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Preface to the first edition

This book aims to teach econometrics to students whose primary interest is not in
econometrics. These are the students who simply want to apply econometric tech-
niques sensibly in the context of real-world empirical problems. This book is aimed
largely at undergraduates, for whom it can serve either as a stand-alone course in
applied data analysis or as an accessible alternative to standard econometric textbooks.
However, students in graduate economics and MBA programs requiring a crash-
course in the basics of practical econometrics will also benefit from the simplicity of
the book and its intuitive bent.

This book grew out of a course I taught at the University of Edinburgh entitled
“Analysis of Economic Data”. Before this course was created, all students were
required to take a course in probability and statistics in their first or second year. Stu-
dents specializing in economics were also required to take an econometrics course in
their third or fourth year. However, non-specialist students (e.g. Economics and 
Politics or Economics and Business students) were not required to take economet-
rics, with the consequence that they entered their senior undergraduate years, and
eventually the job market, with only a basic course in probability and statistics. These
students were often ill-prepared to analyze sensibly real economic data. Since this is
a key skill for undergraduate projects and dissertations, for graduate school, as well
as for most careers open to economists, it was felt that a new course was needed to
provide a firm practical foundation in the tools of economic data analysis. There was
a general consensus in the department that the following principles should be adhered
to in designing the new course:

1. It must cover most of the tools and models used in modern econometric research
(e.g. correlation, regression and extensions for time series methods).

2. It must be largely non-mathematical, relying on verbal and graphical intuition.



3. It must contain extensive use of real data examples and involve students in hands-
on computer work.

4. It must be short. After all, students, especially those in joint degrees (e.g. Eco-
nomics and Business or Economics and Politics) must master a wide range of
material. Students rarely have the time or the inclination to study econometrics in
depth.

This book follows these basic principles. It aims to teach students reasonably
sophisticated econometric tools, using simple non-mathematical intuition and practi-
cal examples. Its unifying themes are the related concepts of regression and correla-
tion. These simple concepts are relatively easy to motivate using verbal and graphical
intuition and underlie many of the sophisticated models and techniques (e.g. cointe-
gration and unit roots) in economic research today. If a student understands the con-
cepts of correlation and regression well, then he/she can understand and apply the
techniques used in advanced econometrics and statistics.

This book has been designed for use in conjunction with a computer. I am con-
vinced that practical hands-on computer experience, supplemented by formal lec-
tures, is the best way for students to learn practical data analysis skills. Extensive
problem sets are accompanied by different data sets in order to encourage students
to work as much as possible with real-world data. Every theoretical point in the book
is illustrated with practical economic examples that the student can replicate and
extend using the computer. It is my strong belief that every hour a student spends in
front of the computer is worth several hours spent in a lecture.

This book has been designed to be accessible to a variety of students, and thus,
contains minimal mathematical content. Aside from some supplementary material in
appendices, it assumes no mathematics beyond the pre-university level. For students
unfamiliar with these basics (e.g. the equation of a straight line, the summation opera-
tor, logarithms), a wide variety of books are available that provide sufficient back-
ground.

I would like to thank my students and colleagues at the University of Edinburgh
for their comments and reactions to the lectures that formed the foundation of this
book. Many reviewers also offered numerous helpful comments. Most of these were
anonymous, but Denise Young, Craig Heinicke, John Hutton, Kai Li and Jean Soper
offered numerous invaluable suggestions that were incorporated in the book. I am
grateful, in particular, to Steve Hardman at John Wiley for his enthusiasm and the
expert editorial advice he gave throughout this project. I would also like to express
my deepest gratitude to my wife, Lise, for the support and encouragement she pro-
vided while this book was in preparation.

xii Preface to the first edition



Preface to the second edition

When writing the new edition of my book, I tried to take into account the comments
of many colleagues who used the first edition and the reviewers (some anonymous)
whom Wiley persuaded to evaluate my proposal for a new edition as well as my per-
sonal experience. With regards to the last, I have used the first edition of the book
at three different universities (Edinburgh, Glasgow and Leicester) at three different
levels. I have used it for a third-year course (for students who were not specialist
economists and had little or no background in statistics), for a second-year course
(for students with a fair amount of economics training, but little or no training in sta-
tistics) and for a first-year course (for students facing economic data analysis for the
first time). Based on student performance and feedback, the book can successfully
be used at all these levels. Colleagues have told me that the book has also been used
successfully with business students and MBAs.

The second edition has not deleted anything from the first edition (other than
minor corrections or typos and editorial changes). However, substantial new mater-
ial has been added. Some of this is to provide details of the (minimal) mathematical
background required for the book. Some of this provides more explanation of key
concepts such as index numbers. And some provides more description of data
sources. Throughout, I have tried to improve the explanation so that the concepts of
economic data analysis can be easily understood. In light of the book’s use in busi-
ness courses, I have also added a bit more material relevant for business students,
especially those studying finance.

I still believe in all the comments I made in the preface for the first edition, espe-
cially those expressing gratitude to all the people who have helped me by offering
perceptive comments. To the list of people I thank in that preface, I would like to
add the names of Julia Darby, Kristian Skrede Gleditsch and Hilary Lamaison, and
all my students from the Universities of Edinburgh, Glasgow and Leicester.





C H A P T E R

Introduction

1

There are several types of professional economists working in the world today. Aca-
demic economists in universities often derive and test theoretical models of various
aspects of the economy. Economists in the civil service often study the merits and
demerits of policies under consideration by government. Economists employed by a
central bank often give advice on whether or not interest rates should be raised, while
in the private sector, economists often predict future variables such as exchange rate
movements and their effect on company exports.

For all of these economists, the ability to work with data is an important skill. To
decide between competing theories, to predict the effect of policy changes, or to fore-
cast what may happen in the future, it is necessary to appeal to facts. In economics,
we are fortunate in having at our disposal an enormous amount of facts (in the form
of “data”) that we can analyze in various ways to shed light on many economic issues.

The purpose of this book is to present the basics of data analysis in a simple, non-
mathematical way, emphasizing graphical and verbal intuition. It focusses on the tools
that economists apply in practice (primarily regression) and develops computer skills
that are necessary in virtually any career path that the economics student may choose
to follow.

To explain further what this book does, it is perhaps useful to begin by discussing
what it does not do. Econometrics is the name given to the study of quantitative
tools for analyzing economic data. The field of econometrics is based on probability
and statistical theory; it is a fairly mathematical field. This book does not attempt to
teach probability and statistical theory. Neither does it contain much mathematical
content. In both these respects, it represents a clear departure from traditional econo-
metrics textbooks. Yet, it aims to teach most of the practical tools used by applied
econometricians today.



Books that merely teach the student which buttons to press on a computer without
providing an understanding of what the computer is doing, are commonly referred
to as “cookbooks”. The present book is not a cookbook. Some econometricians may
interject at this point: “But how can a book teach the student to use the tools of
econometrics, without teaching the basics of probability and statistics?” My answer
is that much of what the econometrician does in practice can be understood intu-
itively, without resorting to probability and statistical theory. Indeed, it is a contention
of this book that most of the tools econometricians use can be mastered simply
through a thorough understanding of the concept of correlation, and its generaliza-
tion, regression. If a student understands correlation and regression well, then he/she
can understand most of what econometricians do. In the vast majority of cases,
it can be argued that regression will reveal most of the information in a data set.
Furthermore, correlation and regression are fairly simple concepts that can be under-
stood through verbal intuition or graphical methods. They provide the basis of expla-
nation for more difficult concepts, and can be used to analyze many types of
economic data.

This book focusses on the analysis of economic data; it is not a book about 

collecting economic data. With some exceptions, it treats the data as given,
and does not explain how the data is collected or constructed. For instance, it 
does not explain how national accounts are created or how labor surveys are de-
signed. It simply teaches the reader to make sense out of the data that has been 
gathered.

Statistical theory usually proceeds from the formal definition of general concepts,
followed by a discussion of how these concepts are relevant to particular examples.
The present book attempts to do the opposite. That is, it attempts to motivate

general concepts through particular examples. In some cases formal definitions
are not even provided. For instance, P-values and confidence intervals are important
statistical concepts, providing measures relating to the accuracy of a fitted regression
line (see Chapter 5). The chapter uses examples, graphs and verbal intuition to demon-
strate how they might be used in practice. But no formal definition of a P-value nor
derivation of a confidence interval is ever given. This would require the introduction
of probability and statistical theory, which is not necessary for using these techniques
sensibly in practice. For the reader wishing to learn more about the statistical theory
underlying the techniques, many books are available; for instance Introductory Statistics
for Business and Economics by Thomas Wonnacott and Ronald Wonnacott (Fourth
edition, John Wiley & Sons, 1990). For those interested in how statistical theory is
applied in econometric modeling, Undergraduate Econometrics by R. Carter Hill, William
E. Griffiths and George G. Judge (Second edition, John Wiley & Sons, 2000) pro-
vides a useful introduction.

This book reflects my belief that the use of concrete examples is the best way to
teach data analysis. Appropriately, each chapter presents several examples as a means
of illustrating key concepts. One risk with such a strategy is that some students might
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interpret the presence of so many examples to mean that myriad concepts must be
mastered before they can ever hope to become adept at the practice of econo-
metrics. This is not the case. At the heart of this book are only a few basic concepts,
and they appear repeatedly in a variety of different problems and data sets. The best
approach for teaching introductory econometrics, in other words, is to illustrate its
specific concepts over and over again in a variety of contexts.

Organization of the book

In organizing the book, I have attempted to adhere to the general philosophy out-
lined above. Each chapter covers a topic and includes a general discussion. However,
most of the chapter is devoted to empirical examples that illustrate and, in some cases,
introduce important concepts. Exercises, which further illustrate these concepts,
are included in the text. Data required to work through the empirical examples 
and exercises can be found in the website which accompanies this book
http://www.wileyeurope.com/go/koopdata2ed. By including real-world data, it
is hoped that students will not only replicate the examples, but will feel comfortable
extending and/or experimenting with the data in a variety of ways. Exposure to real-
world data sets is essential if students are to master the conceptual material and apply
the techniques covered in this book.

The empirical examples in this book are designed for use in conjunction with the
computer package Excel. The website associated with this book contains Excel files.
Excel is a simple and common software package. It is also one that students are likely
to use in their economic careers. However, the data can be analyzed using many other
computer software packages, not just Excel. Many of these packages recognize Excel
files and the data sets can be imported directly into them. Alternatively, the website
also contains all of the data files in ASCII text form. Appendix B at the end of the
book provides more detail about the data.

Mathematical material has been kept to a minimum throughout this book. In some
cases, a little bit of mathematics will provide additional intuition. For students famil-
iar with mathematical techniques, appendices have been included at the end of some
chapters. However, students can choose to omit this material without any detriment
to their understanding of the basic concepts.

The content of the book breaks logically into two parts. Chapters 1–7 cover all the
basic material relating to graphing, correlation and regression. A very short course
would cover only this material. Chapters 8–12 emphasize time series topics and
analyze some of the more sophisticated econometric models in use today. The focus
on the underlying intuition behind regression means that this material should be easily
accessible to students. Nevertheless, students will likely find that these latter chapters
are more difficult than Chapters 1–7.
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Useful background

As mentioned, this book assumes very little mathematical background beyond the
pre-university level. Of particular relevance are:

1. Knowledge of simple equations. For instance, the equation of a straight line is
used repeatedly in this book.

2. Knowledge of simple graphical techniques. For instance, this book is full of
graphs that plot one variable against another (i.e. standard XY-graphs).

3. Familiarity with the summation operator is useful occasionally.
4. In a few cases, logarithms are used.

For the reader unfamiliar with these topics, the appendix at the end of this chapter
provides a short introduction. In addition, these topics are discussed elsewhere, in
many introductory mathematical textbooks.

This book also has a large computer component, and much of the computer mate-
rial is explained in the text. There are myriad computer packages that could be used
to implement the procedures described in this book. In the places where I talk directly
about computer programs, I will use the language of spreadsheets and, particularly,
that most common of spreadsheets, Excel. I do this largely because the average
student is more likely to have knowledge of and access to a spreadsheet rather than
a specialized statistics or econometrics package such as E-views, Stata or MicroFit.1

I assume that the student knows the basics of Excel (or whatever computer software
package he/she is using). In other words, students should understand the basics of
spreadsheet terminology, be able to open data sets, cut, copy and paste data, etc. If
this material is unfamiliar to the student, simple instructions can be found in Excel’s
on-line documentation. For computer novices (and those who simply want to learn
more about the computing side of data analysis) Computing Skills for Economists by Guy
Judge (John Wiley & Sons, 2000) is an excellent place to start.

Appendix 1.1: Mathematical concepts used in 

this book

This book uses very little mathematics, relying instead on intuition and graphs to
develop an understanding of key concepts (including understanding how to interpret
the numbers produced by computer programs such as Excel). For most students, pre-
vious study of mathematics at the pre-university level should give you all the back-
ground knowledge you need. However, here is a list of the concepts used in this book
along with a brief description of each.
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The equation of a straight line

Economists are often interested in the relationship between two (or more) variables.
Examples of variables include house prices, gross domestic product (GDP), interest
rates, etc. In our context a variable is something the economist is interested in and
can collect data on. I use capital letters (e.g. Y or X ) to denote variables. A very general
way of denoting a relationship is through the concept of a function. A common
mathematical notation for a function of X is f(X ). So, for instance, if the economist
is interested in the factors that explain why some houses are worth more than others,
he/she may think that the price of a house depends on the size of the house. In
mathematical terms, he/she would then let Y denote the variable “price of the house”
and X denote the variable “size of the house” and the fact that Y depends on X is
written using the notation:

This notation should be read “Y is a function of X ” and captures the idea that the
value for Y depends on the value of X. There are many functions that one could use,
but in this book I will usually focus on linear functions. Hence, I will not use this
general “f(X )” notation in this book.

The equation of a straight line (what was called a “linear function” above) is used
throughout this book. Any straight line can be written in terms of an equation:

where a and b are coefficients, which determine a particular line. So, for instance,
setting a = 1 and b = 2 defines one particular line while a = 4 and b = -5 defines a
different line.

It is probably easiest to understand straight lines by using a graph (and it might be
worthwhile for you to sketch one at this stage). In terms of an XY graph (i.e. one
which measures Y on the vertical axis and X on the horizontal axis) any line can be
defined by its intercept and slope. In terms of the equation of a straight line, a is the
intercept and b the slope. The intercept is the value of Y when X = 0 (i.e. point at
which the line cuts the Y-axis). The slope is a measure of how much Y changes when
X is changed. Formally, it is the amount Y changes when X changes by one unit. For

the student with a knowledge of calculus, the slope is the first derivative,

Summation notation

At several points in this book, subscripts are used to denote different observations
from a variable. For instance, a labor economist might be interested in the wage of
every one of 100 people in a certain industry. If the economist uses Y to denote this
variable, then he/she will have a value of Y for the first individual, a value of Y for
the second individual, etc. A compact notation for this is to use subscripts so that Y1

dY
dX

.

Y X= +a b

Y X= f ( )
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is the wage of the first individual, Y2 the wage of the second individual, etc. In some
contexts, it is useful to speak of a generic individual and refer to this individual as the
i-th. We can then write, Yi for i = 1, . . . , 100 to denote the set of wages for all 
individuals.

With the subscript notation established, summation notation can now be intro-
duced. In many cases we want to add up observations (e.g. when calculating an average
you add up all the observations and divide by the number of observations). The
Greek symbol, S, is the summation (or “adding up”) operator and superscripts and
subscripts on S indicate the observations that are being added up. So, for instance,

adds up the wages for all of the 100 individuals. As other examples,

adds up the wages for the first 3 individuals and

adds up the wages for the 47th and 48th individuals.
Sometimes, where it is obvious from the context (usually when summing over all

individuals), the subscript and superscript will be dropped and I will simply write:

Logarithms

For various reasons (which are explained later on), in some cases the researcher does
not work directly with a variable but with a transformed version of this variable. Many
such transformations are straightforward. For instance, in comparing the incomes of
different countries the variable GDP per capita is used. This is a transformed version
of the variable GDP. It is obtained by dividing GDP by population.

One particularly common transformation is the logarithmic one. The logarithm (to
the base B) of a number, A, is the power to which B must be raised to give A. The
notation for this is: logB(A). So, for instance, if B = 10 and A = 100 then the loga-
rithm is 2 and we write log10(100) = 2. This follows since 102 = 100. In economics, it
is common to work with the so-called natural logarithm which has B = e where e ª
2.71828. We will not explain where e comes from or why this rather unusual-looking
base is chosen. The natural logarithm operator is denoted by ln; i.e. ln(A) = loge(A).

In this book, you do not really have to understand the material in the previous
paragraph. The key thing to note is that the natural logarithmic operator is a common
one (for reasons explained later on) and it is denoted by ln(A). In practice, it can be
easily calculated in a spreadsheet such as Excel (or on a calculator).

Yi .Â

Yii =Â 47

48

Yii=Â 1

3

Y Y Y Yii
= 1 2 100

100 + + +=Â . . .
1
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Endnote

1. I expect that most readers of this book will have access to Excel (or a similar spreadsheet
or statistics software package) through their university computing labs or on their home
computers (note, however, that some of the methods in this book require the Excel Analy-
sis ToolPak add-in which is not included in some basic installations of Microsoft Works).
However, computer software can be expensive and, for the student who does not have
access to Excel and is financially constrained, there is an increasing number of free statis-
tics packages designed using open source software. R. Zelig, which is available at
http://gking.harvard.edu/zelig/, is a good example of such a package.

Introduction 7





C H A P T E R

Basic data handling

2

This chapter introduces the basics of economic data handling. It focusses on four
important areas: (1) the types of data that economists often use; (2) a brief discus-
sion of the sources from which economists obtain data;1 (3) an illustration of the
types of graphs that are commonly used to present information in a data set; and (4)
a discussion of simple numerical measures, or descriptive statistics, often presented
to summarize key aspects of a data set.

Types of economic data

This section introduces common types of data and defines the terminology associ-
ated with their use.

Time series data

Macroeconomic data measures phenomena such as real gross domestic product
(denoted GDP), interest rates, the money supply, etc. This data is collected at specific
points in time (e.g. yearly). Financial data, on the other hand, measures phenomena
such as changes in the price of stocks. This type of data is collected more frequently
than the above, for instance, daily or even hourly. In all of these examples, the 
data are ordered by time and are referred to as time series data. The underlying 
phenomenon which we are measuring (e.g. GDP or wages or interest rates, etc.) is
referred to as a variable. Time series data can be observed at many frequencies.
Commonly used frequencies are: annual (i.e. a variable is observed every year),
quarterly (i.e. four times a year), monthly, weekly or daily.



In this book, we will use the notation Yt to indicate an observation on variable Y
(e.g. real GDP) at time t. A series of data runs from period t = 1 to t = T. “T ” is used
to indicate the total number of time periods covered in a data set. To give an example,
if we were to use post-war annual real GDP data from 1946–1998 – a period of 53
years – then t = 1 would indicate 1946, t = 53 would indicate 1998 and T = 53 the
total number of years. Hence, Y1 would be real GDP in 1946, Y2 real GDP for 1947,
etc. Time series data is typically presented in chronological order.

Working with time series data often requires some special tools, which are discussed
in Chapters 8–11.

Cross-sectional data

In contrast to the above, micro- and labor economists often work with data that is
characterized by individual units. These units might refer to people, companies or
countries. A common example is data pertaining to many different people within a
group, such as the wage of all people in a certain company or industry. With such
cross-sectional data, the ordering of the data typically does not matter (unlike time
series data).

In this book, we use the notation Yi to indicate an observation on variable Y for
individual i. Observations in a cross-sectional data set run from individual i = 1 to N.
By convention, N indicates the number of cross-sectional units (e.g. the number of
people surveyed). For instance, a labor economist might wish to survey N = 1,000
workers in the steel industry, asking each individual questions such as how much they
make or whether they belong to a union. In this case, Y1 will be equal to the wage
(or union membership) reported by the first worker, Y2 the wage (or union mem-
bership) reported by the second worker, and so on.

Similarly, a microeconomist may ask N = 100 representatives from manufacturing
companies about their profit figures in the last month. In this case, Y1 will equal the
profit reported by the first company, Y2 the profit reported by the second company,
through to Y100, the profit reported by the 100th company.

The distinction between qualitative and quantitative data

The previous data sets can be used to illustrate an important distinction between types
of data. The microeconomist’s data on sales will have a number corresponding to
each firm surveyed (e.g. last month’s sales in the first company surveyed were
£20,000). This is referred to as quantitative data.

The labor economist, when asking whether or not each surveyed employee belongs
to a union, receives either a Yes or a No answer. These answers are referred to as
qualitative data. Such data arise often in economics when choices are involved 
(e.g. the choice to buy or not buy a product, to take public transport or a private car,
to join or not to join a club).
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Economists will usually convert these qualitative answers into numeric data. For
instance, the labor economist might set Yes = 1 and No = 0. Hence, Y1 = 1 means
that the first individual surveyed does belong to a union, Y2 = 0 means that the second
individual does not. When variables can take on only the values 0 or 1, they are
referred to as dummy (or binary) variables. Working with such variables is a topic
that will be discussed in detail in Chapter 7.

Panel data

Some data sets will have both a time series and a cross-sectional component. This
data is referred to as panel data. Economists working on issues related to 
growth often make use of panel data. For instance, GDP for many countries from
1950 to the present is available. A panel data set on Y = GDP for 12 European coun-
tries would contain the GDP value for each country in 1950 (N = 12 observations),
followed by the GDP for each country in 1951 (another N = 12 observations),
and so on. Over a period of T years, there would be T ¥ N observations on Y.
Alternatively, labor economists often work with large panel data sets created by 
asking many individuals questions such as how much they make every year for several
years.

We will use the notation Yit to indicate an observation on variable Y for unit i at
time t. In the economic growth example, Y11 will be GDP in country 1, year 1, Y12

GDP for country 1 in year 2, etc. In the labor economics example, Y11 will be the
wage of the first individual surveyed in the first year, Y12 the wage of the first indi-
vidual surveyed in the second year, etc.

Data transformations: levels versus growth rates

In this book, we will mainly assume that the data of interest, Y, is directly available.
However, in practice, you may be required to take raw data from one source, and then
transform it into a different form for your empirical analysis. For instance, you may
take raw time series data on the variables W = total consumption expenditure, and 
X = expenditure on food, and create a new variable: Y = the proportion of expendi-
ture devoted to food. Here the transformation would be Y = X/W. The exact nature
of the transformations required depends on the problem at hand, so it is hard to offer
any general recommendations on data transformation. Some special cases are con-
sidered in later chapters. Here it is useful to introduce one common transformation
that econometricians use with time series data.

To motivate this transformation, suppose we have annual data on real GDP for
1950–1998 (i.e. 49 years of data) denoted by Yt , for t = 1 to 49. In many empirical
projects, this might be the variable of primary interest. We will refer to such series as
the level of real GDP. However, people are often more interested in how the
economy is growing over time, or in real GDP growth. A simple way to measure
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growth is to take the real GDP series and calculate a percentage change for each year.
The percentage change in real GDP between period t and t + 1 is calculated accord-
ing to the formula:2

The percentage change in real GDP is often referred to as the growth of GDP or
the change in GDP. Time series data will be discussed in more detail in Chapters
8–11. It is sufficient for you to note here that we will occasionally distinguish between
the level of a variable and its growth rate, and that it is common to transform levels
data into growth rate data.

Index numbers

Many variables that economists work with come in the form of index numbers.
Appendix 2.1 at the end of this chapter provides a detailed discussion of what these
are and how they are calculated. However, if you just want to use an index number
in your empirical work, a precise knowledge of how to calculate indices is probably
unnecessary. Having a good intuitive understanding of how an index number is 
interpreted is sufficient. Accordingly, here in the body of the text I provide only an
informal intuitive discussion of index numbers.

Suppose you are interested in studying a country’s inflation rate, which is a measure
of how prices change over time. The question arises as to how we measure “prices”
in a country. The price of an individual good (e.g. milk, oranges, electricity, a par-
ticular model of car, a pair of shoes, etc.) can be readily measured, but often interest
centers not on individual goods, but on the price level of the country as a whole.
The latter concept is usually defined as the price of a “basket” containing the sorts
of goods that a typical consumer might buy. The price of this basket is observed at
regular intervals over time in order to determine how prices are changing in the
country as a whole. But the price of the basket is usually not directly reported by the
government agency that collects such data. After all, if you are told the price of an
individual good (e.g. that an orange costs 35 pence), you have been told something
informative, but if you are told “the price of a basket of representative goods” is
£10.45, that statement is not very informative. To interpret this latter number, you
would have to know what precisely was in the basket and in what quantities. Given
the millions of goods bought and sold in a modern economy, far too much infor-
mation would have to be given.

In light of such issues, data often comes in the form of a price index. Indices may
be calculated in many ways, and it would distract from the main focus of this chapter
to talk in detail about how they are constructed (see Appendix 2.1 for more details).

% .change = +1Y Y

Y

t t

t

-( ) ¥ 100
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However, the following points are worth noting at the outset. Firstly, indices almost
invariably come as time series data. Secondly, one time period is usually chosen as a
base year and the price level in the base year is set to 100 (some indices set the base
year value to 1.00 instead of 100). Thirdly, price levels in other years are measured in
percentages relative to the base year.

An example will serve to clarify these issues. Suppose a price index for four years
exists, and the values are: Y1 = 100, Y2 = 106, Y3 = 109 and Y4 = 111. These numbers
can be interpreted as follows. The first year has been selected as a base year and,
accordingly, Y1 = 100. The figures for other years are all relative to this base year and
allow for a simple calculation of how prices have changed since the base year. For
instance, Y2 = 106 means that prices have risen from 100 to 106 – a 6% rise since the
first year. It can also be seen that prices have risen by 9% from year 1 to year 3 and
by 11% from year 1 to year 4. Since the percentage change in prices is the definition
of inflation, the price index allows the person looking at the data to easily see what
inflation is. In other words, you can think of a price index as a way of presenting
price data that is easy to interpret and understand.

A price index is very good for measuring changes in prices over time, but should
not be used to talk about the level of prices. For instance, it should not be inter-
preted as an indicator of whether prices are “high” or “low”. A simple example 
illustrates why this is the case.

The US and Canada both collect data on consumer prices. Suppose that both coun-
tries decide to use 1988 as the base year for their respective price indices. This means
that the price index in 1988 for both countries will be 100. It does not mean that prices

were identical in both countries in 1988. The choice of 1988 as a base year is arbitrary; if
Canada were to suddenly change its choice of base year to 1987 then the indices in
1988 would no longer be the same for both countries. Price indices for the two coun-
tries cannot be used to make statements such as: “Prices are higher in Canada than
the US.” But they can also be used to calculate inflation rates. This allows us to make
statements of the type: “Inflation (i.e. price changes) is higher in Canada than the
US.”

Finance is another field where price indices often arise since information on stock
prices is often presented in this form. That is, commonly reported measures of stock
market activity such as the Dow Jones Industrial Average, the FTSE index and the
S&P500 are all price indexes.

In our discussion, we have focussed on price indices, and these are indeed by far
the most common type of index numbers. Note that other types of indices (e.g. quan-
tity indices) exist and should be interpreted in a similar manner to price indices. That
is, they should be used as a basis for measuring how phenomena have changed from
a given base year.

This discussion of index numbers is a good place to mention another transfor-
mation which is used to deal with the effects of inflation. As an example, consider
the most common measure of the output of an economy: gross domestic product
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(GDP). GDP can be calculated by adding up the value of all goods produced in the
economy. However, in times of high inflation, simply looking at how GDP is chang-
ing over time can be misleading. If inflation is high, the prices of goods will be rising
and thus their value will be rising over time, even if the actual amount of goods 
produced is not increasing. Since GDP measures the value of all goods, it will be
rising in high inflation times even if production is stagnant. This leads researchers to
want to correct for the effect of inflation. The way to do this is to divide the GDP
measure by a price index (in the case of GDP, the name given to the price index is
the GDP deflator). GDP transformed in this way is called real GDP. The original
GDP variable is referred to as nominal GDP. This distinction between real and
nominal variables is important in many fields of economics. The key things you
should remember are that a real variable is a nominal variable divided by a price vari-
able (usually a price index) and that real variables have the effects of inflation removed
from them.

The case where you wish to correct a growth rate for inflation is slightly different.
In this case, creating the real variable involves subtracting the change in the 
price index from the nominal variable. So, for instance, real interest rates are nominal
interest rates minus inflation (where inflation is defined as the change in the price
index).

Obtaining data

All of the data you need in order to understand the basic concepts and to carry out
the simple analyses covered in this book can be downloaded from the website asso-
ciated with this book. However, in the future you may need to gather your own data
for an essay, dissertation or report. Economic data come from many different sources
and it is hard to offer general comments on the collection of data. Below are a 
few key points that you should note about common data sets and where to find 
them.

Most macroeconomic data is collected through a system of national accounts,
made available in printed and, increasingly, digital form in university and government
libraries. Microeconomic data is usually collected by surveys of households, employ-
ment and businesses, which are often available from the same sources.

It is becoming increasingly common for economists to obtain their data over the
Internet, and many relevant World Wide Web (www) sites now exist from which data
can be downloaded. You should be forewarned that the Internet is a rapidly growing
and changing place, so that the information and addresses provided here might soon
be outdated. Appropriately, this section is provided only to give an indication of what
can be obtained over the Internet, and as such is far from complete. For a more
detailed description of what is available on the Internet and how to access it, you may
wish to consult Computing Skills for Economists by Guy Judge.
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Before you begin searching, you should also note that some sites allow users to
access data for free while others charge for their data sets. Many will provide free data
to non-commercial (e.g. university) users, the latter requiring that you register before
being allowed access to the data.

An extremely useful American site is “Resources for Economists on the Internet”
(http://rfe.wustl.edu/EconFAQ.html). This site contains all sorts of interesting
material on a wide range of economic topics. You should take the time to explore it.
This site also provides links to many different data sources. Another site with useful
links is the National Bureau of Economic Research (http://www.nber.org/). One
good data source available through this site is the Penn World Table (PWT), which
gives macroeconomic data for over 100 countries for many years. We will refer to the
PWT later in the chapter.

In the United Kingdom, MIMAS (Manchester Information & Associated Services)
is a useful gateway to many data sets (http://www.mimas.ac.uk). This site currently
requires a registration process.

It is worth noting that data on the Internet is often simply listed on the screen.
You can, of course, always copy the data down by hand and then type it into Excel.
But it is far less time-consuming either to save the data in a file (using File/Save as)
or to highlight the data, copy it to a clipboard, and then paste it into Excel.

To give you a flavor for the kinds of data sets available from the Internet, and what
Internet sites look like, we will focus on a common US website and a common UK
site.

Example: Resources for Economists on the Internet

If you follow the link labeled “Data” on the “Resources for Economists on the
Internet” website, the following page appears on the screen.

Data
US Macro and Regional Data (data for the US economy and its regions)
Other US Data (other types of US data)
World and Non-US Data (data from around the world)
Finance and Financial Markets (data from financial markets)
Journal Data and Program Archives (academic journal archives)

If you click on any of the links (indicated here in italics), you obtain a listing of
numerous additional Internet links you can connect to containing various types
of data.
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Example: MIMAS

The following material was taken directly from the MIMAS website. Of course,
you will not understand what all the titles below mean. But a few key abbrevi-
ations are: ONS = Office of National Statistics (the main UK government data
source), IMF = International Monetary Fund (which collects data from many
countries including developing countries), and OECD = Organisation for Eco-
nomic Co-operation and Development (which collects data for industrialized
countries).

Census and related data sets

Census information gateway

1991 Local Base and Small Area Statistics – download a registration pack.

Special workplace and migration statistics

1991 Samples of Anonymized Records
1981 Small Area Statistics
1991 Census Digitized Boundary Data
1981 Digitized Boundary Data
Table 100
Census Monitor county/district tables
Topic Statistics
Population Surface Models
Estimating with Confidence data
ONS ward and district level classifications
GB Profiler
The Longitudinal Study
1971/81 Change File
Postcode to ED/OA Directories
Central Postcode Directory POSTZON File
ONS Vital Statistics for Wards

Government and other continuous surveys

General Household Survey
Labour Force Survey
Quarterly Labour Force Survey
Family Expenditure Survey
Family Resources Survey
Farm Business Survey
National Child Development Study
British Household Panel Study
Health Survey for England
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Macro-economic time series databanks

ONS Time Series Databank
OECD Main Economic Indicators
UNIDO Industrial Statistics 3 digit level of ISIC code
UNIDO Industrial Statistics 4 digit level of ISIC code
UNIDO Commodity Balance Statistics Database
IMF International Financial Statistics
IMF Direction of Trade Statistics
IMF Balance of Payments Statistics
IMF Government Finance Statistics Yearbook

Note, however, that only registered users can obtain access to any of these data
sets.

Many of the data sets described above are free. Furthermore, most university
libraries or computer centers subscribe to various databases which the student 
can use. You are advised to check with your own university library or computer 
center to see what data sets you have access to. In the field of finance, there are 
many excellent databases of stock prices and accounting information for all sorts 
of companies for many years. Unfortunately, these tend to be very expensive and,
hence, you should see whether your university has a subscription to a financial 
database. Two of the more popular ones are Datastream by Thomson 
Financial (http://www.datastream.com/ ) and Wharton Research Data Services
(http://wrds.wharton.upenn.edu/ ). With regards to free data, a more limited
choice of financial data is available through popular Internet ports such as Yahoo!
(http://finance.yahoo.com). The Federal Reserve Bank of St Louis also maintains
a free database with a wide variety of data, including some financial time series
(http://research.stlouisfed.org/fred2/ ).

Many specialist fields also have freely available data on the web. For instance, in
the field of sports economics and statistics there are many excellent data sets avail-
able free or for a nominal charge. For baseball, http://www.baseball1.com is a very
comprehensive data set. The Statistics in Sports Section of the American Statistical
Association also has a very useful website containing links to data sets for many sports
(http://www.amstat.org/sections/sis/sports.html). The general advice I want
to give here is that spending some time searching the Internet can often be very 
fruitful.
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Working with data: graphical methods

Once you have your data, it is important for you to summarize it. After all, anybody
who reads your work will not be interested in the dozens or – more likely – hundreds
or more observations contained in the original raw data set. Indeed, you can think of
the whole field of econometrics as one devoted to the development and dissemina-
tion of methods whereby information in data sets is summarized in informative ways.
Charts and tables are very useful ways of presenting your data. There are many dif-
ferent types (e.g. bar chart, pie chart, etc.). A useful way to learn about the charts is
to experiment with the ChartWizard© in Excel. In this section, we will illustrate a few
of the commonly used types of charts.

Since most economic data is either in time series or cross-sectional form, we will
briefly introduce simple techniques for graphing both types of data.

Time series graphs

Monthly time series data from January 1947 through October 1996 on the UK
pound/US dollar exchange rate is plotted using the “Line Chart” option in Excel’s
ChartWizard© in Figure 2.1 (this data is located in Excel file EXRUK.XLS). Such charts
are commonly referred to as time series graphs. The data set contains 598 obser-
vations – far too many to be presented as raw numbers for a reader to comprehend.
However, a reader can easily capture the main features of the data by looking at the
chart. One can see, for instance, the attempt by the UK government to hold the
exchange rate fixed until the end of 1971 (apart from large devaluations in Septem-
ber 1949 and November 1967) and the gradual depreciation of the pound as it floated
downward through the middle of the 1970s.
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Fig. 2.1 Time series graph of UK pound/US dollar exchange rate.



Exercise 2.1

(a) Recreate Figure 2.1.
(b) File INCOME.XLS contains data on the natural logarithm of personal income

and consumption in the US from 1954Q1 to 1994Q2. Make one time series
graph that contains both of these variables. (Note that 1954Q1 means the
first quarter (i.e. January, February and March) of 1954.)

(c) Transform the logged personal income data to growth rates. Note that the
percentage change in personal income between period t - 1 and t is approxi-
mately 100 ¥ [ln(Yt) - ln(Yt-1)] and the data provided in INCOME.XLS is
already logged. Make a time series graph of the series you have created.

Histograms

With time series data, a chart that shows how a variable evolves over time is often
very informative. However, in the case of cross-sectional data, such methods are not
appropriate and we must summarize the data in other ways.

Excel file GDPPC.XLS contains cross-sectional data on real GDP per capita in 1992
for 90 countries from the PWT. Real GDP per capita in every country has been con-
verted into US dollars using purchasing power parity exchange rates. This allows us
to make direct comparisons across countries.

One convenient way of summarizing this data is through a histogram. To con-
struct a histogram, begin by constructing class intervals or bins that divide the coun-
tries into groups based on their GDP per capita. In our data set, GDP per person
varies from $408 in Chad to $17,945 in the US. One possible set of class intervals 
is 0–2,000, 2,001–4,000, 4,001–6,000, 6,001–8,000, 8,001–10,000, 10,001–12,000,
12,001–14,000, 14,001–16,000 and 16,001 and over (where all figures are in US
dollars).

Note that each class interval (with the exception of the 16,001 + category) is $2,000
wide. In other words, the class width for each of our bins is 2,000. For each class
interval we can count up the number of countries that have GDP per capita in that
interval. For instance, there are seven countries in our data set with real GDP per
capita between $4,001 and $6,000. The number of countries lying in one class inter-
val is referred to as the frequency3 of that interval. A histogram is a bar chart that
plots frequencies against class intervals.4

Figure 2.2 is a histogram of our cross-country GDP per capita data set that uses
the class intervals specified in the previous paragraph. Note that, if you do not wish
to specify class intervals, Excel will do it automatically for you. Excel also creates a
frequency table, which is located above the histogram.

The frequency table indicates the number of countries belonging to each class
interval (or bin). The numbers in the column labeled “Bin” indicate the upper bounds
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of the class intervals. For instance, we can read that there are 33 countries with GDP
per capita less than $2,000; 22 countries with GDP per capita above $2,000 but less
than $4,000; and so on. The last row says that there are four countries with GDP per
capita above $16,000.

This same information is graphed in a simple fashion in the histogram. Graphing
allows for a quick visual summary of the cross-country distribution of GDP per
capita. We can see from the histogram that many countries are very poor, but that
there is also a “clump” of countries that are quite rich (e.g. 19 countries have GDP
per capita greater than $12,000). There are relatively few countries in between these
poor and rich groups (i.e. few countries fall in the bins labeled 8,000, 10,000 and
12,000).

Growth economists often refer to this clumping of countries into poor and rich
groups as the “twin peaks” phenomenon. In other words, if we imagine that the his-
togram is a mountain range, we can see a peak at the bin labeled 2,000 and a smaller
peak at 14,000. These features of the data can be seen easily from the histogram, but
would be difficult to comprehend simply by looking at the raw data.

Exercise 2.2

(a) Recreate the histogram in Figure 2.2.
(b) Create histograms using different class intervals. For instance, begin by

letting your software package choose default values and see what you get,
then try values of your own.

(c) If you are using Excel, redo questions (a) and (b) with the “Cumulative Per-
centage” box clicked on. What does this do?
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XY-plots

Economists are often interested in the nature of the relationships between two or
more variables. For instance: “Are higher education levels and work experience asso-
ciated with higher wages among workers in a given industry?” “Are changes in the
money supply a reliable indicator of inflation changes?” “Do differences in capital
investment explain why some countries are growing faster than others?”

The techniques described previously are suitable for describing the behavior of
only one variable; for instance, the properties of real GDP per capita across coun-
tries in Figure 2.2. They are not, however, suitable for examining relationships
between pairs of variables.

Once we are interested in understanding the nature of the relationships between
two or more variables, it becomes harder to use graphs. Future chapters will discuss
regression analysis, which is the prime tool used by applied economists working with
many variables. However, graphical methods can be used to draw out some simple
aspects of the relationship between two variables. XY-plots (also called scatter dia-

grams) are particularly useful in this regard.
Figure 2.3 is a graph of data on deforestation (i.e. the average annual forest loss over

the period 1981–90 expressed as a percentage of total forested area) for 70 tropical
countries, along with data on population density (i.e. number of people per thousand
hectares). (This data is available in Excel file FOREST.XLS.) It is commonly thought that
countries with a high population density will likely deforest more quickly than those
with low population densities, since high population density may increase the pressure
to cut down forests for fuel wood or for agricultural land required to grow more food.

Figure 2.3 is an XY-plot of these two variables. Each point on the chart represents
a particular country. Reading up the Y-axis (i.e. the vertical one) gives us the rate of
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deforestation in that country. Reading across the X-axis (i.e. the horizontal one) gives
us population density. It is certainly possible to label each point with its correspond-
ing country name. We have not done so here, since labels for 70 countries would
clutter the chart and make it difficult to read. However, one country, Nicaragua, has
been labeled. Note that this country has a deforestation rate of 2.6% per year (Y =
2.6) and a population density of 640 people per thousand hectares (X = 640).

The XY-plot can be used to give a quick visual impression of the relationship
between deforestation and population density. An examination of this chart indicates
some support for the idea that a relationship between deforestation and population
density does exist. For instance, if we look at countries with a low population density,
(less than 500 people per hectare, say), almost all of them have very low deforesta-
tion rates (less than 1% per year). If we look at countries with high population den-
sities (e.g. over 1,500 people per thousand hectares), almost all of them have high
deforestation rates (more than 2% per year). This indicates that there may be a 
positive relationship between population density and deforestation (i.e. high values
of one variable tend to be associated with high values of the other; and low values,
associated with low values). It is also possible to have a negative relationship. This
would occur, for instance, if we substituted urbanization for population density in an
XY-plot. In this case, high levels of urbanization might be associated with low levels
of deforestation since expansion of cities would possibly reduce population pressures
in rural areas where forests are located.

It is worth noting that the positive or negative relationships found in the data are
only “tendencies”, and as such, do not hold necessarily for every country. That is,
there may be exceptions to the general pattern of high population density’s associa-
tion with high rates of deforestation. For example, on the XY-plot we can observe
one country with a high population density of roughly 1,300 and a low deforestation
rate of 0.7%. Similarly, low population density can also be associated with high rates
of deforestation, as evidenced by one country with a low population density of
roughly 150 but a high deforestation rate of almost 2.5% per year! As economists,
we are usually interested in drawing out general patterns or tendencies in the data.
However, we should always keep in mind that exceptions (in statistical jargon out-

liers) to these patterns typically exist. In some cases, finding out which countries don’t
fit the general pattern can be as interesting as the pattern itself.

Exercise 2.3

The file FOREST.XLS contains data on both the percentage increase in cropland
(the column labeled “Crop ch”) from 1980 to 1990 and on the percentage
increase in permanent pasture (the column labeled “Pasture ch”) over the same
period. Construct and interpret XY-plots of these two variables (one at a time)
against deforestation. Does there seem to be a positive relationship between
deforestation and expansion of pasture land? How about between deforestation
and the expansion of cropland?

22 Analysis of economic data



Working with data: descriptive statistics

Graphs have an immediate visual impact that is useful for livening up an essay or
report. However, in many cases it is important to be numerically precise. Later 
chapters will describe common numerical methods for summarizing the relationship
between several variables in greater detail. Here we discuss briefly a few descriptive

statistics for summarizing the properties of a single variable. By way of motivation,
we will return to the concept of distribution introduced in our discussion on 
histograms.

In our cross-country data set, real GDP per capita varies across the 90 countries.
This variability can be seen by looking at the histogram in Figure 2.2, which plots the
distribution of GDP per capita across countries. Suppose you wanted to summarize
the information contained in the histogram numerically. One thing you could do is
to present the numbers in the frequency table in Figure 2.2. However, even this table
may provide too many numbers to be easily interpretable. Instead it is common to
present two simple numbers called the mean and standard deviation.

The mean is the statistical term for the average. The mathematical formula for the
mean is given by:

where N is the sample size (i.e. number of countries) and S is the summation 
operator (i.e. it adds up real GDP per capita for all countries). In our case, mean GDP
per capita is $5,443.80. Throughout this book, we will place a bar over a 
variable to indicate its mean (i.e. is the mean of the variable Y, is the mean of
X, etc.).

The concept of the mean is associated with the middle of a distribution. For
example, if we look at the previous histogram, $5,443.80 lies somewhere in the middle
of the distribution. The cross-country distribution of real GDP per capita is quite
unusual, having the twin peaks property described earlier. It is more common for 
distributions of economic variables to have a single peak and to be bell-shaped.
Figure 2.4 is a histogram that plots just such a bell-shaped distribution. For such dis-
tributions, the mean is located precisely in the middle of the distribution, under the
single peak.

Of course, the mean or average figure hides a great deal of variability across coun-
tries. Other useful summary statistics, which shed light on the cross-country variation
in GDP per capita, are the minimum and maximum. For our data set, minimum GDP
per capita is $408 (Chad) and maximum GDP is $17,945 (US). By looking at the dis-
tance between the maximum and minimum we can see how dispersed the distribu-
tion is.

The concept of dispersion is quite important in economics and is closely related
to the concepts of variability and inequality. For instance, real GDP per capita in 1992
in our data set varies from $408 to $17,945. If in the near future poorer countries
were to grow quickly, and richer countries to stagnate, then the dispersion of real
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GDP per capita in, say, 2012, might be significantly less. It may be the case that the
poorest country at this time will have real GDP per capita of $10,000 while the richest
country will remain at $17,945. If this were to happen, then the cross-country distri-
bution of real GDP per capita would be more equal (less dispersed, less variable).
Intuitively, the notions of dispersion, variability and inequality are closely related.

The minimum and maximum, however, can be unreliable guidelines to dispersion.
For instance, what if, with the exception of Chad, all the poor countries experienced
rapid economic growth between 1992 and 2012, while the richer countries did not
grow at all? In this case, cross-country dispersion or inequality would decrease over
time. However, since Chad and the US did not grow, the minimum and maximum
would remain at $408 and $17,945, respectively.

A more common measure of dispersion is the standard deviation. (Confusingly,
statisticians refer to the square of the standard deviation as the variance.) Its math-
ematical formula is given by:

although in practice you will probably never have to calculate it by hand. You can cal-
culate it easily in Excel using either the Tools/Descriptive statistics or the Functions
facility. In some textbooks, a slightly different formula for calculating the standard
deviation is given where the N - 1 in the denominator is replaced by N.

This measure has little direct intuition. In our cross-country GDP data set, the
standard deviation is $5,369.496 and it is difficult to get a direct feel for what this
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number means in an absolute sense. However, the standard deviation can be inter-
preted in a comparative sense. That is, if you compare the standard deviations of
two different distributions, the one with the smaller standard deviation will always
exhibit less dispersion. In our example, if the poorer countries were to suddenly ex-
perience economic growth and the richer countries to stagnate, the standard devia-
tion would decrease over time.

Exercise 2.4

Construct and interpret descriptive statistics for the pasture change and crop-
land change variables in FOREST.XLS.
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Chapter summary

1. Economic data come in many forms. Common types are time series, cross-
sectional and panel data.

2. Economic data can be obtained from many sources. The Internet is becom-
ing an increasingly valuable repository for many data sets.

3. Simple graphical techniques, including histograms and XY-plots, are useful
ways of summarizing the information in a data set.

4. Many numerical summaries can be used. The most important are the mean,
a measure of the location of a distribution, and the standard deviation, a
measure of how spread out or dispersed a distribution is.

Appendix 2.1: Index numbers

To illustrate the basic ideas in constructing a price index, we use the data shown in
Table 2.1.1 on the price of various fruits in various years.

Calculating a banana price index

We begin by calculating a price index for a single fruit, bananas, before proceeding to
the calculation of a fruit price index. As described in the text, calculating a price index
involves first selecting a base year. For our banana price index, let us choose the year



2000 as the base year (although it should be stressed that any year can be chosen).
By definition, the value of the banana price index is 100 in this base year. How did
we transform the price of bananas in the year 2000 to obtain the price index value
of 100? It can be seen that this transformation involved taking the price of bananas
in 2000 and dividing by the price of bananas in 2000 (i.e. dividing the price by itself )
and multiplying by 100. To maintain comparability, this same transformation must be
applied to the price of bananas in every year. The result is a price index for bananas
(with the year 2000 as the base year). This is illustrated in Table 2.1.2.

From the banana price index, it can be seen that between 2000 and 2003 the price
of bananas increased by 4.4% and in 1999 the price of bananas was 97.8% as high
as in 2000.

Calculating a fruit price index

When calculating the banana price index (a single good), all we had to look at were
the prices of bananas. However, if we want to calculate a fruit price index (involving
several goods), then we have to combine the prices of all fruits together somehow.
One thing you could do is simply average the prices of all fruits together in each year
(and then construct a price index in the same manner as for the banana price index).
However, this strategy is usually inappropriate since it implicitly weights all goods
equally to one another (i.e. a simple average would just add up the prices of the three

26 Analysis of economic data

Table 2.1.1 Prices of different fruits in different years (£/kg).

Year Bananas Apples Kiwi fruit

1999 0.89 0.44 1.58
2000 0.91 0.43 1.66
2001 0.91 0.46 1.90
2002 0.94 0.50 2.10
2003 0.95 0.51 2.25

Table 2.1.2 Calculating a banana price index.

Year Price of bananas Transformation Price index

1999 0.89 ¥100 ∏ 0.91 97.8
2000 0.91 ¥100 ∏ 0.91 100
2001 0.91 ¥100 ∏ 0.91 100
2002 0.94 ¥100 ∏ 0.91 103.3
2003 0.95 ¥100 ∏ 0.91 104.4



fruits and divide by three). In our example (and most real-world applications), this
equal weighting is unreasonable. (An exception to this is the Dow Jones Industrial
Average which does equally weight the stock prices of all companies included in
making the index.) An examination of Table 2.1.1 reveals that the prices of bananas
and apples are going up only slightly over time (and in some years their prices are not
changing or are even dropping). However, the price of kiwi fruit is going up rapidly
over time. Bananas and apples are common fruits purchased frequently by many
people, whereas kiwi fruit are an obscure exotic fruit purchased infrequently by a tiny
minority of people. In light of this, it is unreasonable to weight all three fruits equally
when calculating a price index. A fruit price index which was based on a simple
average would reveal that the fruit prices were growing at a fairly rapid rate (i.e. com-
bining the slow growth of banana and apple prices with the very fast growth of kiwi
fruit prices would yield a fruit price index which indicates moderately fast growth).
However, if the government were to use such a price index to report “fruit prices are
increasing at a fairly rapid rate”, the vast majority of people would find this report
inconsistent with their own experience. That is, the vast majority of people buy only
bananas and apples and the prices of these fruits are growing only slowly over time.

The line of reasoning in the previous paragraph suggests that a price index which
weights all goods equally will not be a sensible one. It also suggests how one might
construct a sensible fruit price index: use a weighted average of the prices of all fruits
to construct an index where the weights are chosen so as to reflect the importance
of each good. In our fruit price index, we would want to attach more weight to
bananas and apples (the common fruits) and little weight to the exotic kiwi fruit.5

There are many different ways of choosing such weights. Here I shall describe two
common choices based on the idea that the weights should reflect the amount of each
fruit that is purchased. Of course, the amount of each fruit purchased can vary over
time and it is with regards to this issue that our two price indices differ.

The Laspeyres price index (using base year weights)
The Laspeyres price index uses the amount of each fruit purchased in the base year
(2000 in our example) to construct weights. In words, to construct the Laspeyres price
index, you calculate the average price of fruit in each year using a weighted average

where the weights are proportional to the amount of each fruit purchased in

2000. You then use this average fruit price to construct an index in the same manner
as we did for the banana price index (see Table 2.1.2).

Intuitively, if the average consumer spends 100 times more on bananas than kiwi
fruit in 2000, then banana prices will receive 100 times as much weight as kiwi fruit
prices in the Laspeyres price index. The Laspeyres price index can be written in terms
of a mathematical formula. Let P denote the price of a good, Q denote the quantity
of the good purchased and subscripts denote the good and year with bananas being
good 1, apples good 2 and kiwi fruit good 3. Thus, for instance, P1,2000, is the price
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of bananas in the year 2000, Q3,2002 is the quantity of kiwi fruit purchased in 2002,
etc. See Appendix 1.1 if you are having trouble understanding this subscripting 
notation or the summation operator used below.

With this notational convention established, the Laspeyres price index (LPI) in year
t (for t = 1999, 2000, 2001, 2002 and 2003) can be written as:

Note that the numerator of this formula takes the price of each fruit and multi-
plies it by the quantity of that fruit purchased in the year 2000. This ensures that
bananas and apples receive much more weight in the Laspeyres price index. We will
not explain the denominator other than to note that it is necessary to ensure that 
the Laspeyres price index is a valid index with a value of 100 in the base year. For
the more mathematically inclined, the denominator ensures that the weights in the
weighted average sum to one (which is necessary to ensure that it is a proper weighted
average).

Note also that the definition of the Laspeyres price index above has been written
for our fruit example involving three goods with a base year of 2000. In general, the
formula above can be extended to allow for any number of goods and any base year
by changing the 3 and 2000 as appropriate.

The calculation of the Laspeyres price index requires us to know the quantities
purchased of each fruit. Table 2.1.3 presents these quantities.

The Laspeyres fruit price index can be interpreted in the same way as the banana
price index. For instance, we can say that, between 2000 and 2003, fruit prices rose
by 8.7%.

The Paasche price index (using current year weights)
The Laspeyres price index used base year weights to construct an average fruit price
from the prices of the three types of fruit. However, it is possible that the base year
weights (in our example, the base year was 2000) may be inappropriate if fruit con-
sumption patterns are changing markedly over time. In our example, bananas and
apples are the predominant fruits and, in all years, there are few kiwi fruit eaters. Our
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Table 2.1.3 Quantities purchased of fruits (thousands of kg).

Year Bananas Apples Kiwi fruit

1999 100 78 1
2000 100 82 1
2001 98 86 3
2002 94 87 4
2003 96 88 5



Laspeyres price index (sensibly) weighted the prices of bananas and apples much
more heavily in the index than kiwi fruit. But what would have happened if, in 2001,
there had been a health scare indicating that eating apples was unhealthy and people
stopped eating apples and ate many more kiwi fruit instead? The Laspeyres price 
index would keep on giving a low weight to kiwi fruit and a high weight to apples
even though people were now eating more kiwi fruit. The Paasche price index is an
index which attempts to surmount this problem by using current year purchases to
weight the individual fruits in the index.

In words, to construct the Paasche price index, you calculate the average price of
fruit in each year using a weighted average where the weights are proportional

to amount of each fruit purchased in the current year. You then use this average
fruit price to construct an index in the same manner as we did for the banana price
index (see Table 2.1.2).

The mathematical formula for the Paasche price index (PPI) in year t (for t = 1999,
2000, 2001, 2002 and 2003) can be written as:

Note that PPI is the same as LPI except that Qit appears in the PPI formula where
Qi,2000 appeared in the LPI formula. Thus, the two indexes are the same except for
the fact that PPI is using current year purchases instead of base year purchases.

Table 2.1.5 shows the calculation of the Paasche price index using the fruit price
data of Table 2.1.1 and the data on quantity of fruit purchased in Table 2.1.3.

Note that, since the Paasche price index does not weight the prices in the same
manner as the Laspeyres price index, we do not get exactly the same results in Tables
2.1.5 and 2.1.4. For instance, the Paasche price index says that, between 2000 and
2003, fruit prices rose by 10.4% (whereas the Laspeyres price index said 8.7%).

The Paasche and Laspeyres price indices are merely two out of myriad possibil-
ities. We will not discuss any of the other possibilities. However, it is important to
note that indices arise in many places in economics and finance. For instance, mea-
sures of inflation reported in the newspapers are based on price indices. In the
economy, there are thousands of goods that people buy and price indices such as 
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Table 2.1.4 Calculating the Laspeyres fruit price index.

Numerator = Denominator = Laspeyres price
Year S3

i=1Pit Qi,2000 S3
i=1Pi,2000 Qi,2000 index

1999 126.64 127.92 99.0
2000 127.92 127.92 100
2001 130.62 127.92 102.1
2002 137.1 127.92 107.2
2003 139.07 127.92 108.7



the consumer price index (CPI) or retail price index (RPI) are weighted averages of
the prices of these thousands of goods. Information about stock markets is often
expressed in terms of stock price indices.

There is one other issue that sometimes complicates empirical studies, especially
involving macroeconomic data. Government statistical agencies often update the base
year they use in calculating their price index. So, when collecting data, you will some-
times face the situation where the first part of your data uses one base year and the
last part a different one. This problem is not hard to fix if you have one overlap year
where you know the value of the index in terms of both base years. Table 2.1.6 
provides an illustration of how you can splice an index together when the base year
changes in this manner.

The statistical office has constructed a price index using 1995 as a base year, but
discontinued it after the year 2000. This is in the column labeled “Old index with
base year 1995”. In 2001, the statistical office started constructing the index using
2001 as the base year, but also went back and worked out the year 2000 value for this
index using the new base year. This new index is listed in the column labeled “New
index with base year 2001”. Note that we have one overlapping year, 2000. In order
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Table 2.1.5 Calculating the Paasche fruit price index.

Numerator = Denominator = Paasche price
Year S3

i=1Pit Qit S3
i=1Pi,2000Qit index

1999 124.90 126.20 99.0
2000 127.92 127.92 100
2001 134.44 131.14 102.5
2002 140.26 129.59 108.2
2003 147.33 133.50 110.4

Table 2.1.6 Splicing together an index when the base year changes.

Old index with New index with Transformation Spliced index
Year base year 1995 base year 2001 to old index base year 2001

1995 100 ¥ 95 ∏ 107 88.8
1996 102 ¥ 95 ∏ 107 90.6
1997 103 ¥ 95 ∏ 107 91.5
1998 103 ¥ 95 ∏ 107 91.5
1999 105 ¥ 95 ∏ 107 93.2
2000 107 95 95
2001 100 100
2002 101 101
2003 105 105



to make the 2000 value for the old index and the new the same we have to take the
old index value and multiple it by 95 and divide it by 107. In order to be consistent
we must apply this same transformation to all values of the old index. The result of
transforming all values of the old index in this manner is given in the last column of
Table 2.1.6. This spliced index can now be used for empirical work as now the entire
index has the same base year of 2001.

Appendix 2.2: Advanced descriptive statistics

The mean and standard deviation are the most common descriptive statistics but
many others exist. The mean is the simplest measure of location of a distribution.
The word “location” is meant to convey the idea of the center of the distribution.
The mean is the average. Other common measures of location are the mode and
median.

To distinguish between the mean, mode and median, consider a simple example.
Seven people report their respective incomes in £ per annum as: £18,000, £15,000,
£9,000, £15,000, £16,000, £17,000 and £20,000. The mean, or average, income of
these seven people is £15,714.

The mode is the most common value. In the present example, two people have
reported incomes of £15,000. No other income value is reported more than once.
Hence, £15,000 is the modal income for these seven people.

The median is the middle value. That is, it is the value that splits the distribution
into two equal halves. In our example, it is the income value at which half the people
have higher incomes and half the people have lower incomes. Here the median is
£16,000. Note that three people have incomes less than the median and three have
incomes higher than it.

The mode and median can also be motivated through consideration of Figures 2.2
and 2.4, which plot two different histograms or distributions. A problem with the
mode is that there may not be a most common value. For instance, in the GDP per
capita data set (GDPPC.XLS), no two countries have precisely the same values. So there
is no value that occurs more than once. For cases like this, the mode is the highest
point of the histogram. A minor practical problem with defining the mode in this
way is that it can be sensitive to the choice of class intervals (and this is why Excel
gives a slightly different answer for the mode for GDPPC.XLS than the one given here).
In Figure 2.2, the histogram is highest over the class interval labeled 2,000. Remem-
ber, Excel’s choice of labeling means that the class interval runs from 0 to 2,000.
Hence, we could say that “the class interval 0 to 2,000 is the modal (or most likely)
value”. Alternatively, it is common to report the middle value of the relevant 
class interval as the mode. In this case, we could say, “the mode is $1,000”. The mode
is probably the least commonly used of the three measures of location introduced
here.
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To understand the median, imagine that all the area of the histogram is shaded.
The median is the point on the X-axis which divides this shaded area precisely in half.
For Figure 2.4 the highest point (i.e. the mode) is also the middle point that divides
the distribution in half (i.e. the median). It turns out it is also the mean. However, in
Figure 2.2 the mean ($5,443.80), median ($3,071.50) and mode ($1,000) are quite 
different.

Other useful summary statistics are based on the notion of a percentile. Consider
our GDP per capita data set. For any chosen country, say Belgium, you can ask “how
many countries are poorer than Belgium?” or, more precisely, “what proportion of
countries are poorer than Belgium?”. When we ask such questions we are, in effect,
asking what percentile Belgium is at. Formally, the Xth percentile is the data value
(e.g. a GDP per capita figure) such that X% of the observations (e.g. countries) have
lower data values. In the cross-country GDP data set, the 37th percentile is $2,092.
This is the GDP per capita figure for Peru. 37% of the countries in our data set are
poorer than Peru.

Several percentiles relate to concepts we have discussed before. The 50th percentile
is the median. The minimum and maximum are the 0th and 100th percentile. The
percentile divides the data range up into hundredths, while other related concepts use
other basic units. Quartiles divide the data range up into quarters. Hence, the first
quartile is equivalent to the 25th percentile, the second quartile, the 50th percentile
(i.e. the median) and the third quartile, the 75th percentile. Deciles divide the data
up into tenths. In other words, the first decile is equivalent to the 10th percentile, the
second decile, the 20th percentile, etc.

After the standard deviation, the most common measure of dispersion is the inter-

quartile range. As its name suggests, it measures the difference between the third
and first quartiles. For the cross-country data set, 75% of countries have GDP per
capita less than $9,802 and 25% have GDP per capita less than $1,162. In other words,
$1,162 is the first quartile and $9,802 is the third quartile. The inter-quartile range is
$9,802 - $1,162 = $8,640.

Endnotes

1. As emphasized in chapter 1, this is not a book about collecting data. Nevertheless, it is
useful to offer a few brief pointers about how to look for data sets.

2. As will be discussed in later chapters, it is sometimes convenient to take the natural loga-
rithm, or ln(.) of variables. The definition and properties of logarithms can be found in 
virtually any introductory mathematics textbook. Using the properties of logarithms, it can
be shown that the percentage change in a variable is approximately 100 ¥ [ln(Yt) - ln(Yt-1)].
This formula is often used in practice and relates closely to ideas in nonstationary time series
(see Chapters 9 and 10).

3. Note that the use of the word “frequency” here as meaning “the number of observations
that lie in a class interval” is somewhat different from the use of the word “frequency” in
time series analysis (see the discussion of time series data earlier).
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4. Excel creates the histogram using the Histogram command (in Tools/Data Analysis). It
simply plots the bins on the horizontal axis and the frequency (or number of observations
in a class) on the vertical axis. Note that most statistics books plot class intervals against
frequencies divided by class width. This latter strategy corrects for the fact that class widths
may vary across class intervals. In other words, Excel does not calculate the histogram 
correctly. Provided the class intervals are the same width (or nearly so) this error is not of
great practical importance.

5. For the student of finance interested in following up our earlier discussion of the Dow
Jones Industrial Average it should be mentioned that the S&P500 is a price index which
weights stock prices by the size of the company.
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C H A P T E R

Correlation

3

Often economists are interested in investigating the nature of the relationship
between different variables, such as the education level of workers and their wages
or interest rates and inflation. Correlation is an important way of numerically quan-
tifying the relationship between two variables. A related concept, introduced in 
future chapters, is regression, which is essentially an extension of correlation to cases
of three or more variables that introduces an aspect of causality. As you will quickly
find as you read through this chapter and those that follow, it is no exaggeration to
say that correlation and regression are the most important unifying concepts of this
book.

In this chapter, we will first describe the theory behind correlation, and then work
through a few examples designed to think intuitively about the concept in different
ways.

Understanding correlation

Let X and Y be two variables (e.g. population density and deforestation, respectively)
and let us also suppose that we have data on i = 1, .. , N different units (e.g. coun-
tries). The correlation between X and Y is denoted by the small letter, r, and its
precise mathematical formula is given in Appendix 3.1. Of course, in practice, you
will never actually have to use this formula directly. Any spreadsheet or econometrics
software package will do it for you. In Excel, you can use the Tools/Data Analysis
or Function Wizard© to calculate them. It is usually clear from the context to which
variables r refers. However, in some cases we will use subscripts to indicate that rXY



is the correlation between variables X and Y, rXZ the correlation between variables X
and Z, etc.

Once you have calculated the correlation between two variables you will obtain a
number (e.g. r = 0.55). It is important that you know how to interpret this number.
In this section, we will try to develop some intuition about correlation. First, however,
let us briefly list some of the numerical properties of correlation.

Properties of correlation

1. r always lies between -1 and 1, which may be written as -1 £ r £ 1.
2. Positive values of r indicate a positive correlation between X and Y. Nega-

tive values indicate a negative correlation. r = 0 indicates that X and Y are
uncorrelated.

3. Larger positive values of r indicate stronger positive correlation. r = 1 indicates
perfect positive correlation. Larger negative values1 of r indicate stronger negative
correlation. r = -1 indicates perfect negative correlation.

4. The correlation between Y and X is the same as the correlation between X and
Y.

5. The correlation between any variable and itself (e.g. the correlation between Y and
Y) is 1.

Understanding correlation through verbal reasoning

Statisticians use the word correlation in much the same way as the layperson does.
The following continuation of the deforestation/population density example from
Chapter 2 will serve to illustrate verbal ways of conceptualizing the concept of
correlation.

Example: The correlation between deforestation and 

population density

Let us suppose that we are interested in investigating the relationship between
deforestation and population density. Remember that Excel file FOREST.XLS

contains data on these variables (and others) for a cross-section of 70 tropical
countries. Using Excel, we find that the correlation between deforestation (Y)
and population density (X ) is 0.66. Being greater than zero, this number allows
us to make statements of the following form:

1. There is a positive relationship (or positive association) between deforesta-
tion and population density.
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2. Countries with high population densities tend to have high deforestation
rates. Countries with low population densities tend to have low deforesta-
tion rates. Note that we use the word “tend” here. A positive correlation
does not mean that every country with a high population density necessar-
ily has a high deforestation rate, but rather that this is the general tendency.
It is possible that a few individual countries do not follow this pattern (see
the discussion of outliers in Chapter 2).

3. Deforestation rates vary across countries as do population densities (the
reason we call them “variables”). Some countries have high deforestation
rates, others have low rates. This high/low cross-country variance in defor-
estation rates tends to “match up” with the high/low variance in population
densities.

All that the preceding statements require is for r to be positive. If r were nega-
tive the opposite of these statements would hold. For instance, high values of
X would be associated with low values of Y, etc. It is somewhat more difficult
to get an intuitive feel for the exact number of the correlation (e.g. how is the
correlation 0.66 different from 0.26?). The XY-plots discussed below offer
some help, but here we will briefly note an important point to which we shall
return when we discuss regression:

4. The degree to which deforestation rates vary across countries can be mea-
sured numerically using the formula for the standard deviation discussed in
Chapter 2. As mentioned in point 3 above, the fact that deforestation and
population density are positively correlated means that their patterns of
cross-country variability tend to match up. The correlation squared (r2 ) mea-
sures the proportion of the cross-country variability in deforestation that
matches up with, or is explained by, the variance in population density. In
other words, correlation is a numerical measure of the degree to which pat-
terns in X and Y correspond. In our population/deforestation example,
since 0.662 = 0.44, we can say that 44% of the cross-country variance in
deforestation can be explained by the cross-country variance in population
density.

Exercise 3.1

(a) Using the data in FOREST.XLS, calculate and interpret the mean, standard
deviation, minimum and maximum of deforestation and population density.

(b) Verify that the correlation between these two variables is 0.66.
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Example: House prices in Windsor, Canada

The Excel file HPRICE.XLS contains data relating to N = 546 houses sold in
Windsor, Canada in the summer of 1987. It contains the selling price (in Cana-
dian dollars) along with many characteristics for each house. We will use this
data set extensively in future chapters, but for now let us focus on just a few
variables. In particular, let us assume that Y = the sales price of the house and
X = the size of its lot in square feet, lot size being the area occupied by the
house itself plus its garden or yard. The correlation between these two variables
is rXY = 0.54.

The following statements can be made about house prices in Windsor:

1. Houses with large lots tend to be worth more than those with small lots.
2. There is a positive relationship between lot size and sales price.
3. The variance in lot size accounts for 29% (i.e. 0.542 = 0.29) of the variabil-

ity in house prices.

Now let us add a third variable, Z = number of bedrooms. Calculating the
correlation between house prices and number of bedrooms, we obtain rYZ =
0.37. This result says, as we would expect, that houses with more bedrooms tend
to be worth more than houses with fewer bedrooms.

Similarly, we can calculate the correlation between number of bedrooms and
lot size. This correlation turns out to be rXZ = 0.15, and indicates that houses
with larger lots also tend to have more bedrooms. However, this correlation is
very small and quite unexpectedly, perhaps, suggests that the link between lot
size and number of bedrooms is quite weak. In other words, you may have
expected that houses on larger lots, being bigger, would have more bedrooms
than houses on smaller lots. But the correlation indicates that there is only a
weak tendency for this to occur.

The above example allows us to motivate briefly an issue of importance in econo-
metrics, namely, that of causality. Indeed, economists are often interested in finding
out whether one variable “causes” another. We will not provide a formal definition
of causality here but instead will use the word in its everyday meaning. In this example,
it is sensible to use the positive correlation between house price and lot size to reflect
a causal relationship. That is, lot size is a variable that directly influences (or causes)
house prices. However, house prices do not influence (or cause) lot size. In other
words, the direction of causality flows from lot size to house prices, not the other
way around.

Another way of thinking about these issues is to ask yourself what would happen
if a homeowner were to purchase some adjacent land, and thereby increase the lot
size of his/her house. This action would tend to increase the value of the house (i.e.

38 Analysis of economic data



an increase in lot size would cause the price of the house to increase). However, if
you reflect on the opposite question: “will increasing the price of the house cause lot
size to increase?” you will see that the opposite causality does not hold (i.e. house
price increases do not cause lot size increases). For instance, if house prices in
Windsor were suddenly to rise for some reason (e.g. due to a boom in the economy)
this would not mean that houses in Windsor suddenly got bigger lots.

The discussion in the previous paragraph could be repeated with “lot size” replaced
by “number of bedrooms”. That is, it is reasonable to assume that the positive cor-
relation between Y = house prices and Z = number of bedrooms is due to Z ’s influ-
encing (or causing) Y, rather than the opposite. Note, however, that it is difficult to
interpret the positive (but weak) correlation between X = lot size and Y = number of
bedrooms as reflecting causality. That is, there is a tendency for houses with many
bedrooms to occupy large lots, but this tendency does not imply that the former
causes the latter.

One of the most important things in empirical work is knowing how to interpret
your results. The house example illustrates this difficulty well. It is not enough just to
report a number for a correlation (e.g. rXY = 0.54). Interpretation is important too.
Interpretation requires a good intuitive knowledge of what a correlation is in addi-
tion to a lot of common sense about the economic phenomenon under study. Given
the importance of interpretation in empirical work, the following section will present
several examples to show why variables are correlated and how common sense can
guide us in interpreting them.

Exercise 3.2

(a) Using the data in HPRICE.XLS, calculate and interpret the mean, standard
deviation, minimum and maximum of Y = house price (labeled “sale price”
in HPRICE.XLS), X = lot size and Z = number of bedrooms (labeled
“#bedroom”).

(b) Verify that the correlation between X and Y is the same as given in the
example. Repeat for X and Z then for Y and Z.

(c) Now add a new variable, W = number of bathrooms (labeled “#bath”).
Calculate the mean of W.

(d) Calculate and interpret the correlation between W and Y. Discuss to what
extent it can be said that W causes Y.

(e) Repeat part (d) for W and X and then for W and Z.

Understanding why variables are correlated

In our deforestation/population density example, we discovered that deforestation
and population density are indeed correlated positively, indicating a positive relation-
ship between the two. But what exact form does this relationship take? As discussed
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above, we often like to think in terms of causality or influence, and it may indeed be
the case that correlation and causality are closely related. For instance, the finding that
population density and deforestation are correlated could mean that the former
directly causes the latter. Similarly, the finding of a positive correlation between edu-
cation levels and wages could be interpreted as meaning that more education does
directly influence the wage one earns. However, as the following examples demon-
strate, the interpretation that correlation implies causality is not always necessarily an
accurate one.

Example: Correlation does not necessarily imply causality

It is widely accepted that cigarette smoking causes lung cancer. Let us assume
that we have collected data from many people on (a) the number of cigarettes
each person smokes per week (X) and (b) on whether they have ever had or
now have lung cancer (Y). Since smoking causes cancer we would undoubtedly
find rXY > 0; that is, that people who smoked tend to have higher rates of lung
cancer than non-smokers. Here the positive correlation between X and Y indi-
cates direct causality.

Now suppose that we also have data on the same people, measuring the
amount of alcohol they drink in a typical week. Let us call this variable Z. In
practice, it is the case that heavy drinkers also tend to smoke and, hence, rXZ >
0. This correlation does not mean that cigarette smoking also causes people to
drink. Rather it probably reflects some underlying social attitudes. It may reflect
the fact, in other words, that people who smoke do not worry about their nutri-
tion, or that their social lives revolve around the pub, where drinking and
smoking often go hand in hand. In either case, the positive correlation between
smoking and drinking probably reflects some underlying cause (e.g. social atti-
tude), which in turn causes both. Thus, a correlation between two variables does
not necessarily mean that one causes the other. It may be the case that an under-
lying third variable is responsible.

Now consider the correlation between lung cancer and heavy drinking. Since
people who smoke tend to get lung cancer more, and people who smoke also
tend to drink more, it is not unreasonable to expect that lung cancer rates will
be higher among heavy drinkers (i.e. rYZ > 0). Note that this positive correlation
does not imply that alcohol consumption causes lung cancer. Rather, it is ciga-
rette smoking that causes cancer, but smoking and drinking are related to some
underlying social attitude. This example serves to indicate the kind of compli-
cated patterns of causality which occur in practice, and how care must be taken
when trying to relate the concepts of correlation and causality.
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Example: Direct versus indirect causality

Another important distinction is that between direct (or immediate) and indi-

rect (or proximate) causality. Recall that in our deforestation/population density
example, population density (X ) and deforestation (Y ) were found to be pos-
itively correlated (i.e. rXY > 0). One reason for this positive correlation is that
high population pressures in rural areas cause farmers to cut down forests to
clear new land in order to grow food. It is this latter on-going process of agri-
cultural expansion which directly causes deforestation. If we calculated the cor-
relation between deforestation and agricultural expansion (Z ), we would find
rYZ > 0. In this case population density would be an indirect cause, and agricul-
tural expansion, a direct cause of deforestation. In other words, we can say that
X (population pressures) causes Z (agricultural expansion), which in turn causes
Y (deforestation). Such a pattern of causality is consistent with rXY > 0 and rZY

> 0.
In our house price example, however, it is likely that the positive correlations

we observed reflect direct causality. For instance, having a larger lot is consid-
ered by most people to be a good thing in and of itself, so that increasing the
lot size should directly increase the value of a house. There is no other inter-
vening variable here, and hence we say that the causality is direct.2

The general message that should be taken from these examples is that cor-
relations can be very suggestive, but cannot on their own establish causality. In
the smoking/cancer example above, the finding of a positive correlation
between smoking and lung cancer, in conjunction with medical evidence on the
manner in which substances in cigarettes trigger changes in the human body,
have convinced most people that smoking causes cancer. In the house price
example, common sense tells us that the variable number of bedrooms directly
influences house prices. In economics, the concept of correlation can be used
in conjunction with common sense or a convincing economic theory to estab-
lish causality.

Exercise 3.3

People with university education tend to hold higher paying jobs than those with
fewer educational qualifications. This could be due to the fact that a university
education provides important skills that employers value highly. Alternatively, it
could be the case that smart people tend to go to university and that employers
want to hire these smart people (i.e. a university degree is of no interest in and
of itself to employers).
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Suppose you have data on Y = income, X = number of years of schooling
and Z = the results of an intelligence test3 of many people, and that you have
calculated rXY, rXZ and rYZ. In practice, what signs would you expect these cor-
relations to have? Assuming the correlations do have the signs you expect, can
you tell which of the two stories in the paragraph above is correct?

Understanding correlation through XY-plots

Intuition about the meaning of correlations can also be obtained from the XY-plots
described in Chapter 2. Recall that in this chapter we discussed positive and negative
relationships based on whether the XY-plots exhibited a general upward or downward
slope.4 If two variables are correlated, then an XY-plot of one against the other will
also exhibit such patterns. For instance, the XY-plot of population density against
deforestation exhibits an upward sloping pattern (see Figure 2.3). This plot implies that
these two variables should be positively correlated, and we find that this is indeed the
case from the correlation, r = 0.66. The important point here is that positive correla-
tion is associated with upward sloping patterns in the XY-plot and negative correlation
is associated with downward sloping patterns. All the intuition we developed about XY-
plots in the previous chapter can now be used to develop intuition about correlation.

Figure 3.1 uses the Windsor house price data set (HPRICE.XLS) to produce an XY-
plot of X = lot size against Y = house price. Recall that that the correlation between
these two variables was calculated as rXY = 0.54, which is a positive number. This pos-
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Fig. 3.3 XY-plot of two positively correlated variables (r = 0.51).

itive (upward sloping) relationship between lot size and house price can clearly be
seen in Figure 3.1. That is, houses with small lots (i.e. small X-axis values) also tend
to have small prices (i.e. small Y-axis values). Conversely, houses with large lots tend
to have high prices.

The previous discussion relates mainly to the sign of the correlation. However,
XY-plots can also be used to develop intuition about how to interpret the magnitude
of a correlation, as the following examples illustrate.

Figure 3.2 is an XY-plot of two perfectly correlated variables (i.e. r = 1). Note that
they do not correspond to any actual economic data, but were simulated on the com-
puter. All the points lie exactly on a straight line.

Figure 3.3 is an XY-plot of two variables which are positively correlated (r = 0.51),
but not perfectly correlated. Note that the XY-plot still exhibits an upward sloping
pattern, but that the points are much more widely scattered.



Figure 3.4 is an XY-plot of two completely uncorrelated variables (r = 0). Note
that the points seem to be randomly scattered over the entire plot.

Plots for negative correlation exhibit downward sloping patterns, but otherwise the
same sorts of patterns noted above hold for them. For instance, Figure 3.5 is an XY-
plot of two variables that are negatively correlated (r = -0.58).

These figures illustrate one way of thinking about correlation: correlation indicates
how well a straight line can be fit through an XY-plot. Variables that are strongly cor-
related fit on or close to a straight line. Variables that are weakly correlated are more
scattered in an XY-plot.
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Exercise 3.4

The file EX34.XLS contains four variables: Y, X1, X2 and X3.

(a) Calculate the correlation between Y and X1. Repeat for Y and X2 and for Y
and X3.

(b) Create an XY-plot involving Y and X1. Repeat for Y and X2 and for Y and
X3.

(c) Interpret your results for a) and b).



Correlation between several variables

Correlation is a property that relates two variables together. Frequently, however,
economists must work with several variables. For instance, house prices depend on
the lot size, number of bedrooms, number of bathrooms and many other character-
istics of the house. As we shall see in subsequent chapters, regression is the most
appropriate tool for use if the analysis contains more than two variables. Yet it is also
not unusual for empirical researchers, when working with several variables, to calcu-
late the correlation between each pair. This calculation is laborious when the number
of variables is large. For instance, if we have three variables, X, Y and Z, then there
are three possible correlations (i.e. rXY, rXZ and rYZ). However, if we add a fourth vari-
able, W, the number increases to six (i.e. rXY, rXZ, rXW, rYZ, rYW and rZW). In general, for
M different variables there will be M ¥ (M - 1)/2 possible correlations. A convenient
way of ordering all these correlations is to construct a matrix or table, as illustrated
by the following example.

CORMAT.XLS contains data on three variables labeled X, Y and Z. X is in the first
column, Y the second and Z the third. Using Excel, we can create a correlation matrix
(Table 3.1) for these variables.

The number 0.318237 is the correlation between the variable in the first column
(X ), and that in the second column (Y ). Similarly, -0.13097 is the correlation between
X and Z, and 0.096996, the correlation between Y and Z. Note that the 1s in the cor-
relation matrix indicate that any variable is perfectly correlated with itself.
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Exercise 3.5

(a) Using the data in FOREST.XLS, calculate and interpret a correlation matrix
involving deforestation, population density, change in pasture and change
in cropland.

(b) Repeat part (a) using the following variables in the data set HPRICE.XLS:
house price, lot size, number of bedrooms, number of bathrooms and
number of storeys. How many individual correlations have you calculated?
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Table 3.1 The correlation matrix for X, Y and Z.

Column 1 Column 2 Column 3

Column 1 1
Column 2 0.318237 1
Column 3 -0.13097 0.096996 1

Chapter summary

1. Correlation is a common way of measuring the relationship between two
variables. It is a number that can be calculated using Excel or any spread-
sheet or econometric software package.

2. Correlation can be interpreted in a common sense way as a numerical
measure of a relationship or association between two variables.

3. Correlation can also be interpreted graphically by means of XY-plots. That
is, the sign of the correlation relates to the slope of a best fitting line through
an XY-plot. The magnitude of the correlation relates to how scattered the
data points are around the best fitting line.

4. Correlations can arise for many reasons. However, correlation does not nec-
essarily imply causality between two variables.

Appendix 3.1: Mathematical details

The correlation between X and Y is referred to by the small letter r and is calculated
as:

r
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where X̄ and Ȳ are the means of X and Y (see Chapter 2). More intuitively, note that
if we were to divide the numerator and denominator of the previous expression by
N - 1, then the denominator would contain the product of the standard deviations
of X and Y, and the numerator, the covariance between X and Y. Covariance is a
concept that we have not defined here, but you may come across it in the future, par-
ticularly if you are interested in developing a deeper understanding of the statistical
theory underlying correlation.

Endnotes

1. By “larger negative values” we mean more negative. For instance, -0.9 is a larger negative
value than -0.2.

2. An alternative explanation is that good neighborhoods tend to have houses with large lots.
People are willing to pay extra to live in a good neighborhood. Thus, it is possible that
houses with large lots tend also to have higher sales prices, not because people want large
lots, but because they want to live in good neighborhoods. In other words, “lot size” may
be acting as a proxy for the “good neighborhood” effect. We will discuss such issues in
more detail in later chapters on regression. You should merely note here that the inter-
pretation of correlations can be quite complicated and a given correlation pattern may be
consistent with several alternative stories.

3. It is a controversial issue among psychologists and educators as to whether intelligence
tests really are meaningful measures of intelligence. For the purposes of answering this
question, avoid this controversy and assume that they are indeed an accurate reflection of
intelligence.

4. We will formalize the meaning of “upward” or “downward” sloping patterns in the XY-
plots when we come to regression. To aid in interpretation, think of drawing a straight line
through the points in the XY-plot that best captures the pattern in the data (i.e. is the best
fitting line). The upward or downward slope discussed here refers to the slope of this line.
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C H A P T E R

An introduction to simple

regression

4

Regression is the most important tool applied economists use to understand the 
relationship among two or more variables. It is particularly useful for the common
case where there are many variables (e.g. unemployment and interest rates, the 
money supply, exchange rates, inflation, etc.) and the interactions between them are
complex.

To give an example, in the summer of 1998 a great deal of attention in the UK
media focussed on the proper level at which interest rates should be set. In particu-
lar, the manufacturing sector complained that interest rates were too high. They
argued that high interest rates encouraged foreigners to invest their money in the UK
which, in turn, caused the pound to appreciate. A higher pound made it difficult for
UK firms to export their products, resulting in falling sales, increased layoffs and
rising unemployment.

But this is only part of the story. Still others believed that interest rates were too
low, and argued that higher interest rates were necessary to choke off inflationary
pressures due to a relationship between inflation and interest rates. Thus, an impor-
tant economic question (i.e. interest rate determination) was at stake, and a large
number of variables – interest rates, exchange rates, inflation, manufacturing output,
exports, unemployment – must be considered in arriving at an answer to the problem.
All these variables (and more) shaped the discussion of what the relevant interest rate
should be.

As a second example, consider the problem of trying to explain the price of houses.
The price of a house depends on many characteristics (e.g. number of bedrooms,
number of bathrooms, location of house, size of lot, etc.). As in the above example,



many variables must be included in a model seeking to explain why some houses are
more expensive than others.

These two examples are not unusual. Most problems in economics are of a similar
level of complexity. Unfortunately, the basic tool you have encountered so far –
simple correlation analysis – cannot handle such complexity. For these more complex
cases – that is, those involving more than two variables – regression is the tool to use.

Regression as a best fitting line

As a way of understanding regression, let us begin with just two variables (Y and X).
We refer to this case as simple regression. Multiple regression, involving many vari-
ables, will be discussed in Chapter 6. Beginning with simple regression makes sense
since graphical intuition can be developed in a straightforward manner and the rela-
tionship between regression and correlation can be illustrated quite easily.

Let us return to the XY-plots used previously (e.g. Figure 2.3 which plots popula-
tion density against deforestation or Figure 3.1 which plots lot size against house
price). We have discussed in Chapters 2 and 3 how an examination of these XY-plots
can reveal a great deal about the relationship between X and Y. In particular, a straight
line drawn through the points on the XY-plot provides a convenient summary of
the relationship between X and Y. In regression analysis, we formally analyze this
relationship.

To start with, we assume that a linear relationship exists between Y and X. As an
example, you might consider Y to be the house price variable and X to be the lot size
variable from data set HPRICE.XLS. Remember that this data set contained the sales
price of 546 houses in Windsor, Canada along with several characteristics for each
house. It is sensible to assume that the size of the lot affects the price at which a
house sells.

We can express the linear relationship between Y and X mathematically as:1

where a is the intercept of the line and b is the slope. This equation is referred to as
the regression line. If in actuality we knew what a and b were, then we would know
what the relationship between Y and X was. In practice, of course, we do not have
this information. Furthermore, even if our regression model, which posits a linear
relationship between Y and X, were true, in the real world we would never find that
our data points lie precisely on a straight line. Factors such as measurement error
mean that individual data points might lie close to but not exactly on a straight line.

For instance, suppose the price of a house (Y ) depends on the lot size (X) in the
following manner: Y = 34,000 + 7X (i.e. a = 34,000 and b = 7). If X were 5,000
square feet, this model says the price of the house should be Y = 34,000 + 7 ¥ 5,000
= $69,000. But, of course, not every house with a lot size of 5,000 square feet will

Y X= +a b ,
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have a sales price of precisely $69,000. No doubt in this case, the regression model
is missing some important variables (e.g. number of bedrooms) that may affect the
price of a house. Furthermore, the price of some houses might be higher than they
should be (e.g. if they were bought by irrationally exuberant buyers). Alternatively,
some houses may sell for less than their true worth (e.g. if the sellers have to relo-
cate to a different city and must sell their houses quickly). For all these reasons, even
if Y = 34,000 + 7X is an accurate description of a straight line relationship between
Y and X, it will not be the case that every data point lies exactly on the line.

Our house price example illustrates a truth about regression modeling: the linear

regression model will always be only an approximation of the true relationship.
The truth may differ in many ways from the approximation implicit in the linear regres-
sion model. In economics, the most probable source of error is due to missing vari-
ables, usually because we cannot observe them. In our previous example, house prices
reflect many variables for which we can easily collect data (e.g. number of bedrooms,
number of bathrooms, etc.). But they will also depend on many other factors for which
it is difficult if not impossible to collect data (e.g. the number of loud parties held by
neighbors, the degree to which the owners have kept the property well-maintained,
the quality of the interior decoration of the house, etc.). The omission of these vari-
ables from the regression model will mean that the model makes an error.

We call all such errors e. The regression model can now be written as:

In the regression model, Y is referred to as the dependent variable, X the explana-

tory variable, and a and b, coefficients. It is common to implicitly assume that the
explanatory variable “causes” Y, and the coefficient b measures the influence of X

on Y. In light of the comments made in the previous chapter about how correlation
does not necessarily imply causality, you may want to question the assumption that
the explanatory variable causes the dependent variable. There are three responses that
can be made to this statement.

First, note that we talk about the regression model. A model specifies how dif-
ferent variables interact. For instance, models of land use posit that population pres-
sures cause rural farmers to expand their lands by cutting down forests, thus causing
deforestation. Such models have the causality “built-in” and the purpose of a regres-
sion involving Y = deforestation and X = population density is to measure the mag-
nitude of the effect of population pressures only (i.e. the causality assumption may
be reasonable and we do not mind assuming it). Secondly, we can treat the regression
purely as a technique for generalizing correlation and interpret the numbers that 
the regression model produces purely as reflecting the association between variables.
(In other words, we can drop the causality assumption if we wish.) Thirdly, we 
can acknowledge that the implicit assumption of causality can be a problem and
develop new methods. This issue will be discussed briefly in the last chapter of this
book.2

Y X e= + +a b .
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In light of the error, e, and the fact that we do not know what a and b are, the
first problem in regression analysis is how we can figure approximately, or estimate,
what a and b are. It is standard practice to refer to the estimates of a and b as â and
b̂ (i.e. â and b̂ are actual numbers that the computer calculates, for instance, â =
34,136 and b̂ = 6.599, which are estimates of the unknown true values a = 34,000
and b = 7). In practice, the way we find estimates is by drawing a line through the
points on an XY-plot which fits best. Hence, we must define what we mean by “best
fitting line”.

Before we do this, it is useful to make a distinction between errors and residuals.
The error is defined as the distance between a particular data point and the true
regression line. Mathematically, we can rearrange the regression model to write ei =
Yi - a - bXi. This is the error for the ith observation. However, if we replace a and
b by their estimates â and b̂, we get a straight line which is generally a little different
from the true regression line. The deviations from this estimated regression line are
called residuals. We will use the notation “u” when we refer to residuals. That is, the
residuals are given by ui = Yi - â - b̂Xi. If you find the distinction between errors
and residuals confusing, you can probably ignore it in the rest of this book and assume
errors and residuals are the same thing. However, if you plan on further study of
econometrics, this distinction becomes crucial.

If we return to some basic geometry, note that we can draw one (and only one)
straight line connecting any two distinct points. Thus, in the case of two points, there
is no doubt about what the best fitting line through an XY-plot is. However, typically
we have many points – for instance, our deforestation/population density example
has 70 different countries and the XY-plots 70 points – and there is ambiguity about
what is the “best fitting line”. Figure 4.1 plots three data points (A, B and C) on an
XY graph. Clearly, there is no straight line that passes through all three points. The
line I have drawn does not pass through any of them; each point, in other words, is

52 Analysis of economic data

Y

X

C

B

A

u1

u3

u2

Y = a + b Xˆ ˆ

Fig. 4.1 Best fitting line for three data points.



a little bit off the line. To put it another way: the line drawn implies residuals that are
labeled u1, u2 and u3. The residuals are the vertical difference between a data point and
the line. A good fitting line will have small residuals.

The usual way of measuring the size of the residuals is by means of the sum of
squared residuals (SSR), which is given by:

for i = 1, . . . , N data points. We want to find the best fitting line which minimizes
the sum of squared residuals. For this reason, estimates found in this way are called
least squares estimates (or ordinary least squares – OLS – to distinguish them from
more complicated estimators which we will not discuss until the last chapter of this
book).

In practice, software packages such as Excel can automatically find values for 
â and b̂ which will minimize the sum of squared residuals. The exact formulae for 
â and b̂ can be derived using simple calculus, but we will not derive them here (see
Appendix 4.1 for more details).

Example: The regression of deforestation on population density

Consider again the data set FOREST.XLS, which contains data on population
density and deforestation for 70 tropical countries. It makes sense to assume
that population density influences deforestation rather than the other way
around. Thus we choose deforestation as the dependent variable (i.e. Y = defor-
estation) and population as the explanatory variable (i.e. X = population density).
Using Excel (Tools/Data Analysis/Regression) we obtain â = 0.60 and b̂ =
0.000842. To provide some more jargon, note that when we estimate a regres-
sion model it is common to say that “we run a regression of Y on X ”.

Note also that it is actually very easy to calculate these numbers in most sta-
tistical software packages. Appropriately, we will turn instead to the more impor-
tant issue: how we interpret these numbers.

Example: Cost of production in the electric utility industry

The file ELECTRIC.XLS contains data on the costs of production (measured in
millions of dollars) for 123 electric utility companies in the US in 1970. Inter-
est centers on understanding the factors which affect costs. Hence, Y = cost of
production is the dependent variable. The costs incurred by an electric utility
company can potentially depend on many factors. One of the most important

SSR = ui

i

N
2

1

,
=
Â
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of these is undoubtedly the output (measured as thousands of kilowatt hours
of electricity produced) of the company. We would expect companies that are
producing more electricity will also be incurring higher costs (e.g. because they
have to buy more fuel to generate the electricity). Hence, X = output is a plau-
sible explanatory variable. If we run the regression of costs on output, we
obtain â = 2.19 and b̂ = 0.005.

Example: The effect of advertising on sales

The file ADVERT.XLS contains data on annual sales and advertising expenditures
(both measured in millions of dollars) for 84 companies in the US. A company
executive might be interested in trying to quantify the effect of advertising on
sales. This suggests running a regression with dependent variable Y = sales and
explanatory variable X = advertising expenditures. Doing so, we obtain the value
â = 502.02 and b̂ = 0.218, which is indicative of a positive relationship between
advertising and sales.

Interpreting OLS estimates

In the previous example of the relationship between deforestation and population
density, we obtained OLS estimates for the intercept and slope of the regression line.
The question now arises: how should we interpret these estimates? The intercept in
the regression model, a, usually has little economic interpretation so we will not
discuss it here. However, b is typically quite important. This coefficient is the slope
of the best fitting straight line through the XY-plot. In the deforestation/population
density example, b̂ was positive. Remembering the discussion on how to interpret
correlations in the previous chapter, we note that since b̂ is positive X and Y are
positively correlated. However, we can go further in interpreting b̂ if we differenti-
ate the regression model and obtain:

Even if you do not know calculus, the verbal intuition of the previous expression is
not hard to provide. Derivatives measure how much Y changes when X is changed
by a small (marginal) amount. Hence, b can be interpreted as the marginal effect of
X on Y and is a measure of how much X influences Y. To be more precise, we can
interpret b as a measure of how much Y tends to change when X is changed by one
unit.3 The definition of “unit” in the previous sentence depends on the particular

dY

dX
= b .
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data set being studied and is best illustrated through examples. Before doing this, it
should be stressed that regressions measure tendencies in the data (note the use of
the word “tends” in the explanation of b above). It is not necessarily the case that
every observation (e.g. country or house) fits the general pattern established by the
other observations. In Chapter 2 we called such unusual observations outliers and
argued that, in some cases, examining outliers could be quite informative. In the case
of regression, outliers are those with residuals that stand out as being unusually large.
Hence, examining the residuals from a regression is a common practice. (In Excel
you can examine the residuals by clicking on the box labeled “Residuals” in the regres-
sion menu.)

Example: The regression of deforestation on population density

(continued from page 53)

In the deforestation/population density example we obtained b̂ = 0.000842.
This is a measure of how much deforestation tends to change when population
density changes by a small amount. Since population density is measured in
terms of the number of people per 1,000 hectares and deforestation as the per-
centage forest loss per year, this figure implies that if we add one more person
per 1,000 hectares (i.e. a change of one unit in the explanatory variable) defor-
estation will tend to increase by 0.000842%.

Alternatively, we could present this information as follows. The population
density varies quite a bit across countries: from below 100 people to over 2,500
people per 1,000 hectares. Hence it is not surprising that a change of one person
per hectare will have little effect on deforestation. We could multiply everything
by 100 and say that “increasing population density by 100 people per thousand
hectares will tend to increase deforestation by 0.0842%”. Even the latter number
may seem insignificant, but note that an increase of annual deforestation rates
by 0.0842% per year will result in a country losing an extra 5% of its forest over
50 years. In the long run and over a large area – the spatial and time scales in
which environmental economists are accustomed to thinking – this degree of
forest loss can be substantial.

Example: Cost of production in the electric utility industry

(continued from page 54)

In the regression of company costs on output, we obtained b̂ = 0.005. Remem-
ber that b units is the effect on the dependent variable of a one unit change in
the explanatory variable. Since output is measured in thousands of kWh, a one
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unit change in the explanatory variable is one thousand kWh. Since costs are
measured in millions of dollars, b units is b million dollars. Combining these
facts we can say that “increasing output by one thousand kWh tends to increase
costs by $5,000 (i.e. 0.005 ¥ 1,000,000 = 5,000)”.

Of course, we could also express this in terms of a decrease of one unit.
That is, we could say, “decreasing output tends to decrease costs by $5,000”.

Example: The effect of advertising on sales 

(continued from page 54)

Both advertising and sales are measured in millions of dollars and we found b̂
= 0.218. Following the same line of reasoning above, we can say that a one
million dollar increase in advertising tends to be associated with a $218,000
increase in sales (i.e. 1,000,000 ¥ 0.218 = 218,000). This result would seem to
indicate that spending on advertising is rather counterproductive since an extra
$1,000,000 spent on advertising would only translate into an extra $218,000 in
sales.

Does this mean that the company executive running this regression should
decide to reduce advertising expenditures? Possibly, but not necessarily. The
reason for this uncertainty relates to the issue of causality and the question of
how correlation or regression results can be interpreted (see Chapter 3 or earlier
in this chapter). That is, if the regression truly is a causal one (i.e. it is the case
that advertising has a direct influence on sales), then we can interpret the
$218,000 figure as indicative of what the effect of a change in advertising will
be. However, if it is not causal, then it is risky to use the regression result to
provide strategic advice to a company. Indeed, it is possible that larger compa-
nies tend to have egomaniacs as bosses and egomaniacs enjoy seeing their com-
panies advertised. If this (possibly implausible) story is true then we would
expect to see larger companies advertising more – exactly what our regression
has found. Such an interpretation would imply that it is possible that advertis-
ing is not directly influencing sales. The apparent positive relationship between
advertising and sales from the regression analysis may be due solely to the
behavior of the bosses of large companies.

Deciding whether it is reasonable to assume that a regression model captures a
causal relationship in which one variable directly influences another is very difficult,
and it is hard to offer any general rules on the subject. Perhaps the best advice is to
draw on common sense and economic theory to guide you in interpretation.
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Exercise 4.1

The Excel data set FOREST.XLS contains data on Y = deforestation, X = popu-
lation density, W = change in cropland and Z = change in pasture land.

(a) Run a regression of Y on X and interpret the results.
(b) Run a regression of Y on W and one of Y on Z and interpret the results.
(c) Create a new variable, V, by dividing X by 100. What are the units in terms

of which V is measured?
(d) Run a regression of Y on V. Compare your results to those for (a). How do

you interpret your coefficient estimate of b? How does â differ between
(a) and (d)?

(e) Experiment with scaling dependent and explanatory variables (i.e. by divid-
ing them by a constant) and see what effect this has on your coefficient 
estimates.

Fitted values and R2: measuring the fit of a

regression model

In the preceding discussion we learned how to calculate and interpret regression coef-
ficients, â and b̂. Furthermore, we explained that regression finds the “best fitting”
line in the sense that it minimizes the SSR. However, it is possible that the “best” fit
is not a very good fit at all. Appropriately, it is desirable to have some measure of fit
(or a measure of how good the best fitting line is). The most common measure of
fit is referred to as the R2. It relates closely to the correlation between Y and X. In
fact, for the simple regression model, it is the correlation squared. This provides the
formal statistical link between regression and correlation. However, the previous dis-
cussion should make the informal links between correlation and regression clear. Both
are interested in quantifying the degree of association between different variables and
both can be interpreted in terms of fitting lines through XY-plots.

To derive and explain R2, we will begin with some background material. We start
by clarifying the notion of a fitted value. Remember that regression fits a straight
line through an XY-plot, but does not pass precisely through each point on the plot
(i.e. an error is made). In the case of our deforestation/population density example,
this meant that individual countries did not lie on the regression line. The fitted value
for observation i is the value that lies on the regression line corresponding to the Xi

value for that particular observation (e.g. house, country). In other words, if you draw
a straight vertical line through a particular point in the XY-plot, the intersection of
this vertical line and the regression line is the fitted value corresponding to the point
you chose.
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Alternatively, we can think of the idea of a fitted value in terms of the formula
for the regression model:

Remember that adding i subscripts (e.g. Yi) indicates that we are referring to a par-
ticular observation (e.g. the ith country or the ith house). If we ignore the error, we
can say that the model’s prediction of Yi should be equal to a + bXi. If we replace
a and b by the OLS estimates â and b̂, we obtain a so-called “fitted” or “predicted”
value for Yi :

Note that we are using the value of the explanatory variable and the OLS estimates
to predict the dependent variable. By looking at actual (Yi) versus fitted (Yi

ˆ ) values
we can gain a rough impression of the “goodness of fit” of the regression model.
Many software packages allow you to print out the actual and fitted values for each
observation. An examination of these values not only gives you a rough measure of
how well the regression model fits, they allow you to examine individual observations
to determine which ones are close to the regression line and which are not. Since the
regression line captures general patterns or tendencies in your data set, you can see
which observations conform to the general pattern and which do not.

Exercise 4.2

Using the data in FOREST.XLS (see Exercise 4.1), run a regression of Y on X

using Excel with the box clicked on labeled “Line Fit Plot” in the regression
menu. Graphically and numerically compare the actual to the fitted values (i.e.
look at the columns labeled “Residual Output” and the accompanying display
chart).

We have defined the residual made in fitting our best fitting line previously. Another
way to express this residual is in terms of the difference between the actual and fitted
values of Y. That is:

Software packages such as Excel can also plot or list the residuals from a regression
model. These can be examined in turn to give a rough impression of the goodness
of fit of the regression model. We emphasize that unusually big residuals are outliers
and sometimes these outliers are of interest.

u Y Yi i i= - ˆ .

ˆ ˆ ˆ .Y Xi i= +a b

Y X ei i i= + +a b .
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Exercise 4.3

(a) Using the data in FOREST.XLS (see Exercise 4.1) run a regression of Y on X

using Excel with the boxes labeled “Residuals” and “Residual Plots” in the
regression menu clicked on. How would you interpret the residuals? Are
there any outliers?

(b) Repeat question (a) for the other variables, W and Z in this data set.

To illustrate the kind of information with which residual analysis can provide us,
take a look at your computer output from Exercise 4.3 (a). In the Residual Output,
observation 39 has a fitted value of 2.93 and a residual of -1.63. By adding these two
figures together (or by looking at the original data), you can see that the actual defor-
estation rate for this country is 1.3. What do all these numbers imply? Note that the
regression model is predicting a much higher value (2.93) for deforestation than actu-
ally occurred (1.3) in this country. This means that this country may be doing much
better at protecting its forests than the regression model implies, and, consequently,
is making better efforts at forest conservation than are other countries. This kind of
information may be important to policymakers in other countries, particularly as this
outlier country may provide useful lessons that can be applied to them.

The ideas of a residual and a fitted value are important in developing an informal
understanding of how well a regression model fits. However, we still lack a formal
numerical measure of fit. At this stage, we can now derive and motivate such a
measure: R2.

Recall that variance is the measure of dispersion or variability of the data. Here
we define a closely related concept, the total sum of squares or TSS:

Note that the formula for the variance of Y is TSS/N - 1 (see Chapter 2). Loosely
speaking, the N - 1 term will cancel out in our final formula for R2 and, hence, we
ignore it. So think of TSS as being a measure of the variability of Y. The regression
model seeks to explain the variability in Y through the explanatory variable X. It can
be shown that the total variability in Y can be broken into two parts as:

where RSS is the regression sum of squares, a measure of the explanation provided
by the regression model.4 RSS is given by:

Remembering that SSR is the sum of squared residuals and that a good fitting regres-
sion model will make the SSR very small, we can combine the equations above to
yield a measure of fit:

RSS Y Yi= -( )Â ˆ .
2

TSS RSS SSR= + ,

TSS = -( )Â Y Yi

2
,
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or, equivalently,

Intuitively, the R2 measures the proportion of the total variance of Y that can be
explained by X. Note that TSS, RSS and SSR are all sums of squared numbers and,
hence, are all non-negative. This implies TSS ≥ RSS and TSS ≥ SSR. Using these facts,
it can be seen that 0 £ R2 £ 1.

Further intuition about this measure of fit can be obtained by noting that small
values of SSR indicate that the regression model is fitting well. A regression line which
fits all the data points perfectly in the XY-plot will have no errors and hence SSR =
0 and R2 = 1. Looking at the formula above, you can see that values of R2 near 1
imply a good fit and that R2 = 1 implies a perfect fit. In sum, high values of R2 imply
a good fit and low values a bad fit.

An alternative source of intuition is provided by the RSS. RSS measures how 
much of the variation in Y the explanatory variables explain. If RSS is near TSS, then
the explanatory variables account for almost all of the variability and the fit will be a
good one. Looking at the previous formula you can see that the R2 is near one in this
case.

Example: Cost of production in the electric utility industry

(continued from page 56)

In the regression of Y = cost of production on X = output for the 123 electric
utility companies, R2 = 0.92. This is a number that is quite high and close to
one, indicating that the fit of the regression line is quite good. Put another way,
92% of the variation in costs across companies can be explained by the varia-
tion in output. Note that if you simply calculate the correlation between output
and cost you obtain rXY = 0.96. This correlation squared is exactly equal to R2

(i.e. 0.962 = 0.92).
This example highlights the close relationship between correlation and

regression. Notice that the R2 from the regression of Y on X is exactly equal to
the square of the correlation between Y and X. Regression is really just an 
extension of correlation. Yet, regression also provides you with an explicit
expression for the marginal effect (b ), which is often important for policy 
analysis.

R
2 = RSS

TSS
.

R
2 1= - SSR

TSS
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Example: The effect of advertising on sales 

(continued from p. 56)

The R2 from the regression of sales on advertising expenditures using data set
ADVERT.XLS is 0.09. This relatively small number indicates that variations in
advertising expenditures across companies account for only a small proportion
of the variation in sales. This finding is probably reasonable, in that you would
expect factors other than advertising (e.g. product quality, pricing, etc.) to play
a very important role in explaining the sales of a company.

Exercise 4.4

(a) Using the data in FOREST.XLS (see Exercise 4.1), run a regression of Y on
X using Excel. What is the R2?

(b) Calculate the correlation between Y and X.
(c) Discuss the relationship between your answers in (a) and (b).
(d) Redo (a) for various regressions involving the variables W, X, Y and Z in

the data set. Comment on the fit of each of these regressions.

Nonlinearity in regression

So far, we have used the linear regression model and fit a straight line through XY-
plots. However, this may not always be appropriate. Consider the XY-plot in Figure
4.2. It looks like the relationship between Y and X is not linear. If we were to fit a
straight line through the data, it might give a misleading representation of the rela-
tionship between Y and X. In fact, we have artificially generated this data by assum-
ing the relationship between Y and X is of the form:

such that the true relationship is quadratic. A cursory glance at the XY-plots can often
indicate whether fitting a straight line is appropriate or not.

What should you do if a quadratic relationship rather than a linear relationship
exists? The answer is surprisingly simple: rather than regressing Y on X, regress Y on
X 2 instead.

Of course, the relationship revealed by the XY-plot may be found to be neither
linear nor quadratic. It may appear that Y is related to ln(X ) or 1/X or X 3 or any
other transformation of X. However, the same general strategy holds: transform the
X variable as appropriate and then run a regression of Y on the transformed variable.
You can even transform Y if it seems appropriate.

Y Xi i= 6 2 ,
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A very common transformation, of both the dependent and explanatory variables,
is the logarithmic transformation. Even if you are not familiar with logarithms, they
are easy to work with in any spreadsheet or econometric software package, including
Excel.5 Often economists work with natural logarithms, for which the symbol is ln.
In this book, we will always use natural logarithms and simply refer to them as “logs”
for short. It is common to say that: “we took the log of variable X ” or that “we
worked with log X ”. The mathematical notation is ln(X ).6

Why is it common to use ln(Y ) as the dependent variable and ln(X ) as the explana-
tory variable? First, the expressions will often allow us to interpret results quite easily.
Second, data transformed in this way often does appear to satisfy the linearity assump-
tion of the regression model.

To fully understand the first point, we need some background in calculus, which
is beyond the scope of this book. Fortunately, the intuition can be stated verbally. In
the following regression:

b can be interpreted as an elasticity. Recall that, in the basic regression without logs,
we said that “Y tends to change by b units for a one unit change in X ”. In the regres-
sion containing both logged dependent and explanatory variables, we can now say
that “Y tends to change by b percent for a one percent change in X ”. That is, instead
of having to worry about units of measurements, regression results using logged vari-
ables are always interpreted as elasticities. Logs are convenient for other reasons too.
For instance, as discussed in Chapter 2, when we have time series data, the percent-
age change in a variable is approximately 100 ¥ [ln(Yt) - ln(Yt -1)]. This transforma-
tion will turn out to be useful in later chapters in this book.

ln lnY X e( ) = + ( )+a b ,
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The second justification for the log transformation is purely practical: With many
data sets, if you take the logs of dependent and explanatory variables and make an
XY-plot the resulting relationship will look linear. This is illustrated in Figures 4.3 and
4.4. Figure 4.3 is an XY-plot of two data series, Y and X, neither of which has been
transformed in any way. Figure 4.4 is an XY-plot of ln(X ) and ln(Y ). Note that the
points in the first figure do not seem to lie along a straight line. Rather the relation-
ship is one of a steep-sloped pattern for small values of X, that gradually flattens out
as X increases. This is a typical pattern for data which should be logged. Figure 4.4
shows that, once the data is logged, the XY-plot indicates a linear pattern. An OLS
regression will fit a straight line with a high degree of accuracy in Figure 4.4. However,
fitting an accurate straight line through Figure 4.3 is a very difficult (and probably not
the best) thing to do.
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Exercise 4.5

Using the data in FOREST.XLS examine different XY-plots involving the variables
X, Y, W and Z (see Exercise 4.1 for a definition of these variables). Does there
seem to be a nonlinear relationship between any pair of variables? Repeat the
exercise using the data in the advertising example (ADVERT.XLS).

Exercise 4.6

Data set EX46.XLS contains two variables, labeled Y and X.

(a) Make an XY-plot of these two variables. Does the relationship between Y

and X appear to be linear?
(b) Calculate the square root of variable X. Note the Excel symbol for square

root is SQRT.
(c) Make an XY-plot of the square root of X against Y. Does this relationship

appear to be linear?

Exercise 4.7

Use the data in the example related to costs of production in the electric utility
industry (ELECTRIC.XLS), where Y = cost of production and X = output.

(a) Run a regression of Y on X.
(b) Take log transformations of both variables.
(c) Run a regression of ln(Y ) on ln(X ) and interpret your results verbally.
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On what basis should you log your data (or for that matter take any other trans-
formation)? There is no simple rule that can be given. Examining XY-plots of the
data transformed in various ways is often instructive. For instance, begin by looking
at a plot of X against Y. This may look roughly linear. If so, just go ahead and run a
regression of Y on X. If the plot does not look linear, it may exhibit some other
pattern that you recognize (e.g. the quadratic form of Figure 4.2 or the logarithmic
form of Figure 4.3). If so, create an XY-plot of suitable transformed variables (e.g.
ln(Y ) against ln(X )) and see if it looks linear. Such a strategy will likely work well in
a simple regression containing only one explanatory variable. In Chapter 6, we will
move on to cases with several explanatory variables. In these cases, the examination
of XY-plots may be quite complicated since there are so many possible XY-plots that
could be constructed.



Appendix 4.1: Mathematical details

The OLS estimator defines the best fitting line through the points on an XY-plot.
Mathematically, we are interested in choosing â and b̂ so as to minimize the sum of
squared residuals. The SSR can be written as:

Optional exercise

Take first and second derivatives with respect to â and b̂ of the above expres-
sion for SSR. Use these to find values of â and b̂ that minimize SSR. Verify
that the solution you have found does indeed minimize (rather than maximize)
SSR.

SSR = - -( )=Â Y Xi ii

N ˆ ˆ .a b
2

1
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Chapter summary

1. Simple regression quantifies the effect of an explanatory variable, X, on a
dependent variable, Y. Hence, it measures the relationship between two
variables.

2. The relationship between Y and X is assumed to take the form, Y = a +
bX, where a is the intercept and b the slope of a straight line. This is called
the regression line.

3. The regression line is the best fitting line through an XY graph.
4. No line will ever fit perfectly through all the points in an XY graph. The

distance between each point and the line is called a residual.
5. The ordinary least squares (OLS) estimator is the one which minimizes the

sum of squared residuals.
6. OLS provides estimates of a and b which are labeled â and b̂.
7. Regression coefficients should be interpreted as marginal effects (i.e. as

measures of the effect on Y of a small change in X ).
8. R2 is a measure of how well the regression line fits through the XY graph.
9. OLS estimates and the R2 are calculated in computer software packages

such as Excel.
10. Regression lines do not have to be linear. To carry out nonlinear regres-

sion, merely replace Y and/or X in the regression model by a suitable non-
linear transformation (e.g. ln(Y ) or X 2).



If you have done the previous exercise correctly, you should have obtained the 
following:

and

where and are the means of Y and X (see Chapter 2). These are the OLS esti-
mators for a and b. Note that there are several equivalent ways of writing the formula
for b̂. If you consult other textbooks you will find alternative expressions for the OLS
estimator.

These equations can be used to demonstrate the consequences of taking devia-

tions from means. By way of explanation, note that we have assumed above that
the dependent and explanatory variables, X and Y, are based on the raw data.
However, in some cases researchers do not work with just X and Y, but rather with
X and Y minus their respective means:

and

Consider using OLS to estimate the regression:

where we have used the symbols a and b to distinguish them from the coefficients a
and b in the regression involving Y and X.

It turns out that the relationship between OLS estimates from the original regres-
sion and the one where deviations from means have been taken is a simple one. The
OLS estimate of b is always exactly the same as b̂ and the OLS estimate of a is always
zero. In other words, taking deviations from means simplifies the regression model
by getting rid of the intercept (i.e. there is no point in including an intercept since its
coefficient is always zero). This simplification does not have any effect on the slope
coefficient in the regression model. It is unchanged by taking deviations from means
and still has the same interpretation as a marginal effect.

It is not too hard to prove the statements in the previous paragraph and, if you
are mathematically inclined, you might be interested in doing so. As a hint, note that
the means of y and x are zero.

In Chapter 6, we will consider the case where there are several explanatory vari-
ables. In this case, if you take deviations from means of the dependent and all of the
explanatory variables, you obtain the same result. That is, the intercept disappears
from the regression, but all other coefficient estimates are unaffected.

y a bX e= + + ,

x X Xi i= - .

y Y Yi i= -

XY

ˆ ˆ ,a b= -Y X

b̂ =
-( ) -( )

-( )
=

=

Â
Â

Y Y X X

X X

i ii

N

ii

N

1
2

1
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Endnotes

1. Note that, at many places, we will omit multiplication signs for simplicity. For instance,
instead of saying Y = a + b ¥ X we will just say Y = a + bX.

2. Some statistics books draw a dividing line between correlation and regression. They argue
that correlation should only be interpreted as a measure of the association between two vari-
ables, not the causality. In contrast, regression should be based on causality in the manner
of such statements as: “Economic theory tells us that X causes Y ”. Of course, this divi-
sion simplifies the interpretation of empirical results. After all, it is conceptually easier to
think of your dependent variable – isolated on one side of the regression equation – as
being “caused” by the explanatory variables on the other. However, it can be argued that
this division is in actuality an artificial one. As we saw in Chapter 3, there are many cases
for which correlation does indeed reflect causality. Furthermore, in future chapters we will
encounter some cases in which the regressions are based on causality, some in which they
are not, and others about which we are unsure. The general message here is that you need
to exercise care when interpreting regression results as reflecting causality. The same holds
for correlation results. Common sense and economic theory will help you in your inter-
pretation of either.

3. If you cannot see this construct your own numerical example. That is, choose any values
for a, b and X, then use the equation Y = a + bX to calculate Y (call this “original Y”).
Now increase X by one, leaving a and b unchanged and calculate a new Y. No matter what
values you originally chose for a, b and X, you will find new Y minus original Y is pre-
cisely b. In other words, b is a measure of the effect on Y of increasing X by one unit.

4. Excel prints out TSS, RSS and SSR in a table labeled ANOVA. The column labeled “SS”
contains these three sums of squares. At this stage, you probably do not know what
ANOVA means, but we will discuss it briefly in Chapter 7, “Regression with dummy 
variables”.

5. You can calculate the natural logarithm of any number in Excel by using the formula bar.
For instance, if you want to calculate the log of the number in cell D4 move to the formula
bar and type “= ln(D4)” then press enter.

6. One thing to note about logs is that they are only defined for positive numbers. So if your
data contains zeros or negative numbers, you cannot take logs (i.e. the software will display
an error message).
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C H A P T E R

Statistical aspects 

of regression

5

Statistics is a field of study based on mathematics and probability theory. However,
since this book assumes you have no knowledge of these topics, a complete under-
standing of statistical issues in the regression model will have to await further study.1

What we will do instead in this chapter is to: (1) discuss what statistical methods in
the regression model are designed to do; (2) show how to carry out a regression analy-
sis using these statistical methods and interpret the results obtained; and (3) provide
some graphical intuition in order to gain a little insight into where statistical results
come from and why these results are interpreted in the manner that they are (i.e. the
“where” and “why” of statistical analysis).

We will begin by stressing a distinction which arose in the previous chapter between
the regression coefficients, a and b, and the OLS estimates of the regression coeffi-
cients, â and b̂. Remember that we began Chapter 4 with a regression model of the
form:

for i = 1, . . . , N observations. As noted previously, a and b measure the relationship
between Y and X. We pointed out that we do not know what this relationship is, i.e.,
what precisely a and b are. We derived so-called ordinary least squares or OLS esti-
mates which we then labeled â and b̂. We emphasized that a and b are the unknown
true coefficients while â and b̂ are merely estimates (and almost certainly not 
precisely the same as a and b ).

These considerations lead us to ask whether we can gauge how accurate these 
estimates are. Fortunately we can, using statistical techniques. In particular, these 

Y X ei i i= + +a b ,



techniques enable us to provide confidence intervals for, and enable us to carry out
hypothesis tests on, our regression coefficients.

To provide some jargon, we say that OLS provides point estimates for b (e.g. b̂
= 0.000842 is the point estimate of b in the regression of deforestation on popula-
tion density in the previous chapter). You can think of a point estimate as your best
guess at what b is. Confidence intervals provide interval estimates, allowing us to
make statements that reflect the uncertainty we may have about the true value of b
(e.g. “We are confident that b is greater than 0.0006 and less than 0.0010”). We can
obtain different confidence intervals corresponding to different levels of confidence.
For instance, in the case of a 95% confidence interval we can say that “we are 95%
confident that b lies in the interval”; in the case of a 90% confidence interval we can
say that “we are 90% confident that b lies in the interval”; and so on. The degree of
confidence we have in a chosen interval (e.g. 95%) is referred to as the confidence

level.
The other major activity of the empirical researcher is hypothesis testing. An

example of a hypothesis that a researcher may want to test is b = 0. If the latter
hypothesis is true, then this means that the explanatory variable has no explanatory
power. Hypothesis testing procedures allow us to carry out such tests.

Both confidence interval and hypothesis testing procedures will be explained
further in the rest of this chapter. For expository purposes, we will focus on b, since
it is usually more important than a in economic problems. However, all the proce-
dures we will discuss for b apply equally well for a.

Which factors affect the accuracy of the estimate b̂?

We have artificially simulated four different data sets for X and Y from regression
models with a = 0 and b = 1. XY-plots for these four different data sets are pre-
sented in Figures 5.1, 5.2, 5.3 and 5.4. All of these data sets have the same true coef-
ficient values of a = 0 and b = 1, and we hope to obtain â and b̂ values that are
roughly equal to 0 and 1, respectively, when we estimate the model from any of these
four data sets. However, if you imagine trying to fit a straight line (as does OLS)
through these XY-plots, you would not expect all four of these lines to be equally
accurate.

How confident would you feel about the accuracy of the straight line that you have
just fitted? It is intuitively straightforward to see that the line fitted for Figure 5.3
would be the most accurate. That is, the straight-line relationship between X and Y
“leaps out” in Figure 5.3. Even if a straight edge were used and you were to draw a
best fitting line by hand through this XY-plot you would find that the intercept (a)
was very close to zero and the slope (b ) close to 1. In contrast, you would probably
be much less confident about the accuracy of a best fitting straight line that you drew
for Figures 5.1, 5.2 and 5.4.
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These figures illustrate three main factors that affect the accuracy of OLS estimates
and the uncertainty that surrounds our knowledge of what the true value of b
really is:

1. Having more data points improves accuracy of estimation. This can be seen by
comparing Figure 5.1 (N = 5) and Figure 5.3 (N = 100).
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2. Having smaller errors improves accuracy of estimation. Equivalently, if the SSR
is small or the variance of the errors is small, the accuracy of the estimation will
be improved. This can be seen by comparing Figure 5.2 (large variance of errors)
with Figure 5.3 (small variance of errors).2

3. Having a larger spread of values (i.e. a larger variance) of the explanatory variable
(X ) improves accuracy of estimation. This can be seen by comparing Figure 5.3
(values of the explanatory variable spread all the way from 0 to 6) to Figure 5.4
(values of the explanatory variable all clustered around 3).
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The influence of these three factors is intuitively reasonable. With regards to the first
two factors, it is plausible that having either more data or smaller errors should
increase accuracy of estimation. The third factor is perhaps less intuitive, but a simple
example should help you to understand it.

Suppose you are interested in investigating the influence of education levels (X =
years of schooling) on the income people receive (Y = income). To understand the
nature of this relationship, you will want to go out and interview all types of people
(e.g. people with no qualifications, people with secondary school education, people
with some post-secondary vocational training, people with a university degree,
people with PhDs, etc.). In other words, you will want to interview a broad spectrum
of the population in order to capture as many of these different education levels as
possible. In statistical jargon, this means that you will want X to have a high variance.
If you do not follow this strategy – for example, were you to interview only those
people possessing PhDs – you would get a very unreliable picture of the effect of
education on income. In this case, you would not know whether the relationship
between education and income was positive. For instance, without collecting data on
people who quit school at age 16 you would not know for sure that they are making
less income than the PhDs.

Having a large spread of values (i.e. a larger variance) for the explanatory variable, X, is a
desirable property in an analysis, whereas having a large spread of values (i.e. a larger variance) for
the error, e, is not.

Calculating a confidence interval for b
The above three factors are reflected in a commonly used interval estimate for b: the
confidence interval. This interval reflects the uncertainty surrounding the accuracy of
the estimate b̂. If the confidence interval is small, it indicates accuracy. Conversely, a
large confidence interval indicates great uncertainty over b’s true value. In many cases
researchers choose to present the confidence interval in addition to (or even in place
of ) the OLS point estimate.

The mathematical formula for the confidence interval for b is:3

An equivalent way of expressing the equation above is to say that there is a high level
of confidence that the true value of b obeys the following inequality:

The equations above use three numbers that must be calculated, b̂, tb and sb . The
first of these, b̂, we have already discussed in detail; the latter two you may not have
seen before. The confidence interval can be calculated automatically in computer
packages such as Excel. Thus, you can calculate confidence intervals without knowing

ˆ ˆ .b b b- £ £ +t s t sb b b b

ˆ , ˆ .b b- +[ ]t s t sb b b b
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either the above formula or the precise definitions of tb and sb. At the most basic level,
you can just think of b̂, tb and sb as three numbers calculated by the computer.
However, it is worthwhile to have at least some intuition about where the confidence
interval comes from as this will aid in your understanding of results.

Below, we discuss each of the three numbers required to calculate a confidence
interval, relating them to the issues raised in the material above on the factors affect-
ing the accuracy of estimation of b̂.

Firstly, b̂ is always included in the confidence interval (in fact, it will be right in the
middle of it).

Secondly, sb is the standard deviation of b̂. Somewhat confusingly, sb is often
referred to as the standard error as opposed to the standard deviation. In Chapter
2, we introduced the standard deviation as a measure of dispersion (i.e. spread, or
variability) of a variable. For instance, Figure 2.2 plots a histogram for the variable
GDP per capita using the cross-country data set GDPPC.XLS. In Chapter 2, we argued
that the standard deviation of GDP per capita was a measure of how much GDP
per capita varied across countries. Although it may seem a little odd, we can treat b̂
as a variable in the same way as GDP per capita is a variable. In other words, we can
calculate its standard deviation and use it as a measure of our uncertainty about the
accuracy of the estimate.

Large values of sb will imply large uncertainty. In this case, b̂ may be a very inac-
curate estimate of b. In contrast, small values of sb will imply small uncertainty. If
the latter, then b̂ will be an accurate estimate of b.

In other chapters, we have put mathematical formulae in appendices. However, to
properly draw out the connections between the formula for the confidence interval
and the graphical intuition provided in Figures 5.1–5.4, a small amount of mathe-
matics is required. We present (but do not derive) the following formula for the stan-
dard deviation of b̂:

This expression, which measures the variability or uncertainty in b̂, reflects all of the
issues raised in the context of our discussion of Figures 5.1, 5.2, 5.3 and 5.4.

Looking at the formula for the confidence interval, we can see that the larger sb is,
the wider the confidence interval is. If we combine this consideration with a careful
analysis of the components of the formula for sb, we can say that:

1. sb and, hence, the width of the confidence interval, varies directly with SSR (i.e.
more variable errors/residuals imply less accurate estimation).

2. sb and, hence, the width of the confidence interval, vary inversely with N (i.e.
more data points imply more accurate estimation).

3. sb and, hence, the width of the confidence interval, vary inversely with
S(Xi - )2 (i.e. more variability in X implies more accurate estimation).X

s
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Note that, as described in Chapter 2, S(Xi - )2 is a key component of the stan-
dard deviation of X. In particular, large values of this expression are associated with
large standard deviations of X.

We stress that these three factors (i.e. N, SSR and the standard deviation of X ),
which affect the width of the confidence interval, are the same as those discussed
above as affecting the accuracy of the OLS estimate b̂.

The third number in the formula for the confidence interval is tb. It is hard to
provide much intuition about this number without some knowledge of statistics. For
those with some knowledge of statistics, note that tb is a value taken from statistical
tables for the Student-t distribution. Appendix 5.1 provides some additional discus-
sion about tb. Some informal intuition for what it means, however, can be obtained
from the following example.

Example: Election polls

You may have encountered “point estimates” and something akin to a confi-
dence interval in political polls, which are regularly taken in the weeks and
months before an election. These are usually carried out by staffers telephon-
ing a few hundred potential voters and asking them which party they intend to
support on election day. Suppose Party A is running in the election. The 
newspaper reports that 43% of those surveyed will support Party A. This is the
newspaper’s point estimate of what voters will do on election day. Of course,
in reality the actual result on election day will rarely, if ever, be exactly that indi-
cated by the pre-election poll. This discrepancy illustrates a point we stressed
earlier in this chapter in the context of the regression model: a point estimate
(e.g. b̂) will rarely, if ever, be identical to the true value (e.g. b ).

Newspapers typically recognize that their surveys will not be precisely accu-
rate and often add statements to their coverage such as: “This result is accurate
to within +/- 2 percentage points.” Although they do not explicitly say it, they
are getting this result from a confidence interval (usually a 95% confidence inter-
val).4 An equivalent statement would be: “We are 95% confident that Party A
will receive between 41% and 45% of the vote on election day.”

This example provides some additional intuition about what confidence inter-
vals are. If you understand this example, you can also see that different confi-
dence levels imply different confidence intervals. As a trivial example, consider
the 100% confidence level. We can be certain that Party A is going to receive
between 0% and 100% of the vote on election day. A 100% confidence inter-
val for Party A’s percentage of the vote would thus be [0, 100].

Now consider the other extreme: how confident can we be that Party A is
going to receive almost precisely 43% of the vote? Probably not very confident

X
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for, as noted, in reality we rarely find that opinion polls and election day results
will match identically. For this reason, a confidence interval right around 43%
(e.g. [42.9, 43.1]) will have a very low confidence level (perhaps 10%).

Note that, the more confident you wish to be about your interval, the wider
it becomes. For instance, 99% confidence intervals will always be wider than
95% confidence intervals. The number tb controls the confidence level. If the
level of confidence is high (e.g. 99%) tb will be large, while if the level of con-
fidence is low (e.g. 50%) it will be small.

To return to the general statistical theory of regression, we should stress (without
explanation beyond that given in the previous example) the following:

1. tb decreases with N (i.e. the more data points you have the smaller the confidence
interval will be).

2. tb increases with the level of confidence you choose.

Researchers usually present 95% confidence intervals, although other intervals 
are possible (e.g. 99% or 90% confidence intervals are sometimes presented). A useful
(but formally incorrect) intuition for 95% confidence intervals is conveyed by the 
following statement: “There is a 95% probability that the true value of b lies in the
95% confidence interval.” A correct (but somewhat awkward) interpretation of this
statement is: “If you repeatedly used (in different data sets) the above formula for
calculating confidence intervals, 95% of the confidence intervals constructed would
contain the true value for b.” Similar statements can be made for 99% or 90% con-
fidence intervals, simply by replacing “95%” with the desired confidence level. Clearly,
the interpretation of confidence intervals is relatively straightforward (and will be
further illustrated in subsequent examples in this chapter).

The preceding material is intended to provide some intuition and motivation for
the statistical theory underlying confidence intervals. Even if you do not fully under-
stand this material, confidence intervals can be calculated quite easily in most stan-
dard computer software packages. For example, when you run a regression in Excel
it automatically calculates the confidence interval and labels the bounds of the 95%
confidence interval as “lower 95%” and “upper 95%”. Excel also enables you to
change the level of confidence, e.g. from 99% to 90%.

Example: Confidence intervals for the data sets 

in Figures 5.1–5.4

Figures 5.1–5.4 contained four different data sets, all of which have a = 0 and
b = 1. Remember that the data set used in Figure 5.3 has some very desirable
properties, i.e. large sample size, spread-out values for the explanatory variables,
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Table 5.1 OLS estimates and confidence intervals.

90% Confidence 95% Confidence 99% Confidence
Data Set b̂ interval interval interval

Figure 5.1 0.91 [-0.92, 2.75] [-1.57, 3.39] [-3.64, 5.47]
Figure 5.2 1.04 [0.75, 1.32] [0.70, 1.38] [0.59, 1.49]
Figure 5.3 1.00 [0.99, 1.01] [0.99, 1.02] [0.98, 1.03]
Figure 5.4 1.52 [-1.33, 4.36] [-1.88, 4.91] [-2.98,6.02]

and small errors. These properties are missing to varying degrees in the other
three data sets. Table 5.1 contains OLS point estimates, b̂, and 90%, 95% and
99% confidence intervals for these four data sets.

The following points are worth emphasizing:

1. Reading across any row, we can see that as the confidence level gets higher
the confidence interval gets wider. The widest interval is the 99% confi-
dence interval for the data set in Figure 5.4. In this case, if you want to be
99% confident, you have to say b could be anywhere between -2.98 and
6.02!

2. The data set in Figure 5.3 – the one with the most desirable properties 
of all the data sets – yields an OLS estimate of 1.00 which is equal to the
true value to two decimal places (more precisely, b̂ = 1.002577 for this data
set).

3. The data set in Figure 5.3 yields confidence intervals which are much nar-
rower than those for Figures 5.1, 5.2 and 5.4. This makes sense since we
would expect the OLS estimate using the data set in Figure 5.3 to be more
accurate than the other data sets.

4. The data sets in Figures 5.1, 5.2 and 5.4 yield a variety of results. Figure 5.2
contains a data set of the sort usually found in a well-designed empirical
project (rarely does one get a data set as good as Figure 5.3). This data set
has mostly desirable properties, but the errors are moderately large, reflect-
ing the measurement error and imperfections in the underlying economic
theory which so often occur in practice. For this representative data set, b̂ =
1.04 which is not too far off the true value of b = 1. With respect to this
data set, we can make statements of the form: “The value of b lies in the
interval [0.70, 1.38] with a 95% confidence level” or “We are 99% confident
that b lies between 0.59 and 1.49”.



Exercise 5.1

The data sets used to calculate Figures 5.1, 5.2, 5.3 and 5.4 are in FIG51.XLS,
FIG52.XLS, FIG53.XLS and FIG54.XLS.

(a) Calculate the OLS estimates â and b̂ for these four data sets. How close are
they to 0 and 1 (the values we used to artificially simulate the data)?

(b) Calculate confidence intervals for a for the four data sets. Examine how 
the width of the confidence interval relates to N and the variability of the
errors.

(c) Calculate 99% and 90% confidence intervals for the data sets. How do these
differ from the 95% confidence intervals in (b)?

Example: The regression of deforestation on population density

Let us go back to our deforestation (Y ) and population density (X ) data set
(FOREST.XLS). We saw in the last chapter that b̂ = 0.000842. In other words, the
marginal effect of population density on deforestation was 0.000842. A 95%
confidence interval for this effect is [0.00061, 0.001075], indicating (with a great
deal of certitude) that the marginal effect of population on deforestation is
greater than 0.00061 and less than 0.001075.

Example: The regression of lot size on house price

In the previous chapter we investigated the effect of X = lot size on Y = the
sales price of a house, using data on 546 houses sold in Windsor, Canada (see
data set HPRICE.XLS). Running a regression of Y on X we obtain the following
estimated relationship:

or, equivalently, â = 34,136 and b̂ = 6.59. We can say that the OLS estimate of
the marginal effect of X on Y is 6.59. Our best guess would be that increasing
lot size by an extra square foot of lot is associated with a $6.59 increase in house
price.

The 95% confidence interval for b is [5.72, 7.47]. Although the effect of lot
size on house price is estimated at $6.59, we are not certain that this figure is
exactly correct. However, we are extremely confident (i.e. 95% confident) that
the effect of lot size on house is at least $5.72 and at most $7.47. This interval
would be enough for a potential buyer or seller to have a good idea of the value
of lot size.

Y X= +34 136 6 59, . ,
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Exercise 5.2

The file ADVERT.XLS contains data on Y = annual sales and X = advertising
expenditures (both measured in millions of dollars) for 84 companies in the US.

(a) Run a regression of Y on X and obtain 95% confidence intervals for a
and b.

(b) Write a sentence explaining verbally what the 95% confidence interval for
b means in terms of the possible range of values that the effect of the
explanatory variable on the dependent variable may take.

Exercise 5.3

The file ELECTRIC.XLS contains data on Y = the costs of production (measured
in millions of dollars) and X = output (measured in thousands of kilowatt hours)
for 123 electric utility companies in the US. Repeat Exercise 5.2 for this data set.

Testing whether b = 0

Hypothesis testing is another exercise commonly carried out by the empirical econ-
omist. As with confidence intervals, we will not go into the statistical theory that
underlies hypothesis testing. Instead we will focus on the practical details of how to
carry out hypothesis tests and interpret the results. Classical hypothesis testing
involves specifying a hypothesis to test. This is referred to as the null hypothesis,
and is labeled as H0. It is compared to an alternative hypothesis, labeled H1. A
common hypothesis test is whether b = 0. Formally, we say that this is a test of H0:
b = 0 against H1: b π 0.

Note that, if b = 0 then X does not appear in the regression model; that is, the
explanatory variable fails to provide any explanatory power whatsoever for the depen-
dent variable. If you think of the kinds of questions of interest to economists (e.g.
“Does education increase an individual’s earning potential?”, “Will a certain adver-
tising strategy increase sales?”, “Will a new government training scheme lower unem-
ployment?”, etc.) you will see that many are of the form “Does the explanatory
variable have an effect on the dependent variable?” or “Does b = 0 in the regression
of Y on X?”. The purpose of the hypothesis test of b = 0 is to answer this question.

The first point worth stressing is that hypothesis testing and confidence intervals
are closely related. In fact, one way of testing whether b = 0 is to look at the confi-
dence interval for b and see whether it contains zero. If it does not then we can, to
introduce some statistical jargon, “reject the hypothesis that b = 0” or conclude “X
has significant explanatory power for Y” or “b is significantly different from zero”
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or “b is statistically significant”. If the confidence interval does include zero then we
change the word “reject” to “accept” and “has significant explanatory power” to
“does not have significant explanatory power”, and so on. This confidence interval
approach to hypothesis testing is exactly equivalent to the formal approach to hypoth-
esis testing discussed below.

Just as confidence intervals came with various levels of confidences (e.g. 95% is
the usual choice), hypothesis tests come with various levels of significance. If you
use the confidence interval approach to hypothesis testing, then the level of signifi-
cance is 100% minus the confidence level. That is, if a 95% confidence interval does
not include zero, then you may say “I reject the hypothesis that b = 0 at the 5% level
of significance” (i.e. 100% - 95% = 5%). If you had used a 90% confidence interval
(and found it did not contain zero) then you would say: “I reject the hypothesis that
b = 0 at the 10% level of significance.”

The alternative way of carrying out hypothesis testing is to calculate a test statis-

tic. In the case of testing whether b = 0, the test statistic is known as a t-statistic (or
t-ratio or t-stat). It is calculated as:

“Large” values of t (“large” in an absolute sense) indicate that b π 0, while “small”
values indicate that b = 0. Mathematical intuition for the preceding sentence is given
as: if b̂ is large relative to its standard deviation, sb, then we can conclude that b is
significantly different from zero. The question arises as to what we mean by “large”
and “small”. In a formal statistical sense, the test statistic is large or small relative to
a “critical value” taken from statistical tables of the “Student-t distribution”. A dis-
cussion of how to do this is given in Appendix 5.1. Fortunately, we do not have to
trouble ourselves with statistical tables since most common computer software pack-
ages such as Excel print out something called a P-value automatically. The P-value
provides a direct measure of whether the t is “large” or “small”. A useful (but for-
mally incorrect) intuition would be to interpret the P-value as measuring the proba-
bility that b = 0. If the P-value is small, b = 0 is unlikely to be true. Accordingly,

1. If the P-value is less than 5% (usually written as 0.05 by the computer) then t is
“large” and we conclude that b π 0.

2. If the P-value is greater than 5% then t is “small” and we conclude that b = 0.

The preceding test used the 5% level of significance. However, if we were to replace
the figure 5% in the above expressions with 1% (i.e. reject b = 0 if the P-value is less
than 1%) our hypothesis test would be carried out at the 1% level of significance.

As an aside, it is worth noting that we are focussing on the test of b = 0 partly
because it is an important one, but also because it is the test that is usually printed
out by computer packages. You can use it without fully understanding the underlying
statistics. However, in order to test other hypotheses (e.g. H0: b = 1 or hypotheses
involving many coefficients in the multiple regression case in the next chapter) you

t
sb

=
ˆ

.
b
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would need more statistical knowledge than is covered here (see Appendix 5.1 for
more details). The general structure of a hypothesis test is always of the form out-
lined above. That is, (i) specify the hypothesis being tested, (ii) calculate a test statis-
tic and (iii) compare the test statistic to a critical value. The first of these three steps
is typically easy, but the second and third can be much harder. In particular, to obtain
the test statistic for more complicated hypothesis tests will typically require some extra
calculations beyond merely running the regression. Obtaining the critical value will
involve the use of statistical tables. Hence, if you wish to do more complicated
hypothesis tests you will have to resort to a basic statistics or econometrics textbook
(see endnote 1 of this chapter for some suggestions).

As a practical summary, note that regression techniques provide the following
information about b:

1. b̂, the OLS point estimate, or best guess, of what b is.
2. The 95% confidence interval, which gives an interval where we are 95% confident

b will lie.
3. The standard deviation (or standard error) of b̂, sb, which is a measure of how

accurate b̂ is. sb is also a key component in the mathematical formula for the con-
fidence interval and the test statistic for testing b = 0.

4. The test statistic, t, for testing b = 0.
5. The P-value for testing b = 0.

These five components, (b̂, confidence interval, sb, t and the P-value) are usually
printed out in a row in computer packages like Excel. In practice, the most impor-
tant are b̂, the confidence interval, and the P-value. You can usually interpret your
empirical findings without explicit reference to t and sb. The following examples will
serve to illustrate how regression results are presented and can be interpreted.

Example: The regression of deforestation on population density

(continued from page 78)

If we regress Y = deforestation on X = population density using Excel, the
output shown in Table 5.2 will be produced (other software packages will
provide output of a similar form):
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Table 5.2 The regression of deforestation on population density.

Standard Lower Upper
Coefficient error t-Stat P-value 95% 95%

Intercept 0.599965 0.112318 5.341646 1.15E – 06 0.375837 0.824093
X-variable 0.000842 0.000117 7.227937 5.5E – 10 0.00061 0.001075



The row labeled “Intercept” contains results for a, and the row labeled “X-vari-
able”, results for b. We will focus discussion on this latter row. The column
labeled “Coefficient” presents the OLS estimate and, as we have seen before, b̂
= 0.000842, indicating that increasing population density by one person per
hectare is associated with an increase in deforestation rates of 0.000842%. The
columns labeled “Lower 95%” and “Upper 95%” give the lower and upper
bounds of the 95% confidence interval. For this data set, and as discussed pre-
viously, the 95% confidence interval for b is [0.00061, 0.001075]. Thus, we are
95% confident that the marginal effect of population density on deforestation
is between 0.00061% and 0.001075%.

The columns labeled “Standard error” and “t-Stat” indicate that sb = 0.000117
and t = 7.227937. These numbers are not essential to carrying out a hypothesis
test of b = 0 when the P-value is given. For most purposes we can ignore these
two columns.5

The hypothesis test of b = 0 can be done in two equivalent ways. First, we
can find a 95% confidence interval for b of [0.00061, 0.001075]. Since this inter-
val does not contain 0, we can reject the hypothesis that b = 0 at the 5% level
of significance. In other words, there is strong evidence for the hypothesis that
b π 0 and that population density has significant power in explaining defor-
estation. Second, we can look at the P-value which is 5.5 ¥ 10-10,6 and much less
than 0.05. This means that we can reject the hypothesis that population density
has no effect on deforestation at the 5% level of significance. In other words,
we have strong evidence that population density does indeed affect deforesta-
tion rates.

Exercise 5.4

Using Table 5.2 (or running a regression yourself using data set FOREST.XLS)
test the hypothesis that a = 0.

Exercise 5.5

In addition to Y = deforestation rate, data set FOREST.XLS also contains data on
W = the percentage increase in cropland (labeled “Crop ch”) and Z = percent-
age change in pasture land (labeled “Pasture ch”).

(a) Run a regression of Y on W and interpret your results. Can you reject the
hypothesis that expansion of cropland has no effect on deforestation rates?

(b) Run a regression of Y on Z and interpret your results. Can you reject the
hypothesis that expansion of pastureland has no effect on deforestation
rates?
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Exercise 5.6

Use data sets FIG51.XLS, FIG52.XLS, FIG53.XLS and FIG54.XLS.

(a) Test whether b = 0 using the confidence interval approach for each of the
four data sets.

(b) Test whether b = 0 using the P-value approach and the four data sets. Use
the 5% level of significance.

(c) Redo (a) and (b) for a.
(d) Redo parts (a), (b) and (c) using the 1% level of significance.
(e) Are your results sensible in light of the discussion in this chapter of the

factors affecting the accuracy of OLS estimates?

Example: The regression of lot size on house price 

(continued from p. 78)

Previously, we found a 95% confidence interval in the regression of Y = house
price on X = lot size to be [5.27, 7.47]. Since this interval does not contain zero,
we can reject the hypothesis that b = 0 at the 5% level of significance. Lot size
does indeed seem to have a statistically significant effect on house prices.

Alternatively, the P-value is 6.77 ¥ 10-42, which is much less than 0.05. As
before, we can reject the hypothesis that b = 0 at the 5% level of significance.
Note also that, since, 6.77 ¥ 10-42 is less than 0.01 we can also reject the hypoth-
esis that b = 0 at the 1% level of significance. This is strong evidence indeed
that lot size affects house prices.

Exercise 5.7

We have used the file ADVERT.XLS before. Remember that it contains data on
the sales and advertising expenditures of 84 companies. Set up and run a regres-
sion using this data and discuss your results verbally as you would in a report.
Include a discussion of the marginal effect of advertising on sales and a dis-
cussion of whether this marginal effect is statistically significant.
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Hypothesis testing involving R2: the F-statistic

Most computer packages which include regression, such as Excel, also print out
results for the test of the hypothesis H0: R2 = 0. The definition and interpretation of
R2 was given in the previous chapter. Recall that R2 is a measure of how well the
regression line fits the data or, equivalently, of the proportion of the variability in Y
that can be explained by X. If R2 = 0 then X does not have any explanatory power
for Y. The test of the hypothesis R2 = 0 can therefore be interpreted as a test of
whether the regression explains anything at all. For the case of simple regression, this
test is equivalent to a test of b = 0.

In the next chapter, we will discuss the case of multiple regression (where there
are many explanatory variables), in which case this test will be different. To preview
our discussion of the next chapter, note that the test of R2 = 0 will be used as a test
of whether all of the explanatory variables jointly have any explanatory power for
the dependent variable. In contrast, the t-statistic test of b = 0 will be used to inves-
tigate whether a single individual explanatory variable has explanatory power.

The strategy and intuition involved in testing R2 = 0 proceed along the same lines
as above. That is, the computer software calculates a test statistic which you must then
compare to a critical value. Alternatively, a P-value can be calculated which directly
gives a measure of the plausibility of the null hypothesis R2 = 0 against the alterna-
tive hypothesis, R2 π 0. Most statistical software packages will automatically calculate
the P-value and, if so, you don’t need to know the precise form of the test statistic
or how to use statistical tables to obtain a critical value. For completeness, though,
we present the test statistic, the F-statistic,7 which is calculated as:

This expression is calculated automatically by Excel and is labeled simply as “F ”. As
before, “large” values of the test statistic indicate R2 π 0 while “small” values indi-
cate R2 = 0. As for the test of b = 0, we use the P-value to decide what is “large” and
what is “small” (i.e. whether R2 is significantly different from zero or not). Note,
however, that Excel refers to the P-value for this test as “Significance F ”. The test is
performed according to the following strategy:

1. If Significance F is less than 5% (i.e. 0.05), we conclude R2 π 0.
2. If Significance F is greater than 5% (i.e. 0.05), we conclude R2 = 0.

The previous strategy provides a statistical test with a 5% level of significance. To
carry out a test at the 1% level of significance, merely replace 5% (0.05) by 1% (0.01)
in the preceding sentences. Other levels of significance (e.g. 10%) can be calculated
in an analogous manner.

Other computer packages might use a slightly different notation than Excel does.
For instance, MicroFit labels the F-statistic “F-stat.” and puts the P-value in brack-
ets next to F.

F
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Example: The regression of deforestation on population density

(continued from page 82)

In the case of the deforestation and population density data set, F = 52.24308.
Is this “large”? If you said yes you are right, since Significance F = 5.5 ¥ 10-10,
which is less than 0.05. We can conclude in light of this finding that population
density does have explanatory power for Y. Formally, we can say that “R2 is sig-
nificantly different from zero at the 5% level”, “X has statistically significant
explanatory power for Y” or that “The regression is significant”. Note that Sig-
nificance F is equal to the P-value in the test of b = 0, stressing the equivalence
of these two tests in the case of simple regression.

Exercise 5.8

Use data sets FIG51.XLS, FIG52.XLS, FIG53.XLS and FIG54.XLS.
Test whether R2 = 0 for each of the four data sets. Compare your results with

those of Exercise 5.6.

Example: Cost of production in the electric utility industry

We used the file ELECTRIC.XLS in Chapter 4. Recall that it contains data on Y =
the costs of production and X = output in 123 electric utility companies. If we
run the regression of Y on X using Excel we obtain the results shown in Table
5.3.
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Table 5.3 The regression of the cost of production on output.

Standard Lower Upper
Coefficient error t-Stat P-value 95% 95%

Intercept 2.186583 1.879484 1.163395 0.246958 -1.534354 5.90752
X-variable 0.004789 0.000132 36.37623 5.36E – 67 0.004528 0.005049

Furthermore, R2 = 0.916218. The P-value for testing R2 = 0 (which Excel labels
“Significance F ”) is 5.36E - 67.

It is worthwhile, by way of summary of the material in Chapters 4 and 5, to
illustrate how the results presented above might be written up in a formal report.
A typical report would include the presentation of the statistical material in a
table as above followed by a verbal summary discussing the economic intuition



behind the analysis and the statistical findings in light of this intuition. The
report might go as follows.

Table 5.3 presents results from an OLS regression using the electric industry
data set for the US.8 Since we are interested in investigating how different output
choices by firms influence their costs of production, we select costs of pro-
duction as our dependent variable and output as the explanatory variable. This
table reveals that the estimated coefficient on output is 0.004789, and suggests
that electric utility firms with higher levels of output tend to have higher costs
of production. In particular, increasing output by one thousand kWh tends to
increase costs by $4,789.

It can be observed that the marginal effect of output on costs is strongly sta-
tistically significant, since the P-value is very small (much smaller, say, than 1%).
An examination of the 95% confidence interval shows that we can be quite con-
fident that increasing output by one thousand kWh is associated with an increase
of costs of at least $4,528 and at most $5,049. An examination of the R2 rein-
forces the view that output provides a large part of the explanation for why costs
vary across utilities. In particular, 92% of the variability in costs of production
across firms can be explained by different output levels. The P-value for the F-
statistic is much smaller than 1%, indicating significance of the R2 at the 1% level.
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Chapter summary

1. The accuracy of OLS estimates depends on the number of data points, the
variability of the explanatory variable and the variability of the errors.

2. The confidence interval provides an interval estimate of b (i.e. an interval
in which you can be confident b lies). It is calculated in most computer soft-
ware packages.

3. The width of the confidence interval depends on the same factors as affect
the accuracy of OLS estimates. In addition, the width of the confidence
interval depends on the confidence level (i.e. the degree of confidence you
want to have in your interval estimate).

4. A hypothesis test of whether b = 0 can be used to find out whether the
explanatory variable belongs in the regression. The P-value, which is calcu-
lated automatically in most spreadsheet or statistical computer packages, is
a measure of how plausible the hypothesis is.

5. If the P-value for the hypothesis test of whether b = 0 is less than 0.05 then
you can reject the hypothesis at the 5% level of significance. Hence, you
can conclude that X does belong in the regression.



Appendix 5.1: Using statistical tables for testing

whether b = 0

The P-value is all that you will need to know in order to test the hypothesis that b =
0. Most computer software packages (e.g. Excel, MicroFit or SHAZAM) will auto-
matically provide P-values. However, if you do not have such a computer package or
are reading a paper which presents the t-statistic, not the P-value, then it is useful to
know how to carry out hypothesis testing using statistical tables. Virtually any statis-
tics or econometrics textbook will describe the method in detail and will also provide
the necessary statistical table for you to do so. Here we offer only a brief discussion
along with a rough rule of thumb which is applicable to the case when the sample
size, N, is large.

Remember that hypothesis testing involves the comparison of a test statistic to a
number called a critical value. If the test statistic is larger (in absolute value) than the
critical value, the hypothesis is rejected. Here, the test statistic is the t-stat given in the
body of the chapter. This must be compared to a critical value taken from the Student-
t statistical table. It turns out that this critical value is precisely what we have called tb

in our discussion of confidence intervals. If N is large and you are using the 5% level
of significance, then tb = 1.96. This suggests the following rule of thumb:

If the t-statistic is greater than 1.96 in absolute value (i.e. �t � > 1.96), then reject the hypothesis
that b = 0 at the 5% level of significance. If the t-statistic is less than 1.96 in absolute value, then
accept the hypothesis that b = 0 at the 5% level of significance.

If the hypothesis that b = 0 is rejected, then we say that “X is significant” or that “X
provides statistically significant explanatory power for Y ”.

This rule of thumb is likely to be quite accurate if sample size is large. Formally,
the critical value equals 1.96 if sample size is infinity. However, even moderately large
sample sizes will yield similar critical values. For instance, if N = 120, the critical value
is 1.98. If N = 40, it is 2.02. Even the quite small sample size of N = 20 yields a crit-
ical value of 2.09 which is not that different from 1.96. However, you should be
careful when using this rule of thumb if N is very small or the t-statistic is very close
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6. If the P-value for the hypothesis test of whether b = 0 is greater than 0.05
then you cannot reject the hypothesis at the 5% level of significance. Hence,
you cannot conclude that X belongs in the regression.

7. A hypothesis test of whether R2 = 0 can be used to investigate whether the
regression helps explain the dependent variable. A P-value for this test is
calculated automatically in most spreadsheet and statistical computer pack-
ages and can be used in a similar manner to that outlined in points 5 and 6.



to 2.00. If you look back at the examples included in the body of this chapter 
you can see that the strategy outlined here works quite well. For instance, in our
example entitled “Cost of production in the electric utility industry”, the t-statistic
for testing whether b = 0 was 36.4, which is quite a bit larger than 1.96. Hence we
concluded that output is a statistically significant explanatory variable for cost of pro-
duction. In this example (and all others), both the P-value and confidence interval
approaches lead to the same conclusion as the approximate strategy described in this
appendix.

The previous discussion related to the 5% level of significance. The large sample
critical value for the 10% level of significance is 1.65. For the 1% level of signifi-
cance, it is 2.58.

By far the most common hypothesis to test for is H0: b = 0. Using the techniques
outlined in this appendix we can generalize this hypothesis slightly to that of:
H0: b = c, where c is some number that may not be zero (e.g. c = 1). In this case, the 
test statistic changes slightly, but the critical value is exactly the same as for the test
of b = 0. In particular, the test statistic becomes:

This will not be produced automatically by a computer package, but it can be calcu-
lated quite easily in a spreadsheet or on a calculator. That is, b̂ and sb are calculated
by the computer, and you have to provide c, depending on the hypothesis that you
are interested in testing. These three numbers can be combined using the equation
above to give you a value for your test statistic. If this value is greater than 1.96 in
absolute value, you will conclude that b π c at the 5% level of significance. The caveats
about using this rule of thumb if your sample size is very small apply here.

Endnotes

1. As mentioned previously, a good basic statistics book is Introductory Statistics for Business and
Economics by Thomas Wonnacott and Ronald Wonnacott (Fourth edition, John Wiley and
Sons, 1990). A good introductory econometrics textbook is that by R. Carter Hill, William
Griffiths and George Judge, Undergraduate Econometrics (Second edition, John Wiley & Sons,
2000).

2. If you are having trouble grasping this point, draw a straight line with intercept = 0 and
slope = 1 through Figures 5.2 and 5.3 and then look at some of the resulting residuals
(constructed as in Figure 4.1). You should see that most of the residuals in Figure 5.2 will
be much bigger (in absolute value) than those in Figure 5.3. This will result in a larger SSR
(see the formula in Chapter 4) and, since residuals and errors are very similar things, a
bigger variance of the errors (see the formula for the standard deviation of a variable in
the descriptive statistics section of Chapter 2 and remember that the variance is just the
standard deviation squared).

t
c

sb

= -ˆ
.

b
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3. The notation that “the variable W lies between a and b” or “W is greater than or equal to
a and less than or equal to b” is expressed mathematically as “W lies in the interval [a,b]”.
We will use this mathematical notation occasionally in this book.

4. The choice of a 95% confidence interval is by far the most common one, and whenever
a confidence level is not specified you can assume it is 95%.

5. In the examples in this book we never use sb and rarely use t. For future reference, the only
places we use t are in the Dickey–Fuller and Engle–Granger tests which will be discussed
in Chapters 9 and 10, respectively.

6. Note that 5.5E - 10 is the way most computer packages write 5.5 ¥ 10-10 which can also
be written as 0.00000000055.

7. Formally, the F-statistic is only one in an entire class of test statistics that take their criti-
cal values from the so-called “F-distribution”. Appendix 11.1 offers some additional dis-
cussion of this topic.

8. In a report, the data used would likely be discussed in detail in a separate section of the
paper. See Appendix A on writing an empirical project for a greater discussion of the 
organization of a typical report.
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C H A P T E R

Multiple regression

6

The discussion of simple regression in Chapter 5 involved two variables: the depen-
dent variable, Y, and the explanatory variable, X. As we discussed at the beginning
of Chapter 4, most analyses in economics involve many variables. Multiple regres-
sion extends simple regression to the case where there are many explanatory vari-
ables. Since it is the most common tool used in applied economics, the present chapter
should be considered to be the most important of this book. Fortunately, most of
the intuition and statistical techniques of multiple regression are very similar to those
of simple regression.

The key elements of Chapters 4 and 5 were: (1) the development of graphical intu-
ition for regression techniques as the fitting of a straight line through an XY-plot; (2)
the introduction of the regression coefficient as measuring a marginal effect; (3) the
description of the OLS estimate as a best fitting line (in terms of minimizing the sum
of squared residuals) through an XY-plot; (4) the introduction of R2 as a measure of
fit of a regression model; and (5) the introduction of statistical techniques such as
confidence intervals and hypothesis tests.

With some exceptions (highlighted below) these five elements do not differ for the
multiple regression model. You should look back on Chapters 4 and 5 if you are
having difficulty remembering the underlying intuition or statistical aspects of regres-
sion. This chapter covers these five elements for the multiple regression case very
briefly, summarizing similarities with and differences from the simple regression
model. Much of the chapter will involve the discussion of an example that illustrates
how to interpret multiple regression results.



Example: Explaining house prices

Much research in applied microeconomics and marketing focusses on the
pricing of goods. One common approach involves building a model in which
the price of a good depends on the characteristics of that good. Data set
HPRICE.XLS contains data on an application of this so-called hedonic pricing
approach to the housing market. We worked with part of this data set in pre-
vious chapters. Recall that it contains data on N = 546 houses sold in Windsor,
Canada. Our dependent variable, Y, was the sales price of the house in 
Canadian dollars, and lot size was our explanatory variable.

Of course, the price of a house is affected by more than just lot size. Any
serious attempt to explain the determinants of house prices must include more
explanatory variables than lot size. In this chapter, we focus on the following
four explanatory variables:

• X1 = the lot size of the property (in square feet)
• X2 = the number of bedrooms
• X3 = the number of bathrooms
• X4 = the number of storeys (excluding the basement).

The data set HPRICE.XLS also contains other explanatory variables that we will
use in later chapters and in exercises.

Exercise 6.1

(a) Create XY-plots using the four explanatory variables in the house pricing
example one at a time (i.e. plot Y and X1, then plot Y and X2, etc.).

(b) Perform simple regressions using the explanatory variables one at a time (i.e.
regress Y on X1, then regress Y on X2, etc.).

(c) Comment on the relationships you find in (a) and (b).

Regression as a best fitting line

As we saw in Chapter 4, the simple regression model can be thought of as a tech-
nique aimed at fitting a line through an XY-plot. Since multiple regression implies the
existence of more than two variables (e.g. X1, X2, X3, X4 and Y ), we cannot draw an
XY-plot in a two-dimensional graph, in which one variable is plotted on the vertical
axis and the other on the horizontal axis. Nevertheless, the same line-fitting intuition
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holds (although this could only be illustrated if we could somehow create high-
dimensional graphs). For instance, if we had three explanatory variables, we could
show how multiple regression involves fitting a line through a four-dimensional graph,
in which Y is plotted on one axis, X1 on the second, X2 on the third, and X3 on the
fourth. The graph would be very messy and actually impossible to create (i.e. what
does a four-dimensional graph look like?).

Ordinary least squares estimation of the multiple

regression model

The multiple regression model with k explanatory variables is written as:1

Instead of estimating just a and b, we now have a and b1, b2, . . . , bk. However, the
strategy for finding estimates for all these coefficients is exactly the same as for the
simple regression model. That is, we define the sum of squared residuals:

where X1i is the ith observation on the first explanatory variable (for i = 1, . . . , N
observations, e.g. lot size of house i for houses i = 1, . . . , 546). The other explana-
tory variables are defined in an analogous way. The OLS estimates (which can be
interpreted as providing the best fitting line) are found by choosing the values of â
and b̂1, b̂2, . . . b̂k that minimize the SSR. Conceptually, this is a straightforward 
mathematical problem.2 The resulting formulae are complicated and are not listed
here.3 Note that computer software packages like Excel will calculate these OLS 
estimates (â, b̂1, . . . , b̂k) automatically.

Statistical aspects of multiple regression

As noted, the statistical aspects of multiple regression are essentially identical to the
simple regression case (see Chapter 5). In particular, the R2 is still a measure of fit
and is calculated in the same way. Note, however, that it should be interpreted as a
measure of the explanatory power of all the explanatory variables together rather
than as just the one explanatory variable in the simple regression model. Similarly, the
F-statistic for testing if R2 = 0 has a slightly different formula (N – 2 is replaced by
N – k – 1) but is essentially the same and you still look at “Significance F ” in the
Excel output. If we find that R2 π 0, then we can say that “The explanatory variables
in the regression, taken together, help explain the dependent variable”, whereas if we

SSR = - - - -( )Â Y X Xi i k ki
ˆ ˆ ... ˆ ,a b b1 1

2

Y X X X ek k= + + + + +a b b b1 1 2 2 K .
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find R2 = 0, we can say that “The explanatory variables are not significant and do not
provide any explanatory power for the dependent variable.”

The general formulae for calculating confidence intervals for the regression coef-
ficients and for testing whether they are equal to zero are the same as in the pre-
vious chapter. However, the actual numbers that comprise the formulae (e.g. sb) are
calculated in a slightly more complicated way. Nevertheless, the practical intuition
remains unchanged. In other words, a 95% confidence interval will provide an inter-
val estimate such that you can say that “I am 95% confident that my coefficient lies
in the 95% confidence interval”. In Excel, the “Lower 95%” and “Upper 95%”
columns are still the lower and upper bounds of the 95% confidence interval. If the
number in the “P-value” column is less than 0.05, we can conclude that the relevant
explanatory variable is significant at the 5% level. It is worth stressing that there are
now a P-value and a confidence interval associated with each of the coefficients,
b1, . . . , bk rather than just the one b in the simple regression model. However, from
the point of view of a researcher wishing to interpret computer output for use in a
report, the statistical aspects of multiple regression are essentially the same as for
simple regression.4

Interpreting OLS estimates

It is in the interpretation of OLS estimates that some subtle (and important) dis-
tinctions exist between the simple and multiple regression case. This section will
provide a few ways of thinking about or interpreting coefficients in the multiple
regression model. Before we begin, it is important to be clear about the notation we
will use.

When we speak of a property that holds generally for any of the coefficients we
will denote the coefficient by bj , (i.e. the coefficient on the jth explanatory variable
where j could be any number between 1 and k). When we wish to talk about a 
specific coefficient we will give an exact number for j (e.g. b1 has j = 1 and is the 
coefficient on the first explanatory variable).

In the simple regression case we saw how b could be interpreted as a marginal
effect (i.e. as a measure of the effect that a change in X has on Y or as a measure of
the influence of X on Y ). In multiple regression, bj still can be interpreted as a mar-
ginal effect, but in a slightly different way. In particular, bj is the marginal effect of
Xj on Y, holding all other explanatory variables constant (in Latin ceteris paribus,
a commonly used phrase in economics). The preceding sentence is of critical impor-
tance to the correct interpretation of regression results. For this reason, we will spend
some time illustrating precisely what we mean by it, by way of consideration of our
house price example.
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Example: Explaining house prices (continued from page 92)

Table 6.1 contains results from the regression of Y = sale price on X1 = lot size,
X2 = number of bedrooms, X3 = number of bathrooms and X4 = number of
storeys. The table is organized in the form of an Excel output, but other regres-
sion packages provide output organized in a similar way.

The first column lists the explanatory variables. In this example there are four
of them (plus the intercept). Each row contains the same information as in the
table for the simple regression model (i.e. the OLS estimate of the relevant coef-
ficient followed by its standard deviation, t-statistic, P-value for testing whether
bj = 0 and the lower and upper bounds of the 95% confidence interval for the
coefficient). As stressed above, each of these statistical results is now available
for each coefficient and they will all be different (e.g. the P-value for testing b1

= 0 will be different from the P-value for testing b3 = 0).
Using the information in Table 6.1, we can write the fitted regression equa-

tion as:

As an example, consider the coefficient for the first explanatory variable, lot
size. It can be seen that b̂1 = 5.43. Below are some (very similar) ways of ver-
bally stating what this value means.

1. “An extra square foot of lot size will tend to add another $5.43 on to the
price of a house, ceteris paribus.”

ˆ . . . . . .Y X X X X= - + + + +4009 55 5 43 2824 61 17105 17 7634 901 2 3 4
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Table 6.1 Regression of house price on lot size, number of bedrooms, number of
bathrooms and number of storeys.*

Standard Lower Upper
Coefficient error t-Stat P-value 95% 95%

Intercept -4009.5500 3603.109 -1.1128 0.266287 -11087.3 3068.248
X1 5.4291737 0.369250 14.70325 2.05E – 41 4.703835 6.154513
X2 2824.61379 1214.808 2.325153 0.020433 438.2961 5210.931
X3 17105.1745 1734.434 9.862107 3.29E – 21 13698.12 20512.22
X4 7634.897 1007.974 7.574494 1.57E – 13 5654.874 9614.92

*Note that in this table, as elsewhere, we write numbers as Excel produces them. That is, we include as many
decimal places as possible and use the “E” notation for exponents. In a report you probably would want to
use only a few decimal places and replace, say, 1.57E – 13 with 1.57 ¥ 10-13. Furthermore, R2 = 0.54 and the
P-value for testing R2 = 0 (which is labeled “Significance F” by Excel) is 1.18E – 88.



2. “If we consider houses with the same number of bedrooms, bathrooms and
storeys, an extra square foot of lot size will tend to add another $5.43 onto
the price of the house.”

3. “If we compare houses with the same number of bedrooms, bathrooms and
storeys, those with larger lots tend to be worth more. In particular, an extra
square foot of lot size is associated with an increased price of $5.43.”

It is worth expanding on the motivation for the latter two expressions. We
cannot simply say that “houses with bigger lots are worth more” since this is
not the case (e.g. some nice houses on small lots will be worth more than poor
houses on large lots). However, we can say that “if we consider houses that vary
in lot size, but are comparable in other respects, those with larger lots tend
to be worth more”. The two expressions above explicitly incorporate the 
qualification “but are comparable in other respects”. We did not have to include
this qualification in Chapter 4.

Alternatively, let us consider b̂2 (the coefficient on the number of bedrooms),
which is 2842.61. This might be expressed as:

1. “Houses with an extra bedroom tend to be worth $2,842.61 more than those
without the extra bedroom, ceteris paribus.”

2. “If we consider comparable houses (e.g. those with 5,000 square foot lots,
two bathrooms and two storeys), those with three bedrooms tend to be
worth $2,842.61 more than those with two bedrooms.”

There are many different ways to express the interpretation of these co-
efficients. However, the general point we wish to make is as follows: In the 
case of simple regression we can say that “b measures the influence of X on
Y ”; in the multiple regression we say that “bj measures the influence of Xj on
Y all other explanatory variables being equal”. The expressions above are
just different ways of verbally saying “all other explanatory variables being
equal”.

The coefficients on the other explanatory variables can be interpreted in 
analogous ways. For instance, b̂3 = 17105.174. In words, we might say that
“Houses with an extra bathroom tend to be worth $17,105.17 more, ceteris
paribus”. Since b̂4 = 7634.897, we might say “If we compare houses that are
similar in all other respects, those with an extra storey tend to be worth 
$7,634.90 more”.

Remember that in a discussion of the statistical properties of the regression
coefficients, the confidence interval and the P-value are the most important
numbers. These can be interpreted in the same way as for the simple regres-
sion. For instance, since the P-values for all of the explanatory variables (except
the intercept) are less than 0.05 we can say that “The coefficients b1, b2, b3 and
b4 are statistically significant at the 5% level”, or equivalently, that “We can reject
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the four separate hypotheses that any of the coefficients is zero at the 5% level
of significance”.

By way of another example, let us consider the 95% confidence interval for
b2, which is [438.2761, 5210.931]. This information might be presented verbally
as: “Although our point estimate indicates that the marginal effect of number
of bedrooms on house prices is $2,842.61, this estimate is imprecise. The 95%
confidence interval indicates that we can only be confident that this marginal
effect lies somewhere between $438.28 and $5,210.93”. Alternatively, the con-
fidence interval for b4 is [5654.874, 9614.92] and we can say: “We are 95% con-
fident that the marginal effect of the number of storeys on house price lies
between $5,654.87 and $9,614.92.”

The hypothesis test of whether R2 = 0 yields a P-value of much less than 5%,
indicating that X1, X2, X3 and X4 have statistically significant explanatory power
for the dependent variable. In fact, variations in lot size and the number of bed-
rooms, bathrooms and storeys account for 54% of the variability in house
prices.

Pitfalls of using simple regression in a multiple

regression context

To emphasize the difference between simple and multiple regression, we will run a
simple regression of Y = sales price on X2 = number of bedrooms. Table 6.2 con-
tains the results from this regression. Since b̂ = 13,269.98 in this simple regression,
we are able to make statements of the kind: “The marginal effect of number of bed-
rooms on house prices is $13,269.98” or “Houses with an extra bedroom tend to cost
$13,269.98 more.” You should contrast this statement with the one above. For the
simple regression we have left out the ceteris paribus conditions that are implicit in the
part of the sentence: “If we consider comparable houses (e.g. those with 5,000 square
foot lots, two bathrooms and two storeys) . . .”.

Note also that the coefficient on number of bedrooms in the simple regression is
much higher than for the multiple regression. Why is this the case? To answer this
question, first imagine that a friend in Windsor wanted to build an extra bedroom in
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Table 6.2 Regression of sale price on number of bedrooms.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 28773.4327 4413.753 6.519 1.6E – 10 20103.34 37443.53
X2 13269.9801 1444.598 9.186 8.5E – 19 10432.30 16107.66



her house and asked you, the economist, how much that extra bedroom would add
to the value of the house. How would you answer?

The simple regression here contains data only on house price and number of bed-
rooms. You can think of it as observing all the houses in the sample and concluding
that those with more bedrooms tend to be more expensive (e.g. those with three bed-
rooms tend to be worth $13,269.98 more than those with two bedrooms).

However, this does not necessarily mean that adding an extra bedroom to the house
will raise its price by $13,269.98. The reason is that there are many factors other than
the number of bedrooms that potentially influence house prices. Furthermore, these
factors may be highly correlated (i.e. in practice, big houses tend to have more bed-
rooms, more bathrooms, more storeys and larger lot size). To investigate the possi-
bility, let us first examine the correlation matrix (see Chapter 3) of all the variables in
this example (Table 6.3).

Since all the elements of the correlation matrix are positive, it follows that each
pair of variables is positively correlated with each other (e.g. the correlation between
the number of bathrooms and the number of bedrooms is 0.37, indicating that
houses with more bathrooms also tend to have more bedrooms). In cases like this,
simple regression cannot disentangle the influences of the individual variables on
house prices. So when the simple regression method examines all the houses and
notes that those with more bedrooms cost more, this does not necessarily mean that
bedrooms are adding value to the house. Buyers may really be valuing bathrooms or
lot size over bedrooms. In other words, houses with more bathrooms may be worth
more. Yet, houses with more bathrooms also have more bedrooms. The simple
regression model simply looks at house price and number of bedrooms and sees that
those with more bedrooms tend to be worth more. What it does not realize is that it
is really the number of bathrooms that people value. Thus, if you advise your friend
that an extra bedroom is worth $13,269.98, you may be seriously misleading her. In
essence, in the simple regression model, we leave out important explanatory variables
such as lot size, the number of bathrooms and the number of storeys. The regres-
sion combines the contribution of all these factors together and allocates it to the
only explanatory variable it can: bedrooms. Hence b̂ is very big.5

In contrast, multiple regression allows us to disentangle the individual contribu-
tions of the four explanatory variables assumed to affect house prices. The figure of
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Table 6.3 Correlation matrix of variables in house price example.

Sale Price Lot size #bedrooms #bath #storeys

Sale price 1
Lot size 0.535795 1
#bedrooms 0.366447 0.151851 1
#bath 0.516719 0.193833 0.373768 1
#storeys 0.421190 0.083674 0.407973 0.324065 1



b̂2 = $2,842.61 comes closer to being a genuine measure of the effect of adding an
extra bedroom, although, even this multiple regression is likely to be omitting some
important explanatory variables. By presenting this figure to your friend, you can be
confident that you are not making the error above. That is, you can be sure that it is
more likely to be the bedroom that is adding the value – and that you are not con-
founding the contributions of the various explanatory variables.

Omitted variables bias

The problems discussed in the previous section relate to a statistical issue called
omitted variables bias. We will not develop the statistical theory necessary to for-
mally explain what this means. Informally, however, we can say that if we omit
explanatory variables that should be present in the regression and if these omitted
variables are correlated with those that are included, then the coefficients on the
included variables will be wrong. In the previous example, the simple regression of
Y = sales price on X = number of bedrooms omitted many variables that were impor-
tant for explaining house prices (e.g. lot size, number of bathrooms, etc.). These
omitted variables were also correlated with number of bedrooms. Hence the coeffi-
cient estimate b̂ = 13,269.98 is unreliable due to omitted variables bias.

The intuition behind why the omission of variables causes bias is provided in the
previous section. For instance, lot size is an important explanatory variable for house
prices, and thus “wants to” enter into the regression. If we omit it from the regression,
it will try to enter in the only way it can – through its positive correlation with the
explanatory variable: number of bedrooms. In other words, the coefficient on number
of bedrooms will confound the effect of bedrooms and lot size on house prices.

One practical consequence of omitted variables bias is that you should always try
to include all those explanatory variables that could affect the dependent variable.
Unfortunately, in practice, this is rarely possible. House prices, for instance, depend
on many other explanatory variables than those found in the data set, HPRICE.XLS

(e.g. the state of repair of the house, how pleasant the neighbors are, closet and
storage space, whether the house has hardwood floors, the quality of the garden, etc.).
In practice, there are too many variables on which to collect data, and many will be
subjective (e.g. how do you measure “pleasantness of the neighbors”?). You will vir-
tually always have omitted variables and there is little that can be done about it – other
than to hope that the omitted variables do not have much explanatory power and that
they are not correlated with the explanatory variables included in the analysis.

The previous paragraphs provide a justification for working with as many explana-
tory variables as possible. However, there is a counter argument to be made for using
as few explanatory variables as possible. It can be shown that the inclusion of
irrelevant variables decreases the accuracy of the estimation of all the coefficients
(even the ones that are not irrelevant). This decrease in accuracy will be reflected in
overly large confidence intervals and P-values.
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How should we trade off the benefits of including many variables (i.e. reducing the
risk of omitted variables bias) with the costs of possibly including irrelevant variables
(i.e. reducing the accuracy of estimation)? A common practice is to begin with as many
explanatory variables as possible, then discard those that are not statistically significant.
However, if you put in too many irrelevant explanatory variables to begin with, you
could find virtually all explanatory variables to be insignificant. Hence, some common
sense is required about what a good initial regression might be. Statistical significance
of an individual explanatory variable can, of course, be assessed using the P-values
produced by computer packages like Excel. Once you have discarded the insignificant
explanatory variables, you can run a new regression involving fewer explanatory vari-
ables, in which the risk of including irrelevant variables is greatly reduced.

Exercise 6.2

Use data set HPRICE.XLS and let Y = house price be the dependent variable and
consider the following potential explanatory variables:

• X1 = the lot size of the property (in square feet)
• X2 = the number of bedrooms
• X3 = the number of bathrooms
• X4 = the number of storeys (excluding the basement).

(a) Regress Y on X1, X2, X3 and X4 (i.e. recreate the example above) and discuss
your results.

(b) Regress Y on various subsets of X1, X2, X3 and X4 and discuss your results.
(c) Comparing your results for (a) and (b), examine the effect of omitting

explanatory variables.

Multicollinearity

Multicollinearity is a statistical issue that relates to the previous discussion. It is a
problem that arises if some or all of the explanatory variables are highly correlated
with one another. If it is present, the regression model has difficulty telling which
explanatory variable(s) is influencing the dependent variables. A multicollinearity
problem reveals itself through low t-statistics and therefore high P-values. In these
cases, you may conclude that coefficients are insignificant and hence should be
dropped from the regression. In an extreme case, it is possible for you to find all the
coefficients are insignificant using t-statistics, while the R2 is quite large and signifi-
cant. Intuitively, this means that the explanatory variables together provide a great deal
of explanatory power, but that multicollinearity makes it impossible for the regression
to decide which particular explanatory variable(s) is providing the explanation.
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There is not too much that can done to correct this problem other than to drop
out some of the highly correlated variables from the regression. However, there are
many cases when you would not want to do so. For instance, in our house price
example, if number of bedrooms and number of bathrooms had been found to be
highly correlated, multicollinearity would be a problem. But you may hesitate to throw
out one of these variables since common sense indicates that both of them signifi-
cantly influence housing prices. The following example illustrates a case where a mul-
ticollinearity problem exists and how to correct for it by omitting an explanatory
variable.

Example: The effect of interest rates on the exchange rate

Suppose you want to examine the effect of interest rate policy on the exchange
rate. One way would be to select an exchange rate (e.g. the £/$ rate) as the
dependent variable and run a regression of it on the interest rate. But there are
many possible interest rates that could be used as explanatory variables (e.g. the
bank prime rate, the Treasury bill rate, etc.). These interest rates are very similar
to one another and will be highly correlated. If you include more than one of
them you will likely run into a multicollinearity problem. The solution to this
problem is clear: include only one of the interest rates. Since the various inter-
est rates are essentially measures of the same phenomenon, common sense says
that throwing out all but one of the interest rate variables will not cause any
loss in explanatory power and will address the multicollinearity problem.
However, we will not give a numerical example here since interest rates and
exchange rates are time series data. As we shall see in future chapters, a naive
use of multiple regression techniques with time series data can yield misleading
results.

Example: Multicollinearity illustrated using artificial data

To illustrate the multicollinearity problem and how to address it, we first artifi-
cially generate N = 50 data points from the regression model:

We expect OLS estimates to be roughly â = 0, b̂1 = 0.5 and b̂2 = 2 since these
values were used to create the data. However, the data generated have a corre-
lation between X1 and X2 that is extremely high. In fact, it equals 0.98, indicat-
ing multicollinearity is a likely problem. Table 6.4 gives regression results using
this data.

Y X X e= + +0 5 21 2. .
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Table 6.4 Regression results using artificial data.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.166191 0.1025278 1.57859 0.121137 -0.045601 0.377983
X1 2.083733 0.952938 2.18664 0.033782 0.16667 4.00080
X2 0.147775 0.965767 0.153013 0.879043 -1.7951 2.09065

R2 = 0.76 and the P-value for testing R2 = 0 is 1.87E - 15.

Table 6.5 Regression results using artificial data omitting X2.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.166715 0.104146 1.60078 0.115989 -0.042685 0.376115
X1 2.22690 0.178806 12.4543 1.2E - 16 1.86739 2.58641

R2 = 0.76 and the P-value for testing whether it equals zero is 1.2E - 16.

These results are very different from those we had hoped to get. The OLS
point estimates are very different from those used to generate the data. For
instance, b̂1 = 2.08 even though b1 = 0.5 was used to generate the data. In fact,
the OLS estimate for b1 is almost exactly the same as the true value for b2! This
result illustrates how OLS can get “confused” about the role played by indi-
vidual explanatory variables when they are highly correlated. Note also that one
of the explanatory variables is not statistically significant at the 5% level and
that the other is only marginally significant. Furthermore, 95% confidence inter-
vals for all coefficients are very large. These results suggest that the explanatory
variables have only weak explanatory power. In contrast, the R2 is very large and
strongly statistically significant, suggesting that the explanatory variables have
excellent explanatory power.

Given the problem of multicollinearity, many econometricians would advo-
cate omitting X2 from the regression. If we follow their advice and rerun the
regression, we obtain the results shown in Table 6.5.

Note that these results look much better from a statistical point of view. b1

is strongly statistically significant and the confidence interval indicates it is esti-
mated quite precisely. So, in one sense, omitting X2 has solved the multi-
collinearity problem. The only problem is that b̂1 is nowhere near the true value
of 0.5 (and the confidence interval does not contain 0.5). Generally, since X2 is
omitted from the model, X1 attempts to take its place. Since X1 is so highly cor-
related with X2, the former can proxy for the latter quite well. Hence b̂1 com-
bines the effects of both explanatory variables. In other words, just as omitting



important explanatory variables in the house price example gave us a biased
view of the effect of bedrooms on house prices, omitting X2 here gives us a
biased view of the effect of X1 on Y. There is nothing you can really do about
this other than to note that it may occur if multicollinearity is present and inter-
pret your results with caution.

Note that multicollinearity involves correlations between explanatory vari-
ables, not the dependent variable. For it to be a problem, the correlations
between variables must be extremely high. If we return to the house pricing
example, we can see that the explanatory variables are moderately correlated
with one another (e.g. some correlations are around 0.3 or 0.4). But this 
moderate correlation does not lead to a multicollinearity problem since all the
coefficients are significantly different from zero (see the P-values in Table 6.5).

Exercise 6.3

For this question, use data set FOREST.XLS with Y = deforestation, X1 = popu-
lation density, X2 = % change in cropland and X3 = % change in pasture land.
Carry out a multiple regression analysis of this data set addressing the issues
raised in this chapter. For instance, you may want to:

(a) Regress Y on X1, X2 and X3 and verbally interpret the coefficient estimates
you obtain.

(b) Discuss the statistical significance of the coefficients. Are there explanatory
variables that can be dropped?

(c) Discuss the fit of the regression.
(d) Calculate a correlation matrix. Through consideration of this and regression

results, discuss the issue of multicollinearity.

Example: The cost of production in the electric utility industry

(continued from page 86)

The ability to interpret multiple regression results is probably the most impor-
tant skill that the applied economist can develop. Below we offer another
example, with results written as they might be in a brief report.

Microeconomic theory tells us that the cost of production of a firm depends
on the prices of the inputs used in the production process as well as the amount
of output produced. Thus, in an investigation of the costs of production, costs
should be the dependent variable, and output and input prices should be
explanatory variables. We use data on these variables for 123 electric utility 
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companies in the US in 1970 (this data is in Excel file ELECTRIC.XLS). Specifi-
cally, the data measures:

• Y = costs of production (measured in millions of dollars per year)
• X1 = output (measured in thousands of kWh per year)
• X2 = price of labor (measured in dollars per worker per year)
• X3 = price of capital (measured in dollars per unit of capital per year)
• X4 = price of fuel (measured in dollars per million BTUs).

Results from the regression involving these variables are given in Table 6.6.
Note that coefficients all have the expected sign: increasing output or prices

of any of the inputs tends to increase costs. The magnitudes of the coefficients
are also reasonable. Hence:

1. Increasing output by one thousand kWh tends to increase costs by $4,740,
ceteris paribus. We are 95% confident that this marginal effect is at least $4,514
and at most $4,948.

2. Increasing the annual salary of an average worker by $1 tends to increase
costs by $3,630 per year, ceteris paribus. We are 95% confident that this mar-
ginal effect is at least $1,537 and at most $5,717. This indicates a fair degree
of uncertainty, despite the fact that this coefficient is strongly significant
(P-value < 0.01) .

3. Increasing the price of capital by $1 per unit tends to increase costs by
$280,080 per year, ceteris paribus. The 95% confidence interval for this coef-
ficient is also quite wide.

4. Increasing the price of fuel by $1 per million BTUs tends to increase costs
by $783,460 per year, ceteris paribus.

Since R2 = 0.94, the explanatory variables jointly account for 94% of the vari-
ability in costs. This is a very high number and is strongly statistically signifi-
cant. The fact that we are explaining the dependent variable almost perfectly
indicates that it is unlikely that any important explanatory variables have been
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Table 6.6 Regression results using the electric utility data set.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -70.49511 12.69501 -5.55298 1.76E - 07 -95.6347 -45.3556
X1 0.00474 0.00011 43.22597 3.41E - 74 0.004514 0.004948
X2 0.00363 0.00106 3.43660 0.000814 0.001537 0.005717
X3 0.28008 0.12949 2.16301 0.032557 0.023663 0.536503
X4 0.78346 0.16579 4.72566 6.39E - 06 0.455154 1.11177

R2 = 0.94 and the P-value for testing R2 = 0 is 9.73E - 73.



omitted. If we look at the coefficients individually, we can see that the P-values
are all statistically significant at the 5% level. The correlation matrix in Table 6.7
shows that the explanatory variables are not strongly correlated with one
another. The maximum correlation is the one between the price of labor and
the price of fuel and it is only 0.32. Other correlations are much smaller, indi-
cating that multicollinearity is not a problem.

A possible exception to the generally strong statistically significant results
involves X3, the price of capital. The coefficient on this variable has a slightly
broader confidence interval and the P-value for testing the hypothesis that b3 =
0 is a little over 3%. This means that we cannot reject the hypothesis that b3 =
0 at the 1% level of significance. In practice, you likely would not use the 1%
level of significance (5% is more common). However, for the sake of the present
illustration, let us assume that you did. In this case, you would conclude that b3

was not statistically significant and might omit the price of capital as an explana-
tory variable. If you were to do so and then re-ran the regression excluding X3

you would obtain the results shown in Table 6.8. (Note that, since we are using
the 1% level of significance, the table now has a 99% confidence interval.)

Table 6.8 is presented merely to illustrate a common statistical strategy (i.e.
drop out explanatory variables which are insignificant and re-run the regres-
sion). Since omitting X3 does not change the results very much, we will not
repeat the discussion above on the interpretation of results.
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Table 6.7 Correlation matrix for variables in the electric utility data set.

Output Price–Labor Price–Capital Price–Fuel

Output 1
Price–Labor 0.056399 1
Price–Capital 0.021481 -0.078686 1
Price–Fuel 0.053507 0.318349 0.155224 1

Table 6.8 Regression results using the electric utility data sets omitting X3.

Standard Lower Upper
Coefficient error t-stat P-value 99% 99%

Intercept -49.75804 8.449311 -5.88900 3.68E - 08 -71.8765 -27.6396
X1 0.004736 0.000111 42.6218 6.4E - 74 0.004445 0.005027
X2 0.003313 0.0001061 3.12145 0.002259 0.000535 0.006091
X4 0.851586 0.165266 5.15282 1.03E - 06 0.418956 1.284216

R2 = 0.94 and the P-value for testing R2 = 0 is 3.5E - 73.



Appendix 6.1: Mathematical interpretation of

regression coefficients

Readers who know some calculus can use this knowledge to obtain some mathemat-
ical intuition of the difference between simple and multiple regression. In the case
of the simple regression model, basic calculus can be used to derive the relationship:

That is, the regression coefficient, b, can be interpreted as a measure of how much
Y changes when X is changed a small amount. This is a total derivative.

In the case of the multiple regression model, we can say:

In other words, the coefficients are partial derivatives rather than total derivatives.
This partial derivative can be interpreted as measuring the effect of a small change
in Xj on Y, treating all the other explanatory variables as though they are 

constant.

∂
∂

=Y
X j

jb .

dY
dX

= b .
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Chapter summary

1. The multiple regression model is very similar to the simple regression
model. The chapter emphasized only differences between the two.

2. The interpretation of regression coefficients is subject to ceteris paribus con-
ditions. For instance, bj measures the marginal effect of Xj on Y, holding

the other explanatory variables constant.

3. If important explanatory variables are omitted from the regression the esti-
mated coefficients can be misleading, a condition known as the omitted
variables bias. The problem gets worse if the omitted variables are strongly
correlated with the included explanatory variables.

4. If the explanatory variables are highly correlated with one another, coeffi-
cient estimates and statistical tests may be misleading. This is referred to as
the multicollinearity problem.



Endnotes

1. Formally, we should put an “i ” subscript on all the variables to indicate each observation.
In other words, we should have written: Yi = a + b1X1i + b2 X2i + . . . + bk Xki + ei. However,
adding so many subscripts is messy and makes the equation hard to read. So here, and
throughout this book, we will often drop the “i ” subscript (or “t ” subscript with time series
data) unless it is important to specify the individual observation.

2. Readers familiar with calculus should note that we can find OLS estimates in the multiple
regression model in the usual way. That is, we can take first derivatives with respect to a
and b̂1, b̂2, . . . , b̂k, set these derivatives to zero, and then solve.

3. Matrix algebra is essential for theoretical derivations or proofs involving the multiple
regression model, since the formulae can be extremely complex without it. Matrix algebra
is beyond the scope of this book, but if you do further study in econometrics you will
come to see the value of its use.

4. The methods described for one explanatory variable in Appendix 5.1 also apply to the case
of many explanatory variables. That is, each coefficient will have a t-statistic that can be
compared to the critical value of 1.96 if the sample size is large. In cases where there are
many explanatory variables you might also want to test complicated hypotheses involving
several coefficients (e.g. H0: b1 + b2 = b3). These tests are more difficult to carry out than
those covered here. However, you may wish to consult Appendix 11.1, which has some
discussion of hypothesis testing in such cases.

5. If you find this reasoning confusing, think back to the chapter on correlation. There we
considered an example involving the variables cigarette smoking, alcohol drinking and lung
cancer. We pointed out there that scientific studies indicate that it is smoking which causes
lung cancer. However, smokers also tend to drink more alcohol than non-smokers. Hence,
the correlation between drinking and lung cancer is positive even though drinking does not
cause lung cancer. This type of issue is exactly of the sort we are getting at in this example.
That is, a simple regression involving only the lung cancer and drinking variables would
indicate that the effect of drinking on lung cancer is large, even though drinking does not
cause lung cancer. Why does this occur? Because we have left out the smoking variable
which is an important explanatory variable for lung cancer. This left-out explanatory vari-
able is correlated with the explanatory variable being used in the simple regression (i.e.
drinking).
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C H A P T E R

Regression with 

dummy variables

7

Previous chapters used quantitative data to demonstrate important statistical con-
cepts. However, much of the data economists use is qualitative (see Chapter 2 for a
discussion of the distinction between qualitative and quantitative data). Dummy vari-
ables, briefly described in Chapter 2, are a way of turning qualitative variables into
quantitative variables. Once the variables are quantitative, then the correlation and
regression techniques described in previous chapters can be used. Formally, a dummy
variable is a variable that can take on only two values, 0 or 1.

Example: Explaining house prices

In the previous chapter, we worked through an extended example that investi-
gated the factors influencing housing prices in Windsor, Canada. Recall that the
explanatory variables we used in that chapter were all quantitative (e.g. lot size
of property measured in square feet, the number of bathrooms). However,
there are other factors that might influence housing prices that are not directly
quantitative. Examples include the presence of: a driveway, air conditioning, a
recreation room, a basement, and gas central heating. All these variables are
Yes/No qualitative variables (e.g. Yes = the house has a driveway/No = the
house does not have a driveway).



In order to carry out a regression analysis using these explanatory variables,
we first need to transform them into dummy variables by changing the Yes/No
into 1/0. Using the letter D to indicate dummy explanatory variables, we can
define:

• D1 = 1 if the house has a driveway (= 0 if it does not)
• D2 = 1 if the house has a recreation room (= 0 if not)
• D3 = 1 if the house has a basement (= 0 if not)
• D4 = 1 if the house has gas central heating (= 0 if not)
• D5 = 1 if the house has air conditioning (= 0 if not).

For instance, a house with a driveway, basement and gas central heating, but no
air conditioning nor recreation room would have values for these variables of
D1 = 1, D2 = 0, D3 = 1, D4 = 1 and D5 = 0. These variables (and many others)
are in data set HPRICE.XLS.

Once qualitative explanatory variables have been transformed into dummy vari-
ables, regression can be carried out in the standard way and all the theory and intu-
ition developed in previous chapters can be used.

Why, then, are we allocating an entire chapter to this topic? There are two answers
to this question. First, regression with dummy explanatory variables is extremely
common and the interpretation of coefficient estimates is somewhat different. For
this reason it is worthwhile to discuss the interpretation in detail. Second, regression
with dummy explanatory variables is closely related to another set of techniques called
Analysis of Variance (or ANOVA for short). ANOVA is rarely used in economics,
but it is an extremely common tool in other social and physical sciences such as soci-
ology, education, medical statistics, and epidemiology.

While most computer software packages such as Excel have ANOVA capabilities,
the terminology of ANOVA is quite different from that used by economists, so
ANOVA may seem confusing and unfamiliar to you (e.g. the Excel Tools/Data Analy-
sis menu has several ANOVA choices referring to “Single Factor”, “Two-factor with
replication”, “Two-factor without replication”). What we should note here, however,
is that regression with dummy explanatory variables can do anything ANOVA can. In fact,
regression with dummy variables is a more general and more powerful tool than
ANOVA. For instance, the terms “Single Factor ANOVA” or “Two-factor ANOVA”
refer to the number of dummy explanatory variables. Excel (and most common com-
puter packages that perform ANOVA), can handle no more than two. However, Excel
allows for up to 16 explanatory variables in its multiple regression facilities and thus,
can handle very complicated ANOVA models. In short, if you know how to use and
understand regression, then you have no need to learn about ANOVA.
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Exercise 7.1

Using the data set HPRICE.XLS, calculate and interpret descriptive statistics and
a correlation matrix for the five dummy variables listed in the example above.
How can you interpret the mean of a dummy variable?

Simple regression with a dummy variable

We begin by considering a regression model with one dummy explanatory variable,
D:

If we carry out OLS estimation of the above regression model, we obtain â and b̂.
We can look at confidence intervals for a or b; examine P-values to test whether the
coefficients are statistically significant; calculate R2; perform an F-test for the signif-
icance of the regression; etc., exactly as before. Refer back to Chapters 4, 5 and 6 if
you are still unfamiliar with any of this material. An important topic at this stage for
discussion, however, is the interpretation of the coefficients.

The straight-line relationship between Y and D gives a fitted value for the ith obser-
vation of:

Note, since Di is either 0 or 1, Ŷi = â or Ŷi = â + b̂. An example will serve to illus-
trate how this fact can be used to interpret regression results.

Example: Explaining house prices (continued from page 110)

Table 7.1 gives computer output from a regression of Y = house prices on D
= air conditioning dummy using data from HPRICE.XLS. Note that an examina-
tion of the P-value or the confidence interval (i.e. Upper 95%, Lower 95%)
shows us that b is strongly significant. Furthermore, â = 59,885 and b̂ = 25,996.
How can we interpret these numbers? We can, of course, use the same mar-
ginal effect intuition as we used in Chapter 4. That is, we can say that b is a
measure of how much Y tends to change when X is changed by one unit. But,
with the present dummy explanatory variable a “one unit” change implies a
change from “No air conditioner” to “Having an air conditioner”. That is, we
can say “houses with an air conditioner tend to be worth $25,996 more than
houses without an air conditioner.”

ˆ ˆ ˆ .Y Di i= +a b

Y D e= + +a b .

Regression with dummy variables 111



However, there is another, closely related, way of thinking about regression
results when the explanatory variable is a dummy. In the case of houses without
air conditioning Di = 0 and hence Ŷi = 59,885. In other words, our regression
model finds that houses without air conditioning are worth on average $59,885.
In the case of houses with air conditioning, Di = 1 and the regression model
finds that Ŷi = â + b̂ = 85,881. Thus, houses with air conditioning are worth on
average $85,881. This is one attractive way of presenting the information pro-
vided by the regression. Alternatively, we could focus on b̂ directly and say that
houses with air conditioners tend to be worth $25,996 more than houses
without them.

To provide more intuition, note that if we had not carried out a regression,
but simply calculated the average price for houses with air conditioning, we
would have found this figure to be $85,881. If we had then calculated the
average price for houses without air conditioning, we would have found them
to be worth $59,885. That is, we would have found exactly the same results as
in the regression analysis.

Remember, however, the discussion of the omitted variables bias in Chapter
6. The simple regression in this example is omitting many important explana-
tory variables. We definitely cannot use the results of this simple regression to
make statements like “Adding an air conditioner to your house will raise its value
by $25,996”. Since air conditioners cost a few hundred (or at most a few thou-
sand) dollars, the previous statement is clearly ridiculous.

Multiple regression with dummy variables

Now, consider the multiple regression model with several dummy explanatory 
variables:

OLS estimation of this regression model and statistical analysis of the results can be
carried out in the standard way. To aid in interpretation, we return to the house-pricing
example.

Y D D ek k= + + + +a b b1 1 K .
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Table 7.1 Regression of house prices on air conditioning dummy.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 59884.85 1233.50 48.55 7.1E - 200 57461.84 62307.86
D 25995.74 2191.36 11.86 4.9E - 29 21691.18 30300.32



Example: Explaining house prices (continued from page 112)

Consider the case where we have two dummy explanatory variables, D1 = 1 if
the house has a driveway (= 0 if not) and D2 = 1 if the house has a recreation
room (= 0 if not). These dummy variables implicitly classify the houses in the
data set into four different groups:

1. Houses with a driveway and recreation room (D1 = 1 and D2 = 1).
2. Houses with a driveway, but no recreation room (D1 = 1 and D2 = 0).
3. Houses with no driveway, but with a recreation room (D1 = 0 and D2 = 1).
4. Houses with no driveway and no recreation room (D1 = 0 and D2 = 0).

Keep this classification in mind as we interpret Table 7.2, which contains results
from a regression of house price (Y), on D1 and D2.

Putting in either 0 or 1 values for the dummy variables, we obtain the fitted
values for Y for the four categories of houses:

1. If D1 = 1 and D2 = 1, then Ŷ = â + b̂1 + b̂2 = 47,099 + 21,160 + 16,024 =
84,283. In other words, the average price of houses with a driveway and
recreation room is $84,283.

2. If D1 = 1 and D2 = 0, then Ŷ = â + b̂1 = 47,099 + 21,160 = 68,259. In other
words, the average price of houses with a driveway but no recreation room
is $68,259.

3. If D1 = 0 and D2 = 1, then Ŷ = â + b̂2 = 47,099 + 16,024 = 63,123. In words,
the average price of houses with a recreation room but no driveway is
$63,123.

4. If D1 = 0 and D2 = 0, then Ŷ = â = 47,099. In words, the average price of
houses with no driveway and no recreation room is $47,099.

In short, multiple regression with dummy variables may be used to classify the
houses into different groups and to find average house prices for each group.
Alternatively, results may be presented directly as coefficient estimates. For
instance, b̂1 is a measure of the extra value of a house with a driveway relative
to a house with no driveway holding the other features of the house (in this
case the presence or absence of a recreation room) constant.
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Table 7.2 Regression of house price on driveway and recreation room dummies.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 47099.08 2837.62 16.60 2.42E - 50 41525.02 52673.14
D1 21159.91 3062.44 6.91 1.37E - 11 15144.22 27175.60
D2 16023.69 2788.63 5.75 1.52E - 08 10545.86 21501.51



Exercise 7.2

Interpret the statistical information in the above example. Are all of the explana-
tory variables statistically significant?

Exercise 7.3

For this question use Y = the price of a house and the dummy variables D1 = 1
if the house has a driveway (= 0 otherwise) and D2 = 1 if the house has a recre-
ation room (= 0 otherwise) from the house price example (it can be obtained
from HPRICE.XLS). Without using regression techniques, calculate the average
price of the four types of houses listed in the previous example (e.g. a house
with a driveway and a rec. room, etc.). Hint: What do you obtain if you multi-
ply a dummy variable by Y? How do these average price numbers relate to the
regression coefficients and results in the previous example?

Exercise 7.4

For this question use data set HPRICE.XLS and the five dummy variables, D1 to
D5, listed at the beginning of the chapter (i.e. the dummy variables for whether
a house has a driveway, recreation room, basement, gas central heating and air
conditioning).

(a) With five dummy variables, how many classes of houses are possible? (E.g.
houses with a driveway, recreation room, basement and gas central heating
but no air conditioning comprise one class.) What implications does this
have for interpreting regression results as in the previous example?

(b) How would you calculate the number of houses in each group using a com-
puter package like Excel? For instance, of the 546 houses in the data set,
how many have a driveway, gas central heating and air conditioning, but no
recreation room and no basement?

(c) Run a regression of Y = house price on the five dummies.
(d) Discuss the statistical significance of the explanatory variables.
(e) Calculate the average price for a few chosen types of housing (e.g. those

with a driveway, recreation room and basement but no gas central heating
and no air conditioning).

(f ) Which house characteristic tends to raise the price of a house the most?
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Multiple regression with both dummy and 

non-dummy explanatory variables

In the previous discussion, we have assumed that all the explanatory variables are
dummies, but in practice, you may often have a mix of different types of explana-
tory variables. The simplest such case is one where there is one dummy variable (D)
and one quantitative explanatory variable (X ) in a regression:

The interpretation of results from such a regression can be illustrated in the context
of an example.

Example: Explaining house prices (continued from page 113)

If we regress Y = house price on D = air conditioner dummy and X = lot size,
we obtain â = 32,693, b̂1 = 20,175 and b̂2 = 5.638. Above we noted that the
dummy can take on only the values 0 or 1, and demonstrated that the fitted
value for Y can take on a different value for each group of houses. Hence regres-
sion results could be interpreted as revealing the average price of a house in
each possible group.

Here things are not quite so simple since we obtain Ŷi = 52,868 + 5.638Xi if
Di = 1 (i.e. the ith house has an air conditioner) and Ŷi = 32,693 + 5.638Xi if Di

= 0 (i.e. the house does not have an air conditioner). In other words, there are
two different regression lines depending on whether the house has an air con-
ditioner or not. Contrast this point with the discussion in the previous example
where we had only one dummy explanatory variable. In that case, the regres-
sion implied that the average price of the house differed between houses with
and without air conditioners. Here we are saying a wholly different regression
line exists. In other words, we cannot simply state (as we did in examples in pre-
vious examples in this chapter) what the average value of different groups of
houses will be.

We can, however, say that b̂1 = 20,175 is a measure of the extra value that an
air conditioner will add to the value of a house, ceteris paribus. In other words, if
we compare two houses with the same value of X (in this case, lot size), Ŷi will
always be $20,175 higher for the house with an air conditioner relative to a house
with no air conditioner.

It is worthwhile to examine more closely the two different regression lines
that exist for houses with and without air conditioners. Note that they both have
the same slope, b̂2 = 5.638 and differ only in the intercept (i.e. if Di = 1 the
intercept is 52,868, if Di = 0 the intercept is 32,693). Since they have the same

Y D X e= + + +a b b1 2 .
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slope (and the slope is the marginal effect), the marginal effect of lot size on
house price is the same for houses with and without air conditioning. For
instance, we can say “An extra square foot of lot size is associated with adding
an extra $5.63 on the price of a house.”

We can extend the previous discussion to the case of many dummy and non-dummy
explanatory variables. An example having two dummy and two non-dummy explana-
tory variables is the following regression model:

The interpretation of results from this regression model combines elements from all
the previous examples in this chapter.

Example: Explaining house prices (continued from above)

If we regress Y = house price on D1 = dummy variable for driveway, D2 =
dummy variable for recreation room, X1 = lot size and X2 = number of bed-
rooms we obtain: â = -2,736, b̂1 = 12,598, b̂2 = 10,969, b̂3 = 5.197 and b̂4 =
10,562. We can interpret these results by figuring out what the fitted regression
lines (i.e. Ŷ ) are for the different possible values of the dummy variables.

1. If D1 = 1 and D2 = 1, then Ŷ= â + b̂1 + b̂2+ b̂3X1 + b̂4X2 = 20,831 + 5.197X1

+ 10,562X2. This is the regression line for houses with a driveway and recrea-
tion room.

2. If D1 = 1 and D2 = 0, then Ŷ = 9,862 + 5.197X1 + 10,562X2. This is the
regression line for houses with a driveway but no recreation room.

3. If D1 = 0 and D2 = 1, then Ŷ = 8,233 + 5.197X1 + 10,562X2. This is the
regression line for houses with a recreation room but no driveway.

4. If D1 = 0 and D2 = 0, then Ŷ = -2,736 + 5.197X1 + 10,562X2. This is the
regression line for houses with no driveway and no recreation room.

That is, with two dummy variables we have four different regression lines. All
of these lines have the same slopes but different intercepts. The coefficients on
the dummy variables, b̂1 and b̂2, measure the additional value associated with
having a driveway and a recreation room, respectively. The coefficients on the
non-dummy variables, b̂3 and b̂4, can be interpreted as the marginal effects of
lot size and of number of bedrooms, respectively.

The following are a few of the types of verbal statements that we can make
about the regression results:

1. “Houses with driveways tend to be worth $12,598 more than similar houses
with no driveway.”

Y D D X X e= + + + + +a b b b b1 1 2 2 3 1 4 2 .
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2. “If we consider houses with the same number of bedrooms, then adding an
extra square foot of lot size will tend to increase the price of a house by
$5.20.”

3. “An extra bedroom will tend to add $10,562 to the value of a house, ceteris
paribus.”

We should stress, however, that all such statements assume that omitted vari-
ables bias is not a problem in the regression. Furthermore, statements which
imply causality (e.g. “adding an extra square foot of lot size will tend to increase
the price of the house by $5.20”) are valid only if it is truly the case that the
explanatory variable causes the dependent variable (see Chapters 4 and 6 for
further discussion of causality in regression).

Exercise 7.5

For this question use data set HPRICE.XLS, the five dummy variables, D1 to D5,
listed in Exercise 7.4 and the following four non-dummy explanatory variables:

• X1 = the lot size of the property (in square feet)
• X2 = the number of bedrooms
• X3 = the number of bathrooms
• X4 = the number of storeys (excluding the basement).

(a) Run a regression of Y on D1, . . . , D5, X1, . . . , X4.
(b) Discuss which variables are statistically significant.
(c) Which of the characteristics measured by the dummies has the largest effect

on housing prices?
(d) Choose particular configurations of the dummy variables (e.g. one indicat-

ing a house with: a driveway, no recreation room, a basement, no gas central
heating and no air conditioner) and write out the formula for the regression
line.

(e) Discuss results relating to the non-dummy explanatory variables, paying par-
ticular reference to the ceteris paribus conditions.

Interacting dummy and non-dummy variables

We used the dummy variables above in a way that allowed for different intercepts in
the regression line, but the slope of the regression line was always the same. We can,
however, allow for different slopes by interacting dummy and non-dummy variables.
To understand this consider the following regression model:
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D and X are dummy and non-dummy explanatory variables, as above. However, here
we have added a new variable Z into the regression and we define Z = DX.

How do we interpret results from a regression of Y on D, X and Z? This ques-
tion can be answered by noting that Z is either 0 (for observations with D = 0) or X
(for observations with D = 1). If, as before, we consider the fitted regression lines
with D = 0 and D = 1 we obtain:

• If D = 1 then Ŷ = (â + b̂1) + (b̂2 + b̂3)X.
• If D = 0, then Ŷ = â + b̂2X.

In other words, two different regression lines corresponding to D = 0 and D = 1 exist
and have different intercepts and slopes. One implication is that the marginal effect
of X on Y is different for D = 0 and D = 1. In a written report, you could write up
each of the regression lines separately using the terminology and interpretation of
Chapters 4 and 6.

Example: Explaining house prices (continued from page 117)

If we regress Y = house price on three explanatory variables: D = air condi-
tioner dummy, X = lot size and Z = DX, we obtain â = 35,684, b̂1 = 7,613, b̂2

= 5.02 and b̂3 = 2.25. This implies that the marginal effect of lot size on housing
is 7.27 (i.e. adding an extra square foot of lot size is associated with a $7.27
increase in house prices) for houses with air conditioners and only $5.02 for
houses without. Furthermore, since the p-value corresponding to b̂3 is 0.02, the
difference in marginal effects is statistically significant. This finding indicates
that increasing lot size will tend to add more to the value of a house if it has
an air conditioner than if it does not.

Exercise 7.6

For this question use data set HPRICE.XLS, the five dummy variables, D1 to D5

and the four non-dummies X1, . . . , X4 discussed in Exercise 7.4. Experiment
with different configurations of these explanatory variables with some interac-
tion terms (e.g. try including 10 explanatory variables: D1 to D5 and the four
non-dummies X1, . . . , X4 plus an interaction term D1X2, say). Can you find any
interaction terms (i.e. Zs) that are statistically significant? Explain in words what
your findings are.

Y D X Z e= + + + +a b b b1 2 3 .
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Exercise 7.7

Excel file, WAGEDISC.XLS contains data on N = 100 employees in a particular
occupation. Suppose that interest centers on investigating the factors which
explain salary differences in this occupation with a view to addressing the issue
of sex discrimination in this occupation. The data set contains the following
variables:

• Y = salary (measured in thousands of dollars)
• X1 = education level (measured in years of schooling)
• X2 = experience level (measured in years of employment)
• D = dummy for sex (= 1 for male, = 0 for female).

(a) Calculate and discuss descriptive statistics for this data set. For instance,
what is the mean salary?

(b) Calculate the mean salary for female employees and male employees sepa-
rately. Compare.

(c) Run a simple regression of Y on D. Is the slope coefficient in this regres-
sion statistically significant? Compare your regression result with your
finding in (b). Can you use these findings to conclude that women are dis-
criminated against in this occupation?

(d) Run a multiple regression of Y on X1, X2 and D. Write a short report out-
lining your findings and addressing the issue of wage discrimination in this
occupation. Are your results statistically significant?

(e) Compare your results in part (d) to part (c). Why do they differ? Hint: Cal-
culate a correlation matrix for all the explanatory variables and think intu-
itively about what the correlations mean.

(f ) Construct a new variable Z = DX2 and run a regression of Y on X1, X2, D
and Z. Is Z statistically significant? How would the short report you wrote
in part (d) change? Explain verbally what the coefficient on Z measures.

What if the dependent variable is a dummy?

Thus far, we have focussed on the case where the explanatory variables can be
dummies. However, in some cases the dependent variable may be a dummy. For
instance, a transportation economist might be interested in investigating individual
choice between public transport and the private automobile. An empirical analysis
might involve collecting data from many different individuals about their transport
habits. Potential explanatory variables would include: commuting time, individual
income, and so on. The dependent variable, however, would be qualitative (e.g. each
individual may say “Yes, I take my car to work” or “No, I do not take my car to work”)
and the economist may have to create a dummy dependent variable.
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The techniques for working with dummy dependent variables1 are beyond the
scope of this book. However, there are two facts worth noting:

1. There are some problems with using OLS estimation in this case. However, these
problems are not enormous, so that OLS estimation might be adequate in many
circumstances.

2. Nevertheless, there are better estimation methods than OLS. The two main alter-
natives are termed Logit and Probit. Computer software packages with only basic
statistical capabilities (e.g. Excel) do not have the capability to perform these esti-
mation methods. Thus, if you ever need to do extensive work with dummy depen-
dent variable models, you will have to use another software package. A package
known as LIMDEP is probably the best one (see http://www.limdep.com for
details), although beginners may find this somewhat difficult.
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Chapter summary

1. Dummy variables can take on a value of either 0 or 1. They are often used
with qualitative data.

2. The statistical techniques associated with the use of dummy explanatory
variables are exactly the same as with non-dummy explanatory variables.

3. A regression involving only dummy explanatory variables implicitly classi-
fies the observations into various groups (e.g. houses with air conditioning
and those without). Interpretation of results is aided by careful considera-
tion of what the groups are.

4. A regression involving dummy and non-dummy explanatory variables
implicitly classifies the observations into groups and says that each group
will have a regression line with a different intercept. All these regression
lines have the same slope.

5. A regression involving dummy, non-dummy and interaction (i.e. dummy
times non-dummy variables) explanatory variables implicitly classifies the
observations into groups and says that each group will have a different
regression line with a different intercept and slope.

6. If the dependent variable is a dummy, then other techniques which are not
covered in this book should be used.

Endnote

1. To introduce some jargon, such models are called “limited dependent variable” models.
That is, the dependent variable can take on a limited range of values.



C H A P T E R

Regression with time lags:

distributed lag models

8

Many fields of economics (e.g. macroeconomics and finance) are concerned with the
analysis of time series data. However, you may have noticed that all the examples in
Chapters 3–7 use cross-sectional data. So far we have intentionally avoided discussing
time series data since it involves issues that do not arise with cross-sectional data. The
purpose of this chapter is to offer an introduction to these issues and to explain why
we devote nearly half the book to the topic of time series as separate from multiple
regression. After this introductory material, we consider the simplest tool for working
with time series data: the distributed lag model.

The goal of the economist working with time series data does not differ too much
from that of the economist working with cross-sectional data: both aim to develop
a regression relating a dependent variable to some explanatory variables. However,
the economist using time series data will face two problems that the economist using
cross-sectional data will not encounter: (1) one time series variable can influence
another with a time lag; and (2) if the variables are nonstationary, a problem known
as spurious regression may arise.

At this stage, you are not expected to understand the second of these problems.
The terms nonstationary, stationary and spurious regression will be discussed in
detail in subsequent chapters of this book. But keep in mind this general rule: If

you have nonstationary time series variables then you should not include them

in a regression model. The appropriate route is to transform the variables 
before running a regression in order to make them stationary. There is one exception
to this general rule, which we shall discuss later, and which occurs where the vari-
ables in a regression model are cointegrated. We will elaborate on what we mean by



these terms later. If you find it confusing for them to be introduced now without
definitions, just think in the following terms: some problems arise with time series
data that do not arise with cross-sectional data. These problems make it risky to
naively use multiple regression in the manner of Chapters 4–7. The purpose of the
next four chapters is to show you how to correctly use multiple regression with time
series data.

In this chapter, we will assume all variables in the regression are stationary. The
next chapter explains what this means. At this point, note only that the second
problem will not occur and that we can therefore focus on the first problem.

The first problem can be understood intuitively with some simple examples. When
we estimate a regression model we are interested in measuring the effect of one or
more explanatory variables on the dependent variable. In the case of time series data
we have to be very careful in our choice of explanatory variables since their effect on
the dependent variable may take time to manifest itself.

For instance, if a central bank is worried that the economy is slowing, it might want
to cut interest rates. The impact of such an interest rate change would doubtless take
more than a year to feed through the economy and to affect other important vari-
ables (e.g. the unemployment rate). In general, all of the basic tools of monetary and
fiscal policy the government has at its disposal will have impacts that will be felt only
in some future period. This problem is most common in macroeconomics, but can
also occur in microeconomics. To give an example: a firm’s decision to carry out a
new investment (e.g. purchase new computers) will not immediately affect produc-
tion. It takes time to purchase the computers, install them, and train workers in their
use. Investment will only influence production some time in the future.

To put this concept in the language of regression, we say that the value of
the dependent variable at a given point in time should depend not only on the 
value of the explanatory variable at that time period, but also on values of the
explanatory variable in the past. The simplest model to incorporate such dynamic

effects is known as the distributed lag model. It is a regression model with the
form:1

This is precisely the same as the multiple regression model in Chapter 6, with the
exception that the “explanatory variables” are not entirely different (e.g. lot size,
number of bathrooms, number of bedrooms, etc.) but are just one explanatory vari-
able that is observed at different time periods. In this model, the right-hand side vari-
ables are referred to as lagged variables and q, the lag order or lag length. We will
focus on the case where the dependent variable depends on one explanatory variable
and its lags. However, everything we say can be generalized in a straightforward
fashion to several explanatory variables, all having time lags.

Since the distributed lag model is a regression model, everything we said in Chap-
ters 4–6 about regression is relevant here. For instance, computer packages like Excel

Y X X X et t t q t q t= + + + + +- -a b b b0 1 1 K .
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can provide OLS estimates of coefficients, confidence intervals and P-values for testing
whether coefficients are equal to zero. Coefficients can be interpreted as measures of
the influence of the explanatory variable on the dependent variable. In this case, we
have to be careful with timing. For instance, we interpret results as: “b2 measures the
effect of the explanatory variable two periods ago on the dependent variable, ceteris

paribus”. Other than these minor differences, both the statistical methods and inter-
pretation are very similar to the tools we described previously. Nevertheless, it is worth
discussing this class of models separately, as it will help us to develop some time series
terminology and introduce ideas that we will build on in subsequent chapters.

Before turning to an illustrative example of how to work with distributed lag
models, we will make two brief detours. One of these describes what lagged 
variables are and how to calculate them in a spreadsheet software package. The other
clarifies the notation that will be used in this and subsequent chapters.

Aside on lagged variables

The concept of a lagged variable is fundamental to time series data, so we will describe
in some detail what it means and how to construct and work with lagged variables
on the computer.

Suppose we have time series data for t = 1, . . . , T periods on a variable X. As
before, we denote individual observations by Xt for t = 1, . . . , T. Consider creating
a new variable W which has observations Wt = Xt for t = 2, . . . , T and a new 
variable Z which has observations Zt = Xt-1 for t = 2, . . . , T. Why do we write t = 2,
. . . , T instead of t = 1, . . . , T ? If we had written t = 1, . . . , T then the first 
observation of the variable Z, Z1, would be set equal to X0. Yet we do not know 
what X0 is since variable X is observed only from t = 1, . . . , T. In other words, W

and Z have only T - 1 observations. Note also that had we written Zt = Xt-2 then
the new variable Z would have observations from t = 3, . . . , T and only T - 2
observations.

The new variables W and Z both have T - 1 observations. If we imagine W and
Z as two columns containing T - 1 numbers each (as in an Excel spreadsheet), we
can see that the first element of W will be X2 and the first element of Z will be X1.
The second element of W and Z will be X3 and X2, etc. In words, we say that W

contains X and Z contains X one period ago or lagged one period. In general, we
can create variables “X lagged one period” – or “lagged X” for short – “X lagged 
two periods” – or, in general, “X lagged j periods”.

You can think of “X ”, “X lagged one period”, “X lagged two periods”, etc. as dif-
ferent explanatory variables in the same way as you can of “house price”, “lot size”,
or “number of bedrooms” as different explanatory variables.

Note, however, that if you want to include several explanatory variables in a mul-
tiple regression model, all variables must have the same number of observations. Let
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us consider the implication of this statement, in the present context. Suppose a
regression includes X = the interest rate lagged j periods as an explanatory variable.
If you began with t = 1, . . . , T observations on the interest rate, then X lagged j

periods will contain only T - j observations. Since this variable contains only T - j

observations you must make sure that all the other variables in the model also contain
exactly T - j observations. In words, each variable in a time series regression must
contain the number of observations equal to T minus the maximum number of lags
that any variable has.

Many of the more sophisticated econometric software packages (e.g. MicroFit,
SHAZAM, PcGive) will create lagged variables automatically with a simple command,
but not most spreadsheet packages like Excel. This is a key reason why, when 
working with time series data, you might want to learn how to use an econometric
software package and not work with a spreadsheet such as Excel. When working with
a spreadsheet you will have to create lagged variables yourself before running a regres-
sion involving them. A brief explanation of how to do this will be both useful when
you work with spreadsheets and will provide a practical way to illustrate the material
above.

As an example, suppose we have 10 observations on variables Y and X (i.e. t = 1,
. . . , 10) and we wish to run a regression model that includes X, lagged X, X lagged
two periods and X lagged three periods. That is, we wish to estimate the regression
model:

Table 8.1 shows how the data would look in a spreadsheet format.
Note that spreadsheets label each observation by row and column, as in Table 8.1.

Each column contains a variable (e.g. Column C contains the variable X lagged one
period) and each row contains observations. Note that each of the variables contains
7 observations, which is T minus maximum number of lags (i.e. 10 - 3 = 7). Looking
across any row (e.g. Row 4) you can see that: (a) Y and X contain data at a particular
point in time (e.g. Y7 and X7 or t = 7); (b) X lagged will contain the observation from
one period previously (e.g. X6); (c) X lagged two periods will contain the observation
from two periods previously (e.g. X5); and (d) X lagged three periods will contain the
observation from three periods previously (e.g. X4).

You can create this table in Excel. First use the Cut/Paste commands in the spread-
sheet containing the original data on Y and X (i.e. the one that contained the 10 orig-
inal observations on the two variables) to create a spreadsheet that looks like Table
8.1. Then run the regression by using the Excel regression menu in the standard way
and specifying A1 :A7 in the box labeled “Input Y-range”, and B1 :E7 in the box
labeled “Input X-range”.

This section on lagged variables may seem of little direct relevance for under-
standing and interpreting results. However, it is important not to forget this material
when you are at the computer, working with time series data in practice.

Y X X X X X et t t t t t t= + + + + + +- - -a b b b b b0 1 2 1 3 2 4 3 .
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Aside on notation

It is also important to make sure that our notation is clear. Consider a variable, X

(e.g. population density). After collecting data on X we will have observations Xi for
i = 1, . . . , N for cross-sectional data and Xt for t = 1, . . . , T for time series data 
(see Chapter 2).

In other words, X is a generic notation for the variable and Xi or Xt indicates a 
particular observation of the variable (e.g. Xi = population density in the ith country
or Xt = population density in the tth time period). In our discussion of regression 
in Chapters 4–7 we often wrote equations of the form:

Expressed in words, the above implied that “the dependent variable Y depends on
the explanatory variable X in a linear fashion”. When we have actual data we can
write,

Expressed in words, “observation i of Y depends on observation i of X ”. For
instance, “deforestation in country i depends on population density in country i ”.
Both of these equations are perfectly correct. But, since the subscript i in the latter
equation is a little obvious (e.g. it is obvious that deforestation in Jamaica depends on
population density in Jamaica – it certainly will not depend on population density in
Uganda), you often see the i subscript dropped out from the latter equation for 
simplicity’s sake.

We complicated our notation even more in Chapter 6 in our discussion of multi-
ple regression, in which X1, X2, . . . , Xk were k different explanatory variables. Here
the subscript on X indicated which explanatory variable we were referring to, not
which observation. In the rare cases when we wanted to be more explicit we wrote,
for example, X2i, to indicate the ith observation of the second explanatory variable.

Y X ei i i= + +a b .

Y X e= + +a b .
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Table 8.1 Creating lagged variables.

Column C Column D Column E
Column A Column B X lagged X lagged X lagged

Y X one period two periods three periods

Row 1 Y4 X4 X3 X2 X1

Row 2 Y5 X5 X4 X3 X2

Row 3 Y6 X6 X5 X4 X3

Row 4 Y7 X7 X6 X5 X4

Row 5 Y8 X8 X7 X6 X5

Row 6 Y9 X9 X8 X7 X6

Row 7 Y10 X10 X9 X8 X7



However, since it is usually obvious in the multiple regression case that Yi (e.g. defor-
estation in country i ) depends on X1i (e.g. population density in country i ) and on
X2i (e.g. change in pastureland in country i ), the i subscript was often dropped from
the equation.

In short, throughout this book our subscript notation, which distinguishes between
a variable and a particular observation of a variable, has been a little loose. This is
okay (and common in textbooks), since the meaning is fairly obvious from the context
and the alternative is to clutter up equations with numerous subscripts. In the time
series chapters of this book, we will show similar informality, using the notation 
Xt-j to indicate both a particular observation (e.g. if t = 1968 and j = 3, then Xt-j

is the value of variable X in 1965) and the variable X lagged j periods. It will be
obvious from the context which is which. Quite frankly, in virtually any equation in
this book it will not matter which way you interpret it.

Example: The effect of safety training on accidents

Losses due to industrial accidents can be quite substantial in large companies.
Accordingly, many companies provide safety training to their workers in an
effort to reduce accidents. They are often interested in learning how effective
their safety training programs are. Excel file SAFETY.XLS contains safety data
from a particular company collected on a monthly basis over five years (i.e. 60
months) on the following variables:

• Y = losses due to accidents (£s per month)
• X = hours of safety training provided to each worker per month.

Since this is time series data and it is likely that previous months’ safety train-
ing affects current accident rates, it is necessary to include lags of X in the
regression. Table 8.2 contains OLS estimates of the coefficients in a distributed
lag model in which losses are allowed to depend on present safety training and
safety training up to four months ago. That is,

What can the company conclude about the effectiveness of its safety training
programs? Increasing the safety training of each worker by one hour per month
in a given month is associated with:

1. An immediate reduction of losses due to accidents of £145.00, ceteris

paribus.
2. A reduction of losses of £462.14 one month later, ceteris paribus.
3. A reduction of losses of £424.47 two months later, ceteris paribus.

Y X X X X X et t t t t t t= + + + + + +- - - -a b b b b b0 1 1 2 2 3 3 4 4 .
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4. A reduction of losses of £199.55 three months later, ceteris paribus.
5. A reduction of losses of £36.90 four months later, ceteris paribus.

Confidence intervals can be interpreted in the standard way. For instance, we
are 95% confident that the immediate reduction of losses due to accidents is at
least £49.30 and at most £240.70, ceteris paribus.

To provide some intuition about what the ceteris paribus condition implies 
in this context note that, for example, we can also express the second of
these statements as: “Increasing safety training in a given month will tend 
to reduce losses due to accidents in the following month by £462.14, assuming

that no other changes in the company’s safety training policy are made”.
If we examine the statistical results in Table 8.2, we can see that all of the

coefficients are statistically significant, except for b4. The P-value for this last
coefficient is 0.44 which is not less than 0.05. Also we note that the confidence
interval for b4 includes zero. Hence we cannot reject the hypothesis that b4 =
0. In words, we cannot reject the hypothesis that safety training four months
ago has no effect on current losses due to accidents. It seems that workers forget
their safety training after four months. This is likely useful information for the
company since it may suggest that they should hold safety training sessions
every four months.

In general the effect of safety training on accidents exhibits a hump-shaped
pattern over time: the immediate effect of training on accidents is fairly small
(£145). The effect then increases to over £400 for each of the two subsequent
months, falls to roughly £200 three months later, and then drops to about zero
four months later. Note that increasing safety training in a given period will tend
to reduce losses not only immediately, but also for the next few periods. If we
add up the benefit of increasing one hour of safety training in each period (i.e.
£145.00 + £462.14 + £424.47 + £199.55 + £36.90 = £1268.06)2 we receive a
measure of the total benefit of the safety training program. In other words, we
can say that: “Adding one hour of safety training tends to yield a benefit which
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Table 8.2 Estimation results from a distributed lag model of the effect of safety training on
accidents.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 92001.51 2001.71 45.96 5.86E - 42 87978.91 96024.11
Xt -145.00 47.62 -3.04 0.0037 -240.70 -49.30
Xt-1 -462.14 47.66 -9.70 5.52E - 13 -557.91 -366.38
Xt-2 -424.47 46.21 -9.19 3.12E - 12 -517.33 -331.62
Xt-3 -199.55 47.76 -4.18 0.00012 -295.52 -103.58
Xt-4 -36.90 47.45 -0.78 0.44 -132.25 58.45



Exercise 8.1

Use the data set, SAFETY.XLS, discussed in the previous example for this 
question. This data set contains T = 60 observations on Y = accident losses and
X = hours spent in safety training.

(a) Create the explanatory variables you would use in a distributed lag model
with lag length equal to 4. (If you are having trouble, look in the file
SAFETY1.XLS which contains the answer to this question.) How many obser-
vations do the explanatory variables have?

(b) Using your answer to (a), recreate the table in the example above.
(c) Create the explanatory variables you would use in a distributed lag model

with lag length equal to 2. How many observations do the explanatory vari-
ables have?

(d) Using your answer to (c), estimate the distributed lag model with q = 2.
(e) Compare your answers to part (d) and part (b). Discuss why they differ,

paying particular attention to the question of omitted variables bias (see
Chapter 6 if you have forgotten what this is).

totals £1,268.06 over the month in which the training is carried out and in the
subsequent four months”.

By calculating this total benefit and examining the pattern of the coefficients
over time, the company gains important information, which it can then use to
redesign its safety training programs. Such results, however, assume that the dis-
tributed lag model is not missing any explanatory variables. For instance, we are
implicitly assuming that Xt-5 (i.e. safety training five months ago) has no effect
on current accident losses. If this assumption is incorrect, our estimates of the
benefit of safety training may be incorrect. This issue relates closely to 
the problem of omitted variables bias discussed in Chapter 6, and emphasizes
the importance of correct choice of lag length (i.e. q in the distributed lag
model), a topic to which we now turn.
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Selection of lag order

When working with distributed lag models, we rarely know a priori exactly how many
lags we should include. In the previous example, why did we assume that losses
depend on safety training up to four months ago? Why not three or six or even eight?
That is, unlike most of the regression models considered in Chapters 4–7, we don’t
know which explanatory variables in a distributed lag model belong in the regression



before we actually sit down at the computer and start working with the data.
Appropriately, the issue of lag length selection becomes a data-based one where we
use statistical means to decide how many lags to include.

There are many different approaches to lag length selection in the econometrics
literature. Here we outline a common one that does not require any new statistical
techniques beyond those developed in Chapter 5. This method uses t-tests for
whether bq = 0 to decide lag length. A common strategy is to: (a) Begin with a fairly
large lag length,3 qmax, and test whether the coefficient on the maximum lag is equal
to zero (i.e. test whether bqmax = 0). (b) If it is, drop the highest lag and re-estimate
the model with maximum lag equal to qmax - 1. (c) If you find bqmax-1 = 0 in this new
regression, then lower the lag order by one and re-estimate the model. (d) Keep on
dropping the lag order by one and re-estimating the model until you reject the hypoth-
esis that the coefficient on the longest lag is equal to zero.

This informal description of lag length selection can be formalized in the follow-
ing series of steps:

Step 1. Choose the maximum possible lag length, qmax, that seems reasonable to you.
Step 2. Estimate the distributed lag model

If the P-value for testing is less than the significance level you
choose (e.g. 0.05) then go no further. Use qmax as lag length. Otherwise go
on to the next step.

Step 3. Estimate the distributed lag model

If the P-value for testing is less than the significance level you
choose (e.g. 0.05) then go no further. Use qmax - 1 as lag length. Otherwise
go on to the next step.

Step 4. Estimate the distributed lag model

If the P-value for testing is less than the significance level you
choose (e.g. 0.05) then go no further. Use qmax - 2 as lag length. Otherwise
go on to the next step, etc.

As an aside of practical relevance to note when you are working with a 
spreadsheet, the number of observations used in a distributed lag model is equal to
the original number of observations, T, minus the maximum lag length. This 
means that, in Step 2, we are working with T - qmax observations; in Step 3, with 
T - qmax + 1 observations; in Step 4 with T - qmax + 2 observations; etc. Each step
will require some cutting and pasting in the spreadsheet to create variables with the
appropriate number of observations.4

bq max-
=

2
0

Y X X X et t t q t q t= + + + + +- - - +a b b b0 1 1 2 2K
max max

.

bq max-
=

1
0

Y X X X et t t q t q t= + + + + +- - - +a b b b0 1 1 1 1K
max max

.

bq max
= 0

Y X X X et t t q t q t= + + + + +- -a b b b0 1 1 K
max max

.
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Example: The effect of safety training on accidents 

(continued from page 128)

Suppose we have selected qmax = 4 in the distributed lag regression of accident
losses on safety training. In other words, we believe that four months is the
maximum time period that we can reasonably expect safety training to impact
on losses due to accidents. The strategy outlined above says we should begin by
estimating a distributed lag model with lag length equal to 4. Results are given
in the previous table. Since the P-value corresponding to the explanatory vari-
able Xt-4 is greater than 0.05 we cannot reject the hypothesis that b4 = 0 at the
5% level of significance. Accordingly, we drop this variable from the model and
re-estimate with lag length set equal to 3, yielding the results in Table 8.3.
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Exercise 8.2

Use the data set, SAFETY.XLS, which contains T = 60 observations on Y = acci-
dent losses and X = hours spent in safety training. Suppose you believe that six
months is the maximum time that safety training might affect accident losses
and accordingly, you set qmax = 6. Using the strategy described above, select the
lag length of the distributed lag model.

Table 8.3 Lag length set equal to 3.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 90402.22 1643.18 55.02 9.19E - 48 87104.94 93699.51
Xt -125.90 46.24 -2.72 0.0088 -218.69 -33.11
Xt-1 -443.49 45.88 -9.67 3.32E - 13 -535.56 -351.42
Xt-2 -417.61 45.73 -9.13 2.18E - 12 -509.38 -325.84
Xt-3 -179.90 46.25 -3.89 0.0003 -272.72 -87.09

The P-value for testing b3 = 0 is 0.0003, which is much less than 0.05. We
therefore conclude that the variable Xt-3 does indeed belong in the distributed
lag model. Hence q = 3 is the lag length we select for this model. In a formal
report, we would present this table of results. Since these results are similar to
those discussed above, we will not repeat the interpretation of them.
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Exercise 8.3

Development economists are often interested in the effect of education spend-
ing on economic growth. However, they suspect that the positive effects of
raising education levels may take five or as many as 10 years to manifest them-
selves in higher growth rates. In light of these considerations, use the following
data set to estimate a model and write a brief report on the effect of primary
education spending on economic growth.

Data set EDUC.XLS contains annual data for a country from 1910 to 1995 on
the variables:

• Y = GDP growth (measured as % change per year)
• X = education spending (measured as $ per child under age 16).

Chapter summary

1. Regressions with time series variables involve two issues we have not dealt
with in the past. First, one variable can influence another with a time lag.
Second, if the variables are nonstationary, the spurious regressions problem
can result. The latter issue will be dealt with in Chapter 10.

2. Distributed lag models have the dependent variable depending on an
explanatory variable and time lags of the explanatory variable.

3. If the variables in the distributed lag model are stationary, then OLS esti-
mates are reliable and the statistical techniques of multiple regression (e.g.
looking at P-values or confidence intervals) can be used in a straightforward
manner.

4. The lag length in a distributed lag model can be selected by sequentially
using t-tests beginning with a reasonable large lag length.

Appendix 8.1: Other distributed lag models

The distributed lag model considered in this chapter is very general. There are no
restrictions on what values the coefficients, b0, b1, . . . , bq, can take. There are,
however, many other models in the literature which are distributed lag models, but
which place restrictions on the coefficients. Since working with these models is some-
what more difficult (at least in a spreadsheet), we will only briefly discuss them in
appendix form.

There are many models that place restrictions on distributed lag models (e.g. the
arithmetic lag model, geometric lag model, Koyck model, etc.), but we will not discuss



them in any detail. A polynomial distributed lag (or Almon lag) model can be
taken as representative of these types of models and used to illustrate the main issues
involved. A polynomial distributed lag model is the same as the distributed lag model
with the added restriction that:

That is, the distributed lag coefficients are restricted to be a quadratic function of lag
length. (The quadratic is the most popular choice for the polynomial in this distrib-
uted lag model. However, others, such as the cubic, are possible.) This quadratic func-
tion depends on three unknown coefficients, g0, g1 and g2 which have to be estimated.
Note that, once we obtain estimates of g0, g1 and g2 we can use them and the above
equation to obtain estimates of bi for i = 0, 1, . . . , q. Once we have estimates for the
latter coefficients we can interpret them in the same way as before.

How do we obtain estimates of g0, g1 and g2? We can run an OLS regression, but
one with rather unusual explanatory variables. We illustrate this for the case q = 3.
The distributed lag model can be written as:

If we replace the bis using the quadratic equation above we can write the polynomial
distributed lag model as:

where Vt = Xt + Xt-1 + Xt-2 + Xt-3, Wt = Xt-1 + 2Xt-2 + 3Xt-3 and Zt = Xt-1 + 4Xt-2 +
9Xt-3. In other words, we can obtain OLS estimates of g0, g1 and g2 by running a
regression of Y on V, W and Z. The explanatory variables, V, W and Z, in this regres-
sion have to be created.

We have now seen what a polynomial distributed lag model is and how to estimate
it. However, it is probably unclear why you should use such an estimate. There are
two related reasons for considering putting these polynomial restrictions on a dis-
tributed lag model:

1. The polynomial distributed lag model will have fewer coefficients to estimate. In
the quadratic case above, it will always have three coefficients, g0, g1 and g2. The
distributed lag model will have q + 1 coefficients. In practice, q might be quite large
(e.g. you might want q = 12 if you have monthly data and want a time lag of up
to a year). It can be difficult to get reliable estimates for a large number of
coefficients unless the number of observations is large.

2. Distributed lag models can sometimes suffer from multicollinearity (see Chapter
6). For instance, Xt and Xt-1 can be highly correlated with one another. By way of
example, suppose X is an interest rate. Since interest rates usually change very
slowly over time Xt and Xt-1 will often be very similar (or even identical) to one
another. This causes them to be highly correlated and leads to multicollinearity
problems. Polynomial distributed lag models usually do not suffer from 

Y V W Z et t t t t= + + + +a g g g0 1 2 ,

Y X X X X et t t t t t= + + + + +- - -a b b b b0 1 1 2 2 3 3 .

b g g gi ii i= + +0 1
2 .
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multicollinearity (e.g. V, W and Z in the example above typically are not highly
correlated).

In many cases, however, the latter of these reasons is not a problem for the analy-
sis. When it is, it is often due to the explanatory variable being nonstationary. We will
discuss nonstationary explanatory variables in Chapter 10 and show you a way for
solving the multicollinearity problem in this case without having to place restrictions
on the coefficients.

The first justification for the use of polynomial distributed lag models can be com-
pelling if you have very few observations. But with the sort of moderately large data
sets available to macroeconomists today, the justification loses its force. Furthermore,
placing restrictions on the coefficients can lead to misleading results if the restric-
tions are wrong. Remember that bi measures the influence of a change in the explana-
tory variable i periods ago on the current value of the dependent variable. In the
distributed lag model this influence can be of any magnitude. The polynomial dis-
tributed lag model states that the bis must bear a quadratic relationship to one another.
If they do not, results from the polynomial distributed lag model can be very 
misleading.

Overall, we would argue that there is rarely a compelling case for placing restric-
tions on distributed lag models and, for this reason, do not emphasize them here.

Endnotes

1. We can, of course, label our coefficients using any convention we want. The convention
chosen here relates the subscript on b to the number of periods ago to which the explana-
tory variable refers. For instance, b1 is the coefficient on Xt-1, which is the value of the
explanatory variable one period ago.

2. The value £1268.06 is the estimate of the total benefit. It is possible to calculate a confi-
dence interval as well, but this would require a more complicated formula and is beyond
the scope of this book.

3. Although not too large! Remember that each variable in a distributed lag model will have
number of observations equal to T minus the maximum number of lags. If you set the
maximum number of lags too large, you will be left with very few observations.

4. Alternatively, some researchers simply use T - qmax observations for all regressions. This
has the advantage that, at each step, the researcher uses the same observations. However,
this strategy may mean using a smaller data set than necessary. Remember from Chapter
5 that having more observations increases the accuracy of OLS estimates.
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C H A P T E R

Univariate time series analysis

9

In the previous chapter we discussed distributed lag models, which are a simple type
of regression model for use with time series data. Remember that they assume that
the dependent variable, Yt, depends on an explanatory variable, Xt, and lags of the
explanatory variable, Xt-1, . . . , Xt-q. Such models are a useful first step in under-
standing important concepts in time series analysis.

In many cases, distributed lag models can be used without any problems; however,
they can be misleading in cases where either: (1) the dependent variable Yt depends
on lags of the dependent variable as well, possibly, as Xt, Xt-1, . . . , Xt-q; or (2) the
variables are nonstationary.

Accordingly, in this chapter and the next, we develop tools for dealing with both
issues and define what we mean by “nonstationary”. To simplify the analysis, in this
chapter we ignore X, and focus solely on Y. In statistical jargon, we will concentrate
on univariate time series methods. As the name suggests, these relate to one vari-
able or, in the jargon of statistics, one series (e.g. Y = real GDP). As we shall see,
it is important to understand the properties of each individual series before 
proceeding to regression modeling involving several series.

Example: US personal income

Figure 9.1 is a time series plot of one series, the natural logarithm of personal
income in the US from the first quarter of 1954 through to the last quarter of
1994.1 In other words, Yt is personal income for t = 1954Q1, . . . , 1994Q4. The
data is available in Excel file INCOME.XLS. The original personal income vari-
able is measured in millions of dollars.



Note that personal income seems to be increasing over time at a roughly con-
stant rate. You can see some variation (e.g. the brief falls in personal income
corresponding to the recessions of the mid-1970s and early 1980s), but overall,
the time series plot is roughly a straight line with a positive slope. This sustained
(in this case upward) movement is referred to as a trend. Many macroeconomic
variables (e.g. GDP, the price level, industrial production, consumption, gov-
ernment spending, etc.) exhibit trends of this sort.

It is convenient at this point to introduce the concept of differencing.
Formally, if Yt (t = 1, . . . , T ) is a time series variable, then DYt = Yt - Yt-1 is
the first difference of Yt.2 DYt measures the change or growth in a variable over
time. If we take natural logarithms of the original series, Yt, then DYt measures
the percentage change in the original variable between time t - 1 and t. DYt is
often called “DY ”, “delta Y ” or “the change in Y ”. Moreover, it is common to
refer to Yt-1 as “Yt lagged one period” or “personal income lagged one period”
or “lagged Y ”, and so on. Figure 9.2 plots the change in personal income using
the data in INCOME.XLS.

Note that Figure 9.2 looks very different from Figure 9.1. The trend 
behavior noted in Figure 9.1 has disappeared completely (we will return to this
point later). The figure indicates that personal income tends to be growing
around 1% per quarter, although there is considerable variability to this 
growth rate over time. In some recessionary periods personal income is falling,
while in some expansionary periods, it is growing by as much as 3% or 4% per
quarter.

136 Analysis of economic data

Exercise 9.1

The file INCOME.XLS contains data on the logs of personal income and personal
consumption.

(a) Calculate and interpret descriptive statistics for both personal income and
change in personal income data. Do the same for personal consumption
and its change.

(b) Plot and interpret figures analogous to Figures 9.1 and 9.2 using the 
personal consumption variable and its change.
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Fig. 9.1 US personal income.
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Fig. 9.2 Change in US personal income.



Another property of time series data, not usually present in cross-sectional data,
is the existence of correlation across observations. Personal income today, for
example, is highly correlated with personal income last quarter.3 In the jargon of
Chapter 8, the variable “personal income” is correlated with the variable “personal
income lagged one period”. In fact, if we calculate the correlation between personal
income and lagged personal income we obtain 0.999716. Yet, if we calculate the cor-
relation between the change in personal income and the change in personal income
lagged once, we obtain -0.00235. These findings make intuitive sense. Macroeco-
nomic time series such as income, GDP, consumption, etc. change only slowly over
time; even in deep recessions they rarely fall by more than 1% or 2% per quarter.
Consequently, this quarter’s income tends to be quite similar to last quarter’s and both
are highly correlated. Yet, the change or growth of macroeconomic time series is
more erratic. This quarter’s and last quarter’s change in personal income can be quite
different, as reflected in the near-zero correlation between them.

Figures 9.1 and 9.2 and the correlation results discussed in the previous paragraph
were calculated using US personal income. But other macroeconomic time series in
many other countries exhibit very similar types of behavior. Y, in other words, tends
to exhibit trend behavior and to be highly correlated over time, but DY tends to the
opposite, i.e. exhibits no trend behavior and is not highly correlated over time. These
properties are quite important to regression modeling with time series variables as
they relate closely to the issue of nonstationarity. Appropriately, we will spend the
rest of this chapter developing formal tools and models for dealing with them.

The autocorrelation function

The correlations discussed above are simple examples of autocorrelations (i.e. cor-
relations involving a variable and a lag of itself ). The autocorrelation function is a
common tool used by researchers to understand the properties of a time series. Based
on the material in the “Aside on lagged variables” and the “Aside on notation” from
Chapter 8, we will use expressions like “the correlation between Y and lagged Y ”.
We denote this as r1.
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Exercise 9.2

The file INCOME.XLS contains data on personal income and consumption in the
US.

(a) For each of these two series individually create an XY-plot between the vari-
able and the variable lagged one period.

(b) For each of these variables, calculate r1.
(c) First difference each of these variables and repeat (a) and (b). How would

you interpret the data you have constructed and the correlations and XY-
plots?



In general, we may be interested in the correlation between Y and Y lagged p periods.
For instance, our personal income data is observed quarterly, so the correlation
between Y and Y lagged p = 4 periods is the correlation between income now and
income a year ago (i.e. a year is four quarters). We will denote this correlation by rp and
refer to it as “the autocorrelation at lag p”. The autocorrelation function treats rp as
a function of p (i.e. it calculates rp for p = 1, . . . , P ). P is the maximum lag length con-
sidered and is typically chosen to be quite large (e.g. P = 12 for monthly data). The
autocorrelation function is one of the most commonly used tools in univariate time
series analysis, precisely because it reveals quite a bit of information about the series.

Aside

1. rp is the correlation between a variable (say, Y ) and Y lagged p periods. In our dis-
cussion of r1 we noted Y1 lagged one period was Y0, which did not exist. For this
reason, we used data from t = 2, . . . , T to define lagged Y and calculate r1. An
even more extreme form of the problem occurs in the calculation of rp. Consider
creating a new variable W which has observations Wt = Yt for t = p + 1, . . . , T and
a new variable Z which has observations Zt = Yt-p for t = p + 1, . . . , T. The cor-
relation between W (i.e. Y ) and Z (i.e. Y lagged p periods) is rp. Note that each of
the new variables contains T - p observations. So when we calculate rp we are
implicitly “throwing away” the first p observations. If we considered extremely
long lags, we would be calculating autocorrelations with very few observations. In
the extreme case, if we set p = T we have no observations left to use. This is a jus-
tification for not letting p get too big. The issues raised in this paragraph are very
similar to those raised in distributed lag models (see Chapter 8, “Aside on lagged
variables”).

2. The autocorrelation function involves autocorrelations with different lag lengths.
In theory, we can use data from t = 2, . . . , T to calculate r1; data from t = 3, . . . ,
T to calculate r2; etc., ending with data from t = P + 1, . . . , T to calculate rP. But,
note that this means that each autocorrelation is calculated with a different number
of data points. For this reason, it is standard practice to select a maximum lag (P )
and use data from t = P + 1, . . . , T for calculating all of the autocorrelations.
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Example: US personal income (continued from page 136)

Table 9.1 presents the autocorrelation functions for Y = US personal income
and DY = the change in personal income (using data from INCOME.XLS) using
a maximum lag of 12 (i.e. P = 12).

This information can also be presented graphically by making a bar chart
with the lag length on the X-axis and the autocorrelation on the Y-axis, as in
Figures 9.3 and 9.4.



A striking feature of the table and figures is that autocorrelations tend to be
virtually one for personal income even in the case of high lag lengths. In con-
trast, the autocorrelations for the change in personal income are very small and
exhibit a pattern that looks more or less random; the autocorrelations, in other
words, are essentially zero. This pattern is common to many or most macro-
economic time series: the series itself has autocorrelations near one, but the
change in the series has autocorrelations that are much smaller (often near zero).
Below are a few ways of thinking about these autocorrelations:

1. Y is highly correlated over time. Even personal income three years ago (i.e.
p = 12) is highly correlated with income today. DY does not exhibit this prop-
erty. The growth in personal income this quarter is essentially uncorrelated
with the growth in previous quarters.

2. If you knew past values of personal income, you could make a very good
estimate of what personal income was this quarter. However, knowing past
values of the change in personal income will not help you predict the change
in personal income this quarter.

3. Generally, Y “remembers the past” (i.e. it is highly correlated with past values
of itself ). This is an example of long memory behavior. DY does not have
this property.

4. Y is a nonstationary series while DY is stationary. We have not formally
defined the words “nonstationary” and “stationary”, but they are quite
important in time series econometrics. We will have more to say about them
later, but note for now that the properties of the autocorrelation function
for Y are characteristic of nonstationary series.
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Table 9.1 Autocorrelation functions.

Lag length (p) Personal income Change in personal income

1 0.9997 -0.0100
2 0.9993 0.0121
3 0.9990 0.1341
4 0.9986 0.0082
5 0.9983 -0.1562
6 0.9980 0.0611
7 0.9978 -0.0350
8 0.9975 -0.0655
9 0.9974 0.0745

10 0.9972 0.1488
11 0.9969 0.0330
12 0.9966 0.0363
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Fig. 9.3 Autocorrelation function for income data.
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Fig. 9.4 Autocorrelation function for change in income.



The autoregressive model for univariate time series

The autocorrelation function is a useful tool for summarizing the properties of a time
series. Yet, in Chapters 3 and 4, we argued that correlations have their limitations and
that regression was therefore a preferable tool. The same reasoning holds here:
autocorrelations, in other words, are just correlations, and for this reason it may be
desirable to develop more sophisticated models to analyze the relationships between
a variable and lags of itself. Many such models have been developed in the statistical
literature on univariate time series analysis but the most common model, which can
also be interpreted as a regression model, is the so-called autoregressive model. As
the name suggests, it is a regression model where the explanatory variables are lags
of the dependent variable (i.e. “auto” means “self ” and hence an autoregression is a
regression of a variable on lags of itself ). The word “autoregressive” is usually short-
ened to “AR”.

We begin by discussing the autoregressive model with the explanatory variable
being the dependent variable lagged one period. This is called the AR(1) model:

for t = 2, . . . , T. It looks exactly like the regression model discussed in previous chap-
ters,4 except that the dependent variable is Yt-1. The value of f in the AR(1) model
is closely related to the behavior of the autocorrelation function and to the concept
of nonstationarity.

In order to understand the types of behavior characteristic of the AR(1) series, let
us artificially simulate three different time series using three different choices for f:
f = 0, 0.8 and 1. All three series have the same values for a (i.e. a = 0.01) and the
same errors. Figures 9.5, 9.6 and 9.7 provide time series plots of the three data sets.

Note that Figure 9.5 (with f = 0) exhibits random-type fluctuations around an
average of about 0.01 (the value of a). In fact, it is very similar to Figure 9.2, which
contains a time series plot of the change in personal income. Figure 9.7 (with f = 1)
exhibits trend behavior and looks very similar to Figure 9.1, which plots personal
income. Figure 9.6 (with f = 0.8) exhibits behavior that is somewhere in between the
random fluctuations of Figure 9.5 and the strong trend of Figure 9.7.

Y Y et t t= + +-a f 1 ,
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Exercise 9.3

Use the data on Y = personal consumption given in INCOME.XLS.

(a) Calculate the autocorrelation function for Y and DY with a maximum lag
of four (i.e. P = 4).

(b) Plot these autocorrelation functions in a bar chart.
(c) Interpret the results you have obtained in (a) and (b).



Figures 9.5–9.7 illustrate the types of behavior that AR(1) models can capture and
show why they are commonly used in macroeconomics. For different values of f,
these models can allow for the randomly fluctuating behavior typical of growth rates
of many macroeconomic time series; for the trend behavior typical of the macro-
economic series themselves; or for intermediate cases between these extremes.
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Fig. 9.5 AR(1) time series with f = 0.
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Note also that f = 1 implies the type of trend behavior we have referred to as non-
stationary above, while the other values of f imply stationary behavior. This allows
us to provide a formal definition of the concepts of stationarity and nonstation-

arity, at least for the AR(1) model: For the AR(1) model, we can say that Y is sta-

tionary if |f| < 1 and is nonstationary if f = 1. The other possibility, |f| > 1, is
rarely considered in economics. The latter possibility implies that the time series is
exhibiting explosive behavior over time. Since such explosive behavior is only
observed in unusual cases (e.g. hyperinflation), it is of little empirical relevance and
we shall not discuss it here. Mathematical intuition for the properties of the AR(1)
model and how it relates to the issue of nonstationarity is given in Appendix 9.1.
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Fig. 9.7 AR(1) time series with f = 1.

Exercise 9.4

Use the data in files FIG95.XLS, FIG96.XLS and FIG97.XLS, which were used to
create Figures 9.5–9.7, respectively.

(a) Calculate the autocorrelation function for each time series using a maximum
lag of four.

(b) Relate your findings in (a) to your answers to Exercise 9.3. Focus in partic-
ular on the question of whether the AR(1) model is capable of generating
the types of behavior observed in the macroeconomic time series on 
personal consumption.



Nonstationary versus stationary time series

Above we introduced the terms “nonstationary” and “stationary” without providing
any formal definition (except for the AR(1) model). As we shall see, the distinction
between stationary and nonstationary time series is an extremely important one. To
formally define these concepts requires that we get into statistical issues that are
beyond the scope of this book. But we provide some general intuition for these 
concepts below.

Formally, “nonstationary” merely means “anything that is not stationary”. Econo-
mists usually focus on the one particular type of nonstationarity that seems to be
present in many macroeconomic time series: unit root nonstationarity. We will gen-
eralize this concept later, but at this stage it is useful to think of a unit root as imply-
ing f = 1 in the AR(1) model. Following are different ways of thinking about whether
a time series variable, Y, is stationary or has a unit root:

1. In the AR(1) model, if f = 1, then Y has a unit root. If |f| < 1 then Y is
stationary.

2. If Y has a unit root then its autocorrelations will be near one and will not drop
much as lag length increases.

3. If Y has a unit root, then it will have a long memory. Stationary time series do not
have long memory.

4. If Y has a unit root then the series will exhibit trend behavior (especially if a is
non-zero).

5. If Y has a unit root, then DY will be stationary. For this reason, series with unit
roots are often referred to as difference stationary series.

The final point can be seen most clearly by subtracting Yt-1 from both sides of the
equation in the AR(1) model, yielding:

where r = f - 1. Note that, if f = 1, then r = 0 and the previous equation can be
written solely in terms of DYt, implying that DYt fluctuates randomly around a. For
future reference, note that we can test for r = 0 to see if a series has a unit root. Fur-
thermore, a time series will be stationary if -1 < f < 1 which is equivalent to -2 <
r < 0. We will refer to this as the stationarity condition.

By way of providing more intuition (and jargon!) for the AR(1) model, let us con-
sider the case where f = 1 (or, equivalently, r = 0) and a = 0. In this case we can write
the AR(1) model as:

This is referred to as the random walk model. Since f = 1, Y has a unit root and is
nonstationary. This model is commonly thought to hold for phenomena like stock
prices. The price of a stock today is the price of a stock yesterday plus an (unpre-
dictable) error term. If stock prices do not follow a random walk, then the change in

Y Y et t t= +-1 .

DY Y et t t= + +-a r 1 ,
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Example: US personal income (continued from page 140)

The AR(1) model is a regression model. Accordingly, we can use OLS to 
regress the variable Y on lagged Y.5 If we do this, we find â=0.039 and f̂ =
0.996. Since the OLS estimate, f̂ , and the true value of the AR(1) 
coefficient, f, will rarely if ever be identical, it is quite possible that 
f = 1 since the OLS estimate is very close to one.

If we regress DYt on Yt-1, we obtain an OLS estimate of r which is -0.004.
Note that we are finding r̂ = f̂ - 1, just as we would expect.

stock price becomes predictable and investors have arbitrage possibilities. Since it is
a common belief that few such arbitrage possibilities exist, there is a strong case for
thinking that many asset prices (e.g. stock prices, exchange rates, etc.) should follow
a random walk. This line of argument provides additional force to the idea that non-
stationarity exists in many time series in macroeconomics and finance.
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Exercise 9.5

Use the data in files FIG95.XLS, FIG96.XLS and FIG97.XLS, which were used to
create Figures 9.5–9.7, respectively.

(a) Calculate OLS estimates of r and f in the two variants of the AR(1) model.
(b) Relate your results in (a) to the question of whether any of the series contain

a unit root.
(c) Repeat (a) and (b) using the personal consumption data in INCOME.XLS.

Extensions of the AR(1) model

We have argued above that the AR(1) model can be interpreted as a simple regres-
sion model where last period’s Y is the explanatory variable. However, it is possible
that more lags of Y should be included as explanatory variables. This can be done by
extending the AR(1) model to the autoregressive of order p, AR( p), model:

Y Y Y et t p t p t= + + + +- -a f f1 1 K ,



for t = p + 1, . . . , T. We will not discuss the properties of this model, other than to
note that they are similar to the AR(1) model but are more general in nature. That is,
this model can generate the trend behavior typical of macroeconomic time series and
the randomly fluctuating behavior typical of their growth rates.

In discussing unit root behavior it is convenient to subtract Yt-1 from both sides
of the previous equation. With some rearranging6 we obtain:

where the coefficients in this regression, r, g1, . . . , gp-1 are simple functions of f1,
. . . , fp. For instance, r = f1 + . . . + fp - 1. Note that this is identical to the AR(p)
model, but is just written differently. Hence we refer to both previous equations as
AR(p) models. In case you are wondering where the Yt-p term from the first equation
went to in the second, note that it appears in the second equation in the DYt-p+1 term
(i.e. DYt-p+1 = Yt-p+1 - Yt-p). Note also that both variants have the same number of
coefficients, p + 1 (i.e. the first variant has a, f1, . . . , fp while the second variant has
a, r, g1, . . . , gp-1). However, in the second variant the AR(p) model has last coeffi-
cient gp-1. Don’t let this confuse you, it is just a consequence of the way we have
rearranged the coefficients in the original specification.

The key points to note here are that the above equation is still in the form of a
regression model; and r = 0 implies that the AR(p) time series Y contains a unit

root; if -2 < r < 0, then the series is stationary. Looking at the previous equation
with r = 0 clarifies an important way of thinking about unit root series which we
have highlighted previously: if a time series contains a unit root then a regression
model involving only DY is appropriate (i.e. if r = 0 then the term Yt-1 will drop out
of the equation and only terms involving DY or its lags appear in the regression). It
is common jargon to say that “if a unit root is present, then the data can be differ-
enced to induce stationarity”.

As we will discuss in the next chapter, with the exception of a case called cointe-
gration, we do not want to include unit root variables in regression models. This sug-
gests that, if a unit root in Y is present, we will want to difference it and use DY. In
order to do so, we must know first if Y has a unit root. In the past, we have empha-
sized that unit root series exhibit trend behavior. Does this mean that we can simply
examine time series plots of Y for such trending to determine if it indeed has a unit
root? The answer is no. To explain why, let us introduce another model.

We showed previously that many macroeconomic time series contain trends 
and that AR models with unit roots also imply trend behavior. However, there 
are other models that also imply trend behavior. Imagine that Figure 9.1 (or Figure
9.7) is an XY-plot where the X-axis is labeled time, and that we want to build a regres-
sion model using this data. You might be tempted to fit the following regression 
line:

Y t et t= + +a d ,

D D DY Y Y Y et t t p t p t= + + + + +- - - - +a r g g1 1 1 1 1K ,
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where the coefficient on the explanatory variable, time, is labeled d to distinguish it
from the f in the AR(1) model. Note that you can interpret the previous regression
as involving the variable Y and another variable with observations 1, 2, 3, 4, . . . , T.
This is another regression model which yields trend behavior. To introduce some
jargon, the term dt is referred to as a deterministic trend since it is an exact (i.e.
deterministic) function of time. In contrast, unit root series contain a so-called sto-

chastic trend ( justification for the term “stochastic trend” is given in Appendix 9.1).
We can even combine this model with the AR(1) model to obtain:

Figure 9.8 is a time series plot of artificial data generated from the previous model
with a = 0, f = 0.2 and d = 0.01. Note that this series is stationary since |f| <1. Yet,
Figure 9.8 looks much like Figure 9.7 (or Figure 9.1). Stationary models with a 
deterministic trend can yield time series plots that closely resemble those from non-
stationary models having a stochastic trend. Thus, you should remember that 
looking at time series plots alone is not enough to tell whether a series has a

unit root.
The discussion in the previous paragraph motivates jargon that we will use and

introduce in the context of the following summary:

1. The nonstationary time series variables on which we focus are those containing
a unit root. These series contain a stochastic trend. But if we difference these
time series, the resulting time series will be stationary. For this reason, they are also
called difference stationary.

Y Y t et t t= + + +-a f d1 .
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If we add a deterministic trend to the AR(p) model, we obtain a very general model
that is commonly used in univariate time series analysis:

We refer to the above as the AR( p) with deterministic trend model and use it later.
You may wonder why we don’t just use the original AR(p) specification introduced
at the beginning of this section (i.e. the one where the explanatory variables are 
Yt-1, . . . , Yt-p). There are two reasons. First, we are going to test for a unit root. With
the present specification, this is simply a test of r = 0. Testing for whether regres-
sion coefficients are zero is a topic which we have learned previously (refer to Chapter
5). With the original AR(p) model, testing for a unit root is more complicated. Second,
Yt-1, Yt-2, . . . , Yt-p are often highly correlated with each other (see the autocorrela-
tion function in Figure 9.3). If we were to use them as explanatory variables in our
regression we would no doubt run into serious multicollinearity problems (see
Chapter 6). However, in the present model we use Yt-1, DYt-1, . . . , DYt-p+1 as explana-
tory variables, which tend not to be highly correlated (see Figure 9.4), thereby avoid-
ing the problem.

D D DY Y Y Y t et t t p t p t= + + + + + +- - - - +a r g g d1 1 1 1 1K .
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Exercise 9.6

The data in FIG98.XLS was used to create Figure 9.8.

(a) Calculate the autocorrelation function for this trend stationary series.
(b) In light of your answer to (a), discuss whether the autocorrelation function

is a useful tool for testing for a unit root.

Example: US personal income (continued from page 146)

Table 9.2 contains output from an OLS regression of DYt on Yt-1, DYt-1,
DYt-2, DYt-3 and a deterministic time trend, created by using the data on per-
sonal income from INCOME.XLS. In other words, it provides regression output
for the AR(4) with deterministic trend model. We suspect this personal income
series may contain a unit root, a supposition supported somewhat by the table.
In particular, a unit root is present if r (the coefficient on Yt-1) is zero. As we
can see, the estimate of r is indeed very small (i.e. r̂ = -0.018).

2. The stationary time series on which we focus have -2 < r < 0 in the AR(p) model.
However, these series can exhibit trend behavior through the incorporation of a
deterministic trend. In this case, they are referred to as trend stationary.



You should note that when time series data exhibit seasonal patterns or season-

ality, further extensions of the AR( p) with deterministic trend model are required.
Examples of time series that contain seasonal patterns can easily be found. For
instance, an exceptionally large level of consumer spending takes place in the period
right around Christmas (i.e. in the fourth quarter of the year). Likewise, a large pro-
portion of construction in the building sector is carried out in the summer (when the
weather is best). Unemployment rates also exhibit seasonal variation in that they tend
to be lowest in the summer when construction and agricultural employment are at
their highest. All of these variables have a predictable seasonal pattern which we might
want to incorporate in a regression model.

Note that government statistical agencies typically provide de-seasonalized data.
This type of data removes seasonal patterns so that you will not have to worry about
them. However, in some cases you may not have such de-seasonalized data or you
may be interested in the seasonal patterns themselves.7 In these cases, you will need
to know how to work with this particular type of data.

It is beyond the scope of this book to discuss the procedures for dealing with sea-
sonality in any detail, but one such method of which you should be aware involves
the use of dummy variables, and can be briefly mentioned here.8 Remember, at its
most basic level, regression analysis seeks to explain the properties of the dependent
variable using explanatory variables. Since seasonal patterns can be important prop-
erties of the dependent variable, we want explanatory variables to explain them. One
set of explanatory variables that can be used are seasonal dummies. We can include
such dummy variables as additional explanatory variables in the AR( p) with deter-
ministic trend model. For instance, with quarterly data, you can create the dummy
variables: (1) D1 = 1 if an observation is from the first quarter (= 0 otherwise); (2) D2

= 1 if an observation is from the second quarter (= 0 otherwise); and (3) D3 = 1 if
an observation is from the third quarter (= 0 otherwise). Note that if you include
these three dummy variables as explanatory variables in the AR( p) with determinis-
tic trend model, no new statistical issues arise. That is, OLS provides good estimates
of all coefficients and you can use P-values to test whether their coefficients are zero,
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Table 9.2 AR(4) with deterministic trend model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.138 0.108 1.279 0.203 -0.075 0.351
Yt-1 -0.018 0.015 -1.190 0.236 -0.049 0.012
DYt-1 -0.017 0.081 -0.217 0.829 -0.177 0.142
DYt-2 0.014 0.081 0.172 0.863 -0.145 0.173
DYt-3 0.130 0.080 1.627 0.106 -0.028 0.288
time 0.00012 0.00012 0.955 0.341 -0.00013 0.00037



etc. In short, you can add seasonal dummies in a straightforward manner to any of
the time series models you encounter in this book.

You may be wondering why we included dummies for only three seasons (i.e. D1,
D2 and D3) in the previous example using quarterly data. The reason is that had we
included D4, the dummy for the fourth quarter, we would have encountered a case
of perfect multicollinearity (this statement assumes that there is an intercept in the
model). It is a bit hard to show why non-technically, but if you want to verify this
statement yourself, run a regression with quarterly time series data using an intercept
and D1, D2, D3 and D4 as explanatory variables and see what happens. To understand
further how to interpret results when dummy explanatory variables are used, look
back at Chapter 7. The section labeled “Multiple regression with both dummy and
non-dummy explanatory variables” is particularly relevant.

Testing in the AR( p) with deterministic trend model

In Chapters 5 and 6, we described how to test whether regression coefficients were
equal to zero. These techniques can be used in the AR(p) with deterministic trend
model (i.e. if you wish to omit explanatory variables whose coefficients are not sig-
nificantly different from zero). In particular, testing is usually done to help choose lag
length (p) and to decide whether the series has a unit root. In fact, it is common to
first test to select lag length, and then test for a unit root.

However, there is one important complication that occurs in the AR(p) model that
was not present in earlier chapters. To understand it, let us divide the coefficients 
in the model into two groups: (1) a, g1, . . . , gp -1, and d, and (2) r. In other words,
we consider hypothesis tests involving r independently of those involving the other
coefficients.

Testing involving a, g1, . . . , gp-1, and d
Many sophisticated statistical criteria and testing methods exist to determine the
appropriate lag length in an AR(p) model. Nonetheless, simply looking at the t-
statistics or P-values in regression outputs can be quite informative. For instance, an
examination of Table 9.2 above reveals that the P-values associated with the coeffi-
cients on the lagged DY terms are insignificant, and that they may be deleted from
the regression (i.e. the P-values are greater than 0.05). Alternatively, a more common
route is to proceed sequentially, as we did in the distributed lag model; that is, to
choose a maximum lag length, pmax, and then sequentially drop lag lengths if the 
relevant coefficients are insignificant.

More specifically, begin with an AR(pmax). If the pmaxth lag is insignificant, we 
reduce the model to an AR( pmax - 1). If the ( pmax - 1)th lag is insignificant in the
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AR(pmax - 1) then drop it and use an AR(pmax - 2), etc. Generally, you should start
with a fairly large choice for pmax.

In the AR(p) with deterministic trend model we also have to worry about testing
whether d = 0. This can be accomplished in the standard way by checking whether
its P-value is less than the level of significance (e.g. 0.05). This test can be done at
any stage, but it is common to carry it out after following the sequential procedure
for choosing p.

A short summary of this testing strategy is outlined below:

Step 1. Choose the maximum lag length, pmax, that seems reasonable to you.
Step 2. Estimate using OLS the AR( pmax) with deterministic trend model:

If the P-value for testing is less than the significance level you
choose (e.g. 0.05) then go to Step 5, using pmax as lag length. Otherwise go
on to the next step.

Step 3. Estimate the AR(pmax - 1) model:

If the P-value for testing is less than the significance level you
choose (e.g. 0.05) then go to Step 5, using pmax - 1 as lag length. Otherwise
go on to the next step.

Step 4. Repeatedly estimate lower order AR models until you find an AR(p) model
where gp-1 is statistically significant (or you run out of lags).

Step 5. Now test for whether the deterministic trend should be omitted; that is, if
the P-value for testing d = 0 is greater than the significance level you choose
then drop the deterministic trend variable.

g pmax- =2 0

D D DY Y Y Y t et t t p t p t= + + + + + +- - - - +a r g g d1 1 1 2 2K
max max

.

g pmax- =
1

0

D D DY Y Y Y t et t t p t p t= + + + + + +- - - - +a r g g d1 1 1 1 1K
max max

.
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Example: US personal income (continued from page 149)

If we carry out the preceding strategy on the personal income data, beginning
with pmax = 4, the model reduces to:

That is, we first estimated an AR(4) with deterministic trend (see Table 9.2) and
found the coefficient on DYt-3 to be insignificant. Accordingly, we estimated an
AR(3) with deterministic trend and found the coefficient on DYt-2 to be insignif-
icant. We then dropped the latter variable and ran an AR(2), etc. Eventually,
after finding the deterministic trend to be insignificant, we settled on the AR(1)
model. OLS estimation results for this model are given in Table 9.3.

DY Y et t t= + +-a r 1 .



Table 9.3 shows the table of results you might report in a paper or empirical project,
including a brief but coherent explanation of the strategy that you used to arrive at
this final specification.

These results lead us to the next, most important, testing question: does Y contain
a unit root? Remember that, if r = 0, then Y contains a unit root. In this case, the series
must be differenced in the regression model (i.e. it is difference stationary). You may
think that you can simply test r = 0 in the same manner as you tested the significance
of the other coefficients. For instance, the P-value Excel lists for the coefficient r is
0.035. Since this is less than 0.05, you may be tempted to conclude that r is not zero,
and, therefore, that Y does not have a unit root. THIS IS INCORRECT! In hypoth-
esis testing, r is different from other coefficients and, thus, we must treat it differently.

Testing involving r
To fully understand why you cannot carry out a unit root test of r = 0 in the same
manner as we would test other coefficients requires that you have knowledge of sta-
tistics beyond that covered in this book. Suffice it to note here that most regression
packages like Excel implicitly assume that all of the variables in the model are sta-
tionary when they calculate P-values. If the explanatory variable Yt-1 is nonstation-
ary, its P-value will be incorrect. A correct way of testing for a unit root has been
developed by two statisticians named Dickey and Fuller and is known as the
Dickey–Fuller test.9 They recommend using the t-statistic for testing r = 0, but cor-
recting the P-value.

We can motivate the Dickey–Fuller test in terms of the following: in Chapter 5,
we said that testing could be done by comparing a test statistic (here the t-stat) to a
critical value to determine whether the former was either “small” (in which case the
hypothesis was accepted) or “large” (in which case the hypothesis was rejected). In
the standard (stationary) case, the critical values are taken from statistical tables of
the Student-t distribution. Dickey and Fuller demonstrated that in the unit root case,
this is incorrect. They calculated the correct statistical tables from which to take 
critical values.

The previous paragraphs were meant to motivate why the standard testing proce-
dure was incorrect. Admittedly, they are not very helpful in telling you what to do in
practice. If you are going to work extensively with time series data, it is worthwhile
to either:
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Table 9.3 AR(1) model.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.039 0.014 2.682 0.008 0.010 0.067
Yt -1 -0.004 0.002 -2.130 0.035 -0.0077 -0.0003



1. Use a computer software package that is more suitable for time series analysis than
Excel. Packages such as MicroFit or SHAZAM will automatically provide you with
correct critical values or P-values for your unit root test. As before, you will reject
the unit root if the P-value is less than 0.05 or if the t-stat is greater than the 
critical value (in an absolute value sense).

2. Read further in time series econometrics and learn how to use the Dickey–Fuller
statistical tables.10

However, a rough rule of thumb can be used that will not lead you too far wrong
if your number of observations is moderately large (e.g. T > 50). This approximate
rule is given in the following strategy for testing for a unit root:

1. Use the strategy outlined in Steps 1 to 5 above to estimate the AR(p) with deter-
ministic trend model. Record the t-stat corresponding to r (i.e. the coefficient on
Yt-1).

2. If the final version of your model includes a deterministic trend, the
Dickey–Fuller critical value is approximately -3.45. If the t-stat on r is more 
negative than -3.45, reject the unit root hypothesis and conclude that the series is
stationary. Otherwise, conclude that the series has a unit root.

3. If the final version of your model does not include a deterministic trend, the
Dickey–Fuller critical value is approximately -2.89. If the t-stat on r is more 
negative than -2.89, reject the unit root hypothesis and conclude that the series is
stationary. Otherwise, conclude that the series has a unit root.11

In the previous example, the final version of the AR(p) model did not include a
deterministic trend. The t-stat on r is -2.13, which is not more negative than -2.89.
Hence we can accept the hypothesis that personal income does contain a unit root.
Be careful using this crude rule of thumb when your t-stat is close to the critical values
listed here.
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Exercise 9.7

In this chapter we have recommended a strategy according to which you begin
with an AR( p) with deterministic trend model, choose lag length ( p), decide
whether the deterministic trend should be included or excluded, and then test
for a unit root. Carry out this strategy using the following series:

(a) Those in FIG95.XLS and FIG96.XLS (which you know are stationary).
(b) That in FIG97.XLS (which you know has a unit root).
(c) That in FIG98.XLS (which is trend stationary, but exhibits strong trending

behavior).
(d) That in INCOME.XLS labeled “consumption”.



Some words of warning about unit root testing: The Dickey–Fuller test exhibits
what statisticians refer to as low power. In other words, the test can make the mistake
of finding a unit root even when none exists. Intuitively, trend stationary series can
look a lot like unit root series (compare Figures 9.7 and 9.8) and it can be quite hard
to tell them apart. Furthermore, other kinds of time series models can also appear to
exhibit unit root behavior, when in actuality they do not have unit roots. A prime
example is the time series model characterized by abrupt changes or breaks. These
structural breaks can occur in macroeconomic time series models, and can be pre-
cipitated by events such as wars or crises in supply (e.g. the OPEC oil embargo). Struc-
tural breaks can be exhibited in stock prices due to market crashes, and in commodity
prices due to droughts and other natural disasters. All in all, structural breaks are
potentially a worry for many types of time series data and some caution needs to be
taken when interpreting the results of Dickey–Fuller tests.
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Exercise 9.8

In Exercise 9.7, we tested for unit roots in many series. We noted that if a time
series has one unit root, then its difference will be stationary. Verify that this is
true for the series having unit roots in Exercise 9.7. That is, discuss how you
would test to see if the change in the series has a unit root. Then carry out this
test.

Chapter summary

1. Many time series exhibit trend behavior, while their differences do not
exhibit such behavior.

2. The autocorrelation function is a common tool for summarizing the rela-
tionship between a variable and lags of itself.

3. Autoregressive models are regression models used for working with time
series variables. Such models can be written in two ways: one with Yt as the
dependent variable, the other with DYt as the dependent variable.

4. The distinction between stationary and nonstationary models is a crucial
one.

5. Series with unit roots are the most common type of nonstationary series
considered in economics.

6. If Yt has a unit root then the AR(p) model with DYt as the dependent vari-
able can be estimated using OLS. Standard statistical results hold for all coef-
ficients except the coefficient on Yt-1.

7. The Dickey–Fuller test is a test for the presence of a unit root. It involves
testing whether the coefficient on Yt-1 is equal to zero. Software packages
such as Excel do not print out the correct P-value for this test.



Appendix 9.1: Mathematical intuition for 

the AR(1) model

Mathematical insight into the properties of the AR(1) model can be gained by 
writing it in a different way. For simplicity, we will set a = 0 in order to focus on 
the role that lagged Y plays. Note that the AR(1) model will hold at any point in 
time so we can lag the whole AR(1) equation given in the body of the chapter and
write:

If we substitute this expression for Yt-1 into the original AR(1) model we obtain:

Note that the previous expression depends on Yt-2, but we can write:

and substitute this expression for Yt-2 in the other equation. If this procedure is
repeated we end up with an alternative expression for the AR(1) model:

This expression looks complicated, but we can consider two special cases as a means
of breaking it down. In the first of these we assume f = 1 and the previous equation
reduces to:

The important point to note about the two terms on the right hand side of the pre-
vious equation is that they illustrate a long memory property; the value the time series
starts at Y1, which always enters the expression for Yt, even if t becomes very large.
That is, the time series “never forgets” where it started from. It also “never forgets”
past errors (e.g. e1 always enters the above formula for Yt even if t gets very large). It
can be shown that the trending behavior of this model arises as a result of the second
term, which says that current Y contains the sum of all past errors. Statisticians view
these errors as random or “stochastic” and this model is often referred to as con-
taining a stochastic trend. This is a key property of nonstationary series.

A second special case stands in contrast to the properties described above. If we
suppose |f| < 1, we can see that f t-1 will be decreasing as t increases (e.g. if f = 0.5,
then f2 = 0.25, f10 = 0.001 and f100 = 7.89 ¥ 10-31, etc.). The influence of Y1 and past
errors on Yt will gradually lessen as t increases and Y slowly “forgets the past”. Y will
not exhibit the long memory property we observed for the case where f = 1. This is
a key property of stationary series.
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Endnotes

1. Details about logarithms are given in any standard mathematical economics textbook and
are also discussed in Chapters 2 and 4 (see especially the discussion on nonlinearity in
regression). This footnote is intended to refresh your memory of this material. In macro-
economics, it is common to take the natural logarithm of the time series if it seems to
be growing over time. If a series, Y, is growing at a roughly constant rate, then the time
series plot of ln(Y ) will approximate a straight line. In this common case, ln(Y ) will gen-
erally be well behaved. Note also that in regressions of logged variables, the coefficients
can be interpreted as elasticities. It can also be shown that ln(Yt ) - ln(Yt-1) is approxi-
mately equal to the percentage change in Y between periods t - 1 and t.

For all these reasons, it is often convenient to work with logged series. Note that this
log transformation is so common that many reports and papers will initially explain that
the variables are logged, but thereafter drop the explicit mentioning of the log transfor-
mation. For instance, an author might refer to “the natural log of personal income” as
“personal income” for brevity. We will follow this tradition in the examples in this book.

2. Since Y0 is not known, DYt runs from t = 2, . . . , T rather than from t = 1, . . . , T. We focus
on the empirically useful case of first-differencing but we can define higher orders of dif-
ferencing. For instance, the second difference of Yt is defined as: D2Yt = DYt - DYt-1.

3. Put another way, if you knew what personal income was today (let’s say, $1 trillion), you
could make a pretty good guess about roughly what it would be next quarter. That is, it
might go up or down a couple of percentage points in an expansion or a recession, but
it is highly unlikely to be, say, $500 billion or $1.5 trillion. This ability to predict well is
evidence of high correlation.

4. It is common practice to use Greek letters to indicate coefficients in regression models.
We can, of course, use any Greek symbol we want to denote the slope coefficient in a
regression. Here we have called it f rather than b. We will reserve b (perhaps with a sub-
script) to indicate coefficients relating to the explanatory variable X.

5. Small statistical problems arise with OLS estimation of this model, particularly if the
model is nonstationary or nearly so (i.e. r is close to zero). Nevertheless, OLS is still a
very common estimation method for AR models, which suggests that these problems are
not that important. If you take courses in econometrics or time series statistics in the
future, you will undoubtedly learn about other estimators.

6. Each step in the derivation of this equation involves only simple algebra (e.g. subtracting
the same thing from both sides of the equation, etc.). However, there are many steps
involved and the derivation of this equation is actually quite messy.

7. Another reason why you might want to know how to work with seasonal data is that the
procedures used by government agencies for de-seasonalizing data are associated with
certain problems. It is difficult to explain what these are in a non-technical manner and
hence we will not discuss them in this book.

8. Many time series books devote a great deal of space to the topic of seasonality. One intro-
ductory text is Time Series Models for Business Economics and Forecasting, by Philip Hans Franses
(Cambridge University Press, 1998).

9. Some authors use the term “Dickey–Fuller test” for testing for r = 0 in the AR(1) model
and use the term “Augmented Dickey–Fuller test” for testing in the AR(p) model (i.e. the
basic unit root test is “augmented” with extra lags).
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10. Undergraduate Econometrics by R. Carter Hill, William Griffiths and George Judge (Second
edition, John Wiley & Sons, 2000), chapter 16 is a good place to start.

11. Formally, -3.45 and -2.89 are the critical values for T = 100 using a 5% level of signifi-
cance. Critical values for values of T between 50 and infinity are within 0.05 of these
values.
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C H A P T E R

Regression with time 

series variables

10

In regression analysis, researchers are typically interested in measuring the effect of an
explanatory variable or variables on a dependent variable. As mentioned in Chapter 8,
this goal is complicated when the researcher uses time series data since an explanatory
variable may influence a dependent variable with a time lag. This often necessitates the
inclusion of lags of the explanatory variable in the regression. Furthermore, as dis-
cussed in Chapter 9, the dependent variable may be correlated with lags of itself, sug-
gesting that lags of the dependent variable should also be included in the regression.

These considerations motivate the commonly used Autoregressive Distributed Lag
(or ADL) model:

In this model, the dependent variable, Y, depends on p lags of itself, the current value
of an explanatory variable, X, as well as q lags of X. The model also allows for a
deterministic trend (t ). Since the model contains p lags of Y and q lags of X we denote
it by ADL( p, q).1 In this chapter, we focus on the case where there is only one explana-
tory variable, X. Note, however, that we could equally allow for many explanatory
variables in the analysis.

Estimation and interpretation of the ADL( p, q) model depend on whether the
series, X and Y, are stationary or not. We consider these two cases separately here.
Note though, that we assume throughout that X and Y have the same stationarity
properties; that is, that they either must both be stationary or both have a unit root.
Intuitively, regression analysis involves using X to explain Y. If X ’s properties differ

Y t Y Y X X X et t p t p t t q t q t= + + + + + + + + +- - - -a d f f b b b1 1 0 1 1K K .



from Y ’s it becomes difficult for X to explain Y. For instance, it is hard for a sta-
tionary series to explain the stochastic trend variation in a unit root series. In prac-
tice this means that, before running any time series regression, you should examine
the univariate properties of the variables you plan to use. In particular, you should
carry out unit root tests along the lines described in Chapter 9 for every variable in
your analysis.

Time series regression when X and Y are stationary

When X and Y are stationary, OLS estimation of the ADL( p, q) regression model
can be carried out in the standard way described in Chapters 4–8. Testing for the sig-
nificance of variables can be done using the t-stats and P-values provided by com-
puter packages like Excel. Such tests can in turn be used to select p and q, the number
of lags of the dependent and explanatory variables, respectively. You should note,
however, that the verbal interpretation of results is somewhat different from the stan-
dard case, as elaborated below.

In the case of the AR( p) model in Chapter 9, it proved convenient, both for OLS
estimation and interpretation of results, for us to rewrite the model with DY as the
dependent variable. Similar considerations hold for the ADL( p, q), which can be
rewritten as:

It should be emphasized that this model is the same as that in the original form of
the ADL( p, q); it has merely undergone a few algebraic manipulations. Just as we had
two different variants of the AR( p) model in Chapter 9, we now have two variants
of the ADL( p, q) model. As before, we use new Greek letters for the coefficients in
the regression to distinguish them from those in the original variant of the ADL( p,
q) model.2 This model may look complicated, but it is still nevertheless just a regres-
sion model. That is, no new mathematical techniques are required for this model,
which is, after all, still based on the simple equation of a straight line.

As discussed in Chapter 9, macroeconomic time series are often highly correlated
with their lags. This implies that the original form of the ADL model frequently 
runs into multicollinearity problems. With the rewritten form we will typically not
encounter such problems. Most importantly, as we shall see, it has a further benefit,
one that lies in the interpretation of the coefficients. For these reasons we will work
mainly with this second variant of the ADL( p, q) model.

In Chapter 6, we discussed how to interpret regression coefficients, placing special
emphasis on ceteris paribus conditions. Recall that we made statements of the form:
“The coefficient measures the influence of lot size on the sales price of a house, ceteris
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paribus.” In the ADL( p, q) model, such an interpretation can still be made, but it is
not that commonly done. How then can we interpret the coefficients in the ADL
model? The most common way is through the concept of a multiplier. You are prob-
ably familiar with this idea since it is very common in the social sciences; economists,
for instance, use a multiplier when they measure the effect of a change in govern-
ment spending on national income. In the present context, this concept is a little more
complicated since we have to specify a timing for the effect.

It is common to focus on the long run or total multiplier, which is what we will
do here. To motivate this measure, suppose that X and Y are in an equilibrium or
steady state, i.e. are not changing over time. All of a sudden, X changes by one unit,
affecting Y, which starts to change, eventually settling down in the long run to a new
equilibrium value. The difference between the old and new equilibrium values for Y
can be interpreted as the long run effect of X on Y and is the long run multiplier.
This multiplier is often of great interest for policymakers who want to know the even-
tual effects of their policy changes in various areas.

It is worth stressing that the long run multiplier measures the effect of a perma-

nent change in X. That is, the story in the previous paragraph had X being at some
value, then X changed permanently to a new level one unit higher than the original
value. The long run multiplier measures the effect of this sort of change. In some cases,
you might be interested in the effect of a temporary change in X (i.e. X starts at some
original level, then increases by one unit for one period before going back to the orig-
inal level the next). The long run multiplier does not measure the effect of this type of
change. We can use the traditional “marginal effect” interpretation of regression coef-
ficients for such temporary changes. The example in Chapter 8, which discussed the
effect of safety training on accident losses, illustrates some ways of reporting the effect
of a temporary change in the explanatory variable (e.g. there we were interested in the
effect of increasing safety training in one particular month on accident losses. We did
not discuss the effect of increasing safety training permanently).

It can be shown, (although we will not prove it here3), that the long run multiplier
for the ADL( p, q) model is:

In other words, only the coefficients on Xt and Yt-1 in the rewritten ADL model matter
for long run behavior. This means that we can easily obtain an estimate of the long
run multiplier.

It is worth stressing that we are assuming X and Y are stationary. In Chapter 9, we
discussed how r = 0 in the AR( p) model implied the existence of a unit root. The
ADL model is not the same as the AR model, but to provide some rough intuition,
note that if r = 0 then the long run multiplier is infinite. In fact, it can be shown that
for the model to be stable, then we must have r > 0.4 In practice, if X and Y are
stationary, this condition will be satisfied.

- q
r

.
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Example: The effect of computer purchases on sales

Over the last decade, companies have been purchasing more computers under
the assumption that this will improve work force productivity. The purpose 
of this example is to investigate this assumption empirically. Data set 
COMPUTER.XLS contains data collected by a company for 98 months on their
computer purchases and a variable reflecting the productivity of their sales
force. In particular, the dependent and explanatory variables are:

• Y = the percentage change in sales relative to the previous month.
• X = the percentage change in computer purchases relative to the previous

month.

The mean of these two variables is 0.30% and 0.01% per month, indicating that
this company has not increased spending on computers by much on average.
Note, however, that this average hides wide variation. In some months com-
puter spending increased considerably, while in other months it decreased.
Assuming that both variables are stationary, we can estimate an ADL(2, 2)
model using OLS. Remember that, if the variables in a model are stationary,
then the standard regression quantities (e.g. OLS estimates, P-values, confidence
intervals) can be calculated in the same way as in Chapters 4–8. Table 10.1 con-
tains the results of this procedure.

Using the formula for the long run multiplier, we can see that its OLS esti-
mate is -(0.125/-0.120) = 1.042. There are different ways of expressing this
information verbally (remember that the dependent and explanatory variables
are percentage changes):

1. On average, computer purchases in this company have been increasing by
0.01% per month and sales by 0.30% per month. If the company decides

Table 10.1 ADL(2, 2) with deterministic trend model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.028 0.041 -0.685 0.495 -0.110 0.054
Yt-1 -0.120 0.013 -9.46 4.11E - 15 -0.145 -0.095
DYt-1 0.794 0.031 25.628 7.41E - 43 0.733 0.856
Xt 0.125 0.048 2.605 0.011 0.030 0.221
DXt 0.838 0.044 19.111 2.96E - 33 0.750 0.925
DXt-1 0.002 0.022 0.103 0.918 -0.041 0.046
time 0.001 0.001 0.984 0.328 -0.001 0.002
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that its computer budget should increase by 1.01% in each month (i.e.
increase by one unit from 0.01 to 1.01), then in the long run sales should
start increasing by 1.342% per month (i.e. the initial 0.30 plus the long run
multiplier of 1.042).5

2. The long run multiplier effect of computer purchases on sales is 1.042%.
3. If X permanently increases by 1%, the equilibrium value of Y will increase

by 1.042%.

The statistical information, though, indicates that this might not be a good
model, since some of the explanatory variables are not significant (e.g. the P-
values for the coefficients on DXt-1 and the time trend both imply insignificance
at the 5% level). This raises the issue of lag length selection in the ADL(p, q)
model. We will not discuss this topic here, other than to note that the strategy
for selecting q in the distributed lag model (see Chapter 8) and the strategy 
for selecting p in the AR(p) model (see Chapter 9) can be combined. There is
no general convention about whether you should first select p, then q, then
decide whether the deterministic trend should be included, or make another
ordering (e.g. select q, then p then trend or select q then trend then p, etc.). As
long as you are careful, you will not be led too far wrong in selecting a good
model.

Exercise 10.1

Use the variables Y = percentage change in sales and X = percentage change in
computer purchases in data set COMPUTER.XLS to decide whether the model esti-
mated in Table 10.1 is a good one. In particular,

(a) Establish whether Y and X really do not have unit roots as was assumed in
the example.

(b) Beginning with an ADL(3, 3) model with deterministic trend, perform sta-
tistical tests to choose suitable lag lengths. Were good choices for p and q
made in the example? Should we have included a deterministic trend?

(c) If you found the variables do not have unit roots and made different choices
from p and q than the ones in the example, calculate the long run multiplier
and compare to the result in the example.



Aside for Excel users

In Chapter 8 we described how to create lagged variables in Excel using copy/paste
commands. Similar techniques can be used here. Note, however, that when you create
DYt and DXt you will be using formulae. If you want to manipulate DYt and DXt later,
e.g., to create DYt-1 and DXt-1, you have to be careful to copy and paste the values in
the cells and not the formulae. You can do so using the “Paste Special” option in
Excel.

Time series regression when Y and X have 

unit roots: spurious regression

For the remainder of this chapter, we will assume that Y and X have unit roots. In
practice, of course, you would have to test whether this was the case using the
Dickey–Fuller test of the previous chapter. We begin by focussing on the case of
regression models without lags, then proceed to similar models to the ADL( p, q)
model.

Suppose we are interested in estimating the following regression:

If Y and X contain unit roots, then OLS estimation of this regression can yield results
which are completely wrong. For instance, even if the true value of b is 0, OLS can
yield an estimate, , which is very different from zero. Statistical tests (using the 
t-stat or P-value) may indicate that b is not zero. Furthermore, if b = 0, then the R2

should be zero. In fact, the R2 will often be quite large.
To put it another way: if Y and X have unit roots then all the usual regression

results might be misleading and incorrect. This is the so-called spurious regres-

sion problem. We do not have the statistical tools to prove that this problem occurs,6

but it is important to stress the practical implication. With the one exception of coin-
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Exercise 10.2

Data set COMPUTE1.XLS contains variables of the same form as COMPUTER.XLS,
however for a company in a different industry.

(a) Repeat the analysis of Exercise 10.1 using the data in COMPUTE1.XLS.
That is, verify that Y and X are stationary and then test to find a suitable
ADL( p, q) specification.

(b) Calculate the long run multiplier for the model estimated in (a).



tegration that we note below, you should never run a regression of Y on X if the

variables have unit roots.

Time series regression when Y and X have 

unit roots: cointegration

The one time where you do not have to worry about the spurious regression problem
occurs when Y and X are cointegrated. This case not only surmounts the spurious
regression problem, but also provides some nice economic intuition. Cointegration
has received a great deal of attention recently in the economics literature so it is
worthwhile to discuss the topic in detail here.

Some intuition for cointegration can be obtained by considering the errors in the
above regression model: et = Yt - a - bXt. Written in this way, it is clear that the errors
are just a linear combination of Y and X. However, X and Y both exhibit nonsta-
tionary unit root behavior such that you would expect the error to also exhibit non-
stationary behavior. (After all, if you add two things with a certain property together
the result generally tends to have that property.) The error does indeed usually have
a unit root. Statistically, it is this unit root in the error term that causes the spurious
regression problem. However, it is possible that the unit roots in Y and X “cancel
each other out” and that the resulting error is stationary. In this special case, called
cointegration, the spurious regression problem vanishes and it is valid to run a
regression of Y on X. To summarize: if Y and X have unit roots, but some linear

combination of them is stationary, then we can say that Y and X are 

cointegrated.7

The intuition behind cointegration is clearest for the case where a = 0 and b = 1.
Keep this in mind when you read the following statements. Remember also that vari-
ables with unit roots tend to exhibit trend behavior (e.g. they can be increasing steadily
over time and therefore can become very large).

1. If X and Y have unit roots then they have stochastic trends. However, if they are
cointegrated, the error does not have such a trend. In this case, the error will not
get too large and Y and X will not diverge from one another; Y and X, in other
words, will trend together. This fact motivates other jargon used to refer to coin-
tegrated time series. You may hear them referred as either having common trends

or co-trending.
2. If we are talking about an economic model involving an equilibrium concept, e is

the equilibrium error. If Y and X are cointegrated then the equilibrium error stays
small. However, if Y and X are not cointegrated then the equilibrium error will
have a trend and departures from equilibrium become increasingly large over time.
If such departures from equilibrium occur, then many would hesitate to say that
the equilibrium is a meaningful one.
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3. If Y and X are cointegrated then there is an equilibrium relationship between
them. If they are not, then no equilibrium relationship exists. (This is essentially
just a restatement of the previous point.)

4. In the real world, it is unlikely that an economic system will ever be in precise equi-
librium since shocks and unexpected changes to it will always occur. However,
departures from equilibrium should not be too large and there should always be
a tendency to return to equilibrium after a shock occurs. Hence, if an economic
model which implies an equilibrium relationship exists between Y and X is correct,
then we should observe Y and X as being cointegrated.

5. If Y and X are cointegrated then their trends will cancel each other out.

To summarize: if cointegration is present, then not only do we avoid the spurious
regression problem, but we also have important economic information (e.g. that an
equilibrium relationship exists or that two series are trending together).
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Example: Cointegration between the prices of two goods

Economic theory suggests that similar goods should be close substitutes for
each other and therefore cointegrated. As an example, ORANGE.XLS contains
time series data for 181 months on the prices of regular oranges and organic
oranges (grown without chemical pesticides and fertilizers) in a certain market.
These are two closely related products, but many consumers are willing to pay
somewhat more for organic oranges perceiving them to be healthier. We might
expect the prices of these two goods to be cointegrated, since the difference in
prices between the two cannot increase too much.

That is, many people are willing to pay slightly more for organic products,
but if the premium gets too large they will switch to regular oranges. For
instance, many consumers may be willing to pay an extra 20 pence per pound
to receive the supposed health benefits, but not 40 pence per pound. Thus, if
the price of organic products rises relative to regular products too much, many
people will stop buying organic products and their price will fall. On the other
hand, if the price of organic oranges falls to roughly the same price as regular
oranges, few would probably eat regular oranges. In this case, the price of
regular oranges would drop.

In short, though the prices of these two products will fluctuate due to the
vagaries of supply and demand, market forces will always keep the price dif-
ference between the two goods roughly constant. This is the intuition behind
cointegration.

Figure 10.1 plots these two series and provides strong visual evidence that
the prices of these two types of oranges are indeed cointegrated. That is, even
though the prices of organic oranges are higher than regular ones, the general
trend behavior in the two variables looks quite similar.



There are many other examples of cointegration, especially in macroeconomics.
Short- and long-term interest rates, for example, may not move precisely together in
the short run but it is unlikely that they will deviate too much in the long run. If long-
term interest rates are significantly higher than short-term rates, then traders will buy
long-term and sell short-term, forcing the former down and the latter up. This
example implies cointegration. Two prominent economic theories that imply the pres-
ence of cointegration between macroeconomic variables are the theory of purchas-
ing power parity and the permanent income hypothesis. Even theories of money
demand have been used to justify cointegration findings. All in all, cointegration is an
important concept for macroeconomists.

Estimation and testing with cointegrated variables

As mentioned above, if Y and X are cointegrated, then the spurious regression
problem does not apply; consequently, we can run an OLS regression of Y on X and
obtain valid results. Furthermore, the coefficient from this regression is the long run
multiplier. Thus, insofar as interest centers on the long run multiplier, then estima-
tion with cointegrated variables is very easy.

Before using results from this so-called cointegrating regression, it is important
to verify that Y and X are in fact cointegrated. Remember that if they are not 
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cointegrated, then the spurious regression problem holds and the results you obtain
can be completely meaningless. An examination of time series plots like Figure 10.1,
can be quite informative, but remember that visual examinations of graphs should
not be considered substitutes for a statistical test!

Many tests for cointegration exist and some computer software packages (e.g.
MicroFit) allow you to perform very sophisticated procedures at a touch of the
button. Spreadsheets like Excel do not allow you to carry out these tests. Fortunately,
using the regression capabilities of these spreadsheet packages coupled with some
data manipulation, we can carry out at least one test for cointegration.

The test for cointegration described here is referred to as the Engle–Granger test,
after the two econometricians who developed it. It is based on the regression of Y
on X. Remember that, if cointegration occurs, then the errors from this regression
will be stationary. Conversely, if cointegration does not occur, then the errors will
have a unit root. Given the close relationship between the errors and the residuals,8

it is reasonable to examine the properties of the residuals in order to investigate the
presence of cointegration. In Chapter 9 we discussed testing for a unit root in a time
series variable. Here, we test for a unit root in the residuals using the same tech-
niques. In particular, the test for cointegration involves the following steps:

1. Run the regression of Y on X and save the residuals.
2. Carry out a unit root test on the residuals (without including a deterministic trend).
3. If the unit root hypothesis is rejected then conclude that Y and X are cointegrated.

However, if the unit root is accepted then conclude cointegration does not occur.

Note that in Excel you can carry out Step 1 by clicking on the box labeled “Residu-
als” in the Regression menu and following the instructions.

It is worthwhile to stress that the Engle–Granger test is based on a unit root test,
so that the problems described at the end of Chapter 9 will arise. In other words,
although the cointegration test is based on the t-statistic from a regression (in this
case, one involving the residuals from a preliminary regression), you cannot use the
P-value printed out by non-specialist packages like Excel. The correct critical values
are published in many places (and are slightly different from the critical values for the
Dickey–Fuller test). If you are going to do a great deal of work with time series data
it is a good idea for you to spend the time to learn more about cointegration testing
and look up these correct critical values. However, for many purposes it is acceptable
to use the same rules of thumb recommended in Chapter 9.

Note that, when testing for a unit root in the residuals, we do not include a deter-
ministic trend. If such a trend were included it could mean the errors could be
growing steadily over time. This would violate the idea of cointegration (e.g. the idea
that the system always returns to equilibrium and, hence, that errors never grow too
big).

In light of these considerations, when carrying out the unit root test on the resid-
uals (see Step 2 above), use -2.89 as a critical value against which to compare the 
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t-statistic. If the t-statistic on r in the unit root regression involving the residuals is
more negative than -2.89, conclude that the errors do not have a unit root and hence
that Y and X are cointegrated.

Note also that in the Dickey–Fuller test, we test the hypothesis that r = 0 (i.e. the
null hypothesis is the unit root). In the cointegration test, we use the Dickey–Fuller
methodology but cointegration is found if we reject the unit root hypothesis for 
the residuals. In other words, the null hypothesis in the Engle–Granger test is “no
cointegration” and we conclude “cointegration is present” only if we reject this
hypothesis.

It is also worth stressing that, since the Engle–Granger test is based on the
Dickey–Fuller test, it suffers from the difficulties noted at the end of Chapter 9. That
is, the Engle–Granger test has low power and can be misleading if structural breaks
occur in the data.
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Example: Cointegration between the prices of two goods

(continued from page 166)

Let us suppose that the two price series both have unit roots. If we run a regres-
sion of Y = the price of organic oranges on X = the price of regular oranges
using the data in ORANGE.XLS we obtain the following fitted regression model:

The strategy above suggests that we should next carry out a unit root test on
the residuals, ut, (which computer packages like Excel allow you to create) from
this regression. The first step in doing this is to correctly select the lag length
using the sequential strategy outlined in Chapter 9. Suppose we have done so
and conclude that an AR(1) specification for the residuals is appropriate. The
Dickey–Fuller strategy suggests we should regress Dut on ut-1. The results are
shown in Table 10.2.

ˆ . . .Y Xt t= +20 686 0 996

Table 10.2 AR(1) using the residuals from the cointegrating regression.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.024 0.292 0.083 0.934 -0.552 0.600
ut-1 -1.085 0.075 -14.500 5.8E - 32 -1.233 -0.938
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Our crude rule of thumb says that we should compare the t-stat for the coef-
ficient on ut-1, which is -14.5, to a critical value of -2.89. Since the former is
more negative than the latter we reject the unit root hypothesis and conclude
that the residuals do not have a unit root. In other words, we conclude that two
price series are indeed cointegrated.

Since we have found cointegration we do not need to worry about the spu-
rious regressions problem. Hence, we can proceed to an interpretation of our
coefficients without worrying that the OLS estimates are meaningless. The fact
that â = 20.69 in the original regression of Y on X reflects the premium of
roughly 20 pence per pound that consumers are willing to pay for organic over
regular oranges. Furthermore, the long run multiplier is 0.996. This indicates
that, in the long run, an increase in the price of regular oranges by one pence
would cause an increase in the price of organic oranges of 0.996 pence.

Exercise 10.3

Use the data in ORANGE.XLS to complete the previous example. In particular,

(a) Do a Dickey–Fuller test to verify that both orange price series have unit
roots.

(b) Do a sequential test to verify that the Dickey–Fuller test on the residuals
was done correctly. That is, is an AR(1) model for the residuals appropriate?

Exercise 10.4

Excel file LONGGDP.XLS contains annual data on real GDP per capita for four
of the largest English-speaking countries (USA, UK, Canada and Australia) for
the years 1870–1993.9 Investigate whether there are common movements or
trends between GDP in these different countries. In particular, you should go
through the following steps to answer this question:

(a) Plot all the data in one time series graph and discuss your results (e.g. Does
GDP seem to be trending in all countries? Do there appear to be common
trend patterns across countries?).

(b) Carry out unit root tests on the time series. Discuss your findings.
(c) For the time series which have unit roots carry out cointegration tests. Begin

by carrying out cointegration tests between different combinations of two



Time series regression when Y and X are

cointegrated: the error correction model

In empirical applications, it is often vital to establish that Y and X are cointegrated.
As emphasized above, cointegration can be related to the idea of Y and X trending
together or bearing an equilibrium relationship to each other. A second important
task is to estimate the long run multiplier or the long run influence of X on Y. Both
cointegration testing and estimation of the long run multiplier can be done using the
regression of Y on X. Accordingly, in many empirical projects you may never need
to move beyond this simple regression. However, in some cases, you may be inter-
ested in understanding short run behavior in a manner that is not possible using only
the regression of Y on X. In such cases, we can estimate an error correction model

(or ECM for short).
An important theorem, known as the Granger Representation Theorem, says

that if Y and X are cointegrated, then the relationship between them can be expressed
as an ECM. In this section, we will assume Y and X are cointegrated. Error correc-
tion models have a long tradition in time series econometrics, and the Granger Rep-
resentation Theorem highlights their popularity. In order to understand the properties
of ECMs let us begin with the following simple version:

D DY e Xt t t t= + + +-j l w e1 0 ,
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countries (e.g. first do USA and UK, then USA and Canada, etc.). Does GDP
seem to be cointegrated between any pair of countries?

(d) In this chapter on cointegration, we have focussed on the case considered
in part (c), namely, where there are only two variables. Using Y = USA and
the other countries as explanatory variables, test for cointegration among all
the time series. Discuss your results.

Exercise 10.5

Use the data on Y = personal income and X = personal consumption in
INCOME.XLS.

(a) Use Dickey–Fuller tests to verify that Y and X have unit roots.
(b) Run a regression of Y on X and save the errors.
(c) Carry out a unit root test on the residuals using an AR(1) model.
(d) Carry out a unit root test on the residuals using an AR(2) model.
(e) Carry out a unit root test on the residuals using an AR(3) model.
(f) What can you conclude about the presence of cointegration between Y and

X ?10



where et-1 is the error obtained from the regression model with Y and X (i.e. et-1 =
Yt-1 - a - bXt-1) and et is the error in the ECM model. Note that, if we know et-1,
then the ECM is just a regression model (although we introduce some new Greek
letters to make sure that the coefficients and error in this model do not get confused
with those in other regression models). That is, DYt is the dependent variable and 
et-1 and DXt are explanatory variables. Furthermore, we assume that l < 0.11

To aid in interpreting the ECM, consider the implications of DYt being its depen-
dent variable. As emphasized throughout this book, the regression model attempts
to use explanatory variables to explain the dependent variable. With this in mind, note
that the ECM says that DY depends on DX – an intuitively sensible point (i.e. changes
in X cause Y to change). In addition, DYt depends on et-1. This latter aspect is unique
to the ECM and gives it its name.

Remember that e can be thought of as an equilibrium error. If it is non-zero, then
the model is out of equilibrium. Consider the case where DXt = 0 and et-1 is positive.
The latter implies that Yt-1 is too high to be in equilibrium (i.e. Yt-1 is above its equi-
librium level of a + bXt-1). Since l < 0 the term let-1 will be negative and so DYt will
be negative. In other words, if Yt-1 is above its equilibrium level, then it will start
falling in the next period and the equilibrium error will be “corrected” in the model;
hence the term “error correction model”.12 In the case where et-1 < 0 the opposite
will hold (i.e. Yt-1 is below its equilibrium level, hence let-1 > 0 which causes DYt to
be positive, triggering Y to rise in period t ).

In sum, the ECM has both long run and short run properties built into it. The
former properties are embedded in the et-1 term (remember b is still the long run mul-
tiplier and the errors are from the regression involving Y and X ). The short run
behavior is partially captured by the equilibrium error term, which says that, if Y is
out of equilibrium, it will be pulled towards it in the next period. Further aspects of
short run behavior are captured by the inclusion of DXt as an explanatory variable.
This term implies that, if X changes, the equilibrium value of Y will also change, and
that Y will also change accordingly. All in all, the ECM has some very sensible prop-
erties that are closely related to economic equilibrium concepts.

The ECM also has some nice statistical properties which mean that we do not have
to worry about the spurious regression problem. Y and X both have unit roots; hence
DY and DX are stationary. Furthermore, since Y and X are cointegrated, the equilib-
rium error is stationary. Hence, the dependent variable and all explanatory variables in
the ECM are stationary. This property means that we can use OLS estimation and carry
out testing using t-statistics and P-values in the standard way described in Chapter 5.

The only new statistical issue in the ECM arises due to the inclusion of et-1 as an
explanatory variable. Of course, the errors in a model are not directly observed. This
raises the issue of how they can be used as an explanatory variable in a regression.
Some sophisticated econometric techniques have been developed to estimate the
ECM, but the simplest thing to do is merely to replace the unknown errors by the
residuals from the regression of Y on X (i.e. replace et-1 by ut-1). That is, a simple tech-
nique based on two OLS regressions proceeds as follows:
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Step 1. Run a regression of Y on X and save the residuals.
Step 2. Run a regression of DY on DX and the residuals from Step 1 lagged one

period.

It should be emphasized that before carrying out this two-step estimation proce-
dure for the ECM, you must verify that Y and X have unit roots and are cointegrated.

So far we have discussed the simplest error correction model. In practice, just as
the ADL(p, q) model has lags of the dependent and explanatory variables, the ECM
may also have lags.13 It may also have a deterministic trend. Incorporating these 
features into the ECM yields:

This expression is still in the form of a regression model and can be estimated
using the two-step procedure described above. The adjustment to equilibrium intu-
ition also holds for this model. The decisions on whether to include a deterministic
trend and on which precise values for p and q are appropriate can be made using t-
statistics and P-values in the same manner as for the ADL model. In fact, the ECM
is closely related to the ADL model in that it is a restricted version of it.

D D D D DY t e Y Y X Xt t t p t p t q t q t= + + + + + + + + +- - - -j d l g g w w e1 1 1 0K K .
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Example: Cointegration between the prices of two goods

(continued from p. 170)

In the previous part of this example, we found that the variables, Y = price of
organic oranges and X = the price of regular oranges, were cointegrated. This
suggests that we can estimate an error correction model. To do so, we begin by
running a regression of Y on X and saving the residuals (which was done in the
previous part of the example). The residuals, ut, can then be included in the fol-
lowing regression (in lagged form):

Table 10.3 gives results from OLS estimation of this model:

D DY u Xt t t t= + + +-j l w e1 0 .

Table 10.3 Simple error correction model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.023 0.342 -0.068 0.946 -0.700 0.654
ut-1 -1.085 0.075 -14.458 8.69E - 32 -1.233 -0.937
DXt 1.044 0.182 5.737 4.11E - 08 0.685 1.403



The statistical information can be interpreted in the standard way. We can say
that (with the exception of the intercept) all the coefficients are strongly statis-
tically significant (since their P-values are much less than 0.05).

We noted before that b̂ = 0.996 and this is the estimate of the long run mul-
tiplier. The point estimates in Table 10.3 of l and w0 summarize the short run
properties. To aid in interpretation note that all variables in the model are mea-
sured in pence. The coefficient on ut-1 of -1.085 measures how much Y
responds to equilibrium errors. Since this coefficient is negative, positive errors
tend to cause DY to be negative and hence Y to fall. In particular, an equilib-
rium error of one penny tends to cause Y to fall by 1.085 pence in the next
period, ceteris paribus. This is a very quick adjustment to an equilibrium error!
The coefficient on DXt = 1.044. Imagine, in other words, what would happen
if X were to remain unchanged for some time (DX = 0), but then suddenly were
to change by one penny. The ECM implies that Y would instantly change by
1.044 pence. In other words, the price of organic oranges responds very quickly
to price changes in regular oranges. Perhaps since oranges are perishable,
grocers will almost immediately react to price changes in regular oranges in
order to make sure that their organic oranges do not remain unsold.
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Exercise 10.6

Use the data in ORANGE.XLS to check the previous example. In particular, does
the ECM have enough lags of both DX and DY ?

Exercise 10.7

Use the data on Y = consumption and X = personal income from INCOME.XLS.
Assume (perhaps incorrectly) that Y and X are cointegrated.

(a) Estimate an error correction model. Begin with a model containing a deter-
ministic trend and p = q = 4 and then carry out statistical tests to find an
appropriate ECM.

(b) Discuss your results. Pay particular attention to your estimate of l and
discuss what it tells you about the speed of adjustment to equilibrium.



Time series regression when Y and X have 

unit roots but are not cointegrated

You may encounter instances where unit root tests indicate that your time series have
unit roots, but the Engle–Granger test indicates that the series are not cointegrated.
That is, the series may not be trending together and may not have an equilibrium 
relationship. In these cases, you should not run a regression of Y on X due to 
the spurious regression problem. The presence of such characteristics suggests that
you should rethink your basic model and include other explanatory variables. Instead
of working with Y and X themselves, for example, you could difference 
them. (Remember that if Y and X have one unit root, then DY and DX should be
stationary.)

In this case, you could work with the changes in your time series and estimate the
ADL model using the techniques described at the beginning of this chapter. In other
words, you may wish to estimate the original ADL model, but with changes in the
variables:

For most time series variables, this specification should not suffer from multi-
collinearity problems. Alternatively, you may wish to estimate the second variant of
the ADL model based on the differenced data. But if you are working with the dif-
ferences of your time series and then use the variant of the ADL that involves dif-
ferencing the data you end up with second differenced data:

where D2Yt = DYt - DYt-1. OLS estimation and testing can be done in either of these
models in a straightforward way. Whatever route is chosen, it is important to empha-
size that the interpretation of regression results will likewise change.

More specifically, let us suppose Y = exchange rates and X = interest rates. If Y
and X are cointegrated, or if both are stationary, we can obtain an estimate of the
long run effect of a small change in interest rates on exchange rates. If Y and X are
neither stationary nor cointegrated and we estimate either of the two preceding equa-
tions, we can obtain an estimate of the long run effect of a small change in the change of
interest rates on the change in exchange rates. This may or may not be a sensible thing to
measure depending on the particular empirical exercise.

Note that, in the example at the beginning of this chapter on the effect of com-
puter purchases on sales, the variables were already in percentage changes. If we had
begun with Y = sales and X = computer purchases we would have found they had
unit roots but were not cointegrated. Hence, we would have run into the spurious
regressions problem. This was why we worked with percentage changes.
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Chapter summary

1. If all variables are stationary, then an ADL(p, q) model can be estimated
using OLS. Statistical techniques are all standard.

2. A variant on the ADL model is often used to avoid potential multi-
collinearity problems and provide a straightforward estimate of the long run
multiplier.

3. If all variables are nonstationary, great care must be taken in the analysis
due to the spurious regression problem.

4. If all variables are nonstationary but the regression error is stationary, then
cointegration occurs.

5. If cointegration is present, the spurious regression problem does not occur.
6. Cointegration is an attractive concept for economists since it implies that

an equilibrium relationship exists.
7. Cointegration can be tested using the Engle–Granger test. This test is a

Dickey–Fuller test on the residuals from the cointegrating regression.
8. If the variables are cointegrated then an error correction model can be used.

This model captures short run behavior in a way that the cointegrating
regression cannot.
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Exercise 10.8

Excel data set WP.XLS contains annual data from 1857–1987 on X = wages and
Y = the consumer price index in the UK.14 It is commonly thought that wage
pressures are a prime cause of inflation. You wish to investigate this claim by
carrying out a time series analysis on the data. In particular:

(a) Construct a time series plot of wages and prices. Do they both seem to be
trending? Do they seem to be trending together?

(b) Carry out unit root tests on X and Y. You should find evidence that they
both have unit roots.

(c) Carry out a cointegration test on X and Y. You should find evidence that
they are not cointegrated.

(d) Difference the data to obtain DX and DY. Repeat parts (a) and (b) with these
new variables. You should find that they do not have unit roots.

(e) Specify and estimate an ADL( p, q) model using the new variables, DX and
DY. Discuss your results. Note that the change in the log of a price level is
inflation. That is, DX and DY can be interpreted as wage and price inflation,
respectively.



Endnotes

1. Formally, we should call this the ADL(p, q) with deterministic trend model. However,
we will omit the latter phrase for the sake of simplicity. In practice, you will find that the
deterministic trend is often insignificant and will be omitted from the model anyway. Note
also that some textbooks abbreviate “Autoregressive Distributed Lag” as ARDL instead
of ADL.

2. The coefficients involving the lags of the dependent variable, r, g1, . . . , gp-1 are exactly
the same functions of f1, . . . , fp as in Chapter 9. The q + 1 coefficients q, w1, . . . , wq

are similar functions of b0, b1, . . . , bq.
3. Deriving the long run multiplier from an ADL model is not difficult, and you should try

it as an exercise. Here are some hints: assume that the model has been in equilibrium for
a long time, and that equilibrium values of X and Y are given by X* and Y*, respectively.
Now assume X is increased permanently to X* + 1 and figure out what happens to Y.

4. “Stable” is a statistical term that we will not formally define in this book. It can, however,
be interpreted in a common sense way: if a model is stable, it implies that the time series
variables will not be exploding or stochastically trending over time. In essence, it is a very
similar concept to stationarity.

5. It is worth emphasizing that 1.042 is an estimate of the long run multiplier. A confidence
interval could be calculated, but this would involve derivations beyond the scope of this
book.

6. You may think that the spurious regression problem occurs as a result of an omitted vari-
able bias when lags are left out of an ADL model. But there is more to it than this. Even
when no lags belong in the model, the spurious regression problem arises.

7. To motivate the word “cointegration”, note that if X and Y have unit roots, then it is
common jargon to say that they are integrated. Adding the word “co” to emphasize that
the unit roots are similar or common in X and Y yields “cointegration”.

8. Remember that the errors are deviations from the true regression line while residuals are
deviations from the estimated regression line (see Chapter 4). Our notation for OLS resid-
uals is ut.

9. Note that each of these time series is an index (with 1913 = 100). If you look at the data,
you will see that the value of the data for the UK is 64.85 in 1870. The fact that the vari-
ables are indices means that we cannot interpret the value of each observation as saying,
for instance, that GDP per capita in the UK was £64.85 in 1870. We can, however, inter-
pret changes in the series as GDP growth rates. More importantly for cointegration analy-
sis, the trend in the index for each country accurately reflects trend behavior in GDP per
capita.
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9. If the variables have unit roots but are not cointegrated, you should not
work with them directly. Rather you should difference them and estimate
an ADL model using the differenced variables. The interpretation of these
models can be awkward.



10. If you have done this question correctly, you will find that cointegration does seem to be
present for some lag lengths, but not for others. This is a common occurrence in practi-
cal applications, so do not be dismayed by it. Economic theory and time series plots of
the data definitely indicate that cointegration should occur between Y and X. But the
Engle–Granger test does not consistently indicate cointegration. One possible explana-
tion is that the Engle–Granger and Dickey–Fuller tests are known to have low power.

11. We will not formally prove why this condition must hold except to say that it is a stabil-
ity condition of the sort discussed in the context of the ADL(p, q) model.

12. This intuition motivates the stability condition l < 0, which ensures that equilibrium errors
are corrected. If l is positive then equilibrium errors will be magnified.

13. Note that we do not include more lags of et-1 as explanatory variables due to an implica-
tion of the Granger Representation Theorem, which we will not discuss here.

14. This data is logged, a necessary procedure since the consumer price index data in partic-
ular looks like it is exploding over time.
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C H A P T E R

Applications of time series

methods in macroeconomics

and finance

11

Chapters 8–10 developed several different regression models for time series variables.
For many cases, knowledge of these models and the relevant techniques (e.g.
cointegration tests) is enough to allow you to write a report and gain a good basic 
understanding of the properties of the data. However, economists sometimes use
more specialized models and statistical tools. Discussing a few of these in the present
chapter will both introduce some of these and afford an opportunity to gain more
experience with time series analysis. Accordingly, in this chapter we discuss three 
different applied time series topics: volatility in asset prices, Granger causality,
and Vector Autoregressive (VAR) models. The former has received a great deal of
attention recently, especially by those who are interested in understanding the pro-
perties of financial assets such as stock prices. The other two are important in 
macroeconomics.

Volatility in asset prices

In this section, we discuss a simple regression model that is useful for understanding
volatility in asset prices (e.g. stock prices). This model is closely related to models of
Autoregressive Conditional Heteroskedasticity (ARCH). Despite the somewhat
daunting name, ARCH models are an increasingly popular and relatively simple to use



tool in finance. A full discussion of ARCH models is beyond the scope of this book.
Fortunately, it will not be difficult for you to grasp the basic ideas underlying these
models and to develop simple regression tools for working with them. In this section,
we focus on the case of volatility in asset prices (e.g. stocks, foreign exchange, etc.).
However, it is worth stressing that volatility plays an important role in other areas of
economics such as macroeconomics.

To provide some intuition, recall our discussion of the random walk model in
Chapter 9. We defined the model as:

or

We then noted that there were good reasons for believing that such a model might
be appropriate for measuring economic phenomena like stock prices or exchange
rates.1 Unexpected events continually influence stock prices (reflected in the error, et).
This implies that investors cannot predict future stock price changes. If investors
could, they would have arbitrage opportunities. Few if any such arbitrage opportuni-
ties exist in the real world (and if they do, they are almost instantly eliminated as smart
investors take advantage of them).

The simple random walk model is a little unreasonable as a description of stock
price behavior since many stocks do appreciate in value over time.2 A slightly more
realistic model is:

This model can be interpreted as implying that stock prices, on average, increase by
a per period, but are otherwise unpredictable. Known as the random walk with drift

model, it adds an intercept to the random walk model, thus allowing stock prices to
“drift” upwards over time.

If the random walk hypothesis is true it would appear that financial economists
cannot really study stock prices in any empirical sense. After all, the aim of most
empirical research is to use explanatory variables to explain the variation in a depen-
dent variable. In the present case, the behavior of stock prices cannot be explained
empirically other than to say that their changes are inherently unpredictable.3 What
then do financial economists interested in stock price behavior do? One answer is
that they try to explain the volatility of stock prices. In particular, they are interested
in seeing whether volatility changes over time in a predictable way.

You may be wondering why we would be interested in the volatility of a variable.
It turns out that volatility plays a crucial role in many macroeconomic and financial
applications. Early work in macroeconomics was interested in the volatility of infla-
tion over time. Interest centered on investigating whether the variability of inflation
changed over time (i.e. there were some very stable periods where inflation was
roughly constant and other unstable periods). Some rational expectations theories of

DY et t= +a .

DY et t= .

Y Y et t t= +-1 ,
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macroeconomics argued that it was not the level of inflation that was important in
the economy, but its variance. Even if the level of inflation is high, agents can plan
for the future with a high degree of confidence if the variance of inflation is low.
However, a high variance means it is hard to predict reliably what the inflation rate
might be next period. This has implications for many macroeconomic models.

By way of another example of the importance of volatility to economics, consider
the £/$ exchange rate. This rate is extremely important from the point of view of
exports from the UK to the US (and vice versa). Companies producing for 
export often need to make production plans based on what they predict the exchange
rate will be in the future. If the exchange rate exhibits low volatility it becomes 
easy to plan whereas high volatility makes it more difficult. The negative effect of
uncertainty partially accounts for the increasing impetus among countries either 
to fix exchange rates or to adopt a common currency (e.g. the European Monetary
Union). It also accounts for the growing number of financial derivatives (e.g.
futures and options) that firms can use to hedge against the risk posed by currency
fluctuations.

In stock markets, volatility is also related to related to risk. That is, if a stock is
highly volatile then its price can increase quite substantially, but it can also decrease
substantially. An investor interested in purchasing such a volatile stock might make
large gains if the price rises substantially, but could also lose money if it drops. This
argument suggests that volatility is a measure of the riskiness of a stock. However,
we have to be a little careful in equating volatility with risk. Financial models (e.g. the
capital asset pricing model or CAPM) emphasize that the riskiness of a portfolio
of stocks depends not only on the volatility of the individual stocks, but also on the
correlation between the stocks in the portfolio. To take an extreme example, suppose
you have purchased a portfolio of two stocks that are both very volatile, but are also
perfectly negatively correlated with one another. This negative correlation means that
whenever one of your stocks drops in value the other one rises. So even though each
stock is individually risky (due to its high volatility), the risks cancel each other out,
and overall, your portfolio is quite safe. All we can say here is that while the volatil-
ity of stocks is an important aspect in an investment decision, there are other aspects
that are also important, but they are not discussed here.

In the rest of this section, we will assume that the random walk model for an asset
price is the correct one. That is, we will assume that either the asset price follows a
pure random walk or that it follows a random walk with drift, and that we have taken
deviations from the mean. To avoid confusion, we will let Dyt indicate the series with
deviations from means taken (i.e. Dyt = DYt - D , where D = SDYt/T ). Remem-
ber that taking deviations from the mean implies that there is no intercept in the
model (see Appendix 4.1). Thus, even if the asset price is drifting upwards over time
we can ignore the drift term and simply write, Dyt = et.

Thus far, we have used the term “volatility” quite loosely; now it is time for us to
give a formal definition.

YY
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We use Dyt
2 as an estimate of volatility at time t. To motivate this choice, note that

high volatility is associated with big changes, either in a positive or in a negative direc-
tion. Since any number squared becomes positive, large rises or large falls in the price
of an asset will imply Dyt

2 is positive and large. In contrast, in stable times the asset
price will not be changing much and Dyt

2 will be small. Hence, our measure of volatil-
ity will be small in stable times and large in chaotic times.

An alternative motivation for our measure of volatility can be obtained by recall-
ing some material from Chapter 2. There we stressed that variance is a measure of
the volatility of a variable. In general, it is common practice to equate the two and
use variance as a measure of volatility. But using the variance as a measure of volatil-
ity presents problems in the present context. A key point here is that we want to allow
the volatility of an asset to change over time. The volatility at time t might be differ-
ent from that at time t - 1 or t + 1, etc. In Chapter 2, we used all observations to
provide one estimate of the variance. Here we can use only the observation at time
t to provide an estimate of the variance at time t. (In other words, it makes no sense
to use data at time t + 1 to estimate the variance at time t since the variance might be
different in the two periods).

If you: (1) note that we can use only one observation to estimate the variance; (2)
note that we have assumed the data is in deviations from mean form and, hence, has
mean zero; and (3) use the formula for the variance from Chapter 2, then you obtain
Dyt

2 as an estimate of the variance.4

You can calculate this measure of volatility of an asset price quite easily in any
spreadsheet or econometric computer package simply by differencing the stock price
data, taking deviations from means and then squaring it. Once this is done, you will
have a new time series variable – volatility – which you can then analyze using the
tools introduced earlier.

Autoregressive models are commonly used to model “clustering in volatility”,
which is often present in financial time series data. Consider, for instance, an AR(1)
model that uses volatility as the time series variable of interest:

This model has volatility in a period depending on volatility in a previous period. If,
for instance, f > 0 then if volatility was unusually high last period (e.g. Dy2

t-1 was very
large), it will also tend to be unusually high this period. Alternatively, if volatility was
unusually low last period (e.g. Dy2

t-1 was near zero) then this period’s volatility will also
tend to be low. In other words, if the volatility is low it will tend to stay low, if it is
high it will tend to stay high. Of course, the presence of the error, et, means that there
can be exceptions to this pattern. But, in general, this model implies that we will tend
to observe intervals or clusters in time where volatility is low and intervals where it
is high. In empirical studies of asset prices, such a pattern is very common. As an
example, recall that in Chapter 2, we plotted the £/$ exchange rate (see Figure 2.1).
If you look back at this figure, you can see long spells when the exchange rate changed

D D
t t ty y e
2

1

2= + +-a f .
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very little (e.g. 1949–1967 and 1993–1996) and other long spells (e.g. 1985–1992)
where it was more volatile.

The previous discussion refers to the AR(1) model, but it can be extended to the
AR(p) model. All of the intuition given in Chapter 9 is relevant here. The only dif-
ference is that the interpretation relates to the volatility of the series rather than to
the series itself. Furthermore, all of the statistical techniques we described in Chapter
9 are relevant here. Provided the series is stationary (e.g. |f| < 1 in the AR(1) case),
then OLS estimates and P-values can be interpreted in the standard way. Testing for
a unit root can be conducted using a Dickey–Fuller test. In short, there is nothing
statistically new here.
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Example: Volatility in stock prices

Excel worksheet STOCK.XLS contains data on Y = the stock price of a company
collected each week for four years (i.e. T = 208). The data has been logged.
Figure 11.1 provides a time series plot of this data.

You can see that the price of this stock has tended to increase over time,
although there are several periods when it also fell. The price of the stock was
£24.53 per share in the first month, increasing to £30.14 in the 208th month
(in other words, ln (24.53) is 3.200 and ln (30.14) is 3.406).

Figure 11.2 plots DY, the percentage change in Y. Since 100 ¥ [ln(Yt ) -
ln(Yt-1)] is the percentage change in the stock price, we multiply the first 
difference of the data used to create Figure 11.1 by 100.

An examination of this figure indicates that the change in stock price in any
given week was usually positive, but that there were some weeks when the price
fell. In the middle of the period of study (i.e. roughly weeks 90–110), there were
many large changes (both in a positive and a negative direction). For instance,
in weeks 94 and 96 the stock price increased by over 1.5%. This is a huge
increase in one week. If increases of this magnitude were to keep on occurring
for a year, the price of the stock would more than double (i.e. a weekly return
of 1.5% becomes an annualized return of over 100%). However, in weeks 92,
93 and 95, stock prices fell by almost as much. All in all, the stock price in this
middle period was much more volatile than in others.

In order to investigate the volatility properties of stock price in more depth
we take deviations from the mean for the observations of the differenced data
used to create Figure 11.2 and then square them. That is, we: (1) calculate the
average change in stock price, 0.099%; (2) subtract this number from every stock
price change; and (3) square the result. Figure 11.3 plots the resulting series
which is our measure of volatility.

Note that volatility is the square of the stock price and hence cannot be neg-
ative. The pattern most evident in Figure 11.3 is the large increase in volatility
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Fig. 11.3 Volatility of stock price.

in weeks 90–97 and, to a lesser extent, in weeks 4–8 and 101–107. This pro-
vides visual evidence that the volatility of this stock does indeed seem to vary
over time.

More formal evidence on the pattern of volatility can be found by building
an AR(p) model using the techniques of Chapter 9 and volatility as the variable
of interest. The sequential testing procedure suggested in that chapter yields the
AR(1) model shown in Table 11.1.

It can be seen that last week’s volatility has strong explanatory power for this
week’s volatility, since its coefficient is strongly statistically significant. Further-
more, R2 = 0.54, indicating that 54% of the variation in volatility can be
explained by last period’s volatility. Consequently, it does seem as if volatility
clusters are present. If volatility is high one period, it will also tend to be high
the next period. This information might be of great interest to an investor
wishing to purchase this stock.

Suppose an investor has just observed that Dyt-1 = 0 and therefore that Dy2
t-1

= 0. In other words, the stock price changed by its average amount in period 
t - 1. The investor is interesting in predicting volatility in period t in order to

Table 11.1 AR(1) model using volatility as variable of interest.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.024 0.015 1.624 0.106 -0.005 0.053
Dy2

t-1 0.737 0.047 15.552 1.74E - 36 0.643 0.830



186 Analysis of economic data

judge the likely risk involved in purchasing the stock. Since the error is unpre-
dictable, the investor ignores it (i.e. it is just as likely to be positive as negative).
Below is the fitted AR(1) model:

Since Dy2
t-1 = 0, the investor predicts volatility in period t to be 0.024. However,

had he observed Dy2
t-1 = 1, he would have predicted volatility in period t to be

0.761 (i.e. 0.024 + 0.737). This kind of information can be incorporated into
financial models of investor behavior.

D D
t t

y y
2

1

20 024 0 737ˆ . . .= + -

Exercise 11.1

NYSE.XLS contains data on DY = the percentage change in stock prices each
month from 1952 through 1995 on the New York Stock Exchange (NYSE). For
those interested in precise details, the data is value-weighted stock returns exclu-
sive of dividends deflated using the consumer price index. Note that this data
is already in differenced form but deviations from the mean have not been taken,
i.e. it is DY not Y or Dy.

(a) Make a time series plot of this data and comment on any patterns you
observe.

(b) Using the techniques discussed in Chapter 9, comment on the univariate
time series properties of DY. What does its autocorrelation function look
like? If you build an AR( p) model using this data what is p? Is DY station-
ary? Are stock returns on the NYSE predictable (i.e. can past stock returns
help you to predict current values)?

(c) Assume that the original series, Y, follows a random walk such that an AR(0)
model for DY is appropriate (possibly with an intercept). Calculate the
volatility of this variable as described in this chapter.

(d) Plot the volatility of this series. Does it appear that volatility clustering is
present?

(e) Construct an AR( p) model for the volatility series and discuss its properties.
Can past values of volatility on the stock market help you to predict current
volatility?

Granger causality

In this book we have referred to causality quite a bit; however, mostly through warn-
ings about interpreting correlation and regression results as reflecting causality. For
instance, in Chapter 3 we discussed an example where alcohol drinking and lung



cancer rates were correlated with one another, even though alcohol drinking does not
cause lung cancer. Here correlation did not imply causality. In fact, it was cigarette
smoking that caused lung cancer, but a correlation between cigarette smoking and
alcohol drinking produced an apparent relationship between alcohol and lung cancer.

In our discussion of regression, we were on a little firmer ground, since we
attempted to use economic reasoning and common sense in labeling one variable the
dependent variable and the others the explanatory variables. In many cases, because
the latter “explained” the former it was reasonable to talk about X “causing” Y. For
instance, in our house price example in Chapters 4, 5, 6 and 7, the price of the house
was said to be “caused” by the characteristics of the house (e.g. number of bedrooms,
number of bathrooms, etc.). However, in our discussion of omitted variable bias in
Chapter 6, it became clear that multiple regressions could provide a misleading inter-
pretation of the degree of causality present if important explanatory variables were
omitted. Furthermore, there are many regressions in which it is not obvious which
variable causes which. For instance, in Chapter 10 (Exercise 10.8), you ran a regres-
sion of Y = wage inflation on X = price inflation. It is possible that price inflation
causes wage inflation (i.e. X causes Y ), since workers will demand higher wage set-
tlements if prices are rising rapidly. However, one could also argue that Y causes X,
since wage increases will eat into company profits unless they raise prices. So wage
inflation could cause price inflation. In other words, the causality could run in either
direction – or both! Hence, when using the word “cause” with regression or correla-
tion results a great deal of caution has to be taken and common sense has to be used.

However, with time series data we can make slightly stronger statements about
causality simply by exploiting the fact that time does not run backward! That is, if
event A happens before event B, then it is possible that A is causing B. However, it
is not possible that B is causing A. In other words, events in the past can cause events
to happen today. Future events cannot.

These intuitive ideas can be investigated through regression models incorporating
the notion of Granger causality. The basic idea is that a variable X Granger causes

Y if past values of X can help explain Y. Of course, if Granger causality holds this
does not guarantee that X causes Y. This is why we say “Granger causality” rather
than just “causality”. Nevertheless, if past values of X have explanatory power for
current values of Y, it at least suggests that X might be causing Y.

Granger causality is only relevant with time series variables. To illustrate the basic
concepts we will consider Granger causality between two variables (X and Y ) which
are both stationary. A nonstationary case, where X and Y have unit roots but are 
cointegrated, will be briefly mentioned below.

Granger causality in a simple ADL model

Since we have assumed that X and Y are stationary, the discussion of Chapter 10 sug-
gests an ADL model is appropriate. Suppose that the following simple ADL model
holds:

Applications of time series methods in macroeconomics and finance 187



This model implies that last period’s value of X has explanatory power for the current
value of Y. The coefficient b1 is a measure of the influence of Xt-1 on Yt. If b1 = 0,
then past values of X have no effect on Y and there is no way that X could Granger
cause Y. In other words, if b1 = 0 then X does not Granger cause Y. An alternative
way of expressing this concept is to say that “if b1 = 0 then past values of X have
no explanatory power for Y beyond that provided by past values for Y ”. Since we
know how to estimate the ADL and carry out hypothesis tests, it is simple to test for
Granger causality. That is, OLS estimation of the above regression can be conducted
using any standard spreadsheet or econometric computer package, and the P-value
for the coefficient on Xt-1 examined for significance. If b1 is statistically significant
(e.g. P-value < 0.05) then we conclude that X Granger causes Y. Note that the null
hypothesis being tested here is H0: b1 = 0 which is a hypothesis that Granger causal-
ity does not occur. So we should formally refer to the test of b1 = 0 as a test of
Granger non-causality, but we will adopt the more common informal terminology
and just refer to this procedure as a Granger causality test.

Granger causality in an ADL model with p and q lags

Of course, the above ADL model is quite restrictive in that it incorporates only one
lag of X and Y. In general, we would want to select lag lengths using the methods
described in Chapter 10 to work with an ADL(p, q) model of the form:5

Here X Granger causes Y if any or all of b1, . . . , bq are statistically significant. In
other words, if X at any time in the past has explanatory power for the current value
of Y, then we say that X Granger causes Y. Since we are assuming X and Y do not
contain unit roots, OLS regression analysis can be used to estimate this model. The
P-values of the individual coefficients can be used to determine whether Granger
causality is present. If you were using the 5% level of significance, then if any of the
P-values for the coefficients b1, . . . , bq were less than 0.05, you would conclude that
Granger causality is present. If none of the P-values is less than 0.05 then you would
conclude that Granger causality is not present.

The strategy outlined above is a useful one that can be carried out quite simply in
Excel or any other statistical software package. You are likely to obtain reliable evi-
dence about whether X Granger causes Y by following it. Note, however, that there
is formally a more correct – also more complicated – way of carrying out this test.
Recall that the null hypothesis tested is formally one of Granger non-causality. That
is, X does not Granger cause Y if past values of X have no explanatory power 
for the current value of Y. Appropriately, then, we want to test the hypothesis H0:
b1 = b2 = . . . = bq = 0 and conclude that X Granger causes Y only if the hypothesis

Y t Y Y X X et t p t p t q t q t= + + + + + + + +- - - -a d f f b b1 1 1 1K K .
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is rejected. Note that this test is slightly different from the one proposed in the pre-
vious paragraph. That is, a joint test of b1 = b2 = . . . = bq = 0 is not exactly the same
as q individual tests of bi = 0 for i = 1, . . . , q. We have not discussed how to carry
out tests to determine whether several coefficients are jointly equal to zero. For
readers interested in such joint tests, Appendix 11.1 offers some practical advice.

However, if you choose to follow the simpler strategy outlined above then you
should note the following:

If you find any or all of the coefficients b1, . . . ,bq to be significant using t-statistics or the P-

values of individual coefficients, you may safely conclude that X Granger causes Y. If none of these

coefficients is significant, it is probably the case that X does not Granger cause Y. However, you are

more likely to be wrong if you conclude the latter than if you had used the correct joint test of

Granger non-causality.
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Example: Does wage inflation Granger cause price inflation?

Annual data from 1855–1987 on UK prices and wages is contained in the file
WP.XLS, introduced in Exercise 10.8. If you have done that exercise, you will
recall that both the log of wages and prices appear to have unit roots, but are
not cointegrated. However, the differences of these series are stationary and
can be nicely interpreted as inflation rates (i.e. wage and price inflation).

We will use this data set to investigate whether past wage inflation causes
price inflation. There is good reason to think that this may indeed be the case.
After all, if wages are increasing, companies will have an incentive to increase
prices to stop their profit margins from falling.

Table 11.2 contains results from OLS estimation of the regression of DP =
price inflation on four lags of itself, four lags of DW = wage inflation and a
deterministic trend.

Table 11.2 ADL model using price inflation as the dependent variable.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.751 0.710 -1.058 0.292 -2.156 0.654
DPt-1 0.822 0.170 4.850 3.81E - 6 0.486 1.158
DPt-2 -0.041 0.186 -0.222 0.825 -0.409 0.326
DPt-3 0.142 0.186 0.762 0.448 -0.227 0.511
DPt-4 -0.181 0.175 -1.035 0.303 -0.526 0.165
DWt-1 -0.016 0.143 -0.114 0.909 -0.299 0.267
DWt-2 -0.118 0.143 -0.823 0.412 -0.402 0.166
DWt-3 -0.042 0.143 -0.292 0.771 -0.324 0.241
DWt-4 0.038 0.142 0.266 0.791 -0.244 0.319
Time 0.030 0.011 2.669 0.009 0.0077 0.052



Causality in both directions

In many cases, it is not obvious which way causality should run. For instance, should
past wage inflation cause price inflation or should the reverse hold? In such cases,
when causality may be in either direction, it is important that you check for it. If Y

and X are the two variables under study, in addition to running a regression of Y on
lags of itself and lags of X (as above), you should also run a regression of X on lags
of itself and lags of Y.

Note that it is possible to find that Y Granger causes X and that X Granger causes
Y. In the case of complicated economic models, such bi-directional causality is quite
common and even reasonable. Think, for instance, of the relationship between inter-
est rates and exchange rates. It is not unreasonable from a macroeconomic perspec-
tive to say that interest rate policy may affect future exchange rates. However, it is
also equally reasonable to think that exchange rates may also affect future interest rate
policy (e.g. if the exchange rate is perceived to be too high now the central bank may
be led to decrease interest rates in the future).
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An examination of the P-values in Table 11.2 indicates that only the determin-
istic trend and last period’s price inflation have explanatory power for present
inflation. All of the coefficients on the lags of wage inflation are insignificant.
Contrary to our expectations, then, wage inflation does not seem to Granger
cause price inflation. (This conclusion is based on an examination of the indi-
vidual P-values for each coefficient. The joint test of b1 = . . . = b4 = 0 is detailed
in Appendix 11.1 and supports the conclusion that wage inflation does not
Granger cause price inflation.)

Example: Does price inflation Granger cause wage inflation?

In the previous example we used data set WP.XLS to investigate whether wage
inflation Granger causes price inflation. We found that it did not. However, it
is possible that causality runs in the opposite direction; that is, that price infla-
tion may actually cause wage inflation. After all, workers and unions often look
at past inflation and adjust their wage demands accordingly.

Table 11.3 contains results from OLS estimation of the regression of
DW = wage inflation on four lags of itself, four lags of DP = price inflation and
a deterministic trend.
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Here we do find evidence that price inflation Granger causes wage inflation.
In particular, the coefficient on DPt-1 is highly significant, indicating that last
year’s price inflation rate has strong explanatory power for wage inflation.

Table 11.3 ADL model using wage inflation as the dependent variable.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.609 0.835 -0.730 0.467 -2.262 1.044
DWt-1 0.053 0.168 0.312 0.755 -0.280 0.386
DWt-2 -0.040 0.169 -0.235 0.814 -0.374 0.294
DWt-3 -0.058 0.168 -0.348 0.728 -0.391 0.274
DWt-4 0.036 0.167 0.215 0.830 -0.295 0.367
DPt-1 0.854 0.200 4.280 3.83E - 5 0.459 1.249
DPt-2 -0.217 0.218 -0.993 0.323 -0.649 0.215
DPt-3 0.234 0.219 1.067 0.288 -0.200 0.668
DPt-4 -0.272 0.205 -1.323 0.188 -0.678 0.135
Time 0.046 0.013 3.514 0.001 0.020 0.072

Exercise 11.2

In the previous examples using the data set WP.XLS, we have set p = q = 4 (i.e.
four lags of both wage and price inflation). Using price inflation as the depen-
dent variable and the sequential testing procedure outlined in Chapter 10 select
optimal values for p and q. Discuss whether wage inflation causes price inflation
using the ADL(p, q) model you have selected. Repeat the analysis using wage
inflation as the dependent variable.

Exercise 11.3

Excel file LONGGDP.XLS contains annual data on real GDP per capita for four
of the world’s largest English-speaking countries (USA, UK, Canada and 
Australia) for the years 1870–1993.

(a) Take differences to obtain time series of the growth in GDP per capita for
each of the four countries.

(b) Investigate where GDP growth in any country Granger causes GDP growth
in any other country. For instance, does GDP growth in the US Granger
cause GDP growth in the UK? Does it in Canada?



This brief discussion of Granger causality has focussed on two variables, X and
Y. However, there is no reason why these basic techniques cannot be extended to the
case of many variables. For instance, if we had three variables, X, Y and Z, and were
interested in investigating whether X or Z Granger cause Y, we would simply regress
Y on lags of Y, lags of X and lags of Z. If say, the lags of Z were found to be sig-
nificant and the lags of X not, then we could say that Z Granger causes Y, but X
does not.

Granger causality with cointegrated variables

Testing for Granger causality among cointegrated variables is very similar to the
method outlined above. It is common to work with a variant of the error correction
model (ECM) introduced in Chapter 10:

As noted in Chapter 10, this is essentially an ADL model except for the presence of
the term let-1. Remember that et-1 = Yt-1 - a - bXt-1, an estimate of which can be
obtained by running a regression of Y on X and saving the residuals. Intuitively, X

Granger causes Y if past values of X have explanatory power for current values of
Y. Applying this intuition to the ECM, we can see that past values of X appear in the
terms DXt-1, . . . ,DXt-q and et-1. This implies that X does not Granger cause Y if
w1 = . . . = wq = l = 0. Chapter 10 discussed how we can use two OLS regressions to
estimate ECMs, and then use their P-values or confidence intervals to test for causal-
ity. Thus, t-statistics and P-values can be used to test for Granger causality in the same
way as the stationary case. Also, the F-tests described in Appendix 11.1 can be used
to carry out a formal test of H0: w1 = . . . = wq = l = 0.

In the previous paragraph we described how to test whether X Granger causes Y.
Testing whether Y Granger causes X is achieved by reversing the roles that X and Y

play in the ECM. One interesting consequence of the Granger Representation
Theorem is worth noting here (without the proof). If X and Y are cointegrated then
some form of Granger causality must occur. That is, either X must Granger cause Y
or Y must Granger cause X (or both).

D D D D DY t e Y Y X Xt t t p t p t q t q t= + + + + + + + + +- - - - -j d l g g w w e1 1 1 1 1K K .
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Exercise 11.4

Use the data on Y = consumption and X = personal income from INCOME.XLS.
Assume (perhaps incorrectly in light of Exercise 10.5) that Y and X are cointe-
grated. Test whether Y Granger causes X. Test whether X Granger causes Y.



Vector autoregressions

Our discussion of Granger causality naturally leads us to the topic of Vector Auto-
regressions or VARs. Before discussing their popularity and estimation, we will first
define what a VAR is. Initially, we will assume that all variables are stationary. If the
original variables have unit roots, then we assume that differences have been taken
such that the model includes the changes in the original variables (which do not have
unit roots). The end of this section will consider the extension of this case to that of
cointegration.

When we investigated Granger causality between X and Y, we began with a
restricted version of an ADL( p, q) model with Y as the dependent variable. We 
used it to investigate if X Granger caused Y. We then went on to consider causality
in the other direction, which involved switching the roles of X and Y in the ADL; in
particular, X became the dependent variable. We can write the two equations as
follows:

and

The first of these equations tests whether X Granger causes Y; the second, whether
Y Granger causes X. Note that now the coefficients have subscripts indicating which
equation they are in. For instance, a1 is the intercept in the first equation, and a2 the
intercept in the second. Furthermore, the errors now have subscripts to denote the
fact that they will be different in the two equations.

These two equations comprise a VAR. A VAR is the extension of the autoregres-
sive (AR) model to the case in which there is more than one variable under study.
Remember that the AR model introduced in Chapter 9 involved one dependent vari-
able, Yt, which depended only on lags of itself (and possibly a deterministic trend).
A VAR has more than one dependent variable (e.g. Y and X ) and, thus, has more
than one equation (e.g. one where Yt is the dependent variable and one where Xt is).
Each equation uses as its explanatory variables lags of all the variables under study (and
possibly a deterministic trend).

The two equations above constitute a VAR with two variables. For instance,
you can see that in the first equation Y depends on p lags of itself and on q lags
of X. The lag lengths, p and q, can be selected using the sequential testing methods
introduced in Chapter 9. However, especially if the VAR has more than two variables,
many different lag lengths need to be selected (i.e. one for each variable in each equa-
tion). In light of this, it is common to set p = q and use the same lag length for every
variable in every equation. The resulting model is known as a VAR( p) model. The
following VAR( p) has three variables, Y, X and Z:

X t Y Y X X et t p t p t q q t= + + + + + + + +- - - -a d f f b b2 2 21 1 2 21 1 2 1 2K K .

Y t Y Y X X et t p t p t q t q t= + + + + + + + +- - - -a d f f b b1 1 11 1 1 11 1 1 1K K ,
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Note that, in addition to an intercept and deterministic trend, each equation contains
p lags of all variables in study. VAR( p) models with more than three variables can be
obtained in an analogous manner.

Since we assume that all the variables in the VAR( p) are stationary, estimation 
and testing can be carried out in the standard way. That is, you can obtain 
estimates of coefficients in each equation using OLS. P-values or t-statistics will 
then allow you to ascertain whether individual coefficients are significant. You 
can also use the material covered in Appendix 11.1 to carry out more complicated 
F-tests.

VARs are, then, easy to use. However, you may be wondering why we would want
to work with such models. One reason has to be Granger causality testing. That is,
VARs provide a framework for testing for Granger causality between each set of vari-
ables. However, there are deeper reasons for why we would want to use them that we
should also mention.

Throughout this book, we have stressed the need for care when interpreting cor-
relation or regression results as reflecting causality or influence. Economic theory or
common sense can be a big help to you in many cases. In Chapters 4 and 6 we worked
through many examples about which we could comfortably say that the regressions
reflected causality. For instance, X (population density) caused Y (deforestation) or X
(lot size) influenced Y (house price). In both cases it is not plausible for us to say that
Y influenced or caused X.

However, there are many instances when neither economic theory nor 
common sense can provide you with a regression model that can be interpreted 
as reflecting causality. For instance, does Y (wage inflation) cause X (price inflation)?
Or does the opposite happen? Economic theory and common sense tells us 
that either can happen and that Granger causality tests can shed light on these 
questions. The field of macroeconomics, in particular, is filled with such examples.
Should interest rates cause exchange rates to change or vice versa? Both? Should 
GDP growth cause interest rates to change? The opposite? Both? The answers 
are unclear and it is hard to know how to interpret coefficients in a regression of
Yt on Xt.

We have so far ignored the issues of cointegration and the long run multiplier.
However, even if cointegration is present we have to be careful when interpreting

Y t Y Y X X

Z Z e

X t Y Y X X

Z

t t p t p t p t p

t p t p t

t t p t p t p t p

t

= + + + + + + +
+ + + +

= + + + + + + +
+ +

- - - -

- -

- - - -

-

a d f f b b
d d

a d f f b b
d

1 1 11 1 1 11 1 1

11 1 1 1

2 2 21 1 2 21 1 2

21 1

K K

K

K K

L

;

++ +
= + + + + + + +
+ + + +

-

- - - -

- -

d
a d f f b b
d d

2 2

3 3 31 1 3 31 1 3

31 1 3 3

p t p t

t t p t p t p t p

t p t p t

Z e

Z t Y Y X X

Z Z e

;

         .

K K

K

194 Analysis of economic data



regression results as reflecting causality. For instance, in Chapter 10 we found the
prices of Y (organic oranges) and of X (regular oranges) to be cointegrated and the
long run multiplier effect of X on Y to be 0.996. These results probably indicate that
X influenced Y (i.e. if the price of regular oranges went up by one penny, price of
organic oranges would probably rise by 0.995 pence in the long run). However, it is
unlikely that the price of organic oranges would influence regular oranges since the
former are such a small part of the market. Hence, X influences Y, but Y does not
influence X. If we had reversed things and the price of regular oranges was our
dependent variable and the price of organic oranges the explanatory variable, we
would still have found cointegration and calculated a long run multiplier. But we
would be wrong in using it as a measure of the influence of organic orange prices
on regular prices.

The issues raised in the previous paragraphs either do not arise at all or do to a 
far less extent than in the VAR models. That is, all of the variables we are using to
explain the current value of the dependent variable occurred in the past (e.g. in 
the first equation the explanatory variables are all dated t - 1 or earlier, whereas the
dependent variable is Yt). It is possible that the past might influence the present, but
it is not possible for the present to influence the past. Hence, in the VAR model,
the explanatory variables might influence the dependent variable, but there is no pos-
sibility that the dependent variable influences the explanatory variable. Problems 
of interpretation that arise with the regression of Yt on Xt do not arise in the VAR
case.6

One of the controversial things about VARs is that they are atheoretical; that is,
do not draw heavily on economic theory. Theory is limited to selecting the variables
in the VAR. Consider, for instance, the relationship between interest rates, the 
price level, money supply and real GDP. Macroeconomic theorists have created 
many sophisticated models of this relationship. The IS–LM model extended for infla-
tion is perhaps the best known, but many others do exist. Whereas the macro-
economic theorist would like this theory to influence empirical work, the VAR
practitioner does not draw on it at all. A VAR model states: “Interest rates, price level,
money supply and real GDP are related. We model this relationship as implying only
that each variable depends on lags of itself and all other variables.” There is no real
link between the empirical VAR and a theoretical macroeconomic model (e.g.
IS–LM).

The VAR user would defend the VAR by noting its excellent forecasting perfor-
mance. We will discuss this trait in greater detail below, but you should merely note
now that this constitutes a strong reason for using them. In many cases, VARs have
been shown to have better forecasting ability than sophisticated macroeconomic
models. The fact that simple regression-based methods using a computer spreadsheet
can often outperform complicated macroeconomic models that are created and main-
tained by specialists in government or the private sector, is a strong motivation for
using VARs.
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Exercise 11.5

Using the data on R, M, P and Y in RMPY.XLS:

(a) Test for unit roots in each of the variables.
(b) Test for cointegration among the variables.

Using the data on DR, DM, DP and DY in RMPY.XLS:

(c) Test for a unit root in each of the variables.

196 Analysis of economic data

Example: A VAR(1) with RMPY variables

Economists often use such important macroeconomic variables as: R = the
interest rate, M = the money supply, P = the price level and Y = real GDP. Due
to the symbols used, models using these variables are sometimes informally
referred to as RMPY models (pronounced “rumpy”). The file RMPY.XLS con-
tains quarterly data on the variables for the US from 1947Q1 through 1992Q4.
To be precise:

• R is the three-month Treasury bill rate.
• M is the money supply (M2) measured in billions of dollars.
• P is the price level measured by the GDP deflator (a price index with 1987

= 1.00).
• Y is real GDP measured in billions of 1987 dollars.

Before carrying out an analysis using time series data, you must conduct unit
root tests. Remember that, if unit roots are present but cointegration does not
occur, then the spurious regression problem exists. In this case, you should work
with differenced data. Alternatively, if unit roots exist and cointegration does
occur, then you will have important economic information that the series are
trending together.

In the present case, tests indicate that we cannot reject the hypothesis that
unit roots exist in all variables and that cointegration does not occur. In order
to avoid the spurious regression problem, we work with differenced data. In
particular, we take logs of each series, then take differences of these logged
series, then multiply them by 100. This implies that we are working with per-
centage changes in each variable (e.g. a value of 1 implies a 1% change). Thus,

• DR is the percentage change in the interest rate.
• DM is the percentage change in the money supply.
• DP is the percentage change in the price level (i.e. inflation).
• DY is the percentage change in GDP (i.e. GDP growth).



Table 11.4 presents results from OLS estimation of a VAR(1). Note that this
table is in a slightly different format from previous ones. Since there are four
variables in our VAR (i.e. DR, DM, DP and DY), there are four equations to esti-
mate. We have put results for all equations in one table. Each equation regresses
a dependent variable on one lag of all the variables in the VAR. To save space,
we have included only the OLS estimate and P-value of each coefficient.

If we examine the significant coefficients (i.e. those with P-value less than
0.05), some interesting patterns emerge. First, in every equation, the lag of the
dependent variable is significant. That is, in the equation with DRt as the depen-
dent variable, DRt-1 provides significant explanatory power. In the equation with
DMt as the dependent variable, DMt-1 provides significant explanatory power,
etc.

Secondly, the results for the four equations demonstrate some interesting pat-
terns of Granger causality. In the equation with DR as the dependent variable,
we can see that both GDP growth and money growth Granger cause interest
rate changes. In other words, past values of GDP and money growth have
explanatory power for current interest rate changes. In the case of the DR/DM

(interest rate/money supply) relationship, the equation with DM as the depen-
dent variable shows that the causality flows in both directions since interest rate
changes also Granger cause money growth. However, interest rate changes do
not Granger cause GDP growth. The Granger causality results in respect to
inflation are particularly interesting since it can be seen that inflation does not
Granger cause any other variable, but that both DR and DM Granger cause 
inflation.

A macroeconomist could use these results to address theoretical questions
of interest (e.g. Is inflation purely a monetary phenomenon? Are monetarist
views of the economy supported? Are Keynesian views of the economy sup-
ported? Is the real economy affected by inflation?, etc.), but it is beyond the
scope of this book to discuss them in detail.
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Table 11.4 The RMPY VAR(1) using DR, DM, DP and DY as dependent variables.

Dependent Dependent Dependent Dependent 
Variable DR Variable DM Variable DP Variable DY

Coeff. P-val. Coeff. P-val. Coeff. P-val. Coeff. P-val.

Intercept -3.631 0.162 0.335 0.001 0.161 0.138 0.495 0.005
DRt-1 0.222 0.003 -0.013 2.0E - 5 0.010 0.002 3.8E - 4 0.940
DMt-1 3.391 0.007 0.749 1.0E - 33 0.121 0.021 0.283 9.3E - 4
DPt-1 1.779 0.228 0.061 0.303 0.519 1.0E - 14 -0.117 0.242
DYt-1 3.224 0.004 -0.032 0.480 -0.039 0.407 0.309 7.0E - 5
Time -0.056 0.011 3.4E - 4 0.695 0.002 0.048 -0.003 0.035



Lag length selection in VARs

The results in the previous example are based on a VAR(1). That is, we set p = 1 and
used one lag of each variable to explain the dependent variable. In general, of course,
we might want to set p to values other than one. The literature on lag length selec-
tion in VARs is voluminous and most of the criteria suggested are too complicated
to be easily calculated using a spreadsheet such as Excel. If you are interested in
working extensively with VARs it would be a good idea to read further on the subject
and get familiar with an econometric computer package like MicroFit.

However, the t-stats and P-values we have used throughout this book provide
useful information on lag length. This is illustrated in the following example.
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Example: A VAR(2) with RMPY variables

In the previous example, we used data on DR, DM, DP and DY to estimate a
VAR(1). Table 11.5 repeats the analysis using a VAR(2).

Several of the coefficients on variables two periods ago are significant.
For instance, DRt-2 is significant in the equation with DRt as the dependent 
variable. This indicates that the VAR(1) used in the previous example was not
appropriate.

To give you an idea of the costs of using an incorrect model, take a careful
look at the equation with DY as the dependent variable. Recall that in the VAR(1)
model, we concluded that inflation did not Granger cause GDP growth.
However, the VAR(2) indicates that inflation does Granger cause GDP growth.
Since the relationship between GDP growth and the inflation rate is the source
of much controversy in modern macroeconomics, the cost of incorrectly using
a VAR(1) is quite large.

Table 11.5 The RMPY VAR(2) using DR, DM, DP and DY as dependent variables.

Dependent Dependent Dependent Dependent
Variable DR Variable DM Variable DP Variable DY

Coeff. P-val. Coeff. P-val. Coeff. P-val. Coeff. P-val.

Intercept -4.000 0.103 0.261 0.017 0.113 0.311 0.513 0.006
DRt-1 0.315 1.9E - 5 -0.017 3.6E - 7 0.009 0.004 0.002 0.670
DMt-1 2.824 0.106 0.655 8.E - 15 0.086 0.280 0.310 0.019
DPt-1 3.049 0.061 -0.020 0.785 0.366 1.6E - 6 0.074 0.545
DYt-1 3.696 4.6E - 4 -0.051 0.270 -0.010 0.835 0.270 0.001
DRt-2 -0.346 4.5E - 6 0.003 0.298 -0.001 0.795 -0.010 0.085
DMt-2 -2.201 0.213 0.157 0.045 0.025 0.755 -0.094 0.480
DPt-2 1.164 0.457 0.095 0.170 0.282 1.0E - 4 -0.233 0.049
DYt-2 1.085 0.303 0.036 0.445 -0.046 0.334 0.153 0.054
Time -0.045 0.029 -2.0E - 4 0.798 0.001 0.209 -0.003 0.104
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Exercise 11.6

Using the results in Table 11.5, discuss Granger causality among all the variables
in the model.

The previous example illustrated the importance of correct lag length selection in
a VAR(p). In the absence of further study of this issue, we recommend you use the
following sequential testing strategy.

Step 1. Choose the maximum possible lag length, pmax, that seems reasonable to you.
Step 2. Estimate a VAR( pmax). If any of the variables lagged pmax periods are signif-

icant, use the VAR( pmax), otherwise proceed to the next step.
Step 3. Estimate a VAR( pmax - 1). If any of the variables lagged pmax - 1 periods are

significant, use the VAR( pmax - 1), otherwise proceed to the next step.
Step 4. Estimate a VAR( pmax - 2). If any of the variables lagged pmax - 2 periods 

are significant, use the VAR( pmax - 2), otherwise proceed to the next step and
try pmax - 3, etc.

Exercise 11.7

Use the variables DR, DM, DP and DY from RMPY.XLS.

(a) Beginning with pmax = 5, select an appropriate lag length for a VAR.
(b) Using your result from (a), discuss Granger causality among the variables

DR, DM, DP and DY.

Exercise 11.8

Excel file LONGGDP.XLS, as you will recall, contains annual data on real GDP
per capita for four of the largest English-speaking countries (USA, UK, Canada
and Australia) for the years 1870–1993. Take differences to obtain time series
of the growth in GDP per capita for each of the four countries. Construct a
VAR using this data.



Forecasting with VARs

We have said very little in the book so far about forecasting, despite the fact that this
is an important activity of economists. There are two main reasons for omitting the
topic. First, the field of forecasting is enormous. Given the huge volume of research
and issues to consider, it is impossible to do justice to the field in a book like this.7

Second, basic forecasting using the computer is either very easy or very hard, depend-
ing on what computer software you have. To be precise, many computer packages
(e.g. MicroFit) have forecasting facilities that are simple to use. Once you have esti-
mated a model (e.g. a VAR or an AR), you can forecast simply by clicking on an appro-
priate option. In other words, many computer packages can allow you to undertake
basic forecasting without a deep knowledge of the topic. However, spreadsheets such
as Excel typically do not have forecasting capabilities for the models used in this book.
It is possible to calculate forecasts, but it is awkward, involving extensive typing of
formulae.

In light of these issues, we will offer only a brief introduction to some of the prac-
tical issues and intuitive ideas relating to forecasting. All our discussion will relate to
forecasting with VARs but it is worth noting that the ideas also relate to forecasting
with univariate time series models. After all, an AR model is just a VAR with only one
equation.

Forecasting is usually done using time series variables. The idea is that you use 
your observed data to predict what you expect to happen in the future. In more tech-
nical terms, you use data for periods t = 1, . . . , T to forecast periods T + 1, T + 2,
etc.

To provide some intuition for how forecasting is done, consider a VAR(1) involv-
ing two variables, Y and X:

and

You cannot observe YT+1 but you want to make a guess of what it is likely to be. Using
the first equation of the VAR and setting t = T + 1, we obtain an expression for YT+1:

This equation cannot be directly used to obtain YT+1 since we don’t know what e1T+1

is. In words, we don’t know what unpredictable shock or surprise will hit the economy
next period. Furthermore, we do not know what the coefficients are. However, if we
ignore the error term (which cannot be forecast) and replace the coefficients by OLS
estimates we obtain a forecast which we denote as ŶT+1:

If you are working in a spreadsheet such as Excel, note that everything in the formula
for ŶT+1 can be taken from either the original data or from the output from the regres-

ˆ ˆ ˆ ˆ ˆ .Y T Y XT T T+ = + +( )+ +1 1 1 11 111a d f b

Y T Y X eT T T T+ += + +( )+ + +1 1 1 11 11 1 11a d f b .

X t Y X et t t t= + + + +- -a d f b2 2 21 1 21 1 2 .

Y t Y X et t t t= + + + +- -a d f b1 1 11 1 11 1 1 ,
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sion command. It is conceptually easy just to plug in all the individual numbers (i.e.
the OLS estimates of the coefficients and YT, XT and T + 1) into a formula to cal-
culate ŶT+1. A similar strategy can be used to obtain X̂T+1. You can see how, in prac-
tice, calculating these forecasts in this way can be awkward and time consuming.
Hence, if you plan on doing more forecasting, we stress that it is preferable to avoid
spreadsheets such as Excel and work with specialized econometrics packages such as
MicroFit.

The previous paragraph described how to forecast one period into the future. We
can use the same strategy for two periods, provided that we make one extension. In
the one period case, we used XT and YT to create ŶT+1 and X̂T+1. In the two period
case, ŶT+2 and X̂T+2 depend on YT+1 and XT+1. But since our data only runs until period
T, we do not know what YT+1 and XT+1 are. Consequently, we replace YT+1 and XT+1

by ŶT+1 and X̂T+1. That is, use the relevant equation from the VAR, ignore the error,
replace the coefficients by their OLS estimates and replace past values of the vari-
ables that we do not observe by their forecasts. In a formula:

The above equation can be calculated in a spreadsheet, although somewhat awk-
wardly. X̂T+2 can be calculated in a similar manner using the formula:

We can use the general strategy of ignoring the error, replacing coefficients by OLS
estimates and replacing lagged values of variables that are unobserved by forecasts,
to obtain forecasts for any number of periods in the future for any VAR(p).

The previous discussion demonstrated how to calculate point estimates of fore-
casts. Of course, in reality, what actually happens is rarely identical to your forecast.
In Chapter 5, we discussed a similar issue. There we pointed out that OLS provides
estimates only of coefficients, and that these will not be precisely correct. For this
reason, in addition to OLS estimates, we also recommended that you present confi-
dence intervals. These reflect the level of uncertainty about the coefficient estimate.
When forecasting, confidence intervals can also be calculated, and these can be quite
informative. It is increasingly common for government agencies, for instance, to
present confidence intervals for their forecasts. For example, the Bank of England
can be heard on occasion to make statements of the form: “Our forecast of infla-
tion next year is 1.8%. We are 95% confident that it will be between 1.45% and
2.15%”. Many computer packages automatically provide confidence intervals and,
thus, you do not need to know their precise formula when forecasting. If you are
using a spreadsheet, the formula is fairly complicated and it would be awkward to cal-
culate, which is why we do not present it here.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .X T Y XT T T+ + += + +( )+ +2 2 2 21 1 21 12a d f b

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .Y T Y XT T T+ + += + +( )+ +2 1 1 11 1 11 12a d f b
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To aid in interpretation, note that all figures are percentage changes over the
quarter. For example, the forecast for inflation for 1992Q2 of 0.731 translates
into a 2.96% annual inflation rate. The table indicates that the VAR(2) did rea-
sonably well at forecasting inflation, except for 1992Q3, when actual inflation
was unusually low. The forecasting performance for GDP growth is not quite
as good, with our VAR consistently predicting slower growth than had actually
occurred.
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Example: A VAR(2) with RMPY variables 

(continued from page 198)

In this example, we consider forecasting using the data on DR, DM, DP and DY

from RMPY.XLS. As above, we use a VAR(2), recalling that we have data on these
variables from 1947Q2 to 1992Q4. A common practice is to withhold some
data with which to compare forecasts. Here we use data from 1947Q2 to
1991Q4 to estimate the VAR(2). We forecast from 1992Q1 to 1992Q4, and then
compare our forecasts for the year 1992 to what actually happened in 1992.
Doing so will give us some idea of the forecast performance of our model.

Table 11.6 contains the forecasts and actual observations for 1992 for infla-
tion and GDP growth (unlike all the other empirical examples in this book,
these forecasts were calculated using MicroFit rather than Excel).

Table 11.6 Forecasts of inflation and GDP growth for 1992 using a RMPY VAR(2).

DP DY

Forecast Actual Forecast Actual

1992Q1 0.626 0.929 -0.019 0.865
1992Q2 0.731 0.689 0.220 0.698
1992Q3 0.862 0.289 0.275 0.838
1992Q4 0.940 0.813 0.271 1.393

Exercise 11.9

It is recommended that you do this question and others involving forecasting
only if you have access to an econometrics computer package that is capable of
doing forecasts. If you are working with a spreadsheet such as Excel this ques-
tion will be difficult.



Exercise 11.10

Using the data in Exercise 11.8 and the VAR constructed therein, carry out a
forecasting exercise for GDP growth for the four included countries. Experi-
ment with various forecast horizons. Does the VAR forecast well?

Use the variables DR, DM, DP and DY from RMPY.XLS.

(a) In the previous example, we used a VAR(2). Using a VAR( p) for 
various values of p (e.g. p = 1, 3, 4) construct forecasts for the year 1992.
Do any of the VARs you worked with produce better forecasts than in Table
11.6?

(b) In the previous example, data from 1947Q2 to 1991Q4 was used to esti-
mate the VAR, which was then used to forecast from 1992Q1 to 1992Q4.
Redo the above example using data from 1947Q2 to 1990Q4 to forecast
1991Q1 to 1992Q4 (i.e. forecast for two years instead of one).

(c) Try forecasting for longer and longer periods. For instance, in (b) you fore-
casted for two years. Now try three years, four years, five years, etc. Discuss
your results. Do your results suggest that VARs are better at forecasting a
short period ahead than a long period?

Vector autoregressions with cointegrated variables

In the preceding discussion of VARs we assumed that all variables are stationary. If
some of the original variables have unit roots and are not cointegrated, then the ones
with unit roots should be differenced and the resulting stationary variables should be
used in the VAR. This covers every case except the one where the variables have unit
roots and are cointegrated.

Recall that in this case in the discussion of Granger causality, we recommended
that you work with an ECM. The same strategy can be employed here. In 
particular, instead of working with a vector autoregression (VAR), you should work
with a vector error correction model (VECM). Like the VAR, the VECM will have
one equation for each variable in the model. In the case of two variables, Y and X,
the VECM is:
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Exercise 11.11

For this question, use the data on regular and organic orange prices in
ORANGE.XLS.

(a) Starting with pmax = 4, select a lag length for the VECM and estimate each
equation using OLS.

(b) Using the VECM from part (a), carry out a forecasting exercise. Experiment
with various forecast horizons. Does the VAR forecast well?

and

As before, et-1 = Yt-1 - a - bXt-1. Note that the VECM is the same as a VAR with
differenced variables, except for the term et-1. An estimate of this error correction
variable can be obtained by running an OLS regression of Y on X and saving the
residuals. We can then use OLS to estimate ECMs, and P-values and confidence inter-
vals can be obtained. Lag length selection and forecasting can be done in a similar
fashion to the VAR, with the slight added complication that forecasts of the error
correction term, et, must be calculated. However, this is simple using OLS estimates
of a and b and replacing the error, et, by the residual ut.
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Exercise 11.12

Use the data on Y = consumption and X = personal income from INCOME.XLS.

(a) Assume (perhaps incorrectly in light of Exercise 10.5) that Y and X are coin-
tegrated. Repeat the steps in Exercise 11.11 to carry out a forecasting exer-
cise.

(b) Now assume that Y and X have unit roots but are not cointegrated.
Construct a VAR using differenced data (i.e. DY and DX ) and carry out a
forecasting exercise.

(c) Compare results from part (a) and (b). What effect does assuming (possibly
incorrectly) cointegration have on forecasting performance?



Appendix 11.1: Hypothesis tests involving more than

one coefficient

In Chapters 5 and 6 we discussed the F-statistic, which was used for testing the
hypothesis R2 = 0 in the multiple regression model:

We discussed how this was equivalent to testing H0: b1 = . . . = bk = 0 (i.e. whether all
the regression coefficients are jointly equal to zero). We also discussed testing the sig-
nificance of individual coefficients using t-statistics or P-values.

Y X X X ek k= + + + + +a b b b1 1 2 2 K .
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Chapter summary

1. Many time series variables, particularly asset prices, seem to exhibit random
walk behavior. For this reason, it is hard to predict how they will change
in the future. However, such variables often do exhibit predictable patterns
of volatility.

2. The square of the change in an asset price is a measure of its volatility.
3. Standard time series methods can be used to model the patterns of volatil-

ity in asset prices. The only difference is that volatility of the asset price is
used as the variable of interest rather than the asset price itself.

4. X Granger causes Y if past values of X have explanatory power for Y.
5. If X and Y are stationary, standard statistical methods based on an ADL

model can be used to test for Granger causality.
6. If X and Y have unit roots and are cointegrated, statistical methods based

on an ECM can be used to test for Granger causality.
7. Vector autoregressions, or VARs, have one equation for each variable being

studied. Each equation chooses one variable as the dependent variable.
The explanatory variables are lags of all the variables under study.

8. VARs are useful for forecasting, testing for Granger causality or, more gen-
erally, understanding the relationships between several series.

9. If all the variables in the VAR are stationary, OLS can be used to estimate
each equation and standard statistical methods can be employed (e.g. P-
values and t-statistics can be used to test for significance of variables).

10. If the variables under study have unit roots and are cointegrated, a variant
on the VAR called the Vector Error Correction Model, or VECM, should
be used.



However, we have no tools for testing intermediate cases (e.g. in the case k = 4,
we might be interested in testing H0: b1 = b2 = 0). Such cases arose in our discussion
of Granger causality (e.g. we had a regression model with four lags of price inflation,
four lags of wage inflation and a deterministic trend and we were interested in testing
whether the coefficients on the four lags of wage inflation were all zero). The purpose
of this appendix is to describe a procedure and a rough rule of thumb for carrying
out these kind of tests.

The F-statistic described in Chapter 5 is more properly referred to as an F-
statistic since it is only one of an enormous class of test statistics that take their crit-
ical values from statistical tables for the F-distribution. In this book, as you know by
now, we have provided little statistical theory, and do not describe how to use statis-
tical tables. However, if you plan to do much work in Granger causality testing, you
are well-advised to study a basic statistics or econometrics book to learn more about
the statistical underpinnings of hypothesis testing.

To understand the basic F-testing procedure we introduce a distinction between
unrestricted and restricted regression models. That is, most hypotheses you would
want to test place restrictions on the model. Hence, we can distinguish between the
regression with the restrictions imposed and the regression without. For instance, if
the unrestricted regression model is:

and you wish to test the hypothesis H0: b2 = b4 = 0, then the restricted regression
model is:

The general strategy of hypothesis testing is that a test statistic is first calculated and
then compared to a critical value. If the test statistic is greater than the critical value
(in an absolute value sense) then you reject the hypothesis; otherwise, you accept the
hypothesis. In short, there are always two components to a hypothesis testing proce-
dure: a test statistic and a critical value.

Here the test statistic is usually called the F-statistic and is given by:

where and are the R2s from the unrestricted and restricted regression models,
respectively. J is the number of restrictions (e.g. J = 2 in our example since b2 = 0 and
b4 = 0 are two restrictions). T is the number of observations; and k is the number of
explanatory variables in the unrestricted regression.

Note that the F-statistic can be obtained by running the unrestricted and 
restricted regressions (e.g. regress Y on X1, X2, X3 and X4 to get , then 
regress Y on X1 and X3 to get ) and then calculating the above formula using a
spreadsheet or calculator. Some specialist econometric packages (e.g. MicroFit) 
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will calculate the F-statistic for you automatically if you specify the hypothesis being
tested.

Obtaining the critical value with which to compare the F-statistic is a more prob-
lematic procedure. Formally, the critical value depends on T - k and J. Table 11.7
contains critical values which you may use as a rough rule of thumb if T - k is large.

For instance, if you have a large number of observations, are testing J = 2 restric-
tions (i.e. b2 = 0 and b4 = 0), and you want to use the 5% level of significance, then
you will use a critical value of 3.00 with which to compare the F-statistic.

To aid in interpretation, note that the case J = 1 has not been included since testing
only one restriction is something that the t-statistic already does. Note also that the
critical values always get smaller as the number of restrictions increases. This fact can
be used to approximate critical values for values of J that are not included in Table
11.7.

For instance, the critical value for testing J = 7 restrictions will lie somewhere
between the critical values for the restrictions J = 5 and J = 10 given in Table 11.7.
In many cases, knowing that the correct critical value lies between two numbers will
be enough for you to decide whether to accept or reject the hypothesis. Consequently,
even though Table 11.7 does not include every possible value for J, you may be able
to use it if J differs from those above.

Formally, the critical values in the previous table are correct if T - k is equal to
infinity. The correct critical values for T - k > 100 are quite close to these. To give
you an idea of how bad an error may be made if T - k < 100, Table 11.8 gives the
correct critical values if T - k = 40.

As you can see, these critical values are all somewhat larger than those given in the
table for T - k equal to infinity. You may want to use these if your value for T - k is
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Table 11.7 Critical values for F-test if T - k is large.

Significance level J = 2 J = 3 J = 4 J = 5 J = 10 J = 20

5% 3.00 2.60 2.37 2.21 1.83 1.57
1% 4.61 3.78 3.32 3.02 2.32 1.88

Table 11.8 Critical values for F-test if T - k is 40.

Significance level J = 2 J = 3 J = 4 J = 5 J = 10 J = 20

5% 3.23 2.92 2.69 2.53 2.08 1.84
1% 5.18 4.31 3.83 3.51 2.80 2.37



about 40. However, we also report them here to get some idea of the error that may
result if you use the large sample critical values. For instance, if J = 2, T - k = 40 and
you obtain an F-statistic of 4 then using either table is fine: both state that the hypoth-
esis should be rejected at the 5% level of significance. However, if the F-statistic were
3.1 you would incorrectly reject it using the large sample table.

In summary, you can safely use the methods and tables given in this appendix in
the following cases:

1. If your sample size is large relative to the number of explanatory variables (e.g.
T - k > 100) the large sample table above is fine.

2. If T - k is approximately 40 the T - k = 40 table is a safe choice.
3. If T - k is neither large, nor approximately 40, you are still safe using T - k = 40

table, provided your test statistic is not close to the critical value and provided 
T - k is not extremely small (e.g. T - k < 10).

Generally speaking, so long as you have either a large number of data points or your
data does not fall into one of these “borderline” cases, you should not be led astray
by using the methods outlined in this appendix.
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Example: Granger causality with price and wage inflation data

In the body of this chapter, we carried out Granger causality tests using price
and wage inflation data. We found that wage inflation did not Granger cause
price inflation, but that price inflation did Granger cause wage inflation. Here,
we will investigate whether these conclusions still hold by carrying out the
correct F-tests for Granger causality.

Consider first whether wage inflation Granger causes price inflation. In the
body of the chapter we use the following unrestricted model where Y = price
inflation and X = wage inflation:

T = 1288 and k = 9 (i.e. p = q = 4 plus we have the deterministic trend in the
model). OLS estimation of this model yields = 0.616.

The hypothesis that Granger causality does not occur is H0: b1 = . . . = b4 =
0 which involves four restrictions; hence J = 4. The restricted regression model
is:

OLS estimation of this model yields = 0.613.
Using these numbers we calculate that the F-statistic is 0.145. Since T - k =

119 and is large, we can compare 0.145 to a critical value of 2.37. Since 0.145

RR

2

Y t Y X et t t t= + + + + +- -a d f f1 1 4 4K .

RU

2

Y t Y Y X X et t t t t t= + + + + + + + +- - - -a d f f b b1 1 4 4 1 1 4 4K K .



Applications of time series methods in macroeconomics and finance 209

< 2.37 we cannot reject the hypothesis at the 5% level of significance. Accord-
ingly, we accept the hypothesis that wage inflation does not Granger cause price
inflation.

To test whether price inflation Granger causes wage inflation we repeat the
steps above except that now wage inflation is the dependent variable and price
inflation the explanatory variable. If we use OLS to estimate the restricted and
unrestricted regressions, we obtain = 0.605. and = 0.532. Note that the
other elements in the formula for the F-statistic do not change. Plugging these
numbers into the equation for the F-statistic yields f = 33.412, which is much
larger than either the 1% or 5% critical values. In this case, we can safely reject
the hypothesis that b1 = . . . = b4 = 0 and conclude that price inflation does
Granger cause wage inflation.

Note that the findings that wage inflation does not Granger cause price infla-
tion but that price inflation does Granger cause wage inflation, are exactly the
same as given in the body of the chapter.
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Endnotes

1. Of course, this is not the only model of stock price behavior. Some of these models do
not imply random walk behavior exists. This is not the place to provide a complete dis-
cussion of the so-called market efficiency literature. It is sufficient to note here that the
random walk hypothesis is very popular and has had great empirical success in many 
contexts.

2. After all, investors hold stocks because they hope to make money from them. Investors
make money from stocks if they appreciate in value or if they pay dividends. Hence,
expected appreciation in value is usually a major reason for investors to hold stocks. If it
were not for these factors, investors would put their money in safer assets (e.g. bonds).

3. The financial economist who is reliably able to predict which stock prices are likely to rise
the most would probably be rich rather than spending his/her time writing an empirical
report about stock prices.

4. In deriving this result we have ignored the N - 1 term in the denominator in the formula
introduced in Chapter 2. You should simply note that it is not important here. In some
formulae for the variance, N - 1 is replaced by N. Here, N = 1 so we can just ignore it.

5. Note that the variable Xt has been omitted from this ADL( p, q) model. The reason is
because Granger causality tests seek to determine whether past – not current –values of
X can explain Y. If we were to include Xt we would be allowing for contemporaneous
causality and all the difficulties noted previously in this book about interpreting both cor-
relations and regressions as reflecting causality would hold. You may also be wondering
why we are using this ADL( p, q) model as opposed to the variant in which DYt is the depen-
dent variable (see Chapter 10). The reason is that it is easier to interpret Granger causality
in this basic ADL( p, q) model as implying coefficients are equal to zero. We could have
covered all the material in this section using our previous ADL( p, q) variant, but this would
have led to some messy hypothesis tests.



6. A more formal way of expressing the ideas in this paragraph is that VARs do not suffer
from problems of simultaneity. This is a topic which is briefly discussed in Chapter 12
in the section called “Problems which call for the use of multiple equation models”.

7. One introductory text is Time Series Models for Business Economics and Forecasting, by Philip
Hans Franses (Cambridge University Press, 1998).

8. Remember that differencing variables and including lagged variables in a regression
decreases the number of observations, which is why T = 128 rather than T = 133.
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C H A P T E R

Limitations and extensions

Regression and its related techniques are quite powerful in that they are suited to the
practical solution of a wide variety of economic problems. Nevertheless, if they were
perfectly suited to solving every problem, econometricians and statisticians who seek
to develop new tests, models and estimators would find themselves out of a job! This
chapter briefly introduces some limitations of OLS regression methods and appro-
priate extensions designed to deal with them. As will be seen, some cases do not imply
so much that OLS is the wrong method as that better estimators exist and should be
used. In other cases, the use of OLS is strictly erroneous and should be avoided.

It is quite important to distinguish between these two cases – i.e. cases where the
use of OLS represents the second best option versus cases where its use is just plain
wrong. Further study is required to identify and understand how to carry out 
empirical work in these different cases, especially those where the OLS should never
be used.

It is not the purpose of this chapter to develop methods for dealing with every
problem case. A thorough treatment of all of these cases would fill several textbooks
– well beyond the introductory scope of this book! Rather, it seeks to introduce a
few general cases and their terminology so that you will at a minimum be able to rec-
ognize problem cases when they arise as well as know where to look for further study.

The problems can be loosely grouped into the following three areas, each of which
we discuss in turn below: (1) problems that occur when the dependent variable has
particular forms; (2) problems that occur when the errors have particular forms; and
(3) problems that call for the use of multiple equation models.

If you go beyond the techniques described in previous chapters, and learn about
the new models and estimators discussed in this chapter, you will quickly realize that
it will be difficult to continue using Excel. Fortunately, many other specialized econo-

12



metrics packages (e.g. SHAZAM, PcGive, MicroFit, TSP, E-views, Gauss, LIMDEP,
Stata) on the market have better capabilities. If you plan on doing a great deal of
empirical work in the future you should learn how to use one or more of these soft-
ware packages.

Problems that occur when the dependent variable

has particular forms

Consider the simple regression model:

You may or may not have noticed that, in previous chapters, we focussed a great deal
on cases where Y is a real number that can take on any value (e.g. sales price of a
house, percentage change in forest, GDP per capita). However, you will no doubt
already have or will in the future come across cases where the dependent variable has
a more restricted form. This form has implications for estimation. Here we list the
most common cases.

1. Y is a dummy variable. This case is discussed at the end of Chapter 7. To sum-
marize, it usually arises when the dependent variable is a choice (e.g. to take or not
to take public transport, to choose or not to choose a specific occupation). When
the dependent variable takes this form, OLS estimation is probably adequate for
at least a crude summary of the information in the data, but better estimators do
exist. Two are Probit and Logit. Note that in other books, the terminology,
limited dependent variable, qualitative choice, discrete dependent variable

or dummy dependent variable models refer to this case. These are the chapter
headings or index entries you should look for in an econometrics textbook if you
want to learn more about these kinds of models. Cases where Y is a proportion
(i.e. Y is a number between 0 and 1) or where many choices exist can also be
handled using these sorts of methods.

2. Y is censored. These cases arise when values of Y below or above a particular
cut-off are recorded as that cut-off point. For instance, it is common in income
surveys to report every person’s income in a survey of household consumption,
with the exception of the very richest group of people, which is usually recorded
as being over some amount (e.g. £100,000). So an individual making £20,000 will
be recorded as £20,000, but an individual making £200,000 will be recorded as
£100,000. As a second example, suppose that your dependent variable is the
desired investment level of a firm but that all you can observe is actual

investment by the firm. If actual investment cannot be negative, then all firms 
with a negative level of desired investment will be recorded as having zero 
investment.

Y X e= + +a b .
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If your dependent variable is censored then OLS estimation can be misleading.
In statistical jargon, OLS will be biased.1 The degree of bias will increase with the
proportion of observations censored. If only a few of your data points are cen-
sored, the use of OLS might be acceptable. But if the proportion of the obser-
vations that are censored is high, then OLS should definitely not be used. In these
cases, it is standard practice to use the tobit estimator. In econometric textbooks,
this case will usually be addressed under the heading of limited dependent vari-

able models.
3. Y is a non-negative integer. This usually arises when the dependent variable is

the number of times an event occurs. For instance, Y might measure the number
of defects in a production process in a given week. Alternatively, Y might measure
the number of patents taken out by a firm in a given year. If the dependent 
variable has this form, then OLS estimation is probably adequate, but better
approaches do exist. The phrase count data models is what you should look for
in textbooks if you are interested in this area of the econometric literature.

4. Y measures a duration. This case is common in labor economics where the
dependent variable is often the time spent in a certain state. For instance, a labor
economist might be interested in explaining why some unemployed individuals
find work faster than others. In this case, the dependent variable is the duration
of unemployment for each individual (i.e. the time spent before the individual
finds a job). Another common example involves the analysis of industrial actions
where the duration of strikes is the dependent variable. In such cases, OLS esti-
mation of a regression is not automatically wrong or misleading. However, other
better models have been developed and probably should be used. The phrase
duration models is what you should look for in textbooks if you are interested
in this area of the econometrics literature.

The four cases listed above are probably the most common in this special category
of empirical economic problems. Only in the case of a censored dependent variable
will OLS necessarily be misleading. Nevertheless, it would be wise in all such cases
for you to do some supplementary reading and consider using a computer software
package other than Excel.

Problems that occur when the errors have 

particular forms

We have not said too much about the error terms in this book, other than to note
that they measure the distance between an observation and the regression line. There
is a large literature discussing which estimator is the best when different statistical
assumptions about the errors are made. Here we will not discuss the underlying sta-
tistical theory of these techniques in any detail. Instead, we will introduce just enough
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intuition and jargon to explain why these problems occur and highlight what words
you should look for in an econometrics textbook if you are to do future research in
this area.

We will begin by noting that OLS is the most common estimator for the regres-
sion model. It is very robust (i.e. works well) under many different statistical assump-
tions. Nevertheless, it is really only optimal if all the errors have, in a sense, the same
properties.2 In other cases, you may get more reliable estimates by using a general-

ized least squares (or GLS) estimator. By way of providing an intuitive under-
standing of the GLS estimator, we will begin by considering a problem known as
heteroskedasticity.

Suppose you are interested in estimating a cross-country growth regression where
the dependent variable is the average GDP growth rate in each of N countries. The
explanatory variables include the level of education, investment, savings rate, and so
on, for each country. Suppose that you include many developed countries (e.g. USA,
UK, Germany) as well as many less-developed countries (e.g. Sudan, Angola, Haiti).
Developed countries tend to have large, well-financed government statistical organi-
zations that collect data on GDP (among many other things) and, consequently, GDP
tends to be measured with reasonable accuracy. In contrast, less-developed countries
often lack well-financed data gathering agencies and have large informal or subsis-
tence economies. As a result, official GDP data is often inaccurately measured. What
are the implications of this data collection characteristic for OLS estimation?

First, it implies that the errors, e, for the less-developed countries may tend to be
larger than for the developed countries. This phenomenon is known as het-

eroskedasticity.3 Second, we may wish to attach more weight to the evidence of the
developed countries since their data is probably more accurate than is comparable
data for the less-developed countries. This is precisely what the GLS estimator does.
In fact, the GLS estimator can be interpreted as the OLS estimator using reweighted
data. Instead of using Y and X in the formula for the OLS estimator, GLS implicitly
creates new data (say, Y* and X*) that places more weight on developed countries
and less weight on less developed countries.

If you do more work in econometrics, you will learn precisely what we mean by
“reweight”. It is sufficient for you merely to note at this stage that OLS is still a good
estimator,4 but that GLS is better if heteroskedasticity is present. You can reweight
the data and use GLS in Excel, but with most data sets this will be awkward, and you
will be better off using another computer package.

In addition to heteroskedasticity there are other data problems that have similar
intuition and implications for the choice of methods in an analysis (i.e. OLS is suit-
able, but GLS is better). The best known of these occurs when the errors are auto-

correlated. The concept of autocorrelation was introduced in Chapter 9. The
difference here is that et, rather than Yt, is correlated with lags of itself. If you have
correctly specified lag length (i.e. p in the AR( p) or p and q in the ADL( p, q)), then
autocorrelation of the errors is unlikely to be a problem. However, if it is, then GLS
estimation will produce more reliable estimates than will OLS. Excel cannot easily
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carry out GLS in this case, but most specialist econometrics packages can quite
straightforwardly.

The above are all cases where OLS is probably adequate, but other estimators are
better suited to the application. Yet there is one prominent case where error prob-
lems mean that the use of OLS is misleading. This occurs if the error is correlated
with the explanatory variables. You will not have much understanding about why this
case may cause problems and when it may occur. However, some graphical intuition
is given in Figure 12.1, which illustrates a case where the errors are positively corre-
lated with the explanatory variable. The true regression line is marked on the graph
with a solid line labeled Y = a + bX. The positive correlation between X and the
errors means that high values of X are associated with high (i.e. positive) errors, and
low values of X with low (i.e. negative) errors. The XY-plot will thus be of the form
given in Figure 12.1, with data points lying below the true regression line for low
values of X and above it for high values of X. In other words, Figure 12.1 is drawn
in such a way that the errors are all negative for low values of X and positive for all
high values of X. OLS will fit a line through the data points, ending up as the labeled
line (“OLS line”) in Figure 12.1. Given that this dotted line has a different slope and
intercept than the true regression line, OLS is clearly inappropriate in this case.

The most common case where the explanatory variables and errors are correlated
is the simultaneous equations model. This topic will be dealt with in the next
section. You should merely note at this stage that if the error is correlated with the
explanatory variables, then you should not use OLS. Instead you should learn about
and use instrumental variables estimators.
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Problems that call for the use of

multiple equation models

Throughout this book, we have focussed on the one-equation regression model. In
practice, it is not uncommon to have several dependent variables and, thus, several
regression models (sometimes called systems of equations). A few examples will
serve to illustrate when such applications arise.

1. Imagine that you have collected cross-sectional data on the production of a
number of firms. In particular, you observe the amount of labor, capital, energy
and materials inputs, as well as the price of each input. You are interested in
explaining the input choices of firms. Here you have four different dependent vari-
ables (i.e. labor, capital, energy and materials) all of which depend on the prices
of the inputs. You would have a separate regression equation for each dependent
variable and, thus, four different equations.

2. Imagine that you have time series data on consumption, broken down into its
sources (e.g. consumption of food, transport, housing, clothing, durables, etc.).
You are interested in how these various components of consumption depend on
the state of the economy. In this case you will have many dependent variables 
(e.g. consumption of food, transport, housing, etc.) and will use macroeconomic
variables such as GDP, interest rates, etc., as your explanatory variables. Each
dependent variable will imply a different regression equation.

3. In a finance application, you may be interested in explaining the stock returns of
many different firms. In this case, you may have many different dependent vari-
ables (i.e. the stock return for each firm) dependent on explanatory variables such
as the interest rate, and so on.

4. The vector autoregressive (VAR) model discussed in Chapter 11 is a multiple equa-
tion model. In this model, Y depends on lags of itself and on lags of another vari-
able, X. It also has a second equation, in which X is the dependent variable and
the latter depends on lags of Y and lags of itself.

5. The IS–LM model will be well known to those who have taken macroeconomics.
Note that it is based on two equations (IS and LM).

6. The model of supply and demand is also a standard one in economics. This 
model has two equations: one being the supply curve and the other the demand
curve.

To anticipate the essential point of this section, it is only the last two of these exam-
ples that will cause major problems for OLS estimation.

To understand the issues that arise in multiple equation systems, we must intro-
duce a few concepts that you may be familiar with from previous economic training.
A variable is endogenous if it is determined within the model under study. It is
exogenous if it is not.
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These concepts are closely related to the causality issues raised in Chapter 4. Recall
that we stressed that regression is most easily interpreted if the explanatory variable
causes the dependent variable (and not the opposite). In other words, the regression
model assumes Y is determined by what happens to X. We did not specify how X
was generated. In this case, Y, the dependent variable, is endogenous and X, the
explanatory variable, was assumed to be exogenous. Intuitively speaking, as long as
your explanatory variables are exogenous the use of OLS estimation is fine, even if
you have many equations. However, if your explanatory variables are endogenous,
then you should not carry out OLS estimation.

A few examples should further clarify these ideas.

1. In Chapters 6 and 7 we regressed house prices on a variety of house characteris-
tics. House prices, Y, depend on the characteristics of a house, X (e.g. houses with
more bedrooms tend to have higher prices). However, the characteristics of a
house do not depend on the price of a house (e.g. if the housing market collapsed
and the price of a house dropped, it would not cause the house to have fewer bed-
rooms or bathrooms). X causes Y but Y does not cause X; X is exogenous and Y
is endogenous.

2. Firms choose the levels of their inputs based on the prices of the inputs (e.g. if
wages are low relative to the price of buying new machinery, they would tend to
hire workers rather than buy new machines). The latter prices determine or cause
the input choice. But the input choice of a firm does not affect the price of the
inputs. For instance, in competitive markets at least, if the firm hires some extra
workers, that action will not cause wages to rise. So in a model designed to explain
input choice, inputs will be endogenous (determined by the model) but input
prices will be exogenous.

3. If you solve an IS–LM model, you typically come up with answers for national
income and for the interest rate. That is, national income and the interest rate are
both determined (or solved) in the model. When econometricians seek to estimate
IS–LM models they use these two variables (among others). Note that they are
both endogenous (the model determines both).

4. In a supply–demand model, equilibrium price and quantity occurs where the
supply curve intersects the demand curve. Both the price and the quantity of the
good supplied and demanded in a market are determined by the model. Hence
both price and quantity are endogenous.

For the rest of this section we will let Y indicate an endogenous, and X an exoge-
nous, variable. If we have more than one of these variables, we will use the notation
Y1, . . . , YM and X1, . . . , XK to indicate M endogenous and K exogenous variables.
Following is a quick taxonomy of possible cases:

1. The regression model Y = a + b1X1 + . . . + bKXK + e has been discussed in detail
in this book. OLS estimation of this model can be carried out with ease.5

2. If you have a system of equations of the following form:
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simply carry out OLS one equation at a time. Note that this model assumes that
all equations have exactly the same explanatory variables (e.g. the amount of each
input depends on the prices of all the inputs). If the equations have different
explanatory variables (e.g. the amount of each input depends only on its own
price), then a better estimator than OLS is the seemingly unrelated regression

equations or SURE estimator. Note, though, that OLS is an adequate second
best estimator.

3. If you are working with the following model:

or, more generally,

then the use of OLS can yield misleading results, and should be avoided.

To summarize, if your explanatory variables are exogenous then it is acceptable to
use OLS (even in multiple equation models). If the explanatory variables are endoge-
nous, however, OLS is not a suitable estimator (even in a single equation model).

The last model above is called the simultaneous equations model and it has
received a great deal of attention in the econometrics literature. It is beyond the scope
of this book to discuss this model in detail. Nevertheless, it is worthwhile to 
motivate briefly why the problem with OLS occurs through the consideration of a
representative example.

Consider the simplest version of the standard supply and demand model in eco-
nomics. The demand curve is given by:

which states that the quantity demanded of a good, Q D, depends on its price, P. The
supply curve tells how the quantity supplied by firms, Q S, also depends on price:

Q PD
D D= +a b ,
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The solid lines in Figure 12.2 plot the supply and demand curves. The point at which
they intersect determines the equilibrium price and quantity, P* and Q*. In other
words, price and quantity are determined in the model and are endogenous.

What would happen if price and quantity data were obtained (e.g. from a market
for a certain product each week for several weeks) and a regression of quantity on
price run?

We would obtain OLS estimates of the intercept and slope, say, â and b̂. But what
would â and b̂ be estimates of? Already you may spot the problem in using OLS: we
don’t know if â and b̂ will be estimates of aD and bD (i.e. the demand curve) or of
aS and bS (i.e. the supply curve). To introduce even more econometric jargon, this is
an example of an identification problem. In practice, OLS will probably neither
estimate the supply curve nor estimate the demand curve.

Further intuition for the failure of OLS can be found by looking at Figure 12.2.
P* and Q* are the equilibrium price and quantity. Suppose we observe the price and
quantity in a market for this good many times (e.g. every week for a year). In the real
world, we are likely never to be precisely in equilibrium, and small errors will occur.
That is, the actual price and quantity observed each week will not be exactly P* and
Q* every time. So the observed data points will probably be in a cloud around the
equilibrium in the manner plotted in Figure 12.2. Imagine trying, as OLS does, to fit
a straight line through those points. Intuitively, it is clear that the line that is fitted will
not necessarily bear any relationship to either the supply or demand curve.

Q PS
S S= +a b .

Limitations and extensions 219

P

P*

Q* Q

Demand

Supply

Fig. 12.2 Observed data in a model of supply and demand.



More formally, we can demonstrate that when either some or all explanatory vari-
ables are endogenous, the regression error will be correlated with explanatory vari-
ables and the use of OLS is erroneous (see the discussion on Figure 12.1 above). If
you run into this case, you should do further study and learn about simultaneous
equations models and instrumental variable estimation.
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Chapter summary

Although the OLS estimator is a powerful tool that can be used for a wide
variety of data sets, it is not perfect for every situation. There are some cases
when the use of OLS is not the best choice, but it may nevertheless be ade-
quate. Yet, there are also cases when its use is completely misleading. A
summary list of both of these types of cases is given below.

Cases when OLS is second best

1. The dependent variable is a dummy variable, a duration or a count (i.e. an
integer).

2. The errors are heteroskedastic or autocorrelated (these concepts are
explained more fully in the chapter).

3. The data has many dependent variables and thus many equations, but all
the explanatory variables are exogenous.

Cases when OLS is misleading and should be avoided

1. The dependent variable is censored.
2. The errors are correlated with the explanatory variables.
3. One or more of the explanatory variables is endogenous.
4. The data has many dependent variables and thus many equations, but some

of the explanatory variables are endogenous.

Endnotes

1. Bias is a statistical term that will not be formally defined here. Informally speaking, if you
use an unbiased estimator in many applications then your estimate may be high or low in
any one application, but on average it will be correct. In contrast, biased estimators will,
on average, be wrong, and should be avoided.



2. In statistical jargon, OLS is the best of all estimators (in a certain class) if the errors are
independent of one another and are all drawn from the same distribution. If this dis-
tribution is Normal, then an even stronger case can be made for the optimality of the OLS
estimator.

3. Formally, heteroskedasticity occurs if the standard deviation of the errors differs across
observations.

4. In statistical language, OLS and GLS are both unbiased estimators; however, GLS is more
efficient than OLS.

5. Of course, if the error or dependent variable problems discussed in the previous part of
this chapter are present, then OLS may have to be modified along the lines of the previ-
ous discussion. This qualification holds for the following cases as well.

Limitations and extensions 221





A P P E N D I X

Writing an empirical project

This appendix offers general guidelines on writing an empirical paper or project. This
discussion is followed by two project topics (including data) which you may wish to
work on in order to gain a deeper understanding of the techniques described in this
book.

Description of a typical empirical project

Economists are engaged in research in a wide variety of areas today. Undergraduate
and graduate students, academic economists, policymakers working in the civil service
and central banks, professional economists working in private sector banks or 
industry may all need to write reports that involve analyzing economic data. Depend-
ing on the topic and intended audience, the form of these reports can vary widely, so
that there is no one correct format for an empirical paper. With this in mind, we
provide common elements of economic reports below as a guideline for future empiri-
cal work. Note, however, that, in the context of your own undergraduate projects or
careers, it may not be necessary for you to include all of these elements in your
report(s).

1. Introduction. Most reports begin with an introduction that briefly motivates and
describes the issue being studied and summarizes the main empirical findings. The
introduction should be written in simple non-technical language, with statistical
and economic jargon kept to a minimum. A reader who is not an expert in the
field should be able to read and understand the general issues and findings of the
report or paper.

A



2. Literature review. This should summarize related work that others have done. It
should list and very briefly describe other papers and findings that relate to yours.

3. Economic theory. If the report is academic in nature and involves a formal the-
oretical model, then it is often described in this section. For policy reports you
may not need to include a formal mathematical model, but this section allows you
to describe the economic or institutional issues of your work in more detail. This
section can be more technical than the preceding ones and will typically include
some mathematics and economic jargon. In short, you can address this section
solely to an audience of experts in your field.

4. Data. In this section you should describe your data, including a detailed discus-
sion of its sources.

5. The model to be estimated. In this section you should discuss how you use the
data to investigate the economic theory outlined in section 3. The exact form of
this section might vary considerably, depending on the topic and on the intended
audience. For instance, you may want to argue that a particular regression is of
interest for the study, that a certain variable will be the dependent variable and that
other variables will be the explanatory variables. Similarly, in a macroeconomic
time series exercise, you may wish to argue that your economic theory implies that
your variables should be cointegrated and that, for this reason, a test of cointe-
gration will be carried out. In short, it is in this section that you should justify the
techniques used in the next section.

6. Empirical results. This section is typically the heart of any report. At this stage
you should describe your empirical findings and discuss how they relate to the 
economic issue(s) under investigation. It should contain both statistical and eco-
nomic information. By “economic” information we refer, for example, to coeffi-
cient estimates or to a finding of cointegration between two variables, and 
what these findings may imply for economic theory. In contrast, “statistical” infor-
mation may include: results from hypothesis tests that show how coefficient esti-
mates are significant; a justification for choice of lag length; an explanation 
for deleting insignificant explanatory variables; a discussion of model fit (e.g.
the R2 or outliers); etc. Much of this information can be presented in charts 
or graphs. It is not uncommon for papers to begin with some simple graphs (e.g.
a time series plot of the data) and then follow with a table of descriptive statis-
tics (e.g. the mean, standard deviation, and minimum/maximum of each variable,
and a correlation matrix). Another table might include results from a more formal
statistical analysis, such as OLS coefficient estimates, together with t-statistics (or
P-values), R2s and F-statistics for testing the significance of the regression as a
whole.

7. Conclusion. This should briefly summarize the issues addressed in the paper,
specifically, its most important empirical findings.
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General considerations

The following contains a discussion of a few of the issues that you should keep fore-
most in your mind while carrying out an empirical project. In particular, it discusses
what constitutes good empirical science and how you should present your results.

The first thing worth stressing is that there are no right or wrong empirical results.
Empirical results are what they are and you should not be disappointed if they do not show what

you had hoped they would. In an ideal world, a researcher comes up with a new theory,
then carries out empirical work that supports this new theory in a statistically signifi-
cant way. The real world very rarely approaches this ideal.

In the real world, explanatory variables that you expect to be statistically signifi-
cant often aren’t significant. Variables you expect to be cointegrated often aren’t coin-
tegrated. Coefficients you expect to be positive often turn out to be negative. These
results are obtained all the time – even in the most sophisticated of studies. They
should not discourage you! Instead, you should always keep an open mind. A finding

that a theory does not seem to work is just as scientifically valid as a finding that a theory does work.

Furthermore, empirical results are often unclear or confusing. For instance, one
statistical test might indicate one thing while another the opposite. Likewise, an
explanatory variable that is significant in one regression might be insignificant in
another regression. There is nothing you can do about this, except to report your
results honestly and try (if possible) to understand why such conflicts or confusions
are occurring.

It would be rare for economists to completely falsify their results. Often, however,
they may be tempted to do slightly dishonest things in order to show that results are
indeed as economic reasoning anticipated. For instance, it is common for researchers
to run a large number of regressions with many different explanatory variables. On
the whole, this is a very wise thing; a sign that the researchers are exploring the data
in detail and from a number of angles. However, if researchers present only the
regression that supports a particular theory and not the other regressions that dis-
credit it, they are intentionally misleading the reader. Always avoid this temptation to
misrepresent your results!

On the issue of how results should be presented, we cannot stress enough the
importance of clarity and brevity. Whether it is a good thing or a bad thing, it is
undoubtedly the case that university lecturers, civil servants, policymakers and
employers are busy people who do not want to spend a lot of time reading long,
poorly organized and verbose reports.

One key skill that writers of good reports show is selectivity. For example, you may
have many different coefficient results and tests statistics from your various regres-
sion runs. An important part of any report is to decide what information is impor-
tant and what is unimportant to your readership. Select only the most important
information for inclusion in your report and – as always – report honestly and openly
the results that you obtain.
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Project topics

The following are two project topics that you may wish to undertake.

Project 1: The equity underpricing puzzle

Background

Investors and financial economists are interested in understanding how the stock
market values a firm’s equity (i.e. shares). In a fundamental sense, the value of a firm’s
shares should reflect investors’ expectations of the firm’s future profitability.
However, data on expected future profitability is non-existent. Instead, empirical
financial studies must use measures such as current income, sales, assets and debt of
the firm as explanatory variables.

In addition to the general question of how stock markets value firms, a second
question is also receiving considerable attention by financial economists in recent
years. By way of motivating this problem, note that most of the shares traded on the
stock market are old shares in existing firms. However, many old firms will issue some
new shares in addition to those already trading – what are referred to as “seasoned
equity offerings” or SEOs. Furthermore, some firms that have not traded shares on
the stock market in the past may decide to now issue such shares (e.g. a computer
software firm owned by one individual may decide to “go public” and sell shares in
order to raise money for future investment or expansion). Such shares are called
“initial public offerings” or IPOs. Some researchers have argued on the basis of
empirical evidence that IPOs are undervalued relative to SEOs (although very recent
work has suggested the opposite).

In this project, you are asked to empirically investigate these questions using the
following data set.

Data

Excel file EQUITY.XLS contains data on N = 309 firms who sold new shares in the year
1996 in the US. Some of these are SEOs and some are IPOs. Data on the following
variables is provided. All variables except SEO are measured in millions of US dollars.

• VALUE = the total value of all shares (new and old) outstanding just after the firm
issued the new shares. This is calculated as the price per share times the number
of shares outstanding.

• DEBT = the amount of long-term debt held by the firm.
• SALES = total sales of the firm.
• INCOME = net income of the firm.
• ASSETS = book value of the assets of the firm (i.e. what an accountant would

judge the firm’s assets to be worth).
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• SEO = a dummy variable that equals 1 if the new share issue is an SEO and equals
0 if it is an IPO.

Project 2: Wage-setting behavior

Background

This project allows you to investigate wage-setting behavior using time series data.
The general issue of interest in such analyses is how wages depend on macroeco-
nomic factors such as the price level, GDP and variables reflecting employment and
the labor force. An empirical analysis of such data must involve a discussion of issues
such as unit roots and cointegration.

Data

Excel file WAGE.XLS contains annual UK data from 1855 to 1987. The natural 
logarithm of all variables has been taken. Data on the following variables is 
provided.

• W = the log of nominal wages.
• P = the log of consumer price index.
• GDP = the log of real GDP.
• E = the log of total employment.
• L = the log of total potential labor force.

Further background

In addition to the general issue of wage-setting behavior, economic interest often
focusses on some functions of the variables provided here. If you remember the
properties of the logarithm operator, such as ln(A/B) = ln(A) - ln(B) and ln(1 + A)
ª A, you can derive the following relationships:

• the log of real wages = W - P.
• the log of productivity per worker = GDP - E.
• the log of the unemployment rate ª L - E.
• log of the share of wages in GDP = W - P - GDP + E.

One issue you may be interested in investigating is whether the relationships above
are cointegrating relationships. In Chapter 11, we considered estimating the cointe-
grating regression using OLS techniques – something you may want to explore in
your project. You may also wish to use the relationships above to tell you what the
coefficients in the cointegrating regression might be. For instance, if the log of real
wages equation above is a cointegrating relationship, then the regression of W on P

should be:
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In other words, a = 0 and b = 1. You can either estimate the regression of W on P

(as in Chapter 11), or impose a = 0 and b = 1 and see whether these values imply
cointegration. In this project, I suggest that you consider using both strategies. That
is, you can either estimate a regression using OLS and then test the residuals for a
unit root or you can impose a possible cointegrating relationship and then test the
residuals for a unit root.

The previous material does not focus directly on the issue of wage-setting behav-
ior. You may want to do other tests or estimate other regressions in addition to (or
instead of ) the tests suggested above.

W P et t t= + .
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Data file Content Data type Chapter

ADVERT.XLS Sales and advertising Cross-sectional, Chapters 4 and 5
expenditure N = 84 companies

COMPUTE1.XLS Percent change in Time series, T = 98 Chapter 10
computer months
purchases and
employee
productivity

COMPUTER.XLS Percent change in Time series, T = 98 Chapter 10
computer months
purchases and
employee
productivity

CORMAT.XLS Artificial variables Cross-sectional, Chapter 3
labeled Y, X and Z N = 20

EDUC.XLS Education spending, Time series, 1910– Chapter 8
GDP growth 1995, T = 86 years

ELECTRIC.XLS Cost of electricity Cross-sectional, Chapters 4, 5 and 6
production, output N = 123 companies
produced and price
of inputs

EQUITY.XLS Firm share value, debt Cross-sectional, Appendix A
sales, income, assets, N = 309 companies
SEO dummy

EX34.XLS Artificial variables Cross-sectional, Chapter 3
labeled Y, X1, X2 N = 20
and X3

A P P E N D I X
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Data file Content Data type Chapter

EX46.XLS Artificial variables Cross-sectional, Chapter 4
labeled Y and X N = 50

EXRUK.XLS UK pound/US Time series, Chapter 2
dollar exchange January 1947–
rate October 1996,

T = 598 months
FIG51.XLS Artificial variables Cross-sectional, Chapter 5

labeled X and Y N = 5
FIG52.XLS Artificial variables Cross-sectional, Chapter 5

labeled X and Y N = 100
FIG53.XLS Artificial variables Cross-sectional, Chapter 5

labeled X and Y N = 100
FIG54.XLS Artificial variables Cross-sectional, Chapter 5

labeled X and Y N = 100
FIG95.XLS Artificial variable Time series, Chapter 9

labeled “b = 0 series” T = 100
FIG96.XLS Artificial variable Time series, Chapter 9

labeled “b = 0.8 series” T = 100
FIG97.XLS Artificial variable Time series, Chapter 9

labeled “b = 1 series” T = 100
FIG98.XLS Artificial variable Time series, Chapter 9

labeled “trend stat” T = 100
FOREST.XLS Forest loss, population Cross-sectional, Chapters 2, 3, 4, 5 and

density, pasture change, N = 70 countries 6
cropland change

GDPPC.XLS Real GDP per Cross-sectional, Chapters 2 and 5
capita N = 90 countries

HPRICE.XLS Housing prices and Cross-sectional, Chapters 3, 4, 5, 6 and
housing N = 546 houses 7
characteristics (e.g.
lot size, number of
bedrooms)

INCOME.XLS Log of US personal Time series, 1954Q1– Chapters 2, 9, 10 and
income and 1994Q4, T = 164 11
consumption quarters

LONGGDP.XLS Real GDP per Time series, 1870– Chapters 10 and 11
capita for Australia, 1993, T = 124 years
US, UK, Canada

NYSE.XLS Changes in stock Time series, Chapter 11
price January 1952–

December
1995, T = 528 months

ORANGE.XLS Prices of regular Time series, T = 181 Chapters 10 and 11
oranges and months
organic oranges

RMPY.XLS Monthly Treasury Time series, Chapter 11
bill rate, price 1947Q1–
level, money 1992Q4, T = 184
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Data file Content Data type Chapter

Supply, GDP and quarters
logged changes of
all variables

SAFETY.XLS and Company accident Time series, T = 60 Chapter 8
SAFETY1.XLS losses, hours spent months

in safety training
STOCK.XLS Logged stock price Time series, T = 208 Chapter 11

data weeks
WAGE.XLS Log of UK Time series, 1855– Appendix A

nominal wages, 1987, T = 133 years
consumer price
index, real GDP,
total employment,
total potential
labor force

WAGEDISC.XLS Employee Cross-sectional, Chapter 7
occupation data N = 100 employees
(e.g. salary,
education,
experience, sex)

WP.XLS Log of UK wages Time series, 1857– Chapters 10 and 11
and consumer price 1987, T = 131 years
index

User note: The website accompanying this book http://www.wileyeurope.com/
go/koopdata2ed contains this data in Excel file format (“.xls”). Many computer
software packages can import Excel files but in case you do not have access to such
software, the data is also provided in ASCII text file format (“.txt”). Note, however,
that the text files provided include some non-numeric data (e.g. variable names) and,
with some software, you may have to remove this data before using them.
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absolute sense interpretation 25
accidents 126–8, 130
accuracy of estimates 70–3, 99–100
ADL model see autoregressive distributed

lag model
advanced descriptive statistics 31–2
advertising 54, 56, 61
alcohol consumption 40, 107, 186–7
Almon lag model 132
a 5, 50–4, 58, 66, 69–71, 82

OLS estimation 93
alternative hypothesis 79
American Statistical Association 17
analysis of variance 110
annual frequency 9
ANOVA see analysis of variance
applications of time series models

179–211
Granger causality 186–92
hypothesis testing involving more than

one coefficient 205–9
vector autoregressions 193–204
volatility in asset prices 179–86

approximation 51–2
AR(1) model 142, 146–51, 156
arbitrage 146, 180

ARCH see autoregressive conditional
heteroskedasticity

arithmetic lag model 131
AR(p) 151–5
artificial data 101–3, 148
asset prices 179–86
association 67
atheory 195
augmented Dickey–Fuller test 157
autocorrelated errors 214
autocorrelation 138
autocorrelation function 138–42
autoregressive conditional heteroskedasticity

179–80
autoregressive distributed lag model

159–60, 177, 187–90
autoregressive model for univariate time

series 142–4

Bank of England 201
bar chart 18
base year 13, 26, 28
base year weights 27–8
basic data handling 9–33
baskets 12
bell-shaped distribution 23
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best fitting line 50–4, 65, 91–3
b 5, 50–2, 54, 58, 66, 69–71

calculating a confidence interval for
73–9

factors affecting accuracy of 70–3
OLS estimation 93
testing whether b = 0 79–83

bi-directional causality 190–2
bias 213, 220

omitted variables bias 99–100
binary variables 11

see also dummy variables
bins 19
built-in causality 51

calculation of banana price index 25–6
calculation of confidence interval for b

73–9
calculation of fruit price index 26–31

Laspeyres price index 27–8
Paasche price index 28–31

calculus 53–4, 106
canceling out 165
capital asset pricing model 181
CAPM see capital asset pricing model
causality 38–41, 51, 186–92

in both directions 190–2
and correlation 40
direct and indirect 41
see also Granger causality

censored variables 212–13
census and related data sets 16
ceteris paribus 94–7, 104, 115–17, 126–7,

160–1, 174
change 138, 155, 175
change in GDP 12
change in price 13
chaos 182
ChartWizard© 18
cigarette smoking 40–1, 107, 186–7
class intervals 19, 31
class width 19
clustering in volatility 182

co-trending 165
coefficients 5, 51, 106
cointegrating regression 167
cointegration 121, 147, 165–71

between prices of two goods 166,
169–70, 173–4

estimation and testing with cointegrated
variables 167–71

and Granger causality 192
common trends 165
comparative sense interpretation 25
computer purchases 162–3
confidence intervals 2, 70, 73–9
confidence level 70
consumer price index 30, 189, 199, 214
consumption 138, 154, 216
cookbooks 2
correlation 35–47

between several variables 45–6
mathematical variables 46–7
understanding correlation 35–6
understanding correlation through verbal

reasoning 36–9
understanding correlation through 

XY-plots 42–5
understanding why variables are

correlated 39–42
correlation matrix 45–6, 98, 105, 111
cost of production in electric utility industry

multiple regression 103–5
regression 53–6, 60, 85–6

count data model 213
covariance 47
CPI see consumer price index
creating lagged periods 123–5
critical value 81, 84, 87, 207
cross-sectional data 10, 121–2, 125,

138
current year weights 28–31

daily frequency 9
data 1–2
data collection on consumer prices 13
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data directory 229–31
data manipulation 168
data transformations 11–12
data as units 10
Datastream 17
de-seasonalized data 150
deciles 32
deforestation 125–6

correlation with population density
36–40

regression on population density 53, 55,
78, 81–2, 85

XY-plots depicting population density
21–2

DY 136, 139
dependent variable 51, 119–20, 212–13
depreciation 18
descriptive statistics 23–5, 31–2

advanced 31–2
deterministic trend 148–54, 162, 173,

177
model 149, 151–5

devaluation 18
deviations from mean 66
Dickey–Fuller critical value 153–4
Dickey–Fuller test 153–5, 164, 168–70,

178, 183
see also t-statistic

difference stationary series 145, 148
differenced data 175
differencing 136
direct causality 41
direct variance 74
discrete dependent variable model 212
dispersion 23–4, 32, 74
distributed lag models 121–33

lagged variables 123–5
notation 125–58
other distributed lag models 131–3
selection of lag order 128–31
see also regression with time lags

distribution 20
Dow Jones Industrial Average 13, 27, 33

drift 180–1
dummy dependent variables 119–20

model 212
dummy variables 11, 109–20, 212

interacting dummy and non-dummy
variables 117–19

multiple regression 112–14
multiple regression with dummy and

non-dummy variables 115–17
simple regression 111–12
what if dependent variable is a dummy?

119–20
duration 213
dynamic effects 122

e 51–2
E-views 4, 212
ECM see error correction model
econometrics 1–2
effect of advertising on sales: regression

54, 56, 61
effect of interest rates on exchange rate

101
elasticity 62
election polls: regression 75–6
empirical project topics 226–8
empirical project writing 223–8
empirical VAR model 195
endogenous variable 216–20
Engle–Granger test 168–9, 175, 178
equation of a straight line 5
equilibrium 161, 165–6, 171–4, 217
equilibrium error 165
equity pricing puzzle 226–7
error 33, 52, 168, 213–15

autocorrelated 214
equilibrium error 165

error correction model 171–4
error message 67
error variance 71–3
estimation and testing with cointegrated

variables 167–71
European Monetary Union 181
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Excel 3–7, 15, 18, 31, 87, 110
note to users 164

exchange rates 49, 101, 175
exogenous variable 216–20
explanatory variable 51, 122
extensions of the AR(1) model 146–51

F-distribution 89
F-statistic 84–6, 194, 206–8
factors affecting accuracy of b 70–3
Federal Reserve Bank of St Louis 17
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