e

h

+
f(x+h)�f(x)

h

� f
0(x+ h) e

h

+ f
0(x)

�
�
1 + e

h

�
f
0(x):

Even if the rounding error e is on the order of machine accuracy, �, and h

on the order of
p
�, we have introduced an error on the order of

p
� into

the calculation. It is easy to deal with this problem, however. Letting xh

represent x + h, de�ne h in the following way:

h=sqrt(eps)*max(x,1); dh=x+h; h=dh-x;

The function below computes the two-sided �nite di�erence approxima-

tion for the Jacobian of an arbitrary function. For a real-valued function

with an n-vector input, the output is an m� n matrix:
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function fjac = fdjac(f,x);

h = eps^(1/3)*max(abs(x),1);

for j=1:length(x);

x1 = x; x1(j) = x(j) + h(j);

x0 = x; x0(j) = x(j) - h(j);

fjac(:,j) = (feval(f,x1)-feval(f,x0))/(x1(j)-x0(j));

end

One further diÆculty arises in the use of �nite di�erence approximations.

Sometimes it is not possible or convenient to pick the values at which the

function is approximated. Instead, we start with a set of function values and

require derivative approximations given the known values. Such situations

commonly arise in solving partial di�erential equations in which we desire

O(h2) accuracy.

If the points are evenly spaced we can use the two-sided formulas al-

ready present and no particular diÆculties arise. In some cases, however,

it is diÆcult to use centered di�erence approximations, for example when

we require an approximation at a boundary of the domain of a function.

Suppose that you are approximating a function over the range [a; b] and

need to have approximations to f 0(a) or f 0(b). There are two recommended

approaches to this problem, neither of which is to use O(h) forward and back-

ward di�erence approximations. If we want to preserve the O(h2) errors of

the approximation, one alternative is to obtain better forward and backward

approximations. To see how to accomplish this consider a Taylor expansion

of f(x+ h) and f(x + 2h) at f(x):

f(x+ h) = f(x) + f
0(x)h + 1

2
f
00(x)h2 +O(h3)

and

f(x+ 2h) = f(x) + f
0(x)2h + f

00(x)2h2 +O(h3);

and subtract the latter from 4 times the former (to eliminate the h2 term).

Upon rearranging we get

f
0(x) =

1

2h

�
� 3f(x) + 4f(x+ h)� f(x+ 2h)

�
+O(h2):

Thus we have a forward di�erence approximation with O(h2) errors that can

be used at the lower boundary of the domain of f . The analogous O(h2)

backward di�erence approximation for an upper boundary is

f
0(x) =

1

2h

�
f(x� 2h)� 4f(x� h) + 3f(x)

�
+O(h2):
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To aid implementation of �nite di�erence methods, we have provided a

Matlab function, FDOP, in the DE toolbox to compute matrix �nite di�er-

ence operators. A call to D1=FDOP(dx,n,1) will return an n�n matrix such

that D1 �V , where V is an n-vector of function values, will approximate the

associated values of the �rst derivative of V . Similarly D2=FDOP(dx,n,2) can

be used to approximate the values of the second derivative. The �rst and

last rows of the operators provide one sided approximations at the endpoints,

but these can be replaced by appropriate boundary information.

Before we leave the subject of �nite di�erence approximations, we should

note that we may encounter situations in which the forward step and the

backward step are of di�erent sizes, say h and �h, respectively. To handle

this situation, we proceed as before by taking Taylor expansions at x+h and

x� �h:

f(x+ h) = f(x) + f
0(x)h + f

00(x)
h
2

2
+O(h3):

and

f(x� �h) = f(x)� f 0(x)�h+ f
00(x)

�
2
h
2

2
+O(h3):

This time, however, we need to subtract the second expression from �
2 times

the �rst:

�
2
f(x+ h)� f(x� �h) = (�2 � 1)f(x) + (�2 + �)f 0(x)h +O(h3)

and solve for f 0(x):

f
0(x) =

1

h

�
�

�+ 1
f(x+ h) +

1� �
�

f(x)�
1

�(�+ 1)
f(x� �h)

�
+O(h2):

Thus we can obtain an O(h2) approximation even when the points are un-

evenly spaced. The approximation comes at a cost: it takes three evaluation

points rather than two. Only when � = 1 (even spacing) does the central

term drop out and we are back to the simple formula previously derived.

Using the methods just described, one can derive the following O(h2)

approximations:

f
0(x) =

1

h

�
�
2 + �

1 + �
f(x) +

1 + �

�
f(x + h)�

1

�(1 + �)
f (x + (1 + �)h)

�
+O(h2)
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f
0(x) =

1

h

�
1

�(1 + �)
f (x� (1 + �)h)�

1 + �

�
f(x� h) +

2 + �

1 + �
f(x)

�
+O(h2)

and

f"(x) =
2

h2

�
1

�+ 1
f(x+ h)�

1

�
f(x) +

1

�(�+ 1)
f(x� �h)

�
+O(h2):

The �rst is the forward di�erence approximation for the unevenly spaced

points x, x + h and x + (1 + �)h (� = 1 again represents even spacing).

The second is the analogous backward approximations for the points x �
(1 + �)h, x � h and x.3 The last expression is the centered �nite di�erence

approximation to the second derivative for unevenly spaced points x��h, x
and x + h. The various �nite di�erence approximations are summarized in

Table 5.3.

5.6 An Integration Toolbox

The Matlab toolbox accompanying the textbook includes a pair of functions

qnwtrap and qnwsimp that generate the trapezoid and Simpson's rule quadra-

ture nodes and weights for integration over an arbitrary bounded interval on

the real line. The calling sequences take the form

[x,w] = qnwtrap(n,a,b);

and

[x,w] = qnwsimp(n,a,b);

where x are the nodes, w are the weights, n is the number nodes and weights,

a the left endpoint, and b is the right endpoint. For example, to compute

the de�nite integral of exp(x) on [�1; 2] using a 21 point trapezoid rule one

would write:

[x,w] = qnwtrap(21,-1,2);

integral = w'*exp(x);

3The forward formula can be seen to be identical to the centered formula is we set

� = �2. The backward formula is not a special case, however, unless we also allow h to

be negative. Rather than confuse the issue, it seems easier to work with the appropriate

formula and keep both h and � positive.
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Table 5.3: Finite Di�erence Formulae with O(h2) Errors

Centered

f
0(x) =

1

h

�
�

�+ 1
f(x+ h) +

1� �
�

f(x)�
1

�(�+ 1)
f(x� �h)

�
+O(h2):

f"(x) =
2

h2

�
1

�+ 1
f(x+ h)�

1

�
f(x) +

1

�(�+ 1)
f(x� �h)

�
+O(h2):

Forward

f
0(x) =

1

h

�
�
2 + �

1 + �
f(x) +

1 + �

�
f(x + h)�

1

�(1 + �)
f (x + (1 + �)h)

�
+O(h2)

Backward

f
0(x) =

1

h

�
1

�(1 + �)
f (x� (1 + �)h)�

1 + �

�
f(x� h) +

2 + �

1 + �
f(x)

�
+O(h2)

� = 1 gives the evenly spaced formulae
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In this example, the trapezoid rule yields an estimate that is accurate to two

signi�cant digits. The Simpson's rule with the same number of nodes yields

an estimate that is accurate to �ve signi�cant digits.

The Matlab functions qnwtrap and qnwsimp use tensor products to gen-

erate Newton-Cotes nodes and weights for integration over an arbitrary

bounded interval [a; b] in higher dimensional spaces. For example, sup-

pose one wished to compute the integral of exp(x1 + x2) over the rectangle

[1; 2]� [0; 5] in <2. On could invoke qnwtrap to construct a grid of, say, 2601

quadrature nodes produces by taking the cross-product of 51 nodes in the x1
direction and 51 nodes in the x2 direction:

[x,w] = qnwtrap([51 51],[1 0],[2 5]);

integral = w'*exp(x(:,1)+x(:,2));

Application of the trapezoid rule in this example yields an estimate of 689.1302,

which is accurate to three signi�cant digits; application of Simpson's rule with

the same number of nodes yields an estimate of 688.5340, which is accurate

to six signi�cant digits.

Matlab o�ers two Newton-Cotes quadrature routines, quad and quad8

both of which employ an adaptive Simpson's rule.

The Matlab toolbox accompanying the textbook includes a function qnwlege

that generates the Gauss-Legendre quadrature nodes and weights for integra-

tion over an arbitrary bounded interval on the real line. The calling sequence

takes the form

[x,w] = qnwlege(n,a,b);

where x are the nodes, w are the weights, n is the number nodes and weights,

a the left endpoint, and b is the right endpoint. For example, to compute the

de�nite integral of exp(x) on [�1; 2] using a 21 point rule one would write

[x,w] = qnwlege(21,-1,2);

integral = w'*exp(x);

In this example, Gauss-Legendre quadrature produces an estimate that is

accurate to fourteen signi�cant digits, eight more than Simpson's quadrature

with the same number of nodes.

The Matlab function qnwlege is designed to generate Gauss-Legendre

nodes and weights over an arbitrary bounded interval in higher dimensional

spaces. The nodes and weights are constructed using tensor products of the

nodes and weights of the one-dimensional Gauss-Legendre nodes and weights.

For example, suppose one wished to compute the integral of exp(x1+x2) over
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the rectangle [1; 2] � [0; 5] in <2. On could invoke qnwlege to construct a

grid of, say, 20 Gaussian quadrature nodes, derived from the cross-product

of 5 nodes in the x1 direction and 4 nodes in the x2 direction, and then form

the weighted sum of the assigned weights and function values at the nodes:

[x,w] = qnwlege([5 4],[1 0],[2 5]);

integral = w'*exp(x(:,1)+x(:,2));

This computation would yield an approximate answer of 688.5323, which

is very close to the correct answer 688.5336 and more accurate than the ap-

proximation a�orded by Simpson's rule using nearly 100 times more function

evaluations.

The Matlab toolbox accompanying the textbook also includes a function

qnwnorm that generates the Gauss-Hermite quadrature nodes and weights

for computing the expectations of functions of normal random variates. For

univariate normal distributions, the calling sequence takes the form

[x,w] = qnwnorm(n,mu,var);

where x are the nodes, w are the probability weights, n is the number nodes

and weights, mu the mean of the distribution, and var is the variance of the

distribution. If mu and var are omitted, the mean and variance are assumed

to be 0 and 1, respectively. For example, suppose one wanted to compute

the expectation of exp( ~X) where ~X is normally distributed with mean 2

and variance 4. An approximate expectation could be computed using the

following Matlab code:

[x,w] = qnwnorm(3,2,4);

expectation = w'*exp(x);

The Matlab function qnwnorm is designed to generate Gauss-Hermite

nodes and weights for multivariate normal random variables. For example,

suppose one wished to compute the expectation of, say, exp( ~X1+ ~X2) where
~X1 and ~X2 are jointly normal with mean vector [3; 4] and variance covariance

matrix [2 � 1;�14]. One could invoke qnwnorm to construct a grid of 100

Gaussian quadrature nodes as the cross-product 10 knots in the x1 direction

and 10 knots in the x2 direction, and then form the weighted sum of the

assigned weights and function values at the nodes:

[x,w] = qnwnorm([10 10],[3;4],[2 -1; -1 4]);

integral = w'*exp(x(:,1)+x(:,2));
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This computation would yield an approximate answer of 8103.083, which is

accurate to 7 signi�cant digits.

The Matlab toolbox accompanying the textbook provides a function qnwlogn

that in this manner generates quadrature nodes and weights for computing

the expectations of functions of lognormal random variate. For univariate

lognormal distributions, the calling sequence takes the form

[x,w] = qnwlogn(n,mu,var);

which in Matlab may be implemented as follows:

[x,w] = qnwlogn(n,mu,var);

expectation = w'*f(x);

5.7 Initial Value Problems

Di�erential equations pose the problem of inferring a function given informa-

tion about its derivatives and additional `boundary' conditions. Di�erential

equations may characterized as either ordinary di�erential equations (ODEs),

whose solutions are functions of a single argument, and partial di�erential

equations (PDEs), whose solutions are functions of multiple arguments. Both

ODEs and PDEs may be solved numerically using �nite di�erence methods.

From a numerical point of view the distinction between ODEs and PDEs

is less important than the distinction between initial value problems (IVPs),

which can be solved in a recursive or evolutionary fashion, and boundary

value problems (BVPs), which require the entire solution to be computed

simultaneously because the solution at one point (in time and/or space) de-

pends on the solution everywhere else. With IVPs, the solution is known at

some point or points and the solution near these points can then be (approx-

imately) determined. This, in turn, allows the solution at still other points

to be approximated and so forth. BVPs, on the other hand, require simulta-

neous solution of the di�erential equation and the boundary conditions. We

take up the solution of IVPs in this section, but defer discussion of BVPs for

a later Chapter.

The most common initial value problem is to �nd a function x : [0; T ] �
< 7! <d whose initial value x(0) is known and which, over its domain, satis�es
the di�erential equation

x(t)0 = f(x(t); t):



CHAPTER 5. INTEGRATION AND DIFFERENTIATION 107

Here, x is a function of a scalar t, time, and f : <d+1 7! < is a given

function. Many problems in economics are time-autonomous, in which case

the di�erential equation takes the form

x(t)0 = f(x(t)):

Although the di�erential equation contains no derivatives of order higher

than one, the equation is more general than it might at �rst appear, because

higher order derivatives can always be eliminated by expanding the number

of variables. For example, consider the second order di�erential equation

y(t)00 = f(y(t); y(t)0; t):

If z is the �rst derivative of x, so that z0 = x
00, then the di�erential equation

may be written in �rst order form

y
0 = z

z
0 = f(y; z; t):

A solution to a system of di�erential equations is a vector-valued function

x(t) (of dimension d) that satis�es the di�erential equation subject to a set

of boundary conditions. In initial value problems, the boundary conditions

de�ne the values of the variables at a single point in time. This allows initial

value problems to be solved using an iterative procedure. First the direction

of motion is calculated based on the current position of the system and a

small step is taken in that direction. This is then repeated as many times as

is desired. The inputs needed for these methods are the functions de�ning

the system, f , an initial value, x0, the time step size, h, and the number of

steps to take, n.

The most simple form of such a procedure is Euler's method. The ith

iteration of the procedure generates an approximation for the value of the

solution function x at time t
i

x
i+1 = x

i
+ hf(x

i
; t

i
);

with the procedure beginning at the prescribed x0 = x(0). This method is

�ne for rough approximations if the time step is small enough. However, for

many applications, the technique can give unacceptable results.

There are numerous re�nements on the Euler method, the most commonly

used being Runge-Kutta methods. Runge-Kutta methods are actually a class
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of methods characterized by an order of approximation and by selection of

certain key parameters. The derivation of these methods is fairly tedious for

high order methods but are easily demonstrated for a second order model.

Runge-Kutta methods are based on Taylor approximations at a given

starting point t.

x(t+ h) = x+ hf(x; t) +
h
2

2
(f

t
+ f

x
f) +O(h3);

where x = x(t), f = f(x; t) and f
x
and f

t
are the partial derivatives of f

evaluated at (x; t). This equation could be used directly but would require

obtaining explicit expressions for the partial derivatives f
x
and f

t
. A method

that relies only on function evaluations is obtained by noting that

f(x+ �hf; t+ �h) � f + �h (f
t
+ f

x
f) :

Substituting this into the previous expression yields

x(t+ h) � x + h

h
(1�

�

2
)f +

�

2
f

�
x + �hf; t+ �h

�i
:

Two simple choices for � are 1
2
and 1 leading to the following second order

Runge-Kutta methods:

x(t+ h) � x + hf

�
x+

h

2
f; t +

h

2

�

and

x(t+ h) � x +
h

2
f + f (x + hf; t+ h):

It can be shown that an optimal choice (in the sense of minimizing the

truncation error) is to set � = 2=3 (see Atkinson, pp. 369-370).

Further insight can be gained into the Runge-Kutta methods by relating

them to Newton-Cotes numerical integration methods. In general

x(t+ h) = x(t) +

Z
t+h

t

f(x(�); �)d�

Suppose that the integral in this expression is approximated used the trape-

zoid rule:

x(t+ h) = x(t) +
h

2

�
f(x(t); t) + f

�
x(t + h); t+ h

��
:
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Now use Euler's method to approximate the x(t + h) term that appears on

the right-hand side to obtain

x(t+ h) = x(t) +
h

2

�
f(x(t); t) + f

�
x(t) + hf(t; x(t)); t+ h

��
;

which is the same formula as above with � = 1. Thus combining two �rst

order methods, Euler's method and the trapezoid method, results in a second

order Runge-Kutta method.

The most widely used Runge-Kutta method is the classical fourth-order

method. A derivation of this approach is tedious but the algorithm is straight-

forward:

x(t+ h) = x+ (F1 + 2(F2 + F3) + F4)=6;

where

F1 = hf(x; t)

F2 = hf(x + 1
2
F1; t+

1
2
h)

F3 = hf(x + 1
2
F2; t+

1
2
h)

F4 = hf(x + F3; t + h):

It can be shown that the truncation error in any order k Runge-Kutta method

is O(hk+1). Also, just as a second order method can be related to the trape-

zoid rule for numerical integration, the fourth order Runge-Kutta method

can be related to Simpson's rule (we leave this as an exercise).

The Matlab function RK4 is written to return an approximate solution

x(T ) to x
0 = f(x; t), s.t. x(T (1)) = x0, where T is a vector of values.

Furthermore, it is designed to compute solutions for multiple initial values.

If x0 is d � k, RK4 will return a row vector of length dk for each time

step. This contrasts with the internal Matlab ODE functions, which will

process only a single initial value and therefore must be called within a

loop to generate a phase diagram. Avoiding this loop results in much faster

execution when a large set of trajectories are computed. To take advantage

of this feature, however, the function that is passed to RK4 that de�nes the

di�erential equation must be able to return a d� k matrix when its second

input argument is a d � k matrix (see �shsys.m below for an illustration of

how this is done).
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There are numerous other approaches and re�nements to solving initial

value problems. Briey, these include so-called multi-step algorithms which

utilize information from previous steps to determine the current step direction

(Runge-Kutta and Taylor series approaches are single-step methods). Also,

any method can adapt the step size to the current behavior of the system

by monitoring the truncation error, reducing (increasing) the step size if this

error is unacceptably large (small). Adaptive schemes are important if one

requires a given level of accuracy.4

As an example of an initial value problem, consider the model of a com-

mercial �shery developed by V.L. Smith (JPE 77 #2 (1969): 181-198). The

model is interesting in that it makes fairly simple behavioral assumptions

but results in a complex 2-variable system of �rst order nonlinear di�erential

equations. The model �rst determines a short-run (instantaneous) equilib-

rium given the current size of the �sh stock and the size of the �shing indus-

try. This equilibrium is determined by the demand for �sh and a �shing �rm

pro�t function, which together determine the short-run equilibrium catch

rate and �rm pro�t level. The model's dynamic behavior is governed by a

growth rate for the �sh stock and a rate of entry into the �shing industry.

The former depends on the biological growth of the �sh population and on

the current catch rate, whereas the later depends on the current pro�tability

of �shing. Taken together, these determine the adjustment process of the

�sh stock and the industry size.

The model is summarized below:5

Equations:

p = �� �Ky inverse demand for �sh

� = py � cy2=2S � f pro�t function of representative �shing �rm

S
0 = (a� bS)S �Ky �sh population dynamics

K
0 = Æ� entry/exit from industry

4The Matlab functions ODE23 and ODE45 are implemented in this way, with ODE45

a fourth order method.
5We have made slight changes to Smith's notation and simpli�ed his model by making

the industry adjustments occur at the same rate for positive and negative pro�ts.
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Variables:

p the price of �sh

K size of the industry

y catch rate of the representative �rm

� pro�t of the representative �rm

S �sh population

Parameters:

�; �; c; f; a; b and Æ

In this modelK represents the size of the �shing industry, which is treated

as a continuous variable. Smith called this the number of �rms in the in-

dustry, but it is more accurately thought of as the total capital stock in use.

By increasing e�ort, the catch rate per unit of capital, y, can be increased.

The total supply (total catch rate) is de�ned as Y = Ky. Marginal cost is

constant in units of capital but are quadratically increasing in the catch rate

and inversely related to the total stock of �sh. The parameter f represents

a �xed cost per unit of capital. The biological process governing �sh stocks

depends on a recharging rate (a) and a mortality factor (b), the latter due

to the stock approaching the biological carrying capacity (a=b).

The industry is competitive in the sense that catch rates are chosen by

setting marginal cost equal to price:

p = cy=S:

This relationship, which can be thought of as the short-run inverse supply

function per unit of capital. The short-run (market-clearing) equilibrium is

determined by equating demand and supply:

�� �Ky = cy=S;

yielding a short-run equilibrium catch rate:

y = �S=(c+ �SK);

price

p = �c=(c+ �SK);
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and pro�t function

� =
c�

2
S

2(c+ �SK)2
� f:

All of these relationships are functions of the industry size and the stock of

�sh.

These results can be used to derive expressions for the time rates of

change of the �sh stock, which depends on the catch rate and of the industry

size, which depends on current pro�ts. The capital stock adjustment process

is myopic, as it depends only on current pro�tability and not on expected

future pro�tability (see Conrad and Clarke for discussion). The result is a 2

dimensional system of nonlinear di�erential equations:

S
0 = (a� bS)S �

�SK

c+ �SK

K
0 = Æ

�
c�

2
S

2(c+ �SK)2
� f

�

The behavior of the model is more transparent if it is scaled by setting

� = a = b = c = 1;

(there are four scaling measures: money, �sh quantity, industry size and

time).

S
0 = (1� S)S � SK

1+�SK

K
0 = Æ

�
S

2(1+�SK)2
� f

�
The system can be used to determine the behavior of the model starting at

any initial stock level and industry size.

A useful device for summarizing the behavior of a dynamic system is the

phase diagram, which shows the movement of the system for selected starting

values; these curves are known as the trajectories. A phase diagram for this

model with parameter values � = 2:75, f = 0:06 and Æ = 10 is exhibited in

Figure ??.

Phase diagrams typically include another set of curves besides the tra-

jectories. The zero-isoclines are the points in the state space for which one
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of the variables' time rate of change is zero. The intersections of the zero-

isoclines are the system equilibria. In the �shery model, the zero-isocline for

S is the set of points satisfying S 0 = 0; solving for K yields

K =
1� S

1� �(1� S)S
:

(S 0 = 0 is also satis�ed whenever S = 0 thereby preventing �sh stocks from

becoming negative). Notice that this curve depends only on the parameter

�. To �nd the K zero-isocline, set K 0 = 0, which results in a quadratic in

K:

K
2 +

2

�S
K +

�
1

�2S2
�

1

2f�2S

�
= 0;

Of the two roots of this quadratic, one is always negative and can be ignored.

The other root is

K =
1

�

�r
1

2fS
�

1

S

�
:

In the phase diagram in Figure ??, the dashed lines represent the zero-

isoclines and the solid lines the trajectories.

Equating the two zero-isoclines and rearranging results in a �fth order

polynomial in S:

S(1� �(1� S)S)2 � 2f = 0;

implying that there could be as many as �ve equilibria. Expanding this

polynomial, the coeÆcients are

�
2
S
5 � 2�2S4 + (2� + �

2)S3 � 2�S2 + S � 2f = 0:

The equilibria are thus determined by the two parameters, � and f . For spe-

ci�c parameter values the equilibria can be found by passing these coeÆcient

values to a standard polynomial root �nding algorithm (e.g., the intrinsic

Matlab function ROOTS).

There are 3 long-run equilibria in this system, two that are locally stable

(points A and C) and one that is a saddlepoint (point B). The state space is

divided into two regions of attraction, one in which the system moves toward

point A and the other towards point C. The dividing line between these

regions consists of points that move the system towards point B.
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Notice that, due to the choice of scaling parameters, the zero-isocline for

S crosses the S-axis at S = 1 and the K axis at K = 1 (see Figure ??).

The zero-isocline for K does not cross the K axis; as S approaches 0, K

approaches �1. It crosses the S axis at the point S = 2f and is increasing

at that point. If this point is greater than 1 the two isoclines will never cross

at positive stock and industry levels. A necessary and suÆcient condition for

the existence of an equilibrium, therefore, is that f < 1
2
.6

A restriction on � comes from examining the expression for the S 0 = 0.

The isocline will exhibit a singularity (i.e., K becomes in�nite) whenever

�(1�S)S = 1. (1�S)S is always less than 1=4 and hence � < 4 is necessary

to avoid a singularity. This information is very useful because it means that

we only need to explore solutions for � 2 [0; 4) and f 2 [0; 1
2
). Furthermore,

the parameter Æ does not a�ect the equilibria, only the speed at which the

system moves toward equilibrium. In particular, higher values of Æ cause

faster adjustments in the industry size.

To summarize, the �shery model is an example of a system that can be

characterized by a set of di�erential equations and initial conditions. The

behavior of the system can, therefore, be studied by starting it at any speci�c

point in the state space and propagating through time. For two (or possibly

three) dimensional systems, the global behavior of the system can be usefully

represented by the phase diagram. It is often useful to study the equilibria

of such a system by calculating the roots of the zero-isocline curves.

Exercises

1. Derive the O(h2) backward di�erence approximation to f 0(x) at the

points x, x+ h and x+ �h given above.

2. Derive an O(h) centered approximation to f 00(x) at the points x� �h,
x and x + h (hint: proceed as above using the �rst order di�erence

approximation to f 0(x)) Why is this approximation only O(h) and not

O(h2)?

3. A basic biological model for predator-prey interactions, known as the

Lokta-Volterra model, can be written

x
0 = �x� xy

6A curious feature of this model is that, for small S (S < 2f) K can become negative

(this could be remedied by de�ning K 0 = ÆK� ).
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y
0 = xy � y;

where x is the population of a prey species and y is the population of

a predator species. To make sense we restrict attention to x; y > 0 and

� > 0 (the model is scaled to eliminate excess parameters; you should

determine how many scaling dimensions the model has). Although

admittedly a simple model, it captures some of the essential features of

the relationship. First the prey population grows at rate � when there

are no predators present and the greater the number of predators, the

slower the population grows and declines when the predator population

exceeds �. The predator population, on the other hand declines if it

grows too large unless prey is plentiful. Determine the equilibria (there

are two) and draw the phase diagram [hint: this model exhibits cycles].

4. Demand for a commodity is given by q = 2p�0:5. The price of a good

falls from 4 to 1. Compute the change in consumer surplus:

(a) analytically using Calculus;

(b) numerically using a 10 interval trapezoid rule;

(c) numerically using a 10 interval Simpson rule;

(d) numerically using a 10 point Gauss-Legendre rule.

5. For z > 0, the cumulative probability function for a standard normal

random variable is given by

F (z) = 0:5 + 1p
2�

R
z

0
expf�x

2

2
g dx:

(a) Write a short Matlab program that will estimate the value of F (z)

using Simpson's rule. The program should accept z and the num-

ber of intervals n in the discretization as input; the program should

print F (z).

(b) What values of F (z) do you obtain for z = 1 and n = 6, n = 10,

n = 20 n = 50, n = 100? How do these values compare to

published statistical tables?

6. Using Monte Carlo integration, estimate the expectation of f( ~X) =

1=(1 + ~X2) where ~X is exponentially distributed with CDF F (x) =

1� exp(�x) for x � 0. Compute an estimate using 100, 500, and 1000

replicates.
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7. A government stabilizes the supply of a commodity at S = 2, but

allows the price to be determined by the market. Domestic and export

demand for the commodity are given by:

D = ~�1P
�1:0

X = ~�2P
�0:5

;

where log ~�1 and log ~�2 are normally distributed with means 0, variances

0.02 and 0.01, respectively, and covariance 0.01.

(a) Compute the expected price Ep and the ex-ante variance of price

V p using a 6th degree Gaussian discretization for the demand

shocks.

(b) Compute the expected price Ep and the ex-ante variance of price

V p using a 1000 replication Monte Carlo integration scheme.

(c) Repeat parts (a) and (b) assuming the log of the demand shocks

are negatively correlated with covariance -0.01.

8. Consider the commodity market model of Chapter 1, except now as-

sume that log yield is normally distributed with mean 0 and standard

deviation 0.2.

(a) Compute the expectation and the variance of price without gov-

ernment support payments.

(b) Compute the expectation and the variance of the e�ective pro-

ducer price assuming a support price of 1.

9. Consider a market for an agricultural commodity in which farmers re-

ceive a government de�ciency payment whenever the market price p

drops below an announced target price �p. In this market, producers

base their acreage planting decisions on their expectation of the e�ec-

tive producer price f = max(p; �p); speci�cally, acreage planted a is

given by:

a = 1 + (Ef)0:5:

Production q is acreage planted a times a random yield ~y, unknown at

planting time:

q = a � ~y;
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and quantity demanded at harvest is given by

q = p
�0:2 + p

�0:5
:

Conditional on information known at planting time, log y is normally

distributed with mean 0 and variance 0.03. For �p = 0, �p = 1, and

�p = 2, compute:

(a) the expected subsidy E[q(f � p)];

(b) the ex-ante expected producer price Ef ;

(c) the ex-ante variance of producer price V f ;

(d) the ex-ante expected producer revenue E[fq]; and

(e) the ex-ante variance of producer revenue V [fq].

10. Suppose acreage planted at the beginning of the growing season is given

by a = �(Ep; V p) where p is price at harvest time and E and V are the

expectation and variance operators conditional on information known

at planting time. Further suppose that p = �(ay) where yield y is

random and unknown at planting time. Develop an algorithm for com-

puting the acreage planted under rational expectations.

11. Professor Jones, a well-known econometrician, argues that the best way

to approximate a real-valued function with no closed-form expression

over an interval is to (1) evaluate the function at n equally-spaced

points and then (2) �t an m-degree polynomial to the points, using

ordinary least squares to compute the coeÆcients on the x
i terms,

i = 0; 1; 2; : : : ; m. To improve the approximation, he further argues,

increase n until the standard errors are tolerably close to zero.

Is Jones's approach sensible? If not, what method would you recom-

mend? Justify your method using language that Jones is capable of

understanding.

12. Professor Sayan, a regional economist, maintains a large deterministic

model of the Turkish economy. Using his model, Professor Sayan can

estimate the number of new jobs y that will be created under the new

GATT agreement. However, Dr. Sayan is unsure about the value

of one critical model parameter, the elasticity of labor supply x. A
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recent econometric study estimated the elasticity to be �x and gave an

asymptotic normal standard error �. Given the uncertainty about the

value of x, Dr. Sayan wishes to place a con�dence interval around his

estimate of y. He has considered using Monte Carlo methods, drawing

pseudo-random values of x according to the published distribution and

computing the value of y for each x. However, a large number of

replications is not feasible because two hours of mainframe computer

time are needed to solve the model each time. Do you have a better

suggestion for Dr. Sayan? Justify your answer.



Chapter 6

Function Approximation

In many computational economic applications, one must approximate an an-

alytically intractable real-valued function f with a computationally tractable

function f̂ .

Two types of function approximation problems arise often in computa-

tional economic applications. In the interpolation problem, one is given or

otherwise uncovers some properties satis�ed by the function f and then must

choose an approximant f̂ from a family of `nice', tractable functions that sat-

is�es those properties. The data available about f is often just its value at

a set of speci�ed points. The data, however, could include �rst or higher

derivatives of f at some of the points.

Interpolation methods were originally developed to approximate the value

of mathematical and statistical functions from published tables of values. In

most modern computational economic applications, however, the analyst is

free to chose what data to obtain about the function to be approximated.

Modern interpolation theory and practice is concerned with ways to optimally

extract data from a function and with computationally eÆcient methods for

constructing and working with its approximant.

In the functional equation problem, one must �nd a function f that sat-

is�es

Tf = g

where T is an operator that maps a vector space of functions into itself and

g is a known function in that space. In the equivalent functional �xed-point

problem, one must �nd a function f such that

Tf = f:

119
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Functional equations are common in dynamic economic analysis. For ex-

ample, the Bellman equation that characterizes the solutions of a dynamic

optimization model is a functional �xed-point equation. The Euler equation

and the fundamental asset pricing di�erential equation are also functional

equations.

Functional equations are diÆcult to solve because the unknown is not

simply a vector in <n, but an entire function f whose domain contains an

in�nite number points. Moreover, the functional equation typically imposes

an in�nite number of conditions on the solution f . Except in very few spe-

cial cases, functional equations lack analytic closed-form solutions and thus

cannot be solved exactly. One must therefore settle for an approximate so-

lution f̂ that satis�es the functional equation closely. In many cases, one

can compute accurate approximate solutions to functional equations using

techniques that are natural extensions interpolation methods.

Numerical analysts have studied function approximation and functional

equation problems extensively and have acquired substantial experience with

di�erent techniques for solving them. In this chapter we discuss methods for

approximating functions and focus on the two most generally practical tech-

niques: Chebychev polynomial and polynomial spline approximation. Uni-

variate function interpolation methods are developed �rst and then are gen-

eralized to multivariate function interpolation methods. In the �nal section,

we introduce the collocation method, a natural generalization of interpolation

methods that may be used to solve a variety of functional equations.

6.1 Interpolation Principles

Interpolation is the most generally practical method for approximating a

real-valued function f de�ned on an interval of the real line <. The �rst

step in designing an interpolation scheme is to specify a series of n linearly

independent basis functions �1; �2; : : : ; �n which will be used to represent the

approximant. The approximant f̂ will be written as a linear combination of

the basis functions

f̂(x) =

nX
j=1

c
j
�
j
(x);

whose basis coeÆcients c1; c2; : : : ; cn are to be determined. Polynomials of

increasing order are often used as basis functions, although other types of



CHAPTER 6. FUNCTION APPROXIMATION 121

basis functions, most notably spline functions, are also commonly used.1 The

number n of independent basis functions is called the degree of interpolation.

The second step in designing an interpolation scheme is to specify the

properties of the original function f that one wishes the approximant f̂ to

replicate. Because there are n undetermined coeÆcients, n conditions are

required to �x the approximant. The easiest and most common conditions

imposed are that the approximant interpolate or match the value of the

original function at selected interpolation nodes x1; x2; : : : ; xn.

Given n interpolation nodes and n basis functions, computing the basis

coeÆcients reduces to solving a linear equation. Speci�cally, one �xes the n

undetermined coeÆcients c1; c2; : : : ; cn of the approximant f̂ by solving the

interpolation conditions

nX
j=1

c
j
�
j
(x

i
) = f(x

i
) = y

i
8i = 1; 2; : : : ; n:

Using matrix notation, the interpolation conditions equivalently may be writ-

ten as the matrix linear interpolation equation whose unknown is the vector

of basis coeÆcients c:

�c = y:

Here,

�
ij
= �

j
(x

i
)

is the typical element of the interpolation matrix �. In theory, an interpola-

tion scheme is well-de�ned if the interpolation nodes and basis functions are

chosen such that the interpolation matrix is nonsingular.

Interpolation schemes are not limited to using only function value infor-

mation. In many applications, one may wish to interpolate both function

values and derivatives at speci�ed points. This would be the case, for exam-

ple, if solving an initial value problem, which was discussed in the preceding

chapter. Suppose, for example, that one wishes to construct an approxi-

mant f̂ that replicates the function's values at nodes x1; x2; : : : ; xn1 and its

�rst derivatives at nodes x01; x
0
2; : : : ; x

0
n2
. An approximant that satis�es these

1Approximations that are non-linear in basis function exist (e.g. rational approxi-

mations), but are more diÆcult to work with and hence are not often seen in practical

applications.
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conditions may be constructed by selecting n = n1 + n2 basis functions and

�xing the basis coeÆcients c1; c2; : : : ; cn of the approximant by solving the

interpolation equation

nX
j=1

c
j
�
j
(x

i
) = f(x

i
); 8i = 1; : : : ; n1

nX
j=1

c
j
�
0
j
(x0

i
) = f

0(x0
i
); 8i = 1; : : : ; n2

for the undetermined coeÆcients c
j
. This principle applies to any combina-

tion of function values, derivatives, or even antiderivatives at selected points.

All that is required is that the associated interpolation matrix be nonsingular.

In developing an interpolation scheme, the analyst should chose inter-

polation nodes and basis functions that satisfy certain criteria. First, the

approximant should be capable of producing an accurate approximation for

the original function f . In particular, the interpolation scheme should allow

the analyst to achieve, at least in theory, an arbitrarily accurate approx-

imation by increasing the degree of approximation. Second, it should be

possible to compute the basis coeÆcients quickly and accurately. In partic-

ular, the interpolation equation should be well-conditioned and should be

easy to solve|diagonal, near diagonal, or orthogonal interpolation matrices

are best. Third, the approximant should be easy to work with. In partic-

ular, the basis functions should be easy and relatively costless to evaluate,

di�erentiate, and integrate.

Interpolation schemes may be classi�ed as either spectralmethods or �nite

element methods. A spectral method uses basis functions that are nonzero

over the entire domain of the function being approximated, except possi-

bly at a �nite number of points. In contrast, a �nite element method uses

basis functions that are nonzero over only a subinterval of the domain of ap-

proximation. Polynomial interpolation, which uses polynomials of increasing

degree as basis functions, is the most common spectral method. Spline in-

terpolation, which uses basis functions that are polynomials of small degree

over subintervals of the approximation domain, is the most common �nite

element method. We examine both of these methods in greater detail in the

following sections.
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6.2 Polynomial Interpolation

According to the Weierstrass Theorem, any continuous real-valued function

f de�ned on a bounded interval [a; b] of the real line can be approximated to

any degree of accuracy using a polynomial. More speci�cally, if � > 0, there

exists a polynomial p such that

jjf � pjj = sup
x2[a;b]

jf(x)� p(x)j < �:

The Weierstrass theorem provides strong motivation for using polynomials to

approximate continuous functions. The theorem, however, is not very prac-

tical. It gives no guidance on how to �nd a good polynomial approximant. It

does not even state what order polynomial is required to achieve the required

level of accuracy.

One apparently reasonable way to construct a nth-degree polynomial ap-

proximant for a function f is to form the unique (n� 1)th-order polynomial

p(x) = c1 + c2x + c3x
2 + : : :+ c

n
x
n�1

that interpolates f at the n evenly spaced interpolation nodes

x
i
= a +

i� 1

n� 1

�
b� a

�
8i = 1; 2; : : : ; n:

In practice, however, polynomial interpolation at evenly spaced nodes often

does not produce an accurate approximant. In fact, there are well-behaved

functions for which evenly spaced node polynomial approximants rapidly

deteriorate, rather than improve, as the degree of approximation n rises.

Numerical analysis theory and empirical experience both suggest that

polynomial approximants over a bounded interval [a; b] should be constructed

by interpolating the underlying function at the so-called Chebychev nodes:

x
i
=
a + b

2
+
b� a
2

cos

�
n� i+ 0:5

n
�

�
; 8i = 1; 2; : : : ; n:

As illustrated in Figure 6.1, the Chebychev nodes are not evenly spaced.

They are more closely spaced near the endpoints of the interpolation interval

and less so near the center.

Chebychev-node polynomial interpolants possess some strong theoretical

properties. According to Rivlin's Theorem, Chebychev-node polynomial in-

terpolants are very nearly optimal polynomial approximants. Speci�cally, the
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Figure 6.1

approximation error associated with the nth-degree Chebychev-node polyno-

mial interpolant cannot larger than 2� log(n)+2 times the lowest error attain-

able with any other polynomial approximant of the same order. For n = 100,

this factor is approximately 30, which is very small when one considers that

other polynomial interpolation schemes typically produce approximants with

errors that are orders of magnitude, that is, powers of 10, larger then the

optimum. In practice, the accuracy a�orded by the Chebychev-node poly-

nomial interpolant is often much better than indicated by Rivlin's bound,

especially if the function being approximated is smooth.

Another theorem, Jackson's theorem, implies a more useful result. Specif-

ically, if f is continuously di�erentiable, then the approximation error af-

forded by the nth-degree Chebychev-node polynomial interpolant p
n
can be

bounded above:

jjf � p
n
jj �

6

n
jjf 0jj(b� a)(log(n)=� + 1):

This error bound can often be accurately estimated in practice, giving the

analyst a good indication of the accuracy a�orded by the Chebychev-node
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polynomial interpolant. More importantly, however, the error bound goes to

zero as n rises. That is, unlike for evenly spaced node polynomial interpo-

lation, one can achieve any desired degree of accuracy with Chebychev-node

polynomial interpolation by increasing the degree of approximation.

To illustrate the di�erence between Chebychev and evenly spaced node

polynomial interpolation, consider approximating the function f(x) = exp(�x)
on the interval [�1; 1]. The approximation error associated with ten node

polynomial interpolants are illustrated in Figure 6.2. The Chebychev node

polynomial interpolant exhibits errors that oscillate fairly evenly throughout

the interval of approximation, a common feature of Chebychev node inter-

polants. The evenly spaced node polynomial interpolant, on the other hand,

exhibits signi�cant instability near the endpoints of the interval. The Cheby-

chev node polynomial interpolant avoids endpoint instabilities because the

nodes are more heavily concentrated near the endpoints.
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Figure 6.2

The most intuitive basis for expressing polynomials, regardless of the in-

terpolation nodes chosen, is themonomial basis consisting of the simple power



CHAPTER 6. FUNCTION APPROXIMATION 126

functions 1; x; x2; x3; : : :, illustrated in Figure 6.3. However, the monomial

basis produces an interpolation matrix � that is a so-called Vandermonde

matrix:

� =

2
6664
1 x1 : : : x

n�2
1 x

n�1
1

1 x2 : : : x
n�2
2 x

n�1
2

...
...

. . .
...

...

1 x
n

: : : x
n�2
n

x
n�1
n

3
7775 :

Vandermonde matrices are notoriously ill-conditioned, and increasingly so

as the degree of approximation n is increased. Thus, e�orts to compute the

basis coeÆcients of the monomial basis polynomials often fail due to rounding

error, and attempts to compute increasingly more accurate approximations

by raising the number of interpolation nodes are often futile.
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Figure 6.3

Fortunately, alternatives to the standard monomial basis exist. In fact,

any sequence of n polynomials having exact orders 0; 1; 2; : : : ; n�1 can serve
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as a basis for all polynomials of order less than n. One such basis for the

interval [a; b] on the real line is the Chebychev polynomial basis. The Cheby-

chev polynomials are de�ned recursively as:2

�
j
(x) = T

j�1

�
2
x� a
b� a

� 1

�

where, for z 2 [�1; 1],

T0(z) = 1

T1(z) = z

T2(z) = 2z2 � 1

T3(z) = 4z3 � 3z

...

T
j
(z) = 2zT

j�1(z)� Tj�2(z):

The �rst twelve Chebychev basis polynomials for the interval [0; 1] are dis-

played in Figure 6.4.

Chebychev polynomials are an excellent basis for constructing polynomi-

als that interpolate function values at the Chebychev nodes. Chebychev basis

polynomials in combination with Chebychev interpolation nodes yields an ex-

tremely well-conditioned interpolation equation that can be accurately and

eÆciently solved, even for high degrees of interpolation. The interpolation

matrix � associated with the Chebychev interpolation has typical element

�
ij
= cos((n� i + 0:5)(j � 1)�=n):

This Chebychev interpolation matrix is orthogonal

�0� = diagfn; n=2; n=2; : : : ; n=2g

and has a condition number
p
2 regardless of the degree of interpolation,

which is very near the ideal minimum of 1. This implies that the Chebychev

basis coeÆcients can be computed quickly and accurately, regardless of the

degree of interpolation.

2The Chebychev polynomials also possess the alternate trigonometric de�nition Tj(z) =

cos
�
arccos(z)j

�
on the domain [a; b].
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Figure 6.4

6.3 Piecewise Polynomial Splines

Piecewise polynomial splines, or simply splines for short, are a rich, exible

class of functions that may be used instead of high degree polynomials to

approximate a real-valued function over a bounded interval. Generally, a

k
th order spline consists of series of k-degree polynomial segments spliced

together so as to preserve continuity of derivatives of order k�1 or less. The
points at which the polynomial pieces are spliced together, �1 < �2 < : : : <

�
p
, are called the breakpoints of the spline. By convention, the �rst and last

breakpoints are the endpoints of the interval of approximation [a; b].

A general order k spline with p breakpoints may be characterized by

(p� 1)(k+ 1) parameters, given that each of the p� 1 polynomial segments

is de�ned by its k+1 coeÆcients. By de�nition, however, a spline is required

to be continuous and have continuous derivatives up to order k � 1 at each

of the p� 2 interior breakpoints, which imposes k(p � 2) conditions. Thus,
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a k order spline with p breakpoints is actually characterized by n = (k +

1)(p� 1)� k(p� 2) = p+ k� 1 free parameters. It should not be surprising

that a general k order spline with p breakpoints can be written as a linear

combination of n = p+ k � 1 basis functions.

There are many ways to express bases for splines, but for applied numer-

ical work the most useful are the so-called B-splines. The B-splines for an

order k splines with breakpoint vector � can be computed using the recursive

de�nition

B
k;�

j
(x) =

x� �
j�k

�
j
� �

j�k
B

k�1;�
j�1 (x) +

�
j+1 � x

�
j+1 � �j+1�k

B
k�1;�
j

(x);

for i = 1; : : : ; n, with the recursion starting with

B
0;�
j
(x) =

�
1 if �

j
� x < �

j+1

0 otherwise
:

This de�nition requires that we extend the breakpoint vector, �, for j < 1

and j > p:

�
j
=

�
a if j � 1

b if j � p
:

Additionally, at the endpoints we set the terms

B
k�1;�
0

�1 � �1�k
=

B
k�1;�
n

�
n+1 � �n�k+1

= 0:

Given a B-spline representation of a spline, the spline can easily be dif-

ferentiated by computing simple di�erences, and can be integrated by com-

puting simple sums. Speci�cally:

dB
k;�

j
(x)

dx
=

k

�
j
� �

j�k
B

k�1;�
j�1 (x)�

k

�
j+1 � �j+1�k

B
k�1;�
j

(x)

and Z
x

a

B
k;�

j
(z)dz =

nX
i=j

�
i
� �

i�k

k
B

k+1;�
i+1 (x):

Although these formulae appear a bit complicated, their application in com-

puter programs is relatively straightforward. First notice that the derivative

of a B-spline of order k is a weighted sum of two order k�1 B-splines. Thus,
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the derivative of an order k spline is an order k � 1 spline with the same

breakpoints. Similarly, the integral of a B-spline can be represented in terms

of two B-splines of order k + 1 splines. Thus, the antiderivative of an order

k spline is an order k + 1 spline with the same breakpoints.

Two classes of splines are often employed in practice. A �rst-order or

linear spline is a series of line segments spliced together to form a continuous

function. A third-order or cubic spline is a series of cubic polynomials seg-

ments spliced together to form a twice continuously di�erentiable function.

Linear spline approximants are particularly easy to construct and eval-

uate in practice, which explains their widespread popularity. Linear splines

use line segments to connect points on the graph of the function to be ap-

proximated. A linear spline with n evenly spaced breakpoints on the interval

[a; b] may be written as a linear combination

f̂(x) =

nX
i=1

c
i
�
i
(x)

of the basis functions:

�
j
(x) =

�
1� jx��j j

w

if jx� �
j
j � w

0 otherwise

Here, w = (b�a)=(n�1) is the distance between breakpoints and �
j
= a+(j�

1)w, j = 1; 2; : : : ; n, are the breakpoints. The linear spline basis functions are

popularly called the \hat" functions, for reasons that are clear from Figure

6.5. This �gure illustrates the basis function for twelve-degree, evenly spaced

breakpoint linear splines on the interval [0; 1]. Each hat function is zero

everywhere, except over a narrow support element of width 2w. The basis

function achieves a maximum of 1 at the midpoint of its support element.

One can �x the coeÆcients of an n-degree linear spline approximant for

a function f by interpolating its values at any n points of its domain, pro-

vided that the resulting interpolation matrix is nonsingular. However, if

the interpolation nodes x1; x2; : : : ; xn are chosen to coincide with the spline

breakpoints �1; �2; : : : ; �n, then computing the basis coeÆcients of the linear

spline approximant becomes a trivial matter. If the interpolation nodes and

breakpoints coincide, then �
i
(x

j
) equals one if i = j, but equals zero other-

wise. That is, the interpolation matrix � is simply the identity matrix and

the interpolation equation reduces to the trivial identity c = y where y is
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Figure 6.5

the vector of function values at the interpolation nodes. The linear spline

approximant of f when nodes and breakpoints coincide thus takes the form

f̂(x) =

nX
i=1

f(x
i
)�

i
(x):

When interpolation nodes and breakpoints coincide, no computations other

than function evaluations are required to form the linear spline approximant.

For this reason linear spline interpolation nodes in practice are always chosen

to be the spline's breakpoints.

Evaluating a linear spline approximant and its derivative at an arbitrary

point x is also straightforward. Since at most two basis functions are nonzero

at any point, only two basis function evaluations are required. Speci�cally,

if i is the greatest integer less than 1 + (x� a)=w, then x lies in the interval

[x
i
; x

i+1]. Thus,

f̂(x) = (c
i+1(x� xi) + c

i
(x

i+1 � x))=w
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and

f̂
0(x) = (c

i+1 � ci)=w:

Higher order derivatives are zero, except at the breakpoints, where they are

unde�ned.

Linear splines are attractive for their simplicity, but have certain lim-

itations that often make them a poor choice for computational economic

applications. By construction, linear splines produce �rst derivatives that

are discontinuous step functions and second derivative that are zero almost

everywhere. Linear spline approximants thus typically do a very poor job of

approximating the �rst derivative of a nonlinear function and are incapable

of approximating its second derivative. In some economic applications, the

derivative represents a measure of marginality that is of as much interest to

the analyst as the function itself. In other applications, the �rst and maybe

second derivative of the function may be needed to solve for the root of the

function using Newton-like method.

Cubic spline approximants o�er a higher degree of smoothness while re-

taining much of the exibility and simplicity of linear spline approximants.

Because cubic splines possess continuous �rst and second derivatives, they

typically produce adequate approximations for both the function and its �rst

and second derivatives.

The basis functions for n-degree, evenly spaced breakpoint cubic splines

on the interval [a; b] are generated using the n�2 breakpoints �
j
= a+w(j�1),

j = 1; 2; : : : ; n � 2, where w = b�a
n�3 . Cubic spline basis function generated

with evenly spaced breakpoints are nonzero over a support element of width

4w. As such, at any point of [a; b], at most four basis functions are nonzero.

The basis functions for twelve-degree, evenly spaced breakpoint cubic splines

on the interval [0; 1] are illustrated in Figure 6.6.

Although spline breakpoints are often chosen to be evenly spaced in most

applications, this need not be the case. Indeed, the ability to distribute

breakpoints unevenly and to stack them on top of one another adds consid-

erably to the exibility of splines, allowing them to accurately approximate

a wide range of functions. In general, functions that exhibit wide variations

in curvature are diÆcult to approximate numerically with entire polynomials

of high degree. With splines, however, one can often �nesse curvature diÆ-

culties by concentrating breakpoints in regions displaying the highest degree

of curvature.
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Figure 6.6

To illustrate the importance of breakpoint location, consider the problem

of forming a cubic spline approximant for Runge's function

f(x) =
1

1 + 25x2
for x 2 [�5; 5]:

Figure 6.7 displays two cubic spline approximations, one using thirteen evenly

spaced breakpoints, the other using thirteen breakpoints that cluster around

zero (the breakpoints are indicated by `x' symbols). Figure 6.8 shows the

associated approximation errors (note that the errors for the unevenly spaced

approximation have been multiplied by 100). In Figure 6.7 the unevenly

spaced breakpoints approximation lies almost on top of the actual function,

whereas the even spacing leads to signi�cant errors, especially near zero. The

�gures clearly demonstrates the power of spline approximations with good

breakpoint placement.

The placement of the breakpoints can also be used to a�ect the continuity

of the spline approximant and its derivatives. By stacking breakpoints on top
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of one another, we can reduce the smoothness at the breakpoints. Normally,

an order k spline has continuous derivatives to order k�1 at the breakpoints.
By stacking q breakpoints, we can reduce this to k�q continuous derivatives
at this breakpoint. For example, with two equal breakpoints, a cubic spline

possesses a discontinuous second derivative at the point. With three equal

breakpoints, a cubic spline possesses a discontinuous �rst derivative at that

point, that is, it exhibits a kink there. Stacking breakpoints is a useful

practice if the function is known a priori to exhibit a kink at a given point,

a not uncommon occurrence in practice.

Regardless of the placement of breakpoints, splines have several important

and useful properties. We have already commented on the limited domain

of the basis function. This limited support implies that spline interpola-

tion matrices are sparse and for this reason can be stored and manipulated

as sparse matrices. This property is extremely useful in high-dimensional

problems for which a fully expanded interpolation matrix would strain any

computer's memory. Another useful feature of splines is that their values
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are bounded, thereby reducing the likelihood that scaling e�ects will cause

numerical diÆculties. In general, the limited support and bounded values

make spline basis matrices well-conditioned.

If the spline interpolation matrix must be reused, one must resist the

temptation to form and store its inverse, particularly if the size of the matrix

is large. Inversion destroys the sparsity structure. More speci�cally, the in-

verse of the interpolation matrix will be dense, even though the interpolation

matrix is not. When n is large, solving the sparse n by n linear equation

using sparse L-U factorization will generally be less costly than performing

the matrix-vector multiplication required with the dense inverse interpolation

matrix.
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6.4 Multidimensional Interpolation

The univariate interpolation methods discussed in the preceding sections

may be extended in a natural way to multivariate functions through the use

of tensor products. To illustrate, consider the problem of approximating

a bivariate real-valued function f(x; y) de�ned on a bounded interval I =

f(x; y) j a
x
� x � b

x
; a

y
� y � b

y
g in <2. Suppose that �x

i
, i = 1; 2; : : : ; n

x

and �
y

j
, j = 1; 2; : : : ; n

y
are basis functions for univariate functions de�ned

on [a
x
; b

x
] and [a

y
; b

y
], respectively. Then an n = n

x
n
y
degree basis for f on

I may be constructed by letting

�
ij
(x; y) = �

x

i
(x)�

y

j
(y) 8i = 1; : : : ; n

x
; j = 1; : : : ; n

y
:

Similarly, a grid of n = n
x
n
y
interpolation nodes can be constructed by

taking the Cartesian product of univariate interpolation nodes. More specif-

ically, if x1; x2; : : : xnx and y1; y2; : : : ; yny are nx and ny interpolation nodes in

[a
x
; b

x
] and [a

y
; b

y
], respectively, then n nodes for interpolating f on I may

be constructed by letting

f(x
i
; y

j
) j i = 1; 2; : : : ; n

x
; j = 1; 2; : : : ; n

y
g:

For example, suppose one wishes to approximate a function using a cubic

polynomial in the x direction and a quadratic polynomial in the y direction.

A tensor product basis constructed from the simple monomial basis of x and

y comprises the following functions

1; x; y; xy; x
2
; y

2
; xy

2
; x

2
y; x

2
y
2
; x

3
; x

3
y; x

3
y
2
:

The dimension of the basis is 12. An approximant expressed in terms of the

tensor product basis would take the form

f̂(x; y) =

4X
i=1

3X
j=1

c
ij
x
i�1
y
j�1
:

Typically, tensor product node-basis schemes inherit the favorable quali-

ties of their univariate node-basis parents. For example, if a bivariate linear

spline basis is used and the interpolation nodes fx
i
; y

j
g are chosen such that

the x
i
and y

j
coincide with the breakpoints in the x and y direction, respec-

tively, then the interpolation matrix will be the identity matrix, just like in

the univariate case. Also, if a bivariate Chebychev polynomial basis is used,
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and the interpolation nodes fx
i
; y

j
g are chosen such that the x

i
and y

j
coin-

cide with the Chebychev nodes on [a
x
; b

x
] and [a

y
; b

y
], respectively, then the

interpolation matrix will be orthogonal.

Tensor product schemes can be developed similarly for higher than two

dimensions. Consider the problem of interpolating a d-variate function

f(x1; x2; : : : ; xd)

on a d-dimensional interval

I = f(x1; x2; : : : ; xd) j ai � x
i
� b

i
; i = 1; 2; : : : ; dg:

If �
ij
, j = 1; :::; n

i
is a n

i
degree univariate basis for real-valued functions of

on [a
i
; b

i
], then an approximant for f in the tensor product basis would take

the following form:

f̂(x1; x2; : : : ; xd) =

n1X
j1=1

n2X
j2=1

: : :

ndX
jd=1

c
j1:::jd

�1j1(x1)�2j1(x2) : : : �dj1(xd):

Using tensor notation the approximating function an be written

f̂(x1; x2; : : : ; xd) = [�1(x1)
 �2(x2)
 : : :
 �d(xd)]c:

where c is a column vector with n = �d

i=1ni elements. An even more compact

notation is

f(x) = �(x)c

where �(x) is a function of d variables that produces an n-column row vector.

Consider the case in which d = 2, with n1 = 3 and n2 = 2, and the

simple monomial (power) function bases are used (of course one should use

Chebychev but it makes the example harder to follow). The elementary basis

functions are

�11(x1) = 1

�21(x1) = x1

�31(x1) = x
2
1

�12(x2) = 1

and

�22(x2) = x2:
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The elementary basis vectors are

�1(x1) = [1 x1 x
2
1]

and

�2(x2) = [1 x2]:

Finally, the full 2{d basis vector is

�(x) = [1 x1 x
2
1]
 [1 x2] = [1 x2 x1 x1x2 x

2
1 x

2
1x2];

which has n = n1n2 = 6 columns.

We are often interested in evaluating f(x) at many values of x. Suppose

we have an m � d matrix X, each row of which represents a single value of

x, and which is denoted X
i
. The matrix �(X) is an m�N matrix, each row

of which is composed of �(X
i
) and we can write

f(X) = �(X)c

to be the values of the function evaluated at each of the X
i
.

Continuing the previous example, suppose we want to evaluate f at the

m points [0 0], [0 0:5], [0:5 0] and [1 1]. The matrix X is thus

X =

2
664

0 0

0 0:5

0:5 0

1 1

3
775 :

Then

�(X) =

2
664
1 0 0 0 0 0

1 0:5 0 0 0 0

1 0 0:5 0 0:25 0

1 1 1 1 1 1

3
775 ;

which is 4� 6 (m�N).

To implement interpolation in multiple dimensions it is necessary to eval-

uate solve the interpolation equation. If �
i
is the degree n

i
interpolation

matrix associated with variable x
i
, then the interpolation conditions for the

multivariate function can be written

[�1 
 �2 
 : : :
 �
d
]c = f(x)
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where f(x) is an n by 1 vector of function values evaluated at the inter-

polation nodes x, properly stacked. Using a standard result from tensor

matrix algebra, the this system may be solved by forming the inverse of the

interpolation matrix and postmultiplying it by the data vector:

c = [��11 
 ��12 
 : : :
 ��1
d
]f(x);

Hence there is no need to invert an n by n multivariate interpolation matrix

to determine the interpolating coeÆcients. Instead, each of the univariate

interpolation matrices may be inverted individually and then multiplied to-

gether. This leads to substantial savings in storage and computational e�ort.

For example, if the problem is 3-dimensional and the are 10 evaluation points

in each dimension, only three 10 by 10 matrices need to be inverted, rather

than a single 1000 by 1000 matrix.

Interpolation using tensor product schemes tends to become computa-

tionally more challenging as the dimensions rise. With a one{dimensional

argument the number of interpolation nodes and the dimension of the in-

terpolation matrix can generally be kept small with good results. For a

relatively smooth function, Chebychev polynomial approximants of order 10

or less can often provide extremely accurate approximations to a function

and its derivatives. If the function's argument is d-dimensional one could ap-

proximate the function using the same number of points in each dimension,

but this increases the number of interpolation nodes to 10d and the size of the

interpolation matrix to 102d elements. The tendency of computational e�ort

to grow exponentially with the dimension of the function being interpolated

is known as the curse of dimensionality. In order to mitigate the e�ects of

the curse requires that careful attention be paid to both storage and compu-

tational eÆciency when designing and implementing numerical routines that

perform approximation.

6.5 Choosing an Approximation Method

The most signi�cant di�erence between spline and polynomial interpolation

methods is that spline basis functions have narrow supports, but polynomial

basis functions have supports that cover the entire interpolation interval.

This can lead to big di�erences in the quality of approximation when the

function being approximated is irregular. Discontinuities in the �rst or sec-

ond derivatives can create problems for all interpolation schemes. However,
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spline functions, due to their narrow support, can often contain the e�ects

of such discontinuities. Polynomial approximants, on the other hand, allow

the ill e�ects of discontinuities to propagate over the entire interval of inter-

polation. Thus, when a function exhibits kinks, spline interpolation may be

preferable to polynomial interpolation.

In order to illustrate the di�erences between spline and polynomial inter-

polation, we compare in Table 6.1 the approximation error for four di�erent

functions, all de�ned on [�5; 5], and four di�erent approximation schemes:

linear spline interpolation, cubic spline interpolation, evenly spaced node

polynomial interpolation, and Chebychev polynomial interpolation. The er-

rors are measured as the maximum absolute error using 1001 evenly spaced

evaluation points on [�5; 5].
The four functions are ordered in increasing diÆculty of approximation.

The �rst is polynomial and can be �t exactly by both cubic spline and poly-

nomials \approximations". The second function is quite smooth and hence

can be �t well with a polynomial. The third function (Runge's function) has

continuous derivatives of all orders but has a high degree of curvature near

the origin. A scaleless measure of curvature familiar to economists is �f 00=f 0;
for Runge's function this measure is 1=x � 2 which becomes unbounded at

the origin. The fourth function is kinked at the origin, i.e., its derivative is

not continuous.

The results presented in Table 6.1 lend support to certain rules of thumb.

When comparing interpolation schemes of the same degree of approximation:

1. Chebychev node polynomial interpolation dominates evenly spaced node

polynomial interpolation.

2. Cubic spline interpolation dominates linear spline interpolation, except

where the approximant exhibits a profound discontinuity.

3. Chebychev polynomial interpolation dominates cubic spline interpola-

tion if the approximant is smooth and monotonic; otherwise, cubic or

even linear spline interpolation may be preferred.
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Table 6.1: Errors for Selected Interpolation Methods

Linear Cubic Uniform Chebychev

Function Degree Spline Spline Polynomial Polynomial

1 + x 10 1.30e+001 1.71e-013 2.27e-013 1.71e-013

+2x2 � 3x3 20 3.09e+000 1.71e-013 3.53e-011 1.99e-013

30 1.35e+000 1.71e-013 6.56e-008 3.41e-013

exp(�x) 10 1.36e+001 3.57e-001 8.10e-002 1.41e-002

20 3.98e+000 2.31e-002 2.04e-008 1.27e-010

30 1.86e+000 5.11e-003 1.24e-008 9.23e-014

(1 + 25x2)�1 10 8.85e-001 9.15e-001 8.65e-001 9.25e-001

20 6.34e-001 6.32e-001 2.75e+001 7.48e-001

30 4.26e-001 3.80e-001 1.16e+004 5.52e-001

jxj0:5 10 7.45e-001 7.40e-001 6.49e-001 7.57e-001

20 5.13e-001 4.75e-001 1.74e+001 5.33e-001

30 4.15e-001 3.77e-001 4.34e+003 4.35e-001
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6.6 An Approximation Toolkit

Implementing routines for multivariate function approximation involves a

number of bookkeeping details that are tedious at best. In this section we

describe a set of numerical tools that take much of the pain out of this pro-

cess. This toolbox contains several high-level functions that use a structured

variable to store the essential information that de�nes the function space

from which approximants are drawn. The toolbox also contains a set of

middle-level routines that de�ne the basis functions for Chebychev polyno-

mials and for splines and a set of low-level utilities to handle basic computa-

tions, including tensor product manipulations. Below, all of the routines are

implemented in Matlab, though in principle they can also be implemented

in other computer languages.

The six high-level procedures, all prefaced by FUN, are FUNDEFN, FUNFITF,

FUNFITXY, FUNEVAL, FUNNODE, and FUNBAS.

The most basic of these routines is FUNDEFN, which creates a structured

variable that contains the essential information about the function space from

which approximants will be drawn. There are several pieces of information

that must be speci�ed and stored in the structure variable in order to de�ne

the function space: the type of basis function (e.g., Chebychev polynomial,

spline, etc.), the number of basis functions, and the endpoints of the interpo-

lation interval. If the approximant is multidimensional, the number of basis

functions and the interval endpoints must be supplied for each dimension.

The function FUNDEFN de�nes the approximation function space using the

syntax:

space = fundefn(bastype,n,a,b,order);

Here, on input, bastype is string referencing the basis function family, either

'cheb' for Chebychev polynomial basis or 'spli' for spline basis; n is the vector

containing the degree of approximation along each dimension; a is the vector

of left endpoints of interpolation intervals in each dimension; b is the vector

of right endpoints of interpolation intervals in each dimension; and order

is an optional input that speci�es the order of the interpolating spline. On

output, space is a structured Matlab variable containing numerous �elds

of information necessary for forming approximations in the chosen function

space.

For example, suppose one wished to construct tenth degree Chebychev

approximants for univariate functions de�ned on the interval [�1; 2]. Then
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one would de�ne the appropriate function space for approximation as follows:

space = fundefn('cheb',10,-1,2);

Suppose now that one wished to construct cubic spline approximants for bi-

variate functions de�ned on the two-dimensional interval f(x1; x2)j�1 � x1 �
2; 4 � x2 � 9g. Furthermore suppose that one wished to form an approxi-

mant using ten basis functions in the �rst direction and 15 basis functions in

the second direction. Then one would issue the following command:

space = fundefn('spli',[10 15],[-1 2],[4 9]);

For spline interpolation, cubic (that is, third-order) spline interpolation is the

default. However, other order splines may also be used for interpolation by

specifying order. In particular, if one wished to construct linear spline ap-

proximants instead of cubic spline interpolants, one would issue the following

command:

space = fundefn('spli',[10 15],[-1 2],[4 9],1);

Two procedures are provided for function approximation and simple data

�tting. FUNFITF determines the basis coeÆcients of a member from the

speci�ed function space that approximates a given function f de�ned in an

M-�le or as an inline function. The syntax for this function approximation

routine is:

c = funfitf(space,f,varargin);

Here, on input, space is the approximation function space de�ned using

FUNDEF; f is the string name of the M-�le or inline object that evaluates the

function to be approximated; and varargin are additional parameters that

are passed on to the function f. On output, c is the vector of basis function

coeÆcients for the unique member of the approximating function space that

interpolates the function f at the standard interpolation nodes associated

with that space.

A second procedure, FUNFITXY, computes the basis coeÆcients of the

function approximant that interpolates the values of a given function at ar-

bitrary points that may, or may not, coincide with the standard interpolation

nodes. The syntax for this function approximation routine is:

c = funfitxy(space,x,y);
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Here, on input, space is the approximation function space de�ned using

FUNDEF; x is the vector of points at which the function has been evaluated;

and y is the vector of function values at those points. On output, c is the

vector of basis function coeÆcients for the member of the approximating

function space that interpolates f at the interpolation nodes supplied in x.

If there are more data points than coeÆcients, FUNFITXY returns the least

squares �t; the procedure can therefore be used for statistical data �tting as

well as interpolation.

Once the approximant function space has been chosen and a speci�c ap-

proximant in that space has been selected by specifying the basis coeÆcients,

then the procedure FUNEVAL may be used to evaluate the approximant at one

or more points. The syntax for this function approximation routine is:

y = funeval(c,space,x);

Here, on input, space is the approximation function space de�ned using

FUNDEFN; c is the vector of basis coeÆcients that identi�es the approximant;

and x is the point at which the approximant is to be evaluated, written as a

1 by d row vector. On output, y is the value of the approximant at x. If one

wishes to evaluate the approximant at m points, then one may pass all these

points to FUNEVAL at once as an m by d array x, in which case y is returned

as an m by 1 vector of function values.

The procedure FUNEVAL may also be used to evaluate the derivatives or

the approximant at one or more points. The syntax for evaluating derivatives

is:

deriv = funeval(c,space,x,order);

were, on input, order is a 1 by d specifying the order of integration in each

dimension. For example, to compute the �rst and second derivative of a

univariate approximant, one issues the commands:

f1 = funeval(c,space,x,1);

f2 = funeval(c,space,x,2);

To compute the partial derivative of a bivariate approximant with respect to

its �rst two arguments, one would issue the commands:

f1 = funeval(c,space,x,[1 0]);

f2 = funeval(c,space,x,[0 1]);

And to compute the second partial derivatives and the cross partial of a

bivariate function, one would issue the commands:
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f11 = funeval(c,space,x,[2 0]);

f22 = funeval(c,space,x,[0 2]);

f12 = funeval(c,space,x,[1 1]);

Some simple examples will help clarify how all of these procedures may

be used to construct and evaluate function approximants. Suppose we are

interested (for whatever reason) in approximating the univariate function

f(x) = exp(�x)

on [-1,1]. The following script constructs the Chebychev approximant and

then plots the errors using a �ner grid than used in interpolation:

f = inline('exp(-x)');

space = fundefn('cheb',10,-1,1);

c = funfitf(space,f);

x = nodeunif(1001,-1,1);

yact = f(x);

yapp = funeval(c,space,x);

plot(x,yact-yapp);

Here, we �rst de�ne the function, f, using inline. Second, we use FUNFITFN

to de�ne the function space from which the approximant is to be drawn,

in this case the space of 10 degree Chebychev polynomial approximants on

[-1,1]. Third, we use FUNFITF to compute the coeÆcient vector for the ap-

proximant that interpolates the function at the standard Chebychev nodes.

Fourth, we generate a �ne grid of 1001 equally spaced nodes on the interval

of interpolation and plot the di�erence between the actual function values

yact and the approximated values yapp. The approximation error is plotted

in Figure 6.9.

To other routines are useful in applied computational economic analysis.

For many problems it is necessary to work directly with the basis matrices.

For this purpose FUNBAS can be used. The command

B = funbas(space,x);

returns the matrix containing the values of the basis functions evaluated

at the points x. The matrix containing the value of the basis functions

associated with a derivative of given order at x may be retrieved by issuing

the command

B = funbas(space,x,order);
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When a function is to be repeatedly evaluated at the same points but with

di�erent values of the coeÆcients substantial time saving are achieved by

avoiding repeated recalculation of the basis. FUNEVAL therefore accepts a

basis matrix as its second argument. The command

B = funbas(space,x);

y = funeval(c,B);

has the same e�ect as

y = funeval(space,x);

Finally, the procedure FUNNODE computes standard nodes for interpolation

and function �tting. It returns a 1� d cell array associated with a speci�ed

coeÆcient structure. Its syntax is

x = FUNNODE(space);
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6.7 Solving Functional Equations

In this section we consider a related but somewhat more diÆcult problem

of solving functional equations. A general representation of the functional

equation problem is to �nd a function f that satis�es

g(f; x) = 0 for x 2 [a; b]:

Solving functional equations numerically involves �nding a function f̂

from a �nite-dimensional function space that approximately satis�es g(f̂ ; x) =

0. Again, it is useful to work with approximants that can be written in the

form

f(x) � f̂(x) =
X

c
j
�
j
(x);

where the �
j
are a set of basis functions. The condition to be satis�ed can

be written as

g(
X

c
j
�
j
; x) � 0 for x 2 [a; b]:

The term g(
P
c
j
�
j
; x)can be thought of as a residual, which should be small

(in some sense) by the choice of fc
j
g. Notice that, for any choice of c, the

residual is a function of x.

A general approach to solving functional equations numerically is collo-

cation. The collocation strategy is to choose c in such a way as to make the

residual zero at n prescribed nodes:

g(
X

c
j
�
j
; x

i
) = 0 for i = 1; 2; : : : ; n:

We now examine some examples of functional equations in Economics

and demonstrate the use of collocation methods to solve them.

6.7.1 Cournot Oligopoly

In the standard microeconomic model of �rm behavior, a �rm facing a given

cost function maximizes pro�t by setting marginal revenue (MR) equal to

marginal cost (MC). The marginal cost is determined by the �rm's technology

and is a function of the amount of the good the �rm produces (q). For a

price taking �rm, MR is simply the price the �rm faces (p). An oligopolistic

�rm, however, recognizing that its actions a�ect price, takes the marginal
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revenue to be p + q
dp

dq

. Of course the term dp

dq

is the problem. The Cournot

assumption is that the �rm acts as if any output change it makes will be

unmatched by its competitors. This implies that

dp

dq
=

1

D0(p)

where D(p) is the market demand for the good.

If we want to determine the e�ective supply for this �rm at any given

price, we need to �nd a function q = S(p) that equates marginal cost with

marginal revenue and therefore solves the functional equation:

p+
S(p)

D0(p)
�MC(S(p)) = 0

for all positive prices. In simple cases, this function can be found explicitly.

For example, suppose that MC(q) = c and q = D(p) = p
��. It is easy to

demonstrate that 3

q = S(p) = �(p� c)p���1:

With m identical �rms, we can compute the (Cournot) equilibrium price

for the whole industry by setting

mS(p) = D(p);

which, in the constant marginal cost case, yields

p =

 
1

1� 1
�m

!
c

(notice that this result produces the perfect competition result that p = c as

m!1).

What are we to do, however, if the marginal cost function is not so nicely

behaved? Suppose, for example, that

MC(q) = �
p
q + q

2
:

3Strictly speaking we should impose the q � 0 and write the residual as a complemen-

tarity (Kuhn-Tucker) condition. In MC = c case this puts a kink at p = c, with S(p) = 0

for p < c.
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Using the same demand function, the MR=MC condition becomes�
p�

qp
�+1

�

�
� (�

p
q + q

2) = 0:

There is no way to �nd an explicit expression for q = S(p) from this rela-

tionship.

To �nd a solution we must resort to numerical methods, �nding a function

Ŝ that approximates S over some interval p 2 [a; b]. Using collocation, we

de�ne a set of price nodes (p) and an associated basis matrix B. These are

used in a function that, given a coeÆcient vector c, computes the residual

equation at the price nodes. This function is then passed to a root �nding

algorithm. The following script demonstrates how to perform these tasks:

alpha=1; eta=1.5;

n=25; a=0.1; b=3;

space = FUNDEFN('cheb',n,a,b);

p = FUNNODE(space);

B = FUNBAS(space,p);

c = B\sqrt(p);

c = broyden('resid',c,[],p,alpha,eta,B);

The script calls a function 'resid' the computes the functional equation resid-

ual for any choice of coeÆcient vector c:

function resid=f(c,p,alpha,eta,B);

dp = (-1./eta)*p.^(eta+1);

q = B*c;

resid = p + q.*dp - alpha*sqrt(q) - q.^2;

The resulting coeÆcients, c, can then be used to evaluate the \supply"

functions. A set of industry \supply" functions and the industry demand

function for � = 1, � = 1:5 are illustrated in Figure 6.10. The equilibrium

price is determined by the intersection of the industry \supply" and demand

curves. A plot of the equilibrium price for alternative industry sizes is shown

in Figure 6.11.

It should be emphasized that all collocation problems involve writing a

function to compute the residuals. This function is passed to a root-�nding

algorithm (unless the problem is linear). Typically, however, it makes sense to

initialize certain variables, such as the basis matrices needed to evaluate the

residual function, as well as any other variables whose value does not depend

on the coeÆcient values. Thus there are typically two procedures needed

to solve collocation problems. The �rst sets up the problem and initializes
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variables. It then call a root-�nding algorithm, passing it the name of the

second procedure, which computes the residuals. In our example we have

combined these into a single Matlab function to reduce the number of �les

needed to solve the problem.

It is also generally a good idea to implement an additional step in solving

any collocation problem to analyze how well the problem has been solved.

Although we generally do not know the true solution, we can compute the

value of the residual at any particular point. If the input argument is low-

dimensional (1 or 2) we can plot the residual function at a grid of points,

with the grid much �ner than that used to de�ne the collocation nodes.

Even if plotting is infeasible, one can still evaluate the residual function at

a grid of points and determine the maximum absolute residual or the mean

squared residual. This should give you a reasonable idea of how well the

approximation solves the problem. Residuals for the Cournot example can

be plotted against price with the following script:

p = nodeunif(501,a,b)';
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B = FUNBAS(space,p);

resid = f(c,p,alpha,eta,B);

plot(p,resid)

The result is shown in Figure 6.12, which makes clear that the approxi-

mation adequately solves the functional equation.

6.7.2 Function Inverses

As another example, consider the problem of inverting a function g. Speci�-

cally, we would like to approximate a function f(x) that satis�es g(f(x)) = x

on some interval a � x � b. The residual function here is simply r(x) =

g(f(x))� x. The collocation approach is therefore to �nd the c that satis�es

g

 X
j

c
j
�
j
(x

i
)

!
� x

i
= 0
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at a selected set of x
i
. Except in the trivial case in which g is linear, c must

be found using a non-linear root �nding algorithm.

It is straightforward to write a utility procedure to �nd the inverse of

an arbitrary function. To accomplish this we will want to de�ne a set of x

values for collocation nodes and form a basis matrix at those values. These

will be prede�ned and stored in memory in the initialization phase. If initial

coeÆcient values are not passed to the function, we should use some rea-

sonable default values. It is not clear how to what good values would be

so we've simply de�ned an identity mapping, f(x) = x, as our initial guess.

This works �ne for our example below; if this doesn't work for the function

of your choice, you'll have to come up with a better initial guess.

To illustrate, suppose you want to approximate the inverse of exp(y) over

some range such as x 2 [1; 2]. We must �nd a function f for which it is

approximately true that exp(f(x)) � x = 0 for x 2 [1; 2]. The following

script computes an approximate inverse via collocation:

space = FUNDEFN('cheb',6,1,2);
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x = FUNNODE(space);

c = FUNFITF(space,inline('x'));

c = BROYDEN('f',c,[],space,x);

The script calls a function 'resid' the computes the functional equation resid-

ual for any choice of coeÆcient vector c:

function resid=resid(c,space,x)

resid = exp(funeval(c,space,x))-x;

The following script generates a plot of the residual function, shown in

Figure 6.13, and a plot of the true approximation error, shown in Figure 6.14:

xplot = nodeunif(101,1,2);

figure(1)

plot(xplot,exp(FUNEVAL(c,space,xplot))-xplot)

title('Residual Function: exp(f(x))-x');

xlabel('x'); ylabel('r')

figure(2)

plot(xplot,log(xplot)-FUNEVAL(c,space,xplot))

title('Approximation Errors for exp^{-1}(x)');

xlabel('x');ylabel('error')

Even with only 6 nodes, it is clear that we have found a good approximation

to the inverse. Of course we know that the inverse is ln(x), which allowed us

to compute the directly how well we have done.

6.7.3 Linear First Order Di�erential Equations

Consider the �rst order, linear di�erential equation with a non-constant co-

eÆcients

f
0(x)� �1(x)� �2(x)f(x) = 0:

An approximate solution can be expressed as the linear relationshipX
j

�
�
0
j
(x

i
)� �1 � �2(xi)cj�j(xi)

�
= 0;

for some speci�ed set of x
i
.

To obtain a speci�c solution to this problem, however, one additional

restriction must be imposed. This will generally be an initial condition of

the form condition of the form

f(a) = k
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for some speci�ed constant k. This restriction can be imposed on the ap-

proximating function:X
j

c
j
�
j
(a) = k:

Given an n dimensional basis and n�1 nodes, this results in a linear equation
system that can be solved by matrix inversion.

A general solver for the linear di�erential equation is:

function [c,space]=LNDIFFEQ(n,a,b,alpha,k)

x = chebnode(n-1,a,b); % n-1 Chebyshev nodes

B = chebbas(n,a,b,x); % basis matrix for the DE

dB = chebbas(n,a,b,x,1); % derivative of basis matrix

A = feval(alpha,x); % get the alpha values

A1 = A(:,1)*ones(1,n); % expand the alpha values

A2 = A(:,2)*ones(1,n);

B = dB-A1-A2.*B; % residual function

B = [B;chebbas(n,a,b,a)]; % append the boundary condition
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c = B\[zeros(n-1,1);k]; % computes the coefficient values

space = fundefn('cheb',n,a,b); % creates function structure

To illustrate its use, consider the di�erential equation

f
0(x) = f(x)

on [0; 1], with f(0) = 1 (the exact solution is exp(x)). The script below solves

the equation numerically using a 10 node approximation and then plots out

the residual function and the approximation errors. The resulting plots are

shown in Figures 6.15 and 6.16.

alpha=inline('ones(size(x,1),1)*[0 1]','x');

[c,space]=LNDIFFEQ(10,0,1,alpha,1);

x=nodeunif(301,0,1);

figure(1)

plot(x,FUNEVAL(c,space,x,1)-FUNEVAL(c,space,x));

title('Residual Function for f''(x)-f(x)')

xlabel('x');ylabel('r')
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figure(2)

plot(x,exp(x)-FUNEVAL(c,space,x))

title('Approximation Error: exp(x)-f(x)')

xlabel('x');ylabel('error')
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Exercises

1. In the Cournot model each �rm takes the output of the other �rms as

given when determining its output level. An alternative assumption is

that each �rm takes the output decision function as given when making

its own output choice. This can be expressed as the assumption that

dp

dq
i

=
1

D0(p)

nX
j=1

dq
j

dq
i

=
1

D0(p)

 
1 +

X
j 6=i

dS
j
(p)

dp

dp

dq
i

!
:

Solving this for dp=dq
i
yields

dp

dq
i

=
1

D0(p)�
P

j 6=i S
0
j
(p)

:
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In an identical �rm industry this means that each �rm assumes the

other �rms will react in the same way it would so this expression sim-

pli�es to

dp

dq
=

1

D0(p)� (n� 1)S 0(p)
:

This expression di�ers from the Cournot case in the extra term in the

denominator (which is 0 in the monopoly situation of n = 1).

Write a function to solve this problem analogous to the one in this

Chapter and a demo �le to produce the analogous plots. The function

must take the parameters n (industry size), in contrast to the Cournot

case, and must compute the derivative of the q = S(p) function to

compute the residual function.

2. The least absolute deviation �t of a function that is linear in its coef-

�cients solves

min
c

nX
i=1

jy
i
� �(x

i
)cj:
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De�ning � to be the basis matrix formed using all values of the x
i
and

y the vector of the y
i
values, this can be written as the following linear

program

min
c;e

+
;e
�

(e+ + e
�)>1

s.t.

�c+ e
+ � e� = y:

Write a Matlab function MAD (for minimum absolute deviation, of

course) analogous to the MINMAX procedure de�ned in the appendix.

3. Construct the 5- and 50-degree approximants for the function f(x) =

exp(�x2) on the interval [�1; 1] using each of the interpolation schemes
below. For each scheme and degree of approximation, estimate the sup

norm approximation error by computing the maximum absolute devia-

tion between the function and approximant at 100 evenly spaced points.

Also, graph the approximation error for the degree 5 approximant.

(a) Uniform node, monomial basis polynomial approximant

(b) Chebychev node, Chebychev basis polynomial approximant

(c) Uniform node, linear spline approximant

(d) Uniform node, cubic spline approximant

4. Consider the potato market model discussed in the Chapter 3 prob-

lems. Construct a 5th degree Chebychev polynomial approximant for

the function relating the period 1 price to initial supply s over the in-

terval s 2 [1; 3]. Interpolate the polynomial at s = 1, s = 2, and s = 3

and compare to the interpolated values to those obtained earlier.

5. Consider again the potato market model. Assume now that supply s

is the product of acreage a and yield y where yield can achieve one of

two equiprobable outcomes, a low yield 0:75 and a high yield 1:25, and

that acreage is a function of the price expected in the harvest period:

a = 0:5 + 0:5Ep1:
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The rational expectations equilibrium acreage level and expected price

satisfy the acreage supply function and

Ep1 = 0:5f(0:75a) + 0:5f(1:25a)

where f is the function approximated in the preceding problem. Com-

pute the rational expectations equilibrium of the model using the 10th

degree Chebychev polynomial approximation for f computed in the

preceding problem.

6. With the basis functions of your choice use collocation to numerically

solve the following di�erential equation for x 2 [0; 1]:

(1 + x
2)v(x)� v00(x) = x

2
;

with v(0) = v(1) = 0. Plot the residual function to ensure that the

maximum value of the residual is less than 1e-8.



Chapter 7

Discrete Time Discrete State

Dynamic Models

With this chapter, we begin our study of dynamic economic models. Dynamic

economic models often present three complications rarely encountered to-

gether in dynamic physical science models. First, humans are cogent, future-

regarding beings capable of assessing how their actions will a�ect them in

the future as well as in the present. Thus, most useful dynamic economic

models are future-looking. Second, many aspects of human behavior are

unpredictable. Thus, most useful dynamic economic models are inherently

stochastic. Third, the predictable component of human behavior is often

complex. Thus, most useful dynamic economic models are inherently non-

linear.

The complications inherent in forward-looking, stochastic, nonlinear mod-

els make it impossible to obtain explicit analytic solutions to dynamic eco-

nomic models. However, the proliferation of a�ordable personal computers,

the phenomenal increase of computational speed, and developments of theo-

retical insights into the eÆcient use of computers over the last two decades

now make it possible for economists to analyze dynamic models much more

thoroughly using numerical methods.

The next three chapters are devoted to the numerical analysis of dynamic

economic models in discrete time and are followed by three chapters on dy-

namic economic models in continuous time. In this chapter we study the

most simple of these models: the discrete time, discrete state Markov deci-

sion model. Though the model is simple, the methods used to analyze the

model lay the foundations for the methods developed in subsequent chapters

160
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to analyze more complicated models with continuous states and time.

7.1 Discrete Dynamic Programming

The discrete time, discrete state Markov decision model has the following

structure: in every period t, an agent observes the state of an economic

process s
t
, takes an action x

t
, and earns a reward f(x

t
; s

t
) that depends

on both the state of the process and the action taken. The state space S,

which enumerates all the states attainable by the process, and the action

space X, which enumerates all actions that may be taken by the agent, are

both �nite. The state of the economic process follows a controlled Markov

probability law. That is, the distribution of next period's state, conditional

on all currently available information, depends only on the current state of

the process and the agent's action:

Pr(s
t+1 = s

0jx
t
= x; s

t
= s; other information at t ) = P (s0jx; s):

The agent seeks a policy fx�
t
gT
t=1 that prescribes the action xt = x

�
t
(s

t
) that

should be taken in each state so as to maximize the present value of current

and expected future rewards over time, discounted at a per-period factor

Æ 2 (0; 1]:

max
fx�t g

T
t=0

E

"
TX
t=0

Æ
t

f(x
t
; s

t
)

#
:

A discrete Markov decision model may have an in�nite horizon (T =1)

or a �nite horizon (T <1). The model may also be either deterministic or

stochastic. It is deterministic if next period's state is known with certainty

once the current period's state and action are known. In this case, it is

bene�cial to dispense with the probability transition law as a description of

how the state evolves and use instead a deterministic state transition function

g, which explicitly gives the state transitions:

s
t+1 = g(x

t
; s

t
):

Discrete Markov decision models may be analyzed and understood using

the dynamic programming principles developed by Richard Bellman (1956).

Dynamic programming is an analytic approach in which a multiperiod model
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is e�ectively decomposed into a sequence two period models. Dynamic pro-

gramming is based on the Principle of Optimality, which was articulated by

Bellman as follows:

\An optimal policy has the property that, whatever the initial

state and decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the �rst

decision."

The Principle of Optimality can be formally expressed in terms of the

value functions V
t
. For each period t and state s, V

t
(s) speci�es the maximum

attainable sum of current and expected future rewards, given that the process

is in state s and the current period is t. Bellman's Principle implies that the

value functions must satisfy Bellman's recursion equation

V
t
(s) = max

x2X(s)
ff(x; s) + Æ

X
s
02S

P (s0jx; s)V
t+1(s

0)g s 2 S:

Bellman's equation captures the essential problem faced by a dynamic,

future-regarding optimizing agent: the need to balance the immediate re-

ward f(x
t
; s

t
) with discounted expected value of future rewards ÆE

t
V
t+1(st+1).

Given the value functions, the optimal policies x�
t
(s) are simply the solutions

to the optimization problems embedded in Bellman's equation.

In a �nite horizon model, we adopt the convention that the optimizing

agent faces decisions up to and including a �nal decision period T < 1.

The agent faces no decisions after the terminal period T , but may earn a

�nal reward V
T+1 in period T + 1. The terminal value is typically �xed

by some economically relevant terminal condition. In many applications,

V
T+1 is identically zero, indicating that no rewards are earned by the agent

beyond the terminal decision period. In other applications, V
T+1 may specify

a salvage value earned by the agent after making his �nal decision in period

T .

For the �nite horizon discrete Markov decision model to be well posed,

the terminal value V
T+1 must be speci�ed by the analyst. Given the terminal

value function, the �nite horizon decision model in principle may be solved

recursively by repeated application of Bellman's equation: having V
T+1(s),

solve for V
T
(s) for all states s; having V

T
, solve for V

T�1(s) for all states s;

having V
T�1, solve for VT�2(s) for all states s; and so on. The process contin-

ues until V0(s) is derived for all states s. Because only �nitely many actions
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are possible, the optimization problem embedded in Bellman's equation can

always be solved by performing �nitely many arithmetic operations. Thus,

the value functions of a �nite horizon discrete Markov decision model are

always well-de�ned, although in some cases more than one policy of state-

contingent actions may yield the maximum expected stream of rewards (i.e.,

the optimal action may not be unique).

If the decision problem has an in�nite horizon, the value will not depend

on time t and will be the same in every period; we may, therefore, drop

the time subscripts and simply denote the common value function by V .

Bellman's equation therefore becomes the �xed-point equation

V (s) = max
x2X(s)

"
f(x; s) + Æ

X
s
02S

P (s0jx; s)V (s0)

#
; s 2 S:

If the discount factor Æ is less than one, the mapping underlying Bellman's

equation is a strong contraction. The Contraction Mapping Theorem thus

guarantees the existence and uniqueness of the in�nite horizon value func-

tion.1

7.2 Economic Examples

Speci�cation of a discrete Markov decision model requires several pieces of

information: the reward and state transition or transition probabilities asso-

ciated with each state and action, the discount factor Æ, the time horizon T ,

and, if the model has �nite horizon, the terminal value V
T+1. This section

provides seven economic examples that illustrate how the necessary informa-

tion is speci�ed and how the Bellman equation is formulated.

7.2.1 Mine Management

A mine operator must determine the optimal ore extraction schedule for a

mine that will be shut down and abandoned after T years. The market price

of one ton of ore is p and the total cost of extracting x tons of ore in any

1Value functions in in�nite horizon problems could be time dependent if f , P , or
Æ displayed time dependence. However, this creates diÆculties in developing solution

methods, and we have chosen not to explicitly consider this possibility. Fortunately, most

in�nite horizon economic model do not display such time dependence.
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year is c = x
2
=(1 + s) where s is the stock of ore available at the beginning

of the year in tons. The mine currently contains �s tons of ore. If the tons

of ore extracted in any year must be an integer, what production schedule

maximizes pro�ts?

This is a �nite horizon, deterministic model with time t = f1; 2; : : : ; Tg
measured in years. The state is

s = stock of ore in tons

s 2 S = f0; 1; 2; : : : ; �sg;

the action is

x = ore extracted in tons

x 2 X(s) = f0; 1; 2; : : : ; sg;

the state transition function is

s
0 = g(s; x) = s� x;

and the reward function is

f(s; x) = px� x2=(1 + s):

The value function

V
t
(s) = value of mine with s tons of ore at t

satis�es Bellman's equation:

V
t
(s) = max

x2f0;1;2;:::;sg
fpx� x2=(1 + s) + ÆV

t+1(s� x)g; s 2 S:

subject to the terminal condition

V
T+1(s) = 0; s 2 S:
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7.2.2 Deterministic Asset Replacement

At the end of each lactation cycle a dairy producer must decide whether to

keep a cow again or replace it with a new one. A cow yields y(s) tons of

milk over lactation cycle s, up to ten lactations. Upon completion of the 10th

lactation, a cow becomes unproductive and must be replaced. The net cost

of replacing a cow is c dollars and the pro�t contribution of milk is p dollars

per ton. What replacement policy maximizes pro�ts?

This is an in�nite horizon, deterministic model with time t measured in

lactation cycles. The state is

s = lactation number of cow

s 2 S = f1; 2; : : : ; 10g;

the action is

x = replacement decision

x 2 X(s) =

�
fkeep; replaceg s < 10

freplaceg s = 10
;

the state transition function is

s
0 = g(x; s) =

�
s+ 1 x = keep

1 x = replace
;

and the reward function is

f(x; s) =

�
py(s) x = keep

py(s)� c x = replace.

The value function

V (s) = value of cow entering lactation cycle s

must satisfy Bellman's equation

V (s) =

�
maxfpy(s) + ÆV (s+ 1); py(s)� c+ ÆV (1)g; s < 10;

py(s)� c+ ÆV (1); s = 10:

Bellman's equation asserts that if we keep a cow after lactation cycle s, we

receive net earnings py(s) during that lactation and begin the subsequent

cycle with a cow worth V (s + 1); if we replace the cow after lactation s, on

the other hand, we receive net earnings of py(s) � c during that lactation
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cycle and begin the subsequent cycle with a cow worth V (1). Actually, our

language is a little loose here. The value function measures not only the

value of the current cow in cycle s, but also the additional value of all future

cows that will replace her. It would therefore be more correct to say that

V (s) measures the value of having a cow in cycle s.

7.2.3 Stochastic Asset Replacement

Suppose now that dairy cows vary in productivity. Speci�cally, each cow

belongs to one of n productivity classes, denoted u 2 f1; 2; : : : ; ng. A cow in

productivity class u yields q
u
y(s) tons of milk over lactation cycle s, where q

u

is a quality multiplier and y(s) is the industry average yield. When replacing

a dairy cow, the farmer will not know how productive the new cow will be

until the end of its �rst lactation. Cows of quality class u are obtained from

the replacement pool with probability w
u
. What is the optimal lactation-

replacement policy?

This is an in�nite horizon, stochastic model with time t measured in

lactation cycles. The two-dimensional state is

s = lactation number of cow

s 2 S1 = f1; 2; : : : ; 10g

and

u = quality class of cow

u 2 S2 = f1; 2; : : : ; ng;

the action is

x = replacement decision

x 2 X(s) =

�
fkeep; replaceg s < 10

freplaceg s = 10

The state transition probability rule is

P (s0; u0jx; s; u) =

8<
:

1 s
0 = s+ 1; u0 = u; x = keep

w
u
0 s

0 = 1; x = replace

0 otherwise.

and the reward function is

f(x; s; u) =

�
pq

u
y(s) x = keep

pq
u
y(s)� c x = replace.
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The value function

V (s; u) = value of having a cow of quality q
u
entering lactation s

must satisfy Bellman's equation

V (s; u) = maxfpq
u
y(s) + ÆV (s+ 1; u); pq

u
y(s)� c+ Æ

X
u
02S2

w
u
0V (1; u0)g;

for s < 10 and

V (s; u) = pq
u
y(s)� c + Æ

X
u
02S2

w
u
0V (1; u0)

for s = 10.

7.2.4 Option Pricing

An American put option gives the holder the right, but not the obligation,

to sell a speci�ed quantity of a commodity at a speci�ed strike price on

or before a speci�ed expiration date. In the Cox-Ross-Rubinstein binomial

option pricing model, the price of the commodity is assumed to follow a two-

state discrete jump process. Speci�cally, if the price of the commodity is p

in period t, then its price in period t + 1 will be pu with probability q and

p=u with probability 1� q where:

u = exp(�
p
�t) > 1

q = 1
2
+

p
�t

2�

�
r � 1

2
�
2
�

Æ = exp(�r�t):

Here, r is the annualized interest rate, continuously compounded, � is the

annualized volatility of the commodity price, and �t is the length of a period

in years. Assuming the current price of the commodity is p0, what is the value

of an American put option if it has a strike price �p and if it expires T years

from today?

This is a �nite horizon, stochastic model where time t 2 f0; 1; 2; : : : ; Ng
is measured in periods of length �t = T=N years each. The state is2

p = commodity price

p 2 S = fp1uiji = �N � 1;�N; : : : ; N;N + 1g:
2In this example, we alter our notation to conform with standard treatments of option

valuation. Thus, the state is the price, denoted by p, the number of time periods until

expiration is N , and T reserved for the time to expiration (in years).
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The action is

x = decision to keep or exercise

x 2 X = fkeep; exerciseg;

the state transition probability rule is

P (p0jx; p) =

8<
:

q p
0 = pu

1� q p
0 = p=u

0 otherwise

the reward function is

f(p; x) =

�
0 x = keep

�p� p x = exercise

The value function

V
t
(p) = option value at t, if commodity price is p,

must satisfy Bellman's equation

V
t
(p) = maxf �p� p; qÆV

t+1(pu) + (1� q)ÆV
t+1(p=u) g

subject to the post-terminal condition

V
N+1(p) = 0

Note that if the option is exercised, the owner receives �p� p. If he does not
exercise the option, however, he earns no immediate reward but will have an

option in hand the following period worth V
t+1(pu) with probability q and

V
t+1(p=u) with probability 1 � q. In option expires in the terminal period,

making it valueless the following period; as such, the post-terminal salvage

value is zero.

7.2.5 Job Search

At the beginning of each week, an in�nitely-lived worker �nds himself either

employed or unemployed and must decide whether to be active in the labor

market over the coming week by working, if he is employed, or by searching

for a job, if he is unemployed. An active employed worker earns a wage w.

An active unemployed worker earns an unemployment bene�t u. An inactive
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worker earns a psychic bene�t v from additional leisure, but no income. An

unemployed worker that looks for a job will �nd one with probability p by

the end of the week. An employed worker that remains at his job will be

�red with probability q at the end of the week. What is the worker's optimal

labor policy?

This is a in�nite horizon, stochastic model with time t = f1; 2; : : : ;1g
measured in weeks. The state is

s = employment state

s 2 S = funemployed(0); employed(1)g

and the action is

x = labor force participation decision

x 2 X = finactive(0); active(1)g:

The state transition probability rule is

P (s0js; x) =

8>>>>>><
>>>>>>:

1 x = 0; s0 = 0 (inactive worker)

1� p x = 1; s = 0; s0 = 0 (searches, �nds no job)

p x = 1; s = 0; s0 = 1 (searches, �nds job)

q x = 1; s = 1; s0 = 0 (works, loses job)

1� q x = 1; s = 1; s0 = 1 (works, keeps job)

0 otherwise;

and the reward function is

f(s; x) =

8<
:

v x = 0 (inactive, receives leisure)

u x = 1; s = 0 (searching, receives bene�t)

w x = 1; s = 1 (working, receives wage)

The value function

V (s) = Value of being in employment state s at beginning of week;

must satisfy Bellman's equation

V (s) =

�
maxfv + ÆV (0); u+ ÆpV (1) + Æ(1� p)V (0)g; s = 0

maxfv + ÆV (0); w + ÆqV (0) + Æ(1� q)V (1)g; s = 1
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7.2.6 Optimal Irrigation

Water from a dam can be used for either irrigation or recreation. Irriga-

tion during the spring bene�ts farmers, but reduces the dam's water level

during the summer, damaging recreational users. Speci�cally, farmer and

recreational user bene�ts in year t are, respectively, F (x
t
) and G(y

t
), where

x
t
are the units of water used for irrigation and y

t
are the units of water

remaining for recreation. Water levels are replenished by random rainfall

during the winter. With probability p, it rains one unit; with probability

1 � p is does not rain at all. The dam has a capacity of M units of water

and excess rainfall ows out of the dam without bene�t to either farmer or

recreational user. Derive the irrigation ow policy that maximizes the sum

of farmer and recreational user bene�ts over an in�nite time horizon.

This is a in�nite horizon, stochastic model with time t = f1; 2; : : : ;1g
measured in years. The state is

s = units of water in dam at beginning of year

s 2 S = f0; 1; 2; : : : ;Mg

and

x = units of water released for irrigation during year

x 2 X(s) = f0; 1; 2; : : : ; sg:

The state transition probability rule is

P (s0js; x) =

8<
:

p s
0 = min(s� x + 1;M) (rain)

1� p s
0 = s� x; (no rain)

0 otherwise

and the reward function is

f(s; x) = F (x) +G(s� x):

The value function

V (s) = Value of s units of water in dam at beginning of year t:

must satisfy Bellman's equation:

V (s) = max
x=0;1;:::;s

ff(s; x) + ÆpV (min(s� x + 1;M)) + Æ(1� p)V (s� x)g:
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7.2.7 Bioeconomic Model

In order to survive, an animal must forage for food in one of m distinct

areas. In area x, the animal survives predation with probability p
x
, �nds

food with probability q
x
, and, if it �nds food, gains e

x
energy units. The

animal expends one energy unit every period and has a maximum energy

carrying capacity �s. If the animal's energy stock drops to zero, it dies. What

foraging pattern maximizes the animal's probability of surviving T years to

reproduce at the beginning of period T + 1?

This is a �nite horizon, stochastic model with time t = f1; 2; : : : ; Tg
measured in foraging periods. The state is

s = stock of energy

s 2 S = f0; 1; 2; : : : ; �sg;

the action is

x = foraging area

x 2 X = f1; 2; : : : ; mg:

The state transition probability rule is, for s = 0,

P (s0js; x) =
�

1 s
0 = 0 (death is permanent)

0 otherwise;

and, for s > 0,

P (s0js; x) =

8>><
>>:

p
x
q
x

s
0 = min(�s; s� 1 + e

x
) (survive, �nds food)

p
x
(1� q

x
) s

0 = s� 1 (survive, no food)

(1� p
x
) s

0 = 0 (does not survive)

0 otherwise.

The reward function is

f(s; x) = 0:

Here, s = 0 is an absorbing state that, once entered, is never exited. More

to the point, an animal whose energy stocks fall to zero dies, and remains

dead. The reward function for periods 1 through T is zero, because there is

only one payo�, surviving to procreate, and this payo� is earned in period

T + 1.
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The value function

V
t
(s) = probability of procreating, given energy stocks s in period t

must satisfy Bellman's equation

V
t
(s) = max

x2X
fp

x
q
x
V
t+1(min(�s; s� 1 + e)) + p

x
(1� q

x
)V

t+1(s� 1)g;

for t 2 1; : : : ; T , with V
t
(0) = 0, subject to the terminal condition

V
T+1(s) =

�
0 s = 0

1 s > 0

7.3 Solution Algorithms

Below, we develop numerical solution algorithms for stochastic discrete time,

discrete space Markov decision models. The algorithms apply to determinis-

tic models as well, provided one views a deterministic model as a degenerate

special case of the stochastic model for which the transition probabilities are

all zeros or ones.

To develop solution algorithms, we must introduce some vector notation

and operations. Assume that the states S = f1; 2; : : : ; ng and actions X =

f1; 2; : : : ; mg are indexed by the �rst n and m integers, respectively. Let

v 2 <n denote an arbitrary value vector:

v
i
2 < = value in state i;

and let x 2 Xn denote an arbitrary policy vector:

x
i
2 X = action in state i:

Also, for each policy x 2 Xn, let f(x) 2 <n denote the n-vector of rewards

earned in each state when one follows the prescribed policy:

f
i
(x) = reward in state i, given action x

i
taken;

and let P (x) 2 <n�n denote the n-by-n state transition probabilities when

one follows the prescribed policy:

P
ij
(x) = probability of jump from state i to j, given action x

i
is taken:
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Given this notation, it is possible to express Bellman's equation for the

�nite horizon model succinctly as a recursive vector equation. Speci�cally, if

v
t
2 <n denotes the value function in period t, then

v
t
= max

x

ff(x) + ÆP (x)v
t+1g;

were the maximization is the vector operation induced by maximizing each

row individually. Given the recursive nature of the �nite horizon Bellman

equation, one may compute the optimal value and policy functions v
t
and x

t

using backward recursion:

Algorithm: Backward Recursion

0. Initialization: Specify the rewards f , transition probabilities P , dis-

count factor Æ, terminal period T , and post-terminal value function

v
T+1; set t T .

1. Recursion Step: Given v
t+1, compute vt and xt:

v
t
 max

x

ff(x) + ÆP (x)v
t+1g

x
t
 argmax

x

ff(x) + ÆP (x)v
t+1g:

2. Termination Check: If t = 1, stop; otherwise set t  t � 1 and return

to step 1.

Each recursive step involves a �nite number of matrix-vector operations,

implying that the �nite horizon value functions are well-de�ned for every

period. Note however, that it may be possible to have more than one se-

quence of optimal policies if ties occur in Bellman's equation. Since the

algorithm requires exactly T iterations, it terminates in �nite time with the

value functions precisely computed and at least one optimal policy obtained.

Consider now the in�nite horizon Markov decision model. Given the

notation above, it is also possible to express the in�nite horizon Bellman

equation as a vector �xed-point equation

v = max
x

ff(x) + ÆP (x)vg:

This vector equation may be solved using standard function iteration meth-

ods:
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Algorithm: Function Iteration

0. Initialization: Specify the rewards f , transition probabilities P , dis-

count factor Æ, convergence tolerance � , and initial guess for the value

function v.

1. Function Iteration: Update the value function v:

v  max
x

ff(x) + ÆP (x)vg:

2. Termination Check: If jj�vjj < � , set

x argmax
x

ff(x) + ÆP (x)vg

and stop; otherwise return to step 1.

Function iteration does not guarantee an exact solution in �nitely many

iterations. However, if the discount factor Æ is less than one, the �xed-point

map be shown to be a strong contraction. Thus, the in�nite horizon value

function exists and is unique, and may be computed to an arbitrary accuracy.

Moreover, an explicit upper bound may be placed on the error associated with

the �nal value function iterate. Speci�cally, if the algorithm terminates at

iteration n, then

jjv
n
� v�jj1 �

Æ

1� Æ
jjv

n
� v

n�1jj1

where v� is the true value function.

The Bellman vector �xed-point equation for an in�nite horizon model

may alternatively be recast at a root�nding problem

v �max
x

ff(x) + ÆP (x)vg = 0

and solved using Newton's method. By the Envelope Theorem, the derivative

of the left-hand-side with respect to v is I� ÆP (x) where x is optimal for the
embedded maximization problem. As such, the Newton iteration rule is

v  v � (I � ÆP (x))�1(v � f(x)� ÆP (x)v)

where P and f are evaluated at the optimal x. After algebraic simpli�cation

the update rule may be written

v  (I � ÆP (x))�1f(x):

Newton's method applied to Bellman's equation traditionally has been re-

ferred to as `policy iteration':
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Algorithm: Policy Iteration

0. Initialization: Specify the rewards f , transition probabilities P , dis-

count factor Æ, and an initial guess for v.

1. Policy Iteration: Given the current value approximant v, update the

policy x:

x argmax
x

ff(x) + ÆP (x)vg

and then update the value by setting

v  (I � ÆP (x))�1f(x):

2. Termination Check: If �v = 0, stop; otherwise return to step 1.

At each iteration, policy iteration either �nds the optimal policy or o�ers

a strict improvement in the value function. Because the total number of

states and actions is �nite, the total number of admissible policies is also

�nite, guaranteeing that policy iteration will terminate after �nitely many

iterations with an exact optimal solution. Policy iteration, however, requires

the solution of a linear equation system. If P (x) is large and dense, the

linear equation could be expensive to solve, making policy iteration slow and

possibly impracticable. In these instances, the function iteration algorithm

may be the better choice.

7.4 Dynamic Simulation Analysis

The optimal value and policy functions provide some insight into the nature

of the controlled dynamic economic process. The optimal value function

describes the bene�ts of being in a given state and the optimal policy function

prescribes the optimal action to be taken there. However, the optimal value

and policy functions provide only a partial, essentially static, picture of the

controlled dynamic process. Typically, one wishes to analyze the controlled

process further to learn about its dynamic behavior. Furthermore, one often

wishes to know how the process is a�ected by changes in model parameters.

To analyze the dynamics of the controlled process, one will typically per-

form dynamic path and steady-state analysis. Dynamic path analysis ex-

amines how the controlled dynamic process evolves over time starting from
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some initial state. Speci�cally, dynamic path analysis describes the path or

expected path followed by the state or some other endogenous variable and

how the path or expected path will vary with changes in model parameters.

Steady-state analysis examines the longrun tendencies of the controlled

process over an in�nite horizon, without regard to the path followed over

time. Steady-state analysis of a deterministic model seeks to �nd the values

to which the state or other endogenous variables will converge over time,

and how the limiting values will vary with changes in the model parameters.

Steady-state analysis of a stochastic model requires derivation of the steady-

state distribution of the state or other endogenous variable. In many cases,

one is satis�ed to �nd the steady-state means and variances of these variables

and their sensitivity to changes in exogenous model parameters.

The path followed by a controlled, �nite horizon, deterministic, discrete,

Markov decision process is easily computed. Given the state transition func-

tion g and the optimal policy functions x�
t
, the path taken by the state from

an initial point s1 can be computed as follows:

s2 = g(s1; x
�
1(s1))

s3 = g(s2; x
�
2(s2))

s4 = g(s3; x
�
3(s3))

...

s
T+1 = g(s

T
; x

�
T
(s

T
)):

Given the path of the controlled state, it is straightforward to derive the

path of actions through the relationship x
t
= x

�
t
(s

t
). Similarly, given the

path taken by the controlled state and action allows one to derive the path

taken by any function of the state and action.

A controlled, in�nite horizon, deterministic, discrete Markov decision pro-

cess can be analyzed similarly. Given the state transition function g and

optimal policy function x�, the path taken by the controlled state from an

initial point s1 can be computed from the iteration rule:

s
t+1 = g(s

t
; x

�(s
t
)):

The steady-state of the controlled process can be computed by continuing to

form iterates until they converge. The path and steady-state values of other

endogenous variables, including the action variable, can then be computed

from the path and steady-state of the controlled state.
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Analysis of controlled, stochastic, discrete Markov decision processes is a

bit more complicated because such processes follow a random, not a deter-

ministic, path. Consider a �nite horizon process whose optimal policy x�
t
has

been derived for each period t. Under the optimal policy, the controlled state

will be a �nite horizon Markov chain with nonstationary transition probabil-

ity matrices P �
t
, whose row i, column j element is the probability of jumping

from state i in period t to state j in period t + 1, given that the optimal

policy x�
t
(i) is followed in period t:

P
�
tij

= Pr(s
t+1 = jjx

t
= x

�
t
(i); s

t
= i)

The controlled state of an in�nite horizon, stochastic, discrete Markov

decision model with optimal policy x� will be an in�nite horizon stationary

Markov chain with transition probability matrix P � whose row i, column j

element is the probability of jumping from state i in one period t to state j

in the following period, given that the optimal policy x�(i) is followed:

P
�
ij
= Pr(s

t+1 = jjx
t
= x

�(i); s
t
= i)

Given the transition probability matrix P � for the controlled state it is pos-

sible to simulate a representative state path, or, for that matter, many rep-

resentative state paths, by performing Monte Carlo simulation. To perform

Monte Carlo simulation, one picks an initial state, say s1. Having the sim-

ulated state s
t
= i, one may simulate a jump to s

t+1 by randomly picking a

new state j with probability P �
ij
.

The path taken by the controlled state of an in�nite horizon, stochastic,

discrete Markov model may also be described probabilistically. To this end,

let Q
t
denote the matrix whose row i, column j entry gives the probability

that the process will be in state j in period t, given that it is in state i in

period 0. Then the t-period transition probability matrices Q
t
are simply

the matrix powers of P :

Q
t
= P

t

where Q0 = I. Given the t-period transition probability matrices Q
t
, one

can fully describe, in a probabilistic sense, the path taken by the controlled

process from any initial state s0 = i by looking at the ith rows of the matrices

Q
t
.

In most economic applications, the multiperiod transition matrices Q
t

will converge to a matrix Q as t goes to in�nity. In such cases, each entry
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of Q will indicate the relative frequency with which the controlled decision

process will visit a given state in the longrun, when starting from given initial

state. In the event that all the columns of Q are identical and the longrun

probability of visiting a given state is independent of initial state, then we

say that the controlled state process possesses a steady-state distribution.

The steady state distribution is given by the probability vector � that is the

common row of the matrix Q. Given the steady-state distribution of the

controlled state process, it becomes possible to compute summary measures

about the longrun behavior of the controlled process, such as its longrun

mean or variance. Also, it is possible to derive the longrun probability dis-

tribution of the optimal action variable or the longrun distribution of any

other variables that are functions of the state and action.

7.5 Discrete Dynamic Programming Tools

In order to simplify the process of solving discrete Markov decision models,

we have provided a single, unifying routine ddpsolve that solves such models

using the dynamic programming algorithm selected by the user. The routine

is executed by issuing the following command:

[v,x,pstar] = ddpsolve(model,alg,v)

Here, on input, model is a structured variable that contains all relevant model

information, including the time horizon, the discount factor, the reward ma-

trix, the probability transition matrix, and the terminal value function (if

needed); alg is a string that speci�es the algorithm to be used, either 'newt'

for policy iteration, 'func' for function iteration, or 'back' for backward re-

cursion; and v is the post-terminal value function, if the model has �nite

horizon, or an initial guess for the value function, if the model has in�nite

horizon. On output, v is the optimal value function, x is the optimal policy,

and pstar is the optimal probability transition matrix.

The structured variable model contains four �elds, horizon, discount,

reward, transition, and vterm which are speci�ed as follows:

� horizon - The time horizon, a positive integer or 'inf'.

� discount - The discount factor, positive scalar less than one.

� reward - An n by m matrix of rewards whose rows and columns are

associated with states and columns, respectively.
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� transition - An mn by n matrix of state transition probabilities

whose rows represent this period's state and columns represent next

period's state. The state transition probability matrices for the various

actions are stacked vertically on top of each other, with the n by n

transition probability matrix associated with action 1 at the top and

the n by n transition probability matrix associated with action m at

the bottom.

� vterm - An n by 1 vector of terminal values; is not speci�ed if model

has �nite horizon; default value if not speci�ed is zero.

The routine ddpsolve implements all three standard solution algorithms

relying on two elementary routines. One routine takes the current value

function v, the reward matrix f, the probability transition matrix P, and

the discount factor delta and solves the optimization problem embedded in

Bellman's equation, yielding an updated value function v and optimal action

x:

function [v,x] = valmax(v,f,P,delta)

[m,n]=size(f);

[v,x]=max(f+delta*reshape(P*v,m,n),[],2);

The second routine takes a policy x, the reward matrix f, the probability

transition matrix P, and the discount factor delta and returns the state

reward function fstar and state probability transition matrix Pstar induced

by the policy:

function [pstar,fstar] = valpol(x,f,P,delta)

[n,m]=size(f); i=(1:n)';

pstar = P(n*(x(i)-1)+i,:);

fstar = f(n*(x(i)-1)+i);

Given the valmax and valpol routines, it is straightforward to implement

the backward recursion, function iteration, and policy iteration algorithms

used to solve discrete Markov decision models. The Matlab script that per-

forms backward recursion for a �nite horizon model is

[n,m]=size(f);

x = zeros(n,T);

v = [zeros(n,T) vterm];
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for t=T:-1:1

[v(:,t),x(:,t)] = valmax(v(:,t+1),f,P,delta);

end

The Matlab script that performs function iteration for the in�nite horizon

model is

for it=1:maxit

vold = v;

[v,x] = valmax(v,f,P,delta);

if norm(v-vold)<tol, return, end;

end

The Matlab script that performs policy iteration for the in�nite horizon

model is

for it=1:maxit

vold = v;

[v,x] = valmax(v,f,P,delta);

[pstar,fstar] = valpol(x,f,P,delta);

v = (eye(n,n)-delta*pstar)\fstar;

if norm(v-vold)<tol, return, end;

end

The toolbox accompanying the textbook also provides two utilities for

performing dynamic analysis. The �rst routine, ddpsimul is employed as

follows:

st = ddpsimul(pstar,s1,nyrs,x)

On input, pstar is the optimal probability transition matrix induced by the

optimal policy, which is generated by the routine ddpsolve; x is the opti-

mal policy, which is also generated by the routine ddpsolve; s1 is a k by 1

vector of initial states, each entry of which initiates a distinct replication of

the optimized state process; and nyrs is the number of years for which the

process will be simulated. On output, st is a k by nyrs vector containing k

replications of the process, each nyrs in length. When the model is deter-

ministic, the path is deterministic. When the model is stochastic, the path

is generated by Monte Carlo methods. If we simulate replications all which

begin from the same state, the row average of the vector st will provide an

estimate of the expected path of the state.
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The toolbox accompanying the textbook provides a second utility for

performing dynamic analysis called markov, which is employed as follows:

pi=markov(pstar);

On input, pstar is the optimal probability transition matrix induced by the

optimal policy, which is generated by the routine ddpsolve. On output, pi is

a vector containing the invariant distribution of the optimized state process.

Finally, the toolbox accompanying the textbook provides a utility for con-

verting the deterministic state transition rule into the equivalent degenerate

probability transition matrix. The routine is employed as follows:

P = expandg(g);

On input, g is the deterministic state transition rule. On output, P is the

corresponding probability transition matrix.

Given the aforementioned Matlab utilities, the most signi�cant practi-

cal diÆcultly typically encountered when solving discrete Markov decision

models is correctly initializing the reward and state transition matrices. We

demonstrate how to implement these routines in practice in the following

section.

7.6 Numerical Examples

7.6.1 Mine Management

Consider the mine management model with market price p = 1, initial stock

of ore �s = 100, and annual discount factor Æ = 0:95.

The �rst step required to solve the model numerically is to specify the

model parameters and to construct the state and action spaces:

delta = 0.9; % discount factor

price = 1; % price of ore

sbar = 100; % initial ore stock

S = (0:sbar)'; % vector of states

n = length(S); % number of states

X = (0:sbar)'; % vector of actions

m = length(X); % number of actions

Next, one constructs the reward and transition probability matrices:
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f = zeros(n,m);

for k=1:m

f(:,k) = price*X(k)-(X(k)^2)./(1+S);

f(X(k)>S,k) = -inf;

end

g = zeros(n,m);

for k=1:m

j = max(0,S-X(k)) + 1;

g(:,k) = j;

end

P = expandg(g);

Notice that a reward matrix element is set to negative in�nity if the ex-

traction level exceeds the available stock. This guarantees that the value

maximization algorithm will not chose an infeasible action. Also note that

we have de�ned the deterministic state transition rule g �rst, and then used

the utility expandg to construct the associated probability transition ma-

trix, which consists of mostly zeros and is stored in sparse matrix format to

accelerate subsequent computations.

One then packs the essential data into the structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

Once the model data have been speci�ed, solution of the model is rela-

tively straightforward. To solve the in�nite horizon model via policy itera-

tion, one issues the command:

[vi,xi,pstari] = ddpsolve(model);

To solve the in�nite horizon model via function iteration, one issues the

command:

[vi,xi,pstari] = ddpsolve(model,'func');

Upon convergence, vi will be n vector containing the value function and xi

will be n vector containing the indices of the optimal ore extractions. Note

that the policy iteration algorithm was not explicitly speci�ed because it is

the default algorithm when the horizon is in�nite.

To solve the model over a ten year horizon, one issues the commands
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model.horizon = 10;

[vf,xf,pstarf] = ddpsolve(model);

Note that we do not have to pass the post-terminal value function, since

it is identically zero, the default. Also note that the backward recursion

algorithmwas not explicitly speci�ed because it is the default algorithmwhen

the horizon is �nite. Upon completion, xf is an n by 10 matrix containing

the optimal ore extraction policy for all possible ore stock levels for periods

1 to 10. The columns of x represent periods and its rows represent states.

Similarly, vf is an n by 11matrix containing the optimal values for all possible

stock levels for periods 1 to 11.

Once the optimal solution has been computed, one may plot the optimal

value and extraction policy functions:

figure(1); plot(S,X(xi));

xlabel('Stock'); ylabel('Optimal Extraction');

figure(2); plot(S,vi);

xlabel('Stock'); ylabel('Optimal Value');

Both functions are illustrated in Figure 7.1.

To analyze the dynamics of the optimal solution, one may also plot the

optimal path of the stock level over time, starting from the initial stock level,

for both the �nite and in�nite horizon models:

s1 = length(S); nyrs = 10;

sipath = ddpsimul(pstari,s1,nyrs,xi);

sfpath = ddpsimul(pstarf,s1,nyrs,xf);

figure(3)

plot(1:nyrs,S(sipath),1:nyrs,S(sfpath));

legend('Infinite Horizon','Ten Year Horizon');

xlabel('Year'); ylabel('Stock');

As seen in Figure 7.1, one extracts the stock at a faster rate if the horizon is

�nite.

7.6.2 Deterministic Asset Replacement

Consider the deterministic cow replacement model with yield function y
i
=

8+2i� 0:25i2, replacement cost c = 500, milk price p = 150, and a per-cycle

discount factor Æ = 0:9.
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Figure 7.1: Solution to Mine Management Problem

The �rst step required to solve the model numerically is to specify the

model parameters and to construct the state and action spaces:

delta = 0.9; % discount factor

cost = 500; % replacement cost

price = 150; % milk price

S = (1:10)'; % lactation states

n = length(S); % number of states

X = ['K';'R']; % keep or replace

m = length(X); % number of actions

Next, one constructs the reward and transition probability matrices. Here,

the �rst action is to keep the cow and the second action is to replace the cow

after the current lactation:
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y = (-0.2*S.^2+2*S+8); % yield per lactation

f = [price*y price*y-cost]; % net revenue by action

f(10,1) = -inf; % replace at lactation 10

g = zeros(n,m);

for i=1:n

g(i,1) = min(i+1,n); % Raise number by 1, if keep

g(i,2) = 1; % Number to 1, if replace

end

P = expandg(g);

Here, a reward matrix element is set to negative in�nity for a keep decision in

the tenth and �nal lactation because such an action is infeasible. Also note

that we have de�ned the deterministic state transition rule g �rst, and then

used the utility expandg to construct the associated probability transition

matrix.

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

To solve the in�nite horizon model via policy iteration, one issues the

command:

[v,x] = ddpsolve(model);

To solve the in�nite horizon model via function iteration, one issues the

command:

[v,x] = ddpsolve(model,'func');

Upon convergence, v will be an n vector containing the value function and x

will be n vector containing the optimal replacement decisions.

Once the optimal solution has been computed, one may plot the optimal

value function:

figure(2); plot(s,v);

xlabel('Age'); ylabel('Optimal Value');

As seen in �gure 7.2, the optimal policy is to replace a cow after its �fth

lactation.
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Figure 7.2

7.6.3 Stochastic Asset Replacement

Suppose now that dairy cows vary in productivity. Each cow belongs to one

of 3 productivity classes, yielding 0.8, 1.0, and 1.2 times the industry baseline,

respectively. Also suppose that cows from these three classes are obtained

from the replacement pool with probabilities 0.2, 0.6, and 0.2, respectively.

The �rst step required to solve the model numerically is to specify the

model parameters and to construct the state and action spaces:

delta = 0.9; % discount factor

cost = 500; % replacement cost

price = 150; % milk price

s1 = (1:10)'; % lactation states

s2 = [0.8;1.0;1.2]; % productivity states

n1 = length(s1);

n2 = length(s2);

[S1,S2] = cartgrid(s1,s2); % combined state grid

n = n1*n2; % number of states

X = ['K','R']; % keep or replace

Note that the state space is constructed by specifying the values attain-

able by each state and then forming the Cartesian product using the utility
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cartgrid.

Next, one constructs the reward matrix. Here, the �rst action is to keep

the cow and the second action is to replace the cow after the current lactation:

y = (-0.2*S1.^2+2*S1+8).*S2; % yield per lactation

f = [price*y price*y-cost]; % net revenue by action

f(S1==10,1) = -inf; % replace at lactation 10

Here, a reward matrix element is set to negative in�nity for a keep decision

in the tenth and �nal lactation because such an action is infeasible.

Next, one constructs the transition probability matrix. Constructing the

state transition probability matrix is a bit involved due to the multidimen-

sional state space. Here, we set up, for each action, a four dimensional transi-

tion probability array: two dimensions for the current values of the two state

variables and two dimensions for the future values of the two state variables.

The four dimensional arrays are then reshaped into two-dimensional proba-

bility transition matrices and stacked for subsequent computation.

P1 = zeros(n1,n2,n1,n2);

P2 = zeros(n1,n2,n1,n2);

for i=1:n1

for j=1:n2

if i<10

P1(i,j,i+1,j) = 1; % Up number by 1, if keep

else

P1(i,j,1,1) = 0.2; % Replace after lactation 10

P1(i,j,1,2) = 0.6;

P1(i,j,1,3) = 0.2;

end

P2(i,j,1,1) = 0.2; % Optional replacement

P2(i,j,1,2) = 0.6;

P2(i,j,1,3) = 0.2;

end

end

P1 = reshape(P1,n,n);

P2 = reshape(P2,n,n);

P = sparse([P1;P2]);

One then packs the essential model data into a structured variable model:
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model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

To solve the in�nite horizon model via policy iteration, one issues the

command:

[v,x] = ddpsolve(model);

To solve the in�nite horizon model via function iteration, one issues the

command:

[v,x] = ddpsolve(model,'func');

Upon convergence, v will be an n vector containing the value function and x

will be n vector containing the optimal replacement decisions.

Once the optimal solution has been computed, one may display the opti-

mal replacement policy:

disp('Optimal Policy')

disp(' Age Lo Med Hi')

fprintf('%8i %8c %8c %8c\n',[s1 reshape(X(x),n1,n2)]')

See Table 7.1.

One may also plot the optimal value function (see Figure 7.3):

figure(1); plot(s1,reshape(v,n1,n2))

xlabel('Age'); ylabel('Optimal Value');

legend('Low','Med','Hi')

To perform dynamic analysis, one �rst computes the stationary distribu-

tion of optimally controlled state process:

pi = markov(pstar);

Given pi, it is straightforward compute the average age and productivity of

cows in the longrun:

avgage = pi'*S1;

avgpri = pi'*S2;

fprintf('\nSteady-state Age %8.2f\n',avgage)

fprintf('\nSteady-state Productivity %8.2f\n',avgpri)

The invariant distribution is given in Table 7.2.
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Table 7.1: Optimal Cow Replacement Policy

Age Lo Med Hi

1 R K K

2 R K K

3 R K K

4 R K K

5 R K K

6 R K K

7 R R K

8 R R K

9 R R R

10 R R R
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Figure 7.3

7.6.4 Option Pricing

Consider the binomial option pricing model with current asset price p1 =

2:00, strike price �p = 2:10, annual interest rate r = 0:05, annual volatility

� = 0:2, and time to expiration T = 0:5 years that is to be divided into
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Table 7.2: Stationary Distribution for Cow Replacement

Age Lo Med Hi

1 0.032 0.097 0.032

2 0.000 0.097 0.032

3 0.000 0.097 0.032

4 0.000 0.097 0.032

5 0.000 0.097 0.032

6 0.000 0.097 0.032

7 0.000 0.097 0.032

8 0.000 0.000 0.032

9 0.000 0.000 0.032

10 0.000 0.000 0.000

N = 50 intervals.

The �rst step required to solve the model numerically is to specify the

model parameters and to construct the state space:

T = 0.5; % years to expiration

sigma = 0.2; % annual volatility

r = 0.05; % annual interest rate

strike = 2.1; % option strike price

p1 = 2; % current asset price

N = 100; % number of time intervals

tau = T/N; % length of time intervals

delta = exp(-r*tau); % discount factor

u = exp( sigma*sqrt(tau)); % up jump factor

q = 0.5+tau^2*(r-(sigma^2)/2)/(2*sigma); % up jump probability

price = p1*(u.^(-N:N))'; % asset prices

n = length(price); % number of states

There is no need to explicitly de�ne an action space since actions are repre-

sented by integer indices.

Next, one constructs the reward and transition probability matrices:

f = [ strike-price zeros(n,1) ];

P = zeros(n,n);
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for i=1:n

P(i,min(i+1,n)) = q;

P(i,max(i-1,1)) = 1-q;

end

P = [zeros(n,n); P];

P = sparse(P);

Here, action 1 is identi�ed with the exercise decision and action 2 is identi�ed

with the hold decision. Note how the transition probability matrix associ-

ated with the decision to exercise the option is identically the zero matrix.

This is done to ensure that the expected future value of an exercised option

always computes to zero. Also note that because the probability transition

matrix contains mostly zeros, it is stored in sparse matrix format to speed

up subsequent computations.

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.discount = delta;

model.horizon = N+1;

To solve the �nite horizon model via backward recursion, one issues the

command:

[v,x] = ddpsolve(model);

Upon completion, v(:,1) is an n vector that contains the value of the Amer-

ican option in period 1 for di�erent asset prices.

Once the optimal solution has been computed, one may plot the optimal

value function.

plot(price,v(:,1)); axis([0 strike*2 -inf inf]);

xlabel('Asset Price'); ylabel('Put Option Premium');

This plot is given in Figure 7.4.

7.6.5 Job Search

Consider the job search model with weekly unemployment bene�t u = 55

and psychic bene�t from leisure v = 60. Also assume the probability of



CHAPTER 7. DISCRETE STATE MODELS 192

0 0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Asset Price

P
ut

 O
pt

io
n 

P
re

m
iu

m

Figure 7.4

�nding a job is p = 0:90, the probability of being �red is q = 0:05, and the

weekly discount rate is Æ = 0:99. Suppose we wish to explore the optimal

labor market participation policy for wages ranging from w = 55 to w = 65.

The �rst step required to solve the model numerically is to specify the

model parameters:

u = 50; % weekly unemp. benefit

v = 60; % weekly value of leisure

pfind = 0.90; % prob. of finding job

pfire = 0.10; % prob. of being fired

delta = 0.99; % discount factor

Note that by identifying both states and actions with their integer indices,

one does not need to explicitly generate the state and action space.

Next, one constructs the reward and transition probability matrices. Here,

we identify state 1 with unemployment and state 2 with employment, and

identify action 1 with inactivity and action 2 with participation:

f = zeros(2,2);

f(:,1) = v; % gets leisure

f(1,2) = u; % gets benefit
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P1 = sparse(zeros(2,2));

P2 = sparse(zeros(2,2));

P1(:,1) = 1; % remains unemployed

P2(1,1) = 1-pfind; % finds no job

P2(1,2) = pfind; % finds job

P2(2,1) = pfire; % gets fired

P2(2,2) = 1-pfire; % keeps job

P = [P1;P2];

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

To solve the in�nite horizon model via policy iteration at di�erent wage

rates, one issues the command :

xtable = [];

wage=55:65;

for w=wage

f(2,2) = w; model.reward = f; % vary wage

[v,x] = ddpsolve(model); % solve via policy iteration

xtable = [xtable x]; % tabulate

end

Upon convergence, xtable will be a matrix containing the optimal labor force

participation decisions at di�erent wage rates. The table may be printed by

issuing the following commands:

fprintf('\nOptimal Job Search Strategy')

fprintf('\n (1=inactive, 2=active)\n')

fprintf('\nWage Unemployed Employed\n')

fprintf('%4i %10i%10i\n',[wage;xtable])

The optimal decision rule is given in Table 7.3.
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Table 7.3: Optimal Labor Participation Rule

Wage Unemployed Employed

55 I I

56 I I

57 I I

58 I I

59 I I

60 I I

61 I A

62 A A

63 A A

64 A A

65 A A

7.6.6 Optimal Irrigation

The �rst step required to solve the model numerically is to specify the model

parameters and to construct the state and action spaces:

delta = 0.9;

irrben = [-3;5;9;11]; % Irrigation Benefits to Farmers

recben = [-3;3;5;7]; % Recreational Benefits to Users

maxcap = 3; % maximum dam capacity

S = (0:1:maxcap)'; % vector of states

n = length(S); % number of states

X = (0:1:maxcap)'; % vector of actions

m = length(X); % number of actions

Next, one constructs the reward matrix:

f = zeros(n,m);

for i=1:n;

for k=1:m;

if k>i

f(i,k) = -inf;

else

f(i,k) = irrben(k) + recben(i-k+1);
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end

end

end

Here, a reward matrix element is set to negative in�nity if the irrigation level

exceeds the available water stock, an infeasible action.

Next, one constructs the transition probability matrix:

P = [];

for k=1:m

Pk = sparse(zeros(n,n));

for i=1:n;

j=i-k+1; j=max(1,j); j=min(n,j);

Pk(i,j) = Pk(i,j) + 0.4;

j=j+1; j=max(1,j); j=min(n,j);

Pk(i,j) = Pk(i,j) + 0.6;

end

P = [P;Pk];

end

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

To solve the in�nite horizon model via policy iteration, one issues the

command:

[v,x] = ddpsolve(model);

To solve the in�nite horizon model via function iteration, one issues the

command:

[v,x] = ddpsolve(model,'func');

Upon convergence, v will be n vector containing the value function and x will

be n vector containing the optimal irrigation policy.

Once the optimal solution has been computed, one may plot the optimal

value and irrigation policy functions:
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figure(1); plot(S,X(x));

xlabel('Stock'); ylabel('Optimal Irrigation');

figure(2); plot(S,v);

xlabel('Stock'); ylabel('Optimal Value');

Suppose one wished to compute the steady-state stock level. One could

easily do this by calling markov to compute the steady state distribution and

integrating:

pi = markov(pstar);

avgstock = pi'*S;

fprintf('\nSteady-state Stock %8.2f\n',avgstock)

To plot expected water level over time given that water level is currently

zero, one would issue the commands

figure(3)

nyrs = 20;

s1=ones(10000,1);

st = ddpsimul(pstar,s1,nyrs,x);

plot(1:nyrs,mean(S(st)));

xlabel('Year'); ylabel('Expected Water Level');

Here, we use the function ddpsimul to simulate the evolution of the water

level via Monte Carlo 10000 times over a 20 year horizon. The mean of

the 10000 replications is then computed and plotted for each year in the

simulation. The expected path, together with the optimal value and policy

functions are given in Figure 7.5.

7.6.7 Bioeconomic Model

Consider the bioeconomic model with three foraging areas, predation sur-

vival probabilities p1 = 1, p2 = 0:98, and p3 = 0:90, and foraging success

probabilities q1 = 0, q2 = 0:3, and q3 = 0:8. Also assume that successful

foraging delivers e = 4 units of energy in all areas and that the procreation

horizon is 10 periods.

The �rst step required to solve the model numerically is to specify the

model parameters and to construct the state and action spaces:
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Figure 7.5: Solution to Optimal Irrigation Problem

T = 10; % foraging periods

eadd = 4; % energy from foraging

emax = 10; % energy capacity

S = 0:emax; % energy levels

n = length(S); % number of states

X = 1:3; % foraging areas

m = length(X); % number of actions

There is no need to explicitly de�ne an action space since actions are repre-

sented by integer indices.

Next, one constructs the reward and transition probability matrices:

f = zeros(n,m);

p = [1 .98 .9]; % predation survival prob.
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q = [0 .30 .8]; % foraging success prob.

P = [];

for k=1:m

Pk = zeros(n,n);

Pk(1,1) = 1;

for i=2:n;

Pk(i,min(n,i-1+eadd)) = p(k)*q(k);

Pk(i,i-1) = p(k)*(1-q(k));

Pk(i,1) = Pk(i,1) + (1-p(k));

end

P = [ P ; Pk ];

end

Note that the reward matrix is zero because the reward is not earned

until the post-terminal period. Upon the reaching the post-terminal period,

either the animal is alive, earning reward of 1, or is dead, earning a reward

of 0. We capture this by specifying the terminal value function as follows

v = ones(n,1); % terminal value: survive

v(1) = 0; % terminal value: death

One then packs the essential model data into a structured variable model:

model.reward = f;

model.transition = P;

model.horizon = inf;

model.discount = delta;

model.vterm = v;

To solve the �nite horizon model via backward recursion, one issues the

command:

[v,x] = ddpsolve(model);

Upon convergence, v will be n by 1 matrix containing the value function and

ix will be n by 1 matrix containing the indices of the optimal foraging policy

for all possible initial energy stock levels.

Once the optimal solution has been computed, one may print out the

survival probabilities (see Table 7.4):
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Table 7.4: Survival Probabilities

Stock of Energy

Period 0 1 2 3 4 5 6 7 8 9 10

1 0.00 0.59 0.71 0.80 0.82 0.83 0.85 0.92 0.93 0.93 0.93

2 0.00 0.59 0.77 0.80 0.82 0.83 0.92 0.92 0.93 0.93 1.00

3 0.00 0.64 0.77 0.80 0.82 0.91 0.92 0.92 0.93 1.00 1.00

4 0.00 0.64 0.77 0.80 0.90 0.91 0.92 0.92 1.00 1.00 1.00

5 0.00 0.64 0.77 0.88 0.90 0.91 0.92 1.00 1.00 1.00 1.00

6 0.00 0.64 0.85 0.88 0.90 0.91 1.00 1.00 1.00 1.00 1.00

7 0.00 0.72 0.85 0.88 0.90 1.00 1.00 1.00 1.00 1.00 1.00

8 0.00 0.72 0.85 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 0.00 0.72 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.00 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

fprintf('\nProbability of Survival\n')

disp(' Stock of Energy')

fprintf('Period ');fprintf('%5i ',S);fprintf('\n');

for t=1:T

fprintf('%5i ',t);fprintf('%6.2f',v(:,t)');fprintf('\n')

end

A similar script can be executed to print out the optimal foraging strategy

(see Table 7.5).

Exercises

1. Consider a competitive price-taking �rm that wishes to maximize the

present value sum of current and future pro�ts from harvesting a non-

renewable resource. In year t, the �rm earns revenue p
t
x
t
where p

t
is

the market price for the harvested resource and x
t
is the amount har-

vested by the �rm; the �rm also incurs cost �x
�

t
, where � and � are

cost function parameters. The market price takes one of two values, p1
or p2, according to the �rst-order Markov probability law:

Pr[p
t+1 = p

j
jp
t
= p

i
] = w

ij
:
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Table 7.5: Optimal Foraging Strategy

Stock of Energy

Period 0 1 2 3 4 5 6 7 8 9 10

1 1 3 3 3 2 2 2 2 2 2 2

2 1 3 3 3 2 2 2 2 2 2 1

3 1 3 3 3 2 2 2 2 2 1 1

4 1 3 3 3 2 2 2 2 1 1 1

5 1 3 3 2 2 2 2 1 1 1 1

6 1 3 3 2 2 2 1 1 1 1 1

7 1 3 3 2 2 1 1 1 1 1 1

8 1 3 3 2 1 1 1 1 1 1 1

9 1 3 3 1 1 1 1 1 1 1 1

10 1 3 1 1 1 1 1 1 1 1 1

Assuming an annual discount factor of Æ, and that harvest levels and

stocks must be integers, formulate the �rm's optimization problem.

Speci�cally, formulate Bellman's functional equation, clearly identify-

ing the state and action variables, the state and action spaces, and the

reward and probability transition functions.

2. Consider a timber stand that grows by one unit of biomass per year.

That is, if the stand is planted with seedlings at the beginning of year

t, it will contain t0 � t units of biomass in year t0. Harvesting decisions

are made at the beginning of each year. If the stand is harvested,

new seedlings are replanted at the end of the period (so the stand has

biomass 0 in the next period). The price of harvested timber is p dollars

per unit and the cost of harvesting and replanting is c. The timber �rm

discounts the future using a discount factor of Æ.

(a) Set up the decision problem (de�ne states, controls, reward func-

tion, transition rule).

(b) Formulate the value function and Bellman's recursive functional

equation.

(c) For parameters values Æ = 0:95, p = 1 and c = 5, determine the

optimal harvesting policy.
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3. Suppose that a new machine costs c and that the net pro�t contribu-

tion of a machine of age i is p
i
for i = 0; 1; : : : ; n, where 0 = p

n
<

p
n�1 < p

n�2 < : : : < p0. Formulate the �rm's pro�t maximization

problem. Speci�cally, formulate Bellman's functional equation, clearly

identifying the state and action variables, the state and action spaces,

and the reward and probability transition functions.

4. Suppose that a new machine costs $50 and that the net pro�t contri-

bution of a machine is:

age net profit

0 50

1 45

2 35

3 20

4+ 0

What is the optimal replacement policy for this machine.

5. Suppose that a new machine costs $75 and that its net pro�t contribu-

tion in a given year

f(a; n) = (50� 2:5a� 2:5a2) � (1� (a� n� 1)=4)

depends both on its age a at the beginning of the year and number of

times n that it has been serviced. At the beginning of the year, one

must decide whether to keep and service the machine, keep but not

service the machine, or replace the machine (one does not service a

new machine). It costs $10 to service a machine. Assuming a discount

factor of 0.9, what is the optimal replacement-maintenance policy for

the machine?

6. A �rm operates in an uncertain pro�t environment. At the beginning of

each period t, the �rm observes its potential short-run variable pro�t �
t
,

which may be negative, and then decides whether to operate, making

a short-run variable pro�t �
t
, or to temporarily shut down, making a

short-run variable pro�t of zero. Although the �rm faces no �xed costs

or shut-down costs, it incurs a start-up cost c if it reopens after a period
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of inactivity. The short-run variable pro�t �
t
follows a stationary �rst-

order Markov process. Speci�cally, short-run variable pro�t assumes

�ve values p1, p2, p3, p4, and p5 with stationary transition probabilities

P
ij
= Pr(�

t+1 = p
j
j�

t
= p

i
).

(a) Formulate the �rm's in�nite horizon pro�t maximization problem.

Speci�cally, formulate Bellman's functional equation, clearly iden-

tifying the state and action variables, the state and action spaces,

and the reward and probability transition functions.

(b) In the standard static model of the �rm, a previously open �rm

will shut down if its short-run variable pro�t p
t
is negative. Is this

condition suÆcient in the current model?

(c) In the standard static model of the �rm, a previously closed �rm

will reopen if its short-run variable pro�t p
t
exceeds the start-up

cost c. Is this condition necessary in the current model?

7. Consider the preceding problem under the assumption that the start-

up cost is c = 0:8, the discount factor is Æ = 0:95, and the short-run

variable pro�t assumes �ve values p1 = �1:0, p2 = �0:2, p3 = 0:4,

p4 = 1:2, and p5 = 2:0 with stationary transition probabilities:

to

p_1 p_2 p_3 p_4 p_4

p_1 0.1 0.2 0.3 0.4 0.0

p_2 0.1 0.3 0.2 0.2 0.2

from p_3 0.1 0.5 0.2 0.1 0.1

p_4 0.2 0.1 0.3 0.2 0.2

p_5 0.3 0.2 0.2 0.1 0.2.

(a) Compute the optimal operation-closure policy.

(b) What is the value of the �rm?

(c) In the long-run, what percentage of the time will be �rm be closed?

8. Consider the problem of optimal harvesting of a nonrenewable resource

by a competitive price-taking �rm:

max E
P1

t=0 Æ
t[p

t
x
t
� �x�

t
]

s.t. s
t+1 = s

t
� x

t
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where Æ = 0:9 is the discount factor; � = 0:2, � = 1:5, are cost function

parameters; p
t
is the market price; x

t
is harvest; and s

t
is beginning

reserves. Develop a Matlab program that will solve this problem nu-

merically assuming stock and harvest levels are integers, then answer

the following questions.

(a) Graph the value function for p = 1 and p = 2.

(b) Graph the optimal decision rule for p = 1 and p = 2.

(c) Assuming an initial stocks of 100 units, graph the time path of

optimal harvest for periods t = 0 to t = 20, inclusive; do so for

both p=1 and p=2.

(d) Under the same assumption as in (c), graph the shadow price of

stocks for periods t = 0 to t = 20. Do so both in current dollars

and in year 0 dollars.

9. Consider the preceding problem, but now assume that price takes one

of two values, p = 1 or p = 2 according to the following �rst-order

Markov probability law:

Pr[p
t+1 = 1jp

t
= 1] = 0:8

Pr[p
t+1 = 2jp

t
= 1] = 0:2

Pr[p
t+1 = 1jp

t
= 2] = 0:3

Pr[p
t+1 = 2jp

t
= 2] = 0:7

Further assume that the manager maximizes the discounted sum of

expected utility over time, where utility in year t is

u
t
= � expf�(p

t
x
t
� �x�

t
)g

where  = 0:2 is the coeÆcient of absolute risk aversion.

(a) Write a Matlab program that solves the problem.

(b) Graph the optimal decision rule for this case and for the risk

neutral case on the same graph.

(c) What is the e�ect of risk aversion on the rate of optimal extraction

in this model?



CHAPTER 7. DISCRETE STATE MODELS 204

10. Consider the article by Burt and Allison, \Farm Management De-

cisions with Dynamic Programming," Journal of Farm Economics,

45(1963):121-37. Write a program that replicates Burt and Allison's

results, then compute the optimal value function and decision rule if:

(a) the annual interest rate is 1 percent.

(b) the annual interest rate is 10 percent.

11. Consider Burt and Allison's farm management problem. Assume now

that the government will subsidize fallow land at $25 per acre, raising

the expected return on a fallow acre from a $2.33 loss to a $22.67 pro�t.

Further assume, as Burt and Allison implicitly have, that cost, price,

yield, and return are determinate at each moisture level:

(a) Compute the optimal value function and decision rule.

(b) Derive the steady-state distribution of the soil moisture level under

the optimal policy.

(c) Derive the steady-state distribution of return per acre under the

optimal policy.

(d) Derive the steady-state mean and variance of return per acre under

the optimal policy.

12. At the beginning of every year, a �rm must decide how much to produce

over the coming year in order to meet the demand for its product. The

demand over any year is known at the beginning of the year, but varies

annually, assuming serially independent values of 5, 6, 7, or 8 thousand

units with probabilities 0.1, 0.3, 0.4, and 0.2, respectively. The �rm's

cost of production in year t is 10q
t
+ (q

t
� q

t�1)
2 thousand dollars,

where q
t
is thousands of units produced in year t. The product sells for

$20 per unit and excess production can either be carried over to the

following year at a cost of $2 per unit or disposed of for free. The �rm's

production and storage capacities are 8 thousand and 5 thousand units

per annum, respectively. The annual discount factor is 0.9. Assuming

that the �rm meets its annual demand exactly, and that production and

storage levels must be integer multiples of one thousand units, answer

the following questions:

(a) Under what conditions would the �rm use all of its storage capac-

ity?
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(b) What is the value of �rm and what is its optimal production if its

previous year's production was 5 thousand units, its carryin is 2

thousand units, and the demand for the coming year is 7 units?

(c) What would be the production levels over the subsequent three

years if the realized demands were 6, 5, and 8 units, respectively?



Chapter 8

Discrete Time Continuous

State Dynamic Models: Theory

We now turn our attention to discrete time dynamic economic models with

state variables that may assume a continuum of values. Three classes of

discrete time, continuous state dynamic economic models are examined. One

class includes models of centralized decisionmaking by individuals, �rms,

or institutions. Examples of continuous state decision models admitting a

continuum of choices include a central planner managing the harvest of a

natural resource so as to maximize social welfare, an entrepreneur planning

production and investment so as to maximize the present value of her �rm,

a consumer making consumption and savings decisions so as to maximize

his expected lifetime utility. Examples of continuous state dynamic decision

models requiring dichotomous or binary choices include a �nancial investor

deciding when to exercise a put option, a capitalist deciding whether to enter

or exit an industry, and a producer deciding whether to keep or replace a

physical asset.

A second class of discrete time continuous state dynamic model examined

includes models of strategic gaming among a small number of individuals,

�rms, or institutions. Dynamic game models attempt to capture the behavior

of a small group of dynamically optimizing agents when the policy pursued

by one agent directly a�ects the welfare of another. Examples include a two

national grain marketing boards deciding quantities of grain to sell on world

markets and two individuals deciding how much to work and invest in the

presence of an income risk-sharing arrangement.

A third class of discrete time continuous state dynamic economic model

206
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examined includes partial and general equilibrium models of collective, de-

centralized economic behavior. Dynamic equilibrium models characterize

the behavior of a market, economic sector, or entire economy through in-

tertemporal arbitrage conditions that are enforced by the collective action

of atomistic dynamically optimizing agents. Often the behavior of agents at

a given date depends on their expectations of what will happen at a future

date. If it is assumed that agent's expectations are consistent with the im-

plications of the model as a whole, then agents are said to possess rational

expectations. Examples of rational expectations models include arbitrage

pricing models for �nancial assets and physical commodities.

Dynamic optimization and equilibriummodels are closely related. The so-

lution to a continuous state dynamic optimization may often be equivalently

characterized by �rst-order intertemporal equilibrium conditions obtained

by di�erentiating Bellman's equation. Conversely, many dynamic equilib-

rium problems can be \integrated" into equivalent optimization formulations.

Whether cast in optimization or equilibrium form, most discrete time con-

tinuous state dynamic economic models pose in�nite-dimensional �xed-point

problems that lack closed-form solution. This chapter provides an intro-

duction to the theory of discrete time continuous state dynamic economic

models. The subsequent chapter is devoted to numerical methods that may

be used to solve and analyze such models.

8.1 Continuous State Dynamic Programming

A discrete time, continuous state Markov decision model involves a reward

function that depends on a state variable that may assume any one of an

in�nite number of values contained in a closed convex set. Such models may

be classi�ed according to whether the action space is also a continuum or

whether it is a �nite set. We treat these two classes of decision models sep-

arately, given that they may be analyzed and solved numerically in ways

that are similar in some respects, but dissimilar in other respects. When dis-

cussing continuous state, discrete action Markov decision models, we limit

our attention to models with binary choices, without signi�cant loss of gen-

erality.

The discrete time, continuous state and action Markov decision model

has the following structure: In every period t, an agent observes the state of

an economic process s
t
, takes an action x

t
, and earns a reward f(s

t
; x

t
) that
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depends on both the state of the process and the action taken. The state

space S 2 <n, which contains all the states attainable by the process, and the
action space X 2 <m, which contains all actions that may be taken by the

agent, are both closed convex sets. The state of the economic process follows

a controlled Markov probability law. Speci�cally, the state of the economic

process in period t + 1 will depend on the state and action in period t and

an exogenous random shock �
t+1 that is unknown in period t:

s
t+1 = g

t
(s

t
; x

t
; �

t+1):

The agent seeks a policy fx�
t
gT
t=1 of state-contingent actions x

t
= x

�
t
(s

t
)

that will maximize the present value of current and expected future rewards,

discounted at a per-period factor Æ:

E

X
t

Æ
t

f(s
t
; x

t
):

In the continuous state and action Markov decision model, the exogenous

random shocks �
t
are assumed identically distributed over time, mutually in-

dependent, and independent of past states and actions. The reward functions

f and the state transition functions g are assumed to be twice continuously

di�erentiable on S and X and the per-period discount factor Æ is assumed to

be less than one. In some instances, the set of actions available to the agent

may vary with the state of the process s. In such cases, the restricted action

space is denoted X(s). Continuous state, continuous action Markov decision

models may further be classi�ed according to whether their horizon is �nite

or in�nite and whether they are stochastic or deterministic.

Like the discrete Markov decision problem, the discrete time continu-

ous state continuous action Markov decision problem may be analyzed using

dynamic programming methods based on Bellman's Principle of Optimality.

The Principle of Optimality applied to the discrete time continuous state con-

tinuous action Markov decision model yields Bellman's recursive functional

equation:

V
t
(s) = max

x2X(s)
ff(s; x) + ÆE

�
V
t+1(g(s; x; �))g; s 2 S:

Here, the value function V
t
(s) gives the maximum attainable sum of current

and expected future rewards, given that the process is in state s in t.

In a �nite horizon model, we adopt the convention that the optimizing

agent faces decisions up to and including a �nal decision period T <1. The
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agent faces no decisions after the terminal period T , but may earn a �nal

reward V
T+1 in period T + 1. In many applications, the post-terminal value

function V
T+1 is identically zero, indicating that no rewards are earned by the

agent beyond the terminal decision period. In other applications, V
T+1 may

specify a salvage value earned by the agent after making his �nal decision

in period T . Given the post-terminal value function, the �nite horizon dis-

crete time continuous state continuous action Markov decision model may be

solved recursively, at least in principle, by repeated application of Bellman's

equation: Having V
T+1, solve for VT (s) for all states s; having VT , solve for

V
T�1(s) for all states s; having VT�1, solve for VT�2(s) for all states s; and

so on, until V0(s) is derived for all states s.

The value function of the in�nite horizon discrete time continuous state

continuous action Markov decision model will the same for every period and

thus may be denoted simply by V . The in�nite horizon value function V is

characterized as the solution to the Bellman functional �xed-point equation

V (s) = max
x2X(s)

ff(s; x) + ÆE
�
V (g(s; x; �))g; s 2 S:

If the discount factor Æ is less than one and the reward function f is bounded,

the mapping underlying Bellman's equation is a strong contraction on the

space of bounded continuous functions and, thus, by The Contraction Map-

ping Theorem, will possess an unique solution.

The simplest continuous state binary choice Markov decision model is

the optimal stopping problem. At each point in time t the agent is o�ered

a one-time reward f(s
t
) that depends on the state of some purely exogenous

stochastic economic process s
t
. The agent must then decide whether to

accept the o�er, receiving the reward, or decline the o�er, forgoing the reward

and waiting another period for a hopefully better reward. The underlying

economic process s
t
is a continuous state Markov process with transition

function s
t+1 = g(s

t
; �

t+1), where the �t are an i.i.d. and serially independent.

The Bellman equation of the in�nite horizon optimal stopping model takes

the simple form

V (s) = maxff(s); ÆE
�
V (g(s; �))g; s 2 S:

The value function V speci�es the present value of the expected maximum

reward, given that the exogenous process is in state s.

Another important continuous state binary choice Markov decision model

is the optimal switching problem. In the optimal switching model, an agent
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must decide whether to be dormant (0) or active (1) in the current period.

The reward f(s
t
; i
t
; j

t
) earned by the agent in period t depends on the agent's

activity in the preceding period i
t
, the agent's activity in the current period

j
t
, and a continuous-valued, purely exogenous state variable s

t
governed by

the Markov transition law s
t+1 = g

t
(s

t
; �

t+1). The Bellman equation of the

in�nite horizon optimal switching model takes the form

V (s; i) = max
j=0;1
ff(s; i; j) + ÆE

�
V (g(s; �); j)g; s 2 S; i = 0; 1:

The value function V speci�es the maximum attainable sum of current and

expected future rewards, given that the exogenous process is in state s and

the agent's state of activity in the preceding period was i.

Yet another important continuous state binary choice Markov decision

model is the optimal asset replacement model. In the optimal asset replace-

ment model, an agent must decide when to incur the cost of replacing an

aging asset with a newer, potentially more productive asset. The reward

earned by the agent in any period equals the earnings generated by the asset

used in that period less replacement costs, if any. Speci�cally, if the agent

begins period t with an asset of age a
t
, he receives a reward f(s

t
; a

t
), if

he keeps the asset, and a reward f(s
t
; 0) � c, if he replaces it. The earn-

ings generated by an asset depend not only on the age of the asset, but

also a continuous-valued, purely exogenous state variable s
t
governed by the

Markov transition law s
t+1 = g

t
(s

t
; �

t+1): Assuming that the asset becomes

totally unproductive at age �a, the Bellman equation of the in�nite horizon

optimal asset replacement model takes the form

V (s; a) =

maxff(s; a) + ÆE
�
V (g(s; �); a+ 1); f(s; 0)� c+ ÆE

�
V (g(s; �); 1)g

for s 2 S and a = 0; 1; : : : ; �a, provided we agree to interpret a+ 1 to mean �a

when a = �a. The value function V speci�es the maximum attainable sum of

current and expected future rewards, given that the exogenous process is in

state s and the age of the asset at the beginning of the period is a.

Although both �nite- and in�nite-horizon Bellman equations involving

continuous states are guaranteed to have solutions if the reward function is

bounded, they will often lack closed-form solution. The problem lies with the

continuous state space, which contains an in�nite number of points. Except

in rare special cases, it is not possible to derive analytically an explicit closed

form expression for the period t value function of the �nite horizon model,
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even if the period t+ 1 value function is known and possesses a closed-form.

In these instances, solving Bellman's equation requires explicitly solving an

in�nite number of optimization problems, one for each state. This is an

impracticable task. Except in a very small number of special cases, one can

only solve a discrete time continuous state Bellman equation numerically, a

matter that we take up the following chapter.

8.2 Euler Equilibrium Conditions

Like many optimization problems, the solution to Markov decision models

with continuous state and action spaces can be characterized by \�rst-order"

equilibrium conditions. Characterizing the solution to a continuos state and

action Markov decision problem through its equilibrium conditions, widely

called the Euler conditions, serves two purposes. First, the Euler conditions

admit an intertemporal arbitrage interpretation that help the analyst under-

stand and explain the essential features of the optimized dynamic economic

process. Second, the Euler conditions can, in many instances, be solved more

easily than Bellman's equation for the optimal solution of the Markov deci-

sion model. Below, we derive the Euler conditions for the in�nite horizon

model, leaving the derivation of the Euler conditions for the �nite horizon

model as an exercise for the reader.

The equilibrium conditions of the continuous state and action Markov

decision problem involve, not the value function, but its derivative

�(s) � V
0(s):

We call � the shadow price function. It represents the value of the marginal

unit of state variable to the optimizer or, equivalently, the price that the

optimizer imputes to the state variable.

Assume that both the state and action spaces are closed convex nonempty

sets and that the reward functions f and the state transition functions g

are continuously di�erentiable of all orders. The equilibrium conditions for

discrete time continuous state continuous choice Markov decision problem are

derived by applying the Karush-Kuhn-Tucker and Envelope Theorems to the

optimization problem embedded in Bellman's equation. Assuming actions

are unconstrained, the Karush-Kuhn-Tucker conditions for the embedded

unconstrained optimization problem imply that the optimal action x, given
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state s in period t, satis�es the equimarginality condition:

f
x
(s; x) + ÆE

�
[�(g(s; x; �))g

x
(s; x; �)] = 0:

The Envelope Theorem applied to the same problem implies:

f
s
(s; x) + ÆE

�
[�(g(s; x; �)) � g

s
(s; x; �)] = �(s):

Here, f
x
, f

s
, g

x
, and g

s
denote partial derivatives.

In certain applications, the transition function is independent of s so that

g
s
= 0. In these instances, it is possible to substitute the expression derived

using the Envelope theorem into the expression derived using the Karush-

Kuhn-Tucker condition. This allows us to eliminate the shadow price function

as an unknown, and simplify the Euler conditions into a single functional

equation in a singe unknown, the optimal policy function x:

f
x
(s; x) + ÆE

�
[f
s
(g(s; x; �); x)g

x
(s; x; �)] = 0:

This equation, when it exists, is known as the Euler equation.

The Euler conditions take a di�erent form when actions are subject to

constraints. Suppose, for example, that feasible actions are subject to bounds

of the form

X(s) = fx j a(s) � x � b(s)g;

where a and b are di�erentiable functions of the state s. In these instances,

the Euler conditions take the form of a functional complementarity problem:

a(s) � x � b(s)

x > a(s) =) f
x
(s; x) + ÆE

�
[�(g(s; x; �)) � g

x
(s; x; �)] � 0

x < b(s) =) f
x
(s; x) + ÆE

�
[�(g(s; x; �)) � g

x
(s; x; �)] � 0

f
s
(s; x) + ÆE

�
[�(g(s; x; �)) � g

s
(s; x; �)] + �

�
a
0(s) + �

+
b
0(s) = �(s):

where

�
+ = max(0; f

x
(s; x) + ÆE

�
[�(g(s; x; �)) � g

x
(s; x; �)])

�
� = min(0; f

x
(s; x) + ÆE

�
[�(g(s; x; �)) � g

x
(s; x; �)])

are the shadow prices of the upper and lower bounds, respectively.
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An analyst is often interested with the longrun tendencies of the opti-

mized process. If the model is deterministic, it may possess a well-de�ned

steady-state to which the process will converge over time. The steady-state is

characterized by the solution to a nonlinear equation. More speci�cally, the

steady-state of an unconstrained deterministic problem, if it exists, consists

of a state s�, an action x�, and shadow price �� such that

f
x
(s�; x�) + Æ�

�
g
x
(s�; x�) = 0

�
� = f

s
(s�; x�) + Æ�

�
g
s
(s�; x�)

s
� = g(s�; x�):

The steady-state of a constrained deterministic dynamic optimization prob-

lem can be similarly stated, except that it takes the form of a nonlinear

complementarity problem, rather than a nonlinear equation.

Knowledge of the steady-state of a deterministic Markov decision prob-

lem is often very useful. For most well-posed deterministic problems, the

optimized process will converge to the steady-state, regardless of initial con-

dition. The steady-state therefore unequivocally characterizes the longrun

behavior of the process. The analyst, moreover, will often be satis�ed to

understand the dynamics of the process around the steady-state, given that

this is the region where the process tends to reside. The steady-state con-

ditions are equations or complementarity conditions that can be analyzed

algebraically. In particular, the derivative of the longrun value of an en-

dogenous variable with respect to model parameters can often be derived

using standard di�erential calculus, even if the dynamic model itself lacks a

closed-form solution.

If the discrete time continuous state model is stochastic, the model will

not converge to a speci�c state and action and the longrun behavior of

the model can only be described probabilistically. In these cases, however,

it is often practically useful to derive the steady-state of the determinis-

tic \certainty-equivalent" problem obtained by �xing all exogenous random

shocks at their respective means. Knowledge of the certainty-equivalent

steady-state can assists the analyst by providing a reasonable initial guess for

the optimal policy, value, and shadow price functions in iterative numerical

solution algorithms. Also, one can often solve a hard stochastic dynamic

model by �rst solving the certainty-equivalent model, and then solving a se-

ries of models obtained by gradually perturbing the variance of the shock
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from zero back to its true level, always using the solution of one model as

the starting point for the algorithm used to solve the subsequent model.

8.3 Linear-Quadratic Control

Before proceeding to more complicated continuous state Markov decision

models we discuss a special case: the linear-quadratic control model. The

linear-quadratic control problem is a Markov decision model with a quadratic

reward function

f(s; x) = F0 + F
s
s+ F

x
x + 0:5s0F

ss
s+ s

0
F
sx
x + 0:5x0F

xx
x

and a linear state transition function with additive shock

g(s; x; �) = G0 +G
s
s +G

x
x + �:

Here, s is an n-by-1 state vector, x is an m-by-1 action vector, F0 is a known

constant, F
s
is a known 1-by-n vector, F

x
is a known 1-by-m vector, F

ss

is a known n-by-n matrix, F
sx

is a known n-by-m matrix, F
xx

is a known

m-by-m matrix, G0 is a known n-by-1 vector, Gs
is a known n-by-n matrix,

and G
x
is a known n-by-m vector. Without loss of generality, the shock �

is assumed to have a mean of zero. The linear-quadratic control problem

admits no constraints on the action.

The linear-quadratic is of special importance because it is one of the few

discrete time continuous state Markov decision models with known analytic

solution. By a conceptually simple but algebraically burdensome induction

proof omitted here, one can show that the solution to the in�nite horizon

linear-quadratic control model takes a particularly simple form. Speci�cally,

both the optimal policy and shadow price functions are linear in the state

variable:

x(s) = X0 +X
s
s

�(s) = �0 + �
s
s:

Here, X0 is anm-by-1 vector, X
s
is an m-by-n matrix, �0 is an n-by-1 vector,

and �
s
is an n-by-n matrix.
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The parameters �0 and �s
of the shadow price function are characterized

by the nonlinear vector �xed point Riccati equations

�0 = �[ÆG0
s
�
s
G
x
+ F

sx
][ÆG0

x
�
s
G
x
+ F

0
xx
]�1[ÆG0

x
[�

s
G0 + �0] + F

x
]

+ÆG0
s
[�

s
G0 + �0] + F

s

�
s

= �[ÆG0
s
�
s
G
x
+ F

sx
][ÆG0

x
�
s
G
x
+ F

0
xx
]�1[ÆG0

x
�
s
G
s
+ F

0
sx
]

+ÆG0
s
�
s
G
s
+ F

ss
:

These �nite dimensional �xed-point equations can typically be solved in prac-

tice using a simple function iteration scheme applied to both equations. Al-

ternatively, the recursive structure of these equations allow one to �rst solve

for �
s
by applying function iteration to the second equation, and then solve

for �0 by applying function iteration to the �rst equation. Once the pa-

rameters of the shadow price function have been computed, one can easily

compute the parameters of the optimal policy:

X0 = �[ÆG0
x
�
s
G
x
+ F

0
xx
]�1[ÆG0

x
[�

s
G0 + �0] + F

x
]

X
s
= �[ÆG0

x
�
s
G
x
+ F

0
xx
]�1[ÆG0

x
�
s
G
s
+ F

0
sx
]

The relative simplicity of the linear-quadratic control problem derives

from the fact that the optimal policy and shadow price functions are known

to be linear, and thus belong to a �nite dimensional family. The param-

eters of the linear functions, moreover, are characterized as the solution

to a well-de�ned nonlinear vector �xed-point equation. Thus, the appar-

ently in�nite-dimensional Euler functional �xed-point equation may be con-

verted into �nite-dimensional vector �xed-point equation and solved using

standard nonlinear equation solution methods. This simpli�cation, unfortu-

nately, is not generally possible for other types of discrete time continuous

state Markov decision models.

A second simplifying feature of the linear-quadratic control problem is

that the shadow price and optimal policy functions do not depend on the

distribution of the state shock. This is known as the certainty-equivalence

property of the linear-quadratic control problem. It asserts that the solution

of the stochastic problem is the same as the solution of the deterministic

problem obtained by �xing the state shock � at its mean of zero. Certainty

equivalence also is not a property of more general discrete time continuous

state Markov decision models.
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Because linear-quadratic control models are relatively easy to solve, many

analysts compute approximate solutions to more general Markov decision

models using the method of linear-quadratic approximation. Linear quadratic

approximation calls for all constraints of the general problem to be discarded

and for its reward and transition functions to be replaced with by their

second- and �rst-order approximations about the steady-state. This approx-

imation method, which is illustrated in the following chapter, works well in

some instances, for example, if the state transition rule is linear, constraints

are nonbinding and non existent and if the shocks have small variation. How-

ever, in most Economic applications, linear-quadratic approximation will of-

ten render highly inaccurate solutions that di�er not only quantitatively but

also qualitatively from the true solution. For this reason, we strongly discour-

age the use of linear-quadratic approximation, except in those cases where

the assumptions of the linear quadratic model are know to hold globally for

the model under consideration.

8.4 Economic Examples

8.4.1 Asset Replacement

Suppose that a new machine costs K and that the output of a machine of

age a is q = q(a), where q initially increases in a, but eventually declines,

reaching zero at a machine obsolescence age �a. Also suppose that the price p

obtained per unit of output is a purely exogenous log-normal random process

governed by the transition rule

log(p
t+1) = �+ �(log p

t
� �) + �

t+1

where the �
t
are serially independent and identically normally distributed

with mean 0 and standard deviation �. What is the value of the �rm and

what is the optimal replacement policy?

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in periods. The model has a continuous state variable

p
t

= output price in period t

p
t
2 (0;1)

and a discrete state variable

a
t

= asset age at beginning of period t
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a
t
2 f0; 1; 2; : : : ; �ag:

The choice variable i
t
is dichotomous: either keep (0) or replace (1) the asset.

The reward earned by the optimizing agent is

p
t
q(a

t
)� c(i

t
) = net revenue in t

where c(0) = 0 and c(1) = K. And the continuous state variable transitions

are governed by

p
t+1 = g(p

t
; �

t+1) = expf�+ �(log p
t
� �) + �

t+1g:

The value function, which measures the value of having an asset of age

a, satis�es Bellman's equation

V (p; a) =

maxfpq(a) + ÆE
�
V (g(p; �); a+ 1); pq(0)�K + ÆE

�
V (g(p; �); 1)g

8.4.2 Industry Entry and Exit

A �rm operates in an uncertain pro�t environment. At the beginning of each

period t, the �rm observes its potential short-run variable pro�t �
t
, which

may be negative, and then decides whether to operate, making a short-run

variable pro�t �
t
, or to not operate, making a short-run variable pro�t of

zero. Although the �rm faces no �xed costs or shut-down costs, it incurs

a start-up cost K if it reopens after a period of inactivity. The short-run

variable pro�t �
t
follows a stationary �rst-order Markov process

�
t+1 = g(�; �

t+1) = �� + �(�
t
� ��) + �

t+1

where the �
t
are serially independent and identically normally distributed

with mean 0 and standard deviation �. What is the value of the �rm and

what is the optimal entry-exit policy?

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in periods. The model has a continuous state variable

�
t

= short run pro�t potential, period t

�
t
2 (�1;1)

The choice variable j
t
is dichotomous: either operate (1) or do not operate

(0) in period t.
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The reward earned by the optimizing agent is

�
t
j
t
� c(i

t
; j

t
) = net revenue in t

where c(0; 1) = K but is zero otherwise.

The value function, which measures the value of the �rm, satis�es Bell-

man's equation

V (�; i) = max
j=0;1
f�j � c(i; j) + ÆE

�
V (g(�; �); j)g

8.4.3 Option Pricing

An American put option gives the holder the right, but not the obligation, to

sell a speci�ed quantity of a commodity at a speci�ed strike price on or before

a speci�ed expiration date. In the discrete-time Black-Scholes option pricing

model, the price of the commodity is assumed to follow a purely exogenous

log-normal random process governed by the transition rule

log(p
t+1) = �+ �(log p

t
� �) + �

t+1

where the �
t
are serially independent and identically normally distributed

with mean 0 and standard deviation �. Assuming the current price of the

commodity is p0, what is the value of an American put option if it has a

strike price �p and expires T periods from today?

This is a �nite horizon, stochastic model with time t 2 f0; 1; 2; : : : ; Tg
measured in periods. The model has a continuous state variable

p
t

= commodity price in period t

p
t
2 (0;1):

The choice variable j
t
is dichotomous: either hold (0) or exercise (1) the

asset.

The reward earned by the optimizing agent is

�p� p
t
= exercise value in period t

if the option is exercised, but is zero otherwise. And the state variable

transitions are governed by

p
t+1 = g(p

t
; �

t+1) = expf�+ �(log p
t
� �) + �

t+1g:

The value function, which measures the value of an unexercised option,

satis�es Bellman's equation

V (p) = maxfp� �p; ÆE
�
V (g(p; �))g
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8.4.4 Optimal Growth

Consider an economy comprising a single composite good. Each year t be-

gins with a predetermined amount of the good s
t
, of which an amount x

t

is invested and the remainder is consumed. The social welfare derived from

consumption in year t is u(s
t
� x

t
). The amount of good available in year

t + 1 is s
t+1 = x

t
+ �

t+1f(xt) where  is the capital survival rate, f is the

aggregate production function, and �
t+1 is a positive production shock with

mean 1. What consumption-investment policy maximizes the sum of current

and expected future welfare over an in�nite horizon?

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. The model has a single state variable

s
t

= stock of good at beginning of year t

s
t
2 [0;1)

and a single action variable

x
t
= amount of good invested in year t

subject to the constraint

0 � x
t
� s

t
:

The reward earned by the optimizing agent is

u(s
t
� x

t
) = social utility in t:

State transitions are governed by

s
t+1 = x

t
+ �

t+1f(xt)

where

�
t
= productivity shock in year t:

The value function, which gives the sum of current and expected future

social welfare, satis�es Bellman's equation

V (s) = max
0�x�s

fu(s� x) + ÆEV (x+ �f(x))g; s > 0:
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Assuming u0(0) = �1 and f(0) = 0, the solution to Bellman's equa-

tion will always be internal, and the shadow price function, which gives the

shadow price of stock, satis�es the Euler equilibrium conditions:

u
0(s� x)� ÆE [�(x+ �f(x)) � ( + �f

0(x))] = 0

�(s) = u
0(s� x):

Thus, along the optimal path,

u
0
t
= ÆE

t

�
u
0
t+1 � ( + �

t+1f
0
t
)
�

where u0
t
is marginal utility and �

t+1f
0
t
is the ex-post marginal product of

capital. That is, on the margin, the utility derived from a unit of good today

must equal the discounted expected utility derived from investing the good

and consuming it and its product tomorrow.

The certainty-equivalent steady-state is obtained by �xing � at its mean

1. The certainty-equivalent steady-state stock of good s�, investment level

x
�, and shadow price �� are characterized by the nonlinear equation system

u
0(s� � x�) = Æ�

�( + f
0(x�))

�
� = u

0(s� � x�)

s
� = x

� + f(x�):

The certainty-equivalent steady-state conditions imply the golden rule:

1 �  + r = f
0(x�). That is, in deterministic steady-state, the marginal

product of capital equals the capital depreciation rate plus the interest rate.

Totally di�erentiating the equation system above with respect to the interest

rate r:

@s
�

@r
=

1 + r

f
00

< 0

@x
�

@r
=

1

f
00
< 0

@�
�

@r
=
u
00

r

f
00
> 0:

That is, a permanent rise in the interest rate will reduce the deterministic

steady-state supply and investment, and will raise the shadow price.
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8.4.5 Renewable Resource Problem

A social planner wishes to maximize the discounted sum of net social surplus

from harvesting a renewable resource over an in�nite horizon. For year t,

let s
t
denote the resource stock at the beginning of the year, let x

t
denote

the amount of the resource harvested, let c
t
= c(x

t
) denote the total cost of

harvesting, and let p
t
= p(x

t
) denote the market clearing price. Growth in

the stock level is given by s
t+1 = g(s

t
� x

t
). What is the socially optimal

harvest policy?

This is an in�nite horizon, deterministic model with time t 2 f0; 1; 2; : : :g
measured in years. There is one state variable,

s
t

= stock of resource at beginning of year t

s
t
2 [0;1);

and one action variable,

x
t
= amount of resource harvested in year t,

subject to the constraint

0 � x
t
� s

t
:

The reward earned by the optimizing agent isZ
xt

0

p(�) d� � c(x
t
):

State transitions are governed by

s
t+1 = g(s

t
� x

t
):

The value function, which gives the net social value of resource stock,

satis�es Bellman's equation

V (s) = max
0�x�s

f
Z

x

0

p(�) d� � c(x) + ÆV (g(s� x))g:

Assuming p(0) = 1 and g(0) = 0, the solution to the optimization

problem embedded in Bellman's equation will be internal. Under these as-

sumptions the shadow price function satis�es the Euler conditions, which

stipulate that for every stock level s > 0 there is a harvest level x such that

p(x) = c
0(x) + Æ�(g(s� x))g0(s� x)
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�(s) = Æ�(g(s� x))g0(s� x):

Thus, along the optimal path

p
t
= c

0
t
+ �

t

�
t
= Æ�

t+1g
0
t

where p
t
is the market price, c0

t
is the marginal harvest cost, and g

0
t
is the

marginal future yield of stock in t. Thus, the market price of the harvested

resource must cover both the marginal value of the unharvested resource and

the marginal cost of harvesting it. Moreover, the value of one unit of resource

today equals the discounted value of its yield tomorrow.

The steady-state resource stock s�, harvest x�, and shadow price �� solve

the equation system

p(x�) = c
0(x�) + Æ�

�
g
0(s� � x�)

�
� = Æ�

�
g
0(s� � x�)

s
� = g(s� � x�):

These conditions imply g0(s� � x
�) � 1 = r. That is, in steady-state, the

marginal yield equals the interest rate.

Totally di�erentiating the equation system above:

@s
�

@r
=

1 + r

g
00

< 0

@x
�

@r
= �

r

g
00
< 0

@�
�

@r
=

(c
00 � p0)r
g
00

< 0:

That is, as the interest rate rises, the steady-state stock, the steady-state

harvest, and the steady-state shadow price all fall.
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Figure 8.4.5 Steady-state optimal harvest of a renewable resource.

8.4.6 Nonrenewable Resource Problem

A social planner wishes to maximize the discounted sum of net social surplus

from harvesting a nonrenewable resource over an in�nite horizon. For year

t, let s
t
denote the resource stock at the beginning of the year, let x

t
denote

the amount of the resource harvested, let c
t
= c(x

t
) denote the total cost of

harvesting, and let p
t
= p(x

t
) denote the market clearing price. What is the

socially optimal harvest policy?

This is an in�nite horizon, deterministic model with time t 2 f0; 1; 2; : : :g
measured in years. There is one state variable,

s
t

= stock of resource at beginning of year t

s
t
2 [0;1);

and one action variable,

x
t
= amount of resource harvested in year t,

subject to the constraint

0 � x
t
� s

t
:

The reward earned by the optimizing agent isZ
xt

0

p(�) d� � c(x
t
):

State transitions are governed by

s
t+1 = s

t
� x

t
:

The value function, which gives the net social value of resource stock,

satis�es Bellman's equation

V (s) = max
0�x�s

f
Z

x

0

p(�) d� � c(x) + ÆV (s� x)g; s � 0:

Assuming p(0) = 1 and g(0) = 0, the solution to the optimization

problem embedded in Bellman's equation will be internal. Under these as-

sumptions, the shadow price function satis�es the Euler conditions, which

stipulate that for every stock level s > 0 there is a harvest level x such that

p(x) = c
0(x) + Æ�(s� x)
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Figure 8.4.6 Optimal harvest path of a norenewable resource.

�(s) = Æ�(s� x):

Thus, along the optimal path

p
t
= c

0
t
+ �

t

�
t
= Æ�

t+1

where p
t
is the market price and c0

t
is the marginal harvest cost at t. That is,

the market price of the harvested resource equals the marginal value of the

unharvested resource plus the marginal cost of harvesting it. Also, the price

of the harvested resource grows at the rate of interest. The steady-state,

which occurs when stock is s� = 0, is an uninteresting case.

8.4.7 Feedstock Problem

An animal weighing s1 pounds in period t = 1 is to be fed up to period T +1,

at which time it will be sold at a price of p dollars per pound. The cost of

increasing the animal's weight by an amount x
t
during period t is given by

c(s
t
; x

t
) where s

t
is the animal's weight at the beginning of t. What feeding

strategy maximizes the present value of pro�t?

This is a �nite horizon, deterministic model with time t 2 f1; 2; : : : ; Tg
measured in feeding periods. There is one state variable,

s
t

= weight of animal at beginning of period t

s
t
2 [0;1);

and one action variable,

x
t
= weight gain during period t;

subject only to a nonnegativity constraint.

The reward earned by the hog farmer in feeding periods is

�c(s
t
; x

t
):

State transitions are governed by

s
t+1 = s

t
+ x

t
:
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Figure 8.4.7 Feedstock problem dynamics.

The value function, which gives the value of animal weighing pounds s in

period t, satis�es Bellman's equation

V
t
(s) = max

x�0
f�c(s; x) + ÆV

t+1(s+ x)g;

subject to the terminal condition

V
T+1(s) � ps:

The shadow price function, which measures the price of animal mass, sat-

is�es the Euler conditions, which stipulate that for each decision period t and

weight level s > 0, the optimal weight gain x satis�es the complementarity

conditions

x � 0

Æ�
t+1(s+ x)� c

x
(s; x)le0

x > 0 =) Æ�
t+1(s+ x)� c

x
(s; x) = 0

�
t
(s) = �c

s
(s; x) + Æ�

t+1(s+ x):

For the post-terminal period,

�
T+1(s) = p:

Thus, along an optimal path, assuming an internal solution, we have:

Æ�
t+1 = c

x
(s

t
; x

t
)

c
s
(s

t
; x

t
) = �

t
� Æ�

t+1:

In other words, the marginal cost of feeding the animal this period must

equal the discounted value of the additional body mass obtained the following

period. Also, the marginal value of body mass declines at the same rate at

which it weight gains become increasingly more costly.
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8.4.8 A Production-Adjustment Problem

The output price faced by a competitive �rm follows a �rst-order autoregres-

sive process:

p
t+1 = �+ p

t
+ �

t+1; jj < 1; �
t
i.i.d.

The cost of producing q
t
units in period t is c(q

t
) plus an adjustment cost of

a(q
t
� q

t�1). The �rm cannot store the commodity because it is perishable.

Assuming p
t
is known at the time the period t production decision is made,

what production policy maximizes the sum of current and expected future

pro�ts?

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. There are two state variables:

q
t�1 = past production;

p
t
= current market price:

There are one action variable:

q
t
= current production

subject to a nonnegativity constraint.

The reward earned by the optimizing agent is

p
t
� q

t
� c(q

t
)� a(q

t
� q

t�1):

Price state transitions are governed by

p
t+1 = �+ p

t
+ �

t+1

where

�
t
= price process innovation in year t:

The transition rule for q
t
is trivial.

The value function, which gives the value of the �rm, satis�es Bellman's

equation

V (q�1; p) = max
0�q
fpq � c(q)� a(q � q�1) + ÆEV (q; �+ p+ �)g:
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Assuming a positive production level, the Euler conditions require that

for every state vector (q�1; p), there is a production level q such that

p� c0(q)� a0(q � q�1) + ÆEV
q
(q; �+ p+ �) = 0

V
q
(q�1; p) = a

0(q � q�1)

Along the optimal path,

p
t
= c

0
t
+ (a0

t
� ÆEa0

t+1):

Thus, marginal revenue equals the marginal production cost plus the net

marginal adjustment cost.

The certainty-equivalent deterministic problem is obtained by assuming

p is �xed at its longrun mean �=(1 � ). If a0(0) = 0, then the certainty-

equivalent steady-state production is constant and implicitly de�ned by the

short-run pro�t maximization condition:

p = c
0(q)

8.4.9 A Production-Inventory Problem

The output price faced by a competitive �rm follows a �rst-order autoregres-

sive process:

p
t+1 = �+ p

t
+ �

t+1; jj < 1; �
t
i.i.d.

The cost of producing q
t
units in period t is c(q

t
). The �rm may store across

periods at a constant unit cost k. Assuming p
t
is known at the time the

period t production-inventory decision is made, what production-inventory

policy maximizes the sum of current and expected future pro�ts?

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. There are two state variables:

b
t
= beginning inventories;

p
t
= current market price:

There are two action variables:

q
t
= current production
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x
t
= ending inventories

subject to the constraints

q
t
� 0

x
t
� 0

x
t
� q

t
+ b

t
;

that is, production, inventories, and deliveries must be nonnegative.

The reward earned by the optimizing agent is

p
t
� (q

t
+ b

t
� x

t
)� c(q

t
)� kx

t
:

State transitions are governed by

p
t+1 = �+ p

t
+ �

t+1

where

�
t
= price process innovation in year t

and

b
t+1 = x

t
:

The value function, which gives the value of �rm given inventories b and

price p satis�es Bellman's equation

V (b; p) = max
0�q;0�x�q+b

fp(q + b� x)� c(q)� kx + ÆEV (x; �+ p + �)g:

The shadow price function

�(b; p) = V
b
(b; p) = marginal value of inventories

satis�es the Euler conditions, which require that for every beginning inven-

tory level b and price p, there is a production level q, ending inventory level

x, and material balance shadow price � such that

x � 0

ÆE�(b; �+ p+ �)� p� k � � � 0
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x > 0 =) ÆE�(b; � + p+ �)� p� k � � = 0

q � 0

p� c0(q) � 0

q > 0 =) p� c0(q) = 0

� � 0

q + b� x � 0

� > 0 =) q + b� x = 0

�(b; p) = p� �

Along the optimal path, if deliveries and storage are positive,

ÆE
t
p
t+1 � pt � k = 0

p
t
= c

0
t
:

That is, marginal revenue equals the marginal production cost and the dis-

counted expected future price equals the current output price plus the cost

of storage.

The certainty-equivalent deterministic problem is obtained by assuming p

is �xed at its longrun mean �=(1� ). The certainty-equivalent steady-state
inventories are 0 and production is constant and implicitly de�ned by the

short-run pro�t maximization condition:

p = c
0(q):

8.4.10 Optimal Growth with Debt

Reconsider the optimal growth problem when the central planner can carry

an external debt load d
t
whose unit cost �0+�1qt rises with the debt to asset

ratio q
t
= d

t
=s

t
.

This is an in�nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. There are two state variables:

s
t

= stock of good at beginning of year t

s
t
2 [0;1)
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and

d
t

= debt load at beginning of year t

d
t
2 (�1;1):

Here, d
t
< 0 implies that the economy runs a surplus. There are two action

variables:

x
t
= amount of good invested in year t

c
t
= amount of good consumed in year t;

both subject to nonnegativity constraints.

The reward earned by the optimizing agent is

u(c) = social utility in t:

Supply state transitions are governed by

s
t+1 = x

t
+ �

t+1f(xt)

where

�
t
= productivity shock in year t:

Debt state transitions are governed by

d
t+1 = d

t
+ b

t
;

where

b
t
= c

t
+ x

t
+ (�0 + �1dt=st) � dt � st;

indicates net borrowing in year t.

The value function, which gives the sum of current and expected future

social welfare, satis�es Bellman's equation

V (s; d) = max
x�0;c�0

fu(c) + ÆEV (x+ �f(x); d+ b)g

where b = x + c+ (�0 + �1d=s) � d� s) is net borrowing.
Assuming u0(0) = �1 and f(0) = 0, the solution to Bellman's equation

will always be internal, and the shadow price and cost functions

�(s; d) =
@V

@s
(s; d) = shadow price of stock
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and

�(s; d) =
@V

@d
(s; d) = shadow cost of debt

satisfy the Euler equilibrium conditions, which stipulate that for every stock

level s > 0 and debt level d,

u
0(c) + ÆE�(x + �f(x); d+ b) = 0

ÆE [�(x + �f(x); d+ b) � ( + �f
0(x))] + ÆE�(x+ �f(x); d+ b) = 0

�(s; d) = �ÆE[�(x + �f(x); d+ b) � (1 + �1q
2)]

�(s; d) = ÆE[�(x+ �f(x); d+ b) � (1 + �0 + 2�1q)]

where q = d=s is the debt to asset ratio.

The certainty-equivalent steady-state is obtained by assuming � = 1 with

probability 1. The certainty-equivalent steady-state stock of good s�, debt

load d�, debt-asset ratio q� = d
�
=s
�, investment level x�, consumption level

c
�, stock shadow price ��, and debt shadow cost �� solve the equation system

u
0(c) + Æ�

� = 0

Æ�
�( + f

0(x�)) + Æ�
� = 0

�
� = �Æ��(1 + �1q

�2)

�
� = Æ�

�(1 + �0 + 2�1q
�)

s
� = x

� + f(x�)

s
� = x

� + c
� + (�0 + �1q

�)d�

q
� = d

�
=s
�
:

These conditions imply a steady-state optimal debt load q� = (r� �0)=(2�1),
which increases with the discount rate r but falls with the base cost of debt

�0.
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8.5 Rational Expectations Models

By de�nition, agents in rational expectations models take into account how

their actions will a�ect them in the future and form expectations that coin-

cide with those implied by the model as a whole. Most discrete time rational

expectation models take the following form: At the beginning of period t, an

economic system emerges in a state s
t
. The agents in the economic system

observe the state of the system and, by pursuing their individual objectives,

formulate a collective behavioral response x
t
. The economic system then

evolves to a new state s
t+1 that depends on the current state st and response

x
t
, and an exogenous random shock �

t+1 that is realized only after the agents

respond at time t.

More formally, the behavioral responses of economic agents and the state

transitions of the economic system are governed by a structural law of the

form

f(s
t
; x

t
; E

t
x
t+1) = 0;

and the dynamic law

s
t+1 = g(s

t
; x

t
; �

t+1):

The stipulation that only the expectation of the subsequent period's behav-

ioral response is relevant to the current response of agents is more general

than �rst appears. By introducing new accounting variables, the current re-

sponse can be made to depend on the expectation of any function of future

states and responses, including states and responses more than one period

into the future.

The state space S 2 <n, which contains all the states attainable by

the economic system, and the response space X 2 <m, which contains all

behavioral responses that may be made by the economic agents, are both

assumed to be closed convex nonempty sets. In some instances, the range of

admissible responses may vary with the state of the process s
t
. In such cases,

the restricted response space will be denoted X(s
t
) and will be assumed to

be a closed convex nonempty set. The structure f and dynamic law g are

assumed to be twice continuously di�erentiable on S and X and the per-

period discount factor Æ is assumed to be less than one. The exogenous

random shocks �
t
are assumed identically distributed over time, mutually

independent, and independent of past states and responses.



CHAPTER 8. CONTINUOUS STATE MODELS: THEORY 233

The primary task facing an economic analyst is to explain the behavioral

response x = x(s) of agents in each state s attainable by the process. The re-

sponse function x(�) is characterized implicitly as the solution to a functional
equation:

f(s; x(s); Ex(g(s; x(s); �)) = 0 8s 2 S:

In many instances, this functional equation will not possess a closed-form

solution and can only be solved numerically.

8.5.1 Lucas-Prescott Asset Pricing Model

The basic rational expectations asset pricing model has been studied ex-

tensively by macroeconomists. The model assumes the existence of a pure

exchange economy in which a representative in�nitely-lived agent allocates

real wealth between immediate consumption q
t
and investment in an index

asset i
t
. The agent's objective is to maximize expected lifetime utility subject

to an intertemporal budget constraint:

max E
t
f
1X
k=0

Æ
k

u(q
t+k)g (8.1)

s.t. q
t
+ i

t
= i

t�1rt:

Here, E
t
is the conditional expectation operator given information available

at time t, Æ is the agent's subjective discount rate, i
t
is the amount of asset

held by the agent at the end of period t, and r
t
is the asset's return in period

t.

Under mild regularity conditions, the agent's dynamic optimization prob-

lem has an unique solution that satis�es the �rst-order Euler condition:

ÆE
t
[u0(q

t+1)rt+1] = u
0(q

t
):

The Euler condition asserts that along an optimal consumption path the

marginal utility of consuming one unit of wealth today equals the marginal

bene�t of investing the unit of wealth and consuming it and its dividends

tomorrow.

The asset pricing model may be completed by specifying the utility func-

tion, introducing a production sector, and imposing a market clearing con-
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dition. Assume that the agent's preferences exhibit constant relative risk-

aversion  > 0:

u(q) =
q
1�

1� 
:

We assume that aggregate output y
t
is exogenous and follows a stationary

�rst-order autoregressive process whose innovation �
t
is normally distributed

white noise with standard deviation �
�
:

y
t
= � + �y

t�1 + �
t
:

And we assume that output is consumed entirely in the period that it is

produced:

y
t
= q

t
:

A formal solution to the rational expectations asset pricing model is a rule

that gives the equilibrium asset return r
t
as a function of current and past

realizations of the driving exogenous output process. Lucas demonstrated

that when the output process is stationary and �rst-order Markovian, as

assumed here, the rule is well-de�ned. In particular, the equilibrium return

in period t will be a stationary deterministic function of the contemporaneous

output level y
t
:

r
t
= �(y

t
):

From the dynamic equilibrium conditions, it follows that the asset return

function � is characterized by the equilibrium condition:

E
�
Æ(�+ �y + �)��(�+ �y + �) = y

� 8y:

The Euler functional equation of the asset pricing model is nonlinear and

lacks a known a closed-form solution. It can only be solved approximately

using numerical functional equation methods.

8.5.2 Competitive Storage Under Uncertainty

The centerpiece of the classical theory of storage is the competitive intertem-

poral arbitrage equation

ÆE
t
p
t+1 � pt = c(x

t
):
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The intertemporal arbitrage equation asserts that, in equilibrium, expected

appreciation in the commodity price p
t
must equal the unit cost of storage

c(x
t
). Dynamic equilibrium in the commodity market is enforced by compet-

itive expected-pro�t-maximizing storers. Whenever expected appreciation

exceeds the storage cost, the attendant pro�ts induce storers to increase

their stockholdings until the equilibrium is restored. Conversely, whenever

the storage cost exceeds expected appreciation, the attendant loses induce

storers to decrease their stockholdings until the equilibrium is restored.

According to the classical theory, the unit storage cost c(x
t
) is a nonde-

creasing function of the amount stored x
t
. The unit storage cost represents

the marginal physical cost of storage less the marginal \convenience yield",

which is the amount processors are willing to pay to have suÆcient stocks

available to avoid costly production adjustments. If stock levels are high,

the marginal convenience yield is zero and the unit storage cost equals the

physical storage cost. As stock levels approach zero, however, the marginal

convenience yield rises, eventually resulting in a negative unit storage cost.

The classical storage model has received strong empirical support over the

years and captures the key stylized fact of markets for storable commodities:

the coincidence of negative intertemporal price spreads and low, but positive,

stock levels.

The modern theory of storage extends the classical model to a partial equi-

libriummodel of price-quantity determination by appending supply, demand,

and market clearing conditions to the intertemporal arbitrage equation. For

the sake of discussion, let us consider a simple agricultural commodity market

model with exogenous production. Denote quantity consumed by q
t
, quan-

tity harvested h
t
, available supply by s

t
, and the per-period discount factor

by Æ. Assume that the market clearing price is a decreasing function of the

quantity consumed:

p
t
= p(q

t
);

that available supply is either consumed in the current period or stored:

s
t
= q

t
+ x

t
;

and that the supply available next period will be the sum of current carryout

and next period's harvest:

s
t+1 = x

t
+ h

t+1:
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Figure 8.5.2 Solution to Rational Expectations Storage Model

The modern storage model is closed by assuming that price expectations are

consistent with the other structural assumptions of the model. The so-called

rational expectations assumption endogenizes the expected future price while

preserving internal consistency of the model.

The solution of the nonlinear rational expectations commodity market

model is illustrated in Figure 8.5.2. These �gures show, respectively, equilib-

rium price and carryout in terms of available supply. For comparison, the �rst

�gure also shows the inverse consumption demand function p(�), which gives

the market price that would prevail in the absence of storage. At low sup-

ply levels, there is e�ectively no storage and the equilibrium price coincides

with the inverse consumption demand function. Over this range, acreage

supply is not signi�cantly a�ected by variations in available supply. At suÆ-

ciently high supply levels, incentives for speculative storage begin to appear.

Over this range, the equilibrium price, which reects both consumption and

storage demand, exceeds the inverse consumption demand function.

The nonlinear rational expectations commodity market model cannot be

solved using standard algebraic techniques. To see this, let �(s) denote the

equilibrium price implied by the model for a given available supply s. Having

the equilibrium price function �(�), the rational ex-ante expected price could

be computed by integrating over the harvest distribution:

E
t
p
t+1 = E

y
�(x

t
+ h

t+1)

Appending this equation to the previous three market equations would result

in a system of four nonlinear algebraic equations that in principle could be

solved for all the unknowns.

Unfortunately, the equilibrium price function �(�) is not known a priori

and deriving it, the key to solving the commodity market model, is a non-

trivial functional equation problem. Combining all the behavioral relations,

we see that �(�) must simultaneously satisfy an in�nite number of conditions.
Speci�cally, for every realizable supply s,

�(s) = p(s� x)

where stock x solves

ÆE
y
�(x + h)� p(s� x) = c(x)
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In the general framework developed for rational expectations models above,

available supply is only state variable, price and carryout are the response

variables, and harvest is the random driving shock. Only the relationship

between price and supply needs to be derived, since only future price ex-

pectations a�ect behavior, and once the price and supply are known, the

carryout may be computed from the inverse demand function.

An alternative way to pose the rational expectations commodity storage

model is to integrate it into an equivalent optimization problem. Consider

the problem of maximizing the discounted expected sum of consumer surplus

less storage costs. The resulting dynamic optimization problem, with state

variable s and action variable x, yields the following Bellman equation:

V (s) = max
0�x�s

f
Z

s�x

0

p(�) d� �
Z

x

0

c(�) d� + ÆEV (x + h)g; s � 0:

One may verify that the Euler equilibrium conditions for this dynamic op-

timization problem are precisely the equilibrium conditions of the original

rational expectations model, provided that the shadow price of the optimiza-

tion problem is identi�ed with the rational expectations equilibrium market

price.

Finally, one might compute certainty-equivalent steady-state supply s�,

storage x�, and price p� by solving the equation system

Æp
� = f(s� � x�) + c(x�)

p
� = f(s� � x�)

s
� = x

� + h
�

where h� is the expected harvest.

8.6 Dynamic Games

Dynamic game models attempt to capture strategic interactions among a

small number of dynamically optimizing agents when the actions of one agent

a�ects the welfare of another. For the sake of brevity, we consider only two

agent games. The theory and methods developed below, however, can be

generalized to accommodate an arbitrary number of agents.
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Denote by s
i
the state of the process controlled by agent i, and denote by

x
i
the action taken by agent i. In a dynamic game setting, agent i receives a

reward that depends not only on the state of his own process and the action

he takes, but also the state s
j
of the other agent's process and the action x

j

that he takes. Speci�cally, the reward earned by agent i at any point in time

is f
i
(s

i
; s

j
; x

i
; x

j
).

As with a static game, the equilibrium solution to a dynamic game de-

pends on the information available to the agents and the class of strategies

they are allowed to pursue. For simplicity, we consider only the most com-

mon game structure. Speci�cally, we will seek a noncooperative Nash game

equilibrium under the assumption that each agent knows the other agent's

state at any point in time, and that each agent also knows the policy fol-

lowed by the other agent. A dynamic Nash game equilibrium exists when

each agent's policy maximizes his own stream of current and expected future

rewards given that the other agent follows his policy.

The dynamic Nash game equilibrium may be formally expressed by a pair

of Bellman equations, one for each agent. The Bellman equation for agent i

takes the form

V
i
(s

i
; s

j
) = max

x2X(si;sj)
ff

i
(s

i
; s

j
; x

i
; x

j
) + ÆE

�
V
i
(g1(s1; x1; �1); g2(s2; x2; �2))g;

for s
i
; s

j
2 S. Here, V

i
(s

i
; s

j
) denotes the maximum current and expected

future rewards that can be earned by agent i, given that agent j remains

committed to his policy. Solving for the Nash equilibrium involves �nding

policies x
i
and x

j
for every state that solve the Bellman equations of both

agents simultaneously.

Let �
ii
denote the partial derivative of agent i's value function with re-

spect to the state controlled by him:

�
ii
(s1; s2) =

@V
i

@s
i

(s1; s2) 8s1; s2:

Also, let �
ij
denote the partial derivative of agent i's value function with

respect to the state controlled by agent j:

�
ij
(s1; s2) =

@V
i

@s
j

(s1; s2) 8s1; s2:

The shadow price function �
ii
represents agent i's valuation of a marginal

unit of the state controlled by him; the shadow price function �
ij
represents

agent i's valuation of a marginal unit of the state controlled by his rival.
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The �rst-order equilibrium conditions for the Nash dynamic game are de-

rived by applying the Karush-Kuhn-Tucker and Envelope Theorems to the

optimization problems embedded in the two Bellman equations. Assuming

actions are unconstrained, the Karush-Kuhn-Tucker conditions for the em-

bedded unconstrained optimization problems imply that the optimal action

x
i
for agent i, given state s

i
; s

j
, must satisfy the equimarginality condition:

@f
i

@x
i

(s1; s2; x1; x2) + ÆE
�

�
�
ii
(s01; s

0
2)
@g

i

@x
i

(s
i
; x

i
; �

i
)

�
= 0

where s0
i
= g

i
(s

i
; x

i
; �

i
). The Envelope Theorem applied to the same problem

implies:

�
ii
(s1; s2) =

@f
i

@s
i

(s1; s2; x1; x2) +
@f

i

@x
j

(s1; s2; x1; x2)
@x

j

@s
i

(s1; s2)+

ÆE
�

�
�
ii
(s01; s

0
2)
@g

i

@s
i

(s
i
; x

i
; �

i
) + �

ij
(s01; s

0
2)
@g

j

@x
j

(s
j
; x

j
; �

j
)
@x

j

@s
i

(s1; s2)

�

�
ij
(s1; s2) =

@f
i

@s
j

(s1; s2; x1; x2) +
@f

i

@x
j

(s1; s2; x1; x2)
@x

j

@s
j

(s1; s2)+

ÆE
�

�
�
ij
(s01; s

0
2)
@g

j

@s
j

(s
j
; x

j
; �

j
) + �

ij
(s01; s

0
2)
@g

j

@x
j

(s
j
; x

j
; �

j
)
@x

j

@s
j

(s1; s2)

�
:

The Euler conditions for a two agent dynamic game thus comprise six func-

tional equations in six unknown functions: the two own-shadow price func-

tions, the two cross-shadow price functions, and the two optimal policy func-

tions.

8.6.1 Risk Sharing Game

Consider an economy comprising two agents and a single composite good.

Each year t begins with predetermined amounts of the good s1t and s2t held

by the two agents, respectively. Given the amounts on hand, each agent

selects an amount x
it
to be invested, and consumes the rest. The utility

derived from consumption in year t by agent i is u
i
(s

it
� x

it
). Given each

agent's investment decision, the amount of good available in year t + 1 to

agent i will be s
i;t+1 = g

i
(x

it
; �

i;t+1) = x
it
+ �

i;t+1fi(xit) where  is the
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capital survival rate, f
i
is agent i's production function, and �

i;t+1 is a positive

production shock with mean 1 that is speci�c to agent i.

Suppose now that the two agents agree to insure against a string of pro-

duction disasters by entering into a contract to share collective wealth in

perpetuity. Speci�cally, the agents agree that, in any given period t, the

wealthier of the two agents will transfer a certain proportion � of the wealth

di�erential to the poorer agent. Under this scheme, if agent i begins period t

with wealth s
it
, his post-transfer wealth will be ŝ

it
= s

it
� �(s

it
� s

jt
). If the

wealth transfer is enforceable, but agents are free to pursue consumption and

investments freely, moral hazard will arise. In particular, both agents will

have incentives to change their consumption and investment policies upon

introduction of insurance. How will insurance a�ect the agents' investment

behavior, and for what initial wealth states s1t and s2t and share parameter

� will both agents be willing to enter into the insurance contract?

The essence of the dynamic Nash game equilibrium for the redistribution

game is captured by a pair of Bellman equations, one for each agent. The

Bellman equation for agent i takes the form

V
i
(s

i
; s

j
) = max

0�xi�ŝi
fu

i
(ŝ

i
� x

i
) + ÆE

�
V
i
(g

i
(x

i
; �

i
); g

j
(x

j
; �

j
))g;

where ŝ
i
= s

i
��(s

i
+s

j
), for s

i
; s

j
2 S. Here, V

i
(s

i
; s

j
) denotes the maximum

current and expected future rewards that can be earned by agent i, given that

agent j remains committed to his policy.

The �rst-order equilibrium conditions for the Nash dynamic game are

derived by applying the Karush-Kuhn-Tucker and Envelope Theorems to the

optimization problems embedded in the two Bellman equations. Assuming

an internal solution to each agent's investment problem, the Karush-Kuhn-

Tucker conditions imply that the optimal investment x
i
for agent i, given

wealths s
i
; s

j
, must satisfy the equimarginality condition:

�u0
i
(ŝ

i
� x

i
) + ÆE

�

�
�
ii
(s01; s

0
2)
@g

i

@x
i

(x
i
; �

i
)

�
= 0

where s0
i
= g

i
(x

i
; �

i
). The Envelope Theorem applied to the same problem

implies:

�
ii
(s1; s2) = (1� �)u0

i
(ŝ

i
� x

i
) + ÆE

�

�
�
ij
(s01; s

0
2)
@g

j

@x
j

(x
j
; �

j
)
@x

j

@s
i

(s1; s2)

�

�
ij
(s1; s2) = �u

0
i
(ŝ

i
� x

i
) + ÆE

�

�
�
ij
(s01; s

0
2)
@g

j

@x
j

(x
j
; �

j
)
@x

j

@s
j

(s1; s2)

�
;
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The Euler conditions for a two agent dynamic game thus comprise six func-

tional equations in six unknown functions: the two own-shadow price func-

tions, the two cross-shadow price functions, and the two optimal policy func-

tions.

8.6.2 Marketing Board Game

Assume that there are only two countries that can supply a given commodity

on the world market. In each country, a government marketing board has

the exclusive power to sell the commodity on the world market. The mar-

keting boards compete with each other, using storage as a strategy variable

to maximize the present value of current and expected future income from

commodity sales.

For each exporting country i = 1; 2 and period t, let s
it
denote the supply

available at the beginning of period, let q
it
denote the quantity exported,

let x
it
denote the stocks held at the end of the period, let y

it
denote new

production, let p
t
denote the world price, let c

it
denote total storage costs,

and let Æ denote the discount factor.

Formally, each marketing board i = 1; 2, solves

maxE

1X
t=0

Æ[p
t
q
it
� c

it
]

subject to the following conditions: Available supply is the sum of beginning

stocks and new production:

s
it
= x

it�1 + y
it
:

Available supply is either exported or stored:

s
it
= q

it
+ x

it
:

The world market clearing price p
t
is a decreasing function �(�) of the total

amount exported:

p
t
= �(q1t + q2t):

The cost of storage is an increasing function c
i
(�) of the quantity stored:

c
it
= c

i
(x

it
):
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And production y
it
is exogenous, stochastic, independently distributed across

countries, and independently and identically distributed across time.

Each marketing board faces a dynamic optimization problem subject to

the constraints. The price, and thus the payo�, for each country at time

t is simultaneously determined by the quantities marketed by both boards.

In making its storage decision, each board must anticipate the storage de-

cision of its rival. The two optimization problems must therefore be solved

simultaneously to determine the equilibrium levels of stocks, exports, and

price.

The noncooperative Nash equilibrium is characterized by a pair of Bell-

man equations, which for country i takes the form

V
i
(s1; s2) = max

xi

[pq
i
� c

i
+ ÆE

y
V
i
(x1 + y1; x2 + y2)] 8s1; s2

where q
i
= s

i
� x

i
, p = �(q1 + q2), and ci = c

i
(x

i
).

For each combination of i = 1; 2 and j = 1; 2, let ��
ij
denote the partial

derivative of country i's value function with respect to the supply in country

j:

�
ij
(s1; s2) =

@V
i

@s
j

(x1 + y1; x2 + y2) 8s1; s2:

The shadow price function �
ij
represents country i's valuation of a marginal

unit of stock in country j.

Applying the to Envelope Theorem to Bellman equation, the own shadow

price function must satisfy

�
ii
(s1; s2) = p+ p

0
q
i
[1�

@x
j

@s
i

] + ÆE
y
�
ij
(x1 + y1; x2 + y2)

@x
j

@s
i

8s1; s2

and the cross shadow price function must satisfy

�
ij
(s1; s2) = p

0
q
i
[1�

@x
j

@s
j

] + ÆE
y
�
ij
(x1 + y1; x2 + y2)

@x
j

@s
j

8s1; s2

where p0 = �
0(q1 + q2).

Another necessary condition for the dynamic feedback Nash equilibrium

can be obtained by deriving the �rst-order condition for the optimization

problem embedded in Bellman's equation:

p+ p
0
q
i
= ÆE

y
�
ii
(x1 + y1; x2 + y2)� c0i 8s1; s2
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where c0
i
= c

0
i
(x

i
). This condition asserts that along an equilibrium path,

the marginal payo� from selling this period p+ p
0
q
i
must equal the expected

marginal payo� from storing and selling next period ÆE
y
�
ii
� c0

i
.

The noncooperative feedback Nash equilibrium for the game between the

two marketing boards is characterized by six functional equations in six un-

knowns: the equilibrium feedback strategies x1 and x2 and the equilibrium

shadow price functions �11, �12, �21, and �22.

Exercises

1. An industrial �rm's pro�t in period t

�(q
t
) = �0 + �1qt � 0:5q2

t

is a function of its output q
t
. The �rm's production process generates

an environmental pollutant. Speci�cally, if x
t
is the level of pollutant in

the environment in period t, then the level of the pollutant the following

period will be

x
t+1 = �x

t
+ q

t

where 0 < � < 1.

During the Reagan-Bush administration, the �rm operated without

regard to environmental consequences at its pro�t maximizing level

q
t
= �1. You have been asked by a yet unindicted member of the

Clinton administration to examine ways of inducing the �rm to act in

a more socially responsible manner. Net social welfare, according the

Clinton administration, is given by

1X
t=0

Æ
t [�(q

t
)� cx

t
]

where c is the unit social cost of su�ering the pollutant and Æ < 1 is

the social discount factor.

(a) Set up the social planner's decision problem of determining the

stream of production levels that maximizes net social welfare.

Speci�cally, formulate Bellman's equation, clearly identifying the

states and actions, the reward function, the transition rule, and

the value function.
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(b) Assuming an internal solution, derive and interpret the Euler con-

ditions for socially optimal production. What does the derivative

of the value function represent?

(c) Solve for the steady-state socially optimal production level q� and

pollution level x� in terms of the model parameters (�0; �1; Æ; �; c).

(d) Determine the per-unit tax on output � that will induce the �rm

to produce at the steady-state socially optimal production level

q
�.

2. Consider the problem of harvesting a renewable resource over an in�nite

time horizon. For year t, let s
t
denote the resource stock at the begin-

ning of the year, let x
t
denote the amount of the resource harvested,

let p
t
= p(x

t
) = �0 � �1xt denote the market clearing price, and let

c
t
= c(s

t
) = �0+�1st denote the unit cost of harvest. Assume an annual

interest rate r and a stock growth dynamic s
t+1 = s

t
+ (�s � s

t
) � x

t

where �s is the no-harvest steady-state stock level.

(a) Formulate and interpret the equilibrium conditions that charac-

terize the optimal solution to the social planner's problem of max-

imizing the discounted sum of net social surplus over time.

(b) Formulate and interpret the equilibrium conditions that charac-

terize the optimal solution to the monopolist's problem of maxi-

mizing the discounted sum of pro�ts over time.

(c) In (a) and (b), explicitly solve the steady-state conditions for the

steady-state harvest and stock levels, x� and s�. Does the monop-

olist or the social planner maintain the larger steady-state stock

of resource?

(d) How do the steady-state equilibrium stock levels change if demand

rises (i.e., if �0 rises)? How do they change if the harvest cost rises

(i.e., if �0 rises)?

3. Consider the optimal management of a timber stand whose biomass at

time t is S
t
. The biomass transition function is described by

lnS
t+1=St � N(�; �2):

The decision problem is to determine when to clear cut and replant the

entire stand. The price obtained for cut timber is p dollars per unit
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and the cost of replanting is c dollars. The period after cutting, the

stand has biomass equal to one unit.

Please answer the following questions:

(a) Formulate and interpret Bellman's equation.

(b) What conditions characterize the certainty equivalent steady-state?

(c) How would you solve and simulate this model in order to gain an

understanding of timber harvest dynamics.

4. Consider an aquaculturist that wishes to maximize the present value of

pro�ts derived from harvesting cat�sh grown in a pond. For period t,

let s
t
denote the quantity of cat�sh in the pond at the beginning of the

period and let x
t
denote the quantity of cat�sh harvested. Assume that

the market price p of cat�sh is constant over time and that the total cost

of harvesting in period t is given by c
t
= c(s

t
; x

t
) = �x

t
��(s

t
x
t
�0:5x2

t
).

Assume an annual discount factor Æ > 0 and a stock growth dynamic

s
t+1 = (s

t
� x

t
), where  > 1.

(a) Formulate and interpret the Bellman equation that characterizes

the optimal harvest policy.

(b) Formulate and interpret the Euler conditions that characterize the

optimal harvest policy.

(c) How does the steady-state stock level vary with the discount fac-

tor?

5. Consider a in�nite-horizon, perfect foresight model

f(s
t
; x

t
; x

t+1) = 0

s
t+1 = g(s

t
; x

t
)

where s
t
and x

t
denote, respectively, the state of the economy and the

response of agents in the economy at time t.

(a) How would you compute the steady-state (s�; x�) of the economic

system?

(b) How would you compute the function x(�), that relates the action
of agents to the state of the economy: x

t
= x(s

t
)?
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Describe your procedure in mathematical terms �rst, and then sketch

out the key blocks of Matlab code that you would write to implement

the procedure. You may use the functions that I wrote and distributed

to you in class in your sketch.

6. At time t, a �rm earns net revenue

�
t
= py

t
� rk

t
� �

t
k
t
� c

t

where p is the market price, y
t
is output, r is the capital rental rate,

k
t
is capital at the beginning of the period, c

t
is the cost of adjusting

capital, and �
t
is tax paid per unit of capital. The �rm's production

function, ajdustment costs, and tax rate are given by

y
t

= �k
t
;

c
t

= 0:5�(k
t+1 � kt)2;

�
t

= � + 0:5k
t
:

Assume that the unit output price p and the unit capital rental rate r

are both exogenously �xed and known; also assume that the parameters

� > 0, � > 0,  > 0, and � > 0 are given. Formulate the �rm's problem

of maximizing the present value of net revenue over an in�nite time

horizon. Speci�cally:

(a) Set up the decision problem (de�ne states, actions, reward func-

tion, transition rule).

(b) Formulate the value function and Bellman's recursive functional

equation.

(c) Assuming an internal solution, derive and interpret the �rst order

conditions for optimality. What does the derivative of the value

function represent?

(d) What e�ect does an increase in the base tax rate, � , have on

output in the long run.

(e) What e�ect does an increase in the discount factor, Æ, have on

output in the long run.

7. Consider the Optimal Growth example in this Chapter. Find and sign
@s

�

@

, @x
�

@

, and @�
�

@

.
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8. Consider the Optimal Growth with Debt example in this Chapter. Find

the golden rule of growth with debt. Also, perform comparative statics

analysis with respect to the steady state.

9. Consider the Renewable Resource example in this Chapter. However,

now assume that the renewable resource is entirely owned by a pro�t-

maximizing monopolist. Will the steady-state harvest and stock levels

be greater for the monopolist or for the social planner? Give condi-

tions under which a \regular" steady-state will exist. What if these

conditions are not satis�ed?

10. Hogs breed at a rate �. That is, if a farmer breeds x
t
hogs during

period t, there will be (1 + �)x
t
hogs at the beginning of period t + 1.

At the beginning of any period, hogs can be marketed for a pro�t p

per hog. Only the hogs not sent to market at the beginning of the

period are available for breeding during the period. A farmer has H

hogs at the beginning of period 0. Find the hog marketing strategy

that maximizes the present value of pro�ts over a T -period horizon.

11. A �rm has a contractual obligation to deliver Q units of its product

to a buyer �rm at the beginning of period T ; that is, letting x
t
denote

inventories on hand at the beginning of period t, the �rm must produce

suÆcient quantities in periods 0; 1; 2; : : : ; T�1 so as to ensure that x
T
�

Q. The cost of producing q
t
units in period t is given by c(q

t
), where

c
0
> 0. The unit cost of storage is k dollars per period; due to spoilage,

a proportion � of inventories held at the beginning of one period do

not survive to the following period. The �rm's initial inventories are x0
where 0 < x0 < Q. The �rm wishes to minimize the present value of

the cost of meeting its contractual obligation; assume a discount factor

Æ < 1.

(a) Identify the state and decision variables, the payo� function, and

the equation of motion associated with this problem.

(b) Write Bellman's recursive equation. What does the value function

represent?

(c) Derive the �rst order conditions for optimality and interpret them.

What does the derivative of value function represent?

(d) Assuming increasing marginal cost, c00 > 0, qualitatively describe

the optimal production plan.
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(e) Assuming decreasing marginal cost, c00 < 0, qualitatively describe

the optimal production plan.

12. A subsistence farmer grows and eats a single crop. Production, y
t
,

depends on how much seed is on hand at the beginning of the year, k
t
,

according to

y
t
= k

�

t

where 0 < � < 1.

The amount kept for next year's seed is the di�erence between the

amount produced and the amount consumed, c
t
:

k
t+1 = y

t
� c

t
:

The farmer has a time-additive logarithmic utility function and seeks

to maximize

TX
t=0

Æ
t ln(c

t
):

subject to having an initial stock of seed, k0. What is the farmer's

optimal consumption-investment policy?

(a) Set up the decision problem (de�ne states, decisions, objective

function, transition equation).

(b) Formulate the value function and Bellman's recursive functional

equation.

(c) Derive and interpret the �rst order conditions for optimality.

(d) Show that the value function is time invariant and has the form

V (k
t
) = A+B ln(k

t
)

and that the optimal decision rule for this problem is

k
t+1 = Cy

t
;

�nd the values for A, B, and C.
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13. A �rm competes in a mature industry whose total pro�t is a �xed

amountX every year. If the �rm captures a fraction p
t
of total industry

sales in year t, it makes a pro�t p
t
X. The fraction of sales captured

by the �rm in year t is a function p
t
= f(p

t�1; at�1) of the fraction

it captured the preceding year and its advertising expenditures the

preceding year, a
t�1. Find the advertising policy that maximizes the

�rm's discounted pro�ts over a �xed time horizon of T years. Assume

p0 and a0 are known.

(a) Set up the decision problem (de�ne states, decisions, objective

function, transition equation).

(b) Formulate the value function and Bellman's recursive functional

equation.

(c) Derive and interpret the �rst order conditions for optimality.

(d) Assuming an in�nite horizon, what conditions characterize the

steady-state optimal solution?

14. A corn producer's net per-acre revenue in year t is given by

c
t
= p

t
y
t
� c

t
x
t
� w

t
l
t

where p
t
is the unit price of corn ($/bu.), y

t
is the corn yield (bu./acre),

c
t
is the unit cost of fertilizer ($/lb.), x

t
is the amount of fertilizer

applied (lbs./acre), w
t
is the wage rate ($/man-hour), and l

t
is the

amount of labor employed (man-hours/acre). The per-acre crop yield

in year t is a function

y
t
= f(l

t
; x

t
; s

t
)

of the amount of labor employed and fertilizer applied in year t and the

level of fertilizer carryin s
t
from the preceding year. Fertilizer carryout

in year t is a function

s
t+1 = f(x

t
; s

t
)

of the amount of fertilizer applied and the level of fertilizer carryin in

year t. Assume that future corn prices, fertilizer costs, and wage rates

are known with certainty. The corn producer wishes to maximize the

expected present value of net revenues over a �nite horizon of T years.

Formulate the producer's optimization problem. Speci�cally,
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(a) Set up the decision problem (de�ne states, decisions, objective

function, transition equation).

(b) Formulate the value function and Bellman's recursive functional

equation.

(c) Derive and interpret the �rst order conditions for optimality.

(d) Assuming an in�nite horizon, what conditions characterize the

steady-state optimal solution?

15. The role of commodity storage in intertemporal allocation has often

been controversial. In particular, the following claims have often been

made:

� Competitive storers, in search of speculative pro�ts, tend to hoard

a commodity|that is, they collectively store more than is socially

optimal.

� A monopolistic storer tends to dump a commodity at �rst in order

to extract monopoly rents in the future|that is, he/she stores less

than is socially optimal.

Explore these two propositions in the context of a simple intraseasonal

storage model in which a given amount Q of a commodity is to be

allocated between two periods. Consumer demand is given by p
i
= a�q

i

for periods i = 1; 2, and the unit cost of storage between periods is k.

There is no new production in period 2, so q1 + q2 = Q. Speci�cally,

answer each of the following:

(a) Determine the amount stored under the assumption that there are

a large number of competitive storers.

(b) Determine the amount stored under the assumption that there is

a single pro�t- maximizing storer who owns the entire supply Q

at the beginning of period 1.

(c) Taking expected total consumer surplus less storage costs as a

measure of societal welfare, determine the socially optimal level

of storage. Address the two comments above.

(d) Consider an Economist who rejects net total surplus as a measure

of social welfare. Why might he/she still wish to �nd the level of

storage that maximizes total surplus?



CHAPTER 8. CONTINUOUS STATE MODELS: THEORY 251

To simplify the analysis, assume that the discount factor is 1 and that

the storer(s) are risk neutral and possess perfect price foresight.

16. Consider the problem of maximizing the present value of social welfare

for an aggregate economy consisting of single composite good. Each

year t begins with a predetermined amount of the good s
t
, of which

an amount c
t
is consumed and the remainder x

t
is retained as capital.

The social welfare derived from consumption in year t is u(c
t
) where u

is the aggregate utility function. The amount of good available in year

t+1 is s
t+1 = f(x

t
) where f is the aggregate production function. The

utility and production functions exhibit standard curvature properties

and the discount rate r is positive.

(a) How will an increase in the interest rate r a�ect the long-run levels

of consumption and capital stock? Use analytic mathematical

methods to structure your argument.

(b) Suppose now that s
t+1 = y

t+1f(xt) where yt is a positive i.i.d.

production shock. How must the question in (a) be modi�ed to

remain meaningful in a stochastic setting? What techniques would

you use to assess, say, whether an increase in the interest rate

would raise or lower the long-run variability of consumption.

17. Consider an industry of identical price taking �rms. For the represen-

tative �rm, let s
t
denote beginning capital stock, let x

t
denote newly

purchased capital stock, let q
t
= f(s

t
+ x

t
) denote production, let k

denote the unit cost of new capital, and let  > 0 denote the survival

rate of capital. Furthermore, let p
t
= p(q

t
) be the market clearing price.

Find the perfect foresight competitive equilibrium for this industry.

18. Water from a dam can be used for either irrigation or recreation. Irri-

gation during the spring bene�ts farmers, but reduces the dam's water

level during the summer, damaging recreational users. Speci�cally, if

s
t
is the stock of water in the dam at the beginning of year t and an

amount x
t
is released for irrigation, farmer bene�ts in year t will be

f(x
t
) and recreational user bene�ts will be u(s

t
� x

t
). Water levels are

replenished during the winter months by i.i.d. random rainfalls �
t
, giv-

ing rise to the water stock transition relationship s
t+1 = s

t
� x

t
+ �

t+1.

As a social planner, you wish to �nd the irrigation policy that max-
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imizes the expected discounted sum of farmer and recreational user

bene�ts over an in�nite time horizon.

(a) Formulate and interpret Bellman's equation.

(b) Assuming an internal solution, derive and interpret the Euler con-

ditions.

(c) What conditions characterize the certainty equivalent steady-state?



Chapter 9

Discrete Time Continuous

State Dynamic Models:

Methods

This chapter discusses numerical methods for solving discrete time continu-

ous state dynamic economic models, with emphasis on Markov decision and

rational expectations models.

Continuous state dynamic economic models give rise to functional equa-

tions whose unknowns are entire functions de�ned on an interval of Euclidean

space. For example, the unknown of a Bellman equation

V (s) = max
x2X(s)

ff(s; x) + ÆE
�
V (g(s; x; �))g; s 2 S;

is the value function V (�). The unknown of the Euler conditions

f
x
(s; x(s)) + ÆE

�
[�(g(s; x(s); �)) � g

x
(s; x(s); �)] = 0; s 2 S;

f
s
(s; x(s)) + ÆE

�
[�(g(s; x(s); �)) � g

s
(s; x(s); �)] = �(s); s 2 S;

are the shadow price and policy functions �(�) and x(�). And the unknown

of a rational expectations intertemporal equilibrium condition

f(s; x(s); Ex(g(s; x(s); �))); s 2 S;

is the response function x(�).

253
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In most applications, the functional equations that arise in dynamic eco-

nomics lack analytic closed form solution and can only be solved approxi-

mately using computational methods. A variety of methods are available for

computing approximate solutions to these equations. Linear-quadratic ap-

proximation and space discretization historically have been popular among

economists. However, in most applications, these methods either provide

unacceptably poor approximations or are computationally ineÆcient.

Only recently have economists begun to employ Galerkin techniques,

which have been used among computational physical scientists for decades.

Among the various versions of the Galerkin technique, the collocationmethod

is clearly the most useful for solving dynamic models in Economics and Fi-

nance. The collocation method is exible, accurate, and numerically eÆcient

and can be developed directly from basic numerical integration, approxima-

tion, and root�nding methods. Collocation methods may be used to solve

discrete and continuous choice Markov decision models and rational expec-

tations models. Bounds and general constraints on variables can also be

handled using the method.

The collocation method employs the following general strategy for solving

a functional equation:

� Approximate the unknown function with a �nite linear combination of

n known basis functions whose coeÆcients are to be determined.

� Require the approximant to satisfy the underlying functional equation

at n prescribed points of the domain, called the collocation nodes.

The collocation strategy e�ectively replaces the functional equation with a

�nite-dimensional nonlinear equation problem that can be solved using basic

nonlinear equation techniques. If the basis functions and nodes are chosen

wisely, the collocation method will be numerically consistent; that is, the

approximation error can be made arbitrarily small by increasing the number

of basis functions and nodes.

The collocation method is a solution strategy rather than a speci�c tech-

nique. When applying the collocation method, the analyst still faces a num-

ber of computational modeling decisions. For example, the analyst must

choose the basis function and collocation nodes. Numerical approximation

theory o�ers guidance here, suggesting a Chebychev polynomial basis cou-

pled with Chebychev collocation nodes, or a spline basis coupled with equally
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spaced nodes will often be good choices. Also, the analyst must chose an algo-

rithm for solving the resulting nonlinear equation. Standard choices include

Newton, quasi-Newton, and function iteration methods. A careful analyst

will often try a variety of basis-node combinations, and may employ more

than one iterative scheme in order to assure the robustness of the results.

Although the collocation method is general in its applicability, the details

of implementation vary with the functional equation being solved. Below,

the collocation method is developed in greater detail for Bellman equations,

Euler conditions, and rational expectations equilibrium conditions.

9.1 Traditional Solution Methods

Before discussing collocation methods for continuous state Markov decision

models in greater detail, let us briey examine the two numerical techniques

that historically have been popular among economists for computing approx-

imate solutions to such models: space discretization and linear-quadratic

approximation.

Space discretization calls for the continuous state Markov decision prob-

lem is to be replaced with a discrete state discrete action Markov decision

problem that closely resembles it. To \discretize" the state space of a continu-

ous state Markov decision problem, one partitions the state and action spaces

S into �nitely many regions, S1; S2; : : : ; Sn. If the action space X is also con-

tinuous, it too is partitioned into �nitely many region sX1; X2; : : : ; Xm
. Once

the space and action spaces have been partitioned, the analyst selects repre-

sentative elements, s
i
2 S

i
and x

j
2 X

j
, from each region. These elements

serve as the state and action spaces of the approximating discrete Markov

decision problem. The transition probabilities of the discrete problem are

computed by integrating with respect to the density of the random shock:

P (s
i
0js

i
; x

j
) = Pr[g(s

i
; x

j
; �) 2 S

i
0 ]:

If the model is deterministic, then the state is assumed to migrate from state

s
i
to s

i
0 when decision x

j
is taken, if g(s

i
; x

j
) 2 S

i
0.

When the state and action spaces are intervals, say, S = [s
min

; s
max

]

and X = [x
min

; x
max

], it is often easiest to partition the spaces so that

the nodes are equally-spaced and the �rst and �nal nodes correspond to

the endpoints of the intervals. Speci�cally, we set s
i
= s

min
+ (i � 1)w

s

and x
j
= x

min
+ (j � 1)w

x
, for i = 0; 1; : : : ; n and j = 0; 1; : : : ; m, where
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w
s
= (s

max
� s

min
)=(n� 1) and w

x
= (x

max
� x

min
)=(m � 1). If the model

is stochastic, the transition probabilities of the approximating discrete state

decision model are given by

P (s
i
0js

i
; x

j
) = Pr[s

i
0 � w

s
=2 � g(s

i
; x

j
; �) � s

i
0 + w

s
=2]:

If the model is deterministic, the state is assumed to migrate from state s
i
to

s
i
0 when decision x

j
is taken, where s

i
0 is the state element nearest g(s

i
; x

j
).

Another popular method for solving dynamic optimization models is

linear-quadratic approximation. Linear-quadratic approximation calls for

the transition function g and objective function f to be replaced with linear

and quadratic approximants, respectively. Linear-quadratic approximation

is motivated by the fact that an unconstrained Markov decision problem with

linear transition and quadratic objective has a closed-form solution that is

relatively easy to derive. Typically, the linear and quadratic approximants

are constructed by forming the �rst- and second-order Taylor expansions

around the certainty-equivalent steady-state. When passing to the linear-

quadratic approximation, all inequality constraints of the original problem,

including nonnegativity constraints, must be discarded.

The �rst step in deriving an approximate solution to a continuous state

Markov decision problem via linear-quadratic approximation is to compute

the certainty-equivalent steady-state. If �� denotes the mean of �, the certainty-

equivalent steady-state state s�, optimal action x�, and shadow price �� are

characterized by the nonlinear equation system:

f
x
(s�; x�) + Æ�

�
g
x
(s�; x�; ��) = 0

�
� = f

s
(s�; x�) + Æ�

�
g
s
(s�; x�; ��)

s
� = g(s�; x�; ��):

The nonlinear equation may be solved for the steady-state values of s�, x�,

and �� using standard nonlinear equation methods.

The second step is to solve the linear-quadratic control problem whose

transition function ĝ and objective function f̂ , are the �rst- and second-order

Taylor series approximants of g and f , respectively:

f(s; x) � f̂(s; x) = f
� + f

�
s
(s� s�) + f

�
x
(x� x�) + 0:5(s� s�)0f �

ss
(s� s�)

+(s� s�)0f �
sx
(x� x�) + 0:5(x� x�)0f �

xx
(x� x�)
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g(s; x; �) � ĝ(s; x) = g
� + g

�
s
(s� s�) + g

�
x
(x� x�):

Here, f � and g
� are the values of f and g; f �

s
, f �

x
, g�

s
, and g

�
x
are the �rst

partial derivatives of f and g; and f
�
ss
, f �

sx
, and f

�
xx

are the second partial

derivatives of f ; all evaluated at the certainty-equivalent steady-state.

The shadow price and optimal policy functions for the linear-quadratic

control problem will be linear. Speci�cally:

�(s) = �
� + �

s
(s� s�)

x(s) = x
� +X

s
(s� s�)

where

�
s

= �[Æg�
0

s
�
s
g
�
x
+ f

�
sx
][Æg�

0

x
�
s
g
�
x
+ f

�0
xx
]�1[Æg�

0

x
�
s
g
�
s
+ f

�0
sx
]

+Æg�
0

s
�
s
g
�
s
+ f

�
ss

X
s

= �[Æg�
0

x
�
s
g
�
x
+ f

�0
xx
]�1[Æg�

0

x
�
s
g
�
s
+ f

�0
sx
]

The �rst of these two conditions characterizes the slope �
s
of the approximate

shadow price function as a �xed-point of a nonlinear map. The slope can be

computed using by either function iteration, typically with initial guess �
s
=

0, or by applying the quadratic formula, if the problem is one dimensional.

Given the slope �
s
, the slope X

s
of the approximate optimal policy function

may be directly computed from the second condition.

If the problem has one dimensional state and action spaces, and if f �
ss
f
�
xx

=

f
�2
sx
, a condition often encountered in economic problems, then the slope of

the shadow price function may be computed analytically as follows:

�
s
= [f �

ss
g
�2
x
� 2f �

ss
f
�
xx
g
�
s
g
�
x
+ f

�
xx
g
�2
s
� f �

xx
=Æ]=g�2

x

9.2 Bellman Equation Collocation Methods

Consider Bellman's equation for an in�nite horizon discrete time continuous

state dynamic decision problem:

V (s) = max
x2X(s)

ff(s; x) + ÆE
�
V (g(s; x; �))g s 2 S:
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To compute an approximate solution to Bellman's equation via colloca-

tion, one employs the following strategy: First, one approximates the un-

known value function V using a linear combination of known basis functions

�1; �2; : : : ; �n whose coeÆcients c1; c2; : : : ; cn are to be determined:

V (s) �
nX
j=1

c
j
�
j
(s):

Second, the basis function coeÆcients c1; c2; : : : ; cn are �xed by requiring the

approximant to satisfy Bellman's equation, not at all possible states, but

rather at n states s1; s2; : : : ; sn, called the collocation nodes. Many colloca-

tion basis-node schemes are available to the analyst, including Chebychev

polynomials and nodes, and spline functions and uniform nodes. The best

choice of basis-node scheme is application speci�c, and typically depends on

the curvature properties of the value function.

The collocation strategy replaces the Bellman functional equation with a

system of n nonlinear equations in n unknowns. Speci�cally, to compute the

approximate solution to the Bellman equation, or more precisely, to compute

the n basis coeÆcients c1; c2; : : : ; cn in the basis representation of the value

function approximant, one solves the equation system

X
j

c
j
�
j
(s

i
) = max

x2X(si)
ff(s

i
; x) + ÆE

�

nX
j=1

c
j
�
j
(g(s; x; �))g i = 1; 2; : : : ; n;

which may be compactly expressed in vector form as the collocation equation:

�c = v(c):

Here, �, the collocation matrix, is the n by n matrix whose typical ijth

element is the jth basis function evaluated at the ith collocation node

�
ij
= �

j
(s

i
)

and v, the conditional value function, is a function from <n to <n whose

typical ith element is

v
i
(c) = max

x2X(si)
ff(s

i
; x) + ÆE

�

nX
j=1

c
j
�
j
(g(s

i
; x; �))g:
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The conditional value function gives the maximum value obtained when solv-

ing the optimization problem embedded in Bellman's equation at each collo-

cation node, given the value function approximation implied by the coeÆcient

vector c.

In principle, the collocation equation may be solved using any nonlin-

ear equation solution method. For example, one may write the collocation

equation in the equivalent �xed-point form c = ��1v(c) and use function

iteration, which employs the iterative update rule

c ��1v(c):

Alternatively, one may write the collocation equation as a root�nding prob-

lem �c�v(c) = 0 and solve for c using Newton's method, which employs the

iterative update rule

c c� [�� v0(c)]�1[�c� v(c)]:

Here, v0(c) is the n by n Jacobian of the conditional value function v at

c. The typical element of v0 may be computed by applying the Envelope

Theorem to the optimization problem that de�nes v
i
(c):

v
0
ij
(c) =

@v
i

@c
j

(c) = ÆE
�
�
j
(g(s

i
; x

i
; �))

where x
i
is the optimal argument in the maximization problem in the def-

inition of v
i
(c). As a variant to Newton's method one could also employ a

quasi-Newton method to solve the collocation equation.

Regardless of which nonlinear equation solution method is used, the con-

ditional value v
i
(c) must be computed at every i; that is, the optimization

problem embedded in Bellman's equation must be solved at every collocation

node s
i
, taking the current coeÆcient vector c as �xed. The Newton method

has the additional requirement of computing the Jacobian of v. Computing

the Jacobian, however, comes at only a small additional cost because most

of the e�ort required to compute the derivative comes from solving the op-

timization problem embedded in Bellman's equation, a task that must be

performed regardless of the solution method used.

Of course, in any collocation scheme, if the model is stochastic, one must

handle the expectation operation in a numerically practical way. Based on

numerical analysis theory and practice, a Gaussian quadrature scheme is

strongly recommended in collocation strategies where the shock has a conven-

tional continuous distribution. When using a Gaussian quadrature scheme,
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the continuous random variable � in the state transition function is replaced

with a discrete approximant, say, one that assumes values �1; �2; : : : ; �m with

probabilities w1; w2; : : : ; wm
, respectively. In this instance, the conditional

value function v takes the form

v
i
(c) = max

x2X(si)
ff(s

i
; x) + Æ

mX
k=1

nX
j=1

w
k
c
j
�
j
(g(s

i
; x; �

k
))g:

and its Jacobian takes the form

v
0
ij
(c) = Æ

mX
k=1

w
k
�
j
(g(s

i
; x

i
; �

k
)):

In practice, the critical step in solving Bellman's equation via collocation

is coding a numerical routine to evaluate the conditional value function v(c)

and its Jacobian. For reasons that will be made clear shortly, one should write

the numerical routine so that solves the optimization problem embedded

in Bellman's equation, not just at the collocation nodes, but any arbitrary

vector of states. More speci�cally, given an n-degree interpolation scheme

selected by the analyst, the routine should solve the optimization problem

for every element of an arbitrary m vector s of state nodes and any n-vector

c of basis coeÆcients. The routine should also return the optimal policy at

each of the states and the derivative of the values with respect to the basis

coeÆcients.

A Matlab function that performs the necessary optimization when the

state and action spaces are one-dimensional and the actions are bounded is

given below. Speci�cally, the function solves the Karush-Kuhn-Tucker condi-

tions of the embedded optimization problem as a complementarity problem:1

function [v,vc] = vmax(c,s);

[xl,xu] = bfunc(s);

for it=1:maxit

xold = x;

[f,fs,fx,fxx] = ffunc(s,x);

v = f; vx = fx; vxx = fxx;

for k=1:m

1The code is abbreviated in that several parameters that must be passed and certain

default value computations have been omitted for clarity. For fully functioning code that

executes the desired operations, see the Matlab library routine vmax.
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[g,gs,gx,gxx] = gfunc(s,x,e(k));

vnval = evalbase(g,n,smin,smax,c,'basecheb');

vnder = evalbase(g,n,smin,smax,c,'basecheb',1);

vnsec = evalbase(g,n,smin,smax,c,'basecheb',2);

v = v + delta*w(k)*vnval;

vx = vx + delta*w(k)*vnder.*gx;

vxx = vxx + delta*w(k)*(vnder.*gxx + vnsec.*gx.*gx);

end

x = x - vx./vxx; x = min(x,xu); x = max(x,xl);

if norm(x-xold,inf)<tol, break, end;

end

vc = zeros(length(s),n);

for k=1:m

g = gfunc(s,x,e(k));

phinxt = basecheb(g,n,smin,smax);

vc = vc + delta*w(k)*phinxt;

end

Here, on input, s is an m-vector of states and c is an n-vector of basis coef-

�cients of the current value function approximant; and, on output, v is the

m-vector of optimal values obtained by solving the optimization embedded

in Bellman's equation at each state and vc is the m-by-n vector of partial

derivatives of the values with respect to the basis coeÆcients.

The function presumes that the analyst has coded routines ffunc, gfunc,

and bfunc, designed to compute the reward, transition, and bound functions

and their derivatives, respectively, at arbitrary states and actions. It also

presumes that the analyst has speci�ed the lower and upper bounds of the

state interval, smin and smax, and the degree of interpolation n, and has

approximated the shock with a discrete random variable with nodes e and

weights w. The script also presumes that the analyst has chosen a speci�c

interpolation basis, in this case the Chebychev polynomial basis.

Once the maximization routine and reward, transition, and bound func-

tion routines have been coded, solution of Bellman's equation via collocation

is straightforward. First, the analyst forms the collocation nodes s and in-

terpolation matrix phi:

s = nodecheb(n,smin,smax).

phi = basecheb(s,n,smin,smax);
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Given the collocation nodes and collocation matrix, the analyst may then

solve the collocation equation via function iteration

c = zeros(n,1);

for it=1:maxit

cold = c;

v = vmax(c,s);

c = phi\v;

if norm(c-cold)<tol, break, end;

end

or by Newton iteration

c = zeros(n,1);

for it=1:maxit

cold = c;

[v,vc] = vmax(c,s);

c = cold - [phi-vc]\[phi*c-v];

if norm(c-cold)<tol, break, end;

end

Here, tol and maxit are iteration control parameters set by the analyst and

the basis coeÆcients c are initially set to zero, although a better guess may

be substituted, if available.

Once convergence apparently has been achieved, the analyst must perform

two essential diagnostic checks to assure that the approximate solution is

viable. First, since interpolants may provide inaccurate approximations when

evaluated outside the interpolation interval, one must check to ensure that

states remain within the interpolation interval in all transitions from the

collocation nodes. This can be done easily as follows:

g = [];

for k=1:m;

g = [g gfunc(s,x,e(k))];

end

if min(min(g))<smin, disp('Warning: reduce smin'), end;

if max(max(g))>smax, disp('Warning: increase smax'), end;

Next, one must check to see that value function approximant solves Bell-

man's equation to an acceptable degree of accuracy over the entire approx-

imation interval. Since, by construction, the approximant generated by the
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solving the collocation equation must solve Bellman's equation exactly at

the collocation nodes, this amounts to checking the approximation error at

non node points. The easiest way to do this is to plot, over a �ne grid span-

ning the interpolation interval, the residual between the values obtained from

the approximant and the values obtained by directly solving the optimiza-

tion problem embedded in Bellman's equation. For example, approximation

residual could be checked at 500 equally spaced nodes as follows:

nplot = 500;

splot = nodeunif(nplot,smin,smax);

resid = vmax(c,splot)-evalbase(splot,n,smin,smax,c,'basecheb');

plot(splot,resid)

If the residual appears to be reasonably small throughout the entire ap-

proximation interval, the computed value function approximant is accepted;

otherwise it is rejected and a new approximation is computed using either

more collocation nodes or an alternative interpolation scheme. Notice that,

to perform this diagnostic, vmax is evaluated at states that are not colloca-

tion nodes|this is why vmax should be constructed to accept an arbitrary

vector of states, not just the collocation nodes.

9.3 Euler Equation Collocation Methods

Euler equation methods call for solving the �rst-order Euler equilibrium con-

ditions of the continuous-space decision problem for the unknown shadow

price function �. Consider the two Euler conditions for an in�nite horizon

discrete time continuous state dynamic decision problem. The �rst condition,

called the equilibrium condition, derives from the application of the Karush-

Kuhn-Tucker Theorem to the optimization problem embedded in Bellman's

equation:

f
x
(s; x(s)) + ÆE

�
[�(g(s; x(s); �)) � g

x
(s; x(s); �)] = 0; s 2 S:

The second condition, called the Envelope condition, derives from the appli-

cation of the Envelope Theorem to the optimization problem embedded in

Bellman's equation:

f
s
(s; x(s)) + ÆE

�
[�(g(s; x(s); �)) � g

s
(s; x(s); �)] = �(s); s 2 S:
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To compute an approximate solution to the Euler conditions via collo-

cation, one may employ the following strategy: First, one approximates the

unknown shadow price function � using a linear combination of known basis

functions �1; �2; : : : ; �n whose coeÆcients c1; c2; : : : ; cn are to be determined:

�(s) �
nX

j=1

c
j
�
j
(s):

Second, the basis function coeÆcients c1; c2; : : : ; cn are �xed by requiring the

approximant to satisfy the Euler conditions, not at all possible states, but

rather at n states s1; s2; : : : ; sn, called the collocation nodes.

The collocation strategy replaces the Euler functional equations with a

system of n nonlinear equations in n unknowns. Speci�cally, to compute the

approximate solution to the Euler conditions, or more precisely, to compute

the n basis coeÆcients c1; c2; : : : ; cn in the basis representation of the shadow

price function approximant, one solves the equation system

nX
j=1

c
j
�
j
(s

i
) = f

s
(s

i
; x

i
) + ÆE

�

"
nX

j=1

c
j
�
j
(g(s

i
; x

i
; �)) � g

s
(s

i
; x

i
; �)

#
i = 1; 2; : : : ; n;

where x
i
satis�es the equilibrium condition

f
x
(s

i
; x

i
) + ÆE

�

"
nX

j=1

c
j
�
j
(g(s

i
; x

i
; �)) � g

x
(s

i
; x

i
; �)

#
= 0; i = 1; 2; : : : ; n:

This system of equations may be compactly expressed in vector form as the

collocation equation:

�c = p(c):

Here, �, the collocation matrix, is the n by n matrix whose typical ijth

element is the jth basis function evaluated at the ith collocation node

�
ij
= �

j
(s

i
)

and p, the conditional shadow price function, is a function from <n to <n

whose typical ith element is

p
i
(c) = f

s
(s

i
; x

i
) + ÆE

�

"
nX

j=1

c
j
�
j
(g(s

i
; x

i
; �)) � g

s
(s

i
; x

i
; �)

#
i = 1; 2; : : : ; n;
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where x
i
solves the equilibrium condition above.

In principle, the collocation equation may be solved using any nonlinear

equation solution method. However, due to the complexity of the Jacobian

of the conditional shadow price function, derivative-free method are recom-

mended. For example, one may write the collocation equation in the equiva-

lent �xed-point form c = ��1p(c) and use function iteration, which employs

the iterative update rule

c ��1p(c):

Alternatively, one may write the collocation equation as a root�nding prob-

lem �c� p(c) = 0 and solve for c using a quasi-Newton method,

Regardless of which nonlinear equation solution method is used, the con-

ditional shadow price p
i
(c) must be computed at every i; that is, the equi-

librium condition must be solved at every collocation node s
i
, taking the

current coeÆcient vector c as �xed. In practice, the critical step in solving

the Euler conditions via collocation is coding a numerical routine to solve the

Euler equilibrium condition. For reasons that will be made clear shortly, one

should write the numerical routine so that it solves the condition, not just at

the collocation nodes, but any arbitrary vector of states. More speci�cally,

given an n-degree interpolation scheme selected by the analyst, the routine

should solve the equilibrium condition for every element of an arbitrary m

vector s of state nodes and any n-vector c of basis coeÆcients. The routine

should also return the optimal policy at each of the states.

A Matlab function that performs the necessary operations when the state

and action spaces are one-dimensional and actions are bounded is given be-

low. Speci�cally, the function solves the equilibrium conditions as a comple-

mentarity problem:2

function p = euler(c,s);

[xl,xu] = bfunc(s);

for it=1:maxit

xold = x;

[f,fs,fx,fxx] = ffunc(s,x);

p = fx; px = fxx;

for k=1:m

2The code is abbreviated in that several parameters that must be passed and certain

default value computations have been omitted for clarity. For fully functioning code that

executes the desired operations, see the Matlab library routine euler.
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[g,gs,gx,gxx] = gfunc(s,x,e(k));

pn = evalbase(g,n,smin,smax,c,'basecheb');

pnder = evalbase(g,n,smin,smax,c,'basecheb',1);

p = p + delta*w(k)*pn.*gx;

px = px + delta*w(k)*(pn.*gxx + pnder.*gx.*gx);

end

x = x - p./px; x = min(x,xu); x = max(x,xl);

if norm(x-xold,inf)<tol, break, end;

end

Here, on input, s is an m-vector of states and c is an n-vector of basis coeÆ-

cients of the current shadow price function approximant; and, on output, p is

the m-vector of shadow prices obtained by solving the equilibrium conditions

at each state.

The function presumes that the analyst has coded routines ffunc, gfunc,

and bfunc, designed to compute the reward, transition, and bound functions

and their derivatives, respectively, at arbitrary states and actions. It also

presumes that the analyst has speci�ed the lower and upper bounds of the

state interval, smin and smax, and the degree of interpolation n, and has

approximated the shock with a discrete random variable with nodes e and

weights w. The script also presumes that the analyst has chosen a speci�c

interpolation basis, in this example the Chebychev polynomial basis.

Once the maximization routine and reward, transition, and bound func-

tion routines have been coded, solution of the Euler conditions via collocation

is straightforward. First, the analyst forms the collocation nodes s and in-

terpolation matrix phi:

s = nodecheb(n,smin,smax).

phi = basecheb(s,n,smin,smax);

Given the collocation nodes and collocation matrix, the analyst may then

solve the collocation equation via function iteration

c = zeros(n,1);

for it=1:maxit

cold = c;

p = euler(c,s);

c = phi\p;

if norm(c-cold)<tol, break, end;

end
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Here, tol and maxit are iteration control parameters set by the analyst and

the basis coeÆcients c are initially set to zero, although a better guess may

be substituted, if available.

Once convergence apparently has been achieved, the analyst must perform

two essential diagnostic checks to assure that the approximate solution is

viable. First, since interpolants may provide inaccurate approximations when

evaluated outside the interpolation interval, one must check to ensure that

states remain within the interpolation interval in all transitions from the

collocation nodes. This can be done easily as follows:

g = [];

for k=1:m;

g = [g gfunc(s,x,e(k))];

end

if min(min(g))<smin, disp('Warning: reduce smin'), end;

if max(max(g))>smax, disp('Warning: increase smax'), end;

Next, one must check to see that shadow price function approximant

solves the Envelope condition to an acceptable degree of accuracy over the

entire approximation interval. Since, by construction, the approximant gen-

erated by the solving the collocation equation must solve the Envelope con-

dition exactly at the collocation nodes, this amounts to checking the ap-

proximation error at non node points. The easiest way to do this is to plot,

over a �ne grid spanning the interpolation interval, the residual between the

shadow prices obtained from the approximant and the shadow prices obtained

by directly solving the equilibrium condition. For example, approximation

residual could be checked at 500 equally spaced nodes as follows:

nplot = 500;

splot = nodeunif(nplot,smin,smax);

resid = euler(c,splot)-evalbase(splot,n,smin,smax,c,'basecheb');

plot(splot,resid)

If the residual appears to be reasonably small throughout the entire approx-

imation interval, the computed shadow price function approximant is ac-

cepted; otherwise it is rejected and a new approximation is computed using

either more collocation nodes or an alternative interpolation scheme. No-

tice that, to perform this diagnostic, euler is evaluated at states that are

not collocation nodes|this is why euler should be constructed to accept an

arbitrary vector of states, not just the collocation nodes.
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9.4 Dynamic Programming Examples

9.4.1 Optimal Stopping

The optimal stopping problem is easier to solve numerically than other dy-

namic optimization problems because for any given state it involves a dis-

crete, binary choice. As such, updating the value function when solving

Bellman's equation requires little more than choosing between the maximum

of two computed values. In contrast, a dynamic model with continuous action

space requires the Karush-Kuhn-Tucker conditions to be solved, or requires

the application of some other method of continuous space optimization. Eu-

ler condition methods are not applicable to the optimal stopping problem

because the Euler conditions are not well-de�ned when the choice variable is

discrete.

To solve the Bellman equation of the optimal stopping problem numeri-

cally by collocation, one �rst uses Gaussian quadrature methods to replace

the shock � with a discrete random variable, say, one that assumes values

�1; �2; : : : ; �m with probabilities w1; w2; : : : ; wm
, respectively. If the transition

function g is monotonic in �, say, increasing in �, then one can easily compute

a minimum and maximum state for the value function interpolation interval

by solving the two univariate �xed point problems

s
min

= g(s
min

; �
min

)

s
max

= g(s
max

; �
max

)

These two state values de�ne an interval I = [s
min

; s
max

] with the property

that g(s; �
j
) 2 I for all j whenever s 2 I. That is, given the shock discretiza-

tion, the interval will not be extrapolated by the numerical collocation routine

if the collocation nodes are chosen within the interval.

To compute an approximate solution to Bellman's equation via collo-

cation, one employs the following strategy: One approximates the unknown

value function V using a linear combination of known basis functions �1; �2; : : : ; �n
de�ned on I, whose basis coeÆcients c1; c2; : : : ; cn are to be determined:

V (s) �
nX
j=1

c
j
�
j
(s):
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One then �xes the basis function coeÆcients c1; c2; : : : ; cn by requiring the ap-

proximant to satisfy Bellman's equation at n collocation nodes s1; s2; : : : ; sn
in I. Speci�cally, one solves the nonlinear vector collocation equation

�c = v(c)

where � is the interpolation matrix associated with the underlying basis-node

interpolation scheme and

v
i
(c) = max

x2X(si)
ff(s

i
); Æ

mX
k=1

nX
j=1

c
j
�
j
(g(s

i
; �

k
))g:

To solve the collocation equation via Newton's method further requires one

to compute the Jacobian of v, which is given by

v
0
ij
(c) =

@v
i

@c
j

(c) =

�
0 v

i
(c) > f(s

i
)

Æ
P

m

k=1 �j(g(si; �k)) otherwise

The Bellman equation for an in�nite put option is solved via collocation in

the Matlab demo �le demo8001.m. The in�nite put option is a contract that

allows the bearer to sell a given quantity of a commodity or �nancial asset to

the writer of the option at a speci�ed strike price at any given future date.

When exercised, the value of the put option is the di�erence between the

strike price and the current market price, whenever the former is the larger

of the two; the put option provides no reward to the bearer if exercised when

the market price exceeds the strike price.

In demo0801.m, the strike price is assumed to be 1 and the underlying

commodity price is assumed to follow a simple �rst order autoregressive pro-

cess

log p
t+1 =  � log(p

t
) + �

t

where  = 0:8 and �
t
is i.i.d. normal with zero mean and variance �2 = 0:2.

The key to solving the Bellman equation for the optimal value and policy

function is implementing the routine that evaluates the value of exercising

and holding the option for any given current price p:

function [v,vc] = vmax(c,p,basepass);

vexer = max(pstrk-exp(p),0);

vkeep = zeros(size(p));

for k=1:m

pnext = pbar + gamma*(p-pbar) + e(k);
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vnext = evalbase(pnext,n,pmin,pmax,c,basepass);

vkeep = vkeep + delta*w(k)*vnext;

end

v = max(vexer,vkeep);

vc = zeros(length(p),n);

for k=1:m

pnext = pbar + gamma*(p-pbar) + e(k);

phinxt = eval([basepass,'(pnext,n,pmin,pmax)']);

vc = vc + delta*w(k)*phinxt;

end

for i=1:length(p)

if vexer(i)>vkeep(i), vc(i,:) = 0; end;

end

Here, p refers to a vector of current prices, pstrik refers to the strike price,

and pmin and pmax refer to the minimum and maximum prices achievable

with the discretized normal innovation.

9.4.2 Stochastic Optimal Growth

Consider the problem of numerically solving the stochastic optimal growth

problem of the preceding chapter under the assumption that u(c) = c
1��

=(1�
�), f(x) = x

�, and log(�) is i.i.d Normal(0; �2).

To solve the growth model by linear-quadratic approximation one �rst

computes the certainty-equivalent steady-state action, state, and shadow

price in sequence:

x
� =

�
1� Æ
Æ�

� 1
��1

s
� = x

� + x
��

�
� = (s� � x�)��:

Using the results of section 9.1, it follows that the shadow price and optimal

policy function approximant are:

�(s) = �
� + �

0(s� s�)
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x(s) = x
� + x

0(s� s�):

where

�
0 = �(1� Æ)�(s� � x�)���1

x
0 = Æ:

To solve the Bellman equation of the optimal growth model using col-

location, one �rst selects a series of n basis functions �
j
and n collocation

nodes s
i
, and writes the approximation

V (s) �
nX
j=1

c
j
�
j
(s):

One also employs a Gaussian quadrature scheme to replace the stochastic

shock with a discrete approximant, say, one that assumes values �1; �2; : : : ; �m
with probabilities w1; w2; : : : ; wm

, respectively.

The unknown vector of basis coeÆcients c is then computed by solving

the collocation equation

�c = v(c)

where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

v
i
(c) = max

0�x�si
f(s

i
� x)1��=(1� �) + ÆE

�

mX
k=1

nX
j=1

w
k
c
j
�
j
(x + �

k
x
�)g:

To solve the collocation equation via Newton's method further requires one

to compute the Jacobian of v, which is given by

v
0
ij
(c) =

@v
i

@c
j

(c) = Æ

mX
k=1

w
k
�
j
(x

i
+ �

k
x
�

i
)

where x
i
solves the optimization problem above.

To solve the Euler conditions of the optimal growth model using colloca-

tion, one �rst selects a series of n basis functions �
j
and n collocation nodes

s
i
, and writes the approximation

�(s) �
nX

j=1

c
j
�
j
(s):
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As with the Bellman equation, on also employs a Gaussian quadrature scheme

to replace the stochastic shock with a discrete approximant.

The unknown vector of basis coeÆcients c is then computed by solving

the collocation equation

�c = p(c)

where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

p
i
(c) = (s

i
� x

i
)��

where x
i
solves the equilibrium condition

�(s
i
� x

i
)�� + Æ

mX
k=1

w
k

h
�̂(x

i
+ �

k
x
�

i
) � [ + �

k
�x

��1
i

]
i
= 0:

A demonstration program, demo0802.m, provided with the Matlab library

accompanying the lecture notes solves the optimal growth model under the

assumptions that � = 0:2, � = 0:5,  = 0:9, and Æ = 0:9. Figures (*)

and (*) give approximate optimal capital retention and shadow price func-

tions derived using di�erent approximation methods to solve the Bellman

equation. In �gure (*) the Chebychev polynomial approximant exhibits the

characteristic smoothness of the true optimal solution. The relation is nearly

linear; even so, the linear approximant obtained through linear-quadratic

approximation has the wrong slope and can produce large errors away from

the steady-state. The discrete-space approximant tends to follow the Cheby-

chev approximant, but can exhibit large errors locally. Finally, in �gure (*),

the linear-quadratic shadow price function approximant can yield extremely

large errors, particularly because the true relation is nonlinear.

9.4.3 Renewable Resource Problem

Consider the renewable resource problem under the assumptions that p(x) =

x
� , c(x) = kx, and g(s; x) = �(s� x)� 0:5�(s� x)2.
To solve the renewable resource model by linear quadratic approximation

one �rst computes the certainty equivalent steady state state, action, and

shadow price in sequence:

s
� =

�
2 � Æ�2

2�
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x
� = s

� �
Æ�� 1

Æ�

�
� = (x�)� � k:

Using the results above, it then follows that the shadow price and optimal

policy function approximant are:

�(s) = �
� �

1� Æ
(x�)1+

(s� s�)

x(s) = x
� + (1� Æ)(s� s�):

To solve the Bellman equation of the renewable resource model using

collocation, one �rst selects a series of n basis functions �
j
and n collocation

nodes s
i
, and writes the approximation

V (s) �
nX
j=1

c
j
�
j
(s):

The unknown vector of basis coeÆcients c is then computed by solving the

collocation equation

�c = v(c)

where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

v
i
(c) = max

0�x�si
fx1�=(1� )� kx+ Æ

nX
j=1

c
j
�
j
(�(s

i
� x)� 0:5�(s

i
� x)2)g:

To solve the collocation equation via Newton's method further requires one

to compute the Jacobian of v, which is given by

v
0
ij
(c) =

@v
i

@c
j

(c) = Æ�
j
(�(s

i
� x

i
)� 0:5�(s

i
� x

i
)2)

where x
i
solves the maximization problem above.

To solve the Euler conditions of the renewable resource model using col-

location, one �rst selects a series of n basis functions �
j
and n collocation

nodes s
i
, and writes the approximation

�(s) �
nX

j=1

c
j
�
j
(s):
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The unknown vector of basis coeÆcients c is then computed by solving the

collocation equation

�c = p(c)

where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

p
i
(c) = Æ�(�(s

i
� x

i
)� 0:5�(s

i
� x

i
)2) � [�� �(s

i
� x

i
)]

where x
i
solves the equilibrium condition

x
�
i
� k � Æ�(�(s

i
� x

i
)� 0:5�(s

i
� x

i
)2) � [�� �(s

i
� x

i
)] = 0

A demonstration program, demo0803.m, provided with the Matlab library

accompanying the lecture notes solves the renewable resource model under

the assumptions that  = 0:5, � = 4, � = 1, k = 0:2, and Æ = 0:9. Figures (*)

and (*) give approximate optimal harvest and shadow price functions derived

using di�erent approximation methods to solve the Bellman equation. In

�gure (*) the Chebychev polynomial approximant exhibits the smoothness

of the true optimal solution. Again, the linear-quadratic approximant has

the wrong slope and can produce large errors away from the steady-state.

Finally, in �gure (*) the linear-quadratic shadow price function approximant

can yield extremely large errors away from the steady-state because the true

relation is nonlinear.

9.4.4 Nonrenewable Resource Problem

Consider the nonrenewable resource problem under the assumption that the

cost of extraction is c(s; x) = x
2
=(s+ �).

To solve the Bellman equation of the nonrenewable resource model using

collocation, one �rst selects a series of n basis functions �
j
and n collocation

nodes s
i
, and writes the approximation

V (s) �
nX
j=1

c
j
�
j
(s):

The unknown vector of basis coeÆcients c is then computed by solving the

collocation equation

�c = v(c)
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where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

v
i
(c) = max

0�x�si
f�x� x2=(s+ �) + Æ

nX
j=1

c
j
�
j
(s

i
� x)g:

To solve the collocation equation via Newton's method further requires one

to compute the Jacobian of v, which is given by

v
0
ij
(c) =

@v
i

@c
j

(c) = Æ�
j
(s

i
� x

i
)g

where x
i
solves the maximization problem above.

To solve the Euler conditions of the nonrenewable resource model using

collocation, one �rst selects a series of n basis functions �
j
and n collocation

nodes s
i
, and writes the approximation

�(s) �
nX

j=1

c
j
�
j
(s):

The unknown vector of basis coeÆcients c is then computed by solving the

collocation equation

�c = p(c)

where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

p
i
(c) = x

2
i
=(s+ �)2 + Æ

nX
j=1

c
j
�
j
(s

i
� x

i
)

where x
i
solves the equilibrium condition

�� 2x=(s+ �) +�Æ
nX
j=1

c
j
�
j
(s

i
� x) = 0:

A demonstration program, demo0803.m, provided with the Matlab library

accompanying the lecture notes solves the nonrenewable resource model un-

der the assumptions that � = 1, � = 10, and Æ = 0:9. Figures * and * give

approximate optimal extraction and shadow price functions derived using

di�erent approximation methods. In �gure 6.3a, the Chebychev polynomial
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approximant exhibits the essential properties of the true optimal solution. As

can be seen in �gure *, the optimal policy for stock levels less than 0.5 is to

extract the entire stock or ore. In other words, over this range, the constraint

x � s is binding. As see in �gure *, the slope of the linear-quadratic approx-

imant for the shadow price function has the wrong sign. This is due to the

fact that in linear-quadratic approximation we ignore an essential constraint.

9.5 Rational Expectation Collocation Meth-

ods

I did not get to cover these methods in suÆcient depth in class. I will not

exam you on them.

9.5.1 Example: Asset Pricing Model

9.5.2 Example: Commodity Storage

Consider the commodity storage problem of the preceding chapter under the

assumptions that

� p(s� x) = (s� x)�

� c(x) = � + � log(x)

� log(h
t
) is i.i.d Normal(0; �2)

where , �, and � are positive constants.

If �(s) is the commodity price given supply s, then the equilibrium storage

level x satis�es

�(s� x)� � �� � log(x) + ÆE�(x + h) = 0

�(s) = (s� x)� :

To solve the storage model by linear-quadratic approximation one �rst

computes the certainty-equivalent steady-state price, action, and state in

sequence:

�
� = 1
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x
� = exp

�
Æ � 1� �

�

�

s
� = x

� + 1:

Using the results of the preceding chapter, it follows that the shadow price

and optimal policy function approximant are:

�(s) = �
� + �

0(s� s�)

x(s) = x
� + x

0(s� s�):

where

�
0 = � � 2=[Æ�0 �  � �=x�]

x
0 = �=[Æ�0 �  � �=x�]:

The value of �0 can be computed by successive approximation; given �0, the

value of x0 is easily computed.

To solve the rational expectations equilibrium conditions of the storage

model using collocation, one �rst selects a series of n basis functions �
j
and

n collocation nodes s
i
, and writes the approximation to the equilibrium price

function

�(s) �
nX

j=1

c
j
�
j
(s):

The unknown vector of basis coeÆcients c is then computed by solving the

collocation equation

�c = p(c)

where � is the interpolation matrix constructed by evaluating the basis func-

tions at the collocation nodes and

p
i
(c) = (s

i
� x

i
)�

where x
i
solves the equilibrium condition

�(s
i
� x

i
)� � �� � log(x

i
) + Æ

nX
j=1

mX
k=1

w
k
c
j
�
j
(x

i
+ h

k
) = 0:
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The Matlab demonstration �le demo8022.m solves the commodity ratio-

nal expectations model under the assumptions that  = 5:0, � = 0:6, � = 0:1,

� = 0:15, and Æ = 0:9. For this parameterization, s� = 1:001, x� = 0:001,

�
� = 1:0, �0 = �4:7716, and x0 = 0:0457. Figures (*) and (*) give approx-

imate rational expectations equilibrium storage and price functions derived

using di�erent approximation methods. In �gure (*), the Chebychev poly-

nomial approximant exhibits the essential properties of the true rational ex-

pectations equilibrium solution. As can be seen in �gure (*), prices rise and

storage drops to near zero when supplies are short. As supply rises, however,

prices drop and stockholding becomes pro�table. As see in �gure (*) and (*),

the solution to the linearized rational expectations model can give misleading

results. In particular, the linear model allows for negative stockholding and

negative prices, neither of which are observed in practice.

9.6 Comparison of Solution Methods

In developing a numerical approximation strategy for solving Bellman's equa-

tion, one pursues a series of multiple, sometimes conicting goals. First, the

algorithm should o�er a high degree of accuracy for a minimal computational

e�ort. Second, the algorithm should be capable of yielding arbitrary accu-

racy, given suÆcient computational e�ort. Third, the algorithm should yield

answers with minimal convergence problems. Fourth, it should be possible

to code the algorithm relatively quickly with limited chances for programmer

error.

Space discretization has some major advantages for computing approxi-

mate solutions to continuous-space dynamic decision problems. The biggest

advantage to space discretization is that it is easy to implement. In particu-

lar, the optimization problem embedded in Bellman's equation is solved by

complete enumeration, which is easy to code and numerically stable. Also,

constraints are easily handled by the complete enumeration algorithm. Each

time a new action is examined, one simply tests whether the action satis�es

the constraint, and rejects it if it fails to do so. Finally, space discretization

can provide an arbitrarily accurate approximation by increasing the number

of state nodes.

Space discretization, however, has several major disadvantages. The

biggest disadvantage is that complete enumeration is extremely slow. Com-

plete enumeration mindlessly examines all possible actions, ignoring the
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derivative information that would otherwise help to �nd the optimal ac-

tion. Another drawback to space discretization is that it uses discontinuous

step functions to approximate the value and policy functions. The approxi-

mate optimal solution generated by space discretization will not possess the

smoothness and curvature properties of the true optimal solution. Finally,

because the states and actions are forced to coincide with speci�ed nodes, the

accuracy a�orded by space discretization will be limited by the coarseness of

the state and action space grids.

Linear-quadratic approximation is perhaps the method easiest to imple-

ment. The solution to the approximating problem is a linear function whose

coeÆcients can be derived analytically using the methods discussed in sec-

tion (*). Alternatively, the coeÆcients can easily be computed numerically

using a successive approximation scheme that is typically free of convergence

problems.

Linear-quadratic approximation, however, has some severe shortcomings.

The basic problem with linear-quadratic approximation is that it relies on

Taylor series approximations that are accurate only in the vicinity of the

steady-state, and then only if the process is deterministic or nearly so. Linear-

quadratic approximation will yield poor results if random shocks repeatedly

throw the state variable far from the steady-state and if the reward and

state transition functions are not accurately approximated by second- and

�rst-degree polynomials over their entire domains. Linear-quadratic approx-

imation will yield especially poor approximations if the true optimal process

is likely to encounter any inequality and nonnegativity constraints, which

must be discarded in passing to a linear-quadratic approximation.

Collocationmethods address many of the shortcomings of linear-quadratic

approximation and space discretization methods. Unlike linear-quadratic ap-

proximation, collocation methods employ global, rather than local, function

approximation schemes and, unlike space discretization, they approximate

the solution using a smooth, not discontinuous, function. Chebychev collo-

cation methods, in particular, are motivated by the Wieirstrass polynomial

approximation theorem, which asserts that a smooth function can be ap-

proximated to any level of accuracy using a polynomial of suÆciently high

degree. A second important advantage to collocation methods is that they

may employ root�nding or optimization that exploit derivative information.

A di�erentiable approach can help pinpoint the equilibrium solution at each

state node faster and more accurately than the complete enumeration scheme

of discrete dynamic programming.
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The collocation method replaces the inherently in�nite-dimensional func-

tional equation problem with a �nite-dimensional nonlinear equation problem

that can be solved using standard nonlinear equation methods. The accu-

racy a�orded by the computed approximant will depend on a number of

factors, most notably the number of basis functions and collocation nodes

n. The greater the degree of approximation n, the more accurate the re-

sulting approximant, but the more expensive is its computation. For this

reason choosing a good set of basis functions and collocation nodes is critical

for achieving computational eÆciency. Approximation theory suggests that

Chebychev polynomials basis functions and Chebychev collocation points will

often make superior choices, provided the solution to the functional equation

is relatively smooth. Otherwise, linear or cubic basic splines with equally

spaced collocation nodes may provide better approximation.

In using collocation schemes, one might be tempted to choose equally

spaced points and to represent the interpolating polynomial as the linear

combination of the standard monomials. However, as seen in Chapter 3, uni-

form node polynomial interpolation can yield extremely poor global approx-

imations and can produce explosive approximation error. Also, computing

the monomial coeÆcients of an interpolating polynomial is an ill-conditioned

process that is highly vulnerable to rounding error and convergence failure.

Numerical analysis theory suggest that the Chebychev interpolation nodes

and Chebychev polynomials are nearly optimal choices for forming polyno-

mial interpolants. Accuracy and eÆciency with Chebychev nodes and poly-

nomials are guaranteed by Chebychev polynomial approximation theorem,

which asserts that, for a given degree, the best approximating polynomial is

the one that interpolates the function at the Chebychev nodes. The theorem

also asserts that such approximation error will tend to disappear if the degree

of approximation is increased. Also, using this combination of nodes and ba-

sis polynomials will ensure that the interpolating matrix will be orthogonal.

Thus, computing the coeÆcients c
j
of the interpolating polynomial will be

faster and numerically more stable than for other polynomial bases.

Chebychev collocation, however, is not without its disadvantages. First,

polynomial interpolants can behave strangely outside the range of interpo-

lation and should be extrapolated with extreme caution. Even when state

variable bounds for the model solution are known, states outside the bounds

can easily be generated in the early stages of the solution algorithm, leading

to convergence problems. Also, polynomial interpolants can behave strangely

in the vicinity of nondi�erentiabilities in the function being interpolated. In
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particular, interpolating polynomials can fail to preserve monotonicity prop-

erties near such points, undermining the root�nding algorithm used to com-

pute the equilibrium at each state node. Finally, inequality constraints, such

as nonnegativity constraints, require the use of special methods for solving

nonlinear complementarity problems.

Table 1 gives the execution time and approximation error associated with

four solution schemes, including uniform polynomial and Chebychev collo-

cation, as applied to the commodity storage model examined in section (*).

Approximation error is de�ned as the maximum absolute di�erence between

the \true" price function and the approximant at points spaced 0.001 units

apart over the approximation interval [0:5; 2:0]. Execution times are based on

the successive approximation algorithm implemented on an 80486 50 mega-

hertz Gateway 2000 personal microcomputer.

The superiority of the Chebychev collocation for solving the storage model

is evident from table 1. The accuracy a�orded by Chebychev collocation

exceeded that of space discretization by several orders of magnitude. For ex-

ample, the accuracy achieved by space discretization in nearly �ve minutes

of computation was easily achieved by Chebychev collocation in less than

one-tenth of a second. In the same amount of time, the linear-quadratic

approximation method a�orded an approximation that was three orders of

magnitude worse than that a�orded by Chebychev collocation. The ap-

proximation a�orded by linear-quadratic approximation, moreover, was not

subject to improvement by raising the degree of the approximation, which is

�xed. Finally, as seen in table 1, when using uniform node, monomial col-

location, the approximation error actually increased as the number of nodes

doubled from 10 to 20; the algorithm, moreover, would not converge for more

than 23 nodes. The example thus illustrates once again the inconsistency and

instability of uniform node monomial interpolation.

9.7 Dynamic Analysis

Although the optimal policy and shadow price functions reveal a great deal

about the nature of the optimized dynamic process, they give an incomplete

picture of the model's implications. Given an economic model, we typically

wish to describe the dynamic behavior of the optimized process, and how its

behavior changes with variations model parameters or assumptions. Given

a dynamic economic model, we typically characterize the model's solution
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Number Execution Maximum

of Time Absolute

Method Nodes (seconds) Error

Chebychev 10 0.1 4.7E�02
Polynomial 20 0.4 1.1E�02
Collocation 30 0.7 2.7E�03

40 1.1 5.9E�04
50 1.6 3.3E�04
100 5.8 3.1E�06
150 12.5 2.3E�08

Uniform 10 0.1 1.4E�01
Polynomial 20 0.3 1.7E+00

Collocation 30 N.A. N.A.

Space 10 2.0 4.5E+00

Discretization 20 7.5 1.7E+00

30 16.9 8.6E�01
40 31.0 5.3E�01
50 32.3 3.5E�01
100 124.6 9.7E�02
150 292.2 4.5E�02

L-Q Approximation 0.1 2.8E+01

Table 9.1: Execution Times and Approximation Error for Selected

Continuous-Space Approximation Methods
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in one of two ways. Steady-state analysis examines the long-run tendencies

of the optimized process, abstracting from the initial state and path taken

by the process over time. Dynamic path analysis focuses on how the system

evolves over time, starting from a given initial condition.

Given a deterministic dynamic model, steady-state and dynamic path

analysis are relatively straightforward to perform. As we have seen, the

steady-state of a deterministic process is typically characterized by a system

of nonlinear equations. The system can be solved numerically and totally dif-

ferentiated to generate explicit expressions describing how the steady-state

varies with changes in model parameters. Dynamic path analysis can be

performed through a simple deterministic simulation of the process, which

requires repeated evaluations of the optimal policy and state transition func-

tions. In particular, if x(s) is the optimal policy function and g(s; x) is the

transition function, then, given an initial state s0, the path taken by the state

variable may be computed recursively as follows: s
t+1 = g(s

t
; x(s

t
)): Given

the path of the state variable s
t
, it is then straightforward to generate the

path taken by any other endogenous variable.

The analysis of stochastic models is a bit more involved. Stochastic mod-

els do not generate an unique, deterministic path from a given initial state.

A stochastic process may take any one of many possible paths, depending

on the realizations of the random shocks. Often, it is instructive to generate

one such possible path to illustrate the volatility that an optimized process is

capable of exhibiting. This is performed by a simple Monte Carlo simulation

in which a sequence of pseudorandom shocks are generated for the process

using a random number generator. In particular, given the optimal policy

function x(s), the transition function g(s; x; �), an initial state s0, and a pseu-

dorandom sequence of �
t
, a representative path may be generated recursively

as follows: s
t+1 = g(s

t
; x(s

t
); �

t+1):

Figure 5 illustrates the di�erence between the paths taken by determin-

istic and stochastic models. The paths coincide with the stochastic and

deterministic versions of the optimal growth problem of section 6.4. As can

be seen in �gure 5, the deterministic path is smooth and eventually converges

to a steady-state. In contrast, the stochastic path is erratic, reecting the

inuences of random production shocks, and does not converge to a set value.

A more revealing analysis of the dynamics generated by a stochastic model

is to draw not a single representative path, but rather the expected path

of the process. The expected path may be computed by generating a large

number of independent representative paths and averaging the results at each



CHAPTER 9. CONTINUOUS STATE MODELS: METHODS 284

point in time. As seen in �gure 6, the expected path exhibits many of the

properties of a deterministic path. Speci�cally, the expected path is smooth

and converges to a steady-state. The expected path of the stochastic model,

however, should not be confused with the path of the certainty equivalent

model. As seen in �gure 6, the certainty equivalent model underpredicts the

stock level at every point in time and thus in the steady-state.

The steady-state of a stochastic process is a distribution, not a point.

Typically, it will suÆce to compute the mean and standard deviation of the

steady-state distribution for selected endogenous variables. The most com-

mon approach to computing steady-state means and variances is through the

use of Monte Carlo simulation. Monte Carlo simulation is used to generate a

single representative path of long horizon, say 10,000 periods. The values of

the endogenous variable thus generated collectively reect the steady-state

distribution of the variable. In practice, we simply accumulate the �rst and

second moments of the variable with each simulated period, and compute

the means and the standard deviation at the conclusion of the simulated

long-run history.

In many instances we are interested in seeing how certain properties of

the model vary as the parameters of the model change. Typically, we focus

on the relationship between the steady-state mean or variance of a given

endogenous variable and an exogenous parameter of interest. In order to

perform sensitivity analysis, one performs Monte Carlo simulations at chosen

values of the parameter and constructs a least-squares �t to the graph points

generated in this fashion. Figures 7 illustrates this technique. Here, we

simulated the storage model at equally-space points for the base storage cost

� and drew the relationship between the steady-state standard deviation of

price and the storage cost. The �gure indicates that increasing the storage

costs tends to destabilize price.

Another approach to performing steady-state and path analysis is to

convert the continuous-space stochastic process into a discrete one and use

Markov chain methods to approximate the expected path and the steady-

state distribution of the process.



Chapter 10

Continuous Time Mathematics

10.1 Introduction

In recent years the use of continuous time approaches has become increasingly

popular in economics applications, especially in �nance, macro and resource

economics. Although many models can be implemented in either discrete

or continuous time, a major advantage of continuous time arises in modeling

intertemporal arbitrage conditions. The essence of intertemporal arbitrage is

the construction of portfolios of goods that are risk free and, as such, earn the

risk free rate of return in equilibrium. It is generally not possible to construct

such risk free portfolios in discrete time (it would take an uncountably in�nite

number of assets to make a portfolio risk free when the number of possible

states of nature is uncountably in�nite). Risk free portfolios can be easily

constructed in continuous time with a small number of assets so long as

the portfolios can be continuously adjusted at zero cost. This leads to an

important method of evaluating assets and of determining optimal strategies

that complements the dynamic optimization approach (see Pindyck for a

discussion of the relationship between these two approaches).

The basic tools used in the analysis of continuous time models are Ito

calculus and stochastic control, the latter term referring to dynamic pro-

gramming in continuous time. Ito processes (de�ned below) as generally

used because they are both exible and can be handled with relative ease.

Although initially the use of Ito calculus requires some mental investment, its

use in practice turns out to be nearly as straightforward as calculus applied

to deterministic functions.

285
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For many problems of economic interest the boundary conditions present

special diÆculties. Although economic variables are often bounded below

by zero, they typically have no natural upper boundaries. Furthermore,

many problems exhibit so-called free boundaries, with one or more di�erential

equations describing the behavior of the variable in regions of the state space

with endogenously determined boundaries (examples are discussed in Section

11.2).

In what follows, a brief introduction to practical aspects of Ito processes

and Ito's Lemma is presented. Also discussed is a version of the Feynman-

Kac equation, which describes an equivalence relationship between the ex-

pectation of a functional of an Ito process and the solution of an associated

partial di�erential equation. The section includes a discussion of the use of

intertemporal arbitrage to value derivative assets. The concluding section

discusses the analysis of transition and long-run (steady-state) probability

distributions associated with Ito processes.

Stochastic control techniques are discussed in the next chapter, which

focuses on the continuous time Bellman's equation and provides numerous

with examples.

10.1.1 Stochastic Models with Ito Processes

The stochastic processes most commonly used in economic applications are

constructed from the so-called standard Weiner process or standard Brow-

nian motion. This process is most intuitively de�ned as a limit of sums of

independent normally distributed random variables:

z
t+�t
� z

t
�
Z

t+�t

t

dz = lim
n!1

r
�t

n

nX
i=1

v
i
:

where the v
i
are independently and identically distributed standard normal

variates (i:i:d: N(0; 1)). The standard Weiner process has the following prop-

erties:

1. time paths are continuous (no jumps)

2. non-overlapping increments are independent

3. increments are normally distributed with mean zero and variance �t.
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The �rst property is not obvious but properties 2 and 3 follow directly from

the de�nition of the process. Each non-overlapping increment of the process

is de�ned as the sum of independent random variables and hence the incre-

ments are independent. Each of the variables in the sum have expectation

zero and hence so does the sum. The variance is

E�z2 = �t lim
n!1

1

n
E

 
nX
i=1

v
i

!2

= �t lim
n!1

1

n

nX
i=1

E[v2
i
] = �t:

Ito di�usion processes are typically represented in di�erential form as

dx = �(x; t)dt+ �(x; t)dz

where z is a standard Wiener process.1 The Ito process in completely de-

�ned in terms of the functions � and �, which can be interpreted as the

instantaneous mean and standard deviation of the process:

E[dx] = �(x; t)dt

and

V ar[dx] = E[dx2]� (E[dx])2 = E[dx2]� �(x; t)2dt2 = E[dx2] = �
2(x; t)dt;

which are also known as the drift and di�usion terms, respectively. This is

not as limiting as it might appear at �rst, because a wide variety of stochastic

behavior can be represented by appropriate rede�nition of the two functions.

The di�erential representation is a shorthand for the stochastic integral

x
t+�t

= x
t
+

Z
t+�t

t

�(x
�
; �)d� +

Z
t+�t

t

�(x
�
; �)dz: (10.1)

1Standard regularity conditions placed on Ito processes involve restrictions on the �
and � functions. These include Borel measurability, a Lipschitz condition that for all x
and y there exists a k such that

k�(x; t)� �(y; t)k+ k�(x; t)� �(y; t)k � kkx� yk;

and a growth condition that for all x and t � 0 there is a k such that

k�(x; t)k+ k�(x; t)k � k(1 + kxk):

These are suÆcient conditions to ensure that x is uniquely de�ned Markov process. Fur-

thermore, the continuity of � and � ensures that x is a di�usion.
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The �rst of the integrals in 10.1 is an ordinary (Riemann) integral. The sec-

ond integral, however, involves the stochastic term dz and requires additional

explanation. It is de�ned in the following way:

Z
t+�t

t

�(x
�
; �)dz = lim

n!1

r
�t

n

n�1X
i=0

�(x
t+ih; t+ ih)v

i
; (10.2)

where h = �t=n and v
i
�i.i.d. N(0,1). The key feature of this de�nition

is that it is non-anticipating; values of x that are not yet realized are not

used to evaluate the � function. This naturally represents the notion that

current events cannot be functions of speci�c realizations of future events.2

It is useful to note that E
t
dx = �(x; t)dt; this is a direct consequence of the

fact that each of the elements of the sum in (10.2) has zero expectation. This

implies that

E
t
[x

t+�t
] = x

t
+ E

t

Z
t+�t

t

�(x
�
; �)d�

From a practical point of view, the de�nition of an Ito process as the

limit of a sum provides a natural method for simulating discrete realizations

of the process using

x
t+�t

= x
t
+ �(x

t
; t)�t + �(x

t
; t)
p
�t v;

where v � N(0; 1). This approximation will be exact when � and � are

constants.3 In other cases the approximation will improve as �t gets small,

but make produce inaccurate results as �t gets large.

2Standard Riemann integrals of continuous functions are de�ned as:

Z b

a

f(x)dx = lim
n!1

h

n�1X
i=0

f(a+ (i+ �)h);

with h = (b � a)=n and � is any value on [0; 1]. With stochastic integrals, alternative

values on � produce di�erent results. Furthermore, any value of � other than 0 would

imply a sort of clairvoyance that makes it unsuitable for applications involving decision

making under uncertainty.
3When � and � are constants the process is known as absolute Brownian motion. An

exact simulation method also exists when the drift and di�usion terms are proportional

to x. This is the so-called geometric Brownian motion process:

dx = �xdt+ �xdz:
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In order to de�ne and work with functions of Ito processes it is necessary

to have a calculus that operates consistently with them. Suppose y = f(x; t),

with continuous derivatives f
x
, f

t
and f

xx
. In the simplest case x, z, and y

are all scalar processes. It is intuitively reasonable to de�ne the di�erential

dy as

dy = f
t
dt+ f

x
dx;

as would be the case in deterministic calculus. Unfortunately, this will pro-

duce incorrect results because it ignores the fact that (dz)2 = O(dt). To

see what this means consider a Taylor expansion of dy at (x; t), i.e., totally

di�erentiate the Taylor expansion of f(x; t):

dy = f
x
dx+ f

t
dt+ 1

2
f
xx
(dx)2 + f

xt
dxdt+ 1

2
f
tt
(dt)2 + higher order terms.

Terms of higher order than dt and dx are then ignored in the di�erential. In

this case, however, the term (dx)2 represents the square of a random variable

that has expectation �2dt and, therefore, cannot be ignored. Including this

term results in the di�erential

dy = f
x
dx + [ 1

2
f
xx
�
2(x; t) + f

t
]dt

= [f
x
�(x; t) + f

t
+ 1

2
f
xx
�
2(x; t)]dt + f

x
�(x; t)dz;

a result known as Ito's Lemma. An immediate consequence of Ito's Lemma is

that functions of Ito processes are also Ito processes (provided the functions

have the appropriately continuous derivatives).

Multivariate versions of Ito's Lemma are easily de�ned. Suppose x is

an n-vector valued process and z is a k-vector Wiener process (composed of

k independent standard Wiener processes). Then � is an n-vector valued

function (� : <n+1 ! <n) and � is an n � k matrix valued function (� :

<n+1 ! <n�k). The instantaneous covariance of x is ��T , which may be less

than full rank.

It should be noted that some people de�ne multivariate correlated Wiener

processes and de�ne � to be a diagonal scaling matrix. Although mathemat-

ically equivalent, this approach is avoided here as it obscures the number of

independent driving forces that de�ne the vector x.

It will subsequently be shown that

xt+�t = xt exp(��t+ �
p
�tv);

where v � N(0; 1).
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For vector-valued x Ito's Lemma is

dy =
�
f
x
�(x; t) + f

t
+ 1

2
trace

�
�
T (x; t)f

xx
�(x; t)

��
dt+ f

x
�(x; t)dz;

(the only di�erence being in the second order term; derivatives are de�ned

such that f
x
is a (1� n)-vector). The lemma extends in an obvious way if y

is vector valued.

Example: Computing Moments over Discrete Time Intervals

Ito's Lemma can be used to generate some simple results concerning Ito

processes. For example, consider the case of geometric Brownian motion,

de�ned as

dx = �xdt+ �xdz:

De�ne y = ln(x), implying that @y=@t = 0, @y=@x = 1=x and @
2
y=@x

2 =

�1=x2. Applying Ito's Lemma yields the result that

dy = [�� �2=2]dt+ �dz:

This is a process with independent increments that areN((���2=2)�t; �2�t).
Hence a geometric Brownian motion process has conditional probability dis-

tributions that are lognormally distributed:

ln(x
t+�t

)� ln(x
t
) � N

�
(�� �2=2)�t; �2�t

�
:

It is useful to have such an explicit expressions for the probability distri-

bution of the discrete time increments, especially if one desires to estimate

the parameters of the process (e.g., � and � ). Unfortunately, it is rarely

possible to derive such explicit expressions. In some cases, however, one can

derive explicit expressions for the moments of the distribution. Consider the

process de�ned by

dx = �(�� x)dt+ �(x; t)dz: (10.3)

Taking expectations on both sides, allowing the expectation operator to pass

through the linear di�erential operator and noting that E�(x; t)dz = 0 yields

Edx = dEx = E�(�� x)dt = �(�� Ex)dt:

Letting y = E
�
x
t
, this expression can be written as the ordinary di�erential

equation

dy=dt = �(�� y):
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Together with the boundary condition that y
�
= x

�
, the solution is easily

veri�ed to be

y
t
= �+ e

��(t��)(y
�
� �):

Hence the

E
�
x
t
= �+ e

��(t��)(x
�
� �):

Thus, an Ito process with an aÆne mean term is the continuous time analog

to a �rst order di�erence process in discrete time. For � = 0, it is clear that

x is a martingale process (E
�
x
t
= x

�
), the equivalent of a simple unit root

process in discrete time. For � > 0 the process is mean reverting, with a long

run tendency to return to the value �. In the limit as � ! 1 the process

uctuates randomly around �.

Second moments can be found by combining this approach with Ito's

Lemma. Consider the special case of (10.3) with a constant variance term

dx = �(�� x)dt+ �dz:

To determine the variance of this process note that

V ar
�
(x

t
) = E

�
x
2 � (E

�
x
t
)2

. Using Ito's Lemma

dx
2 = [2�(�� x)x + �

2]dt + 2x�dz:

The time derivative of the expectation of x2 is therefore

dEx
2

dt
= �

2 � 2�Ex2 + 2��Ex:

The time derivative of the square of Ex is

d(Ex)2

dt
= �2�e��(t��)(x

�
� �)Ex:

Combining these expressions yields

dV ar
�
(x

t
)

dt
= �

2 � 2�Ex2 + 2��Ex+ 2�e��(t��)(x
�
� �)Ex

= �
2 � 2�(Ex2 � (Ex)2))

= �
2 � 2�V ar

�
(x

t
):



CHAPTER 10. CONTINUOUS TIME MATHEMATICS 292

This is an ordinary di�erential equation with the boundary condition that

V ar
�
(x

�
) = 0, which is solved by

V ar
�
(x

t
) =

1� e�2�(t��)

2�
�
2
:

In the limit as � ! 0 this expression yields the familiar result that the

conditional variance grows linearly in time:

lim
�!0

1� e�2�(t��)

2�
= t� �:

On the other hand, the limit as � ! 1 demonstrates that the process be-

comes degenerate for large �, with the probability distribution being concen-

trated at the point �. The long-run distribution of the process is found by

letting t!1), thereby demonstrating that the process has a long-run mean

and variance (�,�2=2� ).

10.1.2 The Feynman-Kac Equation

Control theory in continuous time is typically concerned with problems which

attempt to choose a control that maximizes a discounted return stream over

time. It will prove useful, therefore, to have an idea of how to evaluate such

a return stream for an arbitrary control. Consider the value

V (S
t
; t) = E

t

�Z
T

t

e
��(��t)

f(S
�
)d� + e

��(T�t)
R(S

T
)

�
;

where

dS = �(S)dt+ �(S)dz:

An important theorem, generally known in economics as the Feynman-Kac

Equation, but also known as Dynkin's Formula, states that V (S) is the so-

lution to the following partial di�erential equation4

�V (S; t) = f(S) + V
t
(S; t) + �(S)V

S
(S; t) + 1

2
�
2(S)V

SS
(S; t);

4The partial di�erential equation of this theorem has a linear parabolic form. Parabolic

PDEs are ones that can be expressed in terms of the �rst time derivative and the second

(and possibly lower) space derivatives. The term comes from the equation for a parabola

y = a+ bx+ cx2, substituting dt for y and dx for x. Other common forms of second order

PDEs are hyperbolic and elliptic, both of which involve second order derivatives in both

space and time.
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with V (S; T ) = R(S). The function R here represents a terminal value of

the state, i.e., a salvage value.5

By applying Ito's Lemma, the Feynman-Kac Equation can be expressed

as:

�V (S; t) = f(S) + E[dV ]=dt: (10.4)

(10.4) has a natural economic interpretation. Notice that V can be thought

of as the value of an asset that generates a stream of payments f(S). The

rate of return on the asset, �V , is composed of two parts, f(S), the current

income ow and E[dV ]=dt, the expected rate of appreciation of the asset.

Alternative names for the components are the dividend ow rate and the

expected rate of capital gains.

A version of the theorem applicable to in�nite horizon problems states

that

V (S
t
) = E

t

�Z 1

t

e
���

f(S)d�

�
;

is the solution to the di�erential equation

�V (S) = f(S) + �(S)V
S
(S) + 1

2
�
2(S)V

SS
(S):

Although more general versions of the theorem exist (for example see DuÆe

for a version with a state dependent discount rate), these will suÆce for our

purposes.

As with any di�erential equation, boundary conditions are needed to com-

pletely specify the solution. In this case, we require that the solution to the

di�erential equation be consistent with the present value representation as S

approaches its boundaries (often 0 and1 in economic problems). Generally

economic intuition about the nature of the problem is used to determine the

boundary conditions; we will discuss this issue more presently.

Example: Geometric Brownian Motion

Geometric Brownian motion is a particularly convenient stochastic process

because it is relatively easy to compute expected values of reward streams.

If S is governed by

dS = �Sdt+ �Sdz;

5The terminal time T need not be �xed, but could be a state dependent. Such an

interpretation will be used in the discussion of optimal stopping problems (Section 11.2.3).
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the expected present value of a reward stream f(S) is the solution to

�V = f(S) + �SV
S
+ 1

2
�
2
S
2
V
SS
:

As this is a linear second order di�erential equation, the solution can be

written as the sum of the solution to the homogeneous problem (f(S) = 0)

and any particular solution that solves the non-homogeneous problem. The

homogeneous problem is solved by

V (S) = A1S
�1 + A2S

�2;

where the �
i
are the roots of the quadratic equation

1
2
�
2
�(� � 1) + �� � � = 0

and the A
i
are constants to be determined by boundary conditions. For

positive �, one of these roots is greater than one, the other is negative:

�1 > 1, �2 < 0.

Consider the problem of �nding discounted expected values of powers of

S, i.e., where f(S) = S
 (assuming, momentarily, that it exists). It is easily

veri�ed that a particular solution is

V (S) = S


=(�� � � 1
2
�
2
( � 1)): (10.5)

All that remains, therefore, is to determine the value of the arbitrary con-

stants A1 and A2 that ensure the solution indeed equals the expected value

of the reward stream. This is a bit tricky because it need not be the case

that the expectation exist (the integral may not converge as its upper limit

of integration goes to 1). It can be shown, however, that the present value

is well de�ned for �2 <  < �1, making the numerator in (10.5) positive.

Furthermore, the boundary conditions require that A1 = A2 = 0. Thus the

particular solution is convenient in that it has a nice economic interpretation

as the present value of a stream of returns.

10.1.3 Arbitrage Based Asset Valuation

An important use of continuous time methods results from powerful arbitrage

conditions that can be derived in a simple and elegant fashion. Originally

developed by Fisher Black and Myron Scholes, as well as by Robert Mer-

ton, to solve option pricing problems, arbitrage arguments apply much more

broadly. Any assets that are based on the same underlying risks have values
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that are related to one another in very speci�c ways. Although this clearly

applies to �nancial derivatives such as options, it also applies more generally.

Consider two assets which have values V and W , both of which depend

on the same random process S. Suppose that S is an Ito process, with6

dS = �
S
dt+ �

S
dz:

Under suitable regularity conditions, this implies that V and W are also Ito

processes, with

dV = �
V
dt+ �

V
dz

dW = �
W
dt+ �

W
dz:

Suppose further that the assets generate income streams (dividends), which

are denoted by Æ
V
and Æ

W
.

One can create a portfolio consisting of one unit of V and n units of W ,

the value of which is described by

dV + ndW = [�
V
+ n�

W
]dt+ [�

V
+ n�

W
]dz:

This portfolio can be made risk free by the appropriate choice of n, speci�cally

by setting the dz term to 0:

n = ��
V
=�

W
:

Because it is risk-free the portfolio must earn the risk-free rate of return.

Therefore the capital appreciation on the portfolio plus its income stream

must equal the risk free rate times the investment cost:�
�
V
�
�
V

�
W

�
W

�
dt+

�
Æ
V
�
�
V

�
W

Æ
W

�
dt = r

�
V �

�
V

�
W

W

�
dt

Divide by �
V
dt and rearrange to conclude that

�
V
+ Æ

V
� rV

�
V

=
�
W
+ Æ

W
� rW

�
W

= �(S; t):

6The following notational conventions are used. �, � and Æ represent drift, di�usion

and payouts associated with random processes; subscripts on these variables identify the

process. V and W represent asset values, which are functions of the underlying state

variables and time; subscripts refer to partial derivatives.
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In other words, there is a function, �, which depends on S and t, that is

common to all assets whose values depend on S. � can be interpreted as the

market price of the risk in S.

To avoid arbitrage opportunities, any asset with value V that depends on

S must satisfy

�
V
+ Æ

V
= rV + ��

V

This is a fundamental arbitrage condition that is interpreted as saying that

the total return on V , �
V
+Æ

V
, equals risk free return plus a risk adjustment,

rV + ��
V
.

Ito's Lemma provides a way to evaluate the �
V
and �

V
terms. Speci�cally,

�
V
= V

t
+ �

S
V
S
+ 1

2
�
2
S
V
SS

and

�
V
= �

S
V
S
:

Combining with the arbitrage condition and rearranging yields

rV = Æ
V
+ V

t
+ (�

S
� ��

S
)V

S
+ 1

2
�
2
S
V
SS
: (10.6)

This is the fundamental di�erential equation that any asset derived from S

must satisfy, in the sense that it must be satis�es by any frictionless economy

in equilibrium.

It is worth exploring the market price of risk function, �, more carefully. �

is the market price of risk in S and therefore does not depend on the speci�c

terms of any asset derived from S. This arbitrage framework is consistent,

but more general than, the any speci�c market equilibrium such as the Cap-

ital Asset Pricing Model (CAPM). In the CAPM all assets have expected

excess return (over the risk free rate) that is proportional to the expected

excess return on the so-called market portfolio. The factor of proportional-

ity, called the beta, is equal to the covariance of the excess returns on the

asset and the market portfolio divided by the covariance of the market excess

return:

�
S
= �

SM
=�

2
M
:

Thus in the CAPM the following relationship holds

�
S
+ Æ

S
� rS = �

S
(�

M
� rM):
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(this assumes that the market portfolio is payout protected so Æ
M

= 0).

If we de�ne the market price of risk on the market portfolio to be �
M

=

(�
M
� rM)=�

M
, then in the CAPM the market price of risk on S will equal

�
S
= �

SM
�
M
;

where �
SM
� �

SM
=�

S
�
M

is the correlation between S and M . Thus, in the

CAPM, there is a single market price of risk, �
M
, and the market price of

any speci�c risk is �
M
times the correlation between the speci�c risk and the

market risk.

It is important to note that, in general, S may or may not be the price of

a traded asset. If it is the price of a traded asset then the arbitrage condition

applies to S itself, so

�
S
� ��

S
= rS � Æ

S
:

Furthermore, the value of any asset, V , which is derived from S, satis�es the

partial di�erential equation

rV = Æ
V
+ V

t
+ (rS � Æ

S
)V

S
+ 1

2
�
2
S
V
SS
:

On the other hand, if S is not the price of a traded asset, but there is a

traded asset or portfolio, W , that depends only on S, then the market price

of risk, �, can be inferred from the behavior of W :

�(S; t) =
�
W
+ Æ

W
� rW

�
W

;

where Æ
W

is the dividend ow acquired by holding W .

Example: Black-Scholes Formula

Consider a non-dividend paying (or payout protected) stock (Æ = 0), the

price of which follows

dS = �Sdt+ �Sdz;

where � and � are constants, so S follows a geometric Brownian motion

(sometimes denoted dS=S = �dt+�dz). The log di�erences, ln(S(t+�t))�
ln(S(t)), are normally distributed with mean (�� 1

2
�
2)�t and variance �2�t.

A derivative asset is de�ned such that its value, V (S; t), is a function of

the state variable S implying that

rV = V
t
+ rSV

S
+ 1

2
�
2
S
2
V
SS
:
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Suppose that the boundary condition is that V (S; T ) = max(0; S �K), for

some constant K and time T . This is the boundary condition for a European

call option on S with a strike price of K. A call option has a payout at time

T of S �K if S > K and 0 otherwise. It can be shown that

V (S; t) = S� (d)� e�r�K�
�
d� �

p
�
�

where � = T � t,

d =
ln(S=K) + r

�
p
�

+ 1
2
�
p
� ;

and � is the standard normal CDF:

�(x) =
1
p
2�

Z
x

�1
e
� 1

2
z
2

dz:

Some tedious algebra will demonstrate that

V
S
= � (d) ;

V
SS

=
� (d)

�S
p
�

and

V
t
= �

�S� (d)

2
p
�
� re�r�K�

�
d�

�
p
�

2

�
;

where

�(x) = �0(x) =
e
� 1

2
x
2

p
2�

(in the industry these are known as the delta, gamma and theta of the call

option and are used in hedging portfolios of stocks). Using these expressions

it is straightforward to verify that the partial di�erential equation above,

including the boundary condition, is satis�ed.
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10.2 Probability Distributions for Ito Processes

10.2.1 Transition Distributions

Obtaining a policy function (optimal control feedback function) is only one

of the goals of dynamic analysis. a topic taken up in the next chapter. An-

other important goal is to characterize the probability distributions of the

state and control variables. For this we will need to use some results from

the probability theory of stochastic processes. In particular, we will use the

Kolmogorov forward equation, which describes the evolution of the proba-

bility distribution as it moves forward in time from some initial condition.

This gives the transition density for any time horizon. By letting the time

horizon go to in�nity (assuming the process is stationary) we will obtain the

long-run transition density.

Consider an arbitrary Ito process

dS = �(S; t)dt+ �(S; t)dz:

We are interested in knowing

Prob[S
T
� bjS

t
] =

Z
b

�1
f(S

T
; T ;S

t
; t)dS:

Thus f represents the time t probability density function associated with S

at time T , given the time t value of S is S
t
.

The Kolmogorov forward equation is a partial di�erential equation that

the transition probability density function must satisfy:

0 =
@f(S; T )

@T
+
@�(S; T )f(S; T )

@S
� 1

2

@
2
�
2(S; T )f(S; T )

@S2

= f
T
+ (�

S
� �2

S
� ��

SS
)f + (�� ��

S
)f

S
� 1

2
�
2
f
SS
:

From the de�nition of the transition density function, f must have a degen-

erate distribution at T = t, i.e.,

f(S
t
; t;S

t
; t) = Æ(S

t
);

where Æ() is the Dirac function which concentrates all probability mass on a

single point. It is often the case, however, that one wants only the long-run

stationary distribution (assuming it exists), in which case the f
T
term equals

zero and the Kolmogorov equation reduces to a di�erential equation in S.
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To illustrate the use of the Kolmogorov equation, consider processes that

have Gaussian (normal) transition densities with mean M(T ) and variance

V
2(T ). The Gaussian density is

f(S; T ) =
1

p
2�V (T )

exp

�
�
(S �M(T ))2

2V 2(T )

�
:

with associated the partial derivatives:

f
S

= �
S �M
V 2

f

f
SS

=
1

V 2

�
(S �M)2

V 2
� 1

�
f

f
T

=

��
(S �M)2

V 2
� 1

�
V
0

V
+
S �M
V 2

M
0
�
f:

Substitute these de�nitions into the Kolmogorov equation and rearrange

terms:�
(S �M)2

V 2
� 1

��
V
0

V
�
�(S; T )2

2S2

�
�
S �M
V 2

(M 0 � �(S; T ))+�
S
(S; T ) = 0: (10.7)

(10.7) can be satis�ed when the drift term is linear in S and the variance

term is constant in S:

�(S; t) = �0(t) + �1(t)S

�(S; t) = �(t):

Substituting these expressions into (10.7) yields

�
(S �M)2

V 2
� 1

��
V
0

V
�
�
2(T )

2V 2

�
�

0
@(S �M)

�
S � M

0��0(T )
�1(T )

�
V 2

� 1

1
A�1(T ) = 0:

IfM satis�es M = (M 0��0(T ))=�1(T ), or equivalently,M 0 = �1(T )M +

�0(T ), this simpli�es to�
(S �M)2

V 2
� 1

��
V
0

V
�
�
2(T )

2V 2
� �1(T )

�
= 0:
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Notice that the second term in () does not involve S; setting it equal to zero

and rearranging yields

2V V 0 �
�
V

2
�0
= �

2(T ) + 2�1(T )V
2
:

The Kolmogorov equation will therefore be satis�ed if M(t) and V
2(t)

are selected to satisfy the linear di�erential equations

M
0 = �1(T )M + �0(T )�
V

2
�0
= 2�1(T )V

2 + �
2(T );

with boundary conditions that M(t) = S
t
and V 2(t) = 0. It can be readily

veri�ed (see Appendix ??) that the solutions to these di�erential equations

are

M(T ) =

R
T

t

�(�)�0(�)d� + �(t)S
t

�(T )

V
2(T ) =

R
T

t

�
2(�)�2(�)d�

�2(T )
;

where

�(T ) = exp

�
�
Z

T

�1(�)d�

�
:

10.2.2 Long-Run (Steady-State) Distributions

It is often not possible to �nd a closed form solution for the transition den-

sity. When the drift and di�usion terms are not functions of t, however,

there may be a long-run density that represents the limit of the transition

density as T ! 1. We say \may be" because many Ito processes, includ-

ing absolute and geometric Brownian motion, do not have long-run densities.

For example, the mean, variance or other moments of the transition densities

may become in�nite in the long-run and hence no stationary density exists.

Such is the case for absolute and geometric Brownian motion. On the other

hand, some processes reach an absorbing barrier with positive probability

and will have either discrete probability distributions (if they are absorbed

with probability one) or a mixture of discrete and continuous distributions.
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If a well de�ned long-run density exists, it will depend on S alone (not

on T ) and Kolmogorov forward equation becomes

d
2
�
2(S)�(S)

dS2
= 2

d�(S)�(S)

dS

where � is the long-run density function. Integrating both sides and rear-

ranging terms yields

d�
2(S)�(S)

�2(S)�(S)
= 2

�(S)

�2(S)
dS:

Integrating both sides again, taking the exponential of both sides and rear-

ranging terms yields

�(S) =
c

�2(S)
exp

�
2

Z
S

�(s)

�2(s)
ds

�
; (10.8)

where c is chosen to ensure that � integrates to 1.7

To illustrate, consider again the process in which �(S) = �(m� S) and
�(S) = �. The long run distribution is then equal to

�(S) = c exp

�
2

Z
S

�(m� s)
�2

ds

�

= c exp

�
2�mS � �S2

�2

�

= ~c exp

�
�
2�

2�2
(S �m)

2

�
;

which is recognizable as the normal distribution with mean m and variance

�
2
=2�.

Suppose instead that we are interested in an Ito process for which the log

of S has a N(m; v2=2�) long-run distribution. The density would then have

the form

�(S) /
1

vS
exp

�
�
�

v2

�
ln2(S)� 2m ln(S)

��
7See Merton (1975), Appendix B for further discussion. Merton discusses further reg-

ularity conditions on � and � (e.g., they are continuous and �(0) = �(0) = 0). He points

out that there is another solution to the Kolmogorov equation but that it must be zero

when the probability of the boundaries of the state space is zero. This discussion is also

related to the Feller classi�cation of boundary conditions in the presence of singularities

(see Bharucha-Reid, sec. 3.3 and Karlin and Taylor, chap.14).
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To match terms within the exponential we must have

2

Z
S

�(S)

�2(S)
ds = �

�

v2

�
ln(S)2 � 2m ln(S)

�
:

Di�erentiating both sides, this implies that

2
�(S)

�2(S)
= 2

�

v2

m� ln(S)

S
: (10.9)

Furthermore �2(S) must be proportional to S to satisfy the term outside the

exponential. Setting

�(S) = �(m� ln(S))

and

�
2(S) = v

2
S

satis�es (10.9). Thus, the Ito process

dS = � (m� ln(S)) dt+ v

p
Sdz

has a log-normal long-run distribution with ln(S) � N(m; v2=2�).8

The expression for the mode of the long-run distribution is easily found

from Equation (10.8). The mode, which maximizes the expression in (10.8)

can equivalently be found by maximizingZ
S

�(s)

�2(s)
ds� ln (�(S)) :

8It should be noted, however, that

dx = �(m� x)dt+ vdz

and the log of S, where

dS = �(m� ln(S))dt+ v
p
Sdz

do not have the same transition densities, even though they have the same long-run density.

To see this apply Ito's Lemma to the transformation y = ln(S) to obtain

dy = [�(m� y)� 1
2
v2]e�ydt+ ve

�
1
2
y
dz;

the transition density of which is not known.
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Di�erentiating both sides and setting the result equal to zero yields the con-

dition

�(S)� 1
2

d�
2(S)

dS
= 0:

The value of S that solves this can be found either analytically or numerically.

In economics, state variables are often constrained to be positive and to

exhibit mean reversion. A useful class of processes with these characteristics

has variance term �
2
S
2 and a drift term of the form

�Sf(S=m);

where f is a decreasing function with f(1) = 0 and with

lim
z!0

zf(z) = 0:

For such processes S = 0 is an absorbing barrier; once achieved the process

remains at zero. An absorbing barrier at zero is a feature of many economi-

cally interesting processes, including stock values, where a zero value can be

thought of as bankruptcy, and stocks of renewable resources, where a zero

value indicates extinction. Examples of the graph of the instantaneous mean

for such processes of the form

dS =
�

�

 
1�

�
S

m

�
�

!
S dt+ �S dz

were displayed in Figure 11.1 (page 328) for � = �1;�0:5; :::; 2. Figure 10.1
displays the corresponding long run probability distributions. Notice that,

although S = 0 is an absorbing barrier, the probability of achieving the

barrier is 0. Figure 10.2 displays the mean and mode for alternative values

of �.

Table 10.1 displays long-run density functions, expected values and modes

for several families of non-negative, mean reverting processes.

Example: Long-Run Sustainable Harvest

It is sometimes of interest to consider the long run consequences of control

policies using the stationary distribution. Consider a renewable resource such

as a �shery, the stock of which evolves according to

dS =

�
�

�
(1� (S=m)�)S � q(S)

�
dt+ �Sdz;
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where q(S) is the harvest rate. The biological growth process (with q(S) = 0)

is the mean reverting process discussed in the example on page 324.

For regulatory purposes it is of interest to know what harvest rate max-

imizes the long-run average harvest level. This would require maximization

over the function q(S); a simpler problem is to �nd the maximizing constant

proportional harvest rate (C(S) = cS), which requires maximization over

the constant c. This is facilitated by noting that, for this harvest function,

the long run average harvest is c times the long-run average stock level.

The mean term for the process can be put in the form

~�(S) =
~�

�

 
1�

�
S

~m

�
�

!
S

by setting ~� = (� � �c) and ~m = (1 � �c=�)1=�m. Using Table 10.1, the
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long-run average harvest is�
�
2
�
2

�

� 1
�

�
�
2(���c)
�
2
�
2

�
�
�
2(���c)
�
2
�
2 � 1

�

� cm:

Maximizing this with respect to c is equivalent to the following problem

max
c

ln �

�
2(�� �c)
�2�2

�
� ln �

�
2(�� �c)
�2�2

�
1

�

�
+ ln(c):
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The FOC for this problem can be written9

�
2

��2

�
 

�
2(�� �c)
�2�2

�
�  

�
2(�� �c)
�2�2

�
1

�

��
+
1

c
= 0;

which can be solved for c using a standard root-�nding algorithm (see Section

??). In the special case that � = 1 the solution has the particularly simple

form10

c =
�

2
�
�
2

4
: (10.10)

It is useful to note that for �2 > 2� the resource has a non-zero probability of

extinction even if no extraction occurs. Thus, in cases in which the possibility

of extinction occurs, the optimal sustainable (constant catch rate) policy is

to not catch at all.11

Values of the maximum sustainable average harvest rate for alternative �

and � are shown in Figure 10.3. The fact that the catch rate increases as �

decreases is explainable by recalling from Figure 11.1 that lower values of �

result in a stock that recovers from low levels more quickly and dies o� from

high stock levels more slowly.

Code Box 10.1: Maximal Sustainable Harvest Rate

9The psi function  (x) is the derivative of the log of the gamma function; see Abro-

mowitz and Stegun for details. The function �le PSI.M is provided to evaluate this func-

tion.
10It is helpful to note that  (x)�  (x � 1) = 1=(x� 1).
11Solutions for other values of � are possible, though tedious. For example, it can be

shown that for � = 1
2

c =
1

12

�
16�� 3�2 �

p
64�2 � 24��2 + 3�4

�

In the limiting case as � ! 0, the mean process approaches �S ln(m=S) � cS and the

mean harvest rate approaches

e

�
�
2

4�
�
c

�

�
cm

which is maximized at c = �. It can also be shown that as � ! 0, c approaches �=(1+�).
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10.3 End Notes

10.3.1 Bibliographic Notes

Many books contain discussions of Ito stochastic calculus. A useful refer-

ence with �nance related applications is Hull; this has a particularly good

discussion of arbitrage conditions. At a more advanced level see DuÆe; the

discussion of the Feynman-Kac formula draws heavily on this source.

A brief but useful discussion of steady-state distributions is found in Ap-

pendix B of Merton (1985). For more detail, including discussion of boundary

issues, see Karlin and Taylor, chapter 15. Early work in this area is contained

in several papers by Feller.

[INCOMPLETE]
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Exercises

1. Consider the continuous time optimal control problem of determining

the investment policy that maximizes the discounted stream of income:

max
x(t)

Z 1

0

f(x(t); t)

s:t:
dk(t)

dt
= x(t)� � � k(t)

x(t) � 0

k(0) = k0

where, in period t, k(t) is the level of capital stock, x(t) is the optimal

rate of investment, f(k; t) is the income generated from a capital stock

k, and � is the continuous rate of capital decay.

Formulate the Hamiltonian associated with the optimal control prob-

lem. Give an explicit economic interpretion the costate variable and

the Hamiltonian. Apply the K-K-T theorem to the maximization prob-

lem embedded in Pontryagin's Maximum Principle to show that for an

optimal path, x(t) � �(t) = 0 for all t. In light of the assertion just

proved, state and interpret the costate equation.

2. Consider an economy of price taking �rms facing adjustment costs and

a downward-sloping demand curve for their identical products. The

competitive rational expectations equilibrium for this economy is char-

acterized by the capital accumulation path that solves the following

dynamic optimization problem:

max
I(�)

Z 1

0

exp(�rt)fW (K)� pI �
1

2
aI

2gdt
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s:t: _K = I � �K
K(0) = K0

where

K(t) = capital stock at time t

I(t) = capital investment rate at time t (may be negative)

W (K) =

Z
F (K)

0

D(Q)dQ is consumer surplus

D(Q) = is the inverse demand function (D(Q) > 0; D0(Q) < 0)

F (K) = is the production function (F (0) = 0; F 0(K) > 0)

a > 0 is the cost of adjustment coeÆcient

r > 0 is the interest rate

p > 0 is the unit price of new capital

� > 0 is the depreciation rate of capital

Perform a comparative dynamics analysis of the steady-state equilib-

rium, using a phase diagram to illustrate your discussion. Linearize

about the steady state, deriving and interpreting the eigenvalues and

eigenvectors corresponding to the linear approximation. How does the

steady-state level of capital stock change as a, r, p, or � increase? How

does the speed of adjustment to steady-state change as a, r, p, or �

increase?

3. Suppose that a variable is governed by

dS = �Sdt+ �Sdz:

a) Show that

E0 [St] = S0e
�t

:

b) Use (a) to show that

E0

�Z
t

0

e
���

S
�
d�

�
= (1� e��t)

S0

�� �
:
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4. Pricing Bonds

De�ne P (t; T ) to be the current (time t) price of a pure discount bond

maturing at time T , i.e., a bond that pays $1 at time T . The price of

a bond of any maturity depends on the instantanous interest rate, r.

It can be shown that

P (r; t; T ) = Ê

�
exp

�
�
Z

T

t

r(�)d�

��
;

where the expectation is taken with respect to the risk adjusted process

governing the instanteous interest rate. Assuming that this process is

dr = �(r; t)dt+ �(r; t)dz

an extended version of the Feyman-Kac Formula implies that P is the

solution to

rP = P
t
+ �(r; t)P

r
+ 1

2
�
2(r; t)P

rr
;

subject to the boundary condition that P (r; T; T ) = 1.

Suppose that the instantaneous interest rate process is

dr = �(m� r)dt+ �dz:

Show that P has the form

P (r; t; T ) = A(t; T ) exp(�B(t; T )r)

and, in doing so, determine the functions A and B.

5. Given the setting of the previous problem, suppose we take the instan-

taneous interest rate process to be

dr = �(m� r)dt+ �
p
rdz:

Verify numerically that P has the form

P (r; t; T ) = A(t; T ) exp(�B(t; T )r)
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with

A(t; T ) =

�
2e(+a)(T�t)=2

( + a)(e(T�t) � 1) + 2

�2ab=�2

and

B(t; T ) =
2(e(T�t) � 1)

( + a)(e(T�t) � 1) + 2
;

where  =
p
a2 + 2�2.

6. A futures contract maturing in � periods on a commodity whose price

is governed by

dS = �(S; t)dt+ �(S; t)dz

can be shown to satisfy

V
�
(S; �) = (rS � Æ(S; t))V

S
(S; �) + 1

2
�
2(S; t)V

SS
(S; �)

subject to the boundary condition V (S; 0) = S. Here Æ is interpreted

as the convenience yield, i.e., the ow of bene�ts that accrue to the

holders of the commodity but not to the holders of a futures contract.

Suppose that the volatility term is

�(S; t) = �S:

In a single factor model one assumes that Æ is a function of S and t.

Two common assumptions are

Æ(S; t) = Æ

and

Æ(S; t) = ÆS:

In both cases the resulting V is linear in S. Derive explicit expressions

for V given these two assumptions.
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7. Continuing with the previous question, suppose that the convenience

yield is

Æ(S; t) = ÆS

where Æ is a stochastic mean-reverting process governed by

dÆ = �(m� Æ)dt+ �
Æ
dw;

with Edzdw = ���
Æ
. Furthermore, suppose that the market price of

the convenience yield risk is a constant �. Then the futures price solves

V
�
= (r � Æ)SV

S
+ (�(m� Æ)� �)V

Æ
+ 1

2
�
2
S
2
V
SS

+ ���
Æ
SV

SÆ
+ 1

2
�
2
Æ
V
ÆÆ
;

with V (S; 0)=S.

Verify that the solution has the form V = exp(A(�)� B(�)Æ)S and in

doing so derive expression for A(�) and B(�).

8. Suppose that

dS = �dt+ �dz;

where � and � are constants. Show that the transition probability

distribution is normal and determine it mean and variance.

9. Suppose that

dS = �(m� S)dt+ �dz

(in the notation of Section 10.2.1 �0 = �m and �1 = ��). Show

that the transition probability distribution is normal and determine it

mean and variance. Take limits as T ! 1 to determine the long-run

distribution.

10. Suppose that

dS = �e
��t

dz:

Show that the transition distribution is normal and determine it mean

and variance.

11. Verify the solutions for maximum average sustainable harvest rates for

� = 1, 1
2
and 0 given in Equation (10.10) and Footnote 11.



Chapter 11

Continuous Time Dynamic

Models: Theory

11.1 Stochastic Control

On an intuitive level, continuous time optimization methods can be viewed

as simple extensions of discrete time methods. In continuous time one re-

places the summation over time in the objective function with an integral

evaluated over time and the di�erence equation de�ning the state variable

transition function with a di�erential equation. For non-stochastic models,

the optimization problem is1

max
x(S;t)

Z
T

0

e
��t
f(S; x)dt+ e

��T
R(S(T )); s.t. dS = g(S; x)dt;

where S is the state variable (the state), x the control variable (the control),

f is the reward function, g the state transition function and R is a terminal

period \salvage" value. The time horizon, T , may be in�nite (in which case

R has no meaning) or it may be state dependent and must be determined

endogenously (see Section 11.2.3 on optimal stopping).

For non-stochastic problems, optimal control theory and its antecedent,

the calculus of variations, have become standard tools in economists math-

ematical toolbox. Unfortunately, neither of these methods lends itself well

to extensions involving uncertainty. The other alternative for solving such

1We cover here the more common discounted time autonomous problem. The more

general case is developed as an exercise.

316
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problems is to use continuous time dynamic programming. Uncertainty can

be handled in an elegant way if one restricts oneself to modeling that un-

certainty using Ito processes. This is not much of a restriction because the

family of Ito processes is rather large and can be used to model a great variety

of dynamic behavior (the main restriction is that it does not allow for jumps).

Furthermore, we will show that for deterministic problems, optimal control

theory and dynamic programming are two sides of the same coin and lead

to equivalent solutions. Thus, the only change needed to make the problem

stochastic is to de�ne the state variable, S, to be a controllable Ito process,

meaning that the control variable, x, inuences the value of the state:2

dS = g(S; x)dt+ �(S)dz:

To develop the solution approach on an intuitive level, notice that for

problems in discrete time, Bellman's equation can be written in the form

V (S; t) = max
x

�
f(S; x)�t +

1

1 + ��t
E
t
[V (S

t+�t
; t+�t)]

�
:

Multiplying this by (1 + ��t)=�t and rearranging:

�V (S; t) = max
x

�
f(S; x; t)(1 + ��t) +

E
t
[V (S

t+�t
; t+�t)� V (S; t)]
�t

�
:

Taking the limits of this expression at �t ! 0 yields the continuous time

version of Bellman's equation:

�V (S; t) = max
x

�
f(S; x; t) +

E
t
dV (S; t)

dt

�
: (11.1)

If we think of V as the value of an asset on a dynamic project, Bellman's

equation states that the rate of return on V (�V ) must equal the current

income ow to the project (f) plus the expected rate of capital gain on the

asset (E[dV ]=dt), both evaluated using the best management strategy (i.e.,

the optimal control). Thus, Bellman's equation is a kind of intertemporal

arbitrage condition.3

2A more general form would allow x to inuence the di�usion as well as the drift term;

this can be handled in a straightforward fashion but makes exposition somewhat less clear.
3It is important to note that the arbitrage interpretation requires that the discount

rate, �, be appropriately chosen (see Section 10.1.3 for further discussion).
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By Ito's Lemma

dV = [V
t
+ g(S; x)V

S
+ 1

2
�(S)2V

SS
]dt+ �(S)V

S
dz:

Taking expectations and dividing by dt we see that the term E
t
dV (S; t)=dt

can be replaced, resulting in the following form for Bellman's equation in

continuous time:4

�V = max
x

f(S; x) + V
t
+ g(S; x)V

S
+ 1

2
�
2(S)V

SS
: (11.2)

The maximization problem is solved in the usual way by setting the �rst

derivative equal to zero:

f
x
(S; x) + g

x
(S; x)V

S
= 0: (11.3)

Combining this with

�V = f(S; x) + V
t
+ g(S; x)V

S
+ 1

2
�
2(S)V

SS
(11.4)

results in two functional equations that must be solved for to yield the

two functions: the value function V (S; t) and the optimal policy function

x
�(S; t).5

If a solution to the maximization problem can be found of the form

x = x(S; V
S
)

it may be useful to form the concentrated Bellman equation:

�V = f(S; x(S; V
S
)) + V

t
+ g(S; x(S; V

S
))V

S
+ 1

2
�
2(S)V

SS
: (11.5)

Notice that the concentrated Bellman equation is non-linear whereas the

Bellman equation is linear in the value function and its partial derivatives.

The usefulness of the concentrated Bellman Equation will depend on whether

it is easier to solve a single nonlinear PDE or a linear PDE combined with a

functional equation not involving derivatives.

Notice that Bellman's Equation is not stochastic; the expectation opera-

tor and the randomness in the problem have been eliminated by using Ito's

Lemma. As with discrete time versions the state transition equation is in-

corporated in Bellman's equation. This e�ectively transforms a stochastic

4Also known as the Hamilton-Jacobi-Bellman equation.
5It may be puzzling why the max operator is dropped from 11.4 until it is noted that

11.3 must be satis�ed simultaneously, i.e., the optimized value of x(S; t) is used in 11.4.



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 319

dynamic problem into a deterministic one. If there are additional constraints

on the state variables they typically can be handled in the usual way (using

Lagrange multipliers and, for inequality constraints, Karush-Kuhn-Tucker

type conditions). Constraints on the control on somewhat more problematic

(they are discussed in the inventory example in Section 11.2.3).

In �nite time horizon problems, the value function is a function of time.

In in�nite time horizon problems, however, the value function becomes time

invariant, implying that V is a function of S alone and thus V
t
= 0. Thus

the Bellman's Equation simpli�es to

�V = max
x

f(S; x) + g(S; x)V
S
+ 1

2
�
2(S)V

SS
:

11.1.1 Relation to Optimal Control Theory

It is worth spending some time relating the dynamic programming approach

to optimal control theory. As stated previously, optimal control theory is

not naturally applied to stochastic problems but it is used extensively in

deterministic ones. The Bellman equation in the determinstic case is

�V = max
x

f(S; x) + V
t
+ g(S; x)V

S
;

where x is evaluated at its optimal level. Suppose we totally di�erentiate the

marginal value function with respect to time:

dV
S

dt
= V

St
+ V

SS

dS

dt
= V

St
+ V

SS
g(S; x):

Now apply the Envelope Theorem to the Bellman equation to determine that

�V
S
= f

S
(S; x) + V

tS
+ g(S; x)V

SS
+ V

S
g
S
(S; x):

Combining these expressions and rearranging yields

dV
S

dt
= �V

S
� f

S
� V

S
g
S
: (11.6)

This can be put in a more familiar form by de�ning � = V
S
. Then

(11.6), combined with the FOC for the maximization problem and the state

transition equation can be written as the following system

0 = f
x
(S; x) + �g

x
(S; x)
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d�

dt
= ��� f

S
(S; x)� �g

S
(S; x)

and

dS

dt
= g(S; x):

These relationships are recognizable as the Hamiltonian conditions from op-

timal control theory, with � the costate variable representing the shadow

price of the state variable (expressed in current value terms).6

The message here is that dynamic programming and optimal control the-

ory are just two approaches to arrive at the same solution. It is important

to recognize the distinction between the two approaches, however. Optimal

control theory leads to three equations, two of which are ordinary di�eren-

tial equations in time. Optimal control theory therefore leads to expressions

for the time paths of the state, control and costate variables as functions of

time: S(t), x(t) and �(t). Dynamic programming leads to expressions for

the control and the value function (or its derivative, the costate variable)

as functions of time and the state. Thus dynamic programming leads to

decision rules rather than time paths. In the stochastic case, it is precisely

the decision rules that are of interest, because the future time path, even

when the optimal control is used, will always be uncertain. For deterministic

problems, however, DP involves solving partial di�erential equations, which

tend to present more challenges than ordinary di�erential equations.

11.1.2 Boundary Conditions

The Bellman's equation expresses the optimal control in terms of a di�eren-

tial equation. In general, there will be many solutions, many of which are

useless to us. Furthermore, from a numerical point of view, without boundary

conditions imposed on the problem, it will be luck as to whether the derived

solution is indeed the correct one. Unfortunately, the literature on this topic

is incomplete and boundary conditions are often justi�ed by economic rather

than mathematical reasoning. For example, consider a case in which one is

extracting a resource with a stochastic price. Suppose also that the price

has an absorbing barrier at P = 0 (e.g., dP = �(m � P )Pdt + �Pdz). The

value of the inventory is a function of the level of the inventory and the price:

6See Kamien and Schwartz, pp. 151-152 for further discussion.
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V (I; P ). The reward function is Pq, where dI = �qdt, so the control q is

the rate of extraction. It is obvious that the stream of pro�ts generated by

selling from an inventory will be zero if the price is zero because, once zero

is reached, the price is zero forever and the inventory is therefore worthless.

Also, if the inventory reaches zero it is worthless. We see, therefore, that

V (I; 0) = V (0; P ) = 0:

We would still need to determine upper boundaries, which we discuss further

in the example on page 324.

Many problems in economics specify a reward function that has a sin-

gularity at an endpoint. Typical examples include utility of consumption

functions for which zero consumption is in�nitely bad. The commonly used

constant relative risk aversion family of utility functions

U(c) = (c� � 1)=�

(with ln(c) when � = 0) is a case in point. Again, economic reasoning would

suggest that if consumption is derived from a capital or resource stock and

that stock goes to zero, consumption must also go to zero and hence the

value of a zero stock, which equals the discounted stream of utility from that

stock must be �1. Furthermore, the marginal value of the stock when the

stock gets low becomes quite large, with V
S
= 1 as S ! 0. Although this

reasoning makes good sense from an economic perspective, it raises some

diÆculties for numerical analysis.

As a rule of thumb, one needs to impose a boundary condition for each

derivative that appears in Bellman's equation. For a single state prob-

lem, this means that there are two boundary conditions needed. In a two-

dimensional problem with only one stochastic state variable, we will need two

boundary conditions for the stochastic state and one for the non-stochastic

one. For example, suppose Bellman's equation has the form

�V = f(S;R; x) + g(S;R; x)V
R
+ �(S)V

S
+ 1

2
�
2
S
2
V
SS
:

To completely specify the problem we could impose a condition at a point

R = R
b
, e.g. V (S;R

b
) = H(S) and conditions at S = S and S = S, say

V
SS
(S) = V

SS
(S) = 0.

Like all rules of thumb, however, there are exceptions. The exceptions

tend to arise in singular problems, when the variance term vanishes at a
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boundary. For example, it may not be necessary to impose explicit boundary

conditions when the state variable is governed by

dS = �(S; x)dt+ �Sdz;

where �(0; 0) = 0 and x is constrained such that x = 0 if S = 0. Zero is

a natural absorbing state for this process, meaning that if S(t) = 0 then

S(�) = 0 for all � > t. In this case, it may not be necessary to impose

conditions on the boundary at S = 0.

An intuitive way to think of this situation is that a second order di�er-

ential equation becomes e�ectively �rst order as the variance goes to zero.

We may, therefore, not need to impose further conditions to achieve a well

de�ned solution. Feller devised a classi�cation scheme for di�usion processes

with singular boundaries (see discussion by Bharucha-Reid, sec. 3.3, and

Karlin and Taylor, Chap 15.). Although the literature is incomplete on this

issue, a rule of thumb is that, if a boundary is inaccessible, meaning that the

probability is zero that the process (naturally) will achieve the boundary, no

boundary condition need be imposed. Several examples we will discuss have

singular boundary conditions.

It is perhaps clear that in continuous time stochastic problems, de�n-

ing the appropriate di�erential equation is the easy part and specifying the

correct boundary conditions is the tricky part.

11.1.3 Choice of the Discount Rate

The choice of the appropriate discount rate to use in dynamic choice problems

has been a topic of considerable discussion in the corporate �nance literature.

The arbitrage theory discussed in the previous chapter has been fruitfully

applied to this issue. In particular, there is an equivalence between the

choice of a discount rate and the price of risk assigned to the various sources

of risk a�ecting the problem.

In general, if there is a market for assets that depend on a speci�c risk, S,

then arbitrage constrains the choice of the discount rate. If an inappropriate

discount rate is used, a potential arbitrage opportunity is created by either

overvaluing or undervaluing the risk of the project. To see this note that the

concentrated Bellman's equation for a dynamic project can be written

�V = Æ
V
+ V

t
+ �

S
V
S
+ 1

2
�
S
V
SS
;
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where Æ
V
= f(S; x�; t) and �

x
= g(S; x�; t). To avoid arbitrage, however,

(10.6) must hold. Together these relationships imply that

� = r + ��
S
V
S
=V = r + ��

V
=V (11.7)

In practice we can eliminate the need to determine the appropriate dis-

count rate by using the risk-free rate as the discount rate and acting as if the

process S has instantaneous mean of either

�̂
S
= �

S
� �

S
�
S

or

�̂
S
= rS � Æ

S
:

Which form is more useful depends on whether it is easier to obtain estimates

of the market price of risk for S, �
S
, or income stream generated by S, Æ

S
.

The latter, however, is only possible if S is itself the value of an asset, whereas

the former can be estimated (in principle) if there is some traded asset the

value of which depends on S.

Even if the project involves a non-traded risk, it may be easier to guess

the market price of that risk than to de�ne the appropriate discount rate.

For example, if the risk is idiosyncratic and hence can be diversi�ed away,

then a well-diversi�ed agent would set the market price of risk to zero. An

appropriate discount rate is particularly diÆcult to select when there are

multiple source of risk (state variables) because the discount rate becomes a

complicated function of the various market prices of risk.

Having said that, there may be cases in which the appropriate discount

rate is easier to set. For �rm level capital budgeting, the discount rate is

the required rate of return on the project and, in a well functioning capital

market, should equal the �rm's cost of capital. Thus the total return on the

project must cover the cost of funds:

�V = Æ
V
+ �

V
= rV + �

S
�
V
:

The cost of funds, �, therefore implicitly determines the market price of risk

(using 11.7).

Summarizing, there are three alternative cases to consider:

1. S is a traded asset for which

�
S
� ��

S
= rS � Æ

S
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2. S is not a traded asset but there is a traded asset the value of which,W ,

depends on S and the market price of risk can be determined according

to

� = (�
W
+ Æ

W
� rW )=�

W

3. S represents a non-priced risk and either � or � must be guessed

When S is a controllable Ito process, the payment stream, Æ(S; t), becomes

f(S; x; t) and the drift term, �(S; t), becomes g(S; x; t). There are three forms

of Bellman's equation:

A) rV = max
x

f(S; x; t) + V
t
+ V

S
(rS � Æ

S
) + 1

2
V
SS
�
2(S; t)

B) rV = max
x

f(S; x; t) + V
t
+ V

S
(g(S; x; t)� ��(S; t)) + 1

2
V
SS
�
2(S; t)

C) �V = max
x

f(S; x; t) + V
t
+ V

S
g(S; x; t) + 1

2
V
SS
�
2(S; t)

Any of the three forms can be used when S is a traded asset, although (A)

and (B) are preferred in that they rely on market information rather than on

guesses concerning the appropriate discount rate. When S is not a traded

asset but represents a risk priced in the market, (B) is the preferred form

although (C) can be used. If S represents a non-priced asset then either

form (B) or (C) may be used, depending on whether it is easier to determine

appropriate values for � or for �.

11.1.4 Examples

Example: Optimal Renewable Resource Extraction

Pindyck (1984) discusses the optimal extraction rate and in situ rents of a

renewable resource. Suppose that the stock of a resource, S, is governed by

the controlled stochastic process

dS = (B(S)� q)dt+ �Sdz;

where B(S) is a biological growth function and q is the harvest rate of the

resource. Typically, there will be a value, K, such that B(K) = 0. Also we

require that B(0) = 0, so 0 is an absorbing barrier of the process (there is
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no return from extinction) and that B0
> 0 for S 2 (0; K) and B0

< 0 for

S > K. K can be thought of as an environmental carrying capacity; the

resource tend to shrink once it becomes greater than K.

Suppose that marginal costs depend only on the stock of the resource

with the speci�c functional form

C(q) = c(S)q:

The total surplus (consumer plus producer) is

f(S; q) =

Z
q

0

D
�1(z)dz � c(S)q

With a discount rate of �, the Bellman Equation for this optimization prob-

lem is

�V = max
q

Z
q

0

D
�1(z)dz � c(S)q + (B(S)� q)V

S
+ 1

2
�
2
S
2
V
SS
:

The FOC for the optimal choice of q is

D
�1(q)� c(S)� V

S
(S) = 0;

or

q
� = D(c(S) + V

S
):

Notice that the FOC implies that marginal surplus of an additional unit of

the harvested resource is equal to the marginal value of an additional unit of

the in situ stock:

f
q
(S; q�) � D

�1(q�)� c(S) = V
S
(S):

To make further progress towards speci�c solutions we must parameterize

the demand, cost and growth functions. Following Pindyck, we assume that

the demand for the harvested resource is iso-elastic,

q = D(p) = bp
��
;

the cost function is

c(S) = cS
�
;
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and the biological growth function is of the form

B(S) =
�

�
S

 
1�

�
S

K

�
�

!

(the limiting case as � ! 0 is B(S) = �S ln(K=S)). The biological growth

function is mean reverting with S < K resulting in expected increases in

the stock and S > K resulting in expected decreases in the stock. The

parameters � and � determine the speed of the mean reversion. Other things

being equal, increasing � causes the size of positive changes to be greater and

negative changes to be smaller when the stock is far from K (for stock levels

nearK the value of � has little e�ect). These features are illustrated in Figure

11.1, which shows the mean function for alternative values of � (shown here

with � = 0:05 and K = 1). Features of the this process are discussed further

in Section 10.2.2 on page 304. [Note that the mean growth rate is maximized

at S = (1 + �)�1=�, which goes to 1=e as � ! 0]. The model is summarized

in Example Box 1.

The concentrated Bellman's Equation using these functional forms be-

comes7

�V = �
b

1� �
�
cS

�� + V
S

�1��
+
�

�
S
�
1� (S=K)�

�
V
S
+ 1

2
�
2
S
2
V
SS
:(11.8)

The boundary conditions for the problem require that the marginal surplus

must become in�nite at S = 0 and be zero as S goes to in�nity:

lim
S!0

V
S
(S) =1 and lim

S!1
V
S
(S) = 0:

As the stock gets small and hence the catch rate declines, the value of an

additional unit of the resource becomes in�nitely high because of the form

of the demand function. On the other hand, as the stock gets very large, an

additional unit of the resource has no value at all because, after a point, the

harvest of additional units does not justify the cost and those units merely

contribute to the crowding and hence the mortality of the resource.

Di�erential equations of the form (11.8) generally have no closed-form

solution and therefore it is necessary to solve them numerically. In the special

7Following Pindyck, we ignore the technicality that the integral de�ning the surplus

does not converge when the lower limit of integration is 0. The lower limit is treated as a

constant and ignored.
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Example Box 11.1: Optimal Harvest of a Renewable Resource

Problem:

max
q

Z 1

0

e
��t
f(S; q)dt

s.t.

dS = (B(S)� q)dt+ �Sdz

Variables:

q harvest (consumption) rate (control: quantity per period)

S resource stock (state: quantity)

Parameters:

B(S) biological growth function: B(S) = �S(1� (S=K)�)=�

D(p) demand function: D(p) = bp
��

c(S) marginal cost function: c(S) = cS
�

f(S; q) surplus function: f(S; q) = D
�1(z)dz � c(S)q

� discount rate

with B(0) = 0, B(K) = 0, B0(S) > 0 for 0 < S < K and B
0(S) < 0 for

S > K

Bellman's Equation:

�V = max
q

Z
q

0

D
�1(z)dz � c(S)q + (B(S)� q)V

S
+ 1

2
�
2
S
2
V
SS

= max
q

b
1=�

1� 1=�
q
1�1=� � cS�q

+

�
�

�
S
�
1� (S=K)�

�
� q
�
V
S
+ 1

2
�
2
S
2
V
SS

Boundary Conditions:

V
S
(0) =1

V
S
(1) = 0

Optimal Harvest Function:

q
� = b(cS� + V

S
)��:
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Figure 11.1

case that  = 1 + � and � = 1=(1 + �), however, an analytic solution is

possible. Speci�cally,

V (S) = ��
�

1

S�

+
�

�K�

�

where � solves

��
1+�

� � ��� c = 0;

and

� =

�
� + �

b

�

1 + �
�
��

2

2b

� 1+�

�

:

It is straightforward to solve for � using a standard root �nding solver (see

Section ??) and for some values of � an explicit solution is possible. Table



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 329

11.1 provides three special cases discussed by Pindyck that have closed form

solutions, including the limiting case as � ! 0.

Table 11.1: Known Solutions to the Optimal Harvesting Problem

� �  B(S) V (S) V
S
(S) q

�(S)

1 1
2

2 �S(1� S=K) ��1
�

1
S

+ �

�K

�
�1

S
2

p
c+ �1S

0 1 1 �S ln(K=S) b

�+�
ln(S) + �2

b

(�+�)S

b(�+�)

b+(�+�)c
S

� 1
2

2 1
2

2�S
�q

K

S

� 1
�
��3

�p
S + �

p
K

�

�
� �3p

S

b

(c� 1
2
�3)2

S

where

�1 = 2

�
b

� + �� �2

�2

0
@1 +

s
1 + c

�
�+ �� �2

b

�2

1
A

�2 =
1

�

 �
ln

�
b(� + �)

1 + (� + �)c

�
� 1

�
b+

� ln(K)� 1
2
�

� + �

!

�3 = c�

s
c2 +

2b

�+ � + �2=8

Example: Stochastic Growth

Cox, Ingersoll and Ross (1985) develop a growth model in which the produc-

tivity of capital, K, depends, both in mean and variance, on an exogenous

technology shock, denoted Y . Y is governed by

dY = (aY � b)dt + �

p
Y dz:

With c denoting current consumption (the control), the capital stock dynam-

ics are

dK = (�KY � c)dt+ �K

p
Y dz;

where the same Brownian motion, dz, that drives the technology shocks also

causes volatility in the productivity of capital. The social planner's optimiza-

tion problem is to maximize the present value of the utility of consumption,
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taken here to be the log utility function, using discount rate �. The problem

is summarized in Example Box 2.

Example Box 11.2: Optimal Growth

Problem:

max
c

Z 1

0

e
��t ln(c)dt

s.t.

dY = (aY � b)dt+ �

p
Y dz

dK = (�KY � c)dt+ �K

p
Y dz

Variables:

c consumption rate (control: quantity per period)

Y technology shock (state)

K capital stock (state: quantity)

Parameters:

ln(c) utility function

a; b; � technology shock dynamics

�; � capital productivity parameters

� discount rate

Bellman's Equation:

�V = max
c

ln(c) + V
K
(�KY � c) + V

Y
(aY � b)

+ 1
2
V
KK

�
2
K

2
Y + 1

2
V
Y Y
�
2
Y + V

KY
��KY

Optimal Consumption: c� = �K

Before discussing the solution it is useful to consider the form of the

technology assumed here. The expected growth rate in capital, ignoring

consumption, is aÆne in the capital stock and depends on the size of the

technology shock. The technology shock, in turn, has an expected growth
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pattern given by

dEY = (aEY � b)dt:

This di�erential equation can be solved for the expected value of Y :8

E0Yt = (Y0 � b=a)eat + b=a:

Roughly speaking, this implies that, for a given capital stock, the productiv-

ity of capital is expected to grow at a constant rate (a) if Y is greater than

b=a and to shrink at the same rate when Y is less than b=a (the model might

make more sense if we take a and b to be negative parameters; this would

imply that b=a is a stable point rather than an unstable one).

Let us guess that the solution is one with consumption proportional to

the capital stock

c = �K:

The FOC condition associated with the Bellman equation (see Example Box

2) tells us that the optimal c satis�es

1=c = V
K
:

If our guess is right it implies that V (K; Y ) = ln(K)=� + f(Y ), where f(Y )

is yet to be determined. To verify that this guess is correct, substitute it into

the Bellman equation:

�

�
ln(K)

�
+ f(Y )

�
= ln(�K) +

�
�

�
Y � 1

�
+ f

0(Y )(aY � b)�
�
2
Y

2�
+ 1

2
f
00(Y )�2Y:

Collecting terms and simplifying, we see that � = � and that f(Y ) solves a

certain second order di�erential equation.

Rather than try to solve f(Y ) directly, however, a more instructive ap-

proach is to solve for the value function directly from its present value form.

If our guess is correct then

V (K; Y ) = E

�Z 1

0

e
��t ln(�K)dt

�
=

ln(�)

�
+

Z 1

0

e
��t
E [ln(K)] dt(11.9)

8This is the same functional form as equation 10.3 on 290.
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The only diÆculty presented here is to determine the time path of E[ln(K)].

Using Ito's Lemma and c = �K

d ln(K) =
dK

K
� 1

2
�
2
Y dt =

��
� � 1

2
�
2
�
Y � �

�
dt+ �

p
Y dz:

Taking expectations and using the previously obtained result for EY yields

dE[ln(K)] =
��
� � 1

2
�
2
�
E[Y ]� �

�
dt

=
��
� � 1

2
�
2
� ��

Y0 � b

a

�
e
at + b

a

�
� �
�
dt

= [c0ae
at + c1] dt;

where

c0 =
� � 1

2
�
2

a

�
Y0 �

b

a

�

c1 =
b

a

�
� � 1

2
�
2
�
� �:

Integrating both sides and choosing the constant of integration to ensure that,

at t = 0, the expected value of E[ln(K
t
)] = ln(K0) produces an expression

for E[ln(K)] when c = �K:

E[ln(K)] = ln(K0)� c0 + c0e
at + c1t:

One step remains; we must use the formula for E[ln(K)] to complete the

derivation of the present value form of the value function. Recalling (11.9)9

V (K; Y ) =

Z 1

0

e
��t
E [ln(K)] dt+

ln(�)

�

=

Z 1

0

�
(ln(K0)� c0) e��t + c0e

(a��)t + c1te
��t�

dt+
ln(�)

�

=
ln(K0)� c0

�
+

c0

�� a
+
c1

�2
+
ln(�)

�
:

9If the third line is problematic for you it might help to note that

Z
te��tdt = �

e��t

�

�
t+

1

�

�
:
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Substituting in the values of c0 and c1 and rearranging we obtain an expres-

sion for the value function

V (K; Y ) =
ln(K)

�
+
� � 1

2
�
2

�(�� a)
Y +

1

�

 
ln(�)�

b(� � 1
2
�
2)

�(�� a)
� 1

!
:

(the subscripts on K and Y are no longer necessary). Notice that this does

indeed have the form ln(K)=� + f(Y ), with f(Y ) a linear function of Y .

We have therefore satis�ed the essential part of Bellman's equation, namely

verifying that c = �K is an optimal control. We leave as an exercise the

task of completing the veri�cation that Bellman's equation is satis�ed by

our expression for V (K; Y ).

Let's review the steps we took to solve this problem. First, we guessed

a solution for the control and then used the �rst order conditions from Bell-

man's equation to determine a functional form for V (K; Y ) that must hold

for this to be an optimal control. We then evaluated the present value form

of the value function for this control, thereby obviating the need to worry

about the appropriate boundary conditions on Bellman's equation (which we

have seen is a delicate subject). We were able to obtain an expression for

the value function that matched the functional form obtained using the �rst

order conditions, verifying that we do indeed have the optimal control. This

strategy is not always possible, of course, but when it is, we might as well

take advantage of it.

Example: Portfolio Choice

The previous examples had a small number of state and control variables.

In the example we are about to present, we start out with a large number of

both state variables and controls, but with a speci�c assumption about the

state dynamics, the dimension of the state is reduced to one and the control

to two. Such a reduction makes a problem from that is essentially impossible

to solve in general into one that is much closer to being solved. If a speci�c

class of reward functions is used, the problem can be solved explicitly (we

leave this as an exercise).

Suppose investors have a set of n assets from which to invest, with the

per unit price of these assets generated by an n dimensional Ito process

dP = �(P )dt+ �(P )dz;



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 334

Example Box 11.3: Portfolio Choice

Problem:

�V = max
C;w

U(C) +
�
Ww

>
�� C

�
V
W
+ 1

2
W

2
w
>�wV

WW
;

s.t.
P

i
w
i
= 1 and

dP = �Pdt+ �dz

dW =
�
Ww

>
�� C

�
dt+Ww

>
�dz:

w
i
= N

i
P
i
=W:

Variables:

p price (underlying n-dimensional state )

W wealth (state)

C consumption (control)

w share of weath in asset i (n-dimensional control)

Optimality Conditions:

U
0(C) = V

W
;

WV
W
�+W

2
V
WW

�w � �1 = 0;

and X
i

w
i
= 1;

Solution:

w = � + �(W )�; (11)

where

� =
��11

1>��11
;

� = ��1
�
��

1>��1�

1>��11
1

�

and

�(W ) = �
V
W

WV
WW

;
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where �(P ) is an n� k matrix valued function (i.e., � : <n ! <n�k), and dz
is a k-dimensional vector of independent Wiener processes. We assume that

� = ��
>, the instantaneous covariance matrix for prices, is non-singular,

implying that there are no redundant assets or, equivalently, that there is no

riskless asset.10 A portfolio can be de�ned in number of shares, N
i
, invested

in each asset or as the fraction of wealth held in each asset:

w
i
= N

i
P
i
=W:

Expressed in terms of N
i
the wealth process can be described by

dW =

nX
i=1

N
i
dP

i

whereas in terms of w
i
it is given by

dW=W =

nX
i=1

w
i
dP

i
=P

i
:

The latter expression is particularly useful if prices are multivariate geomet-

ric Brownian motion processes, so �(P ) and �(P ) are constants � and �,

implying that:

dW=W = w
>
�dt+ w

>
�dz;

i.e., that W is itself a geometric Brownian motion process. This means

that portfolio decisions can be expressed in terms of wealth alone, without

reference to the prices of the underlying assets in the portfolio. Geometric

Brownian motion, therefore, allows for a very signi�cant reduction in the

dimension of the state (from n to 1).

Consider an investor who draws o� a ow of consumption expenditures

C. The wealth dynamics are then

dW =
�
Ww

>
�� C

�
dt+Ww

>
�dz:

Suppose the investor seeks to maximize the discounted stream of satisfaction

derived from consumption, where utility is given by U(C) and the discount

rate is �. The Bellman's Equation for this problem is11

�V = max
C;w

U(C) +
�
Ww

>
�� C

�
V
W
+ 1

2
W

2
w
>�wV

WW
;

10the case in which a riskless asset is available is treated in an exercise.
11If prices were not geometric Brownian motion the coeÆcients � and � would be func-

tions of current prices and the Bellman's Equation would have additional terms represent-

ing derivatives of the value function with respect to prices, which would make the problem

considerably harder to solve.
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s.t.
P

i
w
i
= 1.

The FOC associated with this maximization problem are

U
0(C) = V

W
; (12a)

WV
W
�+W

2
V
WW

�w � �1 = 0; (12b)

and X
i

w
i
= 1; (12c)

where � is a Lagrange multiplier introduced to handle the adding-up con-

straint on the w
i
. A bit of linear algebra applied to (12b) and (12c) will

demonstrate that the optimal portfolio weight vector, w, can be written as a

linear combination of vectors, � and �, that are independent of the investor's

preferences:

w = � + �(W )�; (13)

where

� =
��11

1>��11
;

� = ��1
�
��

1>��1�

1>��11
1

�

and

�(W ) = �
V
W

WV
WW

;

This has a nice economic interpretation. When asset prices are generated

by geometric Brownian motion, a portfolio separation result occurs, much

like in the static CAPM model. Only two portfolios are needed to satisfy all

investors, regardless of their preferences. One of the portfolios has weights

proportional to ��11, the other to ��1(� � (�>�)1). The relative amounts

held in each portfolio depend on the investor's preferences, with more of the

�rst portfolio being held as the degree of risk averse rises (for smaller values

of �(W )). This is understandable when it is noticed that the �rst portfolio

is the minimum risk portfolio, i.e., � solves the problem

min
�

�
>��; s.t. �>1 = 1:
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Furthermore, the expected return on the minimum risk portfolio is �>�;

hence the term � � (�>�)1 can therefore be thought of as an \excess" re-

turn vector, i.e., the expected returns over the return on the minimum risk

portfolio.

The problem is therefore reduced to determining the two decision rule

functions for consumption and investment decisions, C(W ) and �(W ), that

satisfy:

U
0(C(W )) = V

W
(W )

and

�(W ) = �
V
W
(W )

WV
WW

:

Notice that the two fund separation result is a result of the assumption that

asset prices follow geometric Brownian motions and not the result of any

assumption about preferences. Given the enormous simpli�cation that it

allows, it is small wonder that �nancial economists like this assumption.

11.2 Free Boundary Problems

We have already seen how boundary conditions are needed to determine the

solution to dynamic models in continuous time. Many important problems

in economics, however, involve boundaries in the state space the location of

which must be determined as part of the solution. Such problems are known

as free boundary problems. The boundary will either mark the location

where some discrete decision is made or will represent a location at which

some transition takes place.12

Table 11.2 contains a classi�cation of di�erent free boundary problems

that have appeared in the economics literature. The most important dis-

tinction, both in understanding the economics and in solving the problem

numerically, is whether the boundary can be crossed. If the control is such

that it maintains a stochastic process within some region de�ned by the free

boundary, the problem is a barrier problem and we will solve a di�erential

equation in this region only. For example, the stock of a stochastic renewable

12In the physical sciences free boundary problems are also known as Stefan problems. A

commonly used example is the location of the phase change between liquid and ice, where

the state space is measured in physical space coordinates.
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resource can be harvested in such a way as to keep the stock level below some

speci�ed point. If the stock rises to this point, it is harvested in such a way

as to maintain it at the boundary (barrier control) or to some point below

the boundary (impulse control).

In barrier controls problems, the barrier de�nes a trigger point at which,

if reached, one maintains the state at the barrier by exactly o�setting any

movements across the barrier. Typically, such a control is optimal when there

are variable costs associated with exerting the control. In such a situation it

is only optimal to exert the control if the marginal change in the state o�sets

the marginal cost of exerting the control.

In impulse control problems, if the barrier is reached one takes an action

that instantaneously moves the state to a point inside the barrier. An (s; S)

inventory control system is an example of an impulse control in which the

state is the level of inventory, which is subject to random demand. When

the inventory drops to the level s, an order to replenish it to level S is issued.

Typically such controls are optimal when there is a �xed cost associated

with exerting the control; the control is exerted only when the bene�t from

exerting the control covers the �xed cost.

The other major type of free boundary problem arises when, in addition

to one or more continuous state variables, there is also a state that can

take on discrete set of values. In this case, boundaries represent values of the

continuous states at which a change in the discrete state occurs. For example,

consider a �rm that can either be actively producing or can be inactive (a

binary state variable). The choice of which state is optimal depends on a

randomly uctuating net output price. Two boundaries exist that represent

the prices at which the �rm changes from active to inactive or from inactive

to active (it should be clear that the latter must be above the former to

prevent the �rm from having to be continuously changing!).

An important special case of the discrete state problem is the so-called

optimal stopping problem; the exercise of an American option is perhaps the

most familiar example. Stopping problems arise when the choice of one of

the discrete state values is irreversible. Typically the discrete state takes on

two values, active and inactive. Choosing the inactive state results in an

immediate one time payout. An American put option, for example, can be

exercised immediately for a reward equal to the option's exercise price less the

price of the underlying asset. It is optimal to exercise when the underlying

asset's price is so low that it is better to have the cash immediately and

reinvest it than to wait in hopes that the price drops even lower.
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Another important special case is the so-called stochastic bang-bang prob-

lem. Such problems arise when it is optimal to exert a bounded continuous

control at either its maximum or minimum level. E�ectively, therefore, there

is a binary state variable that represents which control level is currently being

exerted. The free boundary determines the values of the continuous variables

at which it is optimal to change the binary state.

A couple points should be mentioned now and borne in mind whenever

considering free boundary problems. First, it is useful to distinguish between

the value function of a problem at an arbitrary choice of a boundary and the

optimal choice of the boundary. The value function (the present value of

the return stream) using an arbitrary barrier control is described by a sec-

ond order partial di�erential equation subject to the appropriate boundary

conditions; this is the message of the Feynman-Kac equation (see Section

10.1.2). The optimal choice of the boundary must then add additional re-

strictions that ensure its optimality. We therefore distinguish in Table 11.2

between a point, S� , on an arbitrary boundary and a point, S�, on the

optimal boundary. As we shall see in the next chapter, this distinction is

particularly important when using a strategy to �nd the free boundary that

involves guessing its location, computing the value function for that guess,

and evaluating a condition that should hold at the boundary.

Related to this is an understanding the number of boundary conditions

that must be applied. Here are some rules that should help you avoid

problems. First, any non-stochastic continuous state will have one partial

derivative and will require one boundary condition. On the other hand, any

stochastic state variable will have second order derivatives and will generally

need two boundary conditions.13 These statements apply to both arbitrary

and optimal controls.

For optimality we will require an additional boundary condition for every

parameter needed to de�ne the control. Thus if the control is de�ned by a

single point in the state space, we need one additional constraint to de�ne

the location of that point. If the control is a curve in a 2-dimensional state

space, we will need a single functional constraint, that will take the form

b(S; V; V
S
; V

SS
) = 0

(this will become a lot clearer after you've read through some examples).

The additional constraints can be derived formally by maximizing the value

13The exception to this rule of thumb involves processes that exhibit singularities at

natural boundaries, which can eliminate the need to specify a condition at this boundary
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function for an arbitrary barrier with respect to the location of the barrier,

which for single points means solving an ordinary maximization problem and

for functional barriers means solving an optimal control problem.

In all of these cases one can proceed as before by de�ning a Bellman's

Equation for the problem and solving the resulting maximization problem.

The main new problem that arises lies in determining the region of the state

space over which the Bellman's Equation applies and what conditions apply

at the boundary of this region. We will come back to these points so if they

are not clear now bear with us. Now let us consider each of the main types

of problem and illustrate them with some examples.

11.2.1 Impulse Control

Impulse and barrier control problems arise when the reward function includes

the size of the change in a state variable caused by exerting some control.

Such problems typically arise when there are transactions costs associated

with exerting a control, in which case it may be optimal to exert the control

at an in�nite rate at discrete selected times. In addition, the reward function

need not be continuous in �S.

The idea of an in�nite value for the control may seem puzzling at �rst

and one may feel that it is unrealistic. Consider that in many applications

encountered in economics the control represents the rate of change in a state

variable. The state is typically a stock of some asset measured in quantity

units. The control is thus a ow rate, measured in quantity units per unit

time. If the control is �nite, the state cannot change quickly; essentially the

size of the change in the state must grow small as the time interval over

which the change is measured gets small.

In many situations, however, we would like to have the ability to change

the state very quickly in relation to the usual time scale of the problem. For

example, the time it takes to cut down a timber stand may be very small

in relation to the time it takes for the stand to grow to harvestable size. In

such situations, allowing the rate of change in the state to become in�nite

allows us to change the state very quickly (instantaneously). Although this

makes the mathematics somewhat more delicate, it also results in simpler

optimality conditions with intuitive economic interpretations.

Consider the single state case in which the state variable governed by

dS = [�(S) + x]dt + �(S)dz
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and the reward function that is subject to �xed and variable costs associated

with exerting the control:

f(S;�S; x) =

8<
:

r
�(S)� c�(��S)� F� if x < 0

r
0(S) if x = 0

r
+(S)� c+(�S)� F+ if x > 0

with c�(0) = c
+(0) = 0. In this formulation there are �xed costs, F� and

F
+, and variable costs, c� and c+, associated with exerting the control, both

of which depend on the sign of the control. Typically, we would assume that

the �xed costs are positive. The variable costs, however, could be negative;

consider the salvage value from selling o� assets. To rule out the possibility

of arbitrage pro�ts (when the reward is increasing in the state: r
S
� 0), we

require that

F
+ + c

+(z) + F
� + c

�(�z) > 0

for any positive z; thereby preventing in�nite pro�ts to be made by contin-

uous changes in the state.

With continuous time di�usion process, which are very wiggly, any strat-

egy that involved continuous readjustment of a state variable would become

in�nitely expensive and could not be optimal. Instead the optimal strategy

is to change the state instantly in discrete amounts, thereby incurring the

costs of those states only at isolated instants of time. An impulse control

strategy would be optimal when there are non-zero �xed costs (F+
; F

�
> 0).

Barrier control strategies (which we discuss in the next section) arise when

the �xed cost components of altering the state are zero.

With impulse control, the state of the system is reset to a new position

(a target) when a boundary is reached (a trigger). It may be the case that

either or both the trigger and target points are endogenous and need to be

determined. For example, in a cash management situation, a bank manager

must determine when there is enough cash-on-hand (the trigger) to warrant

investing some of it in an interest bearing account as well as how much cash

to retain (the target). Alternatively, in an inventory replacement problem, an

inventory is restocked when it drops to zero (the trigger), but the restocking

level (the target) must be determined (restocking occurs inatantaneously so

there is no reason not to let inventory fall to zero). A third possability arises

in an asset replacement problem, where the age at which an old machine is

replaced by a new one must be determined (the trigger), but the target is

known (the age of a new asset).
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In any impulse control problem, a Feynman-Kac Equation governs the

behavior of the value function on a region where control is not being exerted.

The boundaries of the region are determined by value matching conditions

that equate the value at the trigger point with the value at the target point

less the cost of making the jump. Furthermore, if the trigger is subject to

choice, a smooth pasting condition is imposed that the marginal value of

changing the state is equal to the marginal cost of making the change. A

similar condition holds at the target point if it is subject to choice. For those

wishing a rigorous discussion and veri�cation of these points see Appendix

A.

Example: Asset Replacement (Cows revisited)

In Chapter ?? we examined a discrete time and state problem concerning the

optimal age to replace an asset. The speci�c example involved the number of

production cycles after which a milk cow should be replaced by a one-year old

cow. The value of the cow depends on her current and future yield potential,

which is described by y(A), where A is the state variable representing the

age of the cow. The value also depends on the net price of milk, P , and the

net cost of replacing the cow, c.

This is a deterministic problem in which the state dynamics are simply

dA = dt. The reward function is y(A)P . Thus the Bellman equation is

�V (A) = y(A)P + V
0(A):

This di�erential equation is solved on the range A 2 [1; A�], where A� is the

optimal replacement age. The boundary conditions are given by the value

matching condition:

V (1) = V (A�) + c

and the optimality (smooth pasting) condition:

V
0(A�) = 0

The smooth pasting condition may not be obvious, but it is intuitively rea-

sonable if one considers that a cow above the age A� should always be im-

mediately replaced. Once past the age of A�, therefore, the value function

is constant: V (A) = V (A�) = V (1) � c, for A � A
�. Also, no optimality

condition is imposed at the lower boundary (A = 1) because we are not free

to pick the age of the new cow.
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The Bellman equation is a �rst order linear di�erential equation and hence

can be solved analytically. In the speci�c case that y(A) is quadratic in A

the Bellman equation can be written as

V
0 = �V � P (a0 + a1A+ a2A

2)

which has solution

V (A) = ke
�A + �0 + �1A+ �2A

2
;

where k is a constant to be determined by the boundary conditions and the

�
i
can be veri�ed to satisfy the recursive conditions14

�2 = Pa2=�

�
i
= Pa

i
=�+ (i + 1)�

i+1=�; i = 1; 0:

To compute the values of the constant of integration, k, and the opti-

mal replacement age A� we impose the value matching and smooth pasting

conditions. Although there are two unknowns here (k and A�) it is easy to

eliminate the k term:

k =

P
n

i=0 �i

�
A
�i � 1

�
+ c

e� � e�A�

to obtain the single root condition

�e
�A

 
nX
i=1

�
i
(Ai � 1) + c

!
+
�
e
� � e�A

� nX
i=1

i�
i
A
i�1 = 0;

which can be solved using any univariate root �nding algorithm (see Section

??).

Figure 11.2 displays the value function, with the star representing A�. For

values above A� the value function is at: a cow that old would be immedi-

ately replaced by a one year old and hence the value function equals V (1) less

the replacement cost c. The dashed curve for values A > A
� represents the

continuation of the value function but has no meaningful interpretation. It

is included to make clear that V (A) reaches a minimum at A�, and therefore

V
0(A�) = 0.

14It is straightforward to verify that if y(A) were an nth order polynomial, the solution

would have the same form with

�n = Pan=� and �i = Pai=�+ (i+ 1)�i+1=� for i = n� 1; ::; 0:
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Figure 11.2

Before leaving this example, a potentially misleading interpretation should

be discussed. Although we have referred to the value function as represent-

ing the value of a cow of age A, this is not quite correct. The value function

represents the value of the assets used to milk a cow of age A. The distinc-

tion lies in the fact that the particular cow will be replaced at age A�, at

which point a new cow will be used. The current cow has value equal to the

discounted stream of returns it generates:Z
A
��A

0

e
�t

Py(A+ t)dt;

but the value function is

V (A) =

Z
A
��A

0

e
��t
Py(A+ t)dt+ e

��(A��A)
V (A�)
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Thus the cow at age A has value

V (A)� e��(A
��A)

V (A�):

Example: Timber Harvesting

In the previous example we examined an asset replacement problem in which

the asset generated a continuous stream of net returns. In some cases, how-

ever, the returns are generated only at the replacement time. Consider a

forest stand that will be clear-cut on a date set by the manager. The stand

is allowed to grow naturally at a biologically determined rate according to

dS = �(m� S)dt:

The parameter m represents a biological equilibrium point. When the stand

is cut, it is sold for a net return of pS. In addition, the manager incurs a cost

of c to replant the stand, which now has size S = 0. The decision problem

is to determine the optimal cutting/replanting stand size, using a discount

rate of �. The Bellman equation is

�V = �(m� S)V 0(S);

for S 2 [0; S�], where S� is determined by boundary conditions

V (S�) = V (0) + pS
� � c value matching

and

V
0(S�) = p smooth pasting.

If the stand starts at a size above S� it is optimal to cut/replant immediately.

Clearly the marginal value of additional timber when S > S
� is the net return

from the immediate sale of an additional unit of timber. Hence, for S > S
�,

V (S) = V (S�) + p(S � S�) and V 0(S) = p:

The Bellman equation can be rewritten in the form

V
0 =

�

�

V

m� S
;

the solution to which is easily veri�ed to be

V = k(m� S)��=�;
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where k is a constant of integration to be determined by the boundary condi-

tions. There are, therefore, two unknowns to be determined, k and S�. The

value matching condition allows us to solve for k in terms of S�:

k (S�) =
pS

� � c

(m� S�)��=� �m��=�

The optimal S� can be found using the smooth-pasting condition:

�

�p
k(S�)� (m� S�)�=�+1 = 0;

which can be solved with any one-dimensional root �nding solver (see Section

??).

The method is illustrated in Code Box 2. This code sets � = p = m = 1,

c = 0:15 and � = 1
2
. The optimal harvest stand size is 0.4291, indicating

that it is optimal to harvest the stand when it is less than one half its mature

size (m). The value function for this problem is shown in Figure 11.3. The

starred point represents the optimal harvest size. For stand sizes above this

point the value function is linear. The dashed lines extend the two pieces of

the value function beyond their domains to illustrate the value matching and

smooth pasting conditions.

Code Box 11.2: Timber Harvesting

It is convenient to normalize by setting � = p = m = 1, which amounts

to picking scales for time, stand size and money. When the parameters thus

normalized, the economically relevant range for the cost parameter is [0; 1];

for values greater than 1 it would never be optimal to harvest because the

revenues thus generated would not cover the replanting costs.15 The discount

rate can be greater or less than the maximal timber growth rate, � , however.

Comparative static exercises, therefore, need only examine the problem for

normalized parameter values of (�; c) on the interval [0;1)� [0; 1].16 Figure

11.4 is a contour plot of S� illustrating the behavior of the optimal harvest

stand size (as a fraction of the carrying capacity, m. It can be shown that

as �=� gets large (i.e., either the future is heavily discounted or the timber

grows very slowly), the optimal harvest size declines, reaching a lower bound

15This may not be true if the initial stand is larger than m, in which case it is optimal
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of c=p. This lower bound represents the point at which the returns from

cutting just o�set the cost of replanting. In this case the value function

becomes identically zero.

On the other hand, the optimal harvest size increases as c=p increases.

Intuitively, when replanting costs are high, it pays to delay harvest. Similarly,

as timber revenue increases, it pays to cut sooner. Notice that, for c = 0, we

to harvest immediately if S > c=p.
16With some algebraic manipulation one can show that, for the normalized problem,

V (0) = (1� S�)�V (S�)
and

V (S�) = (1� S�)=�:
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get the curious result that S� = 0, i.e., that timber is harvested as soon as

it is planted. In this case the value function is equal to p�m=�. Essentially,

when replanting costs are zero, one harvests continuously a crop that grows

at rate �m; the discounted present value of this continuous harvesting is thus

1=� times the instantaneous return p�m.

The timber harvesting problem with replanting is known as the Faust-

mann problem. A related problem, known as the Fisher problem, is the

determination of the optimal harvest time when the stand is abandoned af-

ter being clear-cut (i.e., it not replanted). The Fisher problem is an optimal

stopping problem and it solution di�ers only in the boundary conditions.

The smooth-pasting condition is, in fact, the same but the value matching

condition is simply

V (S�) = pS
�
:
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We leave as an exercise the veri�cation that the solution in this case is

S
� =

�
1�

1

1 + �=�

�
m

For the parameters used in the numerical example, this yields an optimal

cutting size of 2=3, which is larger than the optimal cutting size when re-

planting will occur. A comparison of the value functions are shown in Figure

11.5. With these parameters, the value of the stand with abandonment is less

than half the value with replanting, indicating that replanting is the preferred

management mode in this case. With other parameter values, however, this

need not be true, especially if the replanting cost, c, is high.
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The growth function �(m�S) used above was \nice" in allowing a simple
solution. It is somewhat limited in its ability to represent biological phenom-

ena. Simple extensions, however, do not necessarily have simple solutions



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 351

and we will need to resort to numerical methods. This is also true if ran-

domness is added to the growth process. For example, let us complicate the

growth process by de�ning the timber stand to be governed by

dS = �(m� S)(b+ S)dt+ �(S)dz:

It is reasonable to require that �(0) = 0, thereby preventing negative stand

sizes. An example is the square root process �(S) = �
p
S. Furthermore,

with b > 0, the instantaneous mean is quadratic with a positive root, m,

and a negative root �b; if b < m the mean is increasing for S < (m � b)=2,
whereas if b > m the mean is decreasing for all positive S. The Bellman's

equation is

�V = �(m� S)(b + S)V
0

(S) + 1
2
�
2
SV

00(S);

with the same boundary conditions as in the deterministic problem.17 We

defer discussion of numerical solution of this problem to the next chapter

(Section ??).

11.2.2 Barrier Control

In barrier control problems it is optimal to maintain the state within a region

by keeping it on the region's boundary whenever it would otherwise tend to

move outside of it and to do nothing when the state is in the interior of the

region. This, of course, assumes that the state is suÆciently controllable so

that such a policy is feasible. Barrier control problems can be thought of as

limiting cases of impulse control problems as the size of any �xed costs go to

zero. When this happens, the size of the jump goes to zero, so the trigger and

target points become equal. This represents something of a dilemma because

the value matching condition between the target and jump points becomes

meaningless when these points are equal. The resolution of this dilemma is

to shift the value matching condition to the �rst derivative and the smooth

pasting to the second derivatives.

Example: Capital Investment

Consider an investment situation in which a �rm can add to its capital stock,

17It might seem odd that introducing the second order term, VSS , in the stochastic

case does not require an additional boundary condition. This is a case, however, in which

a singularity exists at the boundary S = 0 because �(0) = 0 (see discussion in Section

11.1.2).
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K, at a cost of c per unit. The capital produces output at rate q(K) and the

net return on that output is P . Hence the reward function facing the �rm is

f(K;P; I) = Pq(K)� cI:

K is clearly a controllable state, with

dK = Idt:

P , on the other hand, is stochastic and is assumed to be governed by

dP = �Pdt+ �Pdz;

(geometric Brownian motion). Using a discount rate of �, the Bellman equa-

tion for this problem is

�V (K;P ) = Pq(K)� cI + IV
K
(K;P ) + �PV

P
(K;P ) + 1

2
�
2
P

2
V
PP

(K;P ):

There are, however, no constraints on how fast the �rm can add capital and

hence it is reasonable to suppose that, when it invests, it does so at an in�nite

rate, thereby keeping its investment costs to a minimum.

The optimal policy, therefore, is to add capital whenever the price is high

enough and to do so in such a way that the price remains on or below a curve

P
�(K). Below this curve no investment takes place and the value function

therefore satis�es

�V (K;P ) = Pq(K) + �PV
P
(KP ) + 1

2
�
2
P

2
V
PP

(KP ):

This is a simpler expression because, for a given K, it can be solved more or

less directly. It is easily veri�ed that the solution has the form

V (K;P ) = A1(K)P �1 + A2(K)P �2 +
Pq(K)

�� �

where the �
i
solves 1

2
�
2
�(� � 1) + �� � � = 0. It can be shown that �2 <

0 < 1 < �1. For the assumed process for P , 0 is an absorbing barrier so

the term associated with the negative root must be forced to equal zero by

setting A2(K) = 0 (we will henceforth drop the subscripts on A1(K) and �1).

At the barrier, the marginal value of capital must just equal the invest-

ment cost:

V
K
(K;P ) = c: (14)



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 353

Consider now the situation in which the �rm �nds itself above the barrier

(for whatever reason). The optimal policy is immediately to invest enough

to bring the capital stock to the barrier. The value of the �rm for states

above the barrier, therefore, is equal to the value at the barrier (for the same

P ) less the cost of the new capital:

V (K;P ) = V (K�(P ); P )� c(K�(P )�K)

where K�(P ) is the inverse of P �(K). This suggests that the marginal value

of capital when the state is above the barrier equals c and hence does not

depend on the current price. Thus, in addition to (14), it must be the case

that

V
KP

(K;P ) = 0: (15)

The barrier conditions (14) and (15) can be solved to show that

P
�(K) =

c(�� �)
(� � 1)q0(K)

and

A
0(K) = �

�
� � 1

c

�
��1�

q
0(K)

�� �

�
�

:

Notice that to determine A(K) and therefore to completely determine the

value function, we must solve a di�erential equation. The optimal policy,

however, does not depend on knowing V , and, furthermore, we have enough

information now to determine the marginal value of capital for any value of

the state (K;P ). Examples of the optimal trigger price curve are displayed

in Figure 11.6 using the parameters

� = 0

� = 0:2

� = 0:05

c = 1

and two alternative speci�cations for q(K):

q(K) = ln(K + 1)

q(K) =
p
K:
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11.2.3 Discrete State/Control Problems

We turn now to problems involving transitional boundaries. These can arise

because there are discrete states and the optimal time to move from one

state to another must be determined. For example, the investment problem

described above as an optimal stopping problem can be made more compli-

cated and realistic by allowing disinvestment. The problem then becomes

one of determining the value of the project if active, given that one can de-

activate it, together with the value of the project if inactive, given that it

can be activated. The state here is a stochastic variable that determines the

return stream of the activated project. The solution involves two boundaries,

one which determines when the project should be activated (given that it is

currently inactive), the other when it should be deactivated (given that it is
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currently active).18

The hallmark of transitional boundary problems is that there is a distinct

value function on either side of the boundary and there are conditions that

must apply to both of these functions at the boundary. Thus the bound-

ary and the value functions on both sides must all be simultaneously deter-

mined. For arbitrary speci�cations of the boundary, we require that the two

value functions are equal at the boundary (value matching) and for the op-

timal boundary, we require that their derivatives are equal at the boundary

(smooth-pasting or high contact).

Example: Entry/Exit

Let us develop in more detail the entry/exit problem mentioned above. A

�rm can either be not producing at all or be actively producing q units of a

good per period at a cost of c per unit . The state variable in this case is the

return per unit of output, P , which is a geometric Brownian motion process:

P
t
= �Pdt+ �Pdz:

We assume there are �xed costs of activating and deactivating of I and E,

with I + E � 0 (to avoid arbitrage opportunities). The value function is

V (P; Æ) = E

�Z 1

0

e
��t
Æ(P � c)dt

�
� the discounted costs of switching states;

where Æ = 1 if active, 0 if inactive.

For positive transition costs, it is reasonable that such switches should be

made infrequently. Furthermore it is intuitively reasonable that the optimal

control is to activate when P is suÆciently high, P = P
h
, and to deactivate

when the price is suÆciently low, P = P
l
. It should be clear that P

l
< P

h
,

otherwise in�nite transactions costs would be incurred. The value function

can therefore be thought of as a pair of functions, one for when the �rm is

active, V a, and one for when it is inactive, V i. The former is de�ned on the

interval [P
l
;1), the latter on the interval [0; P

h
]. On the interior of these

regions the value functions satisfy the Feynman-Kac equations

�V
a = P � c+ �PV

a

P
+ �

2
P

2
V
a

PP

�V
i = �PV

i

P
+ �

2
P

2
V
i

PP

: (16)

18More accurately, there is an additional, binary, state variable that is 0 if the project

is inactive and 1 if it is active. The control is binary, being equal to 0 if the project is

active and 1 if it is inactive.
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At the upper boundary point, P
h
, the �rm will change from being inactive to

active at a cost of I. Value matching requires that the value functions di�er

by the switching cost: V i(P
h
) = V

a(P
h
)�I. Similarly at the point P

l
the �rm

changes from an active state to an inactive one; hence V i(P
l
)�E = V

a(P
l
).

Value matching holds for arbitrary choices of P
l
and P

h
. For the optimal

choices the smooth pasting conditions must also be satis�ed:

V
i

P
(P

l
) = V

a

P
(P

l
)

and

V
i

P
(P

h
) = V

a

P
(P

h
):

For a geometric Brownian motion process the solution is known for arbi-

trary levels of P
l
and P

h
. The general form of the solution is

V
a = A

a

1P
�1 + A

a

2P
�2 + P=(�� �)� c=�

V
i = A

i

1P
�1 + A

i

2P
�2

where the four A terms will be pinned down by the boundary conditions and

the � solve

1
2
�
2
�(� � 1) + �� � � = 0:

It can be shown that, for � > 0, one of the � is negative and the other is

greater than one; de�ne �1 > 1 and �2 < 0. (It is easy to verify that these

solutions solve (16)).

Two of the unknown constants can be eliminated by considering the

boundary conditions at P = 0 and P =1. At P = 0 only V i is de�ned and

the geometric Brownian motion process is absorbed; hence V i(0) = 0, which

requires that Ai

2 = 0. For large P , only V a is de�ned and the probability

of deactivation becomes vanishingly small; hence the value function would

approach P=(�� �), requiring that Aa

1 = 0.

We still have two unknown constants to determine, Ai

1 and A
a

2 (we shall

henceforth refer to these as A1 and A2, as there is no possible confusion

concerning which function they belong to). The value matching conditions

require that,

V
a(P

h
)� I = A2P

�2

h
+ P

h
=(�� �)� c=�� I = A1P

�1

h
= V

i(P
h
)
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and

V
a(P

l
) = A2P

�2

l
+ P

l
=(�� �)� c=� = A1P

�1

l
� E = V

i(P
l
)� E:

The optimality conditions on P
l
and P

h
are that the derivatives of V a

and V i are equal at the two boundary locations:

V
a

P
(P ) = �2A2P

�2�1 + 1=(�� �) = �1A1P
�1�1 = V

i

P
(P )

at P = P
l
and P = P

h
. Taken together, the value matching and smooth

pasting conditions yield a system of four equations in four unknowns, A1,

A2, Pl and Ph.

The optimal value functions for a numerical example are illustrated in

Figure 11.7. Exogenous parameter values are

� � � I E c

0 0.2 0.05 5 6 1

The endogenous parameters are computed to be

�1 �2 A1 A2 P
l

P
h

2.1583 -1.1583 3.6299 2.2546 0.4182 2.1996

The optimal boundaries are noted in Figure 11.7 by dashed vertical lines.

At P
l
, V i is greater than V a by the amount E (the cost of switching from

active to inactive), whereas, at P
h
, V a exceeds V i by the amount I (the

cost of activating). While less obvious the slopes of the value functions are

equal at these two points, as required by the smooth pasting condition. The

�gure includes extensions of the value functions beyond the ranges for which

they are de�ned. Thus, although, illustrated, V a for points less than P
l
are

meaningless in the context of the problem. Similarly, for points above P
h
,

the function V
i is unde�ned. We show them to make the smooth pasting

conditions easier to see and to point out that the extensions would not satisfy

the natural boundary conditions on the problem at P = 0 and P =1.

Another useful way to view the problem is to graph the function G(P ) =

V
a(P )� V i(P ) (including the extensions of these functions). Several alter-

native G(P ) functions are displayed in Figure 11.8. The one labeled e = 1

corresponds to the parameters used to generate Figure 11.7. The smooth

pasting conditions ensure that the points P = P
l
and P = P

h
are stationary

points, which occur at the local minimum and maximum values of G(P ); the

value matching conditions ensure that G(P
l
) = �E and G(P

h
) = I.
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Consider now what happens as the switching costs get small, say by

multiplying I and E by a smaller and smaller number e. The e�ect on G(P )

is shown in Figure 11.8. As e! 0 the values of P
l
and P

H
collapse towards

each other and the local minimum and maximum values at these points

collapse towards zero. In the limit at e = 0 it is intuitive that P
l
= P

h
= P

�.

Furthermore, at P = P
� the function G(P ) must exhibit an inection point:

G
PP

(P �) = 0. If we impose the three conditions that V a and V i match up to

their second derivatives at P �, we can determine the values of A1, A2 and P
�.

Some tedious algebra will reveal the intuitively reasonable (perhaps obvious)

result that P � = c, i.e., the optimal policy is to be active if the current price

covers the variable costs (c) and to be inactive otherwise.
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Although far from a proof, we hope the intuition behind the limiting

process here is clear. The situation is much like passing from an impulse

control problem to a barrier control problem as the �xed costs of taking an

action go to zero. In that case, as here, the value matching and smooth

pasting conditions need to be supplemented with a zero condition on the

second derivative. As we shall see in the next section, a similar situation

holds in the case of bang-bang control problems.

MATLAB code to solve the entry/exit problem is displayed in Code Box

3. The code is relatively simple, the �rst section returning values of the

four residual equations and the second initializing variables and calling the

root �nding algorithm. There is one point of interest in the way the code

is written. We use the logs of P
l
and P

h
rather than their levels to prevent

negative values from causing the program to act badly (in MATLAB taking
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a non-integer power of a negative number results in a complex number which

it is better to avoid; the program will continue to run even though it is

producing garbage). Specifying the prices in logs does not guarantee that a

solution will be found, but it is far more robust to poor starting values than

if the levels are used.

Code Box 11.3: Entry/Exit Problem

Optimal Stopping Problems

The optimal stopping problem is in many ways the simplest of the free bound-

ary problems and arises in situations involving a once and for all decision.

For example, suppose a �rm is attempting to decide whether a certain project

should be undertaken. The value of the project depends on a stochastic re-

turn that the project, once developed, will generate. The state variable can

therefore be taken to be the present value of the developed project. Fur-

thermore, the �rm must invest a speci�ed amount to develop the project. In

this simple framework, the state space is partitioned into a region in which

no investment takes place (when the present value of the developed project

is low) and a region in which the project would be undertaken immediately.

The boundary between these two areas represents the value of the state, that,

if reached from below, would trigger the investment.

It is important to emphasize that optimal stopping problems, although

they have a binary control, di�er from other binary control problems in that

one value of the control pays out an immediate reward, after which no further

decisions are made. The one time nature of the control makes the problem

quite di�erent from and, actually, easier to solve than problems with binary

controls that can be turned on and o�.

Stopping problems in continuous time are characterized by a random state

governed by

dS = �(S)dt+ �(S)dz;

a reward stream f(S) that is paid so long as the process is allowed to continue

and a payout function R(S) that is received when the process is stopped (for

now we consider only in�nite time discounted time autonomous problems;

this will be relaxed presently).
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Another way to view the stopping problem is as a problem of choosing an

optimal time to stop a process. This leads to the following formal statement

of the problem

V (S) = max
t
�(S)

E

"Z
t
�(S)

0

e
���

f(S)d� + e
��t�(S)

R(S)

#
:

This value function is described by the di�erential equation

�V (S) = f(S) + �(S)V
S
(S) + 1

2
�
2(S)V

SS
(S) (17)

The optimal control problem consists of �nding the boundary between

the regions on which the process should be stopped and those on which it

should be allowed to continue. For the present, assume that there is a single

such switching point, S�, with S < S
� indicating that the process should

be allowed to continue. Thus the di�erential equation is satis�ed on [S; S�],

where S is a (known) lower bound on the state.

Any speci�c choice of a control consists of a choice of the stopping point,

say S� . At this point the value function, to be continuous, must equal the

reward

V (S� ) = R(S� );

known as the value-matching condition. The optimal choice of S� is deter-

mined by the smooth pasting condition

V
S
(S�) = R

0(S�);

the optimal choice of S� makes the derivative of the value function equal the

derivative of the reward function at the boundary between the continuation

and stopping regions. Intuitively, the value matching and smooth pasting

conditions are indi�erence relations; at S� the decision maker is indi�erent

between continuing and stopping. The value function must, therefore, equal

the reward and the marginal value of an additional unit of the state variable

must be equal regradless of whether the process is stopped or allowed to

continue.

This is the simplest of the optimal stopping problems. We can make them

more complex by allowing time to enter the problem either through non-

autonomous rewards, state dynamics or stopping payment or by imposing

a �nite time horizon. In the following example we examine a �nite horizon

problem.
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Example: Exercising an American Put Option

An American put option, if exercised, pays K�P , where K is the exercise or

strike price and P is the random price of the underlying asset, which evolves

according to

dP = �(P )dt+ �(P )dz:

The option pays nothing when it is being held, so f(P ) = 0. Let T denote

the option's expiration date, meaning that it must be exercised on or before

t = T (if at all).

In general, the option is written on a traded asset so we may use the form

of the Bellman's Equation that is discounted at the risk-free rate and with

mean function replaced by rP � Æ
P
(see Section 10.1.3):

rV = V
t
+ (rP � Æ

P
)V

P
+ 1

2
�
2(P )V

PP

on the continuation region, where Æ represents the income ow (dividend,

convenience yield, etc.) from the underlying asset. Notice that the constraint

that t � T means that the value function is a function of time and so V
t
must

be include in the Bellman's Equation. The solution involves determining the

optimal exercise boundary, P �(t). For puts P �(t) is a lower bound so the

continuation region on which the Bellman's Equation is de�ned is [P �
;1).

The boundary conditions for the put option are

V (P; T ) = max(K � P; 0) (terminal condition)

V (P �
; t) = K � P (value matching)

V
P
(P �

; t) = �1 (smooth-pasting)

and,

V (1; t) = 0:

Example: Machine Abandonment

Consider a situation in which a machine produces an output worth P per

unit time, where

dP = �Pdt+ �Pdz;

i.e., that P is a geometric Brownian motion process. The machine has an

operating cost of c per unit time. If the machine is shut down, it must



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 363

be totally abandoned and thus is lost. Furthermore, at time T , the machine

must be abandoned. At issue is the optimal abandonment policy for an agent

who maximizes the ow of net returns from the machine discounted at rate

�.

For the �nite time case de�ne � as equal to the time remaining until the

machine must be abandoned, so � = T �t and d� = �dt. The optimal policy
can be de�ned in terms of a function, P �(�); for P > P

�(�) it is optimal to

keep the machine running, whereas for P < P
�(�) it is optimal to abandon

it.

The current value of the operating machine satis�es the Bellman's equa-

tion

�V = P � c� V
�
+ �PV

P
+ 1

2
�
2
P

2
V
PP
:

and boundary conditions

V (P; 0) = 0 terminal condition

V
P
(1; �) = (1� e��� )=(�� �) natural boundary condition

V (P �
; �) = 0 value matching condition

V
P
(P �

; �) = 0 smooth pasting condition

The �rst boundary condition states that the machine is worthless when it

must be abandoned. The second condition is derived by considering the

expected value of a machine that is never abandoned:

V (P; �) =

�
P

�� �
�
c

�

��
1� e���

�
(the derivation of this result is left as an exercise; p. 312). An alterna-

tive upper boundary condition is that V
PP

(1; �) = 0. The remaining two

conditions are the value matching and smooth pasting conditions at P �(�).

Consider �rst the in�nite horizon case, which corresponds to the situation

that the machine never need be abandoned at any �xed time. It still may be

optimal to abandon it if the price is very low, because the odds that the price

rises suÆciently fast would not justify taking current losses from operating

the machine. Clearly, P �(1) must be less than c and will equal c when there

is no uncertainty (� = 0).

To determine P �(1) we solve the optimality conditions when V is not a

function of � . We have seen this problem before; its solution is

V (P ) = A1P
�1 + A2P

�2 + P=(�� �)� c=�;
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where � solves

1
2
�
2
�(� � 1) + �� � � = 0:

where A1 and A2 are constants to be determined by the boundary conditions.

For economically meaningful parameter values, one of the � is negative and

the other greater than 1. To satisfy the boundary condition as P !1, we

set A1 = 0, where �1 is the positive root.

The value matching and smooth pasting conditions are

AP
�(1)� + P

�(1)=(�� �)� c=� = 0

and

�AP
�(1)��1 + 1=(�� �) = 0;

which are solved by

P
�(1) =

(�� �)�
�(� � 1)

c

and

A = �
P
�(1)1��

(�� �)�

It should be noted that the ability to derive the in�nite horizon cuto� price

depends on the assumption that P is a geometric Brownian motion process.

Also, even in the geometric Brownian motion case, the �nite horizon problem

does not possess a closed-form solution and hence must be computed numeri-

cally. The nature of the problem is demonstrated in Figure 11.9. Notice that

P
�(0) = c, i.e., that as the date at which the machine must be abandoned is

reached, there is no point operating it unless it is currently pro�table to do

so.

11.2.4 Stochastic Bang-Bang Problems

Bang-bang control problems arise when both the reward function and the

state transition dynamics are linear in the control and the control is bounded.

In such cases it is optimal to set the control at either its upper or lower bound.

The control problem thus becomes one of dividing the state space into a set

of points at which the control is at its upper bound and a set at which it is at
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its lower bound. Equivalently, the problem is to �nd the boundary between

the two sets. If there is no cost to switching the control from the lower to

upper bound, we are in precisely the same situation that we discussed in the

last section when the switching costs go to zero. The optimal value function

and control is found in a similar fashion: de�ne a Feynman-Kac Equation on

each side of the boundary and require that the value functions on either side

of the boundary are equal up to their second derivative.

The general bang-bang problem has reward function of the form

f0(S) + f1(S)x

and state dynamics of the form

dS = [g0(S) + g1(S)x]dt+ �(S)dz:
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Furthermore the control is constrained to lie on a given interval:

x
a
� x � x

b
:

The Bellman's equation for this problem is

�V = max
x

f0(S) + f1(S)x+ [g0(S) + g1(S)x]VS +
1
2
�
2(S)V

SS

subject to the control constraint. The Karush-Kuhn-Tucker conditions for

this problem indicate that

x =

8><
>:

x
a

if V
S
(S) > �f1(S)

g1(S)

x
b

if V
S
(S) < �f1(S)

g1(S)

This suggests that there is a point, S�, at which

f1(S
�) + g1(S

�)V
S
(S�) = 0: (18)

Assuming that V
S
is decreasing in S, this suggests that we must solve for

two functions, one for S < S
� that solves

�V
a = f0(S) + f1(S)xa + [g0(S) + g1(S)xa]V

a

S
+ 1

2
�
2(S)V a

SS
(19)

and the other for S > S
� that solves

�V
b = f0(S) + f1(S)xb + [g0(S) + g1(S)xb]V

b

S
+ 1

2
�
2(S)V b

SS
: (20)

We will need three side conditions at S� to completely specify the problem

and to �nd the optimal location of S�, namely that

V
a(S�) = V

b(S�)

V
a

S
(S�) = V

b

S
(S�)

V
a

SS
(S�) = V

b

SS
(S�):

Combining these conditions with (19) and (20) we see that

[f1(S
�) + g1(S

�)V
S
(S�)]x

a
= [f1(S

�) + g1(S
�)V

S
(S�)] x

b
:

Clearly this can only be true when the term in the [ ]s is zero, which gives

us the optimality result (18).
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Example: Harvesting a Renewable Resource

To illustrate the problem consider a manager of a biological (renewable)

resource who must determine the optimal harvesting strategy. The state

variable, the stock of the resource, is stochastic, uctuating according to

dS = [�S(1� S)� hS]dt+ �Sdz;

where h, the control, is the proportional rate at which the resource is har-

vested. Assume that the per unit return is p and that 0 � h � C. The

manager seeks to solve

V (S) = max
h

E

�Z 1

0

e
��t
phSdt

�
:

In the notation of general problem, x
a
= 0, x

b
= C, f0(S) = 0, f1(S) = pS,

g0(S) = �S(1�S) and g1(S) = �S. The Bellman equation for this problem

is

�V = max
h

phS + (�S(1� S)� hS)V
S
+ 1

2
�
2
S
2
V
SS
:

The assumptions the stock dynamics imply that V (0) = 0 (once the stock

reaches zero it never recovers and hence the resource is worthless). At high

levels of the stock, the marginal value of an additional unit to the stock

becomes constant and hence V
SS
(1) = 0.

The �rst order conditions for this problem suggest that it is optimal to

set h = C if V
S
< p and set h = 0 if V

S
> p. The interpretation of these

conditions is straightforward: only harvest when the value of a harvested

unit of the resource is greater than an unharvested one and then harvest at

maximum rate. Thus the problem becomes one of �nding the sets

S
0 = fS : V

S
> pg

and

S
C = fS : V

S
< pg

where

�V � �S(1� S)V
S
� 1

2
�
2
S
2
V
SS

= 0 on S0

and

�V � (�S(1� S)� CS)V
S
� 1

2
�
2
S
2
V
SS
� pCS = 0 on SC
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The solution must also satisfy the boundary conditions at 0 and 1 and the

continuity conditions at any points S� such that V
S
(S�) = p. The fact that

�S(1� S) � hS is concave in S implies that S� will be a single point, with

S
0 = [0; S�) and SC = (S�;1).

Figure 11.10 illustrates a numerical approximation to the value function

for the problem with p = C = 1, � = 0:05, � = 0:1, � = 0:2. Figures

11.11 and 11.12 display the �rst and second derivatives of the value function.

Notice that the second derivative has a kink point at S�. This illustrates the

continuity of V and its �rst two derivatives when S
� is choosen optimally,

but also suggests that attempting to approximate the value function with

single smooth function will prove problematic. We return to this issue in the

next chapter (Section ??).
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The stochastic bang-bang problem generally requires numerical methods

to �nd the optimal switching point. Solutions to deterministic versions of the
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Example Box 11.4: Harvesting a Renewable Resource

Problem:

max
h

E

�Z 1

0

e
��t
phSdt

�

s.t.

dS = [�S(1� S)� hS]dt+ �Sdz;

and

0 � h � C

Variables:

h the proportional harvest rate (the control)

S the stock of the resource (the state)

Parameters:

�; �; �

Bellman equation

�V = max
h

phS + (�S(1� S)� hS)V
S
+ 1

2
�
2
S
2
V
SS
:

Boundary Conditions:

V (0) = 0

V
SS
(1) = 0

Optimality Conditions:

h = C if V
S
< p

h = 0 if V
S
> p

or

V
S
(S�) = p
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problem, however, can often be found directly or by simple application of a

root �nding algorithm. In the deterministic version, it can be shown that the

value matching condition implies the smooth-pasting condition. Also there

is no need to specify anything about the second derivative because it drops

out of the Bellman's Equation when � = 0. The optimal switching point can

be shown to satisfy the following condition (the proof is tedious so we've put

it in an appendix)

1

�

d

�
f0(S)� g0(S)

f1(S)
g1(S)

�
dS

+
f1(S)

g1(S)
= 0:

Notice also that the optimal trigger stock does not depend on the ca-

pacity constraint levels (x
a
and x

b
). There is a condition that we have not

mentioned, however, that is needed for a well de�ned solution. We require
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that

x
a
< �g0(S�)=g1(S�) < x

b
:

This condition ensures that setting x = x
a
when S < S

� will cause the stock

level to increase and setting x = x
b
when S > S

� will cause the stock to

decrease (technically, this says that S is a controllable process).

As an example consider the deterministic version of the optimal harvest-

ing problem. The reward function is

f(S; h) = phS

and the state is governed by

dS = [�S(1� S)� hS]dt:
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The optimality condition becomes

p
�

�

dS(1� S)
dS

� p = 0;

which is solved at S� = 1
2
(1 � �=�). Note that the maximum sustainable

yield occurs at S = 1
2
, so this rule suggests it is optimal to harvest to the

point that the sustained yield is less than maximum (so long as � > 0). Also

notice that when � < � we are in a situation where the stock grows so slowly

that it is optimal to drive it to extinction.19

Consider what happens as we let the capacity constraint, C get large.

In the limit, as C ! 1, the problem is transformed onto a barrier control

problem in which it is optimal to maintain the stock level at or below a free

boundary point P �. In this case it would only be necessary to determine

the value function below the boundary. This would satisfy the Bellman's

Equation

�V = �S(1� S)V
S
+ 1

2
�
2
S
2
V
SS

along with the boundary conditions:

V
S
(S�) = p

and

V
SS
(S�) = 0:

An intuitive way to see that these conditions are correct is to consider the

value of an addition unit of the resource when S � S
�. The additional unit

would be harvested immediately and generate a return of p. This means that

the value function is linear for S � S
� and hence the second derivative of the

value function must be zero. Continuity of the �rst and second derivatives

at S� then gives us the two boundary conditions.

Example: Production with a Learning Curve

More complicated bang-bang problems arise when there are two state vari-

ables. The free boundary is then a curve, which typically must be approxi-

mated. An example comes from Majd and Pindyck (1989), which develops

19To avoid misunderstanding we stress that this simple model only values the resource

for the money its harvesting brings; no normative implications about the social value of

this rule should be drawn.



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 373

a model of production with learning-by-doing. Up to some limit, a �rm can

reduce it marginal costs the more of a good it produces. It therefore has

an incentive to produce more than it otherwise might due to the future cost

reductions it thereby achieves. In their model, Majd and Pindyck assume

that marginal and average costs are constant at any point in time but decline

at an exponential rate in cumulative production until a minimum marginal

cost level is achieved. They derive an optimal production rule for a �rm

maximizing the present value of returns (price less cost times output) over

an in�nite horizon. The model is summarized in Example Box 5.

The Bellman equation (shown in the Example Box) uses the risk-free

discount, r, and the \risk-free" mean, r�Æ (see Section 10.1.3 for discussion).
Notice that Bellman's Equation is linear in output (x) and hence the solution

is of the bang-bang variety. The optimal control satis�es the KKT conditions:

P � C(Q) + V
Q
� � � 0, x � 0; and C.S.

and

x
c
� x � 0, � � 0; and C.S.

These conditions are satis�ed by choosing x to equal either 0 or x
c
according

to:

x = 0 if P + V
Q
< C(Q)

x = x
c
if P + V

Q
> C(Q):

Substituting the optimal production rate into the Bellman Equation and

rearranging yields

rV (P;Q) = (r � Æ)PV
P
(P;Q) + 1

2
�
2
P

2
V
PP

+max(0; P � C(Q) + V
Q
(P;Q))x

c
;

a partial di�erential equation.

The boundary conditions for this problem require that

V (0; Q) = 0

V
P
(1; Q) = x

c
=Æ

V (P;Q
m
) = �V (P ) (de�ned below)
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Example Box 11.5: Production with a Learning Curve

Problem:

max
x

Z 1

0

e
��t (P � C(Q))x dt

s.t.

dP = �P dt + �P dz price transition equation

dQ = x dt cumulative production identity

C(Q) =

�
ce
�Q if Q < Q

m

ce
�Qm = �c if Q � Q

m

marginal cost function

0 � x � x
c

control constraint

Variables:

P output price (uncontrolled state)

Q cumulative production (controlled state)

x current production rate (control)

Parameters:

� rate of expected price appreciation

� discount rate

r risk free interest rate

Æ rate of return shortfall (�� �)
c initial marginal cost

�c minimum marginal cost

Q
m

minimum production associated with minimum cost

x
c

maximum production rate (capacity)

Bellman's Equation:

rV = max
x

(P � C(Q))x + xV
Q
+ (r � Æ)PV

P
+ 1

2
�
2
P

2
V
PP

s.t. 0 � x � x
c

Optimal Control (bang-bang):

P � C(Q) + V
Q
< 0 ) x = 0

P � C(Q) + V
Q
> 0 ) x = x

c
:
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and that V , V
P
, and V

Q
be continuous. The �rst boundary condition reects

the fact that 0 is an absorbing state for P ; hence is P reaches 0, no revenue

will ever be generated and hence the �rm has no value. The second condition

is derived from computing the expected revenue if the �rm always produces

at maximum capacity, as it would be if the price were to get arbitrarily

large (i.e., if the probability that the price falls below marginal cost becomes

arbitrarily small). The derivative of the expected revenue is x
c
=Æ.

The third boundary condition is a \terminal" condition in Q. Once Q
m

units have been produced the �rm has reached its minimum marginal cost.

Further production decisions do not depend on Q nor does the value of the

�rm, V . An explicit solution can be derived for Q > Q
m
:

�V (P ) =

(
A1P

�1 if P � �c

A2P
�2 + P

Æ
� �c
r if P � �c;

where the � solve the quadratic equation

1
2
�
2
�(1� �) + (r � Æ)� � r = 0

and the A1 and A2 are computed using the continuity of �V and �V
P
.

The continuity requirements on the value function, even though the con-

trol is discontinuous, allow us to determine a free boundary between the

regions of the state space in which production will and will not occur. In-

tuitively, there is a function P �(Q) above which the price is high enough to

justify current production and below which no production is justi�ed.

Notice that below the free boundary the Bellman's equation takes a par-

ticularly simple form

rV (P;Q) = (r � Æ)PV
P
(P;Q) + 1

2
�
2
P

2
V
PP
;

which together with the �rst boundary condition (V (0; Q) = 0), is solved by

V (P;Q) = A1(Q)P
�1;

where A1(Q) is yet to be determined. Above the boundary, however, there

is no closed form solution. A1(Q); P
�(Q) and V (P;Q) for P � P

� must be

computed numerically. Figure 11.13 illustrates the problem using the base

parameters in Majd and Pindyck. Solution methods for this problem are

presented in the next chapter (Section ??).

The solution methods for this problem depend on being able to determine

the position of the free boundary. It is therefore worth exploring some of the
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consequences of the continuity conditions on V . First, consider the known

form of the value function below the free boundary and its derivative:

V (P;Q) = A1(Q)P
�1

V
P
(P;Q) = �1A1(Q)P

�1�1:

Eliminating A1(Q) yields

PV
P
(P;Q) = �1V (P;Q):

This condition holds everywhere below the boundary and at it as well. By the

continuity of the V and V
S
, it must also hold as the boundary is approached

from above.
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Another relationship that is useful to note concerns the continuity in the

Q direction. Below the boundary,

V
Q
(P;Q) = A

0
1(Q)P

�1:

The derivative of A1 is constant in P and may therefore be related to V
Q
as

it approaches the boundary from above, which is known from the Bellman

equation:

V
Q
(P;Q) = A

0
1(Q)P

�1

= (LV (P �
; Q)� (P � � C(Q)))

�
P

P �

�
�1

where the di�erential operator L is de�ned as

LV (P;Q) = rV (P;Q)� (r � Æ)PV
P
(P;Q)� 1

2
�
2
P

2
V
PP

(P;Q)

But we have already seen that P � � C(Q) + V
Q
(P �

; Q) = 0 and therefore

LV (P �
; Q) = 0. Summarizing these results, we see that

V
Q
(P;Q) =

�
� (P � � C(Q))

�
P

P
�

�
�1

for P � P
�

LV (P;Q)� (P � C(Q)) for P � P
�

It is clear in this expression that V
Q
is continuous at P �.20

20We should note that our treatment di�ers somewhat from that of Majd and Pindyck.

They discuss only two boundary conditions at P �(Q), value matching and P � � C(Q) +
VQ(P

�; Q) = 0. To see that this is insuÆcient, consider the following form for the value

function above the free boundary

V (P;Q) = A2P
�2 + P=Æ � P �(Q)=r

where

P �(Q) =
r e(Qm�Q) +  e�r(Qm�Q)

r + 
c

This function satis�es the Bellman equation, and the condition that

P � � C(Q) + VQ(P
�; Q) = 0:

Below the boundary the solution has the form A(Q)P �1 , so A(Q) is a free parameter that

is determined by the value matching condition (it can be shown that this is the optimal

boundary for the deterministic problem).
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11.3 End Notes

11.3.1 Bibliographic Notes

The renewable resource harvesting problem is from Pindyck, the optimal

investement from Cox, Ingersoll and Ross, the portfolio choice example from

Merton.

Free boundary problems are increasingly common in economics. Dixit

(1991), Dixit (1993) and Dixit and Pindyck contain useful discussions of

these problems. Several of the examples are discussed in these sources.

The original solution to the timber harvesting problem with replanting is

attributed to Martin Faustmann, who discussed it in an article published in

1849. Irving Fisher discussed the related problem with abandonment in The

Theory of Interest. For further discussion see Ga�ney (1960), Hershleifer

(1970). To our knowledge, the problem has never been discussed in print as

a stochastic continuous time problem.

The entry/exit example originates with Brennan and Schwartz and Mc-

Donald and Seigel.

Numerous authors have discussed renewable resource management prob-

lems. The bang-bang formulation is discussed most fully in a series of papers

by Ludwig, where detailed proofs can be obtained. The proof in the appendix

to this chapter is modeled after a similar proof in Ludwig (19??).

The cow replacement examples originate with the authors.
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[INCOMPLETE]

Appendix A: Deriving the Boundary Conditions for Re-

setting Problems

It is instructive to view the resetting problem from another perspective. In a

simple resetting problem an asset is replaced at a discrete set of times when

S = S
�, at which point a reward, f(S�) is obtained. Let us de�ne �(S; S�)

to be the (random) time until the state �rst hits S�, given that it is now

equal to S. The �rst time the state hits S� a reward worth f(S�)e���(S;S
�)

(in current units of account) will be generated and the state is reset to 0.

The time elapsing after a resetting until the state next hits S� depends on

a random variable that has the same distributional properties as �(0; S�)

and is independent of previous hitting times (by the Markov property). The

expected discounted rewards (i.e., the value function) can be therefore be

written as

V (S;S�) = f(S�)E
�
e
���(S;S�)� 1X

i=0

�
E
�
e
���(0;S�)��i

=
f(S�)E

�
e
���(S;S�)

�
1� E [e���(0;S

�)]
:

To simplify the notation, let

�(S; S�) = E
�
e
���(S;S�)�

;
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so the value function is

V (S;S�) =
f(S�)�(S; S�)

1� �(0; S�)
:

From the de�nition of � it is clear that �(S�; S�) = 0 so �(S�; S�) = 1. Hence

the boundary condition that

V (S�;S�) =
f(S�)

1� �(0; S�)

Combining this with the lower boundary condition

V (0;S�) =
f(S�)�(0; S�)

1� �(0; S�)

leads to the value matching condition that

V (S�;S�) = V (0;S�) + f(S�):

Notice that value matching does not indicate anything about the opti-

mality of the choice of S�. One way to obtain an optimality condition is to

set the derivative of V (S; S�) with respect to S� equal to zero. After suitable

rearrangement the FOC is, for evert S,

f
0(S�)�(S; S�) + f(S�)

�
@�(S; S�)

@S�
+

�(S; S�)

1� �(0; S�)
@�(0; S�)

@S�

�
= 0: (21)

In order to show that this is equivalent to the smooth pasting condition we

will use two properties of �. First, �(S�; S�) is identically equal to 1, so

dS

dS�

����
S=S�

= 1:

This implies that

d�(S�; S�)

dS�
=
@�(S�; S�)

@S
+
@�(S�; S�)

@S�
= 0

and hence that

@�(S�; S�)

@S
= �

@�(S�; S�)

@S�
:

The second fact, a result of the Markov assumption, is that

�(S; S� + dS
�) = �(S; S�)�(S�; S� + dS

�):



CHAPTER 11. CONTINUOUS TIME MODELS: THEORY 381

taking limits as dS� ! 0 we see that

@�(S; S�)

@S�
= �(S; S�)

@�(S�; S�)

@S�
:

If we evaluate (21) at S = S
� and rearrange, it is straightforward to see

that

f
0(S�) = �f(S�)

�
@�(S�; S�)

@S�
+

�(S�; S�)

1� �(0; S�)
@�(0; S�)

@S�

�

= �f(S�)
�
1 +

�(0; S�)

1� �(0; S�)

�
@�(S�; S�)

@S�

= �
f(S�)

1� �(0; S�)
@�(S�; S�)

@S�

=
f(S�)

1� �(0; S�)
@�(S�; S�)

@S

=
@V (S�; S�)

@S

which is the desired result.

Appendix B: Deterministic Bang-Bang Problems

The general form for a deterministic bang-bang type problem has a reward

function

f0(S) + f1(S)x

state dynamics

dS = [g0(S) + g1(S)x]dt

and control constraint

x
a
� x � x

b
:

Suppose we use a control, not necessarily optimal, with S
� as a switching

point, e.g., set x = x
a
for S < S

� and x = x
b
for S > S

� .21 At S = S
� we

21This assumes that the state is growing when xa is used and is shrinking when xb is

used. It is a simple matter to reverse these inequalities.
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choose x in such a way that dS=dt = 0. Summarizing, de�ne

x(S; S� ) =

8><
>:

x
a

if S < S
�

�g0(S)
g1(S)

if S = S
�

x
b

if S > S
�

;

with x
a
< �g0(S� )=g1(S

�) < x
b
. The value function satis�es the di�erential

equation

V (S; S� ) =
1

�

�
f0(S)+f1(S)x(S; S

� )+
h
g0(S)+g1(S)x(S; S

� )
i
V
S
(S; S� )

�
;(22)

which, evaluated at S = S
� , yields

V (S�

; S
� ) =

1

�

�
f0(S

�)� f1(S� )
g0(S

�)

g1(S�)

�
: (23)

In spite of the discontinuity of the control at S� , the value function is con-

tinuous, as is readily apparent by writing it as

V (S; S� ) =

Z 1

0

e
��t (f0(S) + f1(S)x(S; S

� )) dt;

and noting that as S approaches S� from below (above), the amount of time

during which the control is set at x
a
(x

b
) goes to 0.

The continuity of V can be used to demonstrate the continuity of V
S
(S; S� )

at S = S
� , and to thereby determine its value:22

V
S
(S�

; S
� ) = �

f1(S
� )

g1(S� )
: (24)

22To determine the limit from below, note that continuity of V implies that

lim
S%S�

V (S; S� ) = lim
S%S�

1

�
[f0(S) + f1(S)xa + (g0(S) + g1(S)xa) VS(S; S

� )]

=
1

�

�
f0(S

� ) + f1(S
� )xa + (g0(S

� ) + g1(S
� )xa) lim

S%S�
VS(S

� ; S� )

�

=
1

�

�
f0(S

� )�
f1(S

� )g0(S
� )

g1(S� )

�
� V (S� ; S� ):

Rearranging, we see this expression implies that

(g0(S) + g1(S)xa) lim
S%S�

V (S; S� ) = �
�
f1(S)xa +

f1(S
� )g0(S

� )

g1(S� )

�

= �
f1(S

� )

g1(S� )
(g0(S

� ) + g1(S
� )xa)

The same exercise can be applied to solving for the limit from below.
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So far, however, we have only considered the value function for the control

S
� . To choose the control optimally, we must pick S� to satisfy

V
S
� (S; S� ) = 0:

For S 6= S
� we can di�erentiate (22) to see that

V
S
� (S; S� ) =

1

�

h
f1(S)+g1(S)VS(S; S

� )
i
x
S
� (S; S� )+g1(S)x(S; S

� )V
SS

� (S; S� ):(25)

However, except at S = S
� , x

S
� (S; S� ) and V

SS
� (S; S� ) are zero and hence we

only need to set this derivative to zero at S = S
� . (25) is not well de�ned at

S = S
� because the derivative x

S
� (S; S� ) is unde�ned at this point. Instead

we use the relationship

dV (S�

; S
�)

dS�

= V
S
(S�

; S
� ) + V

S
� (S�

; S
� ):

Rearranging this and using (23) and (24) we get

V
S
� (S�

; S
� ) =

dV (S�

; S
�)

dS�

� V
S
(S�

; S
� )

=
1

�

d

�
f0(S

� )� g0(S� )
f1(S

� )

g1(S� )

�
dS�

+
f1(S

�)

g1(S� )

Thus the optimal switching points are found by solving for the roots of this

expression.

Ludwig (1979) discusses a case in which there are multiple roots, leading

to a situation in which V
S
may be discontinuous at a root; this root represents

an unstable equilibrium at which x is unde�ned.

Exercises

1. Optimal Sales from an Inventory

What follows is an example of a problem with a continuous control

that is bounded below by zero. It is not explicitly bounded above but

a constraint on the state leads to an optimal control of the bang-bang

form (bang-bang problems are discussed further on page 364). Because

of the nature of the state transition and the state constraint, the con-

trol problem is essentially identical to an optimal stopping problem.

Speci�cally, a �rm with an irreplaceable inventory �nds it optimal to
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either hold the inventory or sell it completely all at once. The sell deci-

sion is triggered by the price of the good; if the price is high enough it

is optimal to sell. The main problem arises in determining the trigger

price.

Consider a situation in which an agent has an inventory of S0 units

of a good in inventory, all of which must be sold within T periods.

It costs k dollars per unit in inventory per period to store the good.

In this problem there is a single control, the sales rate q, and two

state variables, the price P and the inventory level S. The price is an

exogenously given Ito process:

dP = �(P; t)dt+ �(P; t)dz:

The amount in storage evolves according to

dS = �qdt:

Furthermore the control must be nonnegative (i.e., the agent cannot

purchase additional amounts)

q � 0

and the inventory level must be non-negative:

S � 0:

The problem can be written as

V (S; P; t) = max
q(S;P;t)

E
t

Z
T

t

e
�rt (qP � kS) dt

subject to the above constraints.23

Bellman's equation for this problem is

�V = max
q

(qP � kS) + V
t
+ V

P
�+ 1

2
V
PP
�
2 � V

S
q;

23In addition to the usual regularity conditions this problem requires a constraint on the

expected growth rate of price (if it grows too fast it always pays to hold). Also Et[Pt+�tjPt]
must be an increasing function of Pt.
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subject to the non-negativity constraints on S and q.

The constraint on the state variable S is problematic; it clearly con-

strains the control but it does so in following way:

q � 0 if S = 0:

Given that q � 0, this implies that

q = 0 if S = 0:

To impose this constraint we introduce a multiplier, � that exhibits

complementary slackness with S. The optimality conditions can then

be written

P � V
S
� � � 0; q � 0; C.S.

S � 0; � � 0; C.S:

There are three possible solutions to this problem:

P < V
S
) q = 0

P = V
S
) indi�erence

P > V
S
) q =1 if S > 0

Thus the optimal control is to either sell all of the inventory (if P >

V
S
) or to sell nothing (if P < V

S
). Only when P = V

S
is the agent

indi�erent between holding and selling (in which case it is harmless to

assume that the inventory would be sold).

There is, therefore, a region in which it is optimal to hold onto inventory

bounded by a curve, P �(t), at which it is optimal to sell the whole

inventory. Within the holding region the value function satis�es the

PDE

rV = �k + V
t
+ �(P; t)V

P
+ 1

2
�
2(P; t)V

PP
:

Furthermore, it is easy to see that the value function is proportional

to the level of inventory; hence it is harmless to normalize by setting
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S0 = 1. The value function is then a function of the price level and

time alone.

At the boundary the value matching and smooth-pasting conditions

hold. Consider that, when the inventory is sold it worth P per unit.

Hence the value-matching and smooth-pasting conditions are

V (P �(t); t) = P
�(t)

and

V
P
(P �(t); t) = 1:

If the inventory must be sold on or before a �xed date, T , an additional

terminal boundary condition requires that

V (P; T ) = P:

There may, in addition, be a lower boundary constraint, for example

at P = 0. If zero is an absorbing barrier for P then V (0) = 0.

2. Show that a utility function of the form U(C) = (C1� � 1)=(1 �
) implies an optimal consumption rule of the form C(W ) = aW .

Determine the constant a and, in the process, determine the value

function and the optimal investment rule �(W ).

3. Suppose that there are only two assets available to investors, which are

governed by

dR = rRdt

and

dS = �Sdt+ �Sdz;

i.e., R is a risk-free and S a risky asset. The controls for the investors

problem are C, the consumption rate, and �, the fraction of wealth

held in the risky asset. Write the Bellman's Equation associated with

this problem and derive expressions for the optimal controls.
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4. Expand the analysis of the resetting problem that begins on page 379

to include the case in which a ow of payments f(S) is received. In par-

ticular, show that value matching holds for any choice of the resetting

state and that smooth pasting holds for the optimal choice.

5. In the general optimal stopping problem the value function can be

written as

V (S;S�) = E

"Z
�(S;S�)

0

e
��t
f(S

t
)dt

#
+ E

�
e
���(S;S�)�

R(S�);

where �(S; S�) is the �rst time the state equals S� given that it equals

S at time 0. Show that value matching holds for arbitrary S� and the

smooth pasting holds for the optimal S�.

6. Verify that the optimal harvest stand size in the timber management

problem given on page 350 is correct.

7. Consider the manager of a cash account subject to random deposits

and withdrawals. In the absense of active management the account is

described by absolute Brownian motion

dS = �dt+ �dz:

The manager must maintain a positive cash balance. When the account

hits 0, the manager must draw funds from an interest bearing account.

To increase the cash account by z units, the manager bears a cost of

f + cz, i.e., there are both �xed and proportional variable costs of

control. Similarly, the manager can place funds in the interest bearing

account by withdrawing an amount z from the cash account, incurring

costs of F + Cz.

Suppose the manager uses a discount rate of � and the interest bearing

account generates interest at rate r. It is clear that the manager will

want to adjust the account only at discrete times so as to minimize

the adjustment costs. A control policy can therefore be described as

a choice of three cash levels, S1 � S2 � S3, where S1 is the amount

of the addition to the fund when it hits 0, S3 is the trigger level for

withdrawing funds (adding them to the interest bearing account) and
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S2 is the target level (i.e., S3 � S2 units are withdrawn when the fund

hits S3).

The value function associated with this problem solves the Bellman

equation24

�V (S) = �V
0(S) + 1

2
�
2
V
00(S); for S 2 [0; S3]

with the side conditions that

V (0) = V (S1)� f � (r=�+ c)S1

and

V (S3) = V (S2)� F + (r=�� C)(S3 � S2):

Furthermore, an optimal policy satis�es

V
0(S1) = (r=�+ c)

and

V
0(S3) = V

0(S2) = (r=�� C):

The Bellman equation can be solved explicitly:

V (S) = A exp(�S) +B exp(�S);

where � and � are choosen to solve the di�erential equation and A and

B are chosen to satisfy the side conditions.

24Although it is not necessary to solve the problem, it is useful to understand why

these conditions are appropriate. The value function here is interpreted as the present

value of the current cash position, which does not depend on how much money is in the

interest bearing account at the present moment. Cash pays no current ows and hence the

Bellman equation is homogeneous (no reward term). The cost of withdrawing funds from

the interest bearing account equals the control cost plus the opportunity cost of the lost

interest, which is equal to r=� times the amount withdrawn. The cost of adding funds to

the interest bearing account equals the control cost less the present value of the interest

earned on the funds put into the account (r=� times the amount of these funds).
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Write a MATLAB procedure that accepts the parameters �, �, �, r, f ,

F , c, and C and returns the parameters A, B, �, �, S1, S2, and S3. Also

determine how the program needs to be modi�ed if the proportional

costs (c and C) are zero. Check the answers you obtain using the

following parameter values: � = 0, � = 0:5, � = 0:4, r = 0:5, f = 1,

F = 0:5, c = 0:1, and C = 0:1. You should obtain the result that

S1 = 0:7408, S2 = 0:8442, and S3 = 2:2216.

8. Consider an extension to the renewable resource problem discussed on

page 367. Suppose that the harvest rate is still constrained to lie on

[0; C] but that it cannot be adjusted instantaneously. Instead assume

that the rate of adjustment in the harvest rate, x, must lie on [a; b],

with a < 0 < b, with the proviso that x � 0 is h = 0 and x � 0 is

h = C.

This problem can be addressed by de�ning h to be a second state

variable with a deterministic state transition equation:

dh = xdt:

The optimal control for this problem is de�ned by two regions, one in

which x = a and one in which x = b. The boundary between these

regions is a curve in the space [0;1)� [0; C].

Write the PDEs that must be satis�ed by the value functions in each

region and the value-matching and smooth pasting conditions that must

hold at the boundaries.

9. Consider the optimal management of a renewable resource. Suppose

that the stock of the resource evolves according to

dS = �(m� S)Sdt+ �Sdz:

The (inverse) demand for the resource is given by

p = D
�1(q) = a� bq:

and the cost of harvesting the resource is

c

2

q
2

S
:
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Assume the appropriate discount rate is � and that the social preference

function is consumer surplus less harvesting cost.

(a) De�ne the social planner's reward function.

(b) Write the Bellman's equation for this problem.

(c) Solve the �rst order conditions and substitute out the optimal con-

trol from Bellman's equation to arrive at a concentrated Bellman's

equation.

(d) Discuss a computational strategy to solve for the optimal value

function (implement it for extra credit).



Chapter 12

Continuous Time Dynamic

Models: Methods

In the previous two chapters we saw how continuous time economic models,

whether deterministic or stochastic, result in either ordinary or partial di�er-

ential equations that must be evaluated subject to some boundary conditions.

Ordinary di�erential equations (ODEs) arise in in�nite horizon single state

models or in deterministic problems solved in terms of time paths. Partial

di�erential equations (PDEs) arise in models with multiple state variables

or in �nite horizon control problems. From a numerical point of view the

distinction between ODEs and PDEs is less important than the distinction

between problems which can be solved in a recursive or evolutionary fashion

or those that require the entire solution be computed simultaneously because

the solution at one point (in time and/or space) depends on the solution ev-

erywhere else.

This is the distinction between initial value problems (IVPs) and bound-

ary value problems (BVPs) that we discussed in Chapter ??. With an IVP,

the solution is known at some point or points and the solution near these

points can then be (approximately) determined. This, in turn, allows the

solution at still other point to be approximated and so forth. When it is pos-

sible, it is usually faster to use recursive solution techniques, which include

Euler and Runge-Kutta methods for ordinary di�erential equations and re-

cursive �nite di�erence methods or the method of lines for partial di�erential

equations.

We begin this chapter with a discussion of various approaches to solving

PDEs. First we discuss �nite di�erence approaches, which are very widely

391
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used and easy to program. We then discuss the method of lines, which

uses �nite di�erences for the state variables and expresses the PDE as a

system of ordinary di�erential equations in time. The method of lines can

be extended easily using function approximation methods to represent the

solution as a function of the states and an ODE in time. Finally, we discuss

using collocation as a general scheme to solve PDEs. The various methods

are then applied to the solution of stochastic control problems, including

problems involving free boundaries.

There are a number of methods for solving PDEs and stochastic control

problems that we do not discuss here. These include binary and trinomial

tree methods and simulation methods for solving PDEs and discretizing the

state and action space in control problems and solving the related discrete

problem. Our main rationale for our choices of what to include is that the

methods discussed build on general methods developed in previous chapters.

Much of what is discussed here should look and feel familiar to readers that

have persevered up to this point. We do, however, include some references

to other approaches in the bibliographical notes at the end of the chapter.

12.1 Partial Di�erential Equations

In the previous two chapters we discussed a number of examples of partial

di�erential equations, like the Black-Scholes option pricing formula, for which

there are relatively simple solutions. For most interesting problems, we are

not so lucky, however. There are several numerical approaches that can

be used, including Monte Carlo simulation, binomial trees, �nite di�erence

methods and weighted residual methods.

The only di�erence between an ordinary di�erential equation (ODE) and

a partial di�erential equation (PDE) is that the solution to the former is a

function of a single variable, whereas the solution to the latter is a function

of multiple variables. From a computational point of view, this generally

means that PDEs are harder to solve than ODEs and, in fact, if there are

too many arguments, it may be nearly impossible to solve without getting

very clever.

As with ODEs, the distinction between initial and boundary value prob-

lems is relevant for PDEs. For example, a function, V (S; t), that solves a

PDE of the form

V
t
= �V + 1

2
�
2
V
SS
;
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with V (S; 0) a known function of S, can be propagated with respect to t,

starting at t = 0. This approach cannot be used to approximate a function

V (S;R) satisfying

�V = f(S;R) + 1
2
[�

SS
V
SS

+ 2�
SR
V
SR

+ �
RR
V
RR

]

subject to boundary conditions at S = a
S
, S = b

S
, R = a

R
and R = b

R
.

Instead, this type of problem must be solved simultaneously for all relevant

values of (S;R).

12.1.1 Finite Di�erence Methods for PDEs

For evolutionary PDEs, the most common approach uses �nite di�erence

methods, which are relatively easy to understand and implement from scratch,

at least for low dimensional problems. Furthermore, they can have good nu-

merical properties, especially if you are not looking for a high degree of

accuracy. Essentially �nite di�erence methods amount to replacing terms

involving derivatives with di�erence approximations to those derivatives.

Evolutionary PDEs (often called parabolic PDEs) are characterized by

having no second derivatives for one of the variables entering the PDE. The

parabolic case is particularly important in economic applications, where the

form

�(S)V (S; t) = f(S) + V
t
(S; t) + �(S)V

S
(S; t) + 1

2
�
2(S)V

SS
(S; t)

is often encountered. We denote the �rst order variable as t to suggest time

because in many applications it will have that interpretation; the essential

features, however, is that it is �rst order in one variable and the function is

known at some value of that variable.

In simple applications, the PDE is de�ned on [a; b] � [0; T ]. Boundary

conditions are speci�ed at S = a, S = b and either at t = 0 or t = T . An

initial value problem with the boundary condition speci�ed at t = 0 can be

propagated forward in the t direction. A terminal value problem with the

boundary condition speci�ed at t = T can be propagated backwards in time

from T , or by rede�ning the problem in terms of � = T � t and propagating

forward in � .

The basic approach involves �rst rewriting the PDE in terms of V
t

V
t
(S; t) = �(S)V (S; t)� �(S)V

S
(S; t)� 1

2
�
2(S)V

SS
(S; t)� f(S) (1)
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Given an initial condition V (S; 0) = B(S) we compute V
S
(S; 0) = B

0(S) and

V
SS
(S; 0) = B"(S) and thereby compute V

t
(S; 0). This allows us to take a

step of size �t in the t direction and compute an approximation to V (S;�t).

The algorithm then proceeds recursively. With a terminal condition we set

V (S; T ) = B(S) and use a time step of ��t; otherwise the problem is the

same.

In �nite di�erence implementations of this idea, a 2-dimensional grid is

de�ned in the S and t directions and all derivatives terms are replaced by

�nite di�erence approximations (see Chapter ??). Using centered �nite dif-

ferences for the �rst and second derivatives for O(h2) accuracy, (1) becomes:

V
t
(S

i
; t) = �(S

i
)V (S

i
; t)� �(S

i
)
V (S

i+1; t)� V (Si�1; t)
2h

� 1
2
�
2(S

i
)
V (S

i+1; t)� 2V (S
i
; t) + V (S

i�1; t)

h2

� f(S
i
) +O(h2)

=

�
�(S

i
)

2h
�
�
2(S

i
)

2h2

�
V (S

i�1; t)

+

�
�(S

i
) +

�
2(S

i
)

h2

�
V (S

i
; t)

+

�
�
�(S

i
)

2h
�
�
2(S

i
)

2h2

�
V (S

i+1; t)

� f(S
i
) +O(h2):

Notice that the LHS of this expression depends on the value of the function

at only three points, S
i�1, Si and Si+1.

We now must discretize the PDE in the t direction and it is here where

we face several choices. The two obvious ones are to use either a forward

di�erence

V
t
(S

i
; t) =

1

�t

�
V (S

i
; t+�t)� V (S

i
; t)
�

or a backward di�erence

V
t
(S

i
; t) =

1

�t

�
V (S

i
; t)� V (S

i
; t��t)

�
Although it may initially appear that either will work, it turns out that the

choice makes an enormous di�erence.
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If we replace V
t
(S

i
; t) in (2) with the forward di�erence operator and

rearrange we get the system

V (S
i
; t+�t) = a

f

i
V (S

i�1; t) + b
f

i
V (S

i
; t) + c

f

i
V (S

i+1; t)

� f(S
i
)�t+O(h2) +O(�t);

where

a
f

i
= �(S

i
)
�t

2h
� �2(S

i
)
�t

2h2

b
f

i
= 1 + �(S

i
)�t+ �

2(S
i
)
�t

h2

c
f

i
= ��(S

i
)
�t

2h
� �2(S

i
)
�t

2h2

On the other hand, if we use the backward di�erence operator we get

V (S
i
; t��t) = a

b

i
V (S

i�1; t) + b
b

i
V (S

i
; t) + c

b

i
V (S

i+1; t)

+ f(S
i
)�t+O(h2) +O(�t);

where

a
b

i
= ��(S

i
)
�t

2h
+ �

2(S
i
)
�t

2h2
= �af

i

b
b

i
= 1� �(S

i
)�t� �2(S

i
)
�t

h2
= 2� bf

i

c
b

i
= �(S

i
)
�t

2h
+ �

2(S
i
)
�t

2h2
= �cf

i

To implement the method we de�ne a grid of m values of S
i
(S1 = a; S2 =

a+h; : : : ; S
m
= b) and n values of t

j
(t1 = 0; t2 = �t; : : : ; t

n
= T ). For prob-

lems in which S is unbounded we must chose a and b such that the probability

of attaining these values is very small. The grid can be represented as an

m� n matrix with rows representing values of the state and columns repre-

senting points in time. Letting V
ij
= V (S

i
; t

j
) and given values of V1j and

V
mj
, the forward di�erence system can be written in matrix form as the m�2

equation system

V
j+1 =

2
6666664

1 0 0 0

a
f

2 b
f

2 c
f

2

0 a
f

3 b
f

3 c
f

3

: : : : : : : : :

a
f

m�1 b
f

m�1 c
f

m�1
0 0 0 1

3
7777775
V
j
�

2
6666664

V1j � V1j+1
f2�t

f3�t

: : :

f
m�1�t

V
mj
� V

mj+1

3
7777775
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whereas the backward di�erence system can be written2
6666664

1 0 0 0

a
b

2 b
b

2 c
b

2

0 a
b

3 b
b

3 c
b

3

: : : : : : : : :

a
b

m�1 b
b

m�1 c
b

m�1
0 0 0 1

3
7777775
V
j+1 = V

j
+

2
6666664

V1j+1 � V1j
f2�t

f3�t

: : :

f
m�1�t

V
mj+1 � Vmj

3
7777775
:

The �rst of these de�nes an explicit system of di�erence equations in V
j+1

in terms of V
j
. The second formulation de�nes V

j+1 implicitly; obtaining an

explicit solution requires solving the system of linear equations.

Notice that the endpoints S1 and Sm are dealt with in a special way. The

�nite di�erence method requires that the solution be known at S = a and

S = b. We have written the �rst and last rows of the two linear systems to

reect that these values are known.

Although it may appear that the explicit approach is better, appearances

can be deceiving. Although the explicit approach does not require a linear

solve at each time step, it can be unstable when the time steps are not small

enough. The instability arises because approximation errors are magni�ed

as they are propagated through time, thus producing a useless result. Im-

plicit methods are stable, regardless of the size of the time step, because the

approximation errors are damped as they are propagated. Hence larger time

steps can be used, resulting in greater computational eÆciency. The trade-o�

is further tipped towards implicit methods by the fact that the linear system

is sparse (indeed it is tridiagonal) and so special methods can be used to

perform the linear solve.

In practice, a hybrid approach is often used. The Crank-Nicholson ap-

proach evaluates V , V
P
, and V

PP
as a weighted average of the �nite di�erence

approximations at time j and time j + 1. Often the weights used are 1
2
and

1
2
.

Unconditionally Stable Explicit Finite Di�erence Methods

The main disadvantage in using implicit �nite di�erence methods is that

the matrix inversion is relatively slow, even though the inverted matrix is

tridiagonal. A stable explicit method could use considerably more evaluation

points for the same computational time and thereby, hopefully, increase the

accuracy of the approximation. There are a number of alternative explicit
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methods that are unconditionally stable; we describe one here called the

hopscotch method.

Hopscotch Method:

The hopscotch method alternately uses the explicit and implicit formulae

for adjacent points. The idea is illustrated below:

i

6 B B B B

5 I X I B

4 X I X B

3 I X I B

2 X I X B

1 I X I B

0 B B B B

0 1 2 3 j

B: boundary values

X: explicitly determined values

I: implicitly determined values

In the �gure there are 5 interior space points and 3 interior time points.

Starting at time 2, one �rst calculates all of the points for which (i + j) is

even using the explicit scheme. Then one can calculate the points for which

(i+ j) is odd using an implicit scheme that involves the previous computed

spatial points on either side. This is continued for each successive time point.

Thus for (i + j) even, the value of V [i; j] is computed using V [i � 1; j � 1],

V [i; j � 1] and V [i + 1; j � 1]. For (i + j) odd, on the other hand, V [i; j]

is computed using V[i,j-1], V[i-1,j] and V [i + 1; j], both of the latter having

already been computed explicitly.
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Code Box 12.4: Hopscotch Method

Example: Financial Options

Finite di�erence methods are now routinely used to value �nancial options.

Given a risk neutral process describing the value of an underlying asset:

dS = (r � Æ)Sdt+ �(S)dz;

an option value can be computed using the di�erential equation

rV = V
t
+ (r � Æ)SV

S
+ 1

2
�
2(S)V

SS
:

For European call options (no early exercise) with strike price k, the

terminal (time T ) boundary condition is

V (S; T ) = max(0; S � k);

the lower boundary condition is V (0; t) = 0 and the upper boundary condi-

tion is

V (S) = exp(�Æ(T � t))S � exp(�r(T � t))k:

For put options the boundary conditions are

V (S; T ) = max(0; k � S);

V (0; t) = exp(�r(T � t))k

and limS !1 V (S; t) = 0.

Code Box 5 displays code that sets up the problem and calls the Hopscotch

method to produce a solution for the case in which �(S) = �S (geometric

Brownian motion).
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Code Box 12.5: Computing Premia for Financial Options

12.1.2 Method of Lines for PDEs

Equation (2), which discretized a PDE in the state variable, de�nes an ODE

in time. The method of lines recognizes this and uses any di�erential equation

algorithm, such as the Runge-Kutta method, to solve the ODE.

Suppose instead of using �nite di�erence approximations to the deriva-

tives, we approximate the solution to the PDE as a weighted sum of a suitably

chosen set of basis functions with time varying coeÆcients:

V (S; t) = �(S)c(t):

The PDE can then be written as

�(S)c0(t) =
�
�(S)�(S)� �(S)�0(S)� 1

2
�
2(S)�00(S)

�
c(t) + f(S):

If we select a set of n nodes, S
i
, and de�ne the n � n basis matrix �, this

has the form

c
0(t) = Bc(t) + f;

where

B = ��1
�
�(S)��(S)�0(S)� 1

2
�
2(S)�00(S)

�
and

f = ��1f(S):

We thus have an ODE in the coeÆcients of the approximating function.

Furthermore, for linear PDEs the associated ODE is linear and hence can be

solved analytically in terms of the eigenvalues and eigenvectors of B.

[INCOMPLETE]
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12.1.3 Collocation Approaches to Solving PDEs

The extended method of lines selects a set of basis functions and seeks to �nd

an approximation at each point in time by solving a system of di�erential

equations that the coeÆcients of the approximating function should satisfy.

An alternative is de�ne a set of basis functions for all of the variables and

to determine the coeÆcients of an approximating function that satis�es the

PDE and boundary conditions at a selected set of points. Not surprisingly,

we will discuss the use of polynomial approximations and polynomial spline

approximations. For linear PDEs, we will see that this approach leads to a

relationship in the form

Bc = f;

where B is a basis matrix, c a vector of coeÆcients and f a vector. The

coeÆcients are thus determined by solving a system of linear equations. For

non-linear equations we have a more general

f(c;S;B) = 0;

where B here represents a set of basis matrices corresponding to the relevant

partial derivatives.

Although �nite di�erence methods are not associated with a speci�c set

of basis functions, the �nite di�erence operators can be viewed as de�ning

\basis" matrices for the function and its derivatives. Thus, �nite di�erence

methods also lead to a relationship of the form Bc = f for linear problems

and f(c;S;B) for non-linear problems.

[INCOMPLETE]

12.1.4 Variable Transformations

It is often useful in numerical (and analytical) analysis to transform problem

variables. For example, suppose that a di�erential equation is de�ned over

the domain S 2 [0;1). One way to handle this is to truncate the domain

at some large value of S. An alternative is to transform the domain to

a bounded range, e.g., to [0; 1]. Transformations will also prove useful in

handling free (moving) boundary problems, which can be transformed to a

domain with a constant boundary.

Transformations of PDEs can be a bit tricky so it is worth spending a little

time discussing them in general and to provide some simple transformations
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that are useful for numerical work. The transform changes the PDE to be

solved; in particular, the derivative with respect to S must be rewritten in

terms of z. In general, we have

V
S
= V

z

dz

dS

and

V
SS

= V
z

d
2
z

dS2
+ V

zz

�
dz

dS

�2

:

A number of useful transformations for working with the various bound-

ary conditions encountered in economics are summarized in Table 12.2. The

�rst of these, z = S=(c+S), transforms the domain from [0;1) to [0; 1]. The

parameter c is a scaling factor; values of S below c will map into the [0; 1
2
]

interval and values of S above c will map into the [ 1
2
; 1] interval. For this

transform we have

V
S
= V

z

c

(c+ S)2

and

V
SS

= V
z

c
2

(c+ S)4
� V

zz

2c

(c+ S)3
:

The transform is useful with problems in which the solution is known to be

bounded as S !1, such as the value of a put option. Using the transforma-

tion results in greater accuracy and eliminates the need to de�ne the upper

price level.1

The second transformation in Table 12.2 is useful with problems in which

there is a non-zero lower boundary, possibly a free boundary, and a domain

that is unbounded above (e.g., for American put options). The third trans-

formation is useful in cases in which one or both of the boundaries are free

boundaries. The �nal transformation listed is often used in models involv-

ing geometric Brownian motion (dx = �xdt + �xdz). Although it makes a

1It can also work for valuing call option but both the call value and, possibly, the

variance function (�2) can become unbounded as z ! 1. This can be addressed by de�ning

the grid of z values to range from z0 = 0 to zn+1 = 1��z, where �z = n=(n+1)2. This

seems to work well in practice, although extremely deep-in-the money call option may not

be accurately valued (the practical importance of such inaccuracies is small).
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problem that is bounded below into a doubly unbounded problem, it can be

quite useful in cases in which the behavior at S = 0 is hard to capture.

To illustrate how these transformations are used consider the problem of

numerically solving

1
2
�
2
S
2
V
00(S) + �SV

0(S)� rV (S) = 0

on [a;1), with boundary conditions

V (a) = g
a

lim
S!1

V (S) = g
b
:

Using the second transformation on Table 12.2, z = (S � a)=S, the problem
becomes

1
2
�
2(1� z)2v00(z) + (�� �2)(1� z)v0(z)� rv(z) = 0

on [0; 1], with boundary conditions

v(0) = g
a

v(1) = g
b
:

To apply these notions to free boundary problems, consider a problem

with a single state variable, de�ned on [S�;1), with two side conditions

holding at S�, say V (S�) = v0 and V
0(S�) = v1. Consider the transforma-

tion from the interval [S�;1) to [1;1) can be accomplished by using the

transform

z = S=S
�
:

With this transformation we can solve for V conditional on S� and S� con-

ditional on V . In a two dimensional problem the free boundary is generally

expressed as a functional relationship between the two states, say as

S1 = g(S2);

with the di�erential equation de�ned on [g(S2);1)� [a; b]. We can de�ne a

new state variable to replace the �rst state

z = S1=g(S2)
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which will imply the following transformations

V (S1; S2) = v(z; S2)

V1(S1; S2) = v1(z; S2)=g(S2)

V11(S1; S2) = v11(z; S2)=g(S2)
2

V2(S1; S2) = v2(z; S2)� v1S1g0(S2)=g(S2)2:

We use this strategy below to solve stochastic control problems.

12.2 Solving Stochastic Control Problems

In the previous chapter we saw that for problems of the form

V (S) = max
x(S)

Z 1

t

e
�r�

f(S; x)d� s.t. dS = �(S; x)dt+ �(S)dz;

Bellman's equation takes the form

rV (S) = max
x(S)

f(S; x) + �(S; x)V 0(S) + 1
2
�
2(S)V 00(S);

subject to boundary conditions at S = a and S = b.

Suppose we approximate the function value function using V (S) � �(S)c.

For a given policy function x(S), the collocation equations are�
r�(S)� �(s; x(S))�0(S)� 1

2
�
2(S; x(S))�00(s)

�
c = f(S; x(S)):

Any relevant boundary conditions can be appended to the matrix in [ ]. For

example, the value function may be known at the boundaries, in which case

we have

�(a)c = g
a
and �(b)c = g

b
:

The boundary conditions often are linear in the value function and its deriva-

tives and hence are linear in the approximation coeÆcients. Given the lin-

earity of the Bellman equation, the collocation equation is therefore linear in

c and hence is easily solved.

An iterative procedure analogous to policy function iteration uses the

following steps:
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A) guess an initial V (S) and �nd the corresponding approximation coeÆ-

cient vector c.

B) for each of the collocation nodes, S
i
, determine the optimal value of x

given the current value of c

C) solve the collocation equation for a new coeÆcient vector

D) check for convergence; return to (2) if not converged

An alternative when one can solve explicitly for the optimal control (in

terms of the value function) is to substitute the control out of the Bellman

Equation. This results in (generally) a nonlinear di�erential equation in S,

which can be solved directly using collocation. If the di�erential equation is

nonlinear, however, the collocation equations are also nonlinear and hence

must be solved using a root �nding algorithm.

As we discussed above, it may be useful to employ a change-of-variables

to make the problem more tractable or more amenable to numerical approx-

imation. For example, the value function may get very steep at S = 0,

making it diÆcult to approximate using polynomial or spline bases. The

optimal renewable resource harvesting example (Section ??) displays this

behavior, with the limits of V (0) = V
SS
(0) = �1 and V

S
(0) = 1. In

such a case it is useful to employ the log transform (see Ludwig, 1979). The

value function in the transformed variable is therefore approximately linear

as the transformed state variable approaches �1 ; this is easily imposed on

the transformed problem by forcing the second derivative to 0 at the lower

boundary of the approximation. It is also reasonable to assume that the

value becomes approximately linear as the state goes to1; in fact V
S
should

go to zero (the value of an additional unit of the resource is zero when the

resource is in�nitely abundant) implying that the value function approaches

a constant. This can be insured by imposing that the transformed problem

has a zero �rst or second derivative at the upper limit of the approximation.

In practice, imposing the zero on the second derivative is preferred, as it

allows for more exibility in �t (this point is illustrated below).

Example: Harvesting a Renewable Resource

[INCOMPLETE]
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12.2.1 Free Boundary Problems

Many of the problems discussed in the previous chapter involved free bound-

aries which represent endogenously determined state values at which some

action is taken. For example, consider a second order linear di�erential equa-

tion with the general form

�(S)V (S) = f(S) + �(S)V 0(S) + 1
2
�
2(S)V

SS
; (2)

where this equation holds on some interval [a; b]. The usual boundary value

problem takes both a and b as known and requires boundary conditions such

as V (a) = g
a
and V (b) = g

b
to be met, where g

a
and g

b
are known values.

Numerically, one can approximate the solution using a function parameter-

ized by an n-vector c: V (S) � �(S)c. c is chosen so that �(S)c satis�es (2)

at n�2 points and satis�es the boundary conditions. This yields n equations
in the n unknown parameters.

In the free boundary problem one or both of the boundary locations a

and b are unknown and must be determined by satisfying some additional

conditions. Suppose, for example that the upper boundary, b, is unknown

but V 0(b) = h
b
, where h

b
is a known constant. Thus there are three boundary

conditions and one additional parameter, b, implying that one must solve n+1

equation in n + 1 unknowns. If both boundaries are free, with V 0(a) = h
a
,

the problem becomes one with n + 2 equations and n + 2 parameters.

The interval on which the approximating function is to be de�ned, how-

ever, is unknown. Fortunately, this problem is easily addressed using a change

in variable. Consider �rst the case in which b is unknown and, for simplicity,

a = 0. De�ne

z = S=b;

so the di�erential equation is de�ned on z 2 [0; 1]. De�ne the function v(z)

such that

v(z) = V (S);

using the chain rule it can be seen that

v
0(z) = V

0(S)b

and

v
00(z) = V

00(S)b2:
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Inserting these de�nitions into (2) demonstrates that the original problem is

equivalent to

�(bz)v(z) = f(bz) +
�(bz)

b
v
0(z) +

�
2(bz)

2b
v
00(z); (3)

for z 2 [0; 1], with

v(0) = g
a
;

v(1) = g
b
;

and

v
0(1) = h

b
b:

Example: Timber Harvesting

[INCOMPLETE]

Optimal Stopping

Simple optimal stopping have the same form as the timber harvesting prob-

lem in that a PDE is solved over some unknown interval, where the endpoints

of the interval must be determined along with the value function. We �rst

illustrate this with a simple investment example.

More diÆcult stopping problems arise when the boundary changes over

time, as is the case when solving American option pricing problems; American

options can be exercised early and the free boundary represents the price,

time values at which it is optimal to so. We illustrate one method for solving

such problems; another method for solving such problem will be discussed in

the context of stochastic bang-bang problems in the next section.

Example: Investment Under Uncertainty

Consider a simple irreversible investment problem in which an investment of

I will generate a return stream with present value of S, where S is described

by the Ito process

dS = �(m� S)Sdt+ �Sdz:
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This process can be shown to have a mean reverting rate of return, with

long-run mean m (see Section ??). When the investment is made it has

value S � I. Prior to making the investment, however, the value of the right
to make such an investment is V (S), which is the solution to the following

di�erential equation

1
2
�
2
S
2
V
00(S) + �(m� S)SV 0(S)� rV (S) = 0;

where r is the risk-free interest rate. The lower boundary, S = 0, is associated

with an investment value of 0, because once the process S goes to 0, it stays

equal to 0 forever; hence V (0) = 0. The upper boundary is de�ned as the

value, S�, at which investment actually occurs. At this value two conditions

must be met. The value matching condition states that at S� the value of

investing and not investing are equal: V (S�) = S
� � I. The smooth-pasting

optimality condition requires that V 0(S�) = 1.

Applying the change of variables (z = S=S
�) yields the equivalent problem

1
2
�
2
z
2
v
00(z) + �(m� zS�)zv0(z)� rv(z) = 0; (4)

on the interval [0; 1], with v(0) = 0, v(1) = S
� � I, and v0(1) = S

�. To solve

the problem we approximate the function v(z) using

v(z; c) =

nX
j=1

�
j
(z)c

j
;

where the �
j
(z) are convenient basis functions. Chebyshev polynomials are

a natural choice for this problem because v(z) should be relatively smooth.

The parameter vector c and the optimal investment trigger S� are selected to

satisfy (4) at n� 2 appropriately chosen nodes on the interior of [0; 1] (e.g.,

the roots of the order n� 2 Chebyshev polynomial) and to satisfy the three

boundary conditions.

To make this a bit more explicit, given a guess of S�, de�ne the n� 2�n
matrix B

B
ij
= 1

2
�
2
z
2
i
�
00
j
(z

i
) + �(m� z

i
S
�)z

i
�
0
j
(z

i
)� r�

j
(z

i
)

for i = 1; : : : ; n� 2. Then concatenate the basis functions for the boundary

conditions to the bottom of this matrix: B
n�1;j = �

j
(0) and B

n;j
= �

j
(1).
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This produces an n� n matrix. The coeÆcients, conditional on the guess of

S
�, are given by

c(S�) = B
�1
�

0
n�1

S
� � I

�
:

Given c we can de�ne a residual function in one dimension to solve for S�

using the smooth-parting condition:

r(S�) = S
� � �0(1)c(S�):

This approach works well in some cases but this example has one addi-

tional problem that must be addressed. It will be observed that, for some

parameter values, the approximate solution obtained becomes unstable, ex-

hibiting wide oscillations at low values of z. The solution value for S�,

however, remains reasonable. The problem, therefore, seems due to the ap-

proximation having trouble satisfying the lower boundary. It can be shown

that, for some parameter values, the derivative of v becomes unbounded as

S approaches 0:

lim
S&0

V
0(S) =1:

This type of behavior cannot be well approximated by polynomials, the

derivatives of which (at every order) are bounded on a bounded domain.

Fortunately this problem can be easily addressed by simply eliminating

the lower boundary constraint and evaluating (4) at n� 1 rather than n� 2

nodes. This causes some error at very small values of z (or S) but does not

cause signi�cant problems at higher values of z. The economic context of the

problem places far more importance on the values of z near 1, which de�nes

the location of S� and hence determines the optimal investment rule.

This particular problem has a partially known solution. It can be shown

that the solution can be written as

V (S) = AS
�

H(�S; �; �);

where H(x; �; �) is the conuent hypergeometric function de�ned by the

series expansion

H(x; �; �) =

1X
i=0

�(� + i)�(�)xi

�(�)�(�+ i)i!
:
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and

� =
1

2
�
�m

�2
+

r�
1
2
�
�m

�2

�2
+
2r

�2

� = 1 + 2

r�
1
2
�
�m

�2

�2
+

2r

�2

� =
2�

�2
:

Thus, the problem can be seen to arise when � < 1, which causes the term

in the derivative involving S��1 to become unbounded as S ! 0.

The solution is only partially known because the constants A and S� must

be determined numerically using the free boundary conditions:2

AS
��
H(�S�; �; �)� (S� � I) = 0

and

A�S
���1

H(�S�; �; �) + A�S
��
H
0(�S�; �; �)� 1 = 0:

Eliminating A yields the relationship

S
� � �(S� � I)

�
1 +

�H(�S�; � + 1; �+ 1)

�H(�S�; �; �)
S
�
�
= 0;

a simple root �nding problem in a single variable, which can be solved using

the methods of chapter ??.

MATLAB code solving the problem in both ways is shown below. This

code produces Figure ??. The dashed line is the solution obtained using the

hypergeometric function approach. The dashed line solves the problem with

no lower end point condition imposed and the dotted line imposes the lower

end point condition. The �gure illustrates the diÆculties in �tting the value

function at the lower end but also illustrates that the computation of the

location of the free boundary is not very sensitive to these problems.

Example: Pricing American Options

[INCOMPLETE]

2Notice from the series expansion that the derivative of H is given by

H 0(x;�; �) =
�

�

1X
i=0

�(� + i+ 1)�(�)xi

�(�)�(�+ i+ 1)i!
=
�

�
H(x;� + 1; �+ 1):
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Stochastic Bang-Bang Problems

Problems with binary states that can be exited and reentered, as is the

case with stochastic bang-bang problems, can lead to new challenges. These

challenges arise because, in e�ect, two value functions, one for each of the

binary states, must be simultaneously approximated. Furthermore, regions

of the state space over which these value functions apply must be determined.

Recall that the general framework giving rise to stochastic bang-bang

problems occurs when the reward function is of the form

f(S; x) = f0(S) + f1(S)x;

the state variable is governed by

dS = [g0(S) + g1(S)x]dt+ �(S)dz

and the control is bounded:

x
l
� x � x

u
:

Consider the discounted in�nite time horizon problem

V (S) = max
x

E

�Z 1

t

e
��t
f(S; x)dt

�
:

The optimal control is to set x = x
l
whenever f1 + g1VS < 0 and to set

x = x
u
whenever f1 + g1VS > 0. Denoting these regions S

l
and S

u
, the value

function must satisfy

�V � (g0 + g1xl)VS � 1
2
�
2
V
SS
� (f0 + f1xl) = 0 on S

l

�V � (g0 + g1xu)VS � 1
2
�
2
V
SS
� (f0 + f1xu) = 0 on S

u

and value-matching and smooth pasting at points were f1 = g1VS (plus any

additional boundary conditions at S = a and S = b).

For concreteness suppose that there is a single point S� such that f1(S
�) =

g1(S
�)V

S
(S�) and that S

l
consists of points less than S

� and S
u
of points

greater than S� (generally the context of the problem will suÆce to determine

the general nature of these sets). The numerical problem is to �nd this S� and

the value function V (S). The following strategy can be used. First, notice

that the Bellman equation is linear given S� and assume that the boundary

conditions are also linear in V . Suppose we approximate two functions, one
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on S
l
, the other on S

u
that approximately satisfy the Bellman equations and

the boundary conditions and also that, for any guess of S�, satisfy value

matching and smooth pasting at this guess.

Let the approximations be de�ned by �(S)c
i
, for i = l; u and de�ne the

function B(S) as

B(S) = ��(S)� [g0(S) + g1(S)xi]�
0(S)� 1

2
�
2(S)�00(S)

The c
i
can be determined by making

B(S)c
i
� [f0(S) + f1(S)xi] = 0

at a selected set of collocation nodes, together with the boundary conditions

and

�(S�)c
l
� �(S�)c

u
= 0 (value matching)

�
0(S�)c

l
� �0(S�)c

u
= 0 (smooth pasting).

Determining the c
i
for some guess of S�, therefore, amounts to solving a

system of linear equations. Once the c
i
are determined, the residual

r(S�) = f1(S
�) + g1(S

�)V
S
(S�)

can be computed. The optimal value of S� is then chosen to make r(S�) = 0.

Example: Optimal Fish Harvest

Recall the optimal �sh harvesting problem from Section 11.1.4. The value

function solves the coupled PDE

�V =

�
�S(1� S=k)V

S
+ 1

2
�
2
S
2
V
SS

for S < S
�

�ES + (�S(1� S=k)� ES)V
S
+ 1

2
�
2
S
2
V
SS

for S > S
�

with S� determined by � = V
S
(S�) and continuity of V and V

S
at S�. For

present purposes, impose the scale normalization � = k = E = 1 (by choosing

scales for money, �sh quantity and e�ort level).

It is a good idea to transform this problem by setting

z = ln(S)� ln(S�):

This transformation has two e�ects: �rst, it simpli�es the di�erential equa-

tion by making the coeÆcients constant or linear in S, and, second, it places

the boundary between the two solution functions at z = 0.
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The transformation necessitates rewriting the value function in terms of

z, say as v(z). The transformation implies that

S = S
�
e
z

;

v
z
(z) = SV

S
(S)

and

v
zz
(z) = S

2
V
SS
(S):

The transformed Bellman equation with the scale normalizations is

�v =

� �
�(1� S�ez)� 1

2
�
2
�
v
z
+ 1

2
�
2
v
zz

for z < 0

S
�
e
z +

�
�(1� S�ez)� 1

2
�
2 � 1)

�
v
z
+ 1

2
�
2
v
zz

for z > 0
:

It will be useful to rewrite this to isolate the S� terms

�v �
�
�� 1

2
s�

2
�
v
z
� 1

2
�
2
v
zz
+ S

�
�e

z

v
z
= 0 for z < 0

�v �
�
�� 1

2
�
2 � 1

�
v
z
� 1

2
�
2
v
z
z + S

�
�e

z

v
z
= S

�
e
z for z > 0

:

The two functions are coupled by imposing continuity of v and v
z
at z = 0.

Technically there are also boundary conditions as z goes to �1 and1 , but

we will ignore these for the time being.

Now let's approximate the two functions using �0(z)c0 and �1(z)c1, where

the �
i
are n

i
-element basis vectors and the c

i
are the coeÆcients associated

with these bases (not surprisingly, we will use Chebyshev polynomial bases).

For a speci�c guess of S�, the Bellman equation can be written�
��

l
(z)�

�
�� 1

2
s�

2
�
�
0
l
(z)� 1

2
s�

2
�
00
l
(z)
�
c
l
+ S

� [�ez�0
l
(z)] c

l
= 0 for z < 0�

��
u
(z)�

�
�� 1

2
�
2 � 1

�
�
0
u
(z)� 1

2
s�

2
�
00
u
(z)
�
c
u
+ S

� [�ez�0
u
(z)] c

u
= S

�
e
z for z > 0

:

Evaluating this expression at a set of nodes, z
l
2 [a; 0], and z

u
2 [0; b], where

a and b are arbitrary upper and lower bounds, with a < 0 and b > 0.

The boundary conditions at z = 0 for a given S� are

�
l
(0)c

l
� �

u
(0)c

u
= 0

and

�
0
l
(0)c

l
� �0

u
(0)c

u
= 0:
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If we choose z
l
and z

u
to have n

l
� 1 and n

u
� 1 elements, respectively, this

yields the n
l
+ n

u
system of linear equations:0

BB@
2
664

B
l

0

0 B
u

�
l
(0) ��

u
(0)

�
0
l
(0) ��0

u
(0)

3
775+ S

�

2
664
D

l
0

0 D
u

0 0

0 0

3
775
1
CCA
�
c
l

c
u

�
=

0
BB@

0

S
�
e
zu

0

0

1
CCA :

which has the form

(B + S
�
D)c = S

�
f:

The unknowns here are S� (a scalar) and c (an n0+n1 vector). The matrices

B, D and f do not depend on either S� or c; hence they can be prede�ned.

Furthermore, this system of equations is linear in c and hence can be eas-

ily solved for a given S
�, thereby obtaining an approximation to the value

function, v. We can therefore view c as a function of S�:

c(S�) = (B + S
�
D)�1S�f:

The optimal S� is then determined by solving the (non-linear) equation

S
� � �0

l
(0)c

l
(S�) = 0:

It should be noted that the linearity in the coeÆcient vector c is not a special

property of this problem; it arises from the linearity of the Bellman equation

for a speci�ed control function. We can summarize the approach in following

way:

� De�ne the matrices B and D, both (n
l
+n

u
)� (n

l
+n

u
), and the vector

f , (n
l
+ n

u
)� 1.

� De�ne a function that

{ accepts S� as an argument,

{ computes c(S�),

{ returns S� � �0
l
(0)c

l

� Pass this function to a root �nding solver.

A MATLAB implementation is displayed in Code Box 6. A script which

computes and plots results is given in in Code Box 7; this was used to produce

Figures 11.10, 11.11 and 11.12.



CHAPTER 12. CONTINUOUS TIME MODELS: METHODS 416

Code Box 12.6: Collocation File for Fish Harvesting Problem
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Code Box 12.7: Script File for Fish Harvesting Problem

S
� is indicated in these plots with an `*'. Notice that the value function is

continuous up to its second derivative, but that V 00 exhibits a kink at S = S
�.

This indicates why it is a good idea to break the value function apart and

approximate it on each region separately, and pasting the two approximations

together at the cut-o� stock level. It also allows us to use the high degree

of accuracy that polynomial approximations provide. One could, of course,

approximate the entire value function with, say, a cubic spline, so long as

you ensured that z=0 was a node. This would avoid the need to de�ne

two functions and thus has something to recommend it. However, it would

require more nodes to achieve the same level of accuracy.

Example: Sequential Learning

In the previous example, the free boundary consisted of a single point. A

more challenging boundary is required in the of learning-by-doing discussed

in the previous chapter. This problem has the same form as that of the

American option pricing problem. Here we provide an alternative framework

for solving such problems.

Recall that the problem involved solving

rV = P � c(Q) + V
Q
+ (r � Æ)PV

P
+ 1

2
�
2
P

2
V
PP

on [P �(Q);1)� [0; Q
m
], where P �(Q) is a free boundary to be determined.

The boundary conditions are

P
�(Q)V

P
(P �(Q); Q) = �V (P �(Q); Q);

P
�(Q)V

PP
(P �(Q); Q) = (� � 1)V

P
(P �(Q); Q)

V
PP

(1; Q) = 0;

where � is the positive solution to

1
2
�
2
�(� � 1) + (r � Æ)� � r = 0:

Also a terminal condition at Q = Q
m
is known and, for states below the free

boundary, the value function is known up to a constant:

V (P;Q) = A(Q)P �

:
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The diÆculty with free boundaries is the unknown shape of the space over

which the di�erential equation must hold. To get around this problem, we

discuss a transformation method that regularizes the boundary. The PDE

can then be solved over a rectangular region for a given guess of the location

of the free boundary. An iterative root �nding method is then applied to

determine the position of the boundary. This method can be used with �nite

di�erences but it is better to use smoother approximations such as cubic

splines or polynomials.

To illustrate the transformation method we de�ne

z = ln(P )� ln(P �(Q))

and will denote v(x;Q) = V (P;Q). We are interested in solving the PDE

for values of P on [P �(Q);1), which translates into values on z on [0;1)

(in practice we will typically truncate P ). Given this transformation it is

straightforward to verify the following relationships between the original and

the transformed problem:

v
z
(z; Q) = PV

P
(P;Q)

v
zz
� v

z
= P

2
V
PP

(P;Q)

and

V
Q
= v

Q
�
P
�0(Q)

P �(Q)
v
z
:

Substituting these expressions into the Bellman equation and the boundary

conditions yields:

rv = P
�
e
z � C(Q) + v

Q
+ (r � Æ � 1

2
�
2 � P �0

=P
�)v

z
+ 1

2
�
2
v
zz
;

v
z
(0; Q)� �v(0; Q) = 0

v
zz
(0; Q)� �v

z
(0; Q) = 0

and

lim
z!1

(v
zz
(z; Q)� v

z
(z; Q)) exp(�2z) = 0:
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One approach that can be used is to begin with an initial approximation

to P �(Q). Use this approximation to obtain an approximate solution to

rv = P
�
e
z � C(Q) + v

Q
+ (r � Æ � 1

2
�
2 � P �0

=P
�)v

z
+ 1

2
�
2
v
zz
;

v
z
(0; Q)� �v(0; Q) = 0

and

lim
P!1

(v
zz
(P;Q)� v

z
(P;Q))=P 2 = 0:

This is a linear problem and hence can be solved easily with the extended

method of lines (treating Q as the \time" variable) or collocation in both P

and Q.3 The remaining boundary condition is then used to de�ne a residual

function

R(Q) = v
zz
(0; Q)� �v

z
(0; Q)

that is used to solve for the optimal P �(Q).

[INCOMPLETE]

3The collocation method has two drawbacks. First, it is an equilibrium method that

does not utilize the propagation nature of the problem and therefore is slower than need

be. Furthermore, the accuracy of the method is limited by the fact that, as the number of

nodes is increased, the matrix operator used to de�ne v(z;Q) (given P �(Q)) becomes very

ill-conditioned. The ill-conditioning problem arises because of increasing large terms in the

basis matrices for the derivatives. The largest term in the derivative basis is approximately

equal to

dY
i=1

4(ni � 1)=(bi � ai)

while that of the second derivative basis is approximately

dY
i=1

4(ni � 1)3=(bi � ai)
2

for a d-dimensional problem. Thus as the ni rise, the largest element in the matrix rises

as well.
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Bibliographic Notes

The hopscotch method for solving PDEs is discussed by Ames, pp. 124-6.

The investment under uncertainty with mean reversion in the risk neutral

return process is due to Dixit and Pindyck (pp. 161-163). We have simpli�ed

the notation by taking as given the risk-neutral process for the value of the

completed investment. Their treatment took the actual value process as given

and assumed that the required discount rate on the completed investment,

�, is constant. This is equivalent to assuming that the market price of risk,

�, is a constant: �(V ) = (�� r)=�. It is also equivalent to assuming that the
return stream, Æ, generated by the completed investment is quadratic in V :

Æ(V ) = (�� �m)V + �V
2
:

The practical import of these assumption is to decrease the long-run mean

of the value process by the amount ��=� = (�� r)=� when converting from

the actual to the risk-neutral process.

The time-to-build exercise is from Madj and Pindyck.

Exercises

1. Modify the code in the �sh harvesting example to compute the value

function with a single cubic spline approximation. Plot the value func-

tion and its 1st and 2nd derivatives as functions of S (not z) and the

residual function for the di�erential equation as a function of z. Be

sure to include 0 as a node.

2. Consider the problem under the assumption that the e�ort (E) is not

bounded (the problem thus becomes a barrier control problem). Write a

program to solve for the value function and the optimal stock level that

triggers harvesting. Use the same parameter values as in the bounded

e�ort model (� = 0:1, � = 0:05, � = 0:2). Also compute and plot the

optimal trigger stock level as a function of e�ort (E), using the above

values for other parameters.

3. Cost Uncertainty

Dixit and Pindyck (pp. 345-351) discuss the problem of determining

an investment strategy when a project takes time to complete and

completion costs are uncertain. The cost uncertainty takes two forms.
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The �rst, technical uncertainty, arises because of unforeseen technical

problems that develop as the project progresses. Technical uncertainty

is assumed to be diversi�able and hence the market price of risk is

zero. The second type of uncertainty is factor cost uncertainty, which

is assumed to have market price of risk � .

De�ne K to be the expected remaining cost to complete a project that

is worth V upon completion. The dynamics of K are given by

dK = �Idt+ �

p
IKdz + Kdw;

where I, the control, is the current investment rate and dz and dw

are independent Weiner processes. The project cannot be completed

immediately because I is constrained by 0 � I � k.Given the assump-

tions about the market price of risk, we convert the K process to its

risk neutral form and use the risk free interest rate, r, to discount the

future. Thus we act \as if"

dK = �(I + �K)dt+ �

p
IKdz + Kdw

and solve

F (K) = max
I(t)

E

�
e
�rT

V �
Z

T

0

e
�rt
I(t)dt

�
;

where T is the (uncertain) completion time given by K(T ) = 0.

The Bellman equation for this problem is

rF = max
I

�I � (I + �K)F 0(K) + 1
2
(�2IK + 

2
K

2)F 00(K);

with boundary conditions

F (0) = V

F (1) = 0:

The optimal control is of the bang-bang type:

I =

�
0 if K > K

�

k if K < K
�
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where K� solves

1
2
�
2
F
00(K)� F 0(K)� 1 = 0:

Notice that technical uncertainty increases with the level of investment.

This is a case in which the variance of the process is inuenced by the

control. Although we have not dealt with this explicitly, it raises no

new problems.

a) Solve F up to an unknown constant for K > K
�.

b) Use the result in (a) to obtain a boundary condition at K = K
� by

utilizing the continuity of F and F 0.

c) Solve the deterministic problem (� =  = 0) and show that K� =

k ln(1 + rV=k)=r.

d) Write the Bellman equation for K < K
� and transform it from the

domain [0; K�] to [0; 1] using

z = K=K
�
:

Also transform the boundary conditions.

e) Write a computer program using Chebyshev collocation to solve for

F and K� using the following parameters:

V = 10

r = 0:05

� = 0

k = 2

 = 0:5

� = 0:25:

g) What alterations are needed to handle the case when  = 0 and why

are they needed.

4. Investment with Time-to-Build Constraints

Consider a situation in which an investment project, which upon com-

pletion will have a random value V and can be built by making a maxi-

mum current investment of k. Suppose that the value of the completed

project evolves according to

dV = (�� Æ)V dt+ �V dz;
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where � is the return needed to compensate investors for the systematic

risk associated with the project and Æ = �� r, where r is the risk free

rate of return. The amount of investment needed to complete the

project is K, which is a controlled process:

dK = �Idt:

In this situation it is optimal to either be investing at the maximum rate

or not at all. Let the value of the investment opportunity in these two

cases by denoted F (V;K) and f(V;K), respectively. These functions

are governed by the following laws of motion:

1
2
�
2
V

2
F
V V

+ (r � Æ)V F
V
� rF � kF

K
� k = 0

and

1
2
�
2
V

2
f
V V

+ (r � Æ)V f
V
� rf = 0;

subject to the boundary conditions

F (V; 0) = V

lim
V!1

F
V
(V;K) = e

�ÆK=k

f(0; K) = 0

f(V �
; K) = F (V �

; K)

f
V
(V �

; K) = F
V
(V �

; K):

V
� is the value of the completed project needed to make a positive

investment. It can be shown that f(V ) = A(K)V �, where

� =
1

2
�
r � Æ
�2

+

s�
1
2
�
r � Æ
�2

�2

+
2r

�2
: (5)
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and A(K) is a function that must be determined by the boundary

conditions. This may be eliminated by combining the free boundary

conditions to yield

�F (V �
; K) = V

�
F
V
(V �

; K):

Summarizing, the problem is to solve the following partial di�erential

equation for given values of �, r, Æ and k:

1
2
�
2
V

2
F
V V

+ (r � Æ)V F
V
� rF � kF

K
� k = 0;

subject to

F (V; 0) = V

lim
V!1

F
V
(V;K) = e

�ÆK=k

�F (V �
; K) = V

�
F
V
(V �

; K);

where � is given by (5). This is a PDE in V and K, with an initial

condition for K = 0, a limiting boundary condition for large V and a

lower free boundary for V that is a function of K.

Write MATLAB code to solve the time-to-build problem for the follow-

ing parameter values:

Æ = 0

r = 0:02

� = 0:2

k = 1



Appendix A

Mathematical Background

A.1 Normed Linear Spaces

A linear space or vector space is a nonempty set X endowed with two oper-

ations, vector addition + and scalar multiplication �, that satisfy

� x+ y = y + x for all x; y 2 X

� (x+ y) + z = x + (y + z) for all x; y; z 2 X

� there is a � 2 X such that x + � = x for all x 2 X

� for each x 2 X there is a y 2 X such that x + y = �

� (��) � x = � � (� � x) for all �; � 2 < and x 2 X

� � � (x + y) = � � x+ � � y for all � 2 < and x; y 2 X

� (�+ �) � x = � � x + � � y for all �; � 2 < and x 2 X

� 1 � x = x for all x 2 X.

The elements of X are called vectors.

A normed linear space is a linear space endowed with a real-valued func-

tion jj � jj on X, called a norm, which measures the size of vectors. By

de�nition, a norm must satisfy

� jjxjj � 0 for all x 2 X;

� jjxjj = 0 if and only if x = �;

425
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� jj� � xjj = j�j jjxjj for all � 2 < and x 2 X;

� jjx+ yjj � jjxjj+ jjyjj for all x; y 2 X.

Every norm on a linear space induces a metric that measures the distance

d(x; y) between arbitrary vectors x and y. The induced metric is de�ned via

the relation d(x; y) = jjx�yjj. It meets all the conditions we normally expect
a distance function to satisfy:

� d(x; y) = d(y; x) � 0 for all x; y 2 X;

� d(x; y) = 0 if and only if x = y 2 X;

� d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X.

Norms and metrics play a critical role in numerical analysis. In many

numerical applications, we do not solve a model exactly, but rather compute

an approximation via some iterative scheme. The iterative scheme is usually

terminated when the change in successive iterates becomes acceptably small,

as measured by the norm of the change. The accuracy of the approximation

or approximation error is measured by the metric distance between the �nal

approximant and the true solution. Of course, in all meaningful applications,

the distance between the approximant and true solution is unknown because

the true solution is unknown. However, in many theoretical and practical

applications, it is possible to compute upper bounds on the approximation

error, thus giving a level of con�dence in the approximation.

In this book we will work almost exclusively with three classes of normed

linear spaces. The �rst normed linear space is the familiar <n, the space

of all real n-vectors. The second normed linear space is <m�n, the space of
all real m-by-n matrices. We will use a variety of norms for real vector and

matrix spaces, all of which are discussed in greater detail in the following

section.

The third class of normed linear space is C(S), the space of all bounded

continuous real-valued functions de�ned on S � <m. Addition and scalar

multiplication in this space are de�ned pointwise. Speci�cally, if f; g 2 C(S)
and � 2 <, then f + g is the function whose value at x 2 S is f(x) + g(x)

and �f is the function whose value at x 2 S is �f(x). We will use only one

norm, called the sup or supremum norm, on the function space C(S):

jjf jj = supfjf(x)j j x 2 Sg:
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In most applications, S will be a bounded interval of <n.
A subset Y of a normed linear space X is called a subspace if it is closed

under addition and scalar multiplication, and thus is a normed linear space

in its own right. More speci�cally, Y is a subspace of X if x + y 2 Y and

�x 2 Y whenever x; y 2 Y and � 2 <. A subspace Y is said to be dense

in X if for any x 2 X and � > 0, we can always �nd a y 2 Y such that

jjx � yjj < �. Dense linear subspaces play an important role in numerical

analysis. When constructing approximants for elements in a normed linear

space X, drawing our approximants from a dense linear subspace guarantees

that an arbitrarily accurate approximation can always be found, at least in

theory.

Given a nonempty subset S of X, span(S) is the set of all �nite linear

combinations of elements of S:

span(S) = f
nX
i=1

�
i
x
i
j�

i
2 <; x

i
2 X; n an integerg:

We say that a subset B is a basis for a subspace Y if Y =span(B) and if no

proper subset of B has this property. A basis has the property that no ele-

ment of the basis can be written as a linear combination of the other elements

in the basis. That is, the elements of the basis are linearly independent.

Except for the trivial subspace f�g, a subspace Y will generally have many

distinct bases. However, if Y has a basis with a �nite number of elements,

then all bases have the same number of nonzero elements and this number

is called the dimension of the subspace. If the subspace has no �nite basis,

it is said to be in�nite dimensional.

Consider some examples. Every normed linear space X, has two trivial

subspaces: f�g, whose dimension is zero, and X. The sets f(0; 1); (1; 0)g and
f(2; 1); (3; 4)g both are bases for <2, which is a two-dimensional space; the

set f(�; 0:5 � �)j� 2 <g is a one-dimensional subspace of <2. In general, <n

is an n-dimensional space with many possible bases; moreover, the span of

any k < n linearly independent n-vectors constitutes a proper k-dimensional

subspace of <n.
The function space C(S) of all real-valued bounded continuous functions

on an interval S � < is an in�nite-dimensional space. That is, there is

no �nite number of real-valued bounded continuous functions whose linear

combinations span the entire space. This space has a number of subspaces

that are important in numerical analysis. The set of all polynomials on S of
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degree at most n forms an n+1 dimensional subspace of C(S) with one basis

being f1; x; x2; : : : ; xng. The set of all polynomials, regardless of degree, is

also a subspace of C(S). It is in�nite-dimensional. Other subspaces of C(S)

interest include the space of piecewise polynomials splines of a given order.

These subspaces are �nite-dimensional and are discussed further in the text.

A sequence fx
k
g in a normed linear space X converges to a limit x� in

X if lim
k�!1 jjxk � x�jj = 0. We write lim

k�!1 x
k
= x

� to indicate that the

sequence fx
k
g converges to x�. If a sequence converges, its limit is necessarily

unique.

An open ball centered at x 2 X is a set of the form fy 2 X j jjx�yjj < �g,
where � > 0. A set S in X is open if every element of S is the center

of some open ball contained entirely in S. A set S in X is closed if its

complement, that is, the set of elements of X not contained in S, is an open

set. Equivalently, a set S is closed if it contains the limit of every convergent

sequence in S.

The Contraction Mapping Theorem has many uses in computational eco-

nomics, particularly in existence and convergence theorems: Suppose that X

is a complete normed linear space, that T maps a nonempty set S � X into

itself, and that, for some Æ < 1,

jjT (x)� T (y)jj � Æjjx� yjj; for all x; y 2 S:

Then, there is an unique x� 2 S such that T (x�) = x
�. Moreover, if x0 2 S

and x
k+1 = T (x

k
), then fx

k
g necessarily converges to x� and

jjx
k
� x�jj �

Æ

1� Æ
jjx

k
� x

k�1jj:

When the above conditions hold, T is said to be a strong contraction on S

and x� is said to be a �xed-point of T in S.

We shall not de�ne what we mean by a complete normed linear space,

save to note that <n, C(S), and all their subspaces are complete.

A.2 Matrix Algebra

We write x 2 <n to denote that x is an n-vector whose ith entry is x
i
. A

vector is understood to be in column form unless otherwise noted.

If x and y are n-vectors, then their sum z = x + y is the n-vector whose

i
th entry is z

i
= x

i
+ y

i
. Their inner product or dot product, x ? y, is the real
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number
P

i
x
i
� y

i
. And their array product, z = x: ? y, is the n-vector whose

i
th entry is z

i
= x

i
� y

i
.

If � is a scalar, that is, a real number, and x is an n-vector, then their

scalar sum z = � + x = x + � is the n vector whose ith entry is z
i
= � + x

i
.

Their scalar product, z = � ? x = x ? �, is the n-vector whose ith entry is

z
i
= � � x

i
.

The most useful vector norms are, respectively, the 1-norm or sum norm,

the 2-norm or Euclidean norm, and the in�nity or sup norm:

jjxjj1 =
P

i
jx

i
j;

jjxjj2 =
pP

i
jx

i
j2;

jjxjj1 = maxfjx1j; jx2j; : : : ; jxnjg:

In Matlab, the norms may be computed for any vector x, respectively, by

writing: norm(x,1), norm(x,2), and norm(x,inf). If we simply write norm(x),

the 2-norm or Euclidean norm is computed.

All norms on <n are equivalent in the sense that a sequence converges in

one vector norm, if and only if it converges in all other vector norms. This

is not true of generally of all normed linear spaces.

A sequence of vectors fx
k
g converges to x� at a rate of order p � 1 if for

some c � 0 and for suÆciently large n,

jjx
k+1 � x�jj � cjjx

k
� x�jjp:

If p = 1 and c < 1 we say the convergence is linear; if p > 1 we say the

convergence is superlinear; and if p = 2 we say the convergence is quadratic.

We write A 2 <m�n to denote that A is an m-row by n-column matrix

whose row i, column j entry, or, more succinctly, ijth entry, is A
ij
.

If A is an m by n matrix and B is an m by n matrix, then their sum

C = A+B is the m by n matrix whose ijth entry is C
ij
= A

ij
+B

ij
. If A is

an m by p matrix and B is a p by n matrix, then their product C = A ? B

is the m by n matrix whose ijth entry is C
ij
=
P

p

k=1Aik
B
kj
: If A and B are

both m by n matrices, then their array product C = A: ? B is the m by n

matrix whose ijth entry is C
ij
= A

ij
B
ij
.

A matrix A is square if it has an equal number of rows and columns. A

square matrix is upper triangular if A
ij
= 0 for i > j; it is lower triangular

if A
ij
= 0 for i < j; it is diagonal if A

ij
= 0 for i 6= j; and it is tridiagonal if

A
ij
= 0 for ji� jj > 1. The identity matrix, denoted I, is a diagonal matrix

whose diagonal entries are all 1. In Matlab, the identity matrix of order n

may is generated by the statement eye(n).
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The transpose of an m by n matrix A, denoted A0, is the n by m matrix

whose ijth entry is the jith entry of A. A square matrix is symmetric if

A = A
0, that is, if A

ij
= A

ji
for all i and j. A square matrix A is orthogonal

if A0 ? A = A ? A
0 is diagonal, and orthonormal if A0 ? A = A ? A

0 = I. In

Matlab, the transpose of a matrix A is generated by the statement A0.

A square matrix A is invertible if there exists a matrix A�1, called the

inverse of A, such that A ? A
�1 = A

�1
? A = I. If the inverse exists, it is

unique. In Matlab, the inverse of a square matrix A can be generated by the

statement inv(A).

The most useful matrix norms, and the only ones used in this book,

are constructed from vector norms. A given n-vector norm jj � jj induces a
corresponding matrix norm for n by n matrices via the relation

jjAjj = max
jjxjj=1

jjA ? xjj

or, equivalently,

jjAjj = max
jjxjj6=0

jjA ? xjj
jjxjj

:

Given corresponding vector and matrix norms,

jjA ? xjj � jjAjj � jjxjj:

Moreover, if A and B are square matrices,

jjA ? Bjj � jjAjj � jjBjj:

Common matrix norms include the matrix norms induced by the sum,

Euclidean, and sup norms:

jjAjj
p
= max

jjxjjp=1
jjA ? xjj

p

for p = 1; 2;1. In Matlab, these norms may be computed for any matrix

A, respectively, by writing: norm(A,1), norm(A,2), and norm(A,inf). The

Euclidean matrix norm is relatively expensive to compute. The sum and sup

norms, on the other hand, take a relatively simple form:

jjAjj1 = max1�j�n
P

n

i=1 jAij
j

jjAjj1 = max1�i�n
P

n

j=1 jAij
j:
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The spectral radius of a square matrix A, denoted �(A), is the in�mum

of all the matrix norms of A. We have lim1
k=1A

k = 0 if and only if �(A) < 1,

in which case (I � A)�1 =
P1

k=1A
k. Thus, if jjAjj < 1 in any vector norm,

A
k converges to zero.

A square symmetric matrix A is negative semide�nite if x0 ? A ? x � 0

for all x; it is negative de�nite if x0 ? A ? x < 0 for all x 6= 0; it is positive

semide�nite if x0 ?A?x � 0 for all x; and it is positive de�nite if x0 ?A?x > 0

for all x 6= 0.

A.3 Real Analysis

The gradient or Jacobian of a vector-valued function f : <n 7! <m is the m

by n matrix-valued function of �rst partial derivatives of f . More speci�cally,

the gradient of f at x, denoted by either f 0(x) or f
x
(x), is the m by n matrix

whose ijth entry is the partial derivative @fi

@xj
(x). More generally, if f(x1; x2)

is an n-vector-valued function de�ned for x1 2 <n1 and x2 2 <n2 , then fx1(x)
is the m by n1 matrix of partial derivatives of f with respect to x1 and fx2(x)

is the m by n2 matrix of partial derivatives of f with respect to x2.

The Hessian of the real-valued function f : <n 7! < is the n by n matrix-

valued function of second partial derivatives of f . More speci�cally, the

Hessian of f at x, denoted by either f 00(x) or f
xx
(x), is the symmetric n

by n matrix whose ijth entry is @
2
f

@xi@xj
(x). More generally, if f(x1; x2) is a

real-valued function de�ned for x1 2 <n1 and x2 2 <n2, where n1 + n2 = n,

then f
xixj

(x) is the n
i
by n

j
submatrix of f 00(x) obtained by extracting the

rows corresponding to the elements of x
i
and the columns corresponding to

the columns of x
j
.

A real-valued function f : <n 7! < is smooth on a convex open set S

if its gradient and Hessian are de�ned and continuous on S. By Taylor's

theorem, a smooth function may be approximated locally by either a linear

or quadratic function. More speci�cally, for all x in S,

f(x) = f(x0) + f
x
(x0) ? (x� x0) + o(jjx� x0jj)

and

f(x) = f(x0) + f
x
(x0) ? (x� x0)

+1
2
(x� x0)0 ? fxx(x0) ? (x� x0) + o(jjx� x0jj2)

where o(t) denotes a term with the property that lim
t�!0(o(t)=t) = 0.
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The Intermediate Value Theorem asserts that if a continuous real-valued

function attains two values, then it must attain all values in between. More

precisely, if f continuous on a convex set S 2 <n and f(x1) � y � f(x2) for

some x1 2 S, x2 2 S, and y 2 <, then f(x) = y for some x 2 S.
The Implicit Function Theorem gives conditions under which a system

of nonlinear equations will have a locally unique solution that will vary con-

tinuously with some parameter: Suppose F : <m+n 7! <n is continuously

di�erentiable in a neighborhood of (x0; y0), x0 2 <m and y0 2 <n, and that

F (x0; y0) = 0. If F
y
(x0; y0) is nonsingular, then there is an unique function

f : <m 7! <n de�ned on a neighborhood N of x0 such that for all x 2 N ,

F (x; f(x)) = 0. Furthermore, the function f is continuously di�erentiable

on N and f 0(x) = �F�1
y
(x; f(x)) ? F

x
(x; f(x)).

A subset S is bounded if it is contained entirely inside some ball centered

at zero. A subset S is compact if it is both closed and bounded. A continuous

real-valued function de�ned on a compact set has well-de�ned maximum and

minimum values; moreover, there will be points in S at which the function

attains its maximum and minimum values.

A real-valued function f : <n 7! < is concave on a convex set S if

�1f(x1) + �2f(x2) � f(�1x1 + �2x2) for all x1; x2 2 S and �1; �2 � 0 with

�1 + �2 = 1. It is strictly concave if the inequality is always strict. A

smooth function is concave (strictly concave) if and only if f 00(x) is negative

semide�nite (negative de�nite) for all x 2 S. A smooth function f is convex

if and only �f is concave. If a function is concave (convex) on an convex

set, then its maximum (minimum), if it exists, is unique.

A.4 Markov Chains

A Markov process is a sequence of random variables fX
t
j t = 0; 1; 2; : : :g

with common state space S whose distributions satisfy

PrfX
t+1 2 A j Xt

; X
t�1; Xt�2; : : :g = PrfX

t+1 2 A j Xt
g A � S:

A Markov process is often said to be memoryless because the distribution

X
t+1 conditional on the history of the process through time t is completely

determined by X
t
and is independent of the realizations of the process prior

to time t.

A Markov chain is a Markov process with a �nite state-space S = f1; 2; 3; : : : ; ng.
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A Markov chain is completely characterized by its transition probabilities

P
tij

= PrfX
t+1 = j j X

t
= ig; i; j 2 S:

A Markov chain is stationary if its transition probabilities

P
ij
= PrfX

t+1 = j j X
t
= ig; i; j 2 S

are independent of t. The matrix P , called the transition probability matrix.

The steady-state distribution of a stationary Markov chain is a probability

distribution f�
i
ji = 1; 2; : : : ; ng on S, such that

�
j
= lim

�!1
PrfX

�
= j j X

t
= ig i; j 2 S:

The steady-state distribution �, if it exists, completely characterizes the

longrun behavior of a stationary Markov chain.

A stationary Markov chain is irreducible if for any i; j 2 S there is some

k � 1 such that PrfX
t+k = j j X

t
= ig > 0, that is, if starting from any state

there is positive probability of eventually visiting every other state. Given

an irreducible Markov chain with transition probability matrix P , if there is

an n-vector � � 0 such that

P
0
? � = �P
i
�
i
= 1;

then the Markov chain has a steady-state distribution �.

In computational economic applications, one often encounters irreducible

Markov chains. To compute the steady-state distribution of the Markov

chain, one solves the n+ 1 by n linear equation system�
I � P 0

i
0

�
? � =

�
0

1

�

where P is the probability transition matrix and i is the vector consisting

of all ones. Due to linear dependency among the probabilities, any one of

the �rst n linear equations is redundant and may be dropped to obtain an

uniquely soluble matrix linear equation.

Consider a stationary Markov chain with transition probability matrix

P =

2
4 0:5 0:2 0:3

0:0 0:4 0:6

0:5 0:5 0:0

3
5
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Although one cannot reach state 1 from state 2 in one step, one can reach

it with positive probability in two steps. Similarly, although one cannot

return to state 3 in one step, one can return in two steps. The steady-state

distribution � of the Markov chain may be computed by solving the linear

equation2
4 0:5 0:0 �0:5
�0:2 0:6 �0:5
1:0 1:0 1:0

3
5 ? � =

2
4 0

0

1

3
5 :

The solution is

� =

2
4 0:316

0:368

0:316

3
5 :

Thus, over the long run, the Markov process will spend about 32.6 percent

of its time in state 1, 36.8 percent of its time in state 2, and 31.6 percent of

its time in state 3.



Appendix B

Computer Programming

B.1 Computer Arithmetic

Some knowledge of how computers perform numerical computations and how

programming languages work is useful in applied numerical work, especially

if one is to write eÆcient programs. It often comes as an unpleasant surprise

to many people to learn that exact arithmetic and computer arithmetic do

not always give the same answers, even in programs without programming

errors.

For example, consider the following two statements

x = (1e-20 + 1) - 1

and

x = 1e-20 + (1 - 1):

Here, 1e-20 is computer shorthand for 10�20. Mathematically the two state-

ments are equivalent because addition and subtraction are associative. A

computer, however, would evaluate these statements di�erently. The �rst

statement would likely result in x = 0, whereas the second would result in

x = 1e� 20. The reason has to do with how computers represent numbers.

Typically, computer languages such as Fortran and C allow several ways

of representing a number. Matlab makes things simple by only have one rep-

resentation for a number. Matlab uses what is often called a double precision

oating point number. The exact details of the representation depends on

the hardware but there are several features in common. First, the represen-

tation has three parts, a sign bit, an exponent, a mantissa. Consider the

435
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number �3210:4. This can be equivalently written as �3:2104 � 103. The

mantissa is 3.2104, the exponent is 3, and the sign bit is 1.

The computer has only a prede�ned set of storage elements (bytes) for

a number. On most personal computers a double precision number has 8

bytes. If the mantissa is very long it gets truncated by rounding or chopping,

depending on the hardware. For example, suppose only 5 places are allocated

for the mantissa. A number like �3210:48 might be represented as �3:2104�
103, that is, the lowest digit may be chopped o�.

In our original example, when the computer processes x = (1e�20+1)�1
it �rst adds 1 to 1e-20, which is the number 1:000000000000000000001. Un-

fortunately, most computers cannot handle this long a mantissa and truncate

the result to 1. The computer then subtracts 1 from the �rst sum, which

results in 0. On the other hand, with the statement x = 1e�20+(1�1), the
subtraction in parenthesis occurs �rst, resulting in 0, which is then added to

1e� 20.

To understand more fully how numbers are stored in a computer, let us

examine a few numbers in their so-called hexadecimal form. Hexadecimal

numbers are numbers expressed in base 16; this is a useful base for computer

arithmetic because it is a power of base 2, which is the form in which numbers

are ultimately stored in a computer.1 Hexadecimal numbers use the usual

digits 0 through 9 and supplement them with the letters a through f; a=10,

b=11,..., f=15. An 8-byte oating point number (i.e., \double-precision")

looks something like:

3ff1 0000 0000 0000:

The hexadecimal representation makes clear some of the problems that

arise in oating point arithmetic. Suppose one compared the values derived

by the following expressions

1=3 + 1=2

and

5=6:

The �rst operation results in

3fea aaaa aaaa aaaa

1You can see the hexadecimal representation of a number in MATLAB by using format

hex.
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whereas the second results in

3fea aaaa aaaa aaab:

We know that these operations should result in the same number but the

computer represents them in a way that di�ers by a single bit in the lowest

order byte. Although this may not seem like a big deal, if one were to test

the expression

1/3+1/2==5/6

the expression would be deemed false.

Similar problems arise in other case as well. For example,

7�20 = 3c6c e5e8 5616 4656

whereas

7�19=7 = 3c6c e5e8 5616 4655;

even though in exact arithmetic these two quantities are theoretically the

same.

Reversing a mathematical operation sometimes does not work either. In

general, one should be careful when a number is raised to a large power and

then to a very small power or vice versa. For example,

(1:1(10e� 12))(10e+ 12)

should result in 1.1. However, on many computers the operation will result

in 1.09941652517756.

Roundo� error is only one of the pitfalls of computer programming. In

numerical computations, error is also introduced by the computer's inherent

inability to evaluate certain mathematical expressions exactly. For all its

power, a computer can only perform a limited set of arithmetic operations

directly. Essentially this list includes the four arithmetic operations of addi-

tion, subtraction, multiplication and division, as well as logical operations of

comparison. Other common functions, such as exponential, logarithmic, and

trigonometric functions cannot be evaluated directly using computer arith-

metic. They can only be evaluated approximately using algorithms based on

the four basic arithmetic operations.

For the common functions very eÆcient algorithms typically exist and

these are sometimes \hardwired" into the computer's processor or coproces-

sor. An important area of numerical analysis involves determining eÆcient
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approximations that can be computed using basic arithmetic operations. For

example, the exponential function has the series representation

exp(x) =

1X
i=0

x
n

=n!:

Obviously one cannot compute the in�nite sum, but one could compute a

�nite number of these terms, with the hope that one will obtain suÆcient

accuracy for the purpose at hand. The result, however, will always be inexact.

B.2 Data Storage

Matlab's basic data type is the matrix, with a scalar just a 1 by 1 matrix

and an n-vector an n by 1 or 1 by n matrix. Actually, the basic data type

in Matlab also contains additional information that is stored along with the

matrix itself. In particular, Matlab attaches the row and column information

about the matrix. This is a signi�cant advantage over writing in low level

language like Fortran or C because it relieves one of the necessity of keeping

track of array size and memory allocation.

When one wants to represent an m by n matrix of numbers in a computer

there are a number of ways to do this. The most simple way is to store all

the elements sequentially in memory, starting with the one indexed (1,1) and

working down successive columns or across successive rows until the (m,n)th

element is stored. Di�erent languages make di�erent choices about how to

store a matrix. Fortran stores matrices in column order, whereas C stores in

row order. Matlab, although written in C, stores in column order, thereby

conforming with the Fortran standard.

Many matrices encountered in practice are sparse, meaning that they

consist mostly of zero entries. Clearly, it is a waste of memory to store all of

the zeros, and it is time consuming to process the zeros in arithmetic matrix

operations. Matlab allows one to store a sparse matrix eÆciently by keeping

track of only the non-zero elements of the original matrix and their location.

In this storage scheme, the row indices and non-zero entries are stored in

a two-column vector. A separate vector is used to keep track of where the

�rst element in each column is located. If one wants to access element (i; j),

Matlab checks the jth element of the column indicator vector to �nd where

the jth column starts and then searches the row column for the ith element

(if one is not found then the element must be zero).
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Although sparse matrix representations are useful, their use incurs a cost.

To access element (i; j) of a full matrix, one simply goes to element (i-1)*m+j

storage location the. To access an element in a sparse matrix involves a search

over row indices and hence can take longer. This additional overhead can

add up signi�cantly and actually slow down a computational procedure.

A further consideration in using sparse matrices concerns memory allo-

cation. If a procedure repeatedly alters the contents of a sparse matrix, the

memory needed to store the matrix may change, even if its dimension does

not. This means that more memory may be needed each time the number of

non-zero elements increases. This memory allocation is both time consuming

and may eventually exhaust computer memory. This problem does not arise

with full matrices because mn elements are stored in �xed locations from the

beginning.

The decision whether to use a sparse or full matrix representation depends

on a balance between a number of factors. Clearly for very sparse matrices

(less than 10% non-zero) one is better o� using sparse matrices and anything

over 67% non-zeros one is better o� with full matrices (which actually require

less storage space at that point). In between, some experimentation may be

required to determine which is better for a given application.

B.3 Programming Style

In general there are di�erent ways to write a program that produce the same

end results. Algorithmic eÆciency refers to the execution time and memory

used to get the job done. In many cases, especially in a matrix processing

language like Matlab, there are important trade-o�s between execution time

and memory use. Often, however, the trade-o�s are trivial and one way of

writing the code may be unambiguously better than another.

In Matlab, the rule of thumb is to avoid loops where possible. Matlab is

a hybrid language that is both interpreted and complied. A loop executed

by the interpreter is generally slower than direct vector operations that are

implemented in compiler code. For example, suppose one had a scalar x that

one wanted to multiply by the integers from 1 to n to create a vector y whose

i
th entry is y

i
= x

i. Both of the following code segments produce the desired

result:
for k=1:n

y(i)=x^i;

end
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and

y=x.^(1:n);

The second way avoids the looping of the �rst and hence executes substan-

tially faster.

Programmer development e�ort is another critical resource required in

program construction that is sometimes ignored in discussions of eÆciency.

One reason for using high level language such as Matlab, rather than a low

level language such as Fortran, is that programming time is often greatly

reduced. Matlab carries out many of the housekeeping tasks that the pro-

grammer must deal with in lower level languages. Even in Matlab, however,

one should consider carefully how important it is to write very eÆcient code.

If the code will be used infrequently, less e�ort should be devoted to mak-

ing the code computationally eÆcient than if the code will be used often or

repeatedly.

Furthermore, computationally eÆcient code can sometimes be fairly dif-

�cult to read. If one plans to revise the code at a later date or if someone

else is going to use it, it may be better to approach the problem in a simpler

way that is more transparent, though possibly slower. The proper balance of

computational eÆciency versus clarity and development e�ort is a judgment

call. A good idea, however, is embodied in the saying \Get it to run right,

then get it to run fast." In other words, get one's code to do what one what

it to do �rst, then look for ways to improve its eÆciency.

It is especially important to document one's code. It does not take long

for even an experienced programmer to forget what a piece of code does if

it is undocumented. We suggest that one get in the habit of writing headers

that explain clearly what the code in a �le does. If it is a function, the

header should contain details on the input and output arguments and on the

algorithm used (as appropriate), including references. Within the code it is a

good idea to sprinkle reminders about what the code is doing at that point.

Another good programming practice is modularity. Functions that per-

form a simple well de�ned task that is to be repeated often should be written

separately and called from other functions as needed. The simple functions

can be debugged and then depended on to perform their job in a variety of

applications. This not only saves program development time, but makes the

resulting code far easier to understand. Also, if one decides that there is a

better way to write such a function, one need only make the changes in one

place. An example of this principle is a function that computes the deriva-
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tives of a function numerically. Such a function will be used extensively in

this book.


