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F

 

oreword

 

A course in econometrics forms an inte

 

gral part of every economics student’s degree  
program. Since its formal development in the 1930s the field has expanded so signif-
icantly that we can probably make a distinction between “classical” and “modern”  
econometrics. The vast quantity of theory and techniques for handling time series,  
cross-sectional and panel data makes it difficult for the teacher of econometrics to  
select a range of topics suitable for students at the undergraduate level. Indeed, a course  
in econometrics taken in the 1970s is significantly different from one taken today. In  
addition, the development of computer programmes has opened up the field to the use  
of “sophisticated” techniques of estimation, testing and simulation. Students of econo-
metrics therefore need to be guided through the range of techniques that have developed  
over the years.

This text on a

 

 Practical Introduction to Econometrics Methods: Classical and  
Modern 

 

by Patrick Watson and Sonja Teelucksingh provides undergraduate students  
with a selected survey of econometric techniques used by economists today. The text  
focuses on time series econometrics by developing standard econometric techniques in  
the first half of the presentation and then presenting recent developments in the field in  
the second half. Both static and dynamic econometric techniques are covered in the text.

A very useful aspect of the text is the use of data from Caribbean countries to  
illustrate the application of the various techniques. This approach makes the text  
lively and highly relevant to students and researchers who are unaware of some of  
the techniques. With the wide availability of econometric software packages such as  
EViews, PCGive and MicroFIT, readers may try their hands at some of the exercises  
provided in the text. It is, however, very important that readers understand the  
underlying principles which guide the use of the range of diagnostic testing proce-
dures produced by these econometric programs. It is quite easy to enter data into a  
computer program, press a few keys and get a computer printout. The correct use  
and interpretation of the various techniques and testing procedures are vital to good  
econometric practice. The good blend of theory and application given in this text  
should be useful to applied economists and students. The authors provide a list of  
references that readers can consult for further in-depth analysis.

This text is therefore useful to the advanced undergraduate student in economics  
and related disciplines. Economists who have not kept up with recent developments  
in econometrics should find the last six chapters very useful. Graduate students who  
are not specializing in econometrics will find that the text is a good starting point  
for a course in quantitative methods.

Andrew S. Downes
Professor of Economics and University Director

Sir Arthur Lewis Institute of Social and Economic Studies
The University of the West Indies

Cave Hill, Barbados
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This book gre

 

w out of 20 years of teaching courses in econometrics at the University  
of the West Indies and the application of econometric methods to Caribbean economic  
problems. It is aimed principally at final year undergraduate students of economics or  
those at the graduate level doing econometrics for the first time. Practising economists,  
especially those who are unfamiliar with the modern techniques, will also find this text  
very useful due to its great emphasis on practical applications to the underlying theo-
retical concepts. A prerequisite to an understanding of the content is a course in the  
elements of statistical theory and method, such as exists for most undergraduate eco-
nomics degree programmes. Some basic knowledge of matrix algebra will also be  
assumed, and some of it is covered in the body of the text. All the main theoretical  
concepts are illustrated with the use of the EViews econometric software.

Chapters 1 to 8 cover the classical material and this is structured in such a way  
that it can be delivered in one semester. The rest of the book (chapters 9 to 15) covers  
the modern material and may also be delivered in one semester. It is also possible  
to design a one-semester course that covers the essential elements of both classical  
and modern econometrics and this may be suitable to graduate students who are  
doing econometrics for the first time. One suggested programme is chapters 1, 2, 4,  
5, 6, 12, 14 and 15.

This book has two objectives. The first, and more important of the two, is to  
prepare students to do applied econometric work. It is largely for this reason that  
almost every theoretical concept introduced is illustrated using actual data and a  
very popular, easy-to-use econometric package: EViews. The data used are stored  
in an EXCEL file called WT_DATA.XLS which is available on request from either  
of the authors or, preferably, from the website www.uwi.tt/fss/econ. It is advisable  
to work through all of the illustrations and the practical questions that follow each  
chapter.

Notwithstanding the emphasis on application, the book is based solidly on econo-
metric theory. Indeed, it is the second objective of this book to anchor the student  
in theory so that he or she may proceed, using the elements acquired here as a base,  
to do a more advanced graduate-type programme in econometric theory and practice  
with some ease.

The main inspiration for this book was the many students who, over the years,  
endured the delivery of courses in econometrics at the St Augustine campus of the  
University of the West Indies. During that time computing power grew in size and  
became more accessible. The days of the cards and the mainframe and the trudging  
over to the University Computer Centre are over, giving way to the laptop, the desktop  
and modern packages like EViews. But the joy of teaching and indeed learning from  
these students remains the same. To these unwitting participants in this exercise, we  
express our deepest gratitude. As always, we owe a great debt to our respective  



 

xii

 

Pr

 

ef

 

ace

 

f

 

amilies, who stood by us in the many trying months dedicated to the production of  
this book, from the moment it was conceived right up to its realization.

Patrick K. Watson (pkwatson@fss.uwi.tt)
Sonja S. Teelucksingh (ssteelucksingh@fss.uwi.tt)

St Augustine
Trinidad and Tobago
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What Is 

 

This Thing Called Econometrics?

 

INTR

 

ODUCTION

 

Econometrics is about measurement in economics. It is not the only area of study in

 

 
economics concerned with measurement but it is probably the best known. It has been  
used, directly and indirectly, to answer questions like: “What is the value of the marginal  
propensity to consume (mpc) of the residents of Tobago?” It can also be used to test  
hypotheses about the Tobago mpc: is it greater than 90%? Is it greater than the mpc  
of Trinidad? It can be used to forecast economic variables or to answer burning policy  
questions like: “How much does the government need to invest in order for unemploy-
ment to be reduced to 6.5%?” and so on. A study of econometrics promises a lot, but  
does it deliver the goods as promised?

Unfortunately, the use of econometrics is no guarantee that questions like those  
just asked will be answered satisfactorily. The first caution is that, if the tools of the  
trade are employed incorrectly, then the answers given to economic questions will  
reflect this basic inadequacy. Second, there are 101 problems associated less with  
the methods than with the economic data to which they are applied, so that great  
caution should always be used in interpreting the results obtained.

To a large extent, this book is concerned with these two problems: it is concerned  
first with introducing the student to econometric methods, with letting him or her  
know the great promise that they hold. At the same time, it is concerned with putting  
the student on guard against the many pitfalls that can (and often do) result from  
misapplication of these methods or from a misunderstanding of their inherent limi-
tations.

 

CLASSICAL AND MODERN ECONOMETRICS

 

The term “econometrics” w

 

as coined in the 1930s when the Econometrics Society was  
founded. The society included such visionaries as Ragnar Frisch and Jan Tinbergen  
(both Nobel Laureates). At that time it was defined as almost anything requiring the  
application of mathematical and statistical methods to economic analysis. The funda-
mental tool was then, and remains even to today, regression analysis.

But even from the outset, the discipline had its detractors, not the least of whom  
was another visionary, John Maynard Keynes (1939). He, and others, pointed to the  
serious weaknesses in economic data that might (and indeed did) lead to tremendous  
abuse. It is possible to explain the entire history of the discipline as one of responding  
to concerns raised by such illustrious individuals, resulting in the elaboration of more  



 

xiv

 

Intr

 

oduction

 

and more sophisticated methods. By the 1950s and 1960s, a body of kno

 

wledge had  
become firmly established due principally to the work of the Cowles Commission  
(to which Frisch and Tinbergen contributed, as well as other Nobel Laureates like  
Koopmans, Haavelmo and others). It is this body of knowledge that fills the pages  
of the earlier editions of classic textbooks, such as Johnston and Dinardo (1997),  
Kmenta (1986) and others and is what will be described as classical econometrics.  
This will be the (principal) preoccupation of Part I of this work.

Classical econometrics was subject to a lot of abuse – see Watson (1987) for  
some Caribbean examples. Such abuse brought the discipline into disrepute and many  
of the sceptics, agnostics and avowed nonbelievers tore it to shreds. In particular,  
there was the widespread assertion that the methods could be used to provide any  
interpretation of economic reality that the economist wanted to justify. This was a  
highly unsatisfactory situation.

Many econometricians began the work of “making things right”, and perhaps the  
leading lights in this “fightback” were those working at the London School of  
Economics and Political Science (the LSE) ably led by Dennis Sargan. In a seminal  
article, Davidson, Hendry, Sbra and Yeo (1978) introduced the principal features of  
the general-to-specific methodology to the world. The matters raised in this paper  
were espoused in other publications, including the very readable one by Hendry  
(1980), and were followed up by other research that eventually led to the development  
of the concept of cointegration, which has had an indelible effect on the discipline.  
The seminal paper on cointegration is Engle and Granger (1987).

Econometrics has gone through a veritable revolution with these advances and,  
to some extent, the critics have been silenced – at least temporarily. It is these most  
recent developments that will be treated in Part II of this work under the rubric of  
“Modern Econometrics”.

In the final analysis, classical and modern econometrics are not in competition  
with each other. Rather, modern econometrics must be seen as an outgrowth of the  
classical methods, which still remain fundamentally valid. From this point of view  
alone, a study of classical econometrics remains a necessary exercise and, at the very  
least, is an indispensable introduction to a proper study of the modern methods.

 

EX

 

ERCISES

 

1.

 

Explain the meaning of the word “econometrics”.
2. Draw up a list of some economic issues to which you might wish to apply  

econometric methods. Discuss with your class instructor the feasibility of  
doing so.

3. Are the objectives of “modern econometrics” different from those of “clas-
sical econometrics”?
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CHAPTER 1

The General Linear Regression Model

MODELS IN ECONOMICS AND ECONOMETRICS

Economics is about models and these models are usually expressed in very general  
terms. Econometric methods provide a way to obtain more precise expressions of such  
models. What does “more precise” mean? It means giving numerical values to concepts  
like the marginal propensity to consume, the multiplier and so on. It means putting  
numerical values into the model so that it may be used to make numerical forecasts  
of key economic variables that may be used by a policy maker. In order to do these  
things, the economist must confront the theory with data, a task that itself is plagued  
with difficulties. But one thing at a time!

There are some very useful papers on econometric models (the term used for  
economic models when they are confronted with data using econometric methods)  
which explain to the uninitiated the use and potential of such models. See, for  
example, Suits (1962) and Sowey (1985). Below is a sketch of a model that will be  
used throughout this book to illustrate the many methods that will be discussed. It  
is essentially a Keynesian-type open economy model that shows, among other things,  
the interaction of the multiplier and the accelerator.

Consumption function:

(1.1)

Import function:

(1.2)

Investment function:

(1.3)

Income-expenditure identity:

(1.4)

C f Y ip = …( )1 , ,

M f Y p pm d= …( )2 , , ,

I f Y i= …( )3 , ,

Y C C I X Mp g= + + + −
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where

Cp = private consumption expenditure
Cg = government consumption expenditure
I = investment
M = imports
X = exports
Y = income
i = rate of interest
pd = domestic price level
pm = import price level

The application of econometric methods may typically result in an econometric  
model that looks like the following:

This is also an example of a classical econometric model. Such models are the subject  
of chapters 1 to 8 of this book. At a glance, certain economic conclusions may be  
drawn, provided that these results are reliable (and econometric techniques allow us  
to determine this). It can be seen, for instance, that the mpc is estimated as 0.663. This  
value is somewhat low and should not be accepted unconditionally. The marginal  
propensity to invest is 0.364 while the marginal propensity to import is 0.378. It can  
also be seen that investment is negatively related to interest rates (this is predicted by  
standard theory), whereas consumption seems to be positively related to interest rates  
(this is not predicted by standard theory and should be the subject of further investi-
gation). Are there any other queries or comments that can be made about this model?

If the investigator is satisfied with this model, he or she can use it to forecast  
values of Cp, I, M and Y (the endogenous variables) for given values of the other  
variables in the model (the exogenous variables). This forecast is obtained by solving  
the model using mathematical routines that are usually part of the econometric  
software like EViews.

This model has more than one equation and, in the literature, is described as a  
multiple or simultaneous equation model. Frequently, an investigator may be inter-
ested only in one of the equations, such as, for instance, the consumption function  
on which so many studies have been conducted. It is quite possible to study an  
equation individually (and without reference to any other) provided that certain  
constraints are verified, in which case it is referred to as a single equation model. In  
the first section of this book, the econometrics of single equation models will be  
developed in some detail and will serve as an introduction to the study of the  
econometrics of simultaneous equation models.

C Y i

I Y i

M Y p p

Y C C I X M

p

m d

p g

= − + +

= − + −

= − + − ( )
= + + + −

2143 6 0 663 4107 9

2816 7 0 364 11385

1188 6 0 378 688 7

. . .

. .

. . .
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This is a very simple model which should only be used for illustrative purposes.  
In particular, it is highly aggregated. What does this mean? Take for instance the  
import function. It is the total import bill that is being modelled. Surely, the functional  
form will differ depending on the category of imports being considered so that, for  
instance, there should be a separate equation for the imports of capital goods as  
opposed to the imports of consumer goods. These and other questions must be  
resolved in reality but, for purposes of this book, they will not be considered any  
further. However, notwithstanding this oversimplification, there are still two thorny  
problems to be resolved before standard econometric methods can be applied to this  
model. They concern, first, the data to be used in order to determine specific values  
of economic constructs like the propensity to import (as well as the related problem  
of how to obtain the data). Second, they concern the specific form to be given to the  
functions f1, f2 and f3 which, as they stand, are too general to be of use.

DATA AND ECONOMETRIC MODELS

An econometric model based on the structure like the one outlined in equations (1.1)  
to (1.4) may be used to explain income formation in a country over a period in time.  
In order to apply econometric methods to this case, the investigator must first obtain  
time series for all the variables in the model covering the same time period. Suppose  
he or she is able to do so and collects observations for n consecutive time periods on  
each variable. Then the model above is more appropriately rewritten as:

Consumption function:

(1.5)

Import function:

(1.6)

Investment function:

(1.7)

Income-expenditure identity:

(1.8)

where a variable time subscript t has been introduced to distinguish the various time  
periods. Suppose, for instance, annual data are available from 1975 to 1995. Then t = 1
indicates that the observation in question pertains to 1975, t = 2 refers to 1976, and so  
on until t = 21 which will refer to 1995. In this illustration, n = 21. If instead it were  
quarterly data from 1975 to 1995, then t = 1 would refer to the first quarter of 1975,  

C f Y ipt t t= …( )1 , ,

M f Y p pt t mt dt= …( )2 , , ,

I f Y it t t= …( )3 , ,

Y C C I X Mt pt gt t t t= + + + −
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t = 2 to the second quarter of 1975, and so on right up to t = 84 for the last quarter of  
1995.

The application of econometric methods to time series is widespread and the  
naming of some well-known econometric software packages (computer programs)  
such as Time Series Processor (TSP), MicroTSP and Regression Analysis for Time  
Series (RATS) bears testimony to this. But it is not the only possible application.  
The model defined by equations (1.1) to (1.4) may also be used to explain national  
income formation in a group or cross section of countries, for instance the fourteen  
CARICOM countries, at the same point in time. The use of the subscript t remains  
valid, only this time t = 1 stands for the one observation made on country number  
1, t = 2 that made on country number 2 right up to t = 14 for the fourteenth country.1

In this case, of course, n = 14, but cross sectional studies, which are frequently  
employed for microeconomic studies, are usually based on the use of survey data  
and involve considerably more observations.

Economic data, whether based on time series or cross sectional data, are unreli-
able. This point was most clearly stated very early in the history of the discipline  
by Morgenstern (1950) and has been the subject of numerous works ever since. See,  
for instance, Griliches (1985), who points out that it is this very deficiency that  
justifies the existence of econometrics as a special branch of study in the first place.  
In the final analysis, we must make do with what we have and stop blaming our own  
shortcomings on measurement errors and so on. Hendry (1980) sums up this position:  
“Economic data are notoriously unreliable … and in an important sense econometrics  
is little more than an attempted solution to our acute shortage of decent data.” In  
particular, there is no obvious relationship at most times between the measured  
variable and the concept it is supposed to be measuring, which comes back to haunt  
the economist in his or her application of econometric methods. Take for instance  
the consumption function above. What measure of income among the many that exist  
(say, in the national accounts) should be used? What about permanent income? A  
measure of that does not even exist!

Problems like these arise because the data to be used are frequently “manufac-
tured” by non-econometricians and for end uses quite different from econometric  
analysis. Unless the economist is prepared to conduct a survey for every study  
contemplated (a well nigh impossible task anyway), he or she has to be accommo-
dating and at best take steps to massage the data into something that resembles the  
underlying economic concept or work with what is given. This is not very encour-
aging but it is the reality.

SPECIFYING THE MODEL

To obtain numerical results like those shown above, classical econometric methods  
cannot be applied directly to equations (1.1) to (1.4).2 They need to be more specifically  

1 It is also possible to combine time series and cross sectional data into so-called panel or longitudinal
data. In recent times, this has been increasing in popularity. The econometric problems associated  
with this kind of application, however, will not be dealt with in this book.

2 Equation (1.4) is an identity that holds all the time. Everything is already known about this equation  
and econometric methods are not applied to it.
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formulated. Unfortunately, these methods can only be applied to linear models.3 What  
does this mean? The following is an example of a linear import function:

(1.9)

Linearity in this context refers more specifically to linearity in the coefficients, i.e. β1,  
β2 and β3, and not in the variables. For example, standard econometric methods are  
just as easily applied to the following model because it is linear in the coefficients  
(although it is clearly not linear in the variables M, Y and pm/pd):

(1.10)

The principal task of econometrics is the determination and evaluation of numer-
ical values for the β coefficients. Evaluation revolves mainly around the question of  
the statistical adequacy of the numerical results obtained, to determine, for instance,  
whether these results are statistically acceptable and, if so, whether they imply  
rejection or non-rejection of the underlying economic theory. A model, once  
accepted, may be used to make numerical predictions about economic behaviour  
like: “If the price of oil rises to $25 per barrel, unemployment in Trinidad and Tobago  
will fall to 7%” and other similar predictions.

It is important to understand, at this point of initial model specification, that the  
final formulation may differ from this initial one. In the post-estimation stages,  
models are subject to various diagnostic checks and tests that may lead us to possible  
revisions and improved specifications. However, in the pre-estimation stage, we rely  
primarily on our a priori economic reasoning, which is usually firmly rooted in  
economic theory. This is not to say that the final model will always support the  
existing economic hypotheses; indeed, it may be in total contradiction, and may even  
lead to a new contribution to economic theory. But the economics, as we know it,  
must be responsible for the initial formulation, and should guide us in our anticipation  
of the results. Whether such expectations are realized, and the steps we must then  
take to handle seemingly contradictory results, is an issue to be dealt with later.

INTRODUCING THE ERROR TERM

Let us look once again at the import function defined in equation (1.9). A specification  
like this one, we might argue, is not at odds with standard economic theory, provided  
that “autonomous” imports (β1) is positive and the marginal propensity to import (β2)  
is constant and is also a positive fraction. We may also anticipate that, the more foreign  
prices (pm) rise relative to domestic prices (pd), the smaller will be the import bill, i.e.  
β3 will be negative.

However, it would be very unrealistic to expect that, for every possible observa-
tion (i.e. for every value of the time index t), the left-hand side of the equation would  

3 Methods exist for applications to nonlinear models but these are fairly advanced and beyond the scope  
of this book.

M Y p pt t mt dt= + +β β β1 2 3

ln ln lnM Y p pt t mt dt= + + ( )β β β1 2 3
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be equal to the right-hand side. What we are more likely to have, for any given value  
of t is either:

or

so that, for each specific observation, there will be some discrepancy between the two  
sides. If this discrepancy is equal to ut for the tth observation, then the following will  
be true:

(1.11)

The introduction of the “error” term, ut, assures the equality of both sides of the  
equation.

DESIRABLE PROPERTIES OF THE ERROR TERM

To be economically meaningful, the error term ut cannot simply be a “slack” variable  
to assure the equality of both sides of an equation such as (1.11). The specification of  
the equation is based on the premise that the variables Yt and pmt/pdt account for the  
bulk of the explanation of Mt. Moreover, the effect of the income and the relative price  
variables on import behaviour is systematic in that we can predict how the consumer  
will respond to them. The error term, on the other hand, acts almost as a residual  
nuisance item whose influence is purely random (rather than systematic) in that we  
cannot predict how it is going to affect import behaviour.

We may also imagine that the error term represents the sum total of all variables  
affecting import behaviour other than income and relative prices but each of these  
excluded variables is too small to have a major effect in its own right. The individual  
contributions to Mt of these “latent variables” ought, for a sufficiently large number  
of observations, to cancel each other out. In other words, it seems reasonable to  
suppose that its values may be positive or negative with equal probability. Mathe-
matically, we require that:

This is in fact a fundamental property of a purely random variable. But the term “purely  
random” implies more than that. It implies as well that, on the average, no one obser-
vation would have an unduly larger or smaller influence than any other. In mathematical  
terms, this requires that the variance of ut be constant across observations, i.e.

M Y p pt t mt dt≥ + +β β β1 2 3

M Y p pt t mt dt≤ + +β β β1 2 3

M Y p p ut t mt dt t= + + +β β β1 2 3

E ut( ) = 0

Var u E ut t( ) = ( ) =2 2σ
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Finally, to be purely random, the influence of a given value ut should not carry  
over to another observation. Mathematically, this requires that the possible realiza-
tions of u should be uncorrelated or:

A purely random variable having these three properties is referred to in the literature  
as white noise.

THE GENERAL LINEAR REGRESSION MODEL

Consider the equation:

(1.12)

This is a general representation of models such as equation (1.11) above. This becomes  
obvious if we put yt = Mt, x1t = 1 for all t, x2t = Yt, x3t = (pmt   /  pdt) and k = 3. The variable  
y is the endogenous variable which, because u is random, is also itself a random  
variable. It is explained by the exogenous variables x1, x2, …, xk and u is the white  
noise error term. As above, the model is linear in the β coefficients.

The general problem of regression analysis is to use the n observations on the  
endogenous and exogenous variables to obtain numerical values for the β coefficients  
which, hopefully, will be used as estimates of the true (but unknown) values.

Let us see how this system appears for each of the n observations:

This system may be written compactly in matrix notation as:4

(1.13)

4 A considerable amount of the mathematical analysis in this book is done through the medium of  
matrix algebra. Most of the elements of matrix algebra required to make sense of the analysis is  
covered in Kmenta (1986), pages 738 to 749. A fuller treatment is found in Hadley (1961).

Cov u u E u u s tt s t s, ,( ) = ( ) = ≠0

y x x x x u

k t n

u iid

t t t t k kt t

t

= + + +…+ +

= … = …

( )

β β β β

σ

1 1 2 2 3 3

2

1 2 1 2

0

, , , , , ,

~ ,

t y x x x x u

t y x x x x u

t n y x x x x u

k k

k k

n n n n k kn n

= = + + + … + +

= = + + + … + +
…

= = + + + … + +

1

2
1 1 11 2 21 3 31 1 1

2 1 12 2 22 3 32 2 2

1 1 2 2 3 3

β β β β

β β β β

β β β β
....    ........    .........    ........       .........    ....

y X u= +ββ
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where

ORDINARY LEAST SQUARES

What criterion must we apply to obtain estimators of the β coefficients or, equivalently,  
the β coefficient vector? It seems intuitively plausible that, whatever the criterion used,  
it should be based on some notion of minimization of the errors, u1, u2, …, un in  
equation (1.12). After all, these represent aberrations from the substantive economic  
theory that the systematic part of equation (1.12) is attempting to model. But what do  
we mean by minimization of errors?

The most widely used criterion is the least squares criterion. It requires that the  
β coefficients be chosen so that:

(1.14)

be minimized. This is a standard quadratic function that can be adequately handled by  
the tools of differential calculus. Let us do this now.

Since u = y – Xβ, then:

Since y′Xββββ = ββββ′X′y, it follows that:

It is easily shown that:

(1.15)

Setting this expression equal to zero gives us the well-known normal equations:

(1.16)
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where  is the value of ββββ for which equation (1.15) is equal to zero. Provided that the  
(n × k) matrix X is of full rank k, then X′X will be nonsingular (it admits an inverse)  
and equation (1.16) can be solved for  to give:

(1.17)

which is the ordinary least squares (OLS) estimator.5 Notice that, because it is a function  
of a random vector y, it is itself also a random vector and the elements , i = 1, 2, …  ,  
k are all random variables.

Special Case: k = 2 and x1t = 1 for all t

Many introductory textbooks in statistics and econometrics give pride of place to this  
special case in which the general linear regression model becomes:

(1.18)

The matrices corresponding to equation (1.13) become:

The normal equations (1.16) in this case are:

(1.19)

5 OLS is possible only if the rank of X′X is equal to k. This implies that the rank of X must also be  
equal to k and, since the rank of a matrix cannot exceed the lower of the number of its rows or  
columns, it follows immediately that the application of OLS requires that n ≥ k. Put another way,  
OLS estimation is possible if and only if there are more observations than coefficients to be estimated.  
In this book, it will always be assumed that n ≥ k.
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which, upon further simplification, gives us:

(1.20)

As an exercise, show that this system can be further simplified to yield:

(1.21)

which are the well-known expressions found in introductory statistics textbooks.

NUMERICAL CALCULATION

Manual application of the formula shown in equation (1.17) is not at all recommended,  
especially for k > 2. In the first place such application is lengthy and tedious and, even  
for small sample sizes, is almost certain to result in error. Second, modern econometric  
practice requires the calculation of values other than the β coefficients. Finally, we  
now have the computational capability at our fingertips: for instance, this book was  
typed on a computer that weighs less than 2 kilograms but which has the capacity to  
run econometric software like EViews, AREMOS, MicroFIT, PC TSP, PC GIVE and  
many more. In fact, many of these are installed on the same computer and they all  
have the capacity to do such calculations (and even more complicated ones) in the  
proverbial twinkling of an eye. More than this, such calculations will be done accu-
rately, over and over again. No such guarantee can be given by any human being, no  
matter how adept he or she is with figures.

It is for this reason that manual computation is not being encouraged in this book.  
Rather, emphasis will be put on the meaning and usefulness of the numerical values  
obtained through use of an econometric software package, EViews. The emphasis  
on the use of the computer to carry out calculations does not at all imply that we  
are not going to be interested in expressions like equation (1.17). In fact, there is  
perhaps no way other than through mathematical analysis of such “formulae” to  
establish the properties of the estimators and so determine their strengths and weak-
nesses. We will return to this subject later in this chapter.

In the meantime, we will use EViews to calculate numerical values for the β
coefficients in equation (1.11):
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The data to be used are time series for Trinidad and Tobago for the period 1967 to  
1991 and these are given (with other variables) in Appendix 1.2, as well as in an  
EXCEL workbook called WT_DATA.XLS. When using a package like EViews, you  
should avoid giving variables simplistic one-letter names like “M” (for import expen-
diture and so on). At the same time, the names cannot be too long, if only because  
EViews does not allow names that are excessively long. We have chosen IMPORTS  
for M, INCOME for Y and RATIO for (pm/pd).6 Exhibit 1.1 shows the output that was  
obtained from EViews.

Much of Part I of this book will be devoted to explaining the theoretical under-
pinnings and practical importance of (most of) the statistical output shown in Exhibit  
1.1 but, for the moment, we are interested principally in the output that shows the  
numerical values of the β coefficients.

The output shows, first of all, the method of estimation (LS standing for ordinary  
least squares) and the name of the dependent (endogenous) variable, IMPORTS (M).  
It also shows the date and time the calculations were performed as well as the sample  
period (here, 1967 to 1991) and the number of observations (25).

Under the “Variable” column are displayed the independent (exogenous) vari-
ables: C (for the constant term), INCOME (Y) and RATIO (pmt/pdt). Under the  
“Coefficient” column are displayed the estimates of the coefficients of the corresponding  
variables under the “Variable” column. Our estimated equation may therefore be  
written as (notice that the error term is left out):

(1.22)

EXHIBIT 1.1
Equation: Mt = β1 + β2 Yt + β3 pmt   /pdt + ut

Output obtained from fitting equation in EViews
==============================================================
LS // Dependent Variable is IMPORTS
Date: 07/22/99   Time: 11:34
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            –1188.641   696.9314  –1.705535    0.1022
      INCOME          0.377639   0.029737   12.69930    0.0000
      RATIO          –688.6762   155.8371  –4.419206    0.0002
==============================================================
R-squared             0.942446   Mean dependent var   3556.082
Adjusted R-squared    0.937214   S.D. dependent var   1531.723
S.E. of regression    383.8059   Akaike info criter   12.01244
Sum squared resid     3240753.   Schwarz criterion    12.15871
Log likelihood       –182.6290   F-statistic          180.1255
Durbin-Watson stat    1.665317   Prob(F-statistic)    0.000000
==============================================================

6 There is no need to input the variable RATIO directly as it can be calculated as (pm   /  pd) within EViews.  
It is even possible in EViews v. 2.0 and higher, to declare (pm   /  pd) as a variable in its own right.

M Y p pt t mt dt= − + −1188 64 0 378 688 7. . .
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The rest of the output shown, as we will eventually see, allows us to carry out a fairly  
detailed analysis of this result. For the moment, however, let us concentrate on what  
it is saying to us as economists (this, after all, is the principal reason for doing  
econometrics in the first place).

The marginal propensity to import is equal to 0.378 or, put another way, for every  
extra dollar earned, Trinidadians spend about 38 cents on imported goods and services.  
Furthermore, for every unit increase in the ratio of foreign to local prices, they will  
spend $688.7 million dollars less on imported goods and services. Perhaps a more useful  
way to put this is to consider the percentage change in this ratio and not the actual  
change so that, for every 1% increase in the ratio (i.e. one hundredth of the unit increase),  
Trinidadians will spend about $6.9 million dollars less on imported goods and services.

The interpretation of the constant term requires great care and consideration.  
First, it does not lead to the outright rejection of the results obtained because this  
negative value appears at odds with economic theory or even with common sense.  
On the other hand, it certainly does not mean that Trinidadians will spend negative  
$1188.64 million on imports if income and relative prices are equal to zero. Strictly  
speaking, we cannot tell what will happen when these variables are zero because  
such values are not within the experience of the model (i.e. no values of the exogenous  
variables equal to or even close to zero were used to obtain the estimates shown).  
The mathematical expression shown in equation (1.22) remains valid, including the  
value of the constant term, but only for values that are within the experience of the  
model, or close enough to this experience.

FORECASTING WITH ECONOMETRIC MODELS
Models like the one we have just estimated may be used for forecasting. In fact, this  
is one of the most important practical applications to which models like these are put.

Consider a simple problem: we want to know what imports in 1992 will be,  
probably with a view to taking measures to deal with a possible foreign exchange  
shortage. A preliminary report informs us that income in 1992 (at constant prices)  
will be $17,000 million while the import and domestic price indices will be, respec-
tively, 180 and 160. Then imports of goods and services in 1992 are forecasted as:

This means that, according to this model, Trinidadians will spend just under $4500  
million on imports in 1992.

There are certain limitations to using econometric models like this one for making  
forecasts. First, the future values of the right-hand side (exogenous) variables must  
be known. In actual fact, they must be forecasted outside of the model so that the  
final forecast of the endogenous variable is really conditional upon these values.  
Second, the coefficient values used (and indeed the future values of the exogenous  
variables) are estimates and subject to error. Strictly speaking, then, we should carry  
out the calculation shown for a range of values of the coefficients (and exogenous  
variables) to see, in particular, how sensitive our forecast is to (minor) changes in  
the coefficient (exogenous variable) values. Finally, we should ensure that, whatever  
the values of the exogenous variables used, they must be within, or close to those  
within, the experience of the model (which is the case here).

M1992 1188 64 0 378 17 000 688 7 180 160 4462 57= − + ( ) − ( ) =. . , . .
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THE GAUSS–MARKOV THEOREM ON LEAST SQUARES

The white noise error term introduced above has the following properties:

Each one of these properties has a simple yet meaningful interpretation. Property 1  
implies that the error term can influence import behaviour in either direction – positive  
or negative – and is prone neither to be more negative than positive or vice versa.  
Furthermore, the positive and negative effects tend, in the long run, to cancel each  
other so that, on the average, Mt = β1 + β2 Yt + β3 pmt   /  pdt, as the original specification  
would have it.

Property 2, the homoscedastic property, implies that no one realization of the  
error term is observation specific: it is subject to the same range of variation as any  
other realization, whatever the observation. Property 3, which is to be taken in  
conjunction with property 2, states that the observations are not correlated with each  
other. This simply means that the error affecting the current observation is influenced  
neither by the errors that have come before nor those that will occur after. This is  
referred to as the absence of autocorrelation or serial correlation among the errors.7

When the general linear regression model is expressed in matrix notation, as in  
equation (1.13), properties 1 to 3 are expressed compactly as:

where 0 is an (n × 1) null vector (all n elements are equal to 0) and In the (n × n)  
identity matrix. Refer to Appendix 1.1 for a justification and explanation of these items.

A third assumption (A3) is also required:

This assumption harks back to the underlying statistical methods for which least squares  
methods were developed in the first place. In the specific case of equation (1.13), it  
means that if the data to be used in this model were obtainable from experiments and  
that we were able to replicate these experiments, then the X values would remain  
constant from one experiment to the next and, if y were to vary at all, it would be  
because of variation in the error term u.

Under these three assumptions, it will now be proven that:

7 White noise variables are often said to be identically and independently distributed with zero mean  
and constant variance σ2. In the case of ut this may be written in compact notation as ut ~ iid (0, σ2).
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1. E( ) = ββββ i.e.  is an unbiased estimator of ββββ
2. Cov( ) = σ2(X′X)–1

3. For any other unbiased estimator of ββββ, to be denoted , which is also linear  
in y, then Cov( ) = Cov( ) + P, where P is a positive semidefinite matrix.8

This is the Gauss–Markov theorem, perhaps the most important result in classical  
econometric theory. Part (1) of this theorem implies that E(  ) = βi, where  is  
the OLS estimator of the ith coefficient, βi. Part (2) implies that the variance of

, to be denoted var(   ), is the ith diagonal element of the matrix σ2(X′X)–1 and part  
(3) implies that  has the smallest variance in the class of all unbiased estimators  
of βi which are also linear in the observations y. On the basis of the Gauss–Markov  
theorem, the OLS estimator is often described as the best linear unbiased estimator  
(BLUE): it is best because it has the smallest variance, it is obviously linear in y,  
and it is also unbiased.

Proof of Part (1) of the Theorem

We know that  = (X′X)–1X′y. Replacing y by its value gives us:

(1.23)
so that:

since X is fixed. Furthermore, since by A1, E(u) = 0, then Ε( ) = ββββ, which proves the  
first part of the theorem.

Proof of Part (2) of the Theorem

By definition, Cov( ) = E{[  – Ε( )][  – E( )]′}. Since E( ) = ββββ, this becomes:

Cov( ) = E{[  – ββββ][  – ββββ]′}

By equation (1.23) above,  – ββββ = (X′X)–1X′u so that:

8 In matrix algebra, a positive semidefinite matrix corresponds, in scalar algebra, to a number that is  
greater than or equal to zero. In stricter terms, a matrix A is said to be positive semidefinite if there  
exists a vector x such that the quadratic form x′Ax ≥ 0, for all x.
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since X is fixed. Since, by A2, E(uu′) = σ2 In, this simplifies to:

which proves part (2) of the theorem.

Proof of Part (3) of the Theorem

Let  be an unbiased estimator of ββββ (i.e. E( ) = ββββ) which is also linear in y and can  
therefore be written  = Ay, where A is some known matrix. Without loss of generality,  
we can let A = (X′X)–1X′ + L, where L is any nonstochastic matrix, and so:

By simple algebraic manipulation, we deduce that:

By assumption, E( ) = ββββ and the clear implication of this is LX = 0. Consequently:

and

By definition, Cov( ) = E{[  – ββββ][  – ββββ]′} which, given the above, yields:

given that X and L are nonstochastic. Since, by A2, E(uu′) = σ2 In, this reduces to:
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and, since LX = 0, this reduces further to:

that is:

σ2LL′ is clearly a positive semidefinite matrix and part (3) of the theorem is proven.

UNDERSTANDING THE LESSONS  
OF THE GAUSS–MARKOV THEOREM

The use of the word “best” to describe the OLS estimator can and frequently does  
result in some abuse in practice. First, OLS is best in the sense of the Gauss–Markov  
theorem only if assumptions A1 to A3 are verified. We will see in the coming chapters  
that there are likely to be many situations in practice where this may not be so. Second,  
even if we have no good reason to doubt the validity of the assumptions, there are  
many practitioners who do not seem to understand that the best may sometimes not  
be good enough.

EXERCISES

1. From your knowledge of economics, how would you proceed to obtain  
econometric models of the following:
• Demand and supply functions for a popular soft drink
• A production function for methanol
• The demand for money in a Caribbean country

2. Try and identify the sources of the data to be used in the models mentioned  
in exercise 1. If the data do not exist, what would you propose to do?

3. Consider the model:

a) Explain the terms that enter into this equation.
b) Put this equation in the form y = Xββββ + u showing clearly the elements  

of the matrices y, X, ββββ and u.
c) State clearly the usual assumptions about X and u.
d) Formally derive the ordinary least squares (OLS) estimator of ββββ.
e) Show that the OLS estimator of ββββ is unbiased and determine its covari-

ance matrix.
f) State and prove the Gauss–Markov theorem.

Cov β̃β( ) = ′( ) + ′[ ]−σ2 1X X LL

Cov Cov˜ ˆββ ββ( ) = ( ) + ′σ2 LL

y x x ut t t t1 1 2 2 3 3= + + +β β β
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4. You wish to examine the following savings function for the island of  
Dominica:

where Sd is the level of domestic savings, Y is a measure of national income,  
Sf the level of foreign savings inflows, ir a measure of the real rate of interest  
and u the usual disturbance term.
a) How would you justify, a priori, the choice of the function used? What  

do the coefficients mean and what do you expect their values to be?
b) Use the data provided below (found also in WT_DATA.XLS) to obtain  

an estimated savings function for Dominica using constant price values  
for the variables (hint: you may use the consumer price index to deflate  
the nominal values).

c) Do the estimated coefficients satisfy your a priori expectations?
d) Can you explain what the estimated values mean to an intelligent lay  

person?

Data for Dominica

Year
GDSD 
EC$ m

YMPD 
EC$ m

CPI84D FSD 
EC$ m

RINTD 
(%)

1980 –31.430 159.570 0.795 112.600 –21.25
1981 –18.210 178.790 0.900 78.900 –7.33
1982 5.000 194.500 0.940 55.100 1.53
1983 18.700 215.800 0.978 41.900 1.59
1984 9.900 242.600 1.000 79.500 3.47
1985 13.500 266.200 1.021 62.300 3.57
1986 51.600 302.600 1.052 15.900 1.91
1987 46.700 339.300 1.102 32.700 –0.05
1988 59.200 393.200 1.127 61.400 2.50
1989 33.800 422.700 1.198 136.900 –1.46
1990 70.300 451.500 1.228 113.900 2.68

GDSD = Gross domestic savings
YMPD = Gross domestic product at market prices
CPI84D = Consumer price index, 1984 = 1.0
FSD = Inflows of foreign savings
RINTD = Real 12 month deposit rate of interest

Source: Caribbean Development Bank, Bridgetown, Barbados.

S Y S i ud f r= + + + +α α α α0 1 2 3
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APPENDIX 1.1: MOMENTS OF FIRST AND SECOND ORDER  
OF RANDOM VARIABLES AND RANDOM VECTORS

Random Variables

You may remember from your study of elementary statistical methods that the expres-
sion “the mean of a random variable X is equal to μx” is frequently written as E(X) =  
μx. By definition, the variance of X is written as:

and this is frequently written as .
Letting R represent the real number line, then the following expressions are easily  

verifiable:

Let Y be another random variable with mean μy and variance . It is also possible  
to define the covariance between X and Y as:

By definition, the coefficient of correlation between X and Y is defined as:

If X and Y are independent, then σxy and, consequently, ρxy are equal to zero. The  
converse, however, is not true.

The following are easily verifiable:

If X and Y are independent, then, obviously:

var X E X E X E X x( ) = − ( )[ ] = −( )2 2μ
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Random Matrices and Vectors

The mean of a variable9 is often called a moment of first order (of order 1) while the  
variance and covariance are called moments of second order (or order 2).

Suppose we have a matrix X of random variables:

then, by definition:

that is, the expected value of a random matrix is comprised of the expected values of  
the corresponding random variables.

The special case where X consists of only one column (i.e. it is a column vector)  
is of special interest to us. Consider a random vector X whose elements are X1, X2, ...   ,  
Xn and define E(Xi) = μi. Define E(X) = μμμμ, then:

Define var(Xi) = , and Cov (Xi, Xj) = σij, i ≠ j. Consider the following  
“covariance table” showing the moments of second order of the n random variables:

The tableau clearly shows, in an ordered way, the variances (along the principal  
diagonal) and the covariances (the nondiagonal elements). This tableau is defined as  

9 Strictly speaking, we should talk about the mean and variance of a distribution of a random variable,  
and not of the random variable itself.
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the variance-covariance matrix and sometimes more simply as the covariance or dis-
persion matrix of the random vector X. It is easy to show (and it is left to you as an  
exercise) that:

The following results are easy to demonstrate:

If A is an (m × n) matrix, then:

Application to the General Linear Regression Model

In the general linear regression model y = Xββββ + u, where u is defined as in the body  
of chapter 1, it is very easy to show that E(u) = 0 and Cov(u) = E(uu′) = σ2In. Prove  
this as an exercise.

Cov E EX X X X X( ) = − ( )[ ] − ( )[ ]′

  Cov Cov Rλ λ λX X( ) = ( )2 , �

Cov CovAX A X A( ) = ( ) ′
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APPENDIX 1.2:  TIME SERIES DATA  
FOR TRINIDAD AND TOBAGO 1967–1991

Year Cp Cg I X M Y pm pd rD rL

1967 6259.16 1101.98 1077.77 3724.03 1174.25 10988.7 37.32 14.23 3.59 5.48
1968 6088.04 1182.67 1247.01 4245.81 1201.76 11561.8 42.10 15.44 2.30 –0.92
1969 6517.46 1258.64 993.15 4500.96 1392.73 11877.5 43.85 15.80 2.90 5.57
1970 6214.3 1443.54 1504.77 4745.31 1610.74 12297.2 42.52 16.23 2.82 4.91
1971 6409.67 1584.06 2360.55 4054.1 1983.26 12425.1 42.77 16.80 2.09 3.74
1972 6475.92 1813.33 2078.71 4705.49 1930.11 13143.3 49.89 18.36 –0.12 –2.23
1973 6370.35 1853 1875.12 5238.07 1975.5 13361 49.80 21.07 0.80 –4.88
1974 6394.34 1809.97 2707.88 5159.09 2201.51 13869.8 61.30 25.69 –3.63 –10.52
1975 6561.83 2331.04 3281.82 4647.44 2747.36 14074.8 67.90 30.11 –5.85 –7.62
1976 7045.34 2514.59 3755.91 5120.62 3460.18 14976.3 70.65 33.17 –6.28 –2.19
1977 8713.1 2384.83 3878.06 4846.57 3480.17 16342.4 79.86 37.08 –5.31 –3.18
1978 9374.93 2674.61 4964.69 4879.64 3914.55 17979.3 86.62 40.85 –5.33 –1.52
1979 10124.5 3357.72 5122.95 5244.15 5222.85 18626.5 83.20 46.90 –4.89 –4.19
1980 10664 3554.72 6281.45 5659.95 5598.19 20561.9 103.76 55.09 –5.82 –5.49
1981 12319 3824.5 4907.1 5223.2 4794.2 21479.6 124.14 62.99 –5.58 –2.70
1982 13531.8 4305.2 5036.3 5022.8 5598.6 22297.5 144.14 70.18 –5.86 0.08
1983 12101.3 3740.2 4887.1 4801.1 5531.6 19998.1 137.50 82.00 –5.84 –4.57
1984 10080.2 4045.9 4336.5 5559.4 5174.2 18847.8 121.42 92.81 –5.88 –0.39
1985 9824.4 4109.3 3390.9 5882.8 5136.2 18071.2 100.00 100.00 –5.30 4.41
1986 10265.5 4007.8 2968.6 5804.2 5567.8 17478.3 125.13 107.69 –4.62 4.82
1987 8901.3 3974.8 2363.7 5546 4104.9 16680.9 136.65 119.29 –5.09 0.66
1988 8475.9 3651.6 1558.2 6115.1 3773.4 16027.4 156.07 128.54 –4.05 4.40
1989 8099.1 3614.3 1844.6 5912 3575.1 15894.9 178.41 143.13 –4.48 1.93
1990 7667.9 3916.6 1660 6534.3 3644.4 16134.4 168.09 159.00 –4.74 1.61
1991 7999.8 3876.3 2159.7 6709.5 4108.5 16636.8 179.82 165.12 –3.43 8.70

Cp = Private consumption expenditure, constant (1985) prices, TT$ million
Cg = Government consumption expenditure, constant (1985) prices, TT$ million
I = Investment, constant (1985) prices, TT$ million
M = Imports, constant (1985) prices, TT$ million
X = Exports, constant (1985) prices, TT$ million
Y = Income, constant (1985) prices, TT$ million
rD = Real deposit rate of interest (in percentages)
rL = Real loan rate of interest (in percentages)
pd = Domestic price index (1985 = 100)
pm = Import price index (1985 = 100)
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CHAPTER 2

Evaluating the Ordinary Least Squares 
(OLS) Regression Fit

SOME PRELIMINARY REMARKS

In chapter 1, we considered the general linear regression model:

which, in matrix notation, became:

We also established the OLS estimator as:

We define the fitted model as:

or, in matrix notation:

Let us also define the OLS residuals as ût = y  t –  or, in matrix notation:
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Rearranging, we obtain:

or

It is also an interesting result that X′û = 0 since

(from the normal equations in chapter 1). An interesting consequence of this is, if there  
is a constant term in the model (as there often is), then:

Prove this as an exercise.

THE COEFFICIENT OF DETERMINATION AND  
THE ADJUSTED COEFFICIENT OF DETERMINATION

Perhaps the most widely used measure of goodness-of-fit of a regression is the coef-
ficient of determination (also commonly called the coefficient of multiple correlation)  
or its closely related counterpart, the adjusted coefficient of determination. The (almost)  
universal notation R2 is used for the former while  is used for the latter. Let us derive  
these measures.

The goodness-of-fit of the fitted values  , t = 1, 2, ..., n must clearly be judged  
on the basis of how close they are to the actual (observed) values yt, t = 1, 2, ..., n.  
It can be shown that, if the general linear regression model contains a constant term,1

then

That is, the average value of the observed y values ( ) is also the average of the fitted  
values. Therefore, if the regression fit is a reasonably good one, we can expect that the  

1 From now on, unless it is specifically stated otherwise, the general linear regression model will be  
assumed to contain a constant term which, without loss of generality, may be taken to be the first  
exogenous variable, xlt.

y y u= +ˆ ˆ

y X u= +ˆ ˆββ

′ = ′ −( ) = ′ − ′ =X u X y X X y X X 0ˆ ˆ ˆββ ββ

ût
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two following values will not differ too much from each other and that the ratio of  
both of them should be close to unity:

The notation TSS stands for “total sum of squares” while the notation ESS stands for  
“explained sum of squares”. It can also be shown that they have the following rela-
tionship with each other:

where the last term is clearly the sum of squared OLS residuals or the residual sum  
of squares (RSS). ESS and RSS are clearly bounded from above by TSS and bounded  
from below by zero, since all the terms in this expression are necessarily positive or  
zero. ESS and TSS would be identical in value if (and only if) RSS = 0, which implies  
that ût = 0 for all values of t which, in turn, implies that yt =   for all values of t. The  
more yt differs in value from  , the smaller ESS becomes relative to TSS and the  
larger RSS becomes relative to TSS. In the limit, if RSS = TSS, then ESS = 0. Put  
another way, the better the fit, the closer is the ratio ESS/TSS to unity and the worse  
the fit, the closer is the ratio to zero. This ratio defines the coefficient of determination, i.e.

By construction, 0 ≤ R2 ≤ 1. A perfect fit is attained for R2 = 1 and the worst possible  
fit (which is no fit at all) is obtained when R2 = 0. The [0, 1] interval is the goodness-
of-fit scale: the closer R2 is to 1 the better the fit, and the closer it is to 0 the worse the fit.

In the numerical computation shown under Exhibit 1.1 in chapter 1, the value of  
R2 is clearly shown as:

This means that just over 94% of the variation in the dependent variable (IMPORTS)  
is explained by the regression, which indicates an eminently good fit.
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There is one serious shortcoming in the use of R2 as a measure of goodness-of-
fit: the addition of more and more explanatory variables, whatever their economic  
significance, never will result in a decrease in value of ESS and consequently of R2

and is more likely to result in a rise in these values. An investigator wishing to  
maximize the value of R2 need simply include in the regression more and more  
variables, whatever the economic justification for doing so. It is for this reason that an  
alternative measure was developed that does not share that weakness. It is defined as:

Notice that, as the number (k) of explanatory variables increases,  will increase only  
if the increase in R2 more than compensates for the fall in the value of (n – k). Otherwise,  
it will fall.

The capacity of  to rise or fall when new variables are added to the explanatory  
variable list is the feature that endears it to applied economists and, in modern  
practice, it is more widely used as a measure of goodness-of-fit than R2. Referring  
once again to the numerical computations shown under Exhibit 1.1 in chapter 1, this  
value is also calculated and displayed as:

Using this measure, the conclusion is that just below 94% of the variation in IMPORTS  
is explained by the regression, which makes it a very good fit.

CONFIDENCE INTERVALS FOR COEFFICIENTS

The application of OLS yielded us point estimates of the β coefficients. Statistical  
theory teaches us that interval estimates are probably more useful because they allow  
us to consider a range of possible values within which the true parameter value may  
be located and, furthermore, we may associate a measurable confidence level with this  
range. There is also a more practical reason for considering a range of values rather  
than one single value: the use of econometric models for forecasting and policy analysis  
should not be too sensitive to minor modifications in the coefficient values used and  
the interval identified is a useful range over which we may vary the values if only to  
establish that the forecasts and policy prescriptions are not radically altered as a  
consequence.

The determination of interval estimates for a coefficient requires knowledge about  
the probability distribution of the estimated coefficients. For large sample sizes, the  
problem to some extent is solved for us by an appeal to the famous central limit  
theorem, which would tell us that:
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where  SE( ) is the standard error of  which is equal to the square root of the ith  
diagonal element of σ2(X′X)–1.

However, in many econometric studies, especially those involving time series  
analysis, samples are usually quite small. The problem, therefore, must be solved  
by introducing distributional assumptions up front and, at the very best, attempting  
to validate such assumptions afterwards. It is usual to assume that the error vector  
u is normally distributed and, more specifically:

It follows immediately from this assumption that  is also normally distributed  
since, as was shown in the previous chapter:

More specifically:

In particular:

where var  ( ) is the ith diagonal element of σ2(X′X)–1. Let  be the ith diagonal  
element of (X′X)–1. Then:
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A standard result of statistical theory is:
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The 100(1 – α)% confidence interval, 0 < α < 1, is therefore easily determined as:2

where zα/2 is defined from the normal distribution as:

There is one important limitation in applying this result: σ2 is unknown and it must  
therefore be estimated from the data.

It can be shown that:

is an unbiased estimator of σ2. Moreover, it can also be shown that:

It can also be shown that Z =   is independent of C2 = = (n – k)  
and it therefore follows that:

where tn–k indicates the Student (T) distribution with n – k degrees of freedom. Note,  
too, that is the estimated standard error of . The 100(1 – α)% confidence  
interval is now based on the Student distribution and is easily calculated as:

where tα/2 is defined from the Student distribution as:

2 α is usually 0.01, 0.05 or 0.10.
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for (n – k) degrees of freedom. Note that s2 can be calculated from the EViews output  
either as the square of the “S.E. of regression”, i.e. 383.80592 = 147307 or as the “Sum  
squared resid” divided by (n – k) or 3240753/22 = 147307.

Consider the import function that was estimated in the previous chapter:

The relevant part of the output from EViews is:

==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1188.641   696.9314  -1.705535    0.1022
      INCOME          0.377639   0.029737   12.69930    0.0000
      RATIO          -688.6762   155.8371  -4.419206    0.0002
==============================================================

Here, β2 is estimated as 0.377639 and its estimated standard error is calculated as  
0.029737. The 95% confidence interval for β2 is therefore:

where 2.074 is the value of t0.025 read from the tables of the Student distribution for  
(25 – 3) = 22 degrees of freedom. If the exercise were to be repeated over and over  
again, β2 would lie in the calculated interval 95% of the time.

The 90% confidence interval would be:

where t0.05 = 1.717 for 22 degrees of freedom. For large samples,3 the Student distribution  
may be approximated by the standard normal distribution. In this case, to construct the  
95% confidence interval, the value of t0.025 can be read from the normal distribution as  
1.960 (approximately 2) and for the 90% interval, the value of t0.05 is 1.645.

SIGNIFICANCE TESTS OF COEFFICIENTS

To some extent, when an economist includes a particular variable among the exogenous  
variable list, he or she is not always certain that this variable can be used to explain  
the dependent or endogenous variable. In the import function, for instance, it is a matter  
for empirical verification that either the income variable or the relative price variable  
truly helps to explain imports. Suppose one of them, income, for example, was wrongly  
included, then we would expect that β2 = 0. Testing the nullity of coefficients like β2

is one of the most important exercises in applied econometrics. We will now look at  
how it is done.

3 In practice, a sample is deemed to be large enough if there are thirty or more degrees of freedom.

M Y p p ut t mt dt t= + + +β β β1 2 3
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An intuitively appealing procedure involves looking at the problem in the framework  
of the confidence intervals just discussed. Consider, for instance, the 95% interval  
constructed for β2 in the import function. If we believe that a strong chance exists for  
β2 = 0 to be true, then clearly the value of zero should lie in this interval. After all, the  
true value of β2 will lie in this interval 95 times out of 100 and, clearly, if β2 = 0 is true,  
then it should be a value in this interval. Put another way, if the value zero does not  
belong to this interval, the chances of it being the true value of β2 is 5% (at best!). So  
if zero is not in the interval, we have very good reason to reject the hypothesis that β2

= 0. As it stands, the interval does not contain zero, and so the hypothesis is rejected.
Of course, the student may well know that there is a more formal approach to  

doing a test like this one and it involves the use of the “T” statistic:

 

In formal terms, the null hypothesis:

is tested against the alternative hypothesis:

at the 100α% level. The test statistic in this case is , and its absolute value
(size irrespective of sign), which is the test statistic, is compared to tα/2 (for n – k  
degrees of freedom) which is defined above. The null is rejected if the test statistic  
exceeds tα/2 and not rejected in the event that it does not.

To illustrate from the import function we have been looking at, the test statistic is  
calculated as 0.377639/0.029737 = 12.6993. The value of t0.025 read from the table is  
2.074 and so the null hypothesis is resoundingly rejected at the 5% level (and therefore  
at all higher levels, including 10%). To test at 1%, the value of t0.005 for 22 degrees of  
freedom is read as 2.819 and so the null hypothesis is rejected at this level as well.

The test of the nullity of a given regression coefficient is so popular that standard  
econometric packages like EViews provide the value of its test statistic automatically.  
It is shown in Exhibit 1.1 in the previous chapter under the column headed “T-Statistic”.

The advent of modern computing capabilities also allows the calculation of “p-
values”, which show the lowest level of significance at which a given null hypothesis  
would be rejected. If, for instance, a p-value is calculated as 0.073, this simply means  
that the corresponding null hypothesis must be rejected at levels of significance 7.3%  
and higher. It can therefore be rejected at 10%, but not at 5% or 1%. EViews  
automatically calculates the p-value associated with the test of the nullity of a given  
coefficient as:
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using the formula of the Student distribution. This is shown under the column headed  
“Prob.”. EViews is programmed to print this p-value to four decimal places and, for  
β2, this value is given as 0.0000, which approximates a value that is very close to zero.  
It is calculated from the Student distribution as:

This means that the null is rejected even at very low levels of significance and so will  
also be rejected at higher levels like 1%, 5% and 10%. As an exercise, carry out this  
test for β1 (the constant term) and β3 (the coefficient of RATIO).

In addition to testing for the nullity of a given coefficient, the Student distribution  
is also valid for any test of the null:

against one or more of the following alternative hypotheses:

or

or

where γ can be any real number, not necessarily zero. Suppose, for instance, we want  
to test the hypothesis that the marginal propensity to import is less than 40%. This is  
a one-tailed test and the test statistic associated with it is:

The null hypothesis is rejected in favour of the alternative if this value is less than the  
corresponding value read from the Student distribution for 22 degrees of freedom at  
the chosen significance level. At the 5% level, this value is –1.725. The null hypothesis  
that the marginal propensity to import is 40% cannot be rejected at the 5% level of  
significance.

TESTING THE SIMULTANEOUS NULLITY  
OF THE SLOPE COEFFICIENTS

It is important to test the nullity of a given coefficient because, as economists, we want  
to know whether the associated variable intervenes in the explanation of the dependent  
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variable. But it is also important to know whether an entire subset of the supposedly  
explanatory variables intervene significantly or not and, in the final analysis, this can  
include all the explanatory variables. In this section of the book, we will concentrate  
on the case of the nullity of all the slope coefficients, i.e. all except the constant term,  
and will leave for later consideration the case of any particular subset. The null  
hypothesis we are looking at is the following:

while the best way to describe the alternative hypothesis is “not H0”.

Let us look once again at the breakdown of the variation in the dependent variable:

If the slope coefficients are zero, then we would expect that 

would be equal to zero. Therefore, if ESS is not significantly different from zero, we  
may conclude that there is sufficient evidence to suggest that the slope coefficients are  
not significantly different from zero. It can be shown that, if the null hypothesis is true,  
then:

Using this result as it stands is a bit awkward since σ2 is unknown. However, we do  
know that, whether the null is true or not,

It can also be shown that, when the null is true, these two Chi squares are independent  
of each other. It therefore follows that:
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The null hypothesis is to be rejected at a given level of significance if the calculated  
value of this statistic exceeds the value read from the Fischer–Snedecor Tables for the  
stated degrees of freedom.

For the import function that is under consideration, the null hypothesis is:

and the test statistic is calculated as:

For (k – 1) = 2 and (n – k) = 22 degrees of freedom in the numerator and denominator,  
respectively, the value read from the table at the 5% significance level is 3.44. The null  
hypothesis is resoundingly rejected at this level of significance, i.e. there is insufficient  
evidence to allow us to conclude that the two slope coefficients are simultaneously  
equal to zero.

EViews also provides the p-value associated with this test and it is shown as:

which proves that the null will be rejected at very low significance levels, including  
1%, 5% and 10%.

“ECONOMIC” EVALUATION OF REGRESSION RESULTS

As economists, we develop an understanding and appreciation of economic matters  
that become an indispensable part of our profession. When using the tools of regression  
analysis, we cannot ignore our own (perhaps subjective) feelings on the phenomenon  
under study simply because they will be based on this understanding and appreciation  
that we have developed over the years.

Consider, for instance, the import function. We may have an idea about the value  
of the marginal propensity to import that may be in stark contrast to the value obtained  
from application of the regression. If this happens, we simply cannot abandon our  
own feelings on the matter on the pretext that “the computer says so”. Clearly, we  
cannot ignore what the results are telling us but neither must we accept them  
unquestioningly.

As we advance in our study of econometrics, we will see that there are many  
occasions and situations (due to data inadequacies, for instance) that will further  
justify the need for our personal interventions. Unfortunately, this is sometimes taken  
to the other extreme, and many economists are not prepared to accept any result that  
is at odds with their own feelings. This has led to the practice of “data mining”, in  
which economists fiddle with hundreds of regression runs on the computer, retaining  
and reporting only those that suit their own fancy. This is discussed at length in  
Charemza and Deadman (1997) and it is not a practice to be encouraged.

H0 2 3 0:β β= =

F-statistic 180.1255

Prob F-statistic( ) 0 000000.
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REPORTING REGRESSION RESULTS

Refer to the results displayed in Exhibit 1.1 of the previous chapter. This represents  
an item of communication between the computer and the user. The user, assumedly,  
will have read the corresponding manuals and will understand the “coded” messages  
shown. We must not, however, assume that a third party will understand this output  
largely because we have no right to assume that he or she is familiar with EViews.  
Certain conventions have been established for reporting the results shown in Exhibit 1.1
and in Exhibit 2.1 we show what we consider to be the most popular template, using  
as an illustration the results from Exhibit 1.1.

The values in parentheses below the estimated slope coefficients are the corre-
sponding t-ratios. Notice that the t-ratio associated with the constant term is not  
reported. This is a matter of taste and reflects the authors’ view that more attention  
should be paid to the value of the slope coefficients unless there is some compelling  
reason to do otherwise.

The values of  and the F-statistic are clearly shown, as well as another statistic  
– the Durbin–Watson statistic (DW). The use of the Durbin–Watson statistic will be  
discussed in chapter 4.

EXERCISES

1. Consider the general linear regression model

a) Discuss the relative usefulness of the adjusted and unadjusted coeffi-
cients of determination in the evaluation of econometric models like this  
one.

b) Let βi be the ith element of the coefficient vector ββββ. Stating clearly your  
assumptions, formally derive a statistic based on the Student distribution  
for testing the hypothesis βi = βi* against βi ≠ βi*.

c) Describe (using an illustration if you wish) the mechanism of the test  
for βi* = 0.

d) How would you test the hypotheses:

EXHIBIT 2.1
Proposed template for reporting regression results
Mt = –1188.64  +  0.378 Yt – 688.7 pmt   /pdt 

            (12.70)             (4.42)
         DW   =   1.67      F   =   180.1R2 0 937= .
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e) Assuming there is a constant term in the model, formally derive (using  
but clearly stating assumptions) a test statistic for testing the simulta-
neous nullity of the slope coefficients. How would you carry out this test?

2. Return to the Dominican savings function introduced in exercise 4, Chapter  
1. Consider the fit again and do the following:

• Is the fit a good one?
• Are the coefficients significant?
• Carry out the F test
• Construct a 95% confidence interval for α1.
• Report the results using the template shown in Exhibit 2.1 of this  

chapter.
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CHAPTER 3

Some Issues in the Application  
of the General Linear Regression Model

MULTICOLLINEARITY: THE PROBLEM

In the general linear regression model:

which in matrix notation becomes:

it is implicitly assumed that the columns of X are linearly independent of each other.  
A set of vectors x1, x2, …, xk is said to be linearly dependent if there exists a set of  
scalars λ1, λ2, …, λk not all equal to zero, such that:

Similarly, it is said to be linearly independent if the only case for which the above is  
true is when all the λs are equal to zero.

One of the most fundamental assumptions for the application of the OLS method –
perhaps the most fundamental – is that the matrix of explanatory variables X is of  
full rank. Recall the well-known normal equation introduced in chapter 1:

which can be solved for  to give:
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provided that X′X admits an inverse. For a square (k × k) matrix to be invertible, it  
must be of full rank k, which implies that X, too, must be of rank k.1 The rank of a  
matrix is equal to the maximum number of linearly independent rows or columns and,  
if two or more columns of X are linearly dependent, then the rank of X would be less  
than k. Let us see what this implies for OLS estimation with the use of a simple  
illustration.

Consider the four-variable model:

and suppose that:

or

that is, there exists linear dependence. It is easily deduced that, for some real value α:

and

Clearly, if we obtain a structure β1, β2, β3, β4 compatible with the y observations,  
any other structure of the form β1, (β2 – α), (β3 + αλ3), (β4 + αλ4) is also compatible.  
The relation between the distribution of the stochastic term u and the endogenous  
variable y will be the same for an infinite number of coefficient values, depending  
on whatever value we wish to give to α. From a statistical point of view, these  
structures are equivalent, since the observations do not allow us to distinguish  
between them. We say that the coefficients of the model are not identifiable, in which  
case estimation is impossible. This is the case of “perfect multicollinearity”.

This perfect multicollinearity outlined above is a limiting case, however; one that  
is rarely, if at all, encountered in practice. What is usually referred to as multicol-
linearity in the literature (perhaps incorrectly so) is a less extreme case of the  
foregoing, and should in fact be referred to as “near-multicollinearity” or “pseudo-
collinearity”. This is the case where there exists a strong (but not perfect) correlation  

1 It will always be assumed that n ≥ k (a necessary condition for the rank of X to be equal to k) and  
the problem of multicollinearity will be concerned with the case where the rank of X is less than k  
even though n ≥ k.
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between any two or more of the explanatory variables in the model. The stronger  
this correlation is, the more chronic is the collinearity problem. This pseudo-col-
linearity is more the rule than the exception with economic data, especially time  
series data, given the inherent nature of economic magnitudes to move together over  
time. Hence, with respect to economic data, the question becomes more the degree
of pseudo-collinearity in the model, rather than its presence or absence.

In the OLS estimation exercise, the economist really has two tasks: estimation  
of the equation and interpretation of the results. The presence of perfect multicol-
linearity implies that the estimation phase cannot be undertaken. The presence of  
pseudo-collinearity in a regression model does not prevent OLS estimation; the  
danger here, however, lies, in the interpretation of the output from the estimation  
phase. As will become more evident later, the investigator must exercise great caution  
when attempting to draw definitive conclusions from a model in which pseudo-
collinearity is present. Let us examine some of the more dire consequences of this  
pseudo-collinearity which, following a time-honoured tradition, we will refer to as  
multicollinearity.

When two or more columns of X are correlated, we cannot easily distinguish the  
relative contributions of each variable in the explanation of y. If the column vectors  
comprising X are orthogonal,2 the coefficient values obtained from OLS estimation  
accurately reflect the degree to which each explanatory variable in the model serves  
to explain the variation in the variable y under study. If one or more of the explanatory  
variables were to be subsequently eliminated from the model, the coefficient values  
of the remaining explanatory variables would remain unchanged. Indeed, the absolute  
independence of the right-hand variables in the model means that there would no  
longer exist the need for the estimation of a multiple regression model – the same  
coefficient estimates could be obtained by performing a series of simple regressions  
of y on each of the explanatory X-variables.

With the presence of multicollinearity in the model, the coefficient values  
obtained from OLS estimation may no longer accurately reflect the relative impor-
tance of each explanatory variable. This loss of precision may manifest itself in three  
ways:

1. Specific estimates may have large errors
2. These errors may be highly correlated
3. Sampling variances will tend to be very high.

For any of the above reasons, investigators may sometimes be led to drop variables  
from the regression. The T-tests may, for example, show them to be insignificant. But  
the true situation may be, not that an explanatory variable has no effect, but rather that  
the sample data set has not allowed us to pick up the actual effect. Multicollinearity  
therefore is indicative of a problem in the data being used in the regression, and does  
not necessarily negate the underlying economic theory. All that is occurring is that the  
data are rendering us ill equipped to either validate or invalidate the theory.

Finally, coefficient estimates tend to become, in the presence of multicollinearity,  
very sensitive to particular sample data sets. As a result, the addition of a few or  

2 Vectors xi and xj are said to be orthogonal if xi′′′′ xj = 0, i ≠ j.
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more observations may produce dramatic shifts in some of the coefficient values,  
sometimes to the extent that the signs of the estimates may actually change.

Let us consider for illustrative purposes, the following simple case:

where the x vectors contain variables measured from the mean – for example, the first  
element of x1 is , and a typical element x1 is , where .

Therefore:

We know that the coefficient of linear correlation between x1 and x2 is estimated  
by:

and so we can write:

We know that, for any square matrix A, the inverse of A is defined as:
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where A+ is the matrix of co-factors and |A| the determinant of A. It follows that, since:

then,

If r2 were equal to zero (as it would if the columns of the X matrix were orthogonal  
to each other), then |X′X| would be non-zero and so the matrix (X′X)–1 would exist.  
Conversely, if the coefficient of correlation r2 were equal to one (as it would in the  
presence of perfect multicollinearity or linear dependence in the X matrix), |X′X|  
would equal zero, and hence (X′X)–1 would not be invertible. However, as we have  
already mentioned, these two extreme cases are hardly ever the reality. Instead, the  
real concern arises when r2 tends to (but does not equal) the value of one. As this  
occurs, the elements of the matrix (X′X)–1 become larger and larger. If we remember,  
then, that:

where:

is the column matrix of the OLS estimators, then clearly, increasing collinearity among  
the explanatory variables implies corresponding increases in the variances (and so the  
standard errors) of their associated coefficient estimates. This means that the presence  
of pseudo-collinearity may lead to a non-rejection of the classic null hypothesis that  
the true value of the coefficient estimate is equal to zero, and so can cause the  
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unsuspecting investigator to erroneously exclude a possibly relevant explanatory vari-
able from further regression analysis.

MULTICOLLINEARITY: DETECTION

There will inevitably be some degree of multicollinearity in an econometric model.  
The foregoing discussion highlights large standard errors of the parameter estimates  
as an indication of its presence. However, such standard errors and their correspond-
ingly high p-values could also mean that the chosen explanatory variables have little  
or no relevance to the explanation of the variable under study. How does one therefore  
decide whether it is the multicollinearity or the economic theory underlying the model  
that is to blame? A possible answer lies, not in an examination of the standard errors  
and p-values of the model alone, but rather in the study of the  and F-statistics  
as well.

Consider the following scenario. The OLS estimation of a linear regression model  
yields coefficient values that have associated with them extremely large standard  
errors and as such, very large p-values. However, the model also shows R2 and  
values close to one, as well as a high F-statistic with its associated p-value close to  
zero. What is occurring here? On the basis of the coefficient results alone, one may  
conclude that the coefficient estimates are not significantly different from zero, and  
so the model needs to be respecified. However, the F-statistic is indicating the  
unequivocal rejection of the null hypothesis of the simultaneous nullity of the slope  
coefficients. Furthermore, the “goodness-of-fit” measures are indicating that a large  
portion of the variation in the dependent variable is being explained by the present  
regression. In this situation, one may surmise that it is the presence of severe  
multicollinearity that is responsible for such contradictory results.

A further indication of severe multicollinearity in a regression model can be  
found in an analysis of the correlation matrix of the explanatory variables in the  
model. We know that the sample correlation coefficient between xi and xj is defined  
as follows:

In the special case where i = j, rii = 1. We can therefore define the sample correlation  
matrix for the k explanatory variables, as follows:
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where the diagonal elements represent the coefficient of correlation of each variable  
with itself (hence equalling one), and the off-diagonal elements represent the coefficient  
of correlation of each variable with another. Any off-diagonal elements close to one  
would therefore indicate the presence of severe multicollinearity in a model. This is  
not to say, however, that off-diagonal values not close to unity imply the absence of  
multicollinearity. For herein lies the danger of this method as an indicator of multicol-
linearity – while there may not be a strong correlation between any two variables in  
the model as indicated by this matrix, there could exist a strong correlation between  
combinations of the explanatory variables, which this matrix cannot indicate. EViews  
may be used to obtain this correlation matrix.

MULTICOLLINEARITY: A SOLUTION?

Multicollinearity is a data problem that cannot easily be remedied. A widely used  
solution is to remove the variables that are highly collinear. If the multicollinearity is  
very great, this is an intuitively justifiable procedure – the same information will still  
to some extent be available from the remaining variables. This amounts, however, to  
setting the true coefficient values of the omitted variables equal to zero, and unless this  
is effectively true, the OLS parameter estimates will be biased, as we shall see below.

MULTICOLLINEARITY: AN ILLUSTRATION

Let us once again consider the import function that we have looked at in chapters 1  
and 2. This time, however, we modify the function to include Cg (government con-
sumption expenditure) for which there is ample theoretical justification. For example,  
international lending agencies, such as the International Monetary Fund (IMF), often  
maintain that governments should cut their spending as this inevitably leads to increased  
spending on imports and, eventually, balance of payments deficits. The inclusion of  
Cg among the explanatory variables allows us to test this theory and, should it prove  
to be valid, we may use the model to measure the impact of increased government  
spending on imports.

The model to be fitted is:

and the results obtained by the application of OLS, with G_CONS being the notation  
used for Cg in EViews, are shown in Exhibit 3.1.

Here β4 (the coefficient of Cg) is not only estimated with an incorrect (minus)  
sign, which appears to contradict the IMF theory, but it is also highly insignificant  
with a p-value of over 60%. The constant term is not at all significant and β3 is  
significant only at about 9%. In fact, the only convincing explanatory variable is  
income with a p-value of 0.0001. And yet, there is a very high R2 (over 90%) and  
an F-statistic with a p-value almost equal to zero. These are all tell-tale signs of the  
presence of multicollinearity. Let us look at the problem a little more closely.

Dissatisfaction with the performance of the Cg variable may entice us to drop it  
from the relationship, leaving us with the model already estimated in chapter 1. If  

M Y p p C ut t mt dt gt t= + + + +β β β β1 2 3 4
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we look back at those results, we will see that both β2 and β3 are very significant  
while the R2 and F-statistics are similar to those shown in Exhibit 3.1. It would appear  
that we did well to drop Cg from the equation. But examination of Exhibit 3.2 above  
reveals that Cg is highly correlated with both Y and pm/pd.

So multicollinearity is indeed a problem, and the importance of Cg to the expla-
nation of imports may have been masked. We become more convinced of this when  
we look at the results in Exhibit 3.3.

This time it is the income variable that is dropped and the results are astonishing.  
Not only does Cg have the correct sign; it is now (or appears to be!) highly significant.  
It also appears that the “significance” of β3 has improved considerably: it now has  
a p-value of 0.0092 compared to 0.0925 in Exhibit 3.1 (and at the same time confirms  
the IMF fears with a vengeance: for every extra dollar that the government spends,  

EXHIBIT 3.1
OLS Regression fit of
Mt = β1 + β2 Yt + β3 pmt   /pdt + β4 Cgt + ut

==============================================================
LS // Dependent Variable is IMPORTS
Date: 08/12/95   Time: 18:42
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -727.4020   1191.544  -0.610470    0.5481
      INCOME          0.418379   0.089812   4.658357    0.0001
      RATIO          -931.5592   528.4922  -1.762673    0.0925
      G_CONS         -0.225711   0.468481  -0.481793    0.6349
==============================================================
R-squared             0.943075   Mean dependent var   3556.082
Adjusted R-squared    0.934943   S.D. dependent var   1531.723
S.E. of regression    390.6845   Akaike info criter   12.08145
Sum squared resid     3205323.   Schwarz criterion    12.27647
Log likelihood       -182.4916   F-statistic          115.9697
Durbin-Watson stat    1.727823   Prob(F-statistic)    0.000000
==============================================================

EXHIBIT 3.2
Correlation matrix for Y, pm/pd and Cg

(from EViews)
================================================
               INCOME      G_CONS      RATIO
================================================
  INCOME      1.000000    0.858551   -0.566984
  G_CONS      0.858551    1.000000   -0.889659
  RATIO      -0.566984   -0.889659    1.000000
================================================
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the Trinidad and Tobago consumers spend $1.83 on imports). Furthermore, the R2

and F-statistics leave us in no doubt that this is a good fit.
What then do we do? It is very difficult to answer this question at this stage of  

our study of econometrics but at least one word of warning is in order: the conclusions  
about the significance of this or that variable under the conditions of multicollinearity  
shown here are very tenuous and great caution should be exercised in using any of  
the results shown. Furthermore, the process through which variables are (arbitrarily)  
added and dropped from an equation, as was done here, has given rise to charges of  
data mining.

MISSPECIFICATION

An implicit assumption underlying the optimality of the OLS estimator (in the  
Gauss–Markov sense) is that the general linear regression model

is correctly specified. In particular, we assumed that no important explanatory variable  
was missing from the model and the error term u effectively accounted for the missing  
variables. But this assumption very frequently does not hold. A model may be mis-
specified for several reasons. The multicollinearity problem, discussed above, often  
forces an investigator to drop a variable that should be contained in the true specifica-
tion, because this variable may be highly correlated with the others. It may sometimes  
be the case that the economic theory under study may itself be defective, causing the  

EXHIBIT 3.3
OLS Regression fit of
Mt = β1 + β3 pmt/pdt + β4 Cgt + ut

==============================================================
LS // Dependent Variable is IMPORTS
Date: 08/12/95   Time: 18:44
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -3891.503   1363.900  -2.853217     0.0092
      G_CONS         1.828956   0.219974   8.314420     0.0000
      RATIO          1138.220   398.6708   2.855036     0.0092
==============================================================
R-squared            0.884253   Mean dependent var    3556.082
Adjusted R-squared   0.873730   S.D. dependent var    1531.723
S.E. of regression   544.2900   Akaike info criter    12.71113
Sum squared resid    6517534.   Schwarz criterion     12.85740
Log likelihood      -191.3626   F-statistic           84.03447
Durbin-Watson stat   1.238556   Prob(F-statistic)     0.000000
==============================================================

y X u= +ββ



48 A Practical Introduction to Econometric Methods: Classical and Modern

investigator to misspecify the model. Or, as is so frequent in the field of economics,  
the theory may involve variables that are not directly measurable, or for which data  
are just not readily available, such as, for example, consumer tastes in a demand  
function, or capital stock in a production function.

Whatever the reason for the misspecification of a model, its effect is to subsume the  
influence of the missing variable(s) into the disturbance term, and it can (and will) be  
shown that, in this case, OLS estimation is biased. Worse than that, the bias does not  
disappear as the sample size increases (and OLS estimation is said to be inconsistent).

It is possible, however, to show the effect of the absence of an important explan-
atory variable.3 Consider the following “true” model:

The economist, however, wrongly specifies that:

and this misspecified model is fitted by OLS to yield the following:

where

and

Therefore:

3 In Part II of this book, tests for this and other kinds of model misspecification will be studied.
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We can show the biased nature of this OLS estimator in the following manner –  
replace yt in this expression by its value:

Therefore:

implying that E( ) differs from β1 by the amount

which is a measure of the bias. The bias can be given a very natural interpretation; if  
we were to run a regression

then the OLS estimator of the coefficient of x2t would be calculated as follows:
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The bias is proportional to the coefficient of linear regression of the missing  
variable x2 on the present variable x1 and the unknown β2 is the proportionality factor.  
The OLS estimator  would be unbiased if  were equal to zero, which would  
happen if and only if the variables x1 and x2 were orthogonal. Such an occurrence  
is highly unlikely. Once x1 and x2 are in some way correlated, as they usually would  
be, then we run the risk of misspecification by running the regression without one  
or other of these variables.

It is easy to generalize to the k-variable case where more than one relevant  
variable may be omitted from the model. Suppose the “true” model contains k  
variables while the fitted model contains k1 < k (i.e. k – k1 variables are omitted).  
The true model can be represented by:

while the fitted model is:

where X1 is the (n × k1) matrix of included variables and X2 the (n × k2) matrix of  
excluded variables (k2 = k – k1). OLS estimation yields:

Replacing y by its value gives:

Since the X matrices are fixed and E(u) = 0, then, clearly:

so that  is a biased estimator of ββββ1 unless the omitted and excluded variables are  
orthogonal to each other, a possibility that we can safely rule out when dealing with  
economic data.

We have considered a specification error due to the absence of relevant explan-
atory variables, and we have seen that this leads to bias in our coefficient estimates.  
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There exist, however, other forms of misspecification, such as the inclusion of  
irrelevant explanatory variables, errors in the functional form of the regression  
equation, and the misspecification of the error term. What is interesting to note is  
that the inclusion of irrelevant variables does not introduce statistical bias in the  
parameter estimates. Thus, if the researcher is in doubt about the relevance of a  
regressor, it is preferable to include it in the function, provided that the sample is  
large enough (to ensure adequate degrees of freedom), and provided that data are  
available on the variable whose relevance is uncertain on a priori expectations. But  
beware! For we increase the risk of multicollinearity by so doing. Furthermore, we  
risk complicating the economic interpretation of the model. In any event, the inclu-
sion of a host of possibly irrelevant variables so that OLS estimation gives us useful  
results is, practically, very unrealistic, given the small sample sizes that are charac-
teristic of economic data. We risk obtaining unreliable estimates due to the loss of  
precious degrees of freedom.

DUMMY VARIABLES

In many economic models, it is sometimes necessary to introduce exogenous variables  
that are not directly measurable. Quite often, this variable is of a “yes/no” character,  
as is illustrated in the following example. Suppose we undertake a cross sectional  
analysis to investigate the sales of theatre seats, and we thought that the level of  
education of the potential customers was an appropriate explanatory variable. We may  
then introduce a variable that will take a value of either 0 or 1 at each sample point –  
1 if the individual in question has a university degree, and 0 if not. This is an example  
of a “dummy variable”. A dummy variable is used in instances where the researcher  
believes that an explanatory variable exercises a discrete rather than continuous influ-
ence on the dependent variable. As such, the dummy variable acts as a proxy for this  
explanatory variable, where the value 1 indicates the presence of an attribute and the  
value 0 indicates its absence.

Let us pursue the above illustration further. Imagine that an economist proposes  
to examine the model

where ct represents sales of theatre seats, yt represents personal disposable income and  
zt is the dummy variable of the model, taking on the value 1 if the individual has a  
university degree, and 0 if not.

We can now obtain OLS estimates of the coefficients, but how do we interpret  
them? Notice first of all that:

and

c y z ut t t t= + + +α α α1 2 3

E c yt tno degree( ) = +α α1 2

E c yt tdegree( ) = +( ) +α α α1 3 2
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The underlying expectation is that, for some given income level, people with  
university degrees are greater theatre-goers than those without, and that the difference  
in behaviour is accounted for by a larger value of the intercept term. The marginal  
propensity to purchase theatre tickets is estimated by the coefficient of yt and is  
identical in both cases. The coefficient of the dummy variable zt, α3, therefore  
represents the difference in the level of autonomous purchases of the two categories  
of customers.

We could, of course, have carried out separate regressions, one including those  
with university degrees and one including those without, but this would have resulted  
in imprecise OLS estimators due to the loss of degrees of freedom, given the small  
sample sizes peculiar to economic data.

Apart from its discrete properties, a dummy variable in a regression model is a  
variable like any other and, as such, may be evaluated by standard significance tests.  
If the T-statistics and corresponding p-values indicate that the coefficient estimate  
α3 is not significantly different from zero, then the conclusion is that the level of  
education has no significant effect on theatre-going. The testing of the null hypothesis  
that α3 = 0, therefore, is tantamount to testing the hypothesis that there is no  
significant difference in theatre-going between the two categories of customers.

The same problem could have been tackled using two dummy variables. Our  
model could have been written:

where

and

Notice that:

and

Careful interpretation must be given. This time, the difference in the level of  
autonomous consumption, represented by α3 in the previous model, is now given by  
(β1 – β2). Note also the absence of a constant term in the present model. If we put  
in such a term, then we cannot use the two dummy variables to represent the two  
different education levels, but only one. In the first place, a second dummy variable  
would add no further information to the model. Second, and more important, the  
introduction of a constant term in this model would put us in the dummy variable  
trap. Suppose we wished to fit the following model:

c z z yt t t t t= + + +β β β ε1 1 2 2 3

z t1 0=  if no degree,  and 1 if degree

z t2 1=  if no degree,  and 0 if degree

E c yt tdegree( ) = +β β1 3

E c yt tno degree( ) = +β β2 3
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This model could be put in matrix notation as follows:

where

The two dummy variables in the model are used to represent whether the individual  
in question has a university degree or does not. These are clearly two independent  
events, and so at any particular sample point, it is easy to see that

However, the inclusion of a constant term in the model means that our matrix of  
explanatory variables X contains a column of 1s. Therefore, the X matrix in this model  
is characterized by perfect collinearity. Recall from the preceding discussion that this  
implies that the matrix (X′X) cannot be inverted, and so OLS cannot be applied. This  
is the dummy variable trap.

The dummy variable technique may be extended to cover more than two char-
acteristics provided they are all mutually exclusive. Extending the previous illustra-
tion, for example, we can fit a model:

where:
z1t = 1 if the individual has A levels but no university degree, and 0 if not, and
z2t = 1 if the individual has a university degree, 0 if not

Notice that:

In general, in an N-way classification, we must introduce only (N – 1) dummy  
variables, if we wish to retain a constant term in the model.
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Dummy variables are frequently applied to time series problems as well. The  
classic illustration of the application of the dummy variable technique is given in  
the case of the Keynesian aggregate consumption function, distinguishing between  
consumption in wartime and in peacetime. Suppose our data set spans both periods.  
The model that assumes no difference in wartime or peacetime is given by:

If we assume that there is a shift in autonomous consumption at wartime (which we  
may expect on a priori grounds to be a downward one, due to the war effort), then the  
appropriate dummy becomes: zt = 1 during the wartime, and z2t = 0 during peacetime.

Our model therefore becomes:

where β2 will represent the shift in autonomous consumption during the wartime. If β2  

is not significantly different from zero, then we may conclude that wartime has no  
significant effect on aggregate consumption.

The preceding examples illustrate the use of dummy variables to capture changes  
in the intercept terms. We can also use dummy variables to capture changes in the  
slope coefficients. Suppose that in the above Keynesian consumption function, we  
think that the wartime state of affairs will affect, not autonomous consumption levels,  
but rather the marginal propensity to consume. We will therefore introduce a dummy  
variable in the following manner:

where

and

We can, of course, go one step further, and introduce a dummy variable that  
affects both the intercept and the slope terms, as in the following model:

c yt t t= + +β β ε0 1

c y zt t t t= + + +β β β ε0 1 2

c y z yt t t t t= + + ( ) +β β β ε0 1 2

E c yt twartime( ) = + +( )β β β0 1 2 ,

E c yt tpeacetime( ) = +β β0 1

c y d d yt t t t t t= + + + ( ) +φ φ φ φ ε0 1 2 3
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where dt is our wartime/peacetime dummy variable, introduced in a manner under the  
hypothesis that a state of war will affect both autonomous consumption and the  
marginal propensity to consume.

In econometrics, the use of dummy variables is generally preferred to the esti-
mation of separate regressions. While the latter does enable the direct estimation of  
the relevant coefficients, there remains the problem of the size of the sample, which  
may not be large enough to yield reliable estimators. Incorporating dummy variables  
into a regression enables degrees of freedom to be saved, and the investigator is still  
able (albeit in an indirect fashion) to obtain relevant coefficient estimates. Of course,  
once introduced into a regression model, a dummy variable becomes a bona fide
variable like any other, and so will impact on the specification of the system as well  
as on the degrees of freedom.

ILLUSTRATION INVOLVING A DUMMY VARIABLE

We turn once again to the import function and include a dummy variable that is equal  
to 1 during the “boom” years (1974 to 1981) and 0 otherwise. The results obtained  
are displayed in Exhibit 3.4.

The dummy variable has the expected sign but is very insignificant. The overall  
results are not much different from those shown under Exhibit 1.1, which makes it  
safe to conclude that, according to these results, the boom period had no appreciable  
effect on the importing habits of the Trinidad and Tobago consumers.

EXHIBIT 3.4
OLS Regression fit of
Mt = β1 + β2 Yt + β3 pmt/pdt + β4 Cgt + β5DUMMY + ut

==============================================================
LS // Dependent Variable is IMPORTS
Date: 08/12/95   Time: 21:51
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -1054.538   781.2754  -1.349764     0.1915
      INCOME         0.371343   0.033939   10.94148     0.0000
      RATIO         -718.9875   175.0262  -4.107886     0.0005
      DUMMY          78.90306   191.2359   0.412596     0.6841
==============================================================
R-squared            0.942909   Mean dependent var    3556.082
Adjusted R-squared   0.934753   S.D. dependent var    1531.723
S.E. of regression   391.2552   Akaike info criter    12.08437
Sum squared resid    3214693.   Schwarz criterion     12.27939
Log likelihood      -182.5280   F-statistic           115.6113
Durbin-Watson stat   1.693665   Prob(F-statistic)     0.000000
==============================================================
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EXERCISES

1. What is meant by the term “multicollinearity”?
2. What are the principal consequences of multicollinearity for ordinary least  

squares (OLS) regression?
3. Look again at the savings function for Dominica which is the subject of  

exercise 4, chapter 1. Can you find any evidence of multicollinearity? Use  
the correlation matrix of the explanatory variables as part of your argument.

4. In explaining consumer behaviour, an economist fitted the model

(1)

when he knew the correct model to be

(2)

where C = consumption, W = wage income, P = non-wage urban income  
and A = non-wage rural income.
a) Why did he deliberately misspecify his model?
b) Show that the OLS estimation of (1) yields biased estimators if (2) is  

the true model.
5. What is a dummy variable?
6. Discuss situations where you are likely to introduce dummy variables into  

econometric analysis.
7. You are told that, following a hurricane, emergency measures were put in  

place in Dominica over the period 1984–1987. Incorporate a dummy vari-
able into the Dominican savings function to evaluate the effect of these  
measures on national saving.

8. Consider the following consumption function model

(1)

where C = consumption, Y = income, Z = 1 in wartime and zero otherwise  
and ε is the standard error term.
a) Explain the purpose of the dummy variable in this model.
b) Two approaches are suggested for estimating the coefficients of this  

model: (i) estimating the coefficients of the model as it stands in equation  
(1) or (ii) fitting two separate regression lines of Ct on Yt (one for  
peacetime years and one for wartime years) to the sample data. Carefully  
discuss the implications of these two approaches.

c) Given the model in equation (1), explain how and why you would test  
the following hypotheses:
i) The peacetime intercept is zero.
ii) There is no difference between the peacetime and wartime intercepts.
iii) There is no difference between the peacetime and wartime slopes.

C W P ut t t t= + + +β β β0 1 2

C W P A ut t t t t= + + + +β β β β0 1 2 3

C Y Z Y Zt t t t t t= + + + +β β β β ε1 2 3 4
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CHAPTER 4

Generalized Least Squares, 
Heteroscedasticity and Autocorrelation

GENERALIZED LEAST SQUARES

In chapter 1, we considered the general linear regression model:

We introduced three assumptions (A1 – A3):

where 0 is an (n × 1) null vector, and In is the (n × n) identity matrix.
Let us investigate the second assumption further. Cov(u) represents the variance-

covariance matrix of the vector of errors u. By definition, therefore, its diagonal  
elements represent the variances of the individual errors ut, t = 1, 2, …, n while its  
off-diagonal elements represent the covariances, i.e.

and

The third assumption therefore embodies two properties of the error term – that of  
homoscedasticity and the absence of autocorrelation.

Suppose that, in the generalized linear regression model, X is fixed and E(u) =  
0. But let us now assume that:

where V is a known, symmetric, positive definite matrix.

y X u= +ββ

1

3

2

.  ,

.  

E

E n

u 0
u uu I

X

( ) =
( ) = ′( ) =

 and

2. Cov
 is fixed

σ

var ,u tt( ) = ∀σ2

cov , ,u u t st s( ) = ≠0

cov u V( ) = σ2
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What is the significance of V? V may be, but is not constrained to be, the identity  
matrix In, which itself is symmetric and positive definite. This means that the diagonal  
elements of the variance-covariance matrix of the u are no longer necessarily equal  
to some constant value, and the off-diagonal elements are no longer necessarily equal  
to zero. In other words, the disturbances may be heteroscedastic and/or autocorre-
lated. If they are heteroscedastic, then:

If they are autocorrelated, then:

Note that the fact that V is positive definite implies the following:

1. All variances are positive, that is, σ t
2  > 0, ∀t

2. There is no perfect correlation between any two error terms

Needless to say, both heteroscedasticity and autocorrelation can occur at the same  
time. The presence of either one, however, is enough to violate the second assumption  
listed above. If we know the precise nature of the heteroscedasticity and/or the  
autocorrelation, we can construct the V matrix. Once we have done so, the estimation  
of our model becomes possible, not by the method of ordinary least squares (OLS),  
which, as we shall see, now loses some of its most valuable properties. We must use  
instead the method of generalized least squares.

Let us concentrate on the general linear regression model where the second  
assumption becomes Cov (u) = σ2V. Because V is a positive definite matrix, there  
exists a non-singular matrix P such that:

It follows that:

and

We can transform the original model by premultiplication by P–1 to obtain:

which can be rewritten as:

(4.1)

var , , ,u t nt t( ) = ≠ = …σ σ2 2 1

E u ut s t s, ,( ) = ≠σ 0

V PP= ′

P V P I− −′ =1 1

V P P− − −= ′1 1 1

P y P X P u− − −= +1 1 1ββ

y X u∗ = ∗ + ∗ββ
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Any unbiased estimator of ββββ in the original model is also an unbiased estimator of ββββ
in model (4.1).

Notice that:

and

The transformed model, therefore, has the following properties:

These are the properties of the standard linear regression model and so we can apply  
OLS to the transformed model to obtain the best linear unbiased estimators. The  
estimators so obtained are by definition the generalized least squares (GLS) estimators.  
Applying OLS to the transformed model, we obtain:

which is the OLS estimator of the transformed model and, by definition, the GLS  
estimator of the original model.

E E Eu P u P u∗( ) = ( ) = ( ) =− −1 1 0

cov cov covu P u P u P

P VP

P VP

P PP P

P P P P

I

1

1

∗( ) = ( ) = ( ) ′

= ′

= ′

= ′ ′

= ( )( )′

=

− − −

− −

− −

− −

− −

1 1 1

1 2 1

2 1

2 1 1

2 1

2

σ

σ

σ

σ

σ

1

2

3

2

.  

.  

.  

E

Cov

u 0

u I

X

∗( ) =

∗( ) =

∗

σ

 is fixed

β̃β = ′∗ ∗( ) ′∗ ∗

= ( )′( )⎡
⎣⎢

⎤
⎦⎥

( )′( )

= ′ ′( ) ′ ′

= ′( ) ′

−

− −
−

− −

− − − − −

− − −

X X X y

P X P X P X P y

X P P X X P P y

X V X X V y

1

1 1
1

1 1

1 1 1 1 1

1 1 1



60 A Practical Introduction to Econometric Methods: Classical and Modern

PROPERTIES OF THE GENERALIZED LEAST  
SQUARES ESTIMATOR

1. E( ) = ββββ, i.e.  is an unbiased estimator

Proof

Since  = (X′V–1X)–1X′V–1y, then, replacing y by its value yields:

Since both X and V are nonstochastic:

2. Cov( ) = σ2(X′V–1X)–1

Proof

By definition:

Since E( ) = ββββ:

But from above:

or

β̃β β̃β

β̃β

β̃β ββ

ββ

= ′( ) ′ +( )

= + ′( ) ′

− − −

− − −

X V X X V X u

X V X X V u

1 1 1

1 1 1

E E

E

˜

                         

ββ ββ

ββ

ββ

( ) = + ′( ) ′[ ]
= + ′( ) ′ ( )

=

− − −

− − −

X V X X V u

X V X X V u

1 1 1

1 1 1

Q.E.D.

β̃β

Cov E E E˜ ˜ ˜ ˜ ˜ββ ββ ββ ββ ββ( ) = − ( )[ ] − ( )[ ]′
β̃β

Cov E˜ ˜ ˜ββ ββ ββ ββ ββ( ) = −( ) −( )′⎡

⎣
⎢

⎤

⎦
⎥

β̃β ββ= + ′( ) ′− − −X V X X V u1 1 1

β̃β ββ− = ′( ) ′− − −X V X X V u1 1 1
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Therefore:

3.  is the best linear unbiased estimator (BLUE) of ββββ when cov(u) = σ2V.
We leave this as an exercise for you to do!

CONSEQUENCES OF USING ORDINARY LEAST SQUARES 
WHEN u ~ (0, σσσσ2V)

Let us first of all investigate the property of unbiasedness. Does the application of OLS  
still yield unbiased estimators under the new set of assumptions? Recall that:

Replacing y by its true value, we obtain:

Therefore:

Cov E

E

E

β̃β( ) = ′( ) ′[ ] ′( ) ′[ ]′⎧
⎨
⎪
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= ′( ) ′ ′ ′( ){ }
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Hence, notwithstanding the change in the second assumption, OLS estimation remains  
unbiased.

What about the covariance matrix of ? In chapter 1, we saw that, in a model  
characterized by the initial three assumptions A1 to A3:

With the change in the second assumption, however:

The consequences of using OLS when GLS is applicable are therefore very  
serious. OLS, while still linear and unbiased, is no longer the best estimator in the  
sense of having the minimum variance. Furthermore, if a model were to be estimated  
by OLS using routine econometric packages such as EViews, the standard statistics  
accompanying the regression results (such as the standard errors of the parameter  
estimates, the T-ratios and accompanying p-values, and the F-statistic) would be, at  
the least, unreliable measures by which to judge the model. This is due to the fact  
that such statistics are calculated on the assumption that:

However, as we saw above, when the second assumption is changed, we obtain:

β̃β

Cov β̂β( ) = ′( )−σ2 1X X
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Hence, the statistical results so generated are incorrect, and should not be used when  
the third assumption is changed and there exists heteroscedasticity and/or autocorre-
lation in the regression model.

A related problem is that, in both expressions for Cov( ), σ2 remains unknown.  
Traditionally, σ2 would be estimated by:

However, it can be shown that s2 is now a biased estimator of σ2 (this shall not be  
proven). The corresponding unbiased estimator is:

where  is the GLS estimator.
Therefore, for best results, GLS estimation should be used, with  being used  

as an estimator for σ2.

GLS ESTIMATION: A PRACTICAL SOLUTION?

Clearly, GLS estimation only becomes a feasible alternative to OLS estimation if the  
V matrix is known but this is usually not the case. If it were possible to obtain a  
consistent1 estimator of V, then we could obtain what is known as the feasible GLS  
estimator, defined as:

where  is a consistent estimator. The calculation of the GLS estimator requires,  
however, the inversion of . This presents a further problem. The V matrix is of order  
n × n, where n is the number of observations. There are, therefore, n2 elements in this  
matrix. Computationally, this is a burdensome exercise and is usually avoided.

AD HOC PROCEDURES FOR THE IDENTIFICATION  
OF HETEROSCEDASTICITY AND AUTOCORRELATION

Both heteroscedasticity and autocorrelation are problems associated with the error  
terms of the regression model. Clearly, then, the initial and most basic step that should  
be taken is an examination of the residual plots of the model. OLS estimation of our  

1 The meaning of the term “consistent” is defined in a later chapter.
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general linear regression model acts as a filter, separating the signal (β1x1t + β2x2t + ...  
+ βkxkt) from the noise (ut).

If ut were really white noise (i.e. it is homoscedastic and not autocorrelated), its  
plot against time would exhibit some specific patterns. More specifically, it would  
exhibit a “well-behaved” pattern, coming back to a well-defined mean on a regular  
basis.2

However, such “visual” inspections are of limited value and should, wherever  
possible, be accompanied by more rigorous testing procedures. Let us now examine  
the problems of heteroscedasticity and autocorrelation in more detail. It is important  
to note, however, that, while it is clear that both heteroscedasticity and autocorrelation  
can occur at the same time, the following discussion will, for the purposes of  
simplicity, emphasize each problem separately.

Heteroscedasticity: Some Further Considerations

The assumption of homoscedasticity is implausible in many econometric modelling  
exercises. In cross sectional studies in particular, it seems excessive to suppose that  
error terms will be homoscedastic. This has been confirmed empirically. Consider, for  
example, the Keynesian consumption function:

Imagine that there are n households in our sample, forming a cross section of a society  
and so embracing both low-income and high-income households. On a priori grounds,  
we would expect that higher-income families will show much less variability in their  
consumption patterns than lower-income families – if their incomes were to fall, more  
likely than not they would maintain present living standards by using up savings.  
Therefore, we would expect that the variances of the error terms associated with higher-
income families would be much smaller than those associated with lower income  
families.

Consequently:

Heteroscedasticity:  Testing for its Presence

The Goldfeld–Quandt Test

In general, it is not unusual for the disturbance term to be in correlation with one or  
more of the explanatory variables in the model. Goldfeld and Quandt (1965) propose  
a test for the special case where:

2 In modern econometric methodology, we say that white noise is characterized by stationarity, or the  
absence of unit roots – concepts that will be discussed in some detail in Part II of this book.

C Y u t nt t t= + + = …α β ,  , , ,1 2

Var ut( ) ≠ σ2

var u xt jt( ) = σ2 2
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that is, the variances of the disturbance terms vary with the square of one of the  
exogenous variables in the model. Assuming away the problem of autocorrelation, our  
V matrix would look like:

This test aims at distinguishing between:

The testing procedure is as follows:

1. Order all observations in accordance with the size of xj, the variable that  
we suspect to be correlated with the error term.

2. Divide these ranked observations into two groupings. To clearly separate  
them, it is suggested that we omit a certain number c of central observations  
from the analysis. The two groups of observations, each of size [(n–c)/2],  
are therefore now clearly separated, with one grouping associated with the  
smaller values of the responsible explanatory variable, and the other asso-
ciated with the larger values.

3. We fit separate OLS regressions on the first [(n–c)/2] and the last [(n–c)/2]  
observations, provided as usual that:

The sum of squared residuals associated with each regression is defined as  and  

. It can be shown, under the null, that:

for ν = [(n–c)/2] degrees of freedom and that s1 and s2 are independent of each other.  
Therefore, if the null were true:

and it is this property that is used to test the null hypothesis.
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The test has a strong intuitive appeal: if the alternative hypothesis were true, that  
is, if the variances of the error term vary in proportion to the magnitude of the  
explanatory variable xj, then we would expect, on a priori grounds, that s2, the  
measure of variance associated with the larger values of xj, would be higher than s1.  
If, however, the null hypothesis represented the true state of affairs, then s1 and s2

would not differ significantly from one another – that is, the variances of the OLS  
residuals associated with each subsample would be the same, and hence be seen to  
be independent of the size of the explanatory variable xj.

If the null hypothesis were true, this ratio, and hence the value of the F-statistic,  
would not differ significantly from one. Conversely, if the alternative hypothesis were  
true, and there did exist heteroscedasticity of the type indicated, then the F-statistic  
would differ significantly from one. The greater the magnitude of this statistic the  
more severe is the heteroscedasticity problem (of the specified form), and the more  
likely you are to reject the null hypothesis of the homoscedasticity of the error terms.

If the null is rejected, then the appropriate estimation technique is GLS, with V
constructed as above. Note that the inversion of this matrix, previously highlighted  
as a possible limitation to the practical use of GLS estimation, is here a feasible  
suggestion, since V is under the assumption of the absence of autocorrelation, a  
diagonal matrix, whose inversion simply requires the inversion of each diagonal  
element of this matrix.

A significant limitation of the Goldfeld–Quandt test is the requirement that c  
central observations be eliminated from the sample. In the first place, the value of c  
is chosen arbitrarily. Second, and more important, the data constraints characteristic  
of econometric models would tend to make one very wary of placing further restric-
tions on an already limited sample space. Finally, it is unsuitable for time series data  
since the ordering of the data in time is ignored in carrying out the test.

The Koenker Test

This test can be applied to time series data. The null and alternative hypotheses are:

Clearly, if the null hypothesis were true, then the γ term in the above expression  would  
not be significantly different from zero. The crux of the matter, therefore, is to find a  
way of testing the nullity of γ. Koenker (1981) proposes that OLS be run on the original  
model:

The squared residuals so obtained then become the dependent variable in the model:
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where  is the OLS fit. The parameters of this model, α and γ, can be estimated by  
OLS. Of course,  becomes the crucial indicator of the presence of heteroscedasticity  
in the model. Its significance can be judged from the routine Student and F tests outlined  
in chapter 1. If, on the basis of these tests, we cannot reject the null hypothesis that γ
= 0, then we can conclude that the residual terms in our general linear regression model  
are homoscedastic. If, however, the null is rejected, then our conclusion must be that  
there exists heteroscedasticity, of the specified form.

Illustration of the Koenker Test for Heteroscedasticity

The great advantage of the Koenker test is that it is very simple in its conception  
and can be carried out in EViews doing some simple programming. Consider the  
import function estimated in Exhibit 1.1. Both the residuals and fitted import values  
are saved and the square of their values calculated and stored, respectively, as UHAT2  
and IMPFIT2. The latter is regressed on the former and the results obtained are  
shown in Exhibit 4.1.

The coefficient of IMPFIT2 is significant at around the 6% level and we may,  
on the basis of such evidence, be willing to conclude that the disturbances are  
heteroscedastic.

Other Tests for Heteroscedasticity

There are several other tests for heteroscedasticity. One of the more popular ones, due  
to White (1980), will be introduced in chapter 11.

Estimation in the Presence of Heteroscedasticity

The feasible generalized least squares (GLS) procedure discussed above is appropriate  
in the presence of heteroscedastic disturbances. The weighted least squares (WLS)  

EXHIBIT 4.1
Koenker test for heteroscedasticity:  
OLS fit of UHAT2 = α + β IMPFIT2
==============================================================
LS // Dependent Variable is UHAT2
Date: 07/26/97   Time: 17:18
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C             9390.723   71641.49   0.131079    0.8969
     IMPFIT2          0.008140   0.004018   2.025934    0.0545
==============================================================
R-squared             0.151430   Mean dependent var   129612.5
Adjusted R-squared    0.114535   S.D. dependent var   213277.8
S.E. of regression    200692.5   Akaike info criter   24.49568
Sum squared resid     9.26E+11   Schwarz criterion    24.59319
Log likelihood       –339.6694   F-statistic          4.104409
Durbin–Watson stat    2.634695   Prob(F-statistic)    0.054524
==============================================================

ŷt

ŷ
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estimator, which is really a special case of the GLS estimator, is another. An example  
of the WLS estimator is given in exercise 2 at the end of this chapter.

Autocorrelation: The Problem3

To say that the error term ut of the general linear regression model is not autocorrelated  
is to say that the value that it assumes in any one period is completely independent of  
its value in any preceding period. This assumption is, as we have discussed, represented  
by the zero values of all off-diagonal elements in the variance-covariance matrix of u.

If this assumption fails to hold, that is, if the value of ut in any one period is in  
some way correlated with its preceding values, then the error term is said to be  
autocorrelated. This means that the off-diagonal elements of the variance-covariance  
matrix of u would now be non-zero.

A special case of autocorrelation will be of great interest to us, mainly because  
standard tests of autocorrelation were developed on the assumption that this was the  
type of autocorrelation present. In the general linear regression, it is usually assumed  
that ut follows a first-order autoregressive process, defined as:

where εt is a white noise process and, in particular:

The disturbance in period t is a linear function of the disturbance in period t –  
1 plus a purely random term εt, which is a white noise process.

Let us calculate the moments of first and second order of ut.

We can keep substituting ad infinitum, and we will obtain:

3 The synonymous term “serial correlation” often appears in the literature in place of “autocorrelation”.
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For sufficiently large values of s, the term ρs+1ut–(s+1) will tend to zero, since |ρ| <1.
Therefore, we may write:

The expected value of ut is found as follows:

and, if and only if  (which is verified here since |ρ| < 1), then:

Turning now to the second-order moments, that is, E(ut ut+r), let us first determine:

where cross products are terms involving εt and εt–r, r ≠ 0. With the application of the  
E operator, these terms would disappear since E(εt εt–s) = 0, for s ≠ 0.

For ρ < 1, the expression in brackets sums to [1/(1 – ρ2)] so that:
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This expression represents the autocovariance of order r of ut. For r = 0:

that is, the variance of the error term is homoscedastic. The autocovariance of order r,  
r ≠ 0, is:

When r = 1:

When r = 2:

and so on.
Clearly:

where:
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ρs can be given a more concrete meaning in this model as the autocorrelation coefficient  
of order s. This is defined as:

and it is easily shown (do it as an exercise!) that this is equal to ρs.
If we know the value of ρ (or can estimate it), then we can construct the V matrix  

which, theoretically, will allow us to estimate ββββ by GLS. In practical terms, however,  
the inversion of this matrix, which is required for the application of GLS, is a  
complicated and cumbersome procedure, and in general is avoided. Alternative  
estimation procedures that yield results approximately equivalent to GLS but are  
computationally less burdensome are discussed later in this chapter.

Autocorrelation:  Testing for its Presence  
Using the Durbin–Watson Statistic

The Durbin–Watson test for autocorrelation is one of the oldest and arguably still the  
most widely used test for autocorrelation. In fact, all standard OLS packages automat-
ically calculate the value of the Durbin–Watson (DW) statistic on which the test is  
based. To its credit, this statistic is easy to calculate and the corresponding test is valid  
in small samples.

The DW statistic is calculated as:

If, as is usually the case, there is a constant term in the model, then . The  
DW statistic then reduces to:

Durbin and Watson (1951, 1952) established tables of critical values for this  
statistic which have been since modified by Savin and White (1977). These are  
reproduced in most standard econometric textbooks (including this one).
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The DW tables are established for testing for the existence of positive autocor-
relation in a model that includes a constant term.4 It can be shown (some justification  
will be given below) that there is no autocorrelation if DW = 2 but that there is  
positive autocorrelation when DW < 2. The test therefore opposes the two competing  
hypotheses:

The mechanism of the test is as follows: Durbin and Watson calculated upper  
and lower significance bounds (dU and dL, respectively) for different combinations  
of n, the number of sample points, and k′, the number of explanatory variables  
excluding the constant term. The value of the DW statistic is compared to these  
bounds and:

If DW < dL, we conclude that there is positive autocorrelation
If DW > dU, there is no autocorrelation.

It can also be shown that the DW statistic is symmetric about the value 2 and  
varies in value between 0 and 4 so that the same tables could be used to test for  
negative autocorrelation if DW > 2. We simply use the test statistic:

and apply it in the same way as was done with DW for the detection of positive  
autocorrelation:

If DW′ < dL, we conclude that there is negative autocorrelation
If DW′ > dU, there is no autocorrelation.

The reader may have noticed that this is not an exact test in the sense that there  
is a range of possible values for DW for which no conclusion is possible. This is  
the region on the real line bounded by dL and dU (and by 4 – dU and 4 – dL). The  
box diagram shown in Figure 4.1 illustrates this region as well as the mechanism of  
the test for the various values of DW.

Notice that the DW statistic is characterized by a gap in its distribution. There  
exists a region between the significance bounds dL and du (and correspondingly  
between 4 – dU and 4 – dL) over which no conclusion can be drawn. A DW whose  
value lies in this range, therefore, tells the researcher nothing about the presence or  
absence of autocorrelation. This is one of the primary limitations of this test.

There are other limitations of the test. First, the test can, strictly speaking, only  
tell us whether the error term is an autoregressive process of order 1, or AR(1) as it  
is often called in the literature, or whether it is not an AR(1). There exist, however,  

4 Farebrother (1980) has established tables of critical values for the Durbin–Watson statistic when the  
model does not include a constant term.
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many other possible forms of autocorrelation, which, if present, can have similarly  
serious consequences. Hence a DW statistic close to 2 indicates, not the absence of  
autocorrelation in a model, but rather the absence of autocorrelation of an AR(1)  
form. However, as we will see in Part II of this book, it is frequently possible to  
approximate these various forms of autocorrelation as an AR(1) so that, intuitively,  
the DW test will have some power in detecting them.

Some Justification for the Mechanism of the Durbin–Watson Test

We have seen that:

Expanding, we get:

In large samples:

FIGURE 4.1
Box Diagram Illustrating the Mechanism of the Durbin–Watson Test
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Therefore, we can say that:

However, in the model:

our OLS estimate of ρ would be:

Evidently, for large n:

The consequences of this are as follows. Recall that ρ represents the autocorre-
lation coefficient between the residual terms. As  tends to –1, that is, should the  
error terms be characterized by perfect negative autocorrelation, the DW statistic  
would tend to a value of 4. Similarly, as  tends to +1, that is, should there exist  
perfect positive autocorrelation of the error terms, the DW statistic would tend to a  
value of 0. Finally, as  tends to 0, implying that there exists no autocorrelation of  
the defined type in the model, the DW statistic would tend to 2 in value.

It can be shown, in fact, that as  varies between –1 and +1, the DW statistic  
varies between 4 and 0, and is symmetric about 2. Thus, intuitively, the test of the  
hypothesis that ρ = 0 in the model:

is roughly equivalent to the test that DW = 2.

An Illustration of the Durbin–Watson Test for Autocorrelation

Let us examine the private consumption function for Trinidad and Tobago that was  
introduced in an earlier chapter. Regression results are shown in Exhibit 4.2 for the  
following specification (P_CONS is the notation used in EViews for private consump-
tion expenditure):
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The DW statistic is calculated as 0.847030. For 25 observations and one regressor  
(not counting the constant term), the 5% critical values read from the tables are:

The null hypothesis that the error term is a white noise process is rejected in favour  
of the alternative that it is an autocorrelated AR(1) process. At this juncture, further  
statistical inference (for instance, significance tests) is not advisable, since the presence  
of serial correlation invalidates the assumptions on which such inference would nor-
mally be based.

Other Tests for Autocorrelation

Other tests for autocorrelation exist in the literature. One of these, due to Durbin (1970),  
will be introduced in chapter 5. Yet another of more general applicability, resulting  
from the work of Breusch (1978) and Godfrey (1978), will be introduced in chapter 11.

Estimation in the Presence of Autocorrelation

If ρ were known or could be reliably estimated, then obviously the correct procedure  
would be to build the V matrix and estimate the model by GLS. However, because of  
the difficulties associated with this due to the complex nature of V, we choose not to  
use GLS but to use, instead, procedures that are approximately equivalent.

The general basis for all such procedures that we are about to consider is the  
generalized difference equation model, which we now establish. Consider the model:

EXHIBIT 4.2
Equation: Ct = β1 + β2 Yt + ut

Output obtained from fitting equation in EViews
==============================================================
LS // Dependent Variable is P_CONS
Date: 08/30/95   Time: 12:20
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -1960.845   648.5700  -3.023336     0.0060
      INCOME         0.651093   0.039624   16.43176     0.0000
==============================================================
R-squared            0.921502   Mean dependent var    8499.164
Adjusted R-squared   0.918090   S.D. dependent var    2169.299
S.E. of regression   620.8536   Akaike info criter    12.93881
Sum squared resid    8865561.   Schwarz criterion     13.03632
Log likelihood      -195.2086   F-statistic           270.0028
Durbin-Watson stat   0.847030   Prob(F-statistic)     0.000000
==============================================================
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(4.2)

where:

Lagging expression (4.2) and multiplying throughout by ρ gives:

(4.3)

Subtracting expression (4.3) from (4.2):

which is the generalized difference equation model. We may also write it as:

(4.4)

If ρ were known, or could be estimated, then OLS could be applied to equation (4.4)  
to obtain BLU estimators of the β coefficients, since the residual terms εt are by  
definition a white noise process. This procedure avoids the inversion of the V matrix;  
but we lose one observation in the process.

Unfortunately, ρ is never known and it must be estimated. The following two  
procedures result in the simultaneous estimation of ρ and the β coefficients.

The Cochrane–Orcutt Procedure

This is an iterative technique by which we get progressively better values for ρ. It is  
ideal for electronic computation and is certainly too burdensome to be done manually.

Step 1—The first step in this procedure is to fit model (4.2) by OLS, and in so  
doing, obtain the estimated residual terms ût This is the entry or start-up point – it  
is never again repeated throughout the procedure.

Step 2—Having obtained estimates of our residual terms, we then perform the  
following regression by OLS:

and so derive an estimate for ρ.
Step 3—Our estimate  is then substituted for ρ in the model (4.4) to obtain:

We then estimate this model by OLS, and so obtain estimates of the β coefficients.
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Step 4—The parameter estimates derived in step 3 above are then substituted  
into our general linear regression model (4.2) from which a new set of residual terms  

 are derived. Note that, unlike the entry step in which the residuals were estimated  
through an OLS procedure, here the residuals are calculated.

Step 5—Run another regression:

and repeat steps 2 to 5. The procedure stops at the rth iteration if:

where δ is some small, predetermined value.
The Cochrane–Orcutt procedure is far from flawless. First, the choice of r may,  

because of cost and time constraints, be too low to allow convergence, and hence  
the researcher retains suboptimal values. Second, while the procedure is in the spirit  
of OLS estimation in that the idea behind it is to obtain values for ρ and β such that  
∑ût

2 is at a minimum, the danger is that the procedure may yield a local rather than  
a global minimum, resulting again in suboptimal estimates.

The Hildreth–Lu Procedure

This is also an iterative procedure, once again ideal for electronic computation and  
very difficult to undertake manually. It is done in a grid-search manner, where ρ is  
allowed to progressively assume values between –1 and +1 in steps of, say, 0.1. For  
each value of ρ, equation (4.4) is estimated via OLS, and the procedure selects the  
equation with the lowest sum of squared residuals as the best.

Once the value of ρ is chosen, we can obtain a more accurate value by carrying  
out a more detailed grid search in the neighbourhood of the value of ρ calculated.  
For example, suppose that we obtain  = 0.3. We can then examine what takes place  
between 0.2 and 0.4 with steps of 0.01.

Grid search procedures can be very tedious, and this is the primary drawback of  
this technique. It would save valuable computer time if, for example, you had a  
priori expectations about the value that ρ should assume, for example, if it is positive  
or negative. The danger also exists here of obtaining a local rather than a global  
minimum.

The EViews Procedure

Both the Cochrane–Orcutt and Hildreth–Lu procedures are special applications of the  
maximum likelihood approach to estimation, which will be discussed in Part II of this  
book. Both are also widely programmed and are available in packages like PC TSP  
and MicroFIT. EViews also uses a maximum likelihood approach that is an iterative  
Marquandt procedure (which will not be discussed here). The consumption function  
shown above under Exhibit 4.2 shows evidence of autocorrelation and was corrected  
using the EViews procedure. The results obtained are displayed in Exhibit 4.3.

ˆ̂ut

ˆ̂ ˆ̂u ut t t= +−ρ ε1

ˆ ˆρ ρ δr r− <−1

ρ̂



78 A Practical Introduction to Econometric Methods: Classical and Modern

The Durbin–Watson statistic now has a value of 2.1461, which means that we  
must test for negative autocorrelation. The corresponding DW′ statistic defined above  
is calculated as:

This value may be compared to the 5% critical values read from the tables for 24  
observations and two estimated coefficients (including ρ, which is here estimated as  
0.53 but excluding the constant term):

The null hypothesis of no serial correlation cannot be rejected.

AUTOCORRELATION AND MODEL SPECIFICATION:  
A WORD OF CAUTION

The DW statistic was designed as a test for autocorrelation; its value can, however, be  
used as an indication of the misspecification of the regression model. For example,  
suppose that the economist fits the model:

EXHIBIT 4.3
Equation: Ct = β1 + β2 Yt + ut corrected for autocorrelation
Output obtained from fitting equation in EViews
==============================================================
LS // Dependent Variable is P_CONS
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
Convergence achieved after 3 iterations
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -3120.248   1423.792    -2.191505   0.0398
      INCOME         0.712948   0.082117     8.682084   0.0000
      AR(1)          0.531852   0.197864     2.687963   0.0138
==============================================================
R-squared            0.950820   Mean dependent var    8592.498
Adjusted R-squared   0.946136   S.D. dependent var    2164.074
S.E. of regression   502.2495   Akaike info criter    12.55466
Sum squared resid    5297345.   Schwarz criterion     12.70192
Log likelihood      -181.7105   F-statistic           203.0025
Durbin-Watson stat   2.146100   Prob(F-statistic)     0.000000
==============================================================

DW′ = − =4 2 1461 1 8539. .

d
d
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U

=
=

1 19
1 55
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but the “true” model is really:

This means that the error term of the fitted model, vt, is not the intended white noise,  
but is instead equal to (β2x2t + ut). Consequently, the OLS residuals of the fitted model  
would exhibit autocorrelation since most economic variables are autocorrelated.

One of the first questions, therefore, that should be asked when the Durbin–Wat-
son test detects the presence of autocorrelation is whether the model has been  
correctly specified and whether or not this apparent “autocorrelation” can be cor-
rected by adding the missing variable to the model. A further indication of a missing  
variable would be a low R2 (or ) which provides evidence that some of the variation  
of the dependent variable remains unaccounted for, and the impact of this variable  
on the model has been subsumed into the error term.5

Take for instance the import function that we have studied in previous chapters,  
but this time let us estimate the following specification:

This is the original specification without the variable pm/pd. The results of the properly  
specified model were shown under Exhibit 1.1 in chapter 1 where the Durbin–Watson  
statistic of 1.665 would indicate the absence of serial correlation. The results for the  
new specification are shown in Exhibit 4.4, where we see, among other things, that  
the errors now appear to be autocorrelated (justify this statement).

Inclusion of the missing variable gets rid of the autocorrelation (see chapter 2)  
but many an unwary researcher might be tempted to correct for the problem. If this  
is done, the results shown in Exhibit 4.5 are obtained.

The autocorrelation problem appears to have disappeared but a valuable variable  
is now missing. Compare these results with those shown in Exhibit 2.1. What are  
your conclusions?

Adherents to the so-called general-to-specific school tend to regard autocorrela-
tion as an opportunity, not a challenge, and recommend totally against using the  
correction algorithms discussed above. Consider for instance the model:

(4.5)

with:

5 A low DW and a high R2 and , by contrast, indicates not misspecification, but spurious correlation
– that is, where the regression is picking up the relationship of the included variables to time, and  
not necessarily to each other. This concept is at the foundation of cointegration analysis, to be discussed  
in greater detail in Part II of this book.

y x x ut t t t= + +β β1 1 2 2

R2

R2

M Y ut t t= + +β β1 2

y x ut t t= +β

u ut t t= + <−ρ ε ρ1 1,
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EXHIBIT 4.4
Equation: Mt = β1 + β2 Yt + ut

Output obtained from fitting equation in EViews
==============================================================
LS // Dependent Variable is IMPORTS
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -3707.823   538.7572  -6.882178     0.0000
      INCOME         0.452149   0.032915   13.73681     0.0000
==============================================================
R-squared            0.891356   Mean dependent var    3556.082
Adjusted R-squared   0.886632   S.D. dependent var    1531.723
S.E. of regression   515.7336   Akaike info criter    12.56780
Sum squared resid    6117567.   Schwarz criterion     12.66531
Log likelihood      -190.5710   F-statistic           188.7000
Durbin-Watson stat   1.121388   Prob(F-statistic)     0.000000
==============================================================

EXHIBIT 4.5
Equation: Mt = β1 + β2 Yt + ut corrected for autocorrelation
Output obtained from fitting equation in EViews
==============================================================
LS // Dependent Variable is IMPORTS
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
Convergence achieved after 6 iterations
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -3037.188   1052.530  -2.885607     0.0088
      INCOME         0.412648   0.062546   6.597559     0.0000
      AR(1)          0.489191   0.192967   2.535099     0.0193
==============================================================
R-squared            0.903323   Mean dependent var    3655.325
Adjusted R-squared   0.894116   S.D. dependent var    1480.286
S.E. of regression   481.6829   Akaike info criter    12.47104
Sum squared resid    4872387.   Schwarz criterion     12.61830
Log likelihood      -180.7070   F-statistic           98.10927
Durbin-Watson stat   1.788356   Prob(F-statistic)     0.000000
==============================================================
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Equation (4.5) may be rewritten as:

or as:

Note that the “generalized” difference form of the endogenous variable, (yt – ρyt–1), is  
explained by a similar form of the exogenous variable, (xt – ρxt–1). When this happens,  
the model is said to contain a “common factor”. The model may be estimated in the  
form:

under the nonlinear restriction that γ = –ρβ. This restriction is usually referred to as  
the common factor restriction. Clearly, however, a simpler approach, if the restriction  
is valid, is to estimate the simple regression model (4.5) allowing for first-order auto-
correlation. “If the restriction is rejected,” write Charemza and Deadman (1997), “then  
evidence of autocorrelation in the simple static equation reflects ‘misspecified dynam-
ics’ in that the variables xt–1 and yt–1 have been erroneously omitted from this equation.”  
For more detailed discussion on this common factor analysis, see the very readable  
articles by Hendry and Mizon (1978), Mizon (1995) or the relevant discussion of the  
issue in Charemza and Deadman (1997), chapter 4. Dynamic models are introduced  
in chapter 5.

EXERCISES

1. Consider the general linear regression model:

a) State clearly the assumptions about X and u required for the application  
of generalized least squares (GLS).

b) Show that, under these assumptions, GLS is the best estimator in the  
sense of Gauss–Markov.

c) Show that, under these assumptions, the OLS estimator is still unbiased  
and derive an expression for its covariance matrix.

d) What are the principal consequences of using OLS when the assumptions  
stated in (a) are valid?

y x y xt t t t t= + − +− −β ρ ρβ ε1 1

y y x xt t t t t− = −( ) +− −ρ β ρ ε1 1

y x y xt t t t t= + + +− −β ρ γ ε1 1

y X u= +ββ
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2. a) What is meant by saying that the error term of the general linear regres-
sion model is homoscedastic?

b) Explain, by means of appropriate examples if necessary, why the  
assumption of homoscedasticity is not plausible in many econometric  
applications.

c) Consider the model:

i) Use an appropriate transformation to obtain a model whose error  
term has a variance equal to σ2.

ii) Show that the generalized least squares estimator of the original  
equation is identical to the ordinary least squares estimator of the  
transformed equation. (The estimator derived in this exercise is an  
example of weighted least squares estimation, which was mentioned  
in the body of this chapter.)

d) How would you test for heteroscedasticity?
3. In the regression model:

X is fixed and it is known that:

where εt is a white noise sequence.
a) Show that the OLS estimator of β is unbiased and derive an expression  

of its sampling variance.
b) Assuming that the value of ρ is known, give expressions for the GLS  

estimator of β and its sampling variance.
c) Show that the Durbin–Watson statistic tends to 2 for large values of n  

under the null hypothesis that ρ = 0.
4. Once again, look at the Dominica data introduced in exercise 4, chapter 1  

(also available in WT_DATA.XLS). This time, fit the model:

a) Evaluate the results and, in particular, test for autocorrelation and het-
eroscedasticity (use the Koenker test).

b) Correct for autocorrelation and comment on the results. Compare these  
results with those obtained from fitting the original model:

Y X u
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t t t

t t
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1 2

2 2 2

Y X u t nt t t= + = …β 1 2, , ,
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CHAPTER 5

Introduction to Dynamic Models

DYNAMIC MODELS

Issues of dynamic econometric modelling have dominated recent developments in the  
econometric literature. We will have much more to say about this in the second half  
of this book. In this chapter, we concentrate on the more traditional aspects of dynamic  
econometric modelling.

We have been considering so far the general linear regression model:

In this chapter, we will limit our attention to the case where the observations on the  
variables are made across time, i.e. they are time series. In addition, we consider the  
possibility that y may also be related to past values of x, as well as to its own past  
values. How do such situations arise in economics?

Consider, for illustrative purposes, the relationship between investment and the rate  
of interest. An economist may wish to consider the following investment function:

where It represents investment levels in time period t, and rt represents the interest rates  
prevailing in the same time period. How plausible is such a relationship?

As we all must know, economic theory postulates the existence of lags in eco-
nomic behaviour. What this means is that economic actors take time to respond to  
changes in the surrounding economic environment, and it takes further time for the  
effect of such responses to be felt on the economic environment. Applying this  
reasoning in the current context, it seems reasonable to assume that potential investors  
will not immediately react to changes in interest rates but will instead adopt a “wait-
and-see” attitude before committing what is likely to be sizeable funds to any  
investment projects. Furthermore, investment projects take time to implement so that  
once the investor is satisfied that the interest rate fall indicates a possible trend rather  
than a temporary aberration, and the relevant funds are secured, it is unlikely that  
the investment itself will occur all at once.

y x x x x u
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u iid

t t t t k kt t

t

= + + +…+ +

= … = …

( )

β β β β

σ

1 1 2 2 3 3

2

1 2 1 2

0

, , , , , ,

~ ,

I r ut t t= + +β β0 1



84 A Practical Introduction to Econometric Methods: Classical and Modern

A more realistic approach would be, therefore, to include among the explanatory  
variables possible lagged values of the rate of interest. The following is but one  
possibility:

which explains investment levels in time period by the rates of interest that prevailed  
three periods ago. Suppose our data set spans the time interval 1970 to 1994. Then the  
model specifies that observed investment in, say, the year 1980 is a function of the  
interest rates of 1977. Alternatively, we may impute that the impact of 1985 interest  
rates on investment levels will be observable in 1988.

This illustration dealt with the presence of lagged exogenous variables in our  
regression model. We can, however, specify a model in which lagged endogenous  
variables appear among our list of explanatory variables. You may have come across,  
for example, a consumption function that looked as follows:

Here, current consumption levels are explained by consumption in the previous period  
as well as by current income and interest rate levels. The inclusion of the lagged  
endogenous variable ct–1 could be intuitively justified by “habit persistence” in con-
sumer behaviour.

We could also specify a model in which both lagged endogenous and exogenous  
variables appear on the right-hand side:

Consumption functions, like these, are in the spirit of Friedman’s permanent income  
hypothesis. According to this hypothesis, rational economic actors, in an attempt to  
smooth their consumption patterns over time, consume not on the basis of their current,  
and possibly transitory, income levels, but rather on the basis of their permanent
income, which is a combination of both past and present income levels.

The presence of lagged variables among our explanatory variables, however,  
poses certain problems for econometric analysis. In the first place, even though  
economic theory tells us that a lag structure is essential if we are to capture the  
dynamism of the world around us, it often fails to tell us the appropriate length and  
structure of the lag system. Second, the lag length may be too long to allow for the  
efficient estimation of our model by traditional methods such as OLS. Remember,  
the introduction of a one-period lag results in the loss of one data point. A two-
period lag causes us to lose two data points, and so on. Given the short data sets  
usually available for economic analysis, the introduction of lengthy lags causes loss  
of already scarce degrees of freedom and may result in the production of unreliable  
parameter estimates. Finally, given the tendency of economic variables to be auto-
correlated, it is likely that the introduction of lagged right-hand-side variables, be  
they exogenous or endogenous, will increase the chances of multicollinearity among  

I r ut t t= + +−β β0 1 3

c c y r ut t t t t= + + + +−β β β β0 1 1 2 3

c c y y r ut t t t t t= + + + + +− − −β β β β β0 1 1 2 1 3 2 4
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the explanatory variables. You will recall from chapter 3 that the presence of multi-
collinearity in a regression model has serious implications for the reliability of the  
parameter estimates. How do we deal with these drawbacks?

ALMON’S POLYNOMIAL DISTRIBUTED LAG (PDL) SCHEME

We consider here a particular, but very much used, application of the lag scheme  
proposed by Shirley Almon (1965). The basic philosophy underlying Almon’s work is  
as follows. Consider the general model:

which, in matrix notation, becomes:

where:

We consider, for simplicity, the case where the variation in y is being explained by  
lagged values of only one variable x. The method may, however, easily be extended  
to cases involving lagged values of other variables.

Application of OLS to the above model yields:

However, the value of s in the above model, that is, the length of the lag, is assumed  
to be intolerably large, so that the direct estimation of the (s + 1) coefficients α0, α1,  
α2, …, αs may not yield reliable results. Almon proposes to reduce the parameter space  
to one containing (r + 1) coefficients where r is (considerably) less than s. This will  
result in an equivalent model of the form:

(5.2)

The fundamental problem is, therefore, the transformation of the original model (5.1)  
into (5.2). The underlying idea in Almon’s analysis is that αi may be approximated by  
some function of the lag length i, for instance:
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This simply means that the value of the coefficient of the explanatory variable, lagged  
to order i, will depend in some way upon i, the length of the lag.

It is further proposed that f(i) can, in turn, be approximated by a polynomial in  
i of degree r like the one shown below:

(5.3)

This last step has as its justification Weierstrass’s theorem, which states that any
function can always be approximated by a polynomial of appropriate order. However,  
this theorem is silent on the value to be assigned to r, the order of the polynomial, and  
the choice of the value of r remains arbitrary. In the post-estimation stage, significance  
tests on the estimated a coefficients can be used to justify our choice.

By equation (5.3):

This system of equations may be represented as:

where s is the length of the lag, r is the order of the polynomial and K the matrix that  
transforms a into αααα.

Our original system:

may therefore be rewritten as:
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Application of OLS to this transformed system yields:

The original parameter estimates are then obtained as:

(5.4)

It is easily established that:

On the assumption that K is the true transformation matrix, it can be shown that the  
OLS estimator of the transformed model, â , is BLUE. This means that  is also  
BLUE. The prerequisite for this, however, is that s and r, values of which have to be  
assigned before the transformed model can be estimated, must be of the correct orders.  
If not, then we run the risk of obtaining biased estimators.

We can carry out the routine significance tests on the a coefficients. We would be  
particularly interested in the significance of the estimate of the coefficient ar. If this  
estimate were not significantly different from zero, then our conclusion would be that  
we have assigned the approximating polynomial too high an order. Conversely, should  
this estimate prove to be significantly different from zero, then we could feel content  
in the knowledge that our approximating polynomial is not an unrealistic choice.

The coefficient α0 measures the effect of a one unit change in the current value  
of x on the present y value. By extension, the coefficient α1 measures the effect on  
current y of a one unit change of the preceding value of x, and so on. We can say,  
therefore, that each coefficient, taken on its own, measures the impact effect, that is,  
the immediate effect of changes in the value of present or past x on present y. If we  
were to sum all the coefficient values, we obtain the combined or dynamic effect of  
the preceding and the present values of the explanatory variable x on the variable y  
under study.

Illustration of Almon’s Polynomial Distributed Lag Scheme

Let us again look at the consumption function for Trinidad and Tobago that was  
estimated by OLS in the previous chapter. This time, it is specified as:
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Current consumption is explained by income up to 7 years (periods) ago.1 This  
specification was fitted directly in EViews and the results obtained are displayed  
in Exhibit 5.1. Compare these results to those shown in Exhibit 5.2, obtained by  
fitting this same function by the Almon procedure using a third-order polynomial.

The polynomial approximation of the α coefficients in EViews is obtained as:

where s* = s if s is even and s* = s – 1 if s is odd. In the above, ai is estimated by the  
coefficient attached to the “variable” PDLi+1 and the original α coefficients are esti-
mated by applying equation (5.4) above. These are shown in the output as the coeffi-
cients corresponding to the lag lengths i = 0, 1, ..., 7. EViews also shows a graphical  
plot of these coefficients as well as their sum (as “Sum of Lags”).

Let us begin some analysis and interpretation of these results by, first of all,  
comparing the results obtained by direct estimation to those obtained by application  
of the Almon procedure. Both show very high   values (about 96%) and in both  

EXHIBIT 5.1
Equation: Cpt = β + α0Yt + α1Yt–1 + α2Yt–2 + ... + α7Yt–7 + ut

Output obtained from fitting equation in EViews
==============================================================
LS // Dependent Variable is P_CONS
Date: 08/31/95   Time: 07:34
Sample: 1974 1991
Included observations: 18 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -4268.212   883.4497  -4.831302    0.0009
      INCOME          0.386401   0.149795   2.579540    0.0297
    INCOME(-1)        0.711552   0.242087   2.939246    0.0165
    INCOME(-2)       -0.369838   0.239103  -1.546772    0.1563
    INCOME(-3)       -0.223422   0.238068  -0.938481    0.3725
    INCOME(-4)        0.414088   0.238491   1.736285    0.1165
    INCOME(-5)       -0.089753   0.236246  -0.379915    0.7128
    INCOME(-6)        0.041768   0.235457   0.177389    0.8631
    INCOME(-7)       -0.096222   0.134194 - 0.717041    0.4915
==============================================================
R-squared             0.980055   Mean dependent var   9341.344
Adjusted R-squared    0.962326   S.D. dependent var   1988.254
S.E. of regression    385.9179   Akaike info criter   12.21810
Sum squared resid     1340393.   Schwarz criterion    12.66329
Log likelihood       -126.5038   F-statistic          55.27938
Durbin-Watson stat    1.827440   Prob(F-statistic)    0.000001
==============================================================

1 Note the presence of the constant term β which changes nothing in the discussion of the previous  
section.

α i f i s= − ∗( )[ ]2
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cases the Durbin–Watson statistic indicates an absence of autocorrelation. In Exhibit 5.3,
the estimated α values are shown and compared.

First, the Almon scheme achieves significance for a greater number of coeffi-
cients, which may be a consequence of the smaller effect of multicollinearity here  
than in the OLS case. Second, the signs attached to each coefficient are identical in  
both cases but they are markedly different in values and consequently will have  
different policy implications. For instance, the OLS results imply that consumers  
will spend about 39 cents out of a $1.00 increase in current income while, if the  
Almon results are accepted, they will spend about 67 cents. Finally, the “long run”  
effect of a $1.00 increase in income is about 95 cents in the OLS case and only  
about 80 cents in the Almon case. Economic theory predicts that this value should  

EXHIBIT 5.2
Equation: Cpt = β + α0Yt + α1Yt–1 + α2Yt–2 + ... + α7Yt–7 + ut

Fitted by Almon’s PDL scheme using third-order polynomial approximation
==============================================================
LS // Dependent Variable is P_CONS
Date: 08/31/95   Time: 07:25
Sample: 1974 1991
Included observations: 18 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -4751.150   913.3949  -5.201638    0.0002
      PDL01          -0.054748   0.034087  -1.606121    0.1323
      PDL02           0.065757   0.048305   1.361283    0.1966
      PDL03           0.048405   0.010601   4.565969    0.0005
      PDL04          -0.018034   0.005964  -3.023578    0.0098
==============================================================
R-squared             0.967071   Mean dependent var   9341.344
Adjusted R-squared    0.956940   S.D. dependent var   1988.254
S.E. of regression    412.5825   Akaike info criter   12.27501
Sum squared resid     2212916.   Schwarz criterion    12.52233
Log likelihood       -131.0159   F-statistic          95.44860
Durbin-Watson stat    2.144822   Prob(F-statistic)    0.000000
==============================================================
Lag Distribution of INCOME   i Coefficient  Std. Error  T-Statist
==============================================================
  .            *|           0    0.67054    0.08772    7.64407
  . *           |           1    0.15163    0.03979    3.81027
 *.             |           2   -0.05407    0.05980   -0.90412
 *.             |           3   -0.05475    0.03409   -1.60612
  .*            |           4    0.04138    0.03427    1.20757
  . *           |           5    0.12611    0.06101    2.06707
  . *           |           6    0.09125    0.04171    2.18758
* .             |           7   -0.17142    0.07840   -2.18651
==============================================================
                 Sum of Lags     0.80068    0.05320    15.0506
==============================================================



90 A Practical Introduction to Econometric Methods: Classical and Modern

be close to $1.00, which would mean that the OLS result is more acceptable. What  
do you think?

THE KOYCK TRANSFORMATION

This is another very widely used transformation in applied econometric work. Consider  
again the model (5.1). The Koyck (1954) transformation identifies, as does the Almon  
scheme, an explicit form of the lag coefficients, which indicates that as the lag length  
increases, the explanatory variable exerts less of an impact on the current value of y.  
However, while Almon assumes that a polynomial of a fairly low degree can represent  
the lag coefficients, Koyck suggests that they undergo geometric decay, that is, the  
values of the lag coefficients decline in the pattern of a geometric progression.

The basic model assumes that s is infinitely large and:

Therefore, our general model above may be rewritten as follows:

(5.5)

Again, however, because of the seemingly infinite number of coefficients, direct esti-
mation is not feasible. Koyck therefore proposes the following transformation.

Lagging expression (5.5), we obtain:

(5.6)

EXHIBIT 5.3
Equation: Cpt = β + α0Yt + α1Yt–1 + α2Yt–2 + ... + α7Yt–7 + ut

Comparison of coefficient estimates obtained by OLS and Almon’s PDL scheme

Lag OLS Almon

0 0.386401* 0.67054*
1 0.711552* 0.15163*
2 –0.369838 –0.05407
3 –0.223422 –0.05475
4 0.414088 0.04138
5 0.089753 0.12011*
6 0.041768 0.09125*
7 –0.096222 –0.17142*

Sum of Lags 0.95408 0.80068

* Significant at 5% level or better.

α αλ λ1 0 1 1 2= ( ) = < < = …f i ii , , ,

y x x x x u

y x x x x u

t t t t
s

t s t

t t t t
s

t s t

= + + +…+ +…+

⇒ = + + +…+ +…[ ] +

− − −

− − −

αλ αλ αλ αλ

α λ λ λ

0 1
1

2
2

1
2

2

y x x x x ut t t t
s

t s t− − − −
−

− −= + + +…+ +…[ ] +1 1 2
2

3
1

1α λ λ λ



Introduction to Dynamic Models 91

Multiply both sides of equation (5.6) by λ to obtain:

(5.7)

Subtracting equation (5.7) from equation (5.5), we get:

(5.8)

This transformed model, which contains only two coefficients, can now be directly  
estimated by OLS.

It is important to note two things about the transformed model. First, it contains  
a lagged endogenous variable, and second, if the disturbance term ut of the original  
model is white noise (the standard assumption) then the transformed disturbance vt

is autocorrelated.2 These have consequences for OLS estimation. It can be shown  
that, when lagged values of an endogenous variable are included among our regres-
sors, OLS estimation results in biased parameter estimates. If, in addition to the  
presence of a lagged endogenous variable, the disturbance terms are autocorrelated,3

then OLS estimation becomes inconsistent as well as biased.
Of course, we may be lucky in that the transformed disturbance is itself white  

noise (which implies that the original disturbance is not). We have to test whether  
this is so or not.

In economic theory and applied econometric work, a model is very often specified  
as:

without any specific reference to Koyck. We must understand, however, that should  
our OLS estimate of λ be a positive fraction, and our OLS estimate of α be positive,  
then the model is equivalent to a Koyck transformation.

Illustration of the Koyck Transformation

If we apply the Koyck transformation to the consumption function studied above we  
will obtain a specification like the following:

This model was fitted using OLS and the results obtained are displayed in Exhibit 5.4.

2 It is in fact a moving average process of order 1 or an MA(1). See chapter 13.
3 We refer here to autocorrelation of any form, not just to the AR(1) procedure to which our discussion  

of autocorrelation in the preceding chapter was limited.
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The  value (about 95%) is more than reasonable and indicates a very good  
fit. All coefficients carry the correct sign and, in particular, λ is a positive fraction.  
The short run marginal propensity to consume (mpc) is calculated at about 0.49,  
meaning that the Trinidadian consumer would spend immediately about half of any  
increase in current income. Of some concern, however, is the long run mpc, which  
is calculated as 0.695,4 which, if correct, would mean that the Trinidadian public  
spends over time only 70 cents for every (permanent) increase of $1.00. This not  
only contradicts standard economic theory but appears counterintuitive as well.

The Durbin–Watson statistic is an unreliable indicator of autocorrelation when,  
as happens here, there are lagged values of the endogenous variable among the  
regressors (we will elaborate further on this point later in the chapter). However, if  
it were to be applied, it would fall in the inconclusive region at the 5% level of  
significance. It is argued in Watson (1987) and others that this is such an unlikely  
occurrence that it should lead to rejection of the null hypothesis.

THE PARTIAL ADJUSTMENT MODEL

This is a very popular economic model which can be shown to be equivalent to a  
Koyck transformation. Consider the model:

EXHIBIT 5.4
Equation: Cpt = β + α0Yt + α1Yt–1 + α2Yt–2 + ... + α7Yt–s + ... + ut

Fitted to Koyck transformation: Cpt = βλ + αYt + λCpt–1 + ut

==============================================================
LS // Dependent Variable is P_CONS
Date: 08/31/95   Time: 10:26
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1876.958   594.0039  -3.159841    0.0047
      INCOME          0.485882   0.073228   6.635162    0.0000
    P_CONS(-1)        0.300569   0.102009   2.946495    0.0077
==============================================================
R-squared             0.950487   Mean dependent var   8592.498
Adjusted R-squared    0.945771   S.D. dependent var   2164.074
S.E. of regression    503.9503   Akaike info criter   12.56142
Sum squared resid     5333285.   Schwarz criterion    12.70868
Log likelihood       -181.7916   F-statistic          201.5637
Durbin-Watson stat    1.473037   Prob(F-statistic)    0.000000
==============================================================

4 This is calculated as (0.485882) ÷ (1 – 0.300509).

R2

y a a x ut t t∗ = + +0 1
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Here yt
* represents some desired level of y in period t, which, as the equation suggests,  

depends on the value of some explanatory variable x in the same time period. It is not  
possible, however, to estimate this equation, given that the levels of yt

* are unobservable.  
It becomes necessary, therefore, to postulate some behavioural pattern by which the  
actual, observed levels of yt are adjusted to their desired levels.

The model suggests an adjustment pattern of the following form:

(5.9)

where

The change in the level of y from one period to the next, (yt – yt–1), is a fraction of the  
difference between the level of y in the previous period, and the desired level of y in  
the current period. The actual level of change, therefore, is only a fraction of the desired  
level of change.

It is further suggested that:

that is, the desired levels of y in the current period are a function of some observable  
economic variable x in the same time period. Suppose, for example, that we were  
attempting to estimate a consumption function, where yt

* represented desired levels of  
consumption. We could reasonably say that such desires are formed on the basis of  
income levels xt, where increases in income would correspondingly lead to increases  
in “expected” consumption. Hence, while for purposes of estimation desired consump-
tion is directly unobservable, we have made it indirectly observable on the basis of  
what, hopefully, is a very realistic and practical assumption.

Replacing yt
* in expression (5.9), we obtain:

(5.10)

Clearly, the partial adjustment model is a special case of the Koyck transformation,  
with:

and
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The difference is, however, that while the error term in expression (5.8) is  
autocorrelated, hence rendering OLS estimation of this model both biased and incon-
sistent, there is an absence of autocorrelation in the error term in expression (5.10),  
since we assume that ut~NID(0, σ2). Hence the application of OLS to this model  
would yield consistent, though biased, parameter estimates.

If the consumption function fitted in the previous section were interpreted as a  
partial adjustment model (and it can be), then θ is estimated as (1 – 0.300509) =  
0.699. This means that the average period of adjustment is about 1.5 years.

THE ADAPTIVE EXPECTATIONS MODEL

This model postulates that the level of y in any one time period depends, not on the  
actual level of the explanatory variable in the same time period, but rather on its  
expected level. We can therefore write:

where  represents these expectations, and ut~NID(0, σ2).
Expectations are formed on the basis of the following rule:

(5.11)

The degree to which one’s expectations are changed or adapted is a function of the  
degree to which the expectations held in the preceding period are realized. Clearly, if  
one’s expectations are fulfilled, that is, should xt = , then there would be no need  
to revise such expectations, and  would be the same as . The model, therefore,  
suggests that changes in expectations are a function of the accuracy of the forecast of  
the present period value made in the preceding period.

We can rewrite expression (5.11) as follows:

(5.12)

Here, the current expectation of x (of its value in the next period) is a convex linear  
combination of its value in the current period and the expectation made about the  
current value in the previous period.

Replacing  with its value in the model yields:
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and we obtain:

(5.13)

However, on the basis of expression (5.11), we may write:

And now, replacing  with its value in expression (5.13):

Now substituting in a similar fashion for :

With continuous substitution, we will obtain:

(5.14)

Note the absence of a term in x* since this would, in the limit, tend to zero under the  
assumption that θ is a positive fraction.

If we lag expression (5.14), we get:

(5.15)

Multiplying equation (5.15) throughout by the term (1 – θ) yields:

(5.16)
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Subtracting expression (5.16) from expression (5.14) gives:

(5.17)

Clearly, this is equivalent to the Koyck transformation, with:

and

Note, however, that OLS estimation of expression (5.17) is biased and probably incon-
sistent, given the presence among the explanatory variables of a lagged value of the  
endogenous variable and the possible autocorrelation of the disturbance term.

If the consumption function fitted in the previous section were interpreted as an  
adaptive expectations model (and it can be), then θ is estimated as (1 – 0.300509)  
= 0.699. This means that the average period of adjustment is about 1.5 years.

ERROR CORRECTION MECHANISM (ECM) MODELS

The error correction mechanism (ECM) model is extremely popular. It received its  
greatest impetus from the work of Davidson et al. (1978) and has since found its way  
into the rapidly expanding area of cointegration. It presupposes that some variable y  
has an equilibrium path defined by:

In the short run, there are adjustments to deviations from the long run path which  
are defined by the ECM model:

Consider the simple case where:

then:

(5.18)
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The coefficients α, β, γ and θ can be estimated by, for example, OLS. It can be shown  
that consistent estimators are so obtained – see Stock (1987), Engle and Granger (1987)  
and Holden and Perman (1994). We would expect β to be less than zero in value and  
to be (very) significant if the ECM model were to be applicable. What would β = 0  
mean?

This model is an important input into the theory of cointegration, and estimation  
of its parameters by methods other than direct application of OLS to equation (5.18)  
will be discussed in some detail in Part II of this book.

Illustration of the Error Correction Mechanism Model

Consider once again the consumption function, where the equilibrium consumption  
path is defined by:

so that the ECM model is written as:

This regression was run using EViews and the results obtained are shown in Exhibit  
5.5.

EXHIBIT 5.5
ECM version of consumption function
ΔCpt = γ + αΔYt + βCpt–1+ θYt–1 + ut

==============================================================
LS // Dependent Variable is D(P_CONS)
Date: 10/15/95   Time: 23:18
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1651.819   630.8543  -2.618384    0.0165
    D(INCOME)         0.606561   0.136858   4.432058    0.0003
    P_CONS(-1)       -0.515144   0.203931  -2.526071    0.0201
    INCOME(-1)        0.372198   0.131236   2.836106    0.0102
==============================================================
R-squared             0.713400   Mean dependent var   72.52673
Adjusted R-squared    0.670410   S.D. dependent var   875.9847
S.E. of regression    502.9020   Akaike info criter   12.59180
Sum squared resid     5058208.   Schwarz criterion    12.78814
Log likelihood       -181.1562   F-statistic          16.59458
Durbin-Watson stat    1.976866   Prob(F-statistic)    0.000012
==============================================================

C Ypt t
∗ = +λ λ1 2

Δ ΔC Y C Y upt t pt t tγ α β θ+ + + +− −1 1
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In EViews, ΔCpt and ΔYt are shown as D(P_CONS) and D(INCOME), respec-
tively. The β coefficient is estimated as 0.515 and it is significant. This means that  
just over half the deviation from the equilibrium path is made up in the following  
period. What are the estimated values of the λ coefficients?

AUTOREGRESSIVE DISTRIBUTED LAG (ADL) MODELS

The following is an example of an autoregressive distributed lag (ADL) model:

It is “autoregressive” because it has, among the explanatory variables, lagged values  
of the endogenous variable and it is a “distributed lag” model because the exogenous  
variable is lagged. There can be more than one exogenous variable and the values of  
p and q are to be determined empirically. A possible eventual specification might be:

(5.19)

This model was made popular by Davidson et al. (1978) and it can be shown  
that an ECM-type model can be derived from it. Indeed, from equation (5.19), we  
obtain:

(5.20)

where –θγ1 = (α1 – α0). This is clearly an ECM model with an equilibrium path:

and γ1 is the speed of adjustment.
Equation (5.19) may be estimated directly by OLS. Suggested solutions to the  

estimation of equation (5.20) are given in Part II. What happens if γ1 = 0?

Illustration of the Autoregressive Distributed Lag Model

Consider the following version of the consumption function:

This specification was fitted using EViews and the results shown in Exhibit 5.6 were  
obtained.
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What justification is there for dropping the lagged income variable from this  
regression? Redo the regression excluding the lagged income variable and compare  
it with the results obtained in Exhibit 5.6.

THE DURBIN TEST FOR AUTOCORRELATION IN THE 
PRESENCE OF LAGGED ENDOGENOUS VARIABLES

The Durbin–Watson (DW) statistic introduced in chapter 4 is an unreliable measure  
of autocorrelation when lagged values of the endogenous variable are present among  
the regressors. In fact, it is biased towards the value of 2 (this shall not be proven).  
For this reason, Durbin (1970) developed an alternative test (the Durbin ‘h’ test) to  
cater for the situation in which lagged endogenous variables are present. It is based on  
the statistic:

where  is the OLS estimator of ρ in:

and  is the variance associated with the estimator of the coefficient associated with  
the lagged endogenous variable in the model. We have shown in chapter 4 that:

EXHIBIT 5.6
Equation: Cpt = β0 + β1Cpt–1 + α0Yt + α1Yt–1 + ut

==============================================================
LS // Dependent Variable is P_CONS
Date: 10/16/95   Time: 00:45
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1651.819   630.8543  -2.618384    0.0165
    P_CONS(-1)        0.484856   0.203931   2.377554    0.0275
      INCOME          0.606561   0.136858   4.432058    0.0003
    INCOME(-1)       -0.234364   0.224722  -1.042902    0.3094
==============================================================
R-squared             0.953040   Mean dependent var   8592.498
Adjusted R-squared    0.945996   S.D. dependent var   2164.074
S.E. of regression    502.9020   Akaike info criter   12.59180
Sum squared resid     5058208.   Schwarz criterion    12.78814
Log likelihood       -181.1562   F-statistic          135.2992
Durbin-Watson stat    1.976866   Prob(F-statistic)    0.000000
==============================================================
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so that  can be calculated as:

Under the null hypothesis of the absence of autocorrelation, h is asymptotically nor-
mally distributed with zero mean and unit variance. The test is also valid when the  
model contains lags of order higher than 1.

This testing alternative is, however, limited: it is valid only in (very) large samples,  
and clearly cannot be calculated for n  > 1.

Illustration of the Durbin h-Test

Unfortunately, EViews does not automatically calculate h, but it supplies all the infor-
mation necessary to do so. Let us look once again at the results displayed in Exhibit  
5.4. Application of the h formula yields:

Since h is distributed (asymptotically) as a standard normal variable, the null hypothesis  
of “no autocorrelation” cannot be rejected at the 5% level since the calculated h value  
is less than the (one-tailed test) critical value of 1.645. But strictly speaking, this test  
is valid in only (very) large samples, which means that we should use this result with  
extreme caution, especially given the fact observed above that the Durbin–Watson  
statistic would fall in the inconclusive region of the test.

If we accept the conclusion about the absence of autocorrelation, we can proceed  
to conduct tests of significance and it is interesting to note that all coefficients are  
highly significant.

EXERCISES

1. Consider the following investment function model:

(1)

where I is investment, Y is income and u the usual disturbance term.
a) Briefly explain the economic rationale underlying a model like this one.
b) Discuss the econometric difficulty involved in direct estimation of the  

coefficients of this model by OLS.
c) Transform the model using the methods proposed by (i) Almon and (ii)  

Koyck and compare the two methods.
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2. It is proposed to study the supply of loans by commercial banks for business  
purposes in Trinidad and Tobago using the following “adaptive expecta-
tions” model:

Lt = supply of loans during period t
Dt = level of bank deposits during period t
D*t = expected level of bank deposits for period t + 1 formed at time t.

a) Discuss the economic rationale of this model.
b) Trace the steps by which this model can be transformed into:

and show clearly the link between the coefficients of the original and  
transformed models.

c) The following results were obtained through the application of OLS to  
data spanning 43 quarters (measured in millions of TT$):

(figures in parentheses are standard errors)
Discuss these results.

3. Discuss the partial adjustment model and the econometric difficulties asso-
ciated with the estimation of its parameters.

4. Using:
a) The Almon coefficient scheme
b) The partial adjustment model

fit the Dominican data to the model:

and evaluate the results obtained.
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CHAPTER 6

The Instrumental Variable Estimator

INTRODUCTION

In chapter 5, we met for the first time cases where lagged values of the endogenous  
variable appeared among the regressors. This is clearly a violation of assumption A3,  
introduced in chapter 1 (that the regressors are fixed or nonstochastic). This assumption  
was important in establishing that OLS was an unbiased estimator. We are now going  
to introduce the possibility of stochastic regressors among the X variables.

Throughout this book we have been using the following import function for our  
many illustrations:

but if we look at chapter 1, we will notice that this function is but one in a system of  
equations that includes, in particular, the identity:

(6.1)

The presence among the explanatory variables of the income variable Y in the imports  
equation makes a big difference. Indeed, by equation (6.1), Y is also a function of M  
and consequently of the disturbance term ut and so Y is also random and, more  
importantly perhaps, not independent of ut. Once again, the assumption that the matrix  
of explanatory variables is non-random is clearly violated here. So the presence of Y  
among the explanatory variables results in OLS being a biased estimating procedure.

There are many other situations in practice other than the presence of lagged  
endogenous variables or other variables related to the error term among the regressors  
which have implications for the OLS estimator. Later on in this chapter, for instance,  
we will study the “errors in variables” case that occurs so frequently in practice. To  
understand these implications fully, however, we must first understand the concept  
of a consistent estimator.

CONSISTENT ESTIMATORS

Consider a random variable X whose probability density function f(·|θ) depends on  
some unknown parameter (or some vector of parameters) θ. We want to estimate θ by:

M Y p p ut t mt dt t= + + +β β β1 2 3

Y C C I X Mt pt gt t t t= + + + −

ˆ ˆ , , ,θ θn nX X X= …( )1 2
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where X1, X2, …, Xn is a random sample of size n drawn on X. Suppose that, for small  
n,  had undesirable properties (for instance it could be a biased estimator) or suppose  
we were simply unable to establish its small sample properties. We would then have  
no option but to ask about its properties as n got larger. It would, in particular, seem  
intuitively reasonable to ask that a minimum requirement should be that the estimator  

 “converged” in value to the parameter θ that it is estimating. Indeed, if as the sample  
size increased, the estimator either diverged from the true parameter value or its  
relationship with the true parameter value could not be established, then such an  
estimator would be quite useless and it would be better to obtain an alternative one.

The notion of a consistent estimator is a reflection of this kind of intuitive thinking  
but requires convergence in a probabilistic sense rather than convergence in actual  
values. Consider the sequence:

where ε is some arbitrarily small value (for example ε = 0.0001). What does Pn

measure? It measures the probability of  being more or less identical in value  
to θ. If this probability is small, then clearly  is not the estimator we are looking  
for, but if it is large and, in particular, if it is equal to 1 (its largest value) then we will  
be happy with the choice of such an estimator. In many instances in practice, it is  
difficult to determine the exact value of Pn and it is frequently simpler to determine its  
limiting value. Let us denote this limiting value P and define it as:

Then  is a consistent estimator of θ if P = 1. Intuitively, a consistent estimator of a  
parameter θ is one that “converges in probability” to θ or, in simpler terms, is one that  
is very likely to be not much different in value from θ as the sample gets larger and  
larger. In the limit, it is no different at all from θ for all intents and purposes. In the  
literature, the expression:

indicates that  converges in probability to, or is a consistent estimator of, θ. The  
“plim” operator, as it is frequently called, has some very interesting properties, some  
of which we now consider.

• If k is constant, then:

• If plim α = a and plim β = b then:

θ̂n

θ̂n

P nn n= − ≤( ) = …Pr ˆ , , , ,θ θ ε 1 2

θ̂n

θ̂n

lim
n

P Pn
→ ∞

=

θ̂n

p nlim θ̂ θ=

θ̂n

p k klim =

p p p a blim lim limα β α β∗( ) = ∗ = ∗
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where ∗ indicates any one of the standard arithmetic operators with the  
caveat, of course, that if ∗ indicates division, then b ≠ 0. This result is true  
even if α, β, a and b are vectors or matrices, with the proviso that they  
conform to the indicated operation and that division means multiplication  
by the inverse (if it exists). An interesting application of this result is, if  
A is a nonsingular n × n matrix, then:

•  (Slutsky’s theorem) If g(α) is a continuous function of α and plim α =  
a, then:

To establish consistency, it suffices to establish that plim  = θ. It is sometimes  
simpler, however, to prove that the following conditions hold:

Note, however, that these are sufficient and not necessary conditions of consistency.

IS OLS CONSISTENT?

In the general linear regression model studied in chapter 1, OLS is consistent under  
assumptions A1 to A3. Indeed, we have already established that it is unbiased and that  
its covariance matrix is σ2 (X′X)–1. But:

so that the OLS estimator is consistent.
But does this result hold when X is not fixed, as is the case for equation (6.1)  

above? It would indeed if the following condition holds:

This requires that, for each of the explanatory variables xi
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Does this hold for the imports equation, for instance? Since it has already been shown  
that Y is random because u is, then clearly we cannot assume that

Consequently, application of OLS to this equation yields not only biased but  
inconsistent estimators. What then is a more appropriate estimation procedure?

THE INSTRUMENTAL VARIABLE ESTIMATOR

The introduction of “simultaneity” into the system is but one reason why OLS becomes  
inconsistent, but OLS applied to the general linear regression model is always incon-
sistent whenever, and for whatever reason

The presence of lagged values of the endogenous variable among the regressors is  
frequently another cause of inconsistency, as well as measurement errors (to be taken  
up below).

The proof of the inconsistency of OLS when

is very simple: we saw in chapter 1 that:

so that:

It seems rather unreasonable to assume that:

and in fact the opposite is usually explicitly assumed. The consistency of  then clearly  
requires that:
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If this is not the case (as we are now assuming), then OLS estimation is inconsistent.
A consistent estimator of ββββ is the instrumental variable estimator, defined as:

where Z is an (n × k) matrix of “instruments” with:

The proof of the consistency of  is straightforward:

so that:

The problem remains, of course, to determine the matrix Z in a given situation.  
Apart from being uncorrelated with the disturbance term the columns of Z must be  
highly correlated  with the columns of X.1 This makes the choice easier for us but  
does not solve the problem entirely. Take, once again, the imports equation: the X
matrix would look like:

The Z matrix need differ from the X matrix only by the Y column, which must be  
replaced because it is correlated with the error term. In a country like Trinidad and  
Tobago, national income is highly correlated with government current expenditure (Cgt)  
which, in the model, is uncorrelated with the error term. The Z matrix would look like:

1 This statement has to be taken on trust here but has an obvious common sense appeal.
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The other two columns are not correlated with the error term and are very highly  
correlated with the corresponding columns of the X matrix: in fact, they are identical  
to the columns of the X matrix and therefore are perfectly correlated.

EViews has a procedure for carrying out instrumental variable estimation which  
is related to the two-stage least squares estimation method to be introduced in chapter  
7. Using the import function as an example, it chooses as the instrument for Y the  
OLS fitted value of Y on a list of variables not related to the error term (called the  
“instrument list”) which must include all such variables appearing in the equation  
(in this case the constant term, the ratio pm/pd) as well as at least one other such  
variable not included in the equation (for example Cg). The Z matrix in this case  
would look like:

where:

where the αs are OLS estimators.
In general, if an equation contains G variables among the k regressors that are  

related to the error term, then the EViews instrument list must include all variables  
in the equation not related to the error term, plus at least G such variables that do  
not appear in the equation.2

The EViews procedure was used to fit the imports equation using as the instrument  
list the constant term, the ratio pm/pd (both of which appear in the equation) and  
government current expenditure, Cg (which does not appear in the equation and  
which, in the model, is not related to the disturbance term). The results of this exercise  
are displayed in Exhibit 6.1.

Notice that the “instrument list” contains the constant term (C) and RATIO (pm/pd)  
as well as G_CONS (Cg). Compare these results to those obtained by estimation  
with OLS in chapter 1.

THE ERRORS IN VARIABLES MODEL

In this section, we will concentrate on the problem associated with measurement errors  
in economic variables. That economic variables suffer from such errors is an under-
statement, and many of the pitfalls identified by Morgenstern (1950) remain valid up  
to today.

2 The justification for this statement will be given in chapter 7.
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When fitting the model:

it is vital that y and X be correctly measured. If this is the case, then the only error is  
contained in the disturbance term u. However, the nature of economic data makes this  
assumption very difficult to realize in practice.3 Let us consider what happens when  
variables are measured with error, and what must be done when this occurs.

Suppose that, in the above model, y and X are incorrectly measured, so that we  
in fact observe:

where  are the correct measures. We are therefore attempting to fit a true model:

but do not succeed in doing so because of the presence of this measurement error.

EXHIBIT 6.1
Instrumental variable estimation of
Mt = β1 + β2 Yt + β3 pmt/pdt + ut

==============================================================
TSLS // Dependent Variable is IMPORTS
Date: 08/13/95  Time: 21:47
Sample: 1967 1991
Included observations: 25
Instrument list:  C G_CONS RATIO
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1074.987   734.9657  -1.462636    0.1577
      INCOME          0.372419   0.031607   11.78275    0.0000
      RATIO          -704.1884   159.1260  -4.425351    0.0002
==============================================================
R-squared             0.942366   Mean dependent var   3556.082
Adjusted R-squared    0.937126   S.D. dependent var   1531.723
S.E. of regression    384.0746   Akaike info criter   12.01384
Sum squared resid     3245293.   Schwarz criterion    12.16011
F-statistic           168.7667   Durbin-Watson stat   1.653607
Prob(F-statistic)     0.000000
==============================================================

3 See Intriligator et al. (1996) for a discussion of Friedman’s permanent income theory of the consump-
tion function, which is a specific illustration of an errors in variables model in economics.
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Replacing  in the true model, we obtain:

Letting V = ye + u and ωωωω = V – Xeββββ, the last expression becomes:

We therefore see that our disturbance term has changed. What are the implications  
of these errors for OLS estimation? It can and will be proven that, when there exists  
a measurement error in the variables, OLS estimation becomes inconsistent.

The OLS estimator of β in the model:

is, as usual, defined as:

(6.2)

For  to be a consistent estimator, it is necessary that:

that is, that  converges in probability to ββββ.
Applying the plim operator to expression (6.2) above, we obtain:

Under the assumption that:

˜ ˜y X and 

y y X X u

y y X X u

y X y u X

− = −( ) +

− = − +

= + + −

e e

e e

e e

ββ

ββ ββ

ββ ββ

y X= +ββ ωω

y X= +ββ ωω

β̂β

ββ ωω

ββ ωω

ββ ωω

= ′( ) ′

= ′( ) ′ +( )

= ′( ) ′ + ′( ) ′

= + ′( ) ′

−

−

− −

−

X X X y

X X X X

X X X X X X X

X X X

1

1

1 1

1

β̂β

plim β̂β ββ( ) =

β̂β

p p
n

p
n

lim ˆ lim limββ ββ ωω( ) = + ′⎛
⎝

⎞
⎠ ′⎛

⎝
⎞
⎠

−1 11

X X X

p
n

lim
1

0
1

′⎛
⎝

⎞
⎠ ≠

−

X X



The Instrumental Variable Estimator 111

the condition for the consistency of the OLS estimator is that:

To investigate this matter, we make the following assumptions:

1. u, y and Xe are pairwise uncorrelated
2. E(V) = E(ye + u) = 0
3. cov(V) = cov(ye + u) = 

Clearly:

We can make the assumption here that:

since X′V = (  + Xe)′ V, and the assumption was already made that Xe is not related  
to the error in ye or in u. As such, the question of whether

rests in whether

Even if we were to make the somewhat heroic assumption that the errors in  
measurement are unrelated to the true measures of the economic variable under  
consideration, which would, of course, imply that:
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no assumption can reasonably be made to make

Given that  is a positive semidefinite matrix, it cannot be assumed to disappear  
in large samples. Therefore, we find that

with the implication being that when there exist measurement errors in an econometric  
model, the application of OLS results in inconsistent parameter estimates. As such,  
alternative estimation methods may be preferred. One such alternative is to use an  
instrumental variables approach. If we could find a matrix Z of instruments uncorrelated  
in the limit with the disturbance term u and the measurement errors V, then:

will be a consistent estimator of ββββ.

EXERCISES

1. Consider the model:

where:

Show:
a) that the OLS estimator of β is inconsistent.
b) that a consistent estimator of β can be obtained by using yt–2 as an  

instrument for yt–1.
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2. Consider the model:

a) What are the main consequences for OLS estimation when:
• x1 is measured with error.
• y2 is correlated in the limit with u.

b) Stating all necessary assumptions, derive instrumental variable estima-
tors for the β coefficients when y2 is correlated in the limit with u and  
show that they are consistent. [Hint: use matrix algebra.]

3. Use the Dominican data to fit the following equation using the instrumental  
variable estimator with Sd–1 and ir in the EViews instrument list:

Evaluate the results obtained.

y x y ut t t t1 0 1 1 2 2= + + +β β β

S Y S i ud f r= + + + +−α α α α0 1 2 1 3
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CHAPTER 7

The Econometrics  
of Simultaneous Equation Systems

INTRODUCTION

In chapter 1, the model that was introduced contained several equations. Consider now  
a specification of each equation in the system:

(7.1)

(7.2)

(7.3)

(7.4)

D is a dummy variable that is equal to 1 if the observation pertains to the “boom”  
years, 1974 to 1981, and it is equal to 0 if not, while u is the usual disturbance (error)  
term associated with each of the behavioural equations. Note that equation (7.4) is an  
accounting identity and so this equation holds without a disturbance term. The choice  
of the subscripts for the constant coefficients of the model will be justified below, but  
rest assured that it is purely a mater of notational convenience and nothing more.

The system defined by equations (7.1) to (7.4) is the structural form (SF) of the  
model (since it describes the economic structure of the phenomenon under study).  
Two categories of variables are to be distinguished: the endogenous variables Cp, M,  
I and Y, which are the “unknowns” of the system, and the predetermined variables,  
which combine the exogenous variables as well as the lagged endogenous variables.

What makes this system more than just a collection of “single equations” that  
can be estimated by OLS? The one big difference is the presence among the explan-
atory variables of current values of the endogenous variables. Let us look at equation  
(7.2), which is the import function that has been studied in previous chapters. Here,  
imports (M) are explained by the current value of income (Y). However, by equation  
(7.4), Y is also a function of M and consequently of the disturbance term u2t and so  
Y is also random and not independent of u2t. Recall from chapter 6 that this results  
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in the inconsistency of the OLS estimator, in which case a possible estimation  
procedure is the instrumental variable (IV) estimator introduced in that chapter. One  
of the objectives of the present chapter is to introduce the two stage least squares  
estimator, which is a very special case of the IV estimator. This and other estimating  
procedures that yield consistent estimators within the framework of a multiple (simul-
taneous) equation system require knowledge of the reduced form (RF) of the model,  
which leads to the thorny mathematical problem of the identification of the equations  
in the model. Both these concepts are introduced in the next section.

IDENTIFICATION

The RF of model (7.1) to (7.4) is obtained by solving it so that the endogenous variables  
are written as functions of the predetermined variables and the error terms only. This  
is algebraically very clumsy and so we introduce a simpler system to better illustrate  
the concept.

Consider the two-equation econometric model:

(7.5)

(7.6)

This is another example of an SF and characterizes a very simple economy with no  
government and no foreign sector. The RF is obtained in the following steps. Substi-
tuting equation (7.5) into equation (7.6) we get:

(7.7)

This is the RF of the income equation. Do you recognize it?
By a similar procedure, the RF of the private consumption equation is obtained as:

(7.8)

These equations may be conveniently written as:

(7.9)

(7.10)

where:

C Y upt t t= +α

Y C It pt t= +

⇒ = + +

⇒ − = −( ) = +

⇒ =
+( )

+
+( )

Y Y u I

Y Y Y I u

Y
I u

t t t t

t t t t t

t
t t

α

α α

α α

1

1 1

⇒ =
−( )

+
−( )

C
I u

t
t tα
α α1 1

C I vt t t= +π1 1

Y I vt t t= +π2 2



The Econometrics of Simultaneous Equation Systems 117

The coefficients in equations (7.9) and (7.10) can be consistently estimated by OLS  
(why?). A consistent estimator of α can then be derived as  where the ̂  indicates  
the OLS estimator.

This is a simple illustration of the indirect least squares (ILS) method,1 which  
is applicable in only very special cases like this one where the parameter α is exactly  
identified. If equation (7.6) is modified only slightly to allow for government con-
sumption expenditure:

(7.11)

the ILS method would not now be applicable. In this case, solving the system yields  
the RF:

(7.12)

(7.13)

There still is a unique solution for α:

But when the πs in the RF are estimated by OLS, it is usually true that:

where ^ indicates OLS estimators of the RF parameters. But each ratio represents a  
consistent estimator of α – so which is/are to be chosen? This dilemma arises because  

1 It will be shown below that this is a consistent estimator.
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the parameter α is overidentified. Clearly the ILS method is not applicable when the  
parameters of an equation are overidentified since it results in a choice but with no  
clear selection criteria. However, it is still possible to obtain a consistent estimator, and  
the two stage least squares estimator, which will be introduced shortly, yields consistent  
and efficient estimators in this case.2

There are some cases, however, when knowledge of the reduced form does not  
allow us to deduce a unique estimator of the SF parameters. In such a situation, the  
parameters of the equation are not identifiable. Consider the following illustration:

(7.14)

(7.15)

The RF corresponding to this SF is:

(7.16)

(7.17)

(7.18)

It is impossible to obtain unique solutions for the SF parameters α0, α1, β0 and β1 given  
knowledge of the RF coefficients π1, π2 and π3. The α and β coefficients (and by  
extension equations 7.14 and 7.15) are not identifiable!3

IDENTIFIABILITY OF AN EQUATION AND RESTRICTIONS  
ON THE STRUCTURAL FORM

In a system of equations, an equation is identifiable if its parameters are either exactly  
identified or overidentified. In both cases, knowledge of the RF yields a unique solution  
for the SF parameters. An equation of the SF is not identifiable when its parameters  
cannot be uniquely determined from knowledge of the RF parameters. The identifi-
ability of a system is determined equation by equation and a system as a whole is said  
to be not identifiable if at least one of its equations is not.

2 It can be shown that the two stage least squares estimator is an optimal linear combination of the two  
consistent estimators of α shown here.

3 It is possible for the coefficients of one or more equations in a system to be identifiable while those  
of other equations may not be. See below.
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The identification of an equation is a mathematical problem and, by itself, does  
not necessarily challenge the underlying economic theory that resulted in the given  
specification. But a non-identified equation is a serious challenge to the economist  
since its parameters cannot be estimated consistently. The solution to the problem  
is also a mathematical one: it requires the imposition of sufficient restrictions on the  
structural form and, hopefully, these restrictions will make economic sense.

What does all this mean? Consider the system defined by equations (7.5) to (7.6).  
The system as a whole has three variables: Cp, Y and I, but equation (7.5) only has  
two. Put another way, the absence of It is a restriction on equation (7.5), and the  
existence of this restriction is enough to ensure the identification of the parameters  
of the equation (in this case, only one coefficient, α). One way to look at this is to  
imagine that equation (7.5) is written as:

where β = 0; that is we impose the value of zero on the coefficient of β.4 When viewed  
in this way, equation (7.6) has two restrictions: the coefficients of Cpt and It are both  
equal to one. This is a moot point since we know the values of these coefficients and  
are not in any way concerned with their estimation (why estimate them when we  
already know them?), but it serves to underscore the point.

Consider now the system represented by equations (7.5) and (7.11). This system  
has four variables: Cp, Y, Cg and I while equation (7.5) only has two. There are thus  
two restrictions on equation (7.5) and, apparently, these are more than are required  
because they result in overidentification of the equation. Once again, equation (7.5)  
may be written:

where β = γ = 0.
Finally, let us look at the system defined by equations (7.14), (7.15) and (7.6).  

There are four variables in this system: the constant term, Cp, Y and I. In equations  
(7.14) and (7.15), which can be written, respectively, as:

there is one restriction each. It would appear that, in this case, one restriction is not  
enough to ensure the identifiability of either equation. Can we extract some general  
rule? We can, as shown in the following section.

Conditions of Identifiability of an Equation

Let us rewrite the system of equations (7.5) and (7.6) in the following way:

4 These zero-type restrictions (as they are called in the literature) are very popular in practice.
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or, in matrix notation:

(7.19)

which distinguishes the endogenous from the predetermined variables.
The RF is easily derived from this SF as:

(7.20)

If we define:

then the SF defined by equation (7.19) is written succinctly as:

(7.21)

and the RF as:

(7.22)

where ΠΠΠΠ = –B–1 ΓΓΓΓ and vt = B–1ut.
What we notice is that the SF parameters B and ΓΓΓΓ yield the RF parameters ΠΠΠΠ.  

The identification problem can be stated as: does knowledge of ΠΠΠΠ allow us to uniquely  
determine B and ΓΓΓΓ? If the answer to this question is “yes”, then the system is  
identifiable. If “no”, then it is not identifiable.

Let us put this idea to use in a more general setting. Consider a system that has  
G current endogenous variables y1t, y2t, …, yGt, and K predetermined variables x1t,  
x2t, ..., xKt, t = 1, 2, ..., n. In its most general form, the system can be written, for t  
= 1, 2, ..., n, as:
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Defining:

then this SF may be written compactly as:

and the RF obtained as above.
In the absence of further information about the B and ΓΓΓΓ matrices, each equation  

in this system is statistically the same. For instance, OLS applied to each equation  
would yield identical values for the β and γ coefficients. In other words, the individual  
coefficients are not identifiable – unless restrictions are imposed on some of them,  
such as the zero-type restrictions introduced above. How many restrictions are  
necessary? It is best to use an illustration to answer this question.

Let us refer back to the system of four equations (7.1) to (7.4) introduced at the  
beginning of this chapter and let us discuss the identifiability of equation (7.1).  
Letting βij = –bij and γij = –gij, this system may be rewritten as:

Note two things. First, the convention has been introduced that the coefficient of the  
ith endogenous variable in the ith equation is equal to one. This, strictly speaking, is  
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not a restriction but a matter of convenience. It is equivalent to dividing throughout  
each equation by the coefficient of this variable so that the coefficients shown are really  
“scaled up” by this value. Second, when written in a form like this, the restrictions  
imposed on each equation appear clearly. For instance, in the consumption equation,  
the coefficient of Mt (β12) is equal to zero. So too are the coefficients of It, pmt/pdt, Yt–1,  
Dt, Cgt and Xt. There are thus seven zero-type restrictions on this equation. What about  
the others? This system as a whole may be written as:

or, more succinctly, as:

where the matrices are obvious. It is clear that, using that notation used above:

The matrix A is frequently referred to in the literature as the matrix of detached  
coefficients (for obvious reasons). This matrix is central to the identification exercise.  
Let us define a1 = (1  0  0  Β14  γ11  γ12  0  0  0  0  0) which is the first row of A.  
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Consider the first zero-type restriction (the one imposed on the coefficient of Mt). This  
restriction can be written as:

since, clearly,  0. Similarly, the other six restrictions can be written:

In all cases,  0, i = 1, 2, ..., 7.
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Consider now the matrix L whose columns comprise the seven column vectors  
l1 to l7:

Consider now the matrix . The first row of this matrix is, by construction, a  

row of zeros. The maximum rank of Q is therefore equal to 3.

Theorem (stated without proof): the rank condition of identification

The first equation of this system is identifiable if the rank of Q is equal to 3.
In general, Q will be of dimension (G,h) where G is the number of equations in  

the system and h the number of constraints on the equation. The rank condition of  
identification, which is a necessary and sufficient condition of identification, requires  
that the rank of Q be equal to G – 1.

Let us return to the Q matrix of our example. This is calculated as:

It is easily verified (do this as an exercise5) that, in this case, the rank of Q is indeed  
equal to 3 and the consumption equation is identifiable. Can you, as an exercise,  
determine the identifiability of the import and investment equations using the rank  
condition?

From the rank condition, we may derive the easier-to-use order condition of  
identification. It is really a rule of thumb that is obtained as follows: Q is of order  
(G,h). If, for identification, the rank of Q must be equal to G – 1, then it follows  

5 The rank of this matrix is either 3, 2, 1 or 0. To prove that it is 3, it suffices to find a 3 × 3 submatrix  
whose determinant is non-zero.
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that G > G – 1 (which is, of course, always true) and h ≥ G – 1. This latter is the  
order condition of identification, which requires that the number of restrictions  
imposed on an equation be at least as great as the number of equations in the system  
less one.

Note, however, that the order condition is necessary, not sufficient. If h < G – 1,  
then we conclude that the equation is not identifiable. But if h ≥ G – 1, all we really  
know is that there is not sufficient information to say that the equation is not  
identifiable. In practice, however, it is almost invariably true that, if h ≥ G – 1, the  
equation is identifiable.

In the first equation of the system defined by equations (7.1) to (7.4), there are  
seven restrictions and four equations. Since 7 is greater than (4 – 1) = 3, the equation  
is identifiable. In fact it is overidentified, which is always the case when h > G – 1.  
When h = G – 1, the equation is exactly identified. What conclusions can you draw  
about equations (7.2) and (7.3)?

ESTIMATION IN SIMULTANEOUS EQUATION MODELS

We have already met the indirect least squares (ILS) estimator, which is applicable  
only in cases where the parameters of an equation are exactly identified. In this section,  
our main concern is to introduce the two stage least squares (2SLS) estimator and,  
later on, we will show that the ILS is but a special case of the 2SLS.

Consider, once again, the SF defined by equations (7.5) and (7.11) and whose  
RF is shown by equations (7.12) to (7.13). We wish to estimate the coefficients of  
equation (7.5).6 OLS would yield inconsistent estimators because of the presence  
among the explanatory variables of the current endogenous variable Yt which, as  
was shown above, is correlated in the limit with the error term. The 2SLS estimator  
solves this problem by:

1. Replacing Yt in equation (7.10) by , the fitted value of Yt obtained by  
OLS regression on the RF equation (7.13).

2. Applying OLS to the SF equation (7.10) using  instead of Yt.

The estimator obtained in this second step is appropriately termed the two stage least  
squares estimator, since OLS is applied twice (once to the RF equation and once to  
the modified SF equation). Let us look at the procedure in some more detail.

Step 1
The RF equation (7.13) appears as:

OLS is applied to this equation in the classic manner discussed in chapter 1. Denote  
the OLS estimators of the π coefficients as  and define:

6 Here, of course, there is only one coefficient to estimate.

Ŷt
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(7.23)

and:

(7.24)

Step 2
From step 1, Yt =  so that equation (7.5) may be written as:

(7.25)

OLS is applied to equation (7.25) in the classic manner. the OLS estimator of α so  
obtained is the two stage least squares estimator and is denoted .

Consistency of the Two Stage Least Squares Estimator

From our knowledge of the OLS estimator, we know that:
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Clearly  is consistent if

Of course, this is not surprising since this is the precise requirement for the OLS  
estimator to be consistent – and the 2SLS estimator is the OLS estimator of α in  
equation (7.25).

Lemma

Proof of Lemma

It is a classic result of OLS (see chapter 2) that  so:

By assumption, I and Cg are strictly exogenous and, in particular:

Corollary
 is a consistent estimator of α since:
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The Two Stage Least Squares Estimator as an Instrumental  
Variable Estimator

Consider again the SF defined by equations (7.5) and (7.11) where we are interested  
in estimating α, the parameter(s) of equation (7.5). If we use  as an estimator of Yt,  
then the IV estimator of α can be shown to be identical to the 2SLS estimator already  
derived.

From chapter 6, the IV estimator would be:

But:

and, since  then:

Equivalence of Two Stage Least Squares and Indirect Least Squares  
in the Case of an Exactly Identified Equation

For the SF defined by equations (7.5) and (7.6), equation (7.5) was exactly identified.  
The RF of this system was defined by equations (7.9) and (7.10) and the ILS estimator  
of α was defined by:

where  are OLS estimators. More specifically:
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so that:

In this case, the 2SLS estimator of α would have been obtained as follows.
The fitted value of Yt,  is obtained from the RF as:

The 2SLS estimator is:

and since :

Illustration of the Two Stage Least Squares Estimator

The 2SLS estimation of the consumption equation (7.1), obtained using EViews, is  
shown in Exhibit 7.1. You will notice the “Instrument list”, which contains all the  
predetermined variables in the system as a whole. EViews examines the list of regres-
sors in equation (7.1) and identifies Yt as an endogenous variable, since it is not included  
in the Instrument list. In the first phase of 2SLS (the “RF” phase), the following  
regression is performed using OLS:
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Ŷt

ˆ ˆY It t= π2

ˆ
ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

α

π

π

2 2

2

2

2

2

SLS

t t

t

t t

t t

t t

t t t

t t

t t t t

C Y

Y

C I

Y I

C I

Y v I

C I

Y I I v

=

=

=
−( )

=
−

∑
∑
∑
∑
∑

∑
∑

∑∑
I Vt t

ˆ
2 0=∑

ˆ ˆ . .α α2SLS

t t

t t

ILS

C I

Y I
Q E D= =∑

∑



130 A Practical Introduction to Econometric Methods: Classical and Modern

(7.26)

In the second phase, the following OLS regression is performed:

(7.27)

where  is the OLS fit of Yt obtained from equation (7.26). It is the results obtained  
in this phase that are reported in Exhibit 7.1.

In similar fashion, EViews performs the 2SLS estimation on the import equation  
(7.2), obtaining the results shown in Exhibit 7.2.

The investment equation (7.3) is a peculiar one. There are no endogenous vari-
ables among its regressors and so there is no need to apply 2SLS since OLS will  
do. In fact, in this case, OLS and 2SLS yield identical results. Can you elaborate on  
this statement? The OLS estimation of equation (7.3) is shown in Exhibit 7.3.

As an exercise,

1. Comment on the results obtained
2. Fit equations (7.1) and (7.2) by OLS and compare the results obtained to  

the 2SLS results

EXHIBIT 7.1
2SLS estimation of
Cpt = g11 + b14Yt + g12Cpt–1 + u1t

==============================================================
TSLS // Dependent Variable is P_CONS
Date: 10/17/95   Time: 09:31
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
Instrument list: C P_CONS(-1) G_CONS RATIO DUMMY INCOME(-1)
        EXPORTS
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1731.626   610.1810  -2.837889    0.0099
      INCOME          0.460703   0.076926   5.988880    0.0000
      P_CONS(-1)      0.331614   0.106126   3.124725    0.0051
==============================================================
R-squared             0.950208   Mean dependent var   8592.498
Adjusted R-squared    0.945466   S.D. dependent var   2164.074
S.E. of regression    505.3669   Akaike info criter   12.56704
Sum squared resid     5363310.   Schwarz criterion    12.71429
F-statistic           196.4792   Durbin-Watson stat   1.512975
Prob(F-statistic)     0.000000
==============================================================

Y C C
p

p
D Y X vt p t gt

mt

dt
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EXHIBIT 7.2
2SLS estimation of
Mt = g21 + b24Yt + g23  (pmt   /  pdt) + u2t

==============================================================
TSLS // Dependent Variable is IMPORTS
Date: 10/17/95   Time: 09:32
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
Instrument list: C P_CONS(-1) G_CONS RATIO DUMMY INCOME(-1)
        EXPORTS
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1235.738   731.8105  -1.688604    0.1061
      INCOME          0.379946   0.031813   11.94308    0.0000
      RATIO          -684.0292   160.4902  -4.262125    0.0003
==============================================================
R-squared             0.935694   Mean dependent var   3655.325
Adjusted R-squared    0.929570   S.D. dependent var   1480.286
S.E. of regression    392.8482   Akaike info criter   12.06332
Sum squared resid     3240924.   Schwarz criterion    12.21057
F-statistic           151.5560   Durbin-Watson stat   1.664664
Prob(F-statistic)     0.000000
==============================================================

EXHIBIT 7.3
2SLS (OLS) estimation of
It = g31 + g34Yt–1 + g35 Dt + u3t

==============================================================
LS // Dependent Variable is INV
Date: 10/17/95   Time: 09:35
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -2528.634   688.2246  -3.674141    0.0014
      INCOME(-1)      0.316308   0.041907   7.547917    0.0000
      DUMMY           1759.333   284.1274   6.192057    0.0000
==============================================================
R-squared             0.825362   Mean dependent var   3131.866
Adjusted R-squared    0.808730   S.D. dependent var   1499.113
S.E. of regression    655.6290   Akaike info criter   13.08766
Sum squared resid     9026836.   Schwarz criterion    13.23492
Log likelihood       -188.1064   F-statistic          49.62437
Durbin-Watson stat    1.327772   Prob(F-statistic)    0.000000
==============================================================
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A word of caution: the Durbin–Watson statistic and R2 do not have the same interpre-
tation in the case of 2SLS estimation. Also, the T-statistic is asymptotically normal –  
it does not have a Student distribution in small samples.

EXERCISES

1. Consider the model:

where q and p are endogenous and r exogenous.
a) Use the order condition of identification to show that the supply equation  

is identifiable while the demand equation is not.
b) Derive the indirect least squares estimator of a.
c) Derive the two stage least squares (2SLS) estimator of a and show that  

it is identical to the ILS estimator.
d) Prove that the 2SLS estimator is consistent.
e) Given that OLS is theoretically an inconsistent estimating procedure,  

how do you account for its popularity in practice in the estimation of  
simultaneous equations systems, very often in preference to 2SLS?

2. In the following simultaneous equation model, the y values are current  
endogenous and the x values are exogenous variables:

a) Using the order condition for identification, study the identifiability of  
the three equations.

b) Using the rank condition for identification, determine whether or not the  
second equation is identifiable.

c) Select an equation whose coefficients are identifiable and describe in  
detail how you would obtain consistent estimators for its coeffecients.

Supply q ap u

Demand q bp gr v

t t t

t t t t
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3. Consider the following labour market model:

where L is the number of persons employed; W is the real wages index; S is  
sales; and P is a measure of labour productivity. Both S and P are exogenously
determined variables.
a) Obtain the reduced-form equations for Lt and Wt.
b) Discuss the identifiability of the two equations.
c) Outline a technique for estimating equation (1).

4. Consider the following model:

where the Xs are predetermined variables.
a) Discuss the identification of each equation in the model.
b) Suggest, with reasons, a suitable method of estimation for each equation.

5. Using the Trinidad and Tobago data provided in WT_DATA.XLS, fit the  
model (7.1) to (7.4) using two stage least squares.
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CHAPTER 8

Simulation of Econometric Models

INTRODUCTION

An econometric model consists of one or more (simultaneous) equations that have  
been fitted by standard econometric methods such as OLS and 2SLS. It can be solved  
to determine the fitted or predicted values of its endogenous variables over the period  
of estimation, and these can be used to evaluate the “goodness of fit” of the model. In  
the single equation case, we have already met statistics such as R2 and , which are  
based on a comparison of the actual and fitted values of the endogenous variables. In  
this chapter, other statistics in this spirit will be introduced which can be used to  
evaluate “model accuracy” in both the single and multiple equation cases.

However, a model can also be solved to produce values that lie outside of the  
sample period and, in chapter 1, we did precisely this in the case of the single  
equation model to obtain forecasts of the endogenous variable. At that time, it was  
pointed out that one of the inherent difficulties in forecasting with an econometric  
model was the necessity to have knowledge of the future values of the exogenous  
variables, and this problem is even more relevant in the case of multiple equation  
models.

The need to specify future values of exogenous variables, however, is not without  
some merit. Suppose, for instance, that the econometric model is being used by a  
state planning agency and one of the exogenous variables is “Public Investment” or  
some tax rate. The agency may choose to define certain policy measures that are  
translated into values for these exogenous variables. When the model is solved into  
the future using such values, the effect of the policy on the endogenous variables of  
the model can be observed and this will give some indication about the desirability  
of the (proposed) policy measures.1

It is largely because the effects of policy measures can be simulated using an  
econometric model (almost as in a laboratory) that the terms “model solution” and  
“model simulation” are used almost interchangeably in the literature.

DYNAMIC AND STATIC SIMULATION

Consider an equation such as the following:

1 In the literature on economic policy (e.g. Theil, 1966), the subset of exogenous variables that can be  
used to effect economic policy are called policy variables while the endogenous variables that we  
hope to influence by such measures are called target variables.

R2

C g b Y g C upt t p t t= + + +−11 14 12 1 1,



136 A Practical Introduction to Econometric Methods: Classical and Modern

which is equation (7.1) of the previous chapter. You will notice that, in order to solve  
for Cpt, knowledge about Cp,t–1 is required. We may decide to use the actual (observed)  
value of Cp,t–1 or we may use instead the value that was obtained by solving the model  
one period ago. The former approach is referred to as static simulation while the latter  
is defined as dynamic simulation. In a word, dynamic simulation calculates “forecasts”  
for periods after the first period in the sample by using the previously forecasted values  
of the lagged left-hand variable, while static simulation uses actual rather than fore-
casted values (it can only be used when actual data are available).

Which one should we use? It would seem that, if simulation is being used to  
evaluate the “goodness of fit” of the model, then dynamic simulation over the sample  
period (or some subset of this period) would be the preferred option. After all, the  
model is supposed to be a representation of reality and, ideally, it should replicate  
reality without the “feedback” from the real world. On the other hand, if the model  
is being used to forecast the future, then, if the actual value is available for the lagged  
variable, it should be used. Unfortunately, this option may not be available if the  
forecast horizon is long, since the lagged future values may not have been observed  
at the time the forecast is to be made.

SOME USEFUL SUMMARY STATISTICS

The summary statistics to be discussed in this section are applicable both for judging  
the goodness-of-fit of a model over the sample period or for evaluating forecasts outside  
the sample period.

Root Mean Square Error

Let Yt be the actual value of the endogenous variable and Ys
t be the simulated value at  

time t. The root mean square error (RMSE) is based on the concept of the mean square  
error (MSE), which may be defined as:

where n is the period over which the simulation is carried out. Another possible measure  
of the MSE that appears in the literature is:

where:
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is the actual growth rate of the variable Y and

is the predicted growth rate. The RMSE is derived as:

The RMSE may be used to choose between alternative models as, based on this  
criterion, a model is to be preferred to another if it yields a smaller RMSE. However,  
great caution must be exercised in using this measure other than for comparing  
models, since its size will be influenced by the actual Y values. The reason for this  
is simple: the RMSE is bounded from below by zero but has no upper limit. A value  
of zero is obtained if the simulated value is exactly equal to the actual value for all  
t. But values close to zero need not necessarily indicate that the model is performing  
well since, if the Y values are typically small, then a relatively small value for the  
RMSE may still be a cause for concern. At the same time, if the Y values are typically  
large, then a relatively large value for the RMSE may not be a cause for concern.

An analogous term, the root mean square percentage error (%RMSE) is defined  
as:

Once again, this measure is bounded from below by zero and has no upper limit, but  
since this measures a percentage error its value does not depend on the size of the  
typical Y values. For instance, a value of 10 means that, on the average, there is a 10%  
forecast error while a value of 25 indicates a 25% forecast error. Ceteris paribus, it is  
always better to have a lower value for %RMSE than a larger one.

Mean Absolute (or Mean Difference) Error

The mean absolute (or mean difference) error is defined as:

while the analogous mean absolute percentage error is defined as:
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The MAE and %MAE are based on the absolute values of the differences rather  
than on the square of the differences as was the case for the RMSE and the %RMSE.  
Clearly, the RMSE penalizes larger errors more stringently than does the MAE and  
from this point of view is the more desirable of the two. However, like the RMSE,  
the MAE should be used only to make comparisons between models since they both  
suffer from the fact that “large” and “small” values do not have a precise interpre-
tation. In similar vein, the %MAE statistic removes this shortcoming.

The Theil Inequality Coefficient

The Theil inequality coefficient is defined as:

U is bounded from below by zero (this occurs when the simulated and actual values  
are identical for all t) and has no upper limit. However, unlike the RMSE and MAE  
measures, large values do have an immediate interpretation: U = 1 indicates a “forecast”  
just as accurate as one of “no change” (Ys

t = Yt–1, which implies that Pt = 0), and a  
value of U greater than one means that the prediction is less accurate than the simple  
prediction of no change. It is always desirable, therefore, to get values of U close to  
zero and certainly less than one.

The Theil Decomposition2

It can be shown that:

where  is the variance of the prediction errors (Pt – At),  is the arithmetic average  
of P, and  is the arithmetic average of A. Clearly, a model that is forecasting perfectly  
will have  with all the error then tied up in . We refer  
to the first term  as the bias component, which indicates the extent to which  
the magnitude of the MSE is the consequence of a tendency to estimate too high or  
too low a level of the forecast variable.

Theil (1966) shows that a further decomposition of MSE2 is possible. If we let  
r denote the coefficient of correlation between A and P, we can obtain the following:

2 The discussion that follows draws heavily from Maddala (1977).
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and:

where (Sp – Sa)2 is the variance component, 2(1 – r) SpSa is the covariance component,  
(Sp – rSa)2 is the regression component, and (1 – r2) S2

a is the disturbance component.
We can therefore decompose the MSE into either one of two sets of components –  

bias, variance and covariance, or bias, regression and disturbance. Corresponding to  
these two decompositions, Theil defines two sets of statistics:

and:

It is clear that UM + US + UC = UM + UR + UD = 1.
The bias proportion UM is an indication of systematic error, that is, it measures  

the extent to which the average values of the simulated and actual time series deviate  
from each other. Clearly we would hope for a value of UM that is close to zero,  
whatever the value of the Theil U, since a large value would mean the presence of  
a systematic bias and so indicate the need for revision of the model (or of the forecast).

Maddala (1977) argues that, of the other two decompositions, the decomposition  
UR, UD is more meaningful than the decomposition US, UC. Granger and Newbold  
(1973) further argue that it is hard to give any meaningful interpretation at all to US

and UC since, as they demonstrate, when UM = 0, these two quantities can take on  
any values subject to the restriction that 0 ≤ US, UC ≤ 1, and US + UC = 1. On the  
other hand, UM and UR tend to zero for the optimal predictor.

Notwithstanding these arguments, Pindyck and Rubinfeld (1998) argue that the  
variance proportion US indicates the ability of the model to replicate the degree of  
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variability in the variable of interest. A large value of US, they insist, means that the  
actual series has fluctuated considerably while the simulated series has shown little  
fluctuation, or vice versa – clearly an undesirable occurrence and one that would  
also lead to a revision of the model. The covariance proportion UC, they continue,  
measures the unsystematic error, that is, it represents the remaining error after  
deviations from actual values have been accounted for. Since there would never exist  
a situation where predictions are perfectly correlated with actual outcomes, the value  
of this component of error is, in their opinion, not a cause for concern. Given that  
the summation of the three measures gives a value of one, the implication is that the  
ideal distribution of inequality over the three proportions is UM = US = 0 and UC = 1.

Of all the summary statistics, the Theil decomposition (whichever one is used)  
offers the possibility of the most comprehensive analysis of model simulation and  
it is strongly recommended that it is used in preference to all the others. A strong  
case for this approach is made in Watson (1987).

Regression and Correlation Measures

An intuitively appealing measure of model or forecast accuracy is the simple coefficient  
of correlation between actual and simulated values. The principal shortcoming of this  
measure is that it does not penalize systematic linear bias. To overcome this, Mincer  
and Zarnowitz (1969) propose a test of predictive efficiency based on the regression  
of the actual on the simulated values:

The ideal situation is one in which α = 0 and β = 1. Since the regression estimates  
of α and β are usually correlated, their individual t-ratios provide inappropriate tests  
of the efficiency hypothesis and a joint F-test is required. Artis (1988) presents  
examples in which the individual and joint tests are in conflict. Granger and Newbold  
(1986), however, are very critical of the Mincer–Zarnovitz suggestion.

SOME ILLUSTRATIONS OF THE USE OF MODEL SIMULATION

Evaluation of Goodness-of-Fit of Single Equation Systems

Let us estimate equation (7.1) by OLS. The results obtained are shown in Exhibit 8.1.  
The model so obtained may be stored in EViews as:

and, at any time after, may be solved. It is also possible to solve it without storing it  
if use is made of the “FORECAST” button which is made available at the same time  
the output in Exhibit 8.1 is displayed. The summary results obtained from static and  
dynamic simulations over the estimation period (frequently called historical simula-
tion) are shown in Exhibit 8.2.

The simulated value of P_CONS is, in each case, denoted P_CONSF. You will  
notice that EViews reports the decomposition involving US and UC (and not the one  

Y Yt t
S= +α β

P_CONS INCOME= − + ∗ +1876 9578 0 48588218 0 30056. . . 888 1∗ −( )P_CONS
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involving UR and UD). This and the other summary statistics shown are clear indi-
cations of a good model. For instance, in the dynamic simulation case, UM and US

are very close to zero and UC very close to unity which, according to Pindyck and  
Rubinfeld (1998), is the almost ideal result. The Theil inequality coefficient shows  
an average error of about 3%, which is reasonable by any standard.

EXHIBIT 8.1
OLS fit of equation (7.1)
Cpt = g11 + b14Yt + g12Cp,t–1 + u1t

==============================================================
LS // Dependent Variable is P_CONS
Date: 10/17/95  Time: 18:32
Sample: 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -1876.958   594.0039  -3.159841     0.0047
      INCOME         0.485882   0.073228   6.635162     0.0000
      P_CONS(-1)     0.300569   0.102009   2.946495     0.0077
==============================================================
R-squared            0.950487   Mean dependent var    8592.498
Adjusted R-squared   0.945771   S.D. dependent var    2164.074
S.E. of regression   503.9503   Akaike info criter    12.56142
Sum squared resid    5333285.   Schwarz criterion     12.70868
Log likelihood      -181.7916   F-statistic           201.5637
Durbin-Watson stat   1.473037   Prob(F-statistic)     0.000000
==============================================================

EXHIBIT 8.2
Summary statistics based on historical simulation of
P_CONS = –1876.9578 + 0.48588218*INCOME + 0.3005688*P_CONS(–1)
 (EViews Output)

Static Simulation Dynamic Simulation
======================================
Actual: P_CONS     Forecast: P_CONSF
Sample: 1968 1991
Include observations: 24
======================================
Root Mean Squared Error       471.4024
Mean Absolute Error           401.8138
Mean Absolute Percentage Erro 4.784469
Theil Inequality Coefficient  0.026652
      Bias Proportion         0.000000
      Variance Proportion     0.012695
      Covariance Proportion   0.987305
======================================

======================================
Actual: P_CONS     Forecast: P_CONSF
Sample: 1968 1991
Include observations: 24
======================================
Root Mean Squared Error       516.6254
Mean Absolute Error           453.4065
Mean Absolute Percentage Erro 5.524241
Theil Inequality Coefficient  0.029230
      Bias Proportion         0.000698
      Variance Proportion     0.009011
      Covariance Proportion   0.990291
======================================
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At the same time, like all summary statistics, it suffers from shortcomings like  
sensitivity to outliers. For this reason, it is recommended to inspect the time series  
plots of the actual and simulated values. This is shown in Exhibit 8.3.

The plot shows a fairly close tracking between actual and simulated values but  
the performance over the last few years (1987 to 1991) is a cause for concern. This  
becomes clearer if we take a close-up look at this shorter period, shown in Exhibit 8.4.

EXHIBIT 8.3
Plots of actual and simulated private consumption based on  
P_CONS = –1876.9578 + 0.48588218*INCOME + 0.3005688*P_CONS(–1) 
(1968–1991)

EXHIBIT 8.4
Plots of actual and simulated private consumption based on
P_CONS = –1876.9578 + 0.48588218*INCOME + 0.3005688*P_CONS(–1)
(1987–1991)
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There seems to be no obvious indication at this point that the two paths will meet  
and if this model is to be used for forecasting the immediate future we are likely to  
obtain inaccurate forecasts. But there is one consolation: the two plots seem to run  
(almost) parallel to each other so that, over this period the simple coefficient of  
correlation between actual and simulated values will be quite high (in fact, it is over  
90%). If it is possible to approximate the vertical distance between the two plots,  
then the forecast obtained from the model can be adjusted by adding this amount to  
it. The actual figures shown in Exhibit 8.5 will provide some guidance.

We will lay the greatest emphasis on the last two years (1990 and 1991) where  
there is a forecast error of approximately 10%. If this model is used for forecasting,  
we can adopt a rule such as: the forecast to be used will be equal to the forecast  
generated by the model divided by 1.10.

Forecasting with Single Equation Systems

In this section, we will apply the ad hoc rule derived above. First, however, consider  
Exhibit 8.6, which shows the evaluation of the forecast of private consumption from  
1992 to 1994 obtained from “mechanical” solution of the model. As was anticipated  
from the previous section, there is evidence of strong systematic bias here (but with  
very little variation). The graph of the actual and forecasted values shown in Exhibit 8.7  
shows the details.

Exhibit 8.8 shows the adjusted forecast compared to that obtained from the model.  
Application of the ad hoc rule leads to a forecast error that is much more acceptable  
than the one generated by the model. This emphasizes an important point: we must  
never blindly accept forecasts mechanically generated from a fitted model and should  
seek instead to determine “add factors” which can be used to adjust these “mechan-
ical” forecasts (in doing this we should use as well subjective economic judgment).  
See Klein and Young (1980).

Evaluation of Goodness-of-Fit of Multiple Equation Systems

Here we consider the system defined by equations (7.1) to (7.4) in chapter 7. Two  
versions of the model are considered: one estimated by OLS (model A) and the other  
by 2SLS (model B). The results of OLS estimation of equations (7.1) to (7.3) are  
shown in Exhibits 8.1, 1.1 and 7.3, respectively, and the 2SLS results are shown in  
chapter 7.

EXHIBIT 8.5
Actual and simulated private consumption based on 
P_CONS = –1876.9578 + 0.48588218*INCOME + 
0.3005688*P_CONS(–1) (1987–1991)

Year Actual Simulated Error % Error

1987 8901.3 9132.5 231.2 2.60
1988 8475.9 8655.4 179.5 2.12
1989 8099.1 8447.6 348.5 4.30
1990 7667.9 8501.6 833.7 10.9
1991 7999.8 8761.9 762.1 9.53
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EXHIBIT 8.6
Comparison of actual and forecasted private 
consumption based on P_CONS = –1876.9578 + 
0.48588218*INCOME + 0.3005688*P_CONS(–1)
(1992–1994)

Forecast Evaluation
======================================
Actual: P_CONS     Forecast: P_CONSF
Sample: 1992 1994
Include observations: 3
======================================
Root Mean Squared Error       1146.627
Mean Absolute Error           1142.246
Mean Absolute Percentage Erro 15.37435
Theil Inequality Coefficient  0.071577
      Bias Proportion         0.992374
      Variance Proportion     0.000060
      Covariance Proportion   0.007566
======================================

EXHIBIT 8.7
Plots of actual and forecasted private consumption based on
P_CONS = –1876.9578 + 0.48588218*INCOME + 0.3005688*P_CONS(–1)
(1992–1994)
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The first step is to set up the model in EViews. Model A, which is based on OLS  
estimation, is set up in EViews as shown in Exhibit 8.9 and model B, which is based  
on 2SLS estimation, is shown in Exhibit 8.10.

The simulated values of any endogenous variable Y will be stored as YP in the  
case of model A and YS in the case of model B (for instance, the simulated value  
of P_CONS is stored as P_CONSP for model A and as P_CONSS for model B).  
These models are examples of linear models but EViews can solve both linear and  
nonlinear models (for example, those involving logarithms) by the Gauss–Seidel  
method. For most models it will converge rapidly and give the solution without any  
problems. However, it is not entirely foolproof. There are some models for which  
Gauss–Seidel cannot find the solution. Some types of nonlinearities and other char-
acteristics will result in models that have no solutions or models that cannot be solved  
with the Gauss–Seidel method.

Gauss–Seidel works by evaluating each equation in order and then using the new  
value of the left-hand variable in an equation as the value of that variable when it  
appears in any later equation. The method is dependent on the way that you express  
your equations and on the order of the equations in your model. You must set up  

EXHIBIT 8.8
Comparison of model and adjusted forecasted private consumption 
based on P_CONS = –1876.9578 + 0.48588218*INCOME + 
0.3005688*P_CONS(–1) (1992–1994)

Year Actual
Model 

Forecast
% Forecast 

Error
Adjusted 
Forecast

% Forecast 
Error

1992 7437.7 8670.2 16.6 7882.0 5.97
1993 7228.4 8533.4 18.1 7757.6 7.32
1994 7644.0 8851.8 15.8 8047.1 5.27

EXHIBIT 8.9
Program for model A in EViews (Equations estimated by OLS)

P_CONS = –1876.9578 + 0.48588218*INCOME + 0.3005688*P_CONS(–1)
IMPORTS = –1188.6408 + 0.37763924*INCOME – 688.67618*RATIO
INV = –2528.6344 + 0.31630837*INCOME(–1) + 1759.333*DUMMY
INCOME = P_CONS + G_CONS + INV +EXPORTS – IMPORTS
ASSIGN P_CONS P_CONSP IMPORTS IMPORTSP INV INVP INCOME INCOMEP

EXHIBIT 8.10
Program for model B in EViews (Equations estimated by 2SLS)

P_CONS = –1731.6262 + 0.46070333*INCOME + 0.33161351*P_CONS(–1)
IMPORTS = –1235.7383 + 0.37994557*INCOME – 684.02921*RATIO
INV = –2528.6344 + 0.31630837*INCOME(–1) + 1759.333*DUMMY
INCOME = P_CONS + G_CONS + INV +EXPORTS – IMPORTS
ASSIGN P_CONS P_CONSS IMPORTS IMPORTSS INV INVS INCOME INCOMES
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your equations so that each one has a different endogenous variable on the left-hand  
side. Sometimes you may need to rewrite identities or behavioural equations in order  
to put your model in this form.

EViews will reorder your equations so that ones that have no right-hand endog-
enous variables come first. In this way, when later equations are evaluated, the right  
values of at least some of their right-hand variables will be used from the start. By  
the same token, you should put equations early in the model if their right-hand  
endogenous variables are relatively unimportant.

EXHIBIT 8.11
Time plots of actual and simulated private consumption expenditure

EXHIBIT 8.12
Time plots of actual and simulated imports
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Consider the time plots in Exhibits 8.11 to 8.14. As with the case of the single  
equation model, performance seems to be inhibited by the ability of the model to  
properly track in the later years. In order to forecast into the future, therefore, it  
would be advisable to make some kind of adjustment. We will return to this point  
later.

Unfortunately, EViews does not provide summary statistics in the case of simu-
lation of multiple equation systems, although the programming required to obtain  
them is relatively straightforward. Exhibit 8.15 shows these statistics as they were  
obtained from the dynamic simulation of models A and B using another package  

EXHIBIT 8.13
Time plots of actual and simulated investment

EXHIBIT 8.14
Time plots of actual and simulated national income
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called AREMOS. AREMOS gives the Theil decomposition into UR and UD. You will  
notice, first of all, that there is remarkably little difference in the simulation perfor-
mance of the two models (which is quite good in both cases) although the 2SLS  
seems to perform marginally better.

DYNAMIC RESPONSE (MULTIPLIER ANALYSIS) IN MULTIPLE 
EQUATION SYSTEMS

There are (at least) two additional requirements of estimated models like models A  
and B:

1. The model should be stable, in the sense that it does not explode or radically  
alter its behaviour because of marginal changes in the value of its coeffi-
cients and exogenous variables.

2. There is a sound and meaningful economic explanation for the response of  
endogenous variables to stimuli resulting from “exogenous” shocks.

Multiplier analysis is used to deal with both of these issues.
Consider some endogenous variable at time t yit and an exogenous variable at  

time s xjs, s ≤ t. Suppose there is some adjustment in xjs equal to ∂xjs. It seems  
legitimate to ask the question: what will be the value of the resulting change in yit,  
or ∂yit? The per unit effect of xjs on yit is defined as the multiplier of lag (t – s):

If t = s, the resulting multiplier is referred to as the impact multiplier, while:

EXHIBIT 8.15
Summary statistics based on dynamic simulation of models A and B  
(AREMOS output)

Model A (OLS ESTIMATION) Model B (2SLS ESTIMATION)

P_CONS Theil U-statistic:    0.1473
RMSE:  1290.8994
%Mean difference:    -2.0542
%RMSE:    60.7348
UM:  0.0183  UR:  0.1707  UD: 0.8110

Theil U-statistic:    0.1439
RMSE:  1260.9443
%Mean difference:    -2.1520
%RMSE:    59.3254
UM:  0.0210  UR:  0.1326  UD: 0.8464

IMPORTS Theil U-statistic:    0.1785
RMSE:  688.9488
%Mean difference:    -2.0329
%RMSE:    45.9062
UM:  0.0110  UR:  0.1722  UD: 0.8168

Theil U-statistic:    0.1769
RMSE:  682.7122
%Mean difference:    -2.1306
%RMSE:  45.4906
UM:  0.0123  UR:  0.1519  UD: 0.8358

INV Theil U-statistic:    0.2639
RMSE:  896.1905
%Mean difference:    -2.9818
%RMSE:  60.0191
UM:  0.0103  UR:  0.0742  UD: 0.9155

Theil U-statistic:    0.2631
RMSE:  893.3284
%Mean difference:     -3.026
%RMSE:  59.8274
UM:  0.0107  UR:  0.0625  UD: 0.9269

INCOME Theil U-statistic:    0.0888
RMSE: 1453.8802
%Mean difference:    -1.2033
%RMSE:  46.3947
UM:  0.0177  UR:  0.1860  UD: 0.7963

Theil U-statistic:    0.0873
RMSE: 1429.6887
%Mean difference:    -1.2414
%RMSE:  45.6228
UM:  0.0195  UR:  0.1511  UD: 0.8295
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is defined as the long run multiplier. The latter measures the effect of a sustained change  
of x on y and, if the model is stable, it converges to a finite value.

In models of even the most moderate size, it is either extremely difficult or  
impossible to determine the value of these multipliers by analytical methods. It is  
for this reason that we resort to simulation techniques to approximate the values.  
How is this done?

As a first step, the model is solved to yield the simulated values (in the way that  
we have been doing it up to now). This step is referred to as the base run of the  
model and the values of the variable yi shall be denoted yb

it.3 In a second step, some  
exogenous variable xj is altered by an amount equal to Δxjt and the model solved  
again. This phase is called the simulation run and yields values of the endogenous  
variable yi denoted by ys

it. A typical multiplier is approximated by:

while the long run multiplier may be approximated by:

Illustration of Dynamic Response

The variable G_CONS in model B was increased by 10% over the period 1967 to  
1991. The model was then solved again over the period 1968 to 1991 and multipliers  
calculated on the basis of the effect of this shock on P_CONS. The various multipliers,  
as well as the approximate values of the long run multiplier, are shown in Exhibit 8.16.

The model is clearly stable as it converges to a new equilibrium after the shock.  
After 1991, the long run multiplier is approximated at 1.82 which means that, in the  
“long run”, a sustained increase in government expenditure of $1.00 results in an  
increase of $1.82 in private consumption. The impact multiplier is 0.50 – what does  
this mean?

Forecasting and Policy Simulations with Multiple Equation Systems

Forecasting and policy analysis based on simulations (policy simulations) using econo-
metric models both involve the making of projections of endogenous variables into the  
future on the basis of (projected) future values of exogenous variables. In both cases,  
specification of the exogenous variables is an expensive and time consuming exercise  

3 Alternatively, we may simply use the actual (instead of the simulated) values. This is done in Watson  
and Clarke (1997).
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which occupies an inordinately large portion of the time of the teams involved in the  
exercise.

In the end, the future values of the endogenous variables obtained are conditional  
upon the choice of values of the exogenous variables. In addition, just as in the case  
of single equation models, we cannot be indifferent to the built-in biases of the  
estimated model and should be prepared, on the basis of “add factors”, to adjust the  
forecasts derived from mechanical application of the model. But this is complicated  
by the presence of more than one equation and, in particular, the necessity to satisfy  
accounting identities in the model.

Illustration

In this chapter, we will not concern ourselves with practical difficulties in specifying  
values for the exogenous variables. We shall simply solve model B into the future using  
whatever values we have of the exogenous variables. In Exhibit 8.17, we display the  
forecasts for the period 1992 to 1994 obtained from mechanical solution, as well as  
from adjustments of these values based on add factors.

In this case, the adjustments result in a deterioration of the INCOME forecasts.  
In general, too, even the adjusted forecasts leave some room for improvement. It  
may be that the model itself needs further fine-tuning or greater care should be taken  
in determining the add factors.

EXHIBIT 8.16
Selected multipliers based on simulation of model B

Year Multiplier
Long run 
Multiplier

1968 0.50 0.50
1969 0.40 0.90
......... ....... .........
1988 0.13 1.95
1989 –0.02 1.93
1990 –0.14 1.79
1991 0.03 1.82

EXHIBIT 8.17
Forecast errors for model B

Year
% Error
P_cons

% Error
P_cons
(adj)

% Error
imports

% Error
imports

(adj)
% Error

inv
% Error
inv (adj)

% Error
income

% Error
income

(adj)

1992 22.0% –5.44% 50.4% 14.0%  95.2% 17.6% 8.64% –17.5%
1993 34.6%  4.33% 64.0% 24.2% 119.7% 32.3% 14.2% –14.3%
1994 33.5%  3.47% 68.4% 27.6%  92.1% 15.8% 12.5% –16.1%
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EXERCISE

Term project
Discuss with your class instructor an econometric project involving (at least) the  
specification, estimation and validation of a simple econometric model. You must write  
up a report that will include:

• A clear description of the problematique
• Justification of the model chosen to quantify the problematique
• The data used in the model (together with the source of the data)
• A clear summary of the main results of the estimation and validation  

exercises
• Implications of the results for economic theory, policy, etc.
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CHAPTER 9

Maximum Likelihood Estimation

INTRODUCTION

The maximum likelihood method of estimation is based on the idea that different  
populations generate different samples, and that any given sample is more likely to  
have come from some populations than from others. Take, for example, normal pop-
ulations, which are fully characterized by a mean and a variance, and hence differ only  
with respect to the value of these two parameters. A given sample from a normal  
population may have come from a population characterized by any mean and any
variance, but some populations would generate such a sample more frequently than  
others.

With this in mind, consider some random variable X, from which we draw a  
sample of size n:

Each Xi will have a distribution identical to that of X, and, since it is a random sample,  
Xi is independent of Xj, i ≠ j. The probability density function (pdf) of Xi is defined  
as f(xi/θ).1 The pdf depends on some unknown parameter θ. If the distribution were  
normal, for example, θ would be a vector (σ2, μ), if the distribution were binomial, θ
would be p, and so on.

Consider now, the joint probability density function of X1, X2, …, Xn which we  
can define as:

2

Intuitively, we can say that this represents the joint probability of the sample X1, X2, …,
Xn being formed. This defines the likelihood function of the distribution.

The likelihood function can therefore be interpreted to represent the probability  
of the random sample occurring. This probability is, however, unknown, because θ
is unknown. We therefore want to find a way of estimating θ. How can this best be  
done? If the sample really had the defined distribution, then the value of θ that should  
be chosen is the value that gives the likelihood function the highest probability  
possible. Alternatively, we can say that the highest probability of the likelihood  

1 If Xi is discrete, then f  (xi   /  θ) = P(Xi = xi   /  θ).
2 If the Xs are discrete, then f(xi   /  θ) · f(x2   /  θ) … f  (xn   /  θ) = P(X1 = x1, X2 = x2, …, Xn = xn   /  θ).

X X Xn1 2, ,…

L x x f x f x f xn nθ θ θ θ1 1 2,…( ) = ( )⋅ ( )… ( )
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function would be the one associated with what should be the true value of θ. It is  
therefore intuitively appealing to define an estimator  which results in L having a  
maximum value. This is our maximum likelihood estimator.

The mechanism for obtaining this estimator is straightforward in those cases  
where the tools of differential calculus allow us to determine a value of θ that results  
in a maximum value. This occurs when the function is continuous and differentiable  
as in the case of the normal distribution. Frequently, however, the situation is not as  
straightforward and we must resort to the use of fairly sophisticated numerical  
methods of maximization.

Let us consider a random variable X that is normally distributed. The parameters  
of the distribution μ and σ2 are unknown, and so we attempt to derive their maximum  
likelihood estimators. Since:

its pdf is defined as:

The likelihood function for a random sample X1, X2, …, Xn is defined as:

Further simplification gives:

The logarithmic transformation of this function is one-to-one and leaves intact the  
relative shape. It is also easier to handle analytically, and in fact has other useful  
characteristics. The logarithm of the normal likelihood function is:
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Taking the first derivative3 of this function with respect to μ and to σ2, we obtain:

and:

Setting these first derivatives equal to zero, and denoting by  and  the solution  
values for μ and σ2, respectively, we obtain:

and:

Solving these further yields:

and:

3 The first derivative of the likelihood function with respect to an unknown set of parameters is called  
the efficient score for the parameter set. Clearly, for the maximum likelihood estimator, the efficient  
score S( ) = 0.θ̂
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The maximum likelihood estimator of μ is therefore the arithmetic mean of the  
sample which, from our study of elementary statistics, we know to be an unbiased  
estimator. We also know that an unbiased estimator of σ2 is:

Clearly, then, the MLE of σ2 is biased although for large samples it is almost indistin-
guishable from s2, an unbiased estimator.

THE CRAMER–RAO LOWER BOUND (CRLB)

Consider any unbiased estimator  of an unknown set of parameters θ. It can be shown  
that, for a scalar θ:

where I(θ) represents Fisher’s information quantity, defined as:

If θ is a vector, the condition required is cov( ) – I–1(θ) = P where P is positive  
semidefinite, and I(θ) now represents Fisher’s information matrix, defined as:

What is being said here is simply that the lowest value that the variance of any  
unbiased estimator could have is the Cramer–Rao lower bound. In more formal terms,  
we can say that a sufficient condition for an unbiased estimator to be efficient is that  
it attains the value of the Cramer–Rao lower bound.

Consider the maximum likelihood estimator of , derived above as  
which we know to be unbiased. Let us calculate Fisher’s quantity of information for μ:
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Recall that:

It follows that:

It is easily shown that:

and so we conclude that , the maximum likelihood estimator of μ, is efficient since  
it attains the CRLB.

It is important to note, however, that while the attainment of the CRLB is a  
sufficient condition for the efficiency of an estimator, it is not a necessary condition.  
That is to say, an estimator may be efficient without attaining CRLB.

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

1. If an efficient estimator exists, it is the maximum likelihood estimator.
2. The maximum likelihood estimator is always consistent, in the sense that  

plim 
3. The distribution of ( ), as the sample size increases, tends to the normal  

distribution with zero mean and variance I–1(θ), that is:

∂
∂

= −( )

= −( )
= −

∑

∑∑
∑∑

ln L
x

x

x
n

i

i

i

μ σ
μ

σ
μ

σ σ
μ

1

1

1

2

2

2 2

∂
∂

= −

⇒ ( ) =

⇒ ( ) = =

2

2 2

2

21

ln L n

I
n

I n
CRLB

μ σ

μ
σ

μ
σ

var μ̂ σ( ) =
2

n

μ̂

ˆ .θ θ=
θ̂ θ−

ˆ ~ ,θ θ θ−( ) ( )( )−N I0 1



160 A Practical Introduction to Econometric Methods: Classical and Modern

This last property is equivalent to saying that , whatever its small sample properties,  
is asymptotically efficient. If X is distributed with a mean of μ and a variance of σ2,  
the maximum likelihood estimator of μ is unbiased and asymptotically efficient while  
that of σ2 is biased (see above) but still asymptotically efficient.

MAXIMUM LIKELIHOOD ESTIMATION IN THE GENERAL 
LINEAR REGRESSION MODEL

Remember the model:

where:

The likelihood function of ut is:

Recall that:

therefore:

It can be shown that:

where:
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In this case, this Jacobian matrix is the identity matrix and, consequently, its  
determinant is equal to one (we say that the Jacobian of the transformation is equal  
to unity). Clearly, the implication of this is that the likelihood function of u is identical  
to the likelihood function of y in the general linear regression model, that is:

so that:

Differentiating with respect to ββββ, we obtain:

Setting equal to zero and solving for ββββ yields:

where  is the value of ββββ which is the solution of the system. It is clearly identical to  
the OLS estimator.

Similarly, differentiating with respect to σ2 yields:

so that:
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Notice that, since the maximum likelihood estimator of ββββ is identical to the OLS  
estimator, it is clearly unbiased with covariance σ2(X′X)–1. It is also efficient, as the  
following theorem shows.

Theorem

The maximum likelihood estimator of ββββ is efficient.

Proof

The maximum likelihood estimator of ββββ is efficient if its variance attains the CRLB.  
It has been proven that the maximum likelihood estimator of ββββ is identical to its OLS  
estimator, and so we know that:

and:

We may also deduce that:

and so it follows that:

The maximum likelihood estimator (which is equivalent to the OLS estimator) in the  
general linear regression model therefore attains the CRLB, which proves its efficiency.

The residual vector û is also identical to the OLS residual vector, but the maxi-
mum likelihood estimator of σ2 is clearly biased, since we know that an unbiased  
estimator is . However, as the sample size increases, n and (n – k)  
become indistinguishable. Furthermore, the maximum likelihood estimator of σ2,  
although biased, is asymptotically efficient.

EXERCISES

1. Recall the main properties of the maximum likelihood estimator.
2. Establish the second derivatives of the likelihood function of the general  

linear regression model and comment on it.
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CHAPTER 10

The Wald, Likelihood Ratio and  
Lagrange Multiplier Tests

INTRODUCTION

Many of the tests that we have already met, such as the Student and F-tests, and some  
that we are yet to meet, are examples of at least one of the Wald, likelihood ratio (LR)  
or Lagrange multiplier (LM) principle testing procedures, which are now prevalent in  
the practice of econometrics. The fundamental concern of this discipline is the con-
frontation of economic theories with observable phenomena. Clearly, hypothesis testing  
is the primary tool of such an analysis – to be empirically validated (or invalidated, as  
the case may be), all theories must eventually be reduced to a testable hypothesis. The  
three general testing procedures are characterized by a certain symmetry where, essen-
tially, the LM approach starts at the null hypothesis and asks whether movement  
towards the alternative would be an improvement. The Wald approach starts at the  
alternative and considers movement towards the null, and the LR method compares  
the two hypotheses directly on an equal basis.

A very readable introduction to this topic, on which this chapter draws heavily, is  
Buse (1982). A more comprehensive, though more difficult, treatment is Engle (1981).

DEFINING RESTRICTIONS ON THE PARAMETER SPACE

All three testing procedures are designed to test for restrictions on the parameter space.  
The tests of nullity of coefficients discussed in chapter 2, which are based on the  
Student and F-distributions, are really tests on the restriction that this or that coefficient  
is equal to zero. They are, as we shall see, special cases of the tests to be discussed in  
this chapter. But restrictions may be more general than the ones imposed in these well-
known tests. For instance, consider the following consumption function:

It is frequently asserted that α = 1, and this “restriction” can be tested. Consider also  
the following Cobb–Douglas production function:

It is frequently claimed that β + γ = 1 (what does this mean?) and this “restriction”  
can also be tested.

C Y ut t t= +α

ln ln lnY L K ut t t t= + + +α β γ
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In the general linear regression model:

the issue is how to incorporate into our estimation procedure some prior information  
about a regression coefficient or coefficients, where such information can be viewed  
as providing certain restrictions on such coefficients. These restrictions can be of  
different types – some imposed by prior information about the value of the individual  
regression coefficients (as in the consumption function example), and others imposed  
by the relations among the individual regression coefficients (as in the Cobb–Douglas  
example). Restrictions may be linear or nonlinear.

A common way of representing a set of J linear restrictions is to write:

(10.1)

where R is a (J × k) matrix of known constants, ββββ a (k × 1) vector of the regression  
coefficients, and r a (J × 1) vector of known constants.1 Suppose we wished to test the  
restriction (similar to the one associated with the Cobb–Douglas production function):

For k = 3, this can be represented in the form of equation (10.1) as:

where R is a (1 × 3) vector, ββββ a (3 × 1) vector and r a scalar equal to 1. As yet another  
example, consider the following set of restrictions:

These can be represented in the form of equation (10.1) as:

1 For mathematical reasons, it will always be assumed that J ≤ k.
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where R is a (3 × 3) matrix, ββββ a (3 × 1) vector and r a (3 × 1) vector.
In chapter 2, we considered the set of (k – 1) restrictions for the general linear  

regression model:

which formed the basis of the familiar F-test. These restrictions can be written in the  
form of equation (10.1) as:

or as:

Can you express the null hypothesis of the T-test in the form of equation (10.1)?
The restrictions defined in equation (10.1) will constitute the null hypothesis,  

while the alternative will be defined as:

Intuitively, we can compare estimation of the regression equation in which the restric-
tion is explicitly taken into account (that is, the restricted parameter estimates) with  
the regression equation in which the restrictions are ignored (that is, the unrestricted
parameter estimates). If the restriction were true, we should be indifferent to estimating  
it with a procedure that takes into account the restriction, since fitting it freely or fitting  
it as if the restriction were true should yield the same results. It is when the restriction  
does not hold that we would expect different results. It can be shown that, when the  
restrictions are explicitly taken into account, the maximum likelihood estimator of ββββ is:

where  is the unrestricted maximum likelihood estimator.
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THE LIKELIHOOD RATIO TEST
The likelihood ratio test is based on the idea that if the restrictions are true, then the  
value of the likelihood function maximized with the restrictions imposed cannot differ  
too much from the value of the likelihood function maximized without the restrictions  
imposed. Let L( ) be the maximum of the likelihood function taken when the restric-
tions are imposed, and L( ) be the maximum of the likelihood function when the  
restrictions are not imposed. If the restrictions are true, then these likelihood functions  
should be more or less equal, or the ratio not fundamentally different from one:

If the restrictions are false, then the restricted estimator  would have the smaller  
likelihood. Can you suggest why this is so?

Taking the logarithm of the ratio, we obtain:

The likelihood ratio (LR) is defined by:

(10.2)

and, under the null hypothesis, it is distributed as a . J, you may remember, is the  
number of restrictions imposed.

In empirical work, σ2 is unknown and may be estimated by: 

We have already established that:

and it can be shown to be distributed independently of LR. The following “F”-statistic  
can be derived:

(10.3)

which, under the null, is distributed as FJ, (n–k).
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In general, if  is the unrestricted estimator of the population vector θθθθ, and  
is the restricted estimator based on J restrictions, then:

and, under the null hypothesis (that the restrictions are true), LR is distributed asymp-
totically as , where J is the number of restrictions on the parameter space.

Consider the following simplified illustration of the LR principle taken from Buse  
(1982). Suppose that the vector θθθθ consists of only one element θ, so that the null  
hypothesis specifies that , with the alternative being that . Clearly, should  
the restriction hold true, the distance between ln L( ) and ln L(θ0) would approach zero.  
Consider the plot of θ against its log likelihood ln L(θ) for a particular data set shown  
in Figure 10.1. Then the larger the distance between  and θ0, the larger would be ½LR,  
and so the greater would be the evidence that the restriction does not hold true.

THE WALD TEST

This test is based on the extent to which the restrictions are violated when unrestricted  
rather than restricted estimators are used. The Wald statistic depends solely on the  
unrestricted maximum likelihood estimator. Let us use as our starting point the simplified  
illustration of the LR principle introduced above. Clearly, the distance ½LR depends  
not only on the value of , but also on the curvature of the function. Consider  
Figure 10.2. Here, both sets of data generate the same value of , but for case  
A, the greater curvature of the function yields a larger value of LR.

Let us denote the curvature of the log likelihood function as C . Given C ,  
the larger the distance between  and θ0, the further will ln L(θ0) be from the  
maximum ln L , and so the larger will be the distance ½LR. Conversely, for a given  
distance , the greater the curvature C , the larger will be the distance ½LR.  

FIGURE 10.1
Illustration of the main features of the likelihood ratio test
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It is these characteristics that provide the key to a diagrammatic derivation of the  
Wald test. Instead of considering the differences in log likelihoods as does the LR  
test, this test takes the intuitively appealing approach of working with the squared  
distance between  and θ0. Large deviations of  from θ0 are taken as evidence that  
the data do not confirm the null hypothesis. However, with our earlier observation of  
the curvature of the log likelihood function in mind, the squared distance 2 must  
be weighted by C . A Wald statistic can now be defined, by:

Under the null hypothesis, W is distributed as .
In the more general case where θθθθ is a vector of parameters and the restrictions  

on the parameter space are defined by g(θθθθ) = 0, the Wald statistic is given by:

where I is Fisher’s information matrix and G a matrix defined by:

FIGURE 10.2
Illustration of the main features of the Wald test
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Under the null hypothesis, W is distributed as .
In the case of the general linear regression model with the restrictions defined  

by equation (10.1), it is obvious that g(ββββ) = Rββββ – r and G = R. In addition, it has  
already been shown that I–1( ) = σ2(X′X)–1. The Wald statistic is therefore defined  
in this instance by:

It is easily shown that this expression reduces to (do it as an exercise):

which is identical to LR as defined in equation (10.2) above. Once again, since σ2 is  
usually unknown, it must be estimated by s2 and the following “F”-statistic can be used:

This is identical to equation (10.3) above.

THE LAGRANGE MULTIPLIER TEST

As with the Wald test, the LM test also involves the curvature of the log likelihood  
function, but the basic idea behind the test focuses on the characteristics of the log  
likelihood when the restrictions of the null hypothesis are imposed. If the null is true,  
then the restricted maximum likelihood estimates will be near the unrestricted esti-
mates. Since the unrestricted estimator maximizes the log likelihood, it satisfies the  
equation S  = 0, where:

One can therefore obtain a measure of the failure of the restricted estimates to reach  
the maximum (which is evidence against the null hypothesis) by evaluating the extent  
of the departure of S  from zero (with  representing the restricted estimates).

Once again, consider Buse’s simplified one parameter case. The above discussion  
suggests [S(θ0)]2 as a test statistic. However, again, the curvature of the function  
must be taken into account, as two data sets can generate the same slope, with one  
having θ0 closer to the maximum of the log likelihood. Consider Figures 10.3 and  
10.4. Here, data set A has a greater curvature at θ0 and would therefore generate a  
smaller value of the test statistic [S(θ0)]2, since θ0 is nearer to the maximum point  
of curve A at which S(θ0) = 0.
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To get around this difficulty, we again weight by the curvature, this time in the  
neighbourhood of the restricted estimator. Here, however, the greater the curvature,  
the closer θ0 will be to the maximum, and so the greater the likelihood of the non-
rejection of the null hypothesis. This is opposed to the prior discussions, where a  
greater curvature meant a greater distance between the log likelihoods and so the  
greater the likelihood of the rejection of the null hypothesis. We therefore weight,  
not by the curvature C(θ0), but rather by its inverse C(θ0)–1, so that the greater the  
curvature, the smaller will be the value of the test statistic generated. Therefore:

FIGURE 10.3
Illustration of the main features of the Lagrange multiplier test (I)

FIGURE 10.4
Illustration of the main features of the Lagrange multiplier test (II)
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LM is distributed under the null as . In the more general case where θθθθ is a vector  
of parameters, the LM statistic is defined as:

where  is the restricted estimator, I is Fisher’s information matrix, and S( ) the k × 1
score matrix, defined by:

Under the null, LM is distributed as . The LM test is generally not easy to compute,  
and we normally use a transformation of the formula proposed by Breusch and Pagan  
(1980).2

In the case of the general linear regression model with the restrictions defined  
by equation (10.1), it can be shown that this expression reduces to:

which is identical to LR and W as derived above. Once again, since σ2 is usually  
unknown, it must be estimated by s2 and the following “F”-statistic can be used:

Illustration: Test of Parameter Redundancy

Consider the following model of import demand:

This is an example of an autoregressive distributed lag (ADL) model, which we met  
in chapter 5. Such models are widely employed in the famous Hendry general-to-
specific framework. The general idea is to start with an ADL model like this one  
(perhaps with a more generous offering of lagged values) and to test for parameter  
redundancy or, put another way, for overparameterization of the model. Redundant  
variables (and, more particularly, their lagged values) are eliminated from the model  
as having no explanatory power. Consider, for instance, the OLS estimation of the  
ADL in Exhibit 10.1.

Suppose (for obvious reasons) we suspected that Mt–2 and Yt–2 were redundant.  
We can test this hypothesis in the following formal framework:

2 We will, in the next chapter, study an application of this transformation – the Breusch–Godfrey test  
for autocorrelation.
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The null hypothesis is clearly a special case of the linear restrictions defined by equation  
(10.1) and can therefore be tested within the framework of either the LR, LM or Wald  
tests outlined in this chapter. Exhibit 10.2 shows the EViews output for the OLS output  
showing the statistics associated with the redundancy test.

The test results (on top) are accompanied by the OLS fit of the restricted model  
(below). In this particular case where values of the lagged endogenous variable appear  
among the regressors, less reliance should be placed on the use of the F-statistic,  
since its small sample properties are not known. The log likelihood ratio, of course,  
is asymptotically distributed as a χ2(2) since there are two restrictions on the ADL  
model. The high p-value indicates that the null (the restriction is true) cannot be  
rejected. We should therefore prefer the model:

whose fit is shown in Exhibit 10.2. In the more general case of p restrictions, the log  
likelihood ratio would be asymptotically distributed as a χ2(p).

Testing for redundant variables finds a natural application in general-to-specific  
modelling but it can be used in any modelling exercise where we believe that one  
or more of the variables might be irrelevant. Consider the import function:

EXHIBIT 10.1
OLS estimation of
Mt = α0 + α1Mt–1 + α2Mt–2 + β1Yt–1 + β2Yt–2 + ut

==============================================================
LS // Dependent Variable is IMPORTS
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
        C           -1897.372   1045.563  -1.814690     0.0863
   IMPORTS(-1)       0.480393   0.254800   1.885371     0.0756
   IMPORTS(-2)      -0.145141   0.221367  -0.655658     0.5203
    INCOME(-1)       0.262410   0.124466   2.108295     0.0493
    INCOME(-2)       0.009842   0.147158   0.066880     0.9474
==============================================================
R-squared            0.905288   Mean dependent var    3762.002
Adjusted R-squared   0.884241   S.D. dependent var    1416.092
S.E. of regression   481.8020   Akaike info criter    12.54473
Sum squared resid    4178397.   Schwarz criterion     12.79157
Log likelihood      -171.8999   F-statistic           43.01259
Durbin-Watson stat   1.942861   Prob(F-statistic)     0.000000
==============================================================
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Estimation of this equation by EViews yields the output shown in Exhibit 10.3.
In the output, I_PRICE = import prices (pm) and D_PRICE = domestic prices  

(pd). The clear insignificance of import prices and the insignificance of domestic  
prices at the 5% level might make us wonder if, together, both these variables are  
irrelevant. We can set up the competing hypotheses:

The corresponding EViews output is shown in Exhibit 10.4.
In this case use of the F-statistic is permitted and indeed preferable, since its  

small sample properties are known, while the log likelihood ratio is only valid  
asymptotically (and the sample we are using is quite small). The null is rejected at  
5% (but not at 1%) and we are likely to keep these two variables. On the basis of  

EXHIBIT 10.2
Parameter redundancy test for model:
Mt = α0 + α1Mt–1 + α2Mt–2 + β1Yt–1 + β2Yt–2 + ut

(H0: α2 = β2 = 0)
==============================================================
Redundant Variables: IMPORTS(-2) INCOME(-2)
==============================================================
F-statistic          0.271038    Probability          0.765645
Log likelihood ratio 0.682428    Probability          0.710907
==============================================================
Test Equation:
LS // Dependent Variable is IMPORTS
Date: 05/08/97   Time: 20:05
Sample: 1969 1991
Included observations: 23
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -1762.013   867.4629    -2.031225  0.0557
   IMPORTS(-1)        0.366307   0.189070     1.937413  0.0669
   INCOME(-1)         0.257808   0.090606     2.845365  0.0100
==============================================================
R-squared             0.902436   Mean dependent var   3762.002
Adjusted R-squared    0.892680   S.D. dependent var   1416.092
S.E. of regression    463.9090   Akaike info criter   12.40048
Sum squared resid     4304231.   Schwarz criterion    12.54859
Log likelihood       -172.2412   F-statistic          92.49681
Durbin-Watson stat    1.758086   Prob(F-statistic)    0.000000
==============================================================
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the t-test (which of course is a special case of the parameter redundancy test) of the  
import price coefficient in the original model, we may wish to eliminate it from the  
estimated equation. Do this as an exercise.

Illustration: Testing Restrictions on Coefficient Values

Consider the model:

whose OLS estimation is shown in Exhibit 10.5.
Let us test the hypothesis:

(which is a special case of the general restrictions defined by equation (10.1)) against  
the alternative:

The corresponding EViews output is shown in Exhibit 10.6, where c(3) and c(4) refer,  
respectively, to the third and fourth coefficients appearing in the model (i.e. β2 and β3).  
You will notice that the two statistics shown in Exhibit 10.6 (appear to) yield more or  

EXHIBIT 10.3
OLS estimation of
Mt = β0 + β1Yt + β2pm,t–1 + β3pd,t–1 + ut

==============================================================
LS // Dependent Variable is IMPORTS
Date: 05/09/97   Time: 05:04
Sample(adjusted): 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -3673.610   558.1258  -6.582047    0.0000
      INCOME          0.458708   0.048426   9.472370    0.0000
   I_PRICE(-1)       -1085.008   870.5124  -1.246401    0.2270
   D_PRICE(-1)        1456.099   747.2524   1.948604    0.0655
==============================================================
R-squared             0.911639   Mean dependent var   3655.325
Adjusted R-squared    0.898385   S.D. dependent var   1480.286
S.E. of regression    471.8723   Akaike info criter   12.46443
Sum squared resid     4453269.   Schwarz criterion    12.66077
Log likelihood       -179.6277   F-statistic          68.78158
Durbin-Watson stat    1.419186   Prob(F-statistic)    0.000000
==============================================================

M Y p p ut t t m t d t t= + + + + +β β β β β0 1 2 3, ,
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less identical results and the obvious conclusion is that the null cannot be rejected (not  
by a long shot). However, from a purely theoretical perspective, it is preferable to use  
the F-statistic associated with this “Wald test”, since in this case it is valid in small  
samples while the “Chi-square” statistic is asymptotically distributed as a χ2(1). In  
other cases, like those where lagged endogenous variables appear among the explan-
atory variables, use of the Chi-square statistic is preferable.

In this illustration there is only one linear restriction. There may, however, be  
more than one restriction and, in this case, there may be as many as four (the number  
of coefficients in the model). Furthermore, the restrictions need not be linear. In the  
following chapter, we examine some special cases of application of the LR, Wald  
and LM tests.

CONCLUSION

The three tests discussed in this chapter differ in the information that they each require.  
The LR test requires knowledge of both the restricted and unrestricted estimates of the  
parameter, and is computationally the most demanding. The Wald test, in contrast,  
requires only the unrestricted parameter, and the LM test requires only the restricted  
parameter. Each is, however, a reasonable measure of the distance between H0 and H1,  

EXHIBIT 10.4
Parameter redundancy test for model:
Mt = β0 + β1Yt + β2pm,t–1 + β3pd,t–1 + ut

(H0: β2 = β3 = 0)
==============================================================
Redundant Variables: I_PRICE(-1) D_PRICE(-1)
==============================================================
F-statistic          3.717620    Probability          0.042385
Log likelihood ratio 7.586305    Probability          0.022524
==============================================================
Test Equation:
LS // Dependent Variable is IMPORTS
Date: 05/09/97   Time: 05:06
Sample: 1968 1991
Included observations: 24
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -3670.189   589.9229  -6.221471    0.0000
      INCOME          0.450058   0.035636   12.62946    0.0000
==============================================================
R-squared             0.878790   Mean dependent var   3655.325
Adjusted R-squared    0.873280   S.D. dependent var   1480.286
S.E. of regression    526.9477   Akaike info criter   12.61386
Sum squared resid     6108825.   Schwarz criterion    12.71203
Log likelihood       -183.4208   F-statistic          159.5032
Durbin-Watson stat    1.111290   Prob(F-statistic)    0.000000
==============================================================
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and it is not surprising that when the log likelihood function is a smooth curve well  
approximated by a quadratic (as was the case in the illustrations we used), they all  
reduce to the same test. As the curvature of ln L departs from the quadratic shape,  
however, it is easily verified that the following inequality holds:

so that rejection of the null can be favoured by using the LM statistic, while non-
rejection of the null can be favoured by using the W statistic.

EXHIBIT 10.5
OLS estimation of
Mt = β0 + β1Yt + β2pm,t + β3pd,t + ut

==============================================================
LS // Dependent Variable is IMPORTS
Date: 05/09/97   Time: 05:37
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -3923.670   446.4954  -8.787706    0.0000
      INCOME          0.516727   0.042858   12.05666    0.0000
     I_PRICE         -2486.979   785.0966  -3.167736    0.0046
     D_PRICE          2470.723   638.5775   3.869104    0.0009
==============================================================
R-squared             0.942161   Mean dependent var   3556.082
Adjusted R-squared    0.933898   S.D. dependent var   1531.723
S.E. of regression    393.8104   Akaike info criter   12.09739
Sum squared resid     3256820.   Schwarz criterion    12.29241
Log likelihood       -182.6908   F-statistic          114.0253
Durbin-Watson stat    2.135006   Prob(F-statistic)    0.000000
==============================================================

EXHIBIT 10.6
Testing the restriction β2 + β3 = 0 in the model:
Mt = β0 + β1Yt + β2pm,t + β3pd,t + ut

====================================================
Wald Test:
Equation: Untitled
====================================================
Null Hypothesis C(3) + C(4) = 0
====================================================
F-statistic     0.004129    Probability     0.949374
Chi-square      0.004129    Probability     0.948766
====================================================

LM LR W< <
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EXERCISES

1. In the classical linear regression model, we wish to test the hypothesis Rββββ = r
(H0) against Rββββ ≠ r (H1). Discuss the use of the (a) likelihood ratio (b) Wald  
(c) Lagrange multiplier tests in this context. Show how these tests are related  
to the standard t- and F-tests of classical econometrics.

2. Using data provided in Appendix 1.2 of chapter 1
a) Fit the model:

Then use the Wald test to determine whether β3 = –β4 or not.
b) Fit the model

Then carry out the following tests:
i) β3 = β4 = β5 = β6 = 0
ii) β4 = β5 = β6 = 0
iii) β4 = β5 = 0

c) Discuss the implications of the results obtained in (a) and (b).

M Y p p ut t mt dt t= + + + +β β β β1 2 3 4

C Y C C Y Y ut t t t t t t= + + + + + +− − − −β β β β β β1 2 3 1 4 2 5 1 6 2





179

CHAPTER 11

Specification (and Other) Tests  
of Model Authenticity

INTRODUCTION

All of the tests in this chapter are based on the Wald, Lagrange multiplier (LM) and  
likelihood ratio (LR) principles that were outlined in the preceding chapter. These  
principles establish the general framework within which we are able to test our model  
specification. Indeed, the application to our general linear regression model of the  
battery of tests that we outline is often within the spirit of the “general-to-specific”  
modelling approach that grew out of the London School of Economics, which we have  
alluded to. In the words of D.H. Hendry (1980), one of the best known proponents of  
this methodology, the three watchwords of the general-to-specific approach are “test,  
test and test”.

RAMSEY’S RESET TEST FOR MISSPECIFICATION  
(DUE TO UNKNOWN OMITTED VARIABLES)

In chapter 3, we considered the effects of missing variables on OLS estimation of the  
general linear regression model. We saw that the effect of this kind of model misspeci-
fication was that the influence of the missing variable(s) was subsumed into the dis-
turbance term, rendering OLS estimation both biased and inconsistent. It is therefore  
important that we try to avoid specification errors as much as possible.

Sometimes it is impossible or impractical to include all relevant variables, largely  
because of data limitations. As is so frequently the case with economic models, the  
theory may involve variables that are not directly measurable, or for which data are  
just not readily available, such as, for example, consumer tastes in a demand function,  
permanent income, or capital stock in a production function (see Griliches, 1985).  
In situations such as these, where the specification error cannot be avoided, the most  
the econometrician can do is to become aware of its presence and interpret his or  
her statistical results with caution.

Frequently, however, specification errors are committed because of ignorance  
about the true specification of the model. In such a case, we would like to be able  
to test whether we have misspecified the regression equation. Ramsey’s RESET test  
(regression specification errors test) tests the hypothesis that no relevant explanatory  
variables have been omitted from the regression equation.
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In the language of the previous chapter, let the true or unrestricted model be:

(11.1)

where X1 is a known (n × [k – J]) matrix and X2 an unknown (n × J) matrix. Let the  
restricted model be:

(11.2)

which is the model that is fitted by OLS. Clearly, the test for the misspecification of  
our fitted model would rest in the test of the significance of the nullity of the J β2

coefficients in the unrestricted model. Our null and alternative hypotheses are therefore:

In the current context, however, the matrix X2 is unknown. Ramsey (1969) proposes  
that, since X2 is unknown, we approximate X2ββββ2 by Zθθθθ, where Z is an n × J matrix of  
observable, nonstochastic test variables and θθθθ the corresponding set of J coefficients.

Equation (11.1) may now be rewritten as:

(11.3)

But what does the Z matrix look like? Ramsey’s suggestion is to include in Z powers  
of the predicted values of the dependent variable (which are, of course, linear  
combinations of powers and cross-product terms of the explanatory variables). Spe-
cifically Ramsey suggests that Z should be powers of the vector of fitted y values  
from the regression of y on X1. One possibility, for instance, is Z =  which is the  
vector of squared fitted values of y. Yet another possibility is Z =  or yet  
again Z =  and so on. The first power is not included, since it is perfectly  
collinear with the X1 matrix. You need to specify the number of powers of the fitted  
values to be included in the test regression, beginning with the squared fitted value.

The above procedure is the one followed in EViews but it is not the only one  
possible. An alternative specification is suggested by Thursby and Schmidt (1977), who  
show experimentally that a useful approximation is obtained by Z = (X1

2 X1
3 X1

4). Here,  
X1

p  is the matrix of all the elements of X1 raised to the power p, and p is chosen so  
that εεεε, is empirical white noise.

It can be shown that the OLS (maximum likelihood) estimator of θθθθ is:

where:

y X X u= + +1 1 2 2ββ ββ
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It is easily shown that:

which, under the null hypothesis, is equal to zero. This means that a test of significance  
of θθθθ would discriminate between the null and alternative hypotheses as we have defined  
them.

The mechanism for carrying out the RESET test is as follows. First, fit equation  
(11.2) (as if H0 were true) and obtain the vector of OLS residuals û. Then fit equation  
(11.3) (with Z appropriately defined) and obtain the vector of OLS residuals . An  
F-statistic is constructed as:

which, under the null, is distributed as FJ, n – (k+J).

Illustration of the Ramsey RESET Test

Consider an import function of the form:

In the first step, OLS is applied to this model. The output from EViews when this is  
done is shown in Exhibit 11.1.

EXHIBIT 11.1
OLS estimation of Mt = β1 + β2 Yt + ut

==============================================================
LS // Dependent Variable is IMPORTS
Date: 02/01/96   Time: 22:52
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            –3707.823   538.7572  –6.882178    0.0000
      INCOME          0.452149   0.032915   13.73681    0.0000
==============================================================
R-squared             0.891356   Mean dependent var   3556.082
Adjusted R-squared    0.886632   S.D. dependent var   1531.723
S.E. of regression    515.7336   Akaike info criter   12.56780
Sum squared resid     6117567.   Schwarz criterion    12.66531
Log likelihood       –190.5710   F-statistic          188.7000
Durbin–Watson stat    1.121388   Prob(F-statistic)    0.000000
==============================================================
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The output obtained from applying the test for Z =  and for Z =  
is shown in Exhibit 11.2 and Exhibit 11.3, respectively.

The output is almost self-explanatory. What conclusions do you draw? If you  
conclude that the null hypothesis (the model is correctly specified) is convincingly  
rejected, you are correct. Do you have any other comments to make?

THE JARQUE–BERA TEST FOR NORMALITY

An important assumption underlying the use of OLS is that the error term of the model  
is normally distributed, with a mean of 0 and variance-covariance matrix  Jarque  
and Bera (1980) propose a procedure that tests for departures from normality. It is  
based on the simple idea that, if the assumption of normality is correct, then there will  
be no skewness or kurtosis in the distribution, since the normal distribution is fully  
characterized by its first- and second-order moments of mean and covariance (skewness  
and kurtosis are third- and fourth-order moments, respectively).

A measure of skewness is given by the formula:

EXHIBIT 11.2
RESET test applied to Mt = β1 + β2 Yt + ut using Z = 
==============================================================
Ramsey RESET Test:
==============================================================
F-statistic           11.90623   Probability          0.002279
Log likelihood        10.81391   Probability          0.001007
==============================================================
Test Equation:
LS // Dependent Variable is IMPORTS
Date: 02/01/96   Time: 22:53
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            –9209.192   1654.946  –5.564648    0.0000
      INCOME          0.923315   0.139214   6.632363    0.0000
     Fitted^2        –0.000141   4.09E-05  –3.450541    0.0023
==============================================================
R-squared             0.929506   Mean dependent var   3556.082
Adjusted R-squared    0.923098   S.D. dependent var   1531.723
S.E. of regression    424.7659   Akaike info criter   12.21524
Sum squared resid     3969373.   Schwarz criterion    12.36151
Log likelihood       –185.1640   F-statistic          145.0424
Durbin–Watson stat    1.469401   Prob(F-statistic)    0.000000
==============================================================

 ̂y
2
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It is centred on 0 and, when standardized by , has a variance of 6.
Kurtosis is measured by:

(11.4)

which, when standardized by , has a mean of 3 and a variance of 24.

EXHIBIT 11.3
RESET test applied to Mt = β1 + β2 Yt + ut using Z = ( )
==============================================================
Ramsey RESET Test:
==============================================================
F-statistic           6.574791   Probability          0.002849
Log likelihood        17.15582   Probability          0.000656
==============================================================
Test Equation:
LS // Dependent Variable is IMPORTS
Date: 02/01/96   Time: 23:02
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C             10939.59   17168.57   0.637187    0.5312
      INCOME         –1.053945   1.736267  –0.607018    0.5507
     Fitted^2         0.001410   0.001722   0.818944    0.4225
     Fitted^3        –2.12E-07   3.21E-07  –0.662433    0.5153
     Fitted^4         9.42E-12   2.11E-11   0.446602    0.6600
==============================================================
R-squared             0.945301   Mean dependent var   3556.082
Adjusted R-squared    0.934361   S.D. dependent var   1531.723
S.E. of regression    392.4288   Akaike info criter   12.12157
Sum squared resid     3080007.   Schwarz criterion    12.36534
Log likelihood       –181.9930   F-statistic          86.40926
Durbin–Watson stat    1.844254   Prob(F-statistic)    0.000000
==============================================================
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Given those properties, it is possible to construct the Jarque–Bera test statistic,  
which is given by:

(11.5)

Under the null hypothesis that the error term is normally distributed with moments as  
hypothesized:

Illustration of the Jarque–Bera Test for Normality

Consider the import function:

which first appeared in chapter 1 and which was estimated by OLS there. The output  
obtained from the application in EViews of the Jarque–Bera test to these results is  
shown in Exhibit 11.4. A histogram of the residuals has the general shape of the normal  
distribution. The Jarque–Bera test leads to non-rejection of the null hypothesis.

THE LJUNG–BOX AND BOX–PIERCE TESTS FOR WHITE NOISE

The Ljung–Box (LB) test, due to Ljung and Box (1978), is an update of the Box–Pierce  
(BP) test, due to Box and Pierce (1970). The idea behind both tests is that, if the  
estimated model is indeed correctly specified, then the resulting residuals would be  

EXHIBIT 11.4
The Jarque–Bera test applied to Mt = β1 + β2 Yt + β3 pmt/pdt + ut
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n

SK
n

EK= + −( )⎡
⎣⎢

⎤
⎦⎥6 24

32 2

JB ~ χ2
2

M Y p p ut t mt dt t= + + +β β β1 2 3



Specification (and Other) Tests of Model Authenticity 185

white noise. The BP and LB statistics therefore examine the regression residuals for  
the properties of white noise.

Let us define ri as the ith-order autocorrelation of the residuals. It can be shown  
that asymptotically, under the null of no serial correlation of these residuals:

The Box–Pierce statistic is defined as:

(11.7)

and is therefore asymptotically distributed as χ2(m) under the null hypothesis.
It has been noted, however, that this Q-statistic has poor small sample properties,  

and a better small sample statistic is given by the related Ljung–Box statistic, defined  
as:

(11.8)

which is also asymptotically distributed as χ2(m) under the null hypothesis of no serial  
correlation.

Illustration of the Ljung–Box Test

The output obtained from applying the Ljung–Box procedure to the import function  
shown above is presented in Exhibit 11.5. On the left appears a graph of the autocor-
relations (or correlogram) which shows the plot of ri against i for up to 12 lags, as well  
as the 95% confidence band for the ri values. The second graph is of the partial  
autocorrelations (a concept we will study later on in this course). The Q*-statistic based  
on autocorrelations up to order 12 are displayed here under the column headed “Q-
Stat” (the user may choose a shorter or longer series). The first column of numeric  
values shows the value of “m” on which the Q*-statistic is calculated. The second  
column (the one headed AC) shows the values of the autocorrelations ri for i ranging  
from 1 to 12. The third column (which does not interest us here) shows the value of  
the partial autocorrelations.

The p-values associated with the Q*-statistic are shown in the last column. They  
seem, quite convincingly, not to lead to rejection of the null (although at lag 5 there  
seems to be a slight aberration from this general conclusion).

We have, up to this point, met only the AR(1) form of serial correlation. As we  
will very soon come to see, however, this is not the only form that exists. The  
autocorrelations and partial autocorrelations are an important tool in detecting both  
the presence and the form of serial correlation. What the Q- and Q*-statistics really  
allow us to do is to test the hypothesis that the first m autocorrelations are purely  
random.
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THE WHITE TEST FOR HETEROSCEDASTICITY

In chapter 4, we considered tests for heteroscedasticity. Here we consider another, due  
to White (1980). The mechanism for applying the test is as follows: OLS (maximum  
likelihood) is first applied to:

where the Zs are p fixed and known values. Asymptotically, under the null hypothesis  
of homoscedasticity:

where Rw
2 is the classic coefficient of determination from the above regression.

How are the Zs determined? Consider the model:

where there exist (k + 1) variables. Our “test” equation would be:

that is, the Zs include the explanatory variables from the initial model, as well as their  
values squared.

Illustration of the White Heteroscedasticity Test

The output obtained from applying the White heteroscedasticity test to the import  
function shown above is presented in Exhibit 11.6. The output shows that the squared  

EXHIBIT 11.5
Ljung–Box test applied to Mt = β1 + β2 Yt + β3 pmt   /  pdt + ut

==============================================================
Autocorrelation       Partial Correlation         AC       PAC     Q-Stat  Prob

     .  |* .     |         .  |* .   |       1     0.159   0.159   0.7086  0.400
     .**|  .     |         ***|  .   |       2    –0.302  –0.336   3.3843  0.184
     .  |  .     |         .  |* .   |       3     0.029   0.169   3.4101  0.333
     . *|  .     |         .**|  .   |       4    –0.100  –0.294   3.7311  0.444
     ***|  .     |         .**|  .   |       5    –0.406  –0.311   9.2910  0.098
     .  |  .     |         .  |  .   |       6    –0.033   0.009   9.3301  0.156
     .  |**.     |         .  |  .   |       7     0.205  –0.045   10.906  0.143
     .  |* .     |         .  |* .   |       8     0.118   0.140   11.456  0.177
     .  |* .     |         .  |  .   |       9     0.111   0.039   11.975  0.215
     .  |  .     |         . *|  .   |       10    0.011  –0.137   11.980  0.286
     . *|  .     |         .  |  .   |       11   –0.119  –0.028   12.658  0.316
     . *|  .     |         . *|  .   |       12   –0.108  –0.063   13.262  0.350

==============================================================
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residuals of the original fit (RESID^2) are regressed on “INCOME” and “RATIO” as  
well as on their squared values. The statistic of interest to us is shown in the line which  
starts “Obs*R-squared”. The null of homoscedasticity cannot be rejected given the  
high p-value (0.372721).

THE BREUSCH–GODFREY TEST FOR SERIAL CORRELATION

This LM test is an alternative to the Durbin–Watson (DW) and Durbin tests, which we  
met in chapters 4 and 5, respectively. The test considered here is based on the work  
of Breusch (1978) and Godfrey (1978) and, theoretically, possesses some major advan-
tages over the ones we have already encountered.

Recall that the alternative hypothesis in the DW test and the Durbin h-test is that  
ut follows a first-order autoregressive AR(1) scheme defined as:

where εt is a white noise process. The null hypothesis is that ut is white noise (equivalent  
to ρ = 0).

EXHIBIT 11.6
The White test applied to Mt = β1 + β2 Yt + β3 pmt   /  pdt + ut

==============================================================
White Heteroscedasticity Test:
==============================================================
F-statistic           1.025257   Probability          0.418374
Obs*R-squared         4.253997   Probability          0.372721
==============================================================
Test Equation:
LS // Dependent Variable is RESID^2
Date: 02/03/96   Time: 17:58
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C             372804.5   2049836.   0.181870    0.8575
      INCOME         –42.27877   254.5493  –0.166093    0.8698
     INCOME^2         0.001553   0.007050   0.220351    0.8278
      RATIO           169504.9   918819.5   0.184481    0.8555
     RATIO^2         –75567.52   275712.1  –0.274081    0.7868
==============================================================
R-squared             0.170160   Mean dependent var   129630.1
Adjusted R-squared    0.004192   S.D. dependent var   213279.1
S.E. of regression    212831.6   Akaike info criter   24.71337
Sum squared resid     9.06E+11   Schwarz criterion    24.95714
Log likelihood       –339.3906   F-statistic          1.025257
Durbin–Watson stat    2.625591   Prob(F-statistic)    0.418374
==============================================================

u ut t t= +−ρ ε1
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This is, however, a very restrictive form of autocorrelation. The error terms could,  
for example, follow an AR(2) process, defined as:

In general, the error terms could follow an autoregressive process of any order p. Such  
an AR(p) process is defined as:

The error terms are also not constrained to follow autoregressive processes. They may  
also follow a moving average (MA) process. A moving average process of order 1, or  
MA(1), is defined as:

while an MA(2) is defined as:

In general, an MA(q) is defined as:

where εt is again a white noise process.
Unlike the DW and Durbin tests which can detect serial correlation of an AR(1)  

form only, the Breusch–Godfrey procedure tests for autocorrelation of an AR(p) or  
MA(q) form.1 It also remains valid in the presence of lagged endogenous variables  
among the regressors.

The testing procedure is as follows. Run OLS on the general linear regression  
model and obtain the vector of OLS residuals . Consider the matrix:

The statistic:

1 Note, however, that in practice, rejection of the presence of serial correlation of an AR(1) form implies  
the rejection of the presence of serial correlation of an AR form of any higher order.
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u u u ut t t p t p t= + +…+ +− − −φ φ φ ε1 1 2 2

ut t t= + −ε θε 1

ut t t t= + +− −ε θ ε θ ε1 1 2 2

ut t t q t q= + +…+− −ε θ ε θ ε1 1

û
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is asymptotically distributed as χ2(p) under the null hypothesis of the absence of serial  
correlation.

The fundamental limitation of this test is that, although it tests for serial corre-
lation of both AR(p) and MA(q) forms, it cannot distinguish between them. Hence,  
if serial correlation is found by this testing procedure, the researcher will have some  
difficulty in correcting for it due to ignorance about its exact form. This is in direct  
contrast to the DW and Durbin tests, which detect serial correlation of the AR(1)  
variety. This is considered by some to be a marked advantage of the DW and Durbin  
tests over the Breusch–Godfrey test. The counterargument to this, however, is that  
the existence of serial correlation of any form is indicative of a misspecified model,  
on the grounds that the residuals of a correctly specified model would be a white  
noise process. As such, the onus is on the investigator to alter the content of the  
signal, rather than correcting the noise. Evidence as given by the Breusch–Godfrey  
test that the residuals are not white noise, therefore, is enough – the particular form
of the complication becomes of very little importance.

Illustration of the Breusch–Godfrey Test for Serial Correlation

The output obtained from applying the Breusch–Godfrey test for serial correlation to  
the import function shown above is presented in Exhibit 11.7. The statistic of interest  
to us is shown in the line which starts “Obs*R-squared”. The null of no serial correlation  
cannot be rejected except at levels of significance higher than 16%.

THE CHOW TEST FOR STRUCTURAL BREAKS

When observations are made on time series covering a relatively long period of time,  
it seems difficult to accept the notion of the constancy of the parameter vector over  
time as is required by the general linear regression model. To some extent, we have  
already alluded to this problem when dealing with dummy variables: we impose  
structural shifts in both slope and intercept terms over time. But strictly speaking, we  
should test for these changes. Chow (1960) proposes such a test.

A typical equation in the general linear regression model would look like:

In some respects, the implicit assumption of the parameter constancy over time being  
made here is a restriction imposed by us on the model. Suppose that at some point in  
time, say t > n1, there occurs a once and for all shift in parameter values, or a structural  
break, so the model really ought to be defined for two distinct subperiods. For the first  
period, it might be:

(11.9)

while for the second it might be:

(11.10)

y x x x u t nt t t k kt t= + +…+ + = …β β β1 1 2 2 1 2, , ,
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Equations (11.9) and (11.10) may be rewritten in more compact form, respec-
tively, as:

where X1 and X2 represent the same variables but different observations, as do y1 and  
y2. This system represents the unrestricted form of the model and, provided that n1 ≥
k and n2 ≥ k, then we should really run two separate regressions to obtain:

Note that this unrestricted model could also be set up as follows:

(11.11)

EXHIBIT 11.7
The Breusch–Godfrey test applied to Mt = β1 + β2 Yt + β3 pmt   /  pdt + ut

==============================================================
Breusch–Godfrey Serial Correlation LM Test:
==============================================================
F-statistic           1.691986   Probability          0.209468
Obs*R-squared         3.617832   Probability          0.163832
==============================================================
Test Equation:
LS // Dependent Variable is RESID
Date: 09/29/02   Time: 13:30
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            –91.01137   678.2426  –0.134187    0.8946
      INCOME          0.004822   0.029005   0.166239    0.8696
      RATIO           11.98213   151.3081   0.079190    0.9377
    RESID(–1)         0.205677   0.210360   0.977738    0.3399
    RESID(–2)        –0.371147   0.222441  –1.668513    0.1108
==============================================================
R-squared             0.144713   Mean dependent var   7.37E-13
Adjusted R-squared   –0.026344   S.D. dependent var   367.4661
S.E. of regression    372.2749   Akaike info criter   12.01612
Sum squared resid     2771773.   Schwarz criterion    12.25990
Log likelihood       –180.6750   F-statistic          0.845993
Durbin–Watson stat    1.881817   Prob(F-statistic)    0.512595
==============================================================
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or in a form similar to the general linear regression model of chapter 2:

(11.12)

which is a model containing 2k coefficients. OLS/maximum likelihood estimation of  
this equation yields:

which is the very same result obtained from fitting the two subsystems separately.
The standard linear regression model introduced in chapter 1 is this time the  

restricted model or the null hypothesis. To account for the two distinct subperiods  
under consideration, however, it would have to be rewritten as follows:

(11.13)

This is equivalent to equation (11.11) with the restriction that ββββ1 = ββββ2 (= ββββ) which is  
our null hypothesis. This hypothesis can be rewritten as ββββ1 – ββββ2 = 0 and defining:

it becomes, in the manner of equation (10.1) of the previous chapter, Rββββ* = r, where  
r = 0. The alternative hypothesis, of course, is ββββ1 ≠ ββββ2, or Rββββ* ≠ r. An LR statistic  
identical in form to equation (10.2) can therefore be constructed which is distributed  
as  under the null hypothesis. Defining  as the OLS residuals of equation (11.13),  
the restricted model, and  as the OLS residuals of equation (11.12), the restricted  
model, the F-statistic equivalent to equation (10.3) is:

(11.14)

which is distributed as Fk, n–2k under the null.
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Illustration of the Chow Test for Structural Breaks

The researcher must decide at what point the hypothesized break takes place. In the  
case of the import function we have been using, it is hypothesized that it takes place  
in 1974 and the corresponding output is shown in Exhibit 11.8. The null hypothesis  
clearly cannot be rejected given the very high p-value.

EXERCISES

1. Using data provided in Appendix 1.2 of chapter 1, fit the two models:

Then carry out the following tests:
a) The Chow test for structural breaks (use the year 1976 as the break point).
b) Ramsey’s RESET test.
c) The Jarque–Bera test for normality.
d) The Ljung–Box test.
e) The White test for heteroscedasticity.
f) The Breusch–Godfrey test for serial correlation.

EXHIBIT 11.8
The Chow test for structural breaks applied to Mt = β1 + β2 Yt + β3 pmt   /  pdt + ut

==============================================================
Chow Breakpoint Test: 1974
==============================================================
F-statistic          0.040667     Probability         0.988711
Log likelihood       0.160016     Probability         0.983770
==============================================================
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CHAPTER 12

Stationarity and Unit Roots

THE CONCEPT OF STATIONARITY

This chapter represents something of a turning point. It introduces some very important  
concepts which are at the heart of modern econometric theory and practice and which  
will be used extensively in the rest of this book. We begin by introducing the concept  
of stationarity. What does this mean? Look at the time plot of private consumption  
shown in Exhibit 12.1.

The private consumption variable is an example of nonstationary time series. As  
a matter of fact, most economic series are nonstationary. But what does this mean?  
What is there about this series that tells us that it is nonstationary? If you plot a  
typical economic time series against time, you will notice that it grows or declines  
in a fairly systematic manner. The notion of a mean in a context like this is quite  
meaningless, since the mean of the series is clearly changing with time. Most  
economic time series are nonstationary in the sense that they do not fluctuate around  
some fixed mean. We notice that private consumption increases in value for most of  
the period. There is then a continuous decline which seems to disappear towards the  
end of the period when values are increasing once again.

Now look at Exhibit 12.2, which is an example of a stationary time series. Notice  
how it fluctuates around a fixed mean, with a tendency to return quickly to this mean  
whenever there is movement away from it. The series in Exhibit 12.2 is the plot of  
the first difference in private consumption. For any variable xt, the first difference is  
defined as:

This is another feature of many economic time series: a nonstationary series  
becomes a stationary series after first differencing. Such a series is said to be  
integrated of order 1 and written I(1). A stationary series is integrated of order 0 and  
written I(0). So here, Cpt is I(1) while ΔCpt is I(0). Other series (as we shall see)  
require two differencings before stationarity is attained. They are said to be integrated  
of order 2 or I(2).

Let us become a bit more formal. Let us first of all consider a series zt which is  
stationary or I(0). The strict definition of stationarity requires the probability density  
function associated with the series to be unaffected by displacement over time.  
Practically, however, this definition is unduly restrictive and, in most applied work,  
it is the concept of “weak” or “second-order” stationarity that is employed. This  
requires that the moments of first and second order (mean, variances and covariances)  
be independent of time, i.e.:

Δx x xt t t= − −1
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γk is usually defined as the autocovariance function of order k. For many purposes, the  
autocorrelation function of order k defined by:

EXHIBIT 12.1
Time plot of private consumption, 1967–1991

EXHIBIT 12.2
Time plot of a stationary time series
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is more useful than the autocovariance and it is this concept that will be more frequently  
employed in this text. Strict stationarity, of course, implies weak stationarity but the  
converse is not true, except in cases such as the normal distribution where the distri-
bution is fully characterized by moments of first and second order.

Let us consider an example of a stationary series and look at some of its char-
acteristics. Suppose zt were an AR(1) process, which we met for the first time in  
chapter 4. It is defined by:

(12.1)

where ε is a white noise process. It is easily established that:

and:

This is clearly an example of a (weakly) stationary series, since the moments of first  
and second order do not depend on time. It is important to note, however, that the  
stationarity property depends crucially on the assumption that |φ| < 1. In the case where  
|φ| ≥ 1, it can be shown that the moments of first and second order are not time  
independent and so the process is not stationary. Some intuitive justification for this is  
obtained if we expand equation (12.1) following the procedure in chapter 4, to yield:

This shows z as a moving average process of infinite order and, clearly, z would not  
converge unless |φ| < 1. In fact it would explode in the case of |φ| > 1.

Let us look at this illustration in a slightly different way. Define the “lag operator”  
L by:

It follows from this definition that Lzt–1 = zt–2 and since Lzt–1 = L(Lzt), the convention  
is adopted to write L2 zt = zt–2. By similar argument, we obtain:
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Making use of the lag operator L, equation (12.1) may be rewritten as:

or as:

or yet again as:

(12.2)

It can be shown that the condition for stationarity of the series zt is that the root of the  
equation:

(12.3)

is greater than one or, as mathematicians sometimes prefer to say, that the root lies  
outside the unit circle. Solving equation (12.3) for L yields L* = 1/φ. For stationarity,  
L* must lie outside the unit circle, which is the same as the requirement that |φ| < 1.  
In the case where |φ| = 1 the root of equation (12.3) is actually equal to one – hence  
the name “unit root”, a term that is synonymous with “nonstationarity in the mean”.

UNIT ROOTS: DEFINITION

In this section we propose to develop a more formal definition of unit roots while, in  
the following section, we concentrate on formal tests for unit roots.

Consider a stationary series, zt, obtained by first differencing a nonstationary  
series xt, i.e.:

The series xt is said to contain one unit root. It is I(1) and zt, which contains no unit  
roots, is I(0). Some justification may be given for use of the term. We may clearly  
rewrite zt as:

The root of the equation (1 – L) = 0 is clearly L = 1 (hence the term “unit root”).
Suppose, now, that the stationary z was obtained, not after one, but two differ-

encings, i.e.:

z Lzt t t= +φ ε

z Lzt t t− =φ ε

1−( ) =φ εL zt t

1 0−( ) =φL

z x x xt t t t= = − −Δ 1

z x Lx L xt t t t= − = −( )1
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In this case, the equation (1 – L)2 = 0 yields two roots, each one having the value of  
unity. In the most general case, a series may admit d unit roots where d is a positive  
integer. In this case:

However, in practice, d hardly ever exceeds 2.

LOOKING FOR UNIT ROOTS: AN INFORMAL APPROACH

We have already seen how inspection of a time plot may suggest that a series is  
nonstationary in the mean, in which case it admits at least one unit root. Inspection of  
the empirical correlograms is also another useful way to detect the presence of unit  
roots. Why is this so? Simply because the empirical autocorrelation function (ACF) of  
nonstationary series exhibits high positive values that decay at a very slow rate while  
that of stationary series either displays low values or values that decay (almost) expo-
nentially. Look at Exhibits 12.3 and 12.4, which show, among other things, the esti-
mated autocorrelations of Cpt (nonstationary series) and of ΔCpt (stationary series).

Notice the slow decline of the ACF in Exhibit 12.3. It starts with the very high  
value of 0.898, then goes to 0.727, then 0.570 and so on. In Exhibit 12.4, on the  
other hand, the values of the ACF are very low. Moreover, they fluctuate between  
positive and negative values. This is a stationary process. The one unit root has been  
eliminated by first differencing.

FORMAL TESTING FOR UNIT ROOTS

The main emphasis of this section will be the Dickey–Fuller (DF) tests for the detection  
of unit roots. Other tests, such as the Phillips–Perron tests, will not be considered here.  
The DF tests are not very powerful and it is advisable to complement them by some  
of the informal procedures discussed in the previous section. Our discussion of the DF  
tests lays emphasis on the mechanisms of the tests rather than on formal justifications.  
The latter may be found in Fuller (1976) and Dickey and Fuller (1979, 1981). Very  
readable expositions can be found in Holden and Perman (1994), Holden and Thomp-
son (1992) and Dickey, Bell and Miller (1986). What follows draws heavily on these  
works.

The DF tests involve the use of standard regression models and the use of t- and  
F-statistics derived from them. However, it is important to note up front that, because  
of the presence of nonstationary variables, the distributions of these statistics are  
nonstandard (i.e. they are not the Student and Fischer–Snedecor distributions) and  
are derived by simulation methods. Critical values of the t-statistics appear on page  
373 of Fuller (1976) but these values have been criticized by MacKinnon (1991) on  
the grounds that they are based on too few simulations (10,000 at most) and he  
himself offers values based on more (at least 25,000). MacKinnon’s values are  
preferable and are used in most standard econometric packages, including EViews.  
As for the F-statistics, critical values are given in Dickey and Fuller (1981). In this  

z x L xt
d

t
d

t= = −( )Δ 1
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book, we concentrate only on the use of the t-statistics while pointing out the serious  
limitations in so doing.

The DF tests are conducted within the context of three distinct types of generating  
processes of a series x:

(12.7)

(12.8)

(12.9)

EXHIBIT 12.3
ACF (and PACF) of Cpt

==============================================================
Autocorrelation  Partial Correlation  AC     PAC   Q-Stat  Prob

  .  |*******|   .  |*******| 1 0.898 0.898 22.680 0.000
  .  |****** |   ***|  .    | 2 0.727 -0.411 38.186 0.000
  .  |****   |   .  |* .    | 3 0.570 0.111 48.151 0.000
  .  |***    |   ***|  .    | 4 0.395 -0.324 53.174 0.000
  .  |* .    |   . *|  .    | 5 0.191 -0.174 54.406 0.000
  .  |  .    |   . *|  .    | 6 -0.016 -0.168 54.415 0.000
  .**|  .    |   .  |  .    | 7 -0.191 -0.031 55.789 0.000
  .**|  .    |   .  |  .    | 8 -0.314 0.050 59.698 0.000
  ***|  .    |   .  |  .    | 9 -0.391 0.002 66.132 0.000
  ***|  .    |   .  |  .    | 10 -0.437 -0.036 74.722 0.000
  ***|  .    |   .  |  .    | 11 -0.440 0.049 84.040 0.000
  ***|  .    |   .**|  .    | 12 -0.421 -0.200 93.249 0.000
==============================================================

EXHIBIT 12.4
ACF (and PACF) of ΔCpt

==============================================================
Autocorrelation  Partial Correlation  AC     PAC   Q-Stat  Prob

  .  |***    |   .  |***    | 1 0.404 0.404 4.4341 0.035
  .  |  .    |   .**|  .    | 2 -0.031 -0.232 4.4611 0.107
  .  |* .    |   .  |**.    | 3 0.075 0.232 4.6268 0.201
  .  |**.    |   .  |* .    | 4 0.215 0.093 6.0746 0.194
  .  |  .    |   . *|  .    | 5 0.048 -0.101 6.1499 0.292
  .**|  .    |   .**|  .    | 6 -0.245 -0.235 8.2260 0.222
  ***|  .    |   .**|  .    | 7 -0.347 -0.227 12.637 0.081
  .**|  .    |   . *|  .    | 8 -0.238 -0.129 14.845 0.062
  . *|  .    |   .  |  .    | 9 -0.122 -0.018 15.466 0.079
  . *|  .    |   .  |  .    | 10 -0.120 0.024 16.105 0.097
  . *|  .    |   .  |* .    | 11 -0.107 0.074 16.655 0.118
  . *|  .    |   .  |  .    | 12 -0.073 -0.040 16.932 0.152
==============================================================

x x ut t t= +−ρ 1

x x ut t t= + +−α ρ 1

x t x ut t t= + + +−α β ρ 1
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The three processes defined above differ according to whether:

• The mean of the series is zero, as in equation (12.7)
• The mean is non-zero (we say that the process has a drift), as in equation  

(12.8)
• The mean is non-zero and a time trend is included, as in equation (12.9)

The competing hypotheses for the DF tests are:

Under the null hypothesis (when ρ = 1), the random variable x is said to be a random  
walk. This concept plays a very important role in the unit root and cointegration  
literature and we will meet it over and over again. The EViews package provides an  
automatic routine for carrying out this test when each of equations (12.7) to (12.9) is  
the estimated equation. But there is a major pitfall in using this routine: when equation  
(12.8) is the estimated equation, the test on ρ assumes that α = 0 and when equation  
(12.9) is the estimated equation it is assumed that α = β = 0. In other words, whatever  
the estimating equation, the underlying data generating process is assumed to be  
equation (12.7). Unless there is some very definite procedure for establishing the  
hypothesized values for α and β, the choice of any one of the test equations will be a  
matter of guesswork or, at best, based on some subjective procedure like the exami-
nation of time plots. We will return to this problem later in this chapter but, for the  
moment, let us ignore it.

OLS may be applied directly to any of these equations and the corresponding t-
statistic calculated as:

This t-statistic is then compared to the critical values of the nonstandard distributions  
proposed by Dickey and Fuller and refined by MacKinnon. But it is usually more  
practical to modify the test equation as follows (using equation (12.7) as an illustration):

or:

(12.10)

where φ = ρ – 1 (similar transformations can be done for equations (12.8) and (12.9)).  
The null and alternative hypotheses now become:
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The great convenience here is that the t-statistic is calculated directly by EViews and  
other econometric packages as:

There is yet another problem associated with testing the stated hypothesis on the  
basis of equations (12.7) to (12.9): the DF tests require that the ut be a white noise  
(non-serially correlated) process. However, a simple modification of the testing  
procedure in the case where ut is a stationary process (but not white noise) has been  
proposed. Using equation (12.7) as the starting point (equation (12.8) or (12.9) can  
be similarly modified), the following test equation is derived:

(12.11)

where r is chosen so that υ is empirical white noise. The test statistic, as well as the  
critical values of the test, remains as before. When used like this, the test is called the  
augmented Dickey–Fuller (ADF) test. Of course, in practice the DF test is a special  
case of the ADF test with r = 0.

Once again, there is a problem in using the “canned” EViews procedure since  
we are asked to give a value for r without knowing whether or not the resulting  
“error” is white noise. A widely used alternative is to choose the value of r that  
minimizes the Akaike information criterion (AIC) or the Schwarz Bayesian criterion
(SBC) defined by:

where k is the number of parameters estimated and n* is the number of usable  
observations (usually not equal to the sample size). The value of n* must be the same  
for all models being compared. The models must therefore have been estimated over  
the same sample period. Ideally, both AIC and SBC must be as small as possible (note  
that they can take on negative values). This is not an ideal procedure but it is very  
simple to apply in practice.

We wish to apply the DF testing procedure to the imports variable, Mt. We use  
equation (12.9), which incorporates both the drift and trend terms and fit the test  
equation (12.11) for r = 4, 3, 2, 1 and 0. The lowest AIC and SBC values were  
obtained for r = 0. Exhibit 12.5 illustrates the output from applying the relevant  
EViews procedure to the Imports variable for the full sample period.

The ADF test statistic is calculated as –0.909. The MacKinnon critical values are  
also clearly shown. The conclusion is obvious: the null hypothesis (that the series  
admits a unit root) cannot be rejected at conventional levels. Even at the 10%  
significance level, the critical value is –3.2418 and the test statistic is a much larger  
value than this. We conclude therefore that there is one unit root.

T
SE

= ( )
ˆ

ˆ
φ

φ

Δ Δ Δ Δx x x x xt t t t r t r t= + + +… + +− − − −φ δ δ δ υ1 1 1 2 2

AIC = n *  log residual sum of squares of equation 

SBC = n  log residual sum of squares of equation  log n

12 11 2

12 11

.

.

( )( ) +

∗ ( )( ) + ∗

k

k



Stationarity and Unit Roots 201

The test equation is also shown. If we examine the test equation, we see that  
is calculated as –0.1028 and the corresponding t-statistic as –0.9095 (which we know  
already). It is interesting to note the p-value corresponding to this t-statistic. Its value  
is 0.3734 but that result is based on the standard distribution, which is not applicable  
here.1 The AIC and SBC values are also clearly seen.

The canned procedure in EViews is very convenient but it is also intellectually  
unsatisfactory. First, there is the matter of the verification of the values of α and β,  
and then there is the question as to whether or not the error term in the estimated  
test equations is white noise. A more rigorous approach involving seven steps has  
been outlined in Holden and Perman (1994) which helps answer these questions  
more satisfactorily and which makes extensive use of the “F”-statistics defined in  
Dickey and Fuller (1981). However, this approach can become quite cumbersome  
in practice, especially in systems involving several variables.

The foregoing procedure is valid when we suspect that there is only one unit  
root. It is helpful because the vast majority of economic time series admit exactly  
one unit root. Many, however, do contain two unit roots. We must therefore have a  

EXHIBIT 12.5
The EViews unit root procedure applied to Mt

(Test equation: ΔMt =  α + βt + φMt–1 + ut)  
==============================================================
ADF Test Statistic  -0.909557    1%  Critical Value*   -4.3942
                                 5%  Critical Value    -3.6118
                                 10% Critical Value    -3.2418
*MacKinnon critical values for rejection of hypothesis of a 
unit root.
    
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(IMPORTS)
Method: Least Squares
Date: 04/14/01   Time: 17:37
Sample(adjusted): 1968 1991
Included observations: 24 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
      IMPORTS(-1)    -0.102847   0.113074  -0.909557    0.3734
        C             516.6543   279.3921   1.849209    0.0786
      @TREND(1967)   -2.482169   24.95005  -0.099486    0.9217
==============================================================
R-squared             0.101386   Mean dependent var   122.2604
Adjusted R-squared    0.015803   S.D. dependent var   547.3778
S.E. of regression    543.0354   Akaike info criter   15.54869
Sum squared resid     6192636.   Schwarz criterion    15.69595
Log likelihood       -183.5843   F-statistic          1.184657
Durbin-Watson stat    1.892172   Prob(F-statistic)    0.325477
==============================================================

1 The p-value of 0.3734 is also based on a two-tailed test. The one-tailed test equivalent is half this value.

φ̂
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satisfactory procedure for determining whether there are two unit roots, or even more.  
Since in most practical situations we will never encounter cases involving more than  
two unit roots, we will limit our discussion to the case of two roots.

Dickey and Pantula (1987) propose that, if two unit roots are suspected, we should  
use the equation:

(12.12)

and use the corresponding t-statistics to determine whether or not δ1 is significant. If  
the null that δ1 = 0 cannot be rejected, then we will conclude that the process admits  
two unit roots. If the null is rejected, then we have to determine whether there is one  
unit root by employing the test equation:

(12.13)

The null hypothesis of one unit root is rejected if both δ1 and δ2 are statistically different  
from zero. If xt is stationary (the alternative hypothesis), then both coefficients are  

EXHIBIT 12.6
Dickey–Pantula test for two unit roots in Mt

(Test equation: Δ2Mt =  α + δ1 ΔMt–1 + ut)
==============================================================
ADF Test Statistic  -4.312325    1%  Critical Value*   -3.7497
                                 5%  Critical Value    -2.9969
                                 10% Critical Value    -2.6381
*MacKinnon critical values for rejection of hypothesis of a 
unit root.
    
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(IMPORTS,2)
Method: Least Squares
Date: 04/14/01   Time: 18:05
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
   D(IMPORTS(-1))    -0.947533   0.219727  -4.312325    0.0003
        C             120.7451   121.5180   0.993640    0.3317
==============================================================
R-squared             0.469645   Mean dependent var   18.98217
Adjusted R-squared    0.444390   S.D. dependent var   766.9594
S.E. of regression    571.6856   Akaike info criter   15.61800
Sum squared resid     6863314.   Schwarz criterion    15.71674
Log likelihood       -177.6070   F-statistic          18.59614
Durbin-Watson stat    1.971379   Prob(F-statistic)    0.000308
==============================================================

Δ Δ2
1 1x xt t t= + +−α δ υ

Δ Δ2
1 1 2 1x x xt t t t= + + +− −α δ δ υ
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significantly negative. We may therefore use the corresponding t-statistics to test the  
nullity of the coefficients, δ1 and δ2.

Let us test to see whether Mt admits two unit roots using the Dickey–Pantula  
procedure. Based on equation (12.12), we must use the following test equation:

You will notice that this very same equation would be used if we were looking for one  
unit root in ΔMt. Exhibit 12.6 illustrates the output from applying the relevant EViews  
procedure to ΔMt.

Now, the ADF test statistic of –4.312 leads to outright rejection of the null. The  
conclusion? Mt does not have two unit roots. The next step is to determine whether  
it has one unit root (or none at all). The test equation is:

This time, we cannot use the canned EViews routine. Instead, we must use the standard  
routines for OLS, with which we are very familiar by now. These results are shown  
in Exhibit 12.7.

The t-statistic for δ1 is –4.48, which is significant, but for δ2 it is –1.67, which  
is not significant (the critical values used are shown in Exhibit 12.6). We conclude  
that the null hypothesis (of one unit root) cannot be rejected.

EXHIBIT 12.7
Dickey–Pantula test for one unit root in Mt

(Test equation: Δ2Mt =  α + δ1 ΔMt–1 + δ2Mt–1 + ut)
==============================================================
Dependent Variable: D(IMPORTS,2)
Method: Least Squares
Date: 09/27/01   Time: 10:49
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C             590.9878   304.3153   1.942025    0.0664
 D(IMPORTS(-1))      -0.938185   0.210954  -4.447339    0.0002
   IMPORTS(-1)       -0.129619   0.077478  -1.672982    0.1099
==============================================================
R-squared             0.534753  Mean dependent var    18.98217
Adjusted R-squared    0.488229  S.D. dependent var    766.9594
S.E. of regression    548.6688  Akaike info criter    15.57397
Sum squared resid     6020749.  Schwarz criterion     15.72208
Log likelihood       -176.1007  F-statistic           11.49398
Durbin-Watson stat    1.994713  Prob(F-statistic)     0.000475
==============================================================

Δ Δ2
1 1M M ut t t= + +−α δ

Δ Δ2
1 1 2 1M M M ut t t t= + + +− −α δ δ
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For completeness, we close this chapter with an illustration of the determination  
of an I(2) variable: it is the domestic price variable (pd) which, in the EViews output  
of Exhibit 12.8, appears as D_PRICE. Once again, the desired output from EViews  
may be obtained by applying the canned procedure to Δpdt. We have not reported  
the output associated with the corresponding test equation. The null hypothesis  
cannot be rejected: this means that pd admits two unit roots.

EXERCISES

1. Explain the following:
a) Strict stationarity
b) Second-order (covariance) stationarity
c) A series is integrated of order d.

2. Examine the time series plots and ACFs of the series M, Y, pm and pd which  
appear in Appendix 1.2 of chapter 1. Comment on the stationarity of these  
series. Do the same for the first and second differences of these series.

3. Conduct appropriate tests on the series M, Y, pm and pd and determine the  
number of unit roots found in each case.

EXHIBIT 12.8
Dickey–Pantula test for two unit roots in pdt

(Test equation: Δ2pdt =  α + δ1Δpdt–1 + ut)  

    Augmented Dickey-Fuller Unit Root Test on D(D_PRICE)
==============================================================
ADF Test Statistic -1.872680    1%   Critical Value*   -3.7497
                                5%   Critical Value    -2.9969
                                10%  Critical Value    -2.6381
==============================================================
*MacKinnon critical values for rejection of hypothesis of a 
unit root.
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CHAPTER 13

An Introduction to ARIMA Modelling

INTRODUCTION

A major reason behind the construction and estimation of econometric models is  
forecasting. As economists, we know the importance of forecasting to the process of  
rational decision making. We may consider a forecast to be a prediction of the future  
value of one or more economic variables. It is in fact an estimation of that value. The  
first thing to understand is that such forecasts need not be determined by analytical  
methods. The small businessman who knows his firm and market well may be able to  
correctly interpret relevant signals and so make reasonably good forecasts. As economic  
activity becomes increasingly intricate and complex, however, such educated guesses  
may become more and more difficult to make. It becomes necessary, then, to formalize  
the problem by means of a model and so take into account some of the more pertinent  
features of the problem at hand.

In the early days of the discipline, the structural econometric models considered  
so far in this book had very limited success in forecasting the future values of  
variables. There may be some very good reasons for this. In the first place, economic  
theory may give very little indication about the form of this causal structure, in  
particular the short-run dynamics. Second, data on some of the variables may not  
be available, either because they are imprecisely defined or it is simply not possible  
to measure them. Even if we overcome these problems, there remains the third  
problem that, in such models, the variables whose future values are of interest to us  
are specified as some function of various (unknown) explanatory variables. Having  
estimated the unknown parameters, it is necessary to obtain predicted values of the  
unknown explanatory variables before a forecast of the dependent variable can be  
made. This, as we know from our study of earlier chapters, is easier said than done.  
Nevertheless, these problems do not negate our need for knowledge of the future  
direction of the variable of interest.

Economists and others looked towards other kinds of models and in particular  
to time-series models. It has long occurred to decision makers that a study of the  
present and past behaviour of a variable should give an indication as to how it will  
behave in the future. This is the basis of time-series models, such as ARIMA models,  
which are the subject of this chapter, and vector autoregression (VAR) models, which  
will be considered in the next chapter.
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ARIMA MODELS

Autoregressive Processes of Order p AR(p)

We met this process in chapter 11. In chapter 12, we studied the AR(1) process in  
some detail. This process is defined by:

Stationarity required that the root of the polynomial equation:

lie outside the unit circle. This is equivalent to the requirement that |φ| < 1. The special  
case of the AR(1) where φ = 1 is known in the literature as a “random walk”. This  
plays a very important role in the unit root and cointegration analysis.

The AR(1) process is but one way to model a time series. Let us generalize the  
model. Consider a stationary time series zt which may or may not have been derived  
after one or more differencings of some nonstationary series xt. The series zt is a  
pth-order autoregressive process, or AR(p), if it can be written as:

(13.1)

The current observation of zt is postulated to be generated by a weighted average of  
past observations going back p periods, together with a random disturbance in the  
current period. Using the lag operator, this can be written as:

It can be shown that the condition for stationarity is that all p roots of the polynomial  
equation:

lie outside the unit circle.
We saw that, if zt is an AR(1) process, then:

This property tells us that, for an autoregressive process of order 1, the autocorrelation  
function never vanishes, i.e. its value never actually becomes zero although it may get  
quite close to this limiting value. This property (nonvanishing autocorrelations) of the  
AR(1) process extends to autoregressive processes of all orders and it can be used to  
help us identify an autoregressive process by an inspection of the autocorrelation  
function (ACF) or correlogram. We will return to this point below.
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Moving Average Processes of Order q MA(q)

We remember from chapter 11 that a moving average process of order q is written as:

(13.2)

which suggests that each observation zt is generated by a weighted average of random  
disturbances going back q periods.

Using the lag operator, this process may be written as:

Because an MA(q) process is, by definition, an average of q stationary white noise  
terms, it follows that every moving average process is stationary.

Let us now, for illustrative purposes, consider a moving average process of order  
1, defined as:

We wish to determine its autocorrelation of order 1, ρ1. The autocovariance of order  
1, γ1, is calculated as:

and the variance, γ0, is calculated as:

Therefore:
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We may similarly calculate the autocorrelation of order 2:

It follows that:

It is easily established that, for the MA(1) process:

In fact, it is also easily established that, for the general MA(q) process:

It is important to summarize what has been established so far. The ACF of an  
autoregressive process never vanishes: it never takes the value zero. This is true for  
all AR(p) processes. On the other hand, the ACF of order 1 of an MA(1) is non-zero  
while ACFs of higher order are zero. More generally, ACFs of order 1, 2, …, q of  
an MA(q) process are non-zero while ACFs of higher order vanish. This important  
result helps us to distinguish pure autoregressive processes from pure moving average  
processes. If it is a moving average process, the ACF will also tell us the order of  
that process.

This is a very important result, but it is of limited use for, although the correlogram  
can indicate the order of a moving average process, it is unable to guide us as to the  
order of an autoregressive process. Furthermore, a time series with mixed properties  
cannot be correctly modelled on the basis of the correlogram alone. More than this,  
we may actually be misled into modelling the time series as a pure autoregressive  
or moving average process if the correlogram exhibits one of the above properties.  
For these reasons, it is usual to consider the ACF function and the corresponding  
correlogram in conjunction with the partial autocorrelation function (PACF). We will  
return to this in a while.

Autoregressive Moving Average Processes of Order p, q ARMA(p, q)

Our previous encounters have been with time series that were, or at least were assumed  
to be, purely autoregressive or moving average processes. It is frequently the case,  
however, that a time series has qualities of both types of processes. Clearly, the more  

γ

ε θε ε θε

2 2

1 2 3

0

= ( )
= −( ) −( )[ ]
=

−

− − −

E z z

E

t t

t t t t

ρ
γ
γ2

2

0

0= =

ρk k= >0 1,

ρ
ρ

k

k

k q

k q

≠ ≤
= >

0

0

,

,



An Introduction to ARIMA Modelling 209

appropriate thing to do here would be to model the time series as a combination of  
both autoregressive and moving average components, rather than purely one or the  
other. Hence, the logical extension of the above two models is the ARMA process.  
The ARMA(1, 1) process is defined as:

More generally, the ARMA(p,q) process is defined as:

(13.3)

Using this lag operator, equation (13.3) may be rewritten as:

where φ(L) = 1 – φ1L – φ2L2 – … – φpLp and θ(L) = 1 – θ1L – θ2L2 – … – θqLq. The  
stationarity of an ARMA process depends entirely on its autoregressive component,  
and requires that the roots of φ(L) = 0 lie outside of the unit circle. When modelling  
a time series as an ARMA process, it is desirable also that the roots of θ(L) = 0 lie  
outside of the unit circle. This is what is known as the invertibility condition that is  
often discussed in relation to moving average processes, and becomes relevant in the  
actual forecasting exercise.

In the case of the mixed ARMA(p,q) process, it can be shown that the ACF shares  
the characteristics of the autoregressive processes, i.e. the ACF will not vanish.  
Examination of the ACF of a series, therefore, will not allow us to distinguish between  
a pure autoregressive process and a mixed ARMA process.

Autoregressive Integrated Moving Average Processes of Order p, d, q 
ARIMA(p, d, q)

Suppose that, while the stochastic process zt in equation (13.3) above was a stationary  
series, it represented, not an original series, but a differenced series, such as:

In this case, equation (13.3) may be rewritten as:

(13.4)

If, after differencing the series xt d times to produce the stationary series zt, we can  
model zt as an ARMA(p,q) process, then we can say that xt is an autoregressive  
integrated moving average process of order (p,d,q), or simply an ARIMA(p,d,q).

In most cases of nonseasonal economic time series encountered, d ≤ 2. In the  
vast majority of cases, d = 1.
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In previous chapters we have seen appearing in some of the EViews output values  
referred to as partial autocorrelations. We also mentioned above that it was a possible  
means of helping us distinguish between a pure autoregressive and a pure moving  
average process. We now turn to a study of this concept.

THE PARTIAL AUTOCORRELATION FUNCTION (PACF)

In this book, we shall not go into any formal derivation of the PACF. We shall simply  
define the partial autocorrelation coefficient of order j as:

where:

and:

Consider, as an illustration, the theoretical partial autocorrelation of an AR(1) process.  
In this case, | | = ρ1 and |R1| = 1. Clearly the partial autocorrelation coefficient of  
order 1 is:

The autocorrelation of order 1 and the partial autocorrelation of order 1 are equal in  
the AR(1) case. It can be shown that, whatever the process:

φ jj

j

j

j= = …
R

R

*

, , ,1 2

R j

j

j

j j

=

…
…

… …

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

−

− −

1

1

1

1 2 1

1 1 2

1 2

ρ ρ ρ
ρ ρ ρ

ρ ρ

R j

j j j

* =

…
…

… …

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

− −

1

1
1 2 1

1 1 2

1 2

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

R1
*

φ
ρ

ρ11
1

11
= =

φ ρ11 1=



An Introduction to ARIMA Modelling 211

Consider, now, the partial autocorrelation of order 2 of the AR(1) process:

This is equal to zero because the expression in the numerator is equal to zero. The  
value of the determinant in the numerator is equal to (ρ2 – ρ1

2). Recall that, in the  
AR(1) case):

So ρ2 = φ2 and (ρ1)2 = (φ)2. So (ρ2 – ρ1
2) = (φ2 – φ2) = 0.

It can be shown that, for the AR(1) process, all partial autocorrelations of order  
higher than one are equal to zero:

In the case of an AR(2) process, it can be shown that:

An interesting pattern is emerging here. In the AR(1) case, partial autocorrelations  
of order higher than one are equal to zero. In the AR(2) case, partial autocorrelations  
of order higher than two are equal to zero. It can be shown that, in the more general  
AR(p) case, partial autocorrelations of order higher than p are equal to zero. More  
concisely, for the AR(p):

What about a moving average process? We saw in chapter 4 that an AR(1) process  
can be represented as a moving average process of infinite order and it is just as  
easy to show that the more general AR(p) may be written as a MA(∞). Furthermore,  
the MA(q) process can be represented as an AR(∞) process.1 Clearly, this means that  
the PACF of an MA(1) process, and in fact the PACF of a moving average process  

1 More generally, we can say that any autoregressive process can be represented as a moving average  
process of infinite order, and vice versa. The principle of parsimony suggests that we work with the  
one of smaller order.
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of any order, will decay slowly and should never vanish. In other words, for an  
MA(q) process:

Our findings to this point may be summarized in Exhibit 13.1.
By considering both the ACF and PACF, we can therefore distinguish between  

an AR(p) and an MA(q) process. In the case of the mixed ARMA(p,q) process, the  
characteristics of both the autoregressive and moving average processes will be  
shared, i.e. both the ACF and PACF will not vanish.

These properties can be used to identify a given process. In practice, it is usually  
the case that, for nonseasonal data, p + q ≤ 2. In other words, we normally will  
consider only the following possible alternatives: AR(1), AR(2), MA(1), MA(2), or  
ARMA(1,1). In Appendix 13.1 we show typical theoretical ACFs and PACFs of  
stationary ARMA processes.

ESTIMATING THE AUTOCORRELATION AND  
PARTIAL AUTOCORRELATION FUNCTIONS

In order that the ACF and PACF be useful in practice, we must find appropriate  
estimators of the autocorrelation and partial autocorrelation coefficients and establish  
their sampling distributions.

Estimation of the Mean

For a stationary time series zt, a natural candidate for the estimator of the mean would  
be:

It is important to note that the series z1, z2, …, zn is not a random sample in the classic  
sense, since the elements of the series are not drawn independently of each other.  
Rather, they represent the generating mechanism known as the stochastic process which  
determines one element in the random sample. The classic properties of the sample  
estimator in the case of a random sample (unbiasedness and efficiency, for instance)  

EXHIBIT 13.1
ACF and PACF properties of autoregressive 
and moving average processes

      AR(p) MA(q)

ACF ρk ≠ 0, ∀k ρk ≠ 0, k ≤ q
ρk = 0, k > q

PACF φkk ≠ 0, k ≤ p
φkk = 0, k > p

φkk ≠ 0, ∀k

φkk k≠ ∀0,

z
z z z

n
n=

+ +…+1 2
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are not automatically verified when the estimator  is calculated on the basis of a time  
series. It can be shown, however, that under conditions collectively referred to as  
ergodicity,  is a consistent estimator of μ. These conditions are usually verified for  
economic time series.

Estimation of the Autocovariance of Order k

It seems natural to estimate the autocovariance of order k by:

Of course:

defines the estimated variance.

Estimation of the Autocorrelation of Order k

The autocorrelation of order k is quite naturally estimated as:

It can be shown that, under conditions of ergodicity,  is a consistent estimator of ρk.

Estimation of the Partial Autocorrelation of Order j

Once the ρj are estimated, we can estimate the elements of Rj and Rj
*, and so obtain  

an estimate of the partial autocorrelation coefficients:

It can be shown that, under conditions of ergodicity,  is a consistent estimator of φjj.
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and:

where:

(known in the literature as Bartlett’s formula), and:

(known in the literature as Quenouille’s formula). We can use these results to test  
empirically the orders of the ACF and PACF and so determine the order of the  
underlying process.

THE BOX–JENKINS ITERATIVE CYCLE

Pure time-series modelling involves trying to fit a time series into the form of an  
ARIMA(p,d,q) model. Box and Jenkins (1976) suggest an iterative three-step approach  
for obtaining an appropriate model, which is then used for forecasting future values.  
This procedure is summarized in Exhibit 13.2.

At the identification stage, a tentative ARIMA model is specified which may  
approximate the time series under analysis. Once the magnitudes of p, d and q have  
been tentatively identified, the next stage is the estimation of the parameters of the  
model. We then move on to the stage of diagnostic checking, where the appropri-
ateness of the model is judged on the basis of certain criteria. If the selected model  
is unsatisfactory on these counts, then we return to the identification stage and the  
cycle begins again. It is only when an acceptable model specification is obtained  
that the forecasting exercise begins.

Identification

ARIMA models are characterized by three parameters p, d and q where:
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• p represents the order of the stationary AR component
• q represents the order of the invertible MA component
• d represents the order of integration of the time series

The first step in the Box–Jenkins cycle is to identify these three parameters. Determi-
nation of p and q through inspection and analysis of the ACF and PACF (as discussed  
above) is only possible if the series is stationary since, strictly speaking, these are not  
defined for a nonstationary series. The very first step, therefore, is the determination  
of d, the order of integration of the series. If the series is stationary (d = 0), then we  
can proceed to establish p and q using the techniques discussed above. If, however,  
the series is nonstationary, then we must difference it as required to obtain a stationary  
process, and then determine the values of p and q for the differenced series.

How do we determine d? We have already studied how to do this in chapter 12.  
There, we looked at the use of the Dickey–Fuller (DF) tests. We indicated then that  
these tests are quite weak and should always be complemented by the less formal  
procedures such as inspection of the plots of the time series to detect any “wandering”  
behaviour typical of nonstationary time series, as well as inspection of the correlo-
grams. Why the latter? Simply because the ACF of nonstationary series has high  
positive values which decay at a very slow rate while that of stationary series either  
displays low values or values which decay (almost) exponentially. We used both the  
DF tests and the less formal procedures to establish that the private consumption  
series, Cpt,was a nonstationary series and that ΔCpt was a stationary series. In this  
case, d = 1: the series Cpt admits one unit root.

EXHIBIT 13.2
The Box–Jenkins iterative cycle
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What we have to learn to do now is determine the values of p and q for a given  
series. In the following section, we illustrate how this may be done using the private  
consumption series.

Illustrating the Identification of p and q

Once we have identified the order of integration, d, of a series, we must then identify  
the values of p and q. We have already “proven” that the private consumption series,  
Cpt, is integrated of order 1. Exhibit 13.3 shows the ACF and PACF of the stationary  
series ΔCpt.

There is some evidence that we have a mixed process: both the ACF and the  
PACF do not appear to vanish. However, it is only the autocorrelation and partial  
autocorrelation of order 1 that are significant at the 5% level. Technically, therefore,  
all the other autocorrelations and partial autocorrelations are zero, at least at the 5%  
significance level. We can determine this by direct inspection of the plots, which  
show the 95% confidence bands constructed using Bartlett’s formula (in the case of  
the ACF) and Quenouille’s formula (in the case of the PACF).2 It is not a foregone  
conclusion, therefore, that we have an ARMA(p,q) process.

We may consider other significance levels. However, the EViews output does not  
allow detailed analysis of the ACFs and PACFs, largely because the standard errors  
(based on Bartlett’s and Quenouille’s formulae) are not shown. The 95% confidence  
bands are shown and these can be used for testing at the 5% significance level. But  
we may be satisfied sometimes with significance at other levels (like 10%) which  
are not available here. However, it is easy to calculate values using the Bartlett’s and  
Quenouille’s formulae with nothing more than a hand-held calculator. For instance,  
let us test to see if the partial autocorrelation of third order is significantly different  
from 0 at the 10% level of significance. Using Quenouille’s formula, we know that:

EXHIBIT 13.3
ACF and PACF of ΔCpt

==============================================================
Sample: 1967 1991 
Included observations: 24

Autocorrelation       Partial Correlation         AC       PAC     Q-Stat   Prob  

     .  |***    |    .  |***    |  1  0.404  0.404  4.4341  0.035
     .  |  .    |    .**|  .    |  2 -0.031 -0.232  4.4611  0.107
     .  |* .    |    .  |**.    |  3  0.075  0.232  4.6268  0.201
     .  |**.    |    .  |* .    |  4  0.215  0.093  6.0746  0.194
     .  |  .    |    . *|  .    |  5  0.048 -0.101  6.1499  0.292
     .**|  .    |    .**|  .    |  6 -0.245 -0.235  8.2260  0.222
     ***|  .    |    .**|  .    |  7 -0.347 -0.227  12.637  0.081
     .**|  .    |    . *|  .    |  8 -0.238 -0.129  14.845  0.062
     . *|  .    |    .  |  .    |  9 -0.122 -0.018  15.466  0.079
     . *|  .    |    .  |  .    |  10 -0.120  0.024  16.105  0.097
     . *|  .    |    .  |* .    |  11 -0.107  0.074  16.655  0.118
     . *|  .    |    .  |  .    |  12 -0.073 -0.040  16.932  0.152

==============================================================

2 The autocorrelation of order 7 appears to be significant but this may be an aberration.
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since there are 24 observations. The relevant t-statistic is therefore:

The 10% critical value for this statistic is 1.645. The null hypothesis that the third  
partial autocorrelation is zero cannot be rejected even at the 10% level.

The truth is that when we are working with real live series, especially short series  
like this one, there is always a certain amount of ambiguity about the true underlying  
generating process. Fortunately, today, computing power is readily available and  
relatively cheap as well. This allows us to test for a range of possible specifications  
and choose the one that fits the data best. Recently, Koreisha and Pukkila (1998)  
proposed an elaborate data search procedure for determining the best fit. This pro-
cedure is a computer intensive alternative to the Box–Jenkins identification–estima-
tion–diagnostic checking cycle and may result in the examination of hundreds of  
alternatives.

Let us nevertheless proceed on the assumption that we have identified ΔCpt as a  
stationary ARMA(p,q) process. More specifically, we will hypothesize it as an  
ARMA(1,1). This means that Cpt is identified as an ARIMA(1,1,1).

Estimation and Diagnostic Checking

These two phases are intimately linked, since the diagnostic checking is based on the  
results of the estimation exercise. Consider the ARIMA(p,d,q) model represented in  
equation (13.4). Having identified p, d and q, we need to estimate φ1, φ2, …, φp, θ1,  
θ2, …, θq, and σ2. Fundamentally, a least squares criterion is employed which seeks  
to minimize the “conditional sum of squares” defined by:

Derivation of the estimators and analysis of their properties is beyond the scope of this  
book. See Pankratz (1983).

Let us now consider the diagnostic checking phase. Look again at equation (13.4)  
and rewrite it as:

(13.5)

where ϕ(L) = θ–1(L) φ(L)Δd. We may imagine that ϕ(L) is a filter that converts the  
observed series xt into a white noise process εt and, if the parameters p, d and q are  
properly identified, then we should expect that the residuals resulting from the estimation  
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exercise would be empirical white noise. An immediate and obvious test of model  
adequacy would therefore be one that tests whether these residuals form a white noise  
process. A procedure capable of doing just this involves the use of the Ljung–Box (Q)  
statistic, which we met in the previous chapter.

Passing the white noise test is the fundamental requirement of an ARIMA model.  
Diagnostic checking, however, usually involves much more than this. In addition to  
the application of the Ljung–Box test, the following points should be taken into  
account in the diagnostic checking exercise:

1. The estimated coefficients must be significant.
2. It is not unusual to find that competing specifications of the same model  

pass the white noise test. What do we do then? Two well-known criteria  
are the Akaike information criterion (AIC) and the Schwarz Bayesian  
criterion (SBC), which we already met in chapter 12. These are defined as:

AIC = n* log(residual sum of squares) + 2k
SBC = n* log(residual sum of squares) + k log n*

where k is the number of parameters estimated and n* is the number of  
usable observations (usually not equal to the sample size). The model with  
the smaller AIC/SBC values is retained.

3. There is also the question of the near nonstationarity and near invertibility  
of systems. For instance, we may estimate the φ coefficient in an AR(1)  
with a value that is very close to unity (the nonstationarity frontier). Sim-
ilarly, the θ coefficient in an MA(1) model may be estimated with a value  
close to unity (the invertibility frontier). The forecasts obtained from such  
models may be very unreliable, notwithstanding the good fits we may obtain  
at the estimation stage. We should therefore choose alternative specifica-
tions to models having coefficient values too cose to the nonstationarity  
and invertibility frontiers.

4. We may also wish to look at the plot of the series of the residuals as well  
as the ACF plot which accompanies the Q statistic in the EViews output.  
Furthermore, it does not seem unreasonable to require that the fitted values  
of the series obtained from the estimation exercise should closely corre-
spond to the observed values over the sample period. A rough-and-ready  
way to establish this is by examination of the time plots of the actual and  
fitted values of the time series.

5. It is frequently stated that the ultimate diagnostic check on an ARIMA  
model is its usefulness in forecasting outside of the sample period which,  
of course, requires a comparison between actual and forecasted values.  
When we make our forecasts, however, we do not have available the actual  
values (why then should we bother to make a forecast!). But a useful  
compromise might be to estimate the model with less data than are avail-
able, say from t = 1 to t = n – p rather than to t = n. We can then use the  
model to predict the p known values xn – (p+1), xn – (p+2), …, xn. This procedure  
is known as ex post forecasting and has a lot of intuitive appeal. However,  
it does suffer from the obvious drawback of the loss of p degrees of freedom  
at the identification and estimation stages, which can matter a lot when the  
series is already quite short (as is the case with the series Cpt).



An Introduction to ARIMA Modelling 219

Illustration of the Estimation and Diagnostic Checking Phases

Identification of Cpt as an ARMA(1,1) in the first difference is the first stage of the  
Box–Jenkins three-step procedure and, in this section, we fit the model:

You will notice that a constant term has been included, although there has been  
no such inclusion to date. The presence or absence of this term in the ARIMA model  
has no effect on the general conclusions drawn so far and it was left out largely for  
the algebraic simplicity that it afforded. But a constant term in the model is a real  
possibility and we must determine, using the usual statistical criteria, whether or not  
its inclusion is warranted. If one is present in any ARIMA model, it must be estimated  
(and used in the forecasting exercise as well).

The results of the estimation exercise are shown in Exhibit 13.4. Here, the  
estimated values of φ,  θ and α are, respectively, –0.379,  0.990 and 92.5. There are  
two immediate stumbling blocks to retaining this equation, even before we carry out  
the acid test for white noise residuals. In the first place, the constant is not significant.  
Second, the value of the moving average coefficient is dangerously close to the  
invertibility frontier (which is unity). This high value may be a result of a high  
correlation between the autoregressive and moving average coefficients (something  
like a multicollinearity problem in the ARIMA model). Let us see what happens  
when we drop the constant term. Exhibit 13.5 shows the results obtained.

Once again, the MA coefficient is way too high. We simply cannot retain the  
ARMA specification, with or without the constant term. What do we do?

EXHIBIT 13.4
Fit of ΔCpt = α + φΔCpt–1 + εt + θεt–1

==============================================================
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
Convergence achieved after 52 iterations
Backcast: 1968
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
         C            92.46158   231.5311   0.399348    0.6939
        AR(1)        -0.379206   0.193968  -1.954995    0.0647
        MA(1)         0.989949   0.000274   3618.319    0.0000
==============================================================
R-squared             0.327648   Mean dependent var   83.12000
Adjusted R-squared    0.260412   S.D. dependent var   894.0977
S.E. of regression    768.9176   Akaike info criter   16.24895
Sum squared resid     11824685   Schwarz criterion    16.39706
Log likelihood       -183.8630   F-statistic          4.873154
Durbin-Watson stat    1.773321   Prob(F-statistic)    0.018879
==============================================================

Δ ΔC Cpt pt t t= + + −− −α φ ε θε1 1
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If we go back to the identification stage, we may wish to consider two other  
possibilities: an MA(1) specification and an AR(2) specification (with or without  
constant term). We looked at the AR(2) specification and found that the AR(2) term  
was not significant. We eventually fitted an AR(1) model, without the constant. The  
results obtained are displayed in Exhibit 13.6.

This model represents a very real possibility. Its estimated coefficient is reason-
ably far from the nonstationarity frontier and it is significant at the 5% level. Let us  
compare it with the MA(1) case (no constant), using the same sample period. These  
results are shown in Exhibit 13.7.

EXHIBIT 13.5
Fit of ΔCpt =  φΔCpt–1 + εt + θεt–1

==============================================================
Sample: 1969 1991
Included observations: 23
Convergence achieved after 11 iterations
Backcast: 1968
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
       AR(1)         -0.368735   0.187121  -1.970568    0.0621
       MA(1)          0.983301   0.032298   30.44449    0.0000
==============================================================
R-squared             0.320816   Mean dependent var   83.12000
Adjusted R-squared    0.288474   S.D. dependent var   894.0977
S.E. of regression    754.1893   Akaike info criter   16.17211
Sum squared resid     11944833   Schwarz criterion    16.27084
Log likelihood       -183.9792   F-statistic          9.919459
Durbin-Watson stat    1.795967   Prob(F-statistic)    0.004837
==============================================================

EXHIBIT 13.6
Fit of ΔCpt =  φΔCpt–1 + εt

==============================================================
Sample: 1969 1991
Included observations: 23
Convergence achieved after 2 iterations
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
       AR(1)          0.410691   0.194926   2.106913    0.0468
==============================================================
R-squared             0.160380   Mean dependent var   83.12000
Adjusted R-squared    0.160380   S.D. dependent var   894.0977
S.E. of regression    819.2687   Akaike info criter   16.29721
Sum squared resid     14766426   Schwarz criterion    16.34658
Log likelihood       -186.4179   Durbin-Watson stat   1.761673
==============================================================
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This model too is acceptable for similar reasons. It is also marginally preferable  
on the basis of the AIC/SBC criteria. This is the one we will retain here, provided  
that its residuals pass the Ljung–Box test for white noise. The EViews ARIMA  
routine automatically generates the estimated residuals and the fitted values of the  
variable. These can be stored for further use, including for the diagnostic checks  
discussed in the previous section. We will retain and test the residuals for the MA(1)  
specification estimated over the entire sample (1968 to 1991). The estimation results  
for this model are shown in Exhibit 13.8.

EXHIBIT 13.7
Fit of ΔCpt = εt + θεt–1

==============================================================
(Sample period: 1969–1991)
Sample: 1969 1991
Included observations: 23
Convergence achieved after 3 iterations
Backcast: 1968
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
       MA(1)          0.621502   0.159673   3.892335    0.0008
==============================================================
R-squared             0.259133   Mean dependent var   83.12000
Adjusted R-squared    0.259133   S.D. dependent var   894.0977
S.E. of regression    769.5823   Akaike info criter   16.17208
Sum squared resid     13029654   Schwarz criterion    16.22145
Log likelihood       -184.9789   Durbin-Watson stat   2.042447
==============================================================

EXHIBIT 13.8
ACF of residuals of fit of ΔCpt = εt + θεt–1

==============================================================
(Sample period: 1968–1991)
Sample(adjusted): 1968 1991
Included observations: 24 after adjusting endpoints
Convergence achieved after 4 iterations
Backcast: 1967
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
       MA(1)          0.589606   0.162324   3.632268    0.0014
==============================================================
R-squared             0.240212   Mean dependent var   72.52667
Adjusted R-squared    0.240212   S.D. dependent var   875.9835
S.E. of regression    763.5579   Akaike info criter   16.15463
Sum squared resid     13409477   Schwarz criterion    16.20371
Log likelihood       -192.8555   Durbin-Watson stat   2.025438
==============================================================
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Exhibit 13.9 shows the ACF and accompanying Q (Ljung–Box) statistics of the  
residuals obtained from the estimation exercise displayed in Exhibit 13.8 and stored  
under the name “resid”. On the basis of the Ljung–Box statistic, there is no evidence  
for the rejection of the null that the series is white noise (the lowest p-value is around  
70%). The estimated model in Exhibit 13.8 is therefore very acceptable, moreso as  
the θ coefficient is highly significant (p-value of 0.0014). Exhibit 13.10 shows the  
time-series plot of the actual, fitted and residuals of the equation. This exhibit  

EXHIBIT 13.9
ACF of residuals of fit of ΔCpt = εt + θεt–1

==============================================================
Sample: 1968 1991
Included observations: 24  

Q-statistic probabilities adjusted for 1 ARMA term(s)  

Autocorrelation       Partial Correlation         AC       PAC     Q-Stat   Prob

     .  |  .    |    .  |  .    | 1 -0.022 -0.022 0.0132
     .  |  .    |    .  |  .    | 2 -0.026 -0.026 0.0318 0.858
     .  |  .    |    .  |  .    | 3 -0.011 -0.013 0.0357 0.982
     .  |**.    |    .  |**.    | 4  0.211  0.210 1.4183 0.701
     .  |  .    |    .  |  .    | 5 -0.001  0.008 1.4183 0.841
     . *|  .    |    . *|  .    | 6 -0.146 -0.142 2.1531 0.828
     .**|  .    |    .**|  .    | 7 -0.215 -0.231 3.8443 0.698
     . *|  .    |    .**|  .    | 8 -0.153 -0.243 4.7629 0.689
     .  |  .    |    . *|  .    | 9 -0.016 -0.059 4.7734 0.781
     . *|  .    |    .  |  .    | 10 -0.086 -0.037 5.1030 0.825
     .  |  .    |    .  |* .    | 11 -0.021  0.091 5.1238 0.883
     .  |  .    |    .  |  .    | 12 -0.054  0.032 5.2731 0.917

==============================================================

EXHIBIT 13.10
Time-series plots of actual, fitted and residual values for equation ΔCpt = εt – θεt–1
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strengthens the case for the retention of the chosen model. We can now move on to  
the forecasting exercise.

Forecasting

The forecasting exercise involves using the model estimated on the basis of the sample  
x1, x2, …, xn to predict the as yet unobserved (future) values xn+1, xn+2, …, xn+m (m is  
called the forecasting horizon). Forecasting in the Box–Jenkins framework is based  
upon a mean square error (MSE) criterion but formal derivation and justification for  
these forecasts are beyond the scope of this book. The interested reader is instead  
referred to Granger and Newbold (1986), chapter 5, or Anderson (1977) for a more  
formal discussion. We do, however, underscore one important point: the forecasts  
become less and less reliable the longer the forecast horizon.

Illustration of the Forecasting Phase

Although this phase is the ultimate reason for all the previous phases, it is the most  
mechanical phase of all. It is simply a question of extrapolating into the future based  
on predetermined formulae (such as those referred to in the previous section). We did  
this for the series Cpt and obtained the value of 8213.6 for 1992 onwards. Observed  
values of Cpt provided by the Central Statistical Office of Trinidad and Tobago for the  
period 1992 to 1994 and the corresponding forecast errors based on our forecasts  
(shown as a percentage of the observed values) are shown in Exhibit 13.11. There is  
room for improvement but the forecasts obtained are clearly not unreasonable.

SEASONAL MODELS

Special problems arise when the data used contain seasonal components. This occurs  
in particular when the data are quarterly or monthly. We will illustrate the various  
problems associated with the identification of a seasonal model by working though an  
example using the famous airline data of Box and Jenkins (1976). We will also introduce  
the concept of seasonal additive and multiplicative models. The other stages of the  
Box–Jenkins cycle are exactly as they have been described for nonseasonal models.

EXHIBIT 13.11
Observed values of private 
consumption expenditure (Cpt) 
1992–1994 and forecast errors 
(constant 1985 prices)

Year Cpt
* % Error

1992 7437.7 10.4
1993 7228.4 13.6
1994 7664.0  7.5

* Source: Central Statistical Office  
of Trinidad and Tobago
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So far in this book, we have been looking at annual data only. Seasonality is not a  
problem with this kind of data. Now take a look at the time-series plot in Exhibit 13.12.  
It shows monthly data on passenger miles flown from January 1948 to December 1959.

This is, of course, a plot of the famous airline data of Box and Jenkins (1976).  
There are several features about this plot that are worthy of note. In the first place,  
it is clearly nonstationary in the mean (in that it does not fluctuate about some fixed  
mean). There is also clear evidence of seasonality in the data: notwithstanding the  
obvious upward trend in the data, every year there is a similar pattern of month-to-
month fluctuations. We have studied how to handle nonstationary data but, up to  
now, we have not been bothered by seasonal patterns. For modelling purposes, it  
would be clearly unwise to ignore this phenomenon.

There is yet another novelty in the airline data that we have not considered up to  
now: the variation is increasing with time and, when this happens, we say that the series  
is nonstationary in the variance (as opposed to being nonstationary in the mean). We  
will treat this first because it is the simplest problem to deal with. Exhibit 13.13 shows  
the plot of the logarithm of the series is fairly similar. The logarithmic transformation  
transforms a series that is not stationary in the variance to one that is. From now on  
we will be treating the logarithmically transformed airline data series and not the  
original raw data. We will denote this series as xt.

The transformed series may now be stationary in the variance but it is still clearly  
nonstationary in the mean and still displays the seasonal patterns alluded to above.  
Exhibit 13.14 shows the plot of the ACF up to order 48 (4 years). The slow decline  
in the ACF observed is typical of a nonstationary series. But there is an added feature.  
Look at the values of the ACF at the points of the seasonal lags (12, 24, 36, 48):  
they are clearly quite high. In fact, in the case being considered, they dominate the  
values in their neighbourhood. There is a clear seasonal pattern contributing to the  
nonstationary behaviour and repeating itself every 12 months. In such a series, we  
may expect to obtain stationarity if we seasonally difference the series. What does  
this mean? In the case of a monthly data series xt, a seasonal difference of order 1  
is defined by:

EXHIBIT 13.12
Passenger miles (000s) flown from January 1948 to December 1959
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In general for periodicity of order s (s = 4 for quarterly data, s = 12 for monthly  
data and so on):

Exhibit 13.15 shows the ACF for the seasonally differenced series (this time we  
display only the first 36). The seasonal effect seems to have been overcome. If we  
had not accomplished this with one seasonal differencing, then we could effect a  
seasonal differencing of order 2. Indeed there is no reason why we should not  
envisage seasonal differencing up to order D. In this most general case, the derived  
series zt is defined by:

The ACF shown in Exhibit 13.15 is still typical of a nonstationary series, since the  
ACF is still high and slowly declining. What does this mean? We must clearly difference  
the series in the usual way (i.e. in addition to the seasonal differencing). In this case  
the new series is defined as:

The ACF of the series resulting from standard differencing as well as seasonal differ-
encing is shown in Exhibit 13.16. The ACF plot shows clearly that this is a stationary  
series. To confirm this, look at Exhibit 13.17, which displays the results of the DF test  

EXHIBIT 13.13
Passenger miles (000s) flown from January 1948 to December 1959 (logs)

z x x x L xt t t t t= = − = −( )−Δ12 12
121
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EXHIBIT 13.14
ACF of passenger miles (logarithms) series
==============================================================
Sample: 1948:01 1959:12
Included observations: 144

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob  

       .|*******|        .|*******| 1 0.954 0.954 133.72 0.000
       .|*******|        *|.      | 2 0.899 -0.118 253.36 0.000
       .|*******|        .|.      | 3 0.851 0.054 361.29 0.000
       .|****** |        .|.      | 4 0.808 0.024 459.44 0.000
       .|****** |        .|*      | 5 0.779 0.116 551.20 0.000
       .|****** |        .|.      | 6 0.756 0.044 638.37 0.000
       .|****** |        .|.      | 7 0.738 0.038 721.86 0.000
       .|****** |        .|*      | 8 0.727 0.100 803.60 0.000
       .|****** |        .|**     | 9 0.734 0.204 887.42 0.000
       .|****** |        .|.      | 10 0.744 0.064 974.33 0.000
       .|****** |        .|*      | 11 0.758 0.106 1065.2 0.000
       .|****** |        .|.      | 12 0.762 -0.042 1157.6 0.000
       .|****** |     ****|.      | 13 0.717 -0.485 1240.0 0.000
       .|*****  |        .|.      | 14 0.663 -0.034 1311.1 0.000
       .|*****  |        .|.      | 15 0.618 0.042 1373.4 0.000
       .|****   |        .|.      | 16 0.576 -0.044 1428.0 0.000
       .|****   |        .|.      | 17 0.544 0.028 1476.9 0.000
       .|****   |        .|.      | 18 0.519 0.037 1521.9 0.000
       .|****   |        .|.      | 19 0.501 0.042 1564.1 0.000
       .|****   |        .|.      | 20 0.490 0.014 1604.9 0.000
       .|****   |        .|*      | 21 0.498 0.073 1647.3 0.000
       .|****   |        .|.      | 22 0.506 -0.033 1691.5 0.000
       .|****   |        .|.      | 23 0.517 0.061 1737.9 0.000
       .|****   |        .|.      | 24 0.520 0.031 1785.3 0.000
       .|****   |       **|.      | 25 0.484 -0.194 1826.6 0.000
       .|***    |        .|.      | 26 0.437 -0.035 1860.7 0.000
       .|***    |        .|.      | 27 0.400 0.036 1889.5 0.000
       .|***    |        .|.      | 28 0.364 -0.035 1913.5 0.000
       .|***    |        .|.      | 29 0.337 0.044 1934.3 0.000
       .|**     |        .|.      | 30 0.315 -0.045 1952.6 0.000
       .|**     |        .|.      | 31 0.297 -0.003 1969.0 0.000
       .|**     |        .|.      | 32 0.289 0.034 1984.6 0.000
       .|**     |        .|.      | 33 0.295 -0.020 2001.1 0.000
       .|**     |        .|.      | 34 0.305 0.028 2018.8 0.000
       .|**     |        .|.      | 35 0.315 0.029 2038.0 0.000
       .|**     |        .|.      | 36 0.319 -0.004 2057.8 0.000
       .|**     |        *|.      | 37 0.286 -0.132 2073.9 0.000
       .|**     |        .|.      | 38 0.245 -0.003 2085.8 0.000
       .|**     |        .|.      | 39 0.211 -0.025 2094.8 0.000
       .|*      |        *|.      | 40 0.175 -0.059 2101.0 0.000
       .|*      |        .|.      | 41 0.146 0.006 2105.3 0.000
       .|*      |        .|.      | 42 0.125 0.038 2108.5 0.000
       .|*      |        .|.      | 43 0.106 -0.032 2110.9 0.000
       .|*      |        .|.      | 44 0.099 0.031 2112.9 0.000
       .|*      |        .|.      | 45 0.104 -0.049 2115.2 0.000
       .|*      |        .|.      | 46 0.111 0.011 2117.9 0.000
       .|*      |        .|.      | 47 0.120 0.029 2121.0 0.000
       .|*      |        .|.      | 48 0.125 -0.006 2124.4 0.000

==============================================================
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applied to the same series (equation (12.7) used with two lags in the ADF equation).  
This is a convincing rejection of the null.

What does examination of the ACF and PACF reveal? The first spikes of the ACF  
and the PACF (these are always equal) are clearly significant. Beyond this, the  
evidence is not clear and certainly does not pronounce in favour of a pure autore-
gressive or moving average process. For this reason, we may wish to suggest a mixed  
process. But what is the order of this process? To help us along, look at the “seasonal”  
spikes (values at 12, 24 and 36). Both the ACF and PACF display a relatively large  
spike at 12 (they are even higher than the first spike). At spikes 24 and 36, the ACF  

EXHIBIT 13.15
ACF of seasonally differenced passenger miles (logarithms) series
==============================================================
Sample: 1948:01 1959:12
Included observations: 132  

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob  

       .|****** |        .|****** | 1 0.714 0.714 68.774 0.000
       .|*****  |        .|**     | 2 0.623 0.232 121.60 0.000
       .|****   |        .|.      | 3 0.480 -0.057 153.24 0.000
       .|***    |        .|*      | 4 0.441 0.105 180.15 0.000
       .|***    |        .|.      | 5 0.387 0.045 200.97 0.000
       .|**     |        .|.      | 6 0.319 -0.056 215.25 0.000
       .|**     |        *|.      | 7 0.242 -0.059 223.52 0.000
       .|*      |        .|.      | 8 0.194 0.007 228.89 0.000
       .|*      |        .|.      | 9 0.153 -0.006 232.24 0.000
       .|.      |       **|.      | 10 -0.006 -0.294 232.25 0.000
       *|.      |        *|.      | 11 -0.115 -0.155 234.18 0.000
      **|.      |        *|.      | 12 -0.243 -0.141 242.88 0.000
       *|.      |        .|**     | 13 -0.143 0.295 245.93 0.000
       *|.      |        .|.      | 14 -0.141 0.062 248.90 0.000
       *|.      |        .|.      | 15 -0.099 0.046 250.38 0.000
       *|.      |        .|.      | 16 -0.146 -0.041 253.63 0.000
       *|.      |        .|*      | 17 -0.096 0.125 255.06 0.000
       *|.      |        *|.      | 18 -0.111 -0.059 256.97 0.000
       *|.      |        *|.      | 19 -0.141 -0.149 260.07 0.000
       *|.      |        .|.      | 20 -0.158 -0.019 264.01 0.000
       *|.      |        .|*      | 21 -0.114 0.123 266.07 0.000
       *|.      |        *|.      | 22 -0.084 -0.182 267.20 0.000
       .|.      |        .|.      | 23 0.001 0.063 267.20 0.000
       .|.      |       **|.      | 24 -0.052 -0.192 267.65 0.000
       *|.      |        .|.      | 25 -0.103 0.027 269.40 0.000
       *|.      |        .|.      | 26 -0.094 0.028 270.87 0.000
       *|.      |        .|.      | 27 -0.128 -0.033 273.64 0.000
       *|.      |        *|.      | 28 -0.145 -0.109 277.22 0.000
       *|.      |        .|.      | 29 -0.187 0.036 283.26 0.000
      **|.      |        *|.      | 30 -0.196 -0.111 289.92 0.000
      **|.      |        .|.      | 31 -0.190 -0.038 296.23 0.000
       *|.      |        .|.      | 32 -0.146 0.049 299.99 0.000
      **|.      |        .|.      | 33 -0.224 -0.019 308.95 0.000
      **|.      |        *|.      | 34 -0.226 -0.058 318.19 0.000
      **|.      |        .|.      | 35 -0.267 -0.010 331.19 0.000
      **|.      |        *|.      | 36 -0.223 -0.069 340.36 0.000

==============================================================
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EXHIBIT 13.16
ACF of passenger miles (logarithms) series with standard and seasonal differencing
==============================================================
Sample: 1948:01 1959:12
Included observations: 131

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob  

     ***|.      |      ***|.      | 1 -0.341 -0.341 15.596 0.000
       .|*      |        .|.      | 2 0.105 -0.013 17.086 0.000
      **|.      |       **|.      | 3 -0.202 -0.193 22.648 0.000
       .|.      |        *|.      | 4 0.021 -0.125 22.710 0.000
       .|.      |        .|.      | 5 0.056 0.033 23.139 0.000
       .|.      |        .|.      | 6 0.031 0.035 23.271 0.001
       .|.      |        *|.      | 7 -0.056 -0.060 23.705 0.001
       .|.      |        .|.      | 8 -0.001 -0.020 23.705 0.003
       .|*      |        .|**     | 9 0.176 0.226 28.147 0.001
       *|.      |        .|.      | 10 -0.076 0.043 28.987 0.001
       .|.      |        .|.      | 11 0.064 0.047 29.589 0.002
     ***|.      |      ***|.      | 12 -0.387 -0.339 51.473 0.000
       .|*      |        *|.      | 13 0.152 -0.109 54.866 0.000
       *|.      |        *|.      | 14 -0.058 -0.077 55.361 0.000
       .|*      |        .|.      | 15 0.150 -0.022 58.720 0.000
       *|.      |        *|.      | 16 -0.139 -0.140 61.645 0.000
       .|*      |        .|.      | 17 0.070 0.026 62.404 0.000
       .|.      |        .|*      | 18 0.016 0.115 62.442 0.000
       .|.      |        .|.      | 19 -0.011 -0.013 62.460 0.000
       *|.      |        *|.      | 20 -0.117 -0.167 64.598 0.000
       .|.      |        .|*      | 21 0.039 0.132 64.834 0.000
       *|.      |        *|.      | 22 -0.091 -0.072 66.168 0.000
       .|**     |        .|*      | 23 0.223 0.143 74.210 0.000
       .|.      |        *|.      | 24 -0.018 -0.067 74.265 0.000
       *|.      |        *|.      | 25 -0.100 -0.103 75.918 0.000
       .|.      |        .|.      | 26 0.049 -0.010 76.310 0.000
       .|.      |        .|.      | 27 -0.030 0.044 76.463 0.000
       .|.      |        *|.      | 28 0.047 -0.090 76.839 0.000
       .|.      |        .|.      | 29 -0.018 0.047 76.894 0.000
       .|.      |        .|.      | 30 -0.051 -0.005 77.344 0.000
       .|.      |        *|.      | 31 -0.054 -0.096 77.848 0.000
       .|*      |        .|.      | 32 0.196 -0.015 84.590 0.000
       *|.      |        .|.      | 33 -0.122 0.012 87.254 0.000
       .|*      |        .|.      | 34 0.078 -0.019 88.340 0.000
       *|.      |        .|.      | 35 -0.152 0.023 92.558 0.000
       .|.      |        *|.      | 36 -0.010 -0.165 92.577 0.000

==============================================================

EXHIBIT 13.17
DF test applied to passenger miles (logarithms) series with standard and  
seasonal differencing
==============================================================
ADF Test Statistic   -16.04147  1%  Critical Value*    -3.4831
                                5%  Critical Value     -2.8844
                                10% Critical Value     -2.5788
*MacKinnon critical values for rejection of hypothesis of a 
unit root.
==============================================================
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appears to be zero while the PACF, though not zero, is quite small. Some evidence  
seems to be emerging for a mixed process of the form:

where:

and xt is the variable representing passenger miles (logs). The lags at 12 are introduced  
to account for possible “seasonal” moving average and autoregressive components.  
This is an example of an additive ARIMA model. A priori, there seems to be stronger  
evidence for the inclusion of the seasonal moving average term rather than the seasonal  
autoregressive term. But this is only marginally so. Let us fit this model and test its  
goodness of fit. These results are shown in Exhibit 13.18. The constant and AR(1)  
terms are not significant. This is confirmed by a joint test of their significance which  
yields the results shown in Exhibit 13.19.

The null that the restricted model is true cannot be rejected. So we fit the model:

The corresponding results are shown in Exhibit 13.20.

EXHIBIT 13.18
Results for fitting model Δzt = α + φ1Δzt–1 + φ12 Δzt–12 + εt + θ1εt–1 + …+ θ12εt–12

==============================================================
Sample(adjusted): 1950:02 1959:12    
Included observations: 119 after adjusting endpoints    
Convergence achieved after 22 iterations    
Backcast: 1981:02 1982:01    
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
        C            -0.000606   0.002451    -0.247457  0.8050
       AR(1)         -0.015127   0.087675    -0.172541  0.8633
      AR(12)         -0.715937   0.062360    -11.48075  0.0000
       MA(1)         -0.323345   0.086924    -3.719872  0.0003
      MA(12)          0.609903   0.000563     1082.872  0.0000
==============================================================
R-squared             0.348409   Mean dependent var  -0.001406
Adjusted R-squared    0.325547   S.D. dependent var   0.046303
S.E. of regression    0.038026   Akaike info criter  -3.659986
Sum squared resid     0.164841   Schwarz criterion   -3.543216
Log likelihood        222.7691   F-statistic          15.23913
Durbin-Watson stat    2.183975   Prob(F-statistic)    0.000000
==============================================================

Δ Δ Δz z zt t t t t t= + + + + +…+− − − −α φ φ ε θ ε θ ε1 1 12 12 1 1 12 12

Δ ΔΔ Δz x x x L L xt t t t t= = −( ) = −( ) −( )−12 12
121 1

Δ Δz zt t t t t= + + +…+− − −φ ε θ ε θ ε12 12 1 1 12
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Both the AIC and the SBC criteria pronounce in favour of this form of the model.  
However, the model fails the white noise test as is shown in Exhibit 13.21. The Q-
statistics are not unambiguous in pronouncing in favour of the white noise hypothesis.

You may remember that we had expressed some reservations about the autore-
gressive component in this model. It would seem that our fears have been allayed,  
since the AR(12) coefficient is very significant. It is still possible, however, that a  
model not containing this term will be better. We fitted this model and indeed it  
performed better than the previous one on the basis of the AIC and SBC criteria.  
But it too failed the white noise test for its residuals. What do we do?

Box and Jenkins (1976) propose a multiplicative model, which is the principal  
innovation of their work. In the case of the model with moving average coefficients  
only, this would be represented as:

EXHIBIT 13.19
Testing coefficient restrictions in the model Δzt = α + φ1Δzt–1 + φ12 Δzt–12 + εt + 
θ1εt–1 + … + θ12εt–12

==============================================================
Redundant Variables:  C AR(1)

F-statistic           0.200108           Probability  0.818929
Log likelihood ratio  0.417039           Probability  0.811785
==============================================================

EXHIBIT 13.20
Results for fitting model Δzt = φ12 Δzt–12 + εt + θ1εt–1 + …+ θ12εt–12

==============================================================
Sample: 1950:02 1959:12    
Included observations: 119    
Convergence achieved after 10 iterations    
Backcast: 1981:02 1982:01    
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
       AR(12)        -0.712124   0.058160  -12.24423    0.0000
        MA(1)        -0.345863   0.063952  -5.408162    0.0000
       MA(12)         0.590861   0.000594   993.8797    0.0000
==============================================================
R-squared             0.346122   Mean dependent var  -0.001406
Adjusted R-squared    0.334848   S.D. dependent var   0.046303
S.E. of regression    0.037763   Akaike info criter  -3.690094
Sum squared resid     0.165420   Schwarz criterion   -3.620033
Log likelihood        222.5606   F-statistic          30.70156
Durbin-Watson stat    2.171162   Prob(F-statistic)    0.000000
==============================================================

Δ Θz L Lt t= −( ) −( )1 112
12

1θ ε
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or:

or yet again:

EXHIBIT 13.21
ACF and Q-statistics for model Δzt = φ12 Δzt–12 + εt + θ1εt–1 + …+ θ12εt–12

==============================================================
Q-statistic probabilities adjusted for 3 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob  

       *|.      |        *|.      | 1 -0.091 -0.091 0.9997
       .|.      |        .|.      | 2 0.021 0.013 1.0544
       *|.      |        *|.      | 3 -0.140 -0.138 3.4770
       .|.      |        *|.      | 4 -0.053 -0.080 3.8307 0.050
       .|*      |        .|*      | 5 0.114 0.108 5.4776 0.065
       .|*      |        .|*      | 6 0.069 0.075 6.0852 0.108
       *|.      |        *|.      | 7 -0.072 -0.084 6.7455 0.150
       .|.      |        .|.      | 8 -0.043 -0.035 6.9828 0.222
       .|*      |        .|**     | 9 0.162 0.206 10.435 0.107
       *|.      |        *|.      | 10 -0.072 -0.070 11.129 0.133
       .|.      |        .|.      | 11 0.034 -0.034 11.284 0.186
       *|.      |        *|.      | 12 -0.175 -0.118 15.406 0.080
       *|.      |        *|.      | 13 -0.129 -0.140 17.669 0.061
       .|.      |        *|.      | 14 -0.026 -0.106 17.764 0.087
       .|*      |        .|.      | 15 0.073 0.017 18.497 0.101
       *|.      |        *|.      | 16 -0.085 -0.110 19.513 0.108
       .|.      |        .|.      | 17 0.017 -0.011 19.553 0.145
       .|.      |        .|.      | 18 -0.018 0.022 19.600 0.188
       *|.      |        .|.      | 19 -0.059 -0.048 20.107 0.215
       *|.      |        *|.      | 20 -0.081 -0.166 21.065 0.223
       .|*      |        .|*      | 21 0.087 0.147 22.184 0.224
       *|.      |        *|.      | 22 -0.113 -0.077 24.073 0.193
       .|*      |        .|.      | 23 0.140 0.064 27.006 0.135
      **|.      |       **|.      | 24 -0.219 -0.269 34.301 0.034
       .|.      |        .|.      | 25 -0.018 -0.035 34.349 0.045
       .|*      |        .|.      | 26 0.086 0.024 35.505 0.046
       .|.      |        .|.      | 27 0.009 -0.040 35.519 0.061
       *|.      |        *|.      | 28 -0.058 -0.179 36.045 0.071
       .|.      |        .|*      | 29 0.013 0.080 36.071 0.090
       .|.      |        .|.      | 30 0.002 -0.007 36.072 0.114
       *|.      |        *|.      | 31 -0.077 -0.141 37.044 0.118
       .|*      |        .|.      | 32 0.175 0.003 42.110 0.055
       *|.      |        .|.      | 33 -0.149 0.004 45.843 0.032
       .|.      |        *|.      | 34 0.037 -0.078 46.070 0.040
       .|.      |        .|.      | 35 -0.007 -0.025 46.078 0.051
       .|.      |        .|.      | 36 0.043 -0.053 46.394 0.061

==============================================================

Δ Θ Θz L L Lt t= − − +( )1 1 12
12

1 12
13θ θ ε

Δ Θ Θzt t t t t= − − +− − −ε θ ε ε θ ε1 1 12 12 1 12 13
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Remember that:

The equation therefore becomes:

Notice that we use notation that clearly distinguishes between the seasonal and non-
seasonal moving average coefficients. Routines are available in EViews for estimating  
θ1 and Θ12 directly. Let us do so now and evaluate the resulting model. The estimation  
results are shown in Exhibit 13.22.

The estimated parameters have appropriate sizes and are very significant (very  
low p-values). The estimated model is:

The acid test, of course, is whether the resulting residuals form a white noise process.  
Exhibit 13.23 shows the ACF of the residuals and the corresponding Box–Ljung  
statistics.

The Q-statistics show that this is clearly a white noise process, which indicates  
that the model as identified is appropriate. As an exercise, plot the actual and fitted  
values and comment.

EXHIBIT 13.22
Estimation phase of multiplicative model (1 – L) (1 – L12)xt = (1 – Θ12L12) (1–θ1L)εt

==============================================================
Sample(adjusted): 1949:02 1959:12    
Included observations: 131 after adjusting endpoints    
Convergence achieved after 6 iterations    
Backcast: 1980:01 1981:01    
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
       MA(1)         -0.377159   0.080438  -4.688826    0.0000
      SMA(12)        -0.623284   0.070243  -8.873266    0.0000
==============================================================
R-squared             0.364021   Mean dependent var   0.000291
Adjusted R-squared    0.359091   S.D. dependent var   0.045848
S.E. of regression    0.036705   Akaike info criter  -3.756676
Sum squared resid     0.173793   Schwarz criterion   -3.712780
Log likelihood        248.0623   F-statistic          73.83696
Durbin-Watson stat    1.959576   Prob(F-statistic)    0.000000
==============================================================

Δ Δz L x L L xt

D

t

D

t= −( ) = −( ) −( )1 1 112 12

1 1 12
1 1 12 12 1 12 13−( ) −( ) = − − +− − −L L x

D

t t t t tε θ ε ε θ εΘ Θ

1 1 1 0 623 1 0 37712 12−( ) −( ) = −( ) −( )L L x L Lt t. . ε
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Above, we derived a special case of a multiplicative ARIMA(p, d, q) (P, D, Q)  
model where p = 0, d = 1, q = 1, P = 0, D = 1 and Q = 1. Consider some other  
possibilities:

This is a case of P = 1, D = 1, Q = 0, p = 1, d = 1 and q = 0. And what about:

EXHIBIT 13.23
ACF of residuals of the multiplicative model (and Box–Ljung statistics)
==============================================================
Sample: 1949:02 1959:12
Included observations: 131
Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

       .|.      |        .|.      | 1 0.016 0.016 0.0323
       .|.      |        .|.      | 2 0.011 0.011 0.0501
       *|.      |        *|.      | 3 -0.123 -0.123 2.1019 0.147
       *|.      |        *|.      | 4 -0.138 -0.136 4.7081 0.095
       .|.      |        .|*      | 5 0.060 0.068 5.2086 0.157
       .|*      |        .|.      | 6 0.071 0.061 5.9027 0.207
       *|.      |        *|.      | 7 -0.071 -0.113 6.6183 0.251
       .|.      |        .|.      | 8 -0.040 -0.048 6.8462 0.335
       .|*      |        .|*      | 9 0.106 0.155 8.4465 0.295
       *|.      |        *|.      | 10 -0.078 -0.093 9.3331 0.315
       .|.      |        .|.      | 11 0.046 -0.011 9.6395 0.380
       .|.      |        .|.      | 12 -0.008 0.032 9.6490 0.472
       .|.      |        .|*      | 13 0.043 0.084 9.9186 0.538
       .|.      |        .|.      | 14 0.031 -0.018 10.066 0.610
       .|.      |        .|.      | 15 0.050 0.042 10.449 0.657
       *|.      |        *|.      | 16 -0.150 -0.111 13.836 0.462
       .|.      |        .|.      | 17 0.028 0.049 13.960 0.529
       .|.      |        .|.      | 18 0.008 0.005 13.971 0.601
       *|.      |        *|.      | 19 -0.104 -0.128 15.657 0.548
       *|.      |        *|.      | 20 -0.108 -0.164 17.480 0.490
       .|.      |        .|.      | 21 -0.028 0.039 17.606 0.549
       .|.      |        .|.      | 22 -0.029 -0.041 17.742 0.604
       .|**     |        .|*      | 23 0.229 0.154 26.211 0.199
       .|.      |        .|.      | 24 0.037 -0.017 26.435 0.233
       .|.      |        .|.      | 25 -0.018 0.049 26.487 0.278
       .|.      |        .|*      | 26 0.060 0.073 27.093 0.300
       .|.      |        .|.      | 27 -0.042 0.006 27.393 0.337
       .|.      |        *|.      | 28 -0.052 -0.097 27.853 0.366
       .|.      |        .|.      | 29 -0.054 -0.035 28.351 0.393
       *|.      |        .|.      | 30 -0.073 -0.046 29.265 0.399
       .|.      |        .|.      | 31 -0.051 -0.040 29.711 0.429
       .|*      |        .|.      | 32 0.116 0.019 32.086 0.364
       *|.      |        *|.      | 33 -0.126 -0.093 34.902 0.288
       .|.      |        .|.      | 34 -0.001 -0.007 34.902 0.332
       .|.      |        *|.      | 35 -0.050 -0.058 35.357 0.357
       .|.      |        *|.      | 36 -0.017 -0.067 35.408 0.402

==============================================================

1 1 1 112
12

12−( ) −( ) −( ) −( ) =L L L L xt tφ εΦ

1 1 1 1 1 112
12

12
12

12−( ) −( ) −( ) −( ) = −( ) −( )L L L L x L Lt tφ θ εΦ Φ
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This is clearly a case where P = D = Q = p = d = q = 1.
For a series of periodicity s, the models shown above would be modified by  

changing “12” into s.

EXERCISES

1. What is an ARIMA(p,d,q) model? What is the Box–Jenkins iterative cycle?
2. What steps might have been taken to arrive at the following conclusions  

about observed time series (a), (b) and (c)?
a) It is an ARIMA(2,1,0).
b) It is an ARIMA(0,2,1).
c) It is an ARIMA(1,1,1).

3. The following time-series data are supplied in an EXCEL file  
WT_DATA.XLS:

SERIESA Daily data on flower sales
SERIESB Annual data on rainfall
SERIESC Daily data on stock prices
SERIESD Quarterly data on unemployment
SERIESE Annual data on sunspot numbers
SERIESF Daily data on composite stock price index
AIRLINE Box–Jenkins airline data
SIMUL1, SIMUL2, SIMUL3, SIMUL4: Simulated data

Carry out a full Box–Jenkins type analysis (identification–estimation–diagnostic  
checking) on each of the above series and forecast each one three periods ahead.



An Introduction to ARIMA Modelling 235

APPENDIX 13.1

Possible Theoretical
ACF for an AR(p)
PACF for an MA(q)
ACF, PACF for an ARMA(p,q)
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Possible Theoretical
ACF for an MA(1)
PACF for an AR(1)

Possible Theoretical
ACF for an MA(2)
PACF for an AR(2)
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CHAPTER 14

Vector Autoregression (VAR) Modelling 
with Some Applications

INTRODUCTION

In this chapter, we introduce the concept of vector autoregression (VAR) modelling.  
We will also consider its application to policy making, forecasting and causality  
analysis. In the following chapter, we will see how it is applied to cointegration analysis.

Let us begin the discussion by looking at the following simple form of the import  
function:

The specification of a model like this is an example of structural form (SF)  
modelling, which dominated our early study of econometrics (see, in particular,  
chapters 1 to 8). In this case, M is endogenous while Y is exogenous (with the  
implicit assumption that Y causes M and not vice versa). A more elaborate example  
of an SF model is to be found summarized in equations (7.1) to (7.4) in chapter 7:

(7.1)

(7.2)

(7.3)

(7.4)

where another important feature of SF modelling is immediately evident, namely the  
imposition of zero-type restrictions on each equation; for example, the variable I is not  
found in equation (7.1). Both the endogenous-exogenous dichotomy and the zero-type  
restrictions are determined largely on the basis of economic theory although it is quite  
possible for zero-type restrictions to be arbitrarily imposed in order to assure the  
identifiability of the system.

M Y et t t= +β

C g b Y g C upt t pt t= + + +−11 14 12 1 1

M g b Y g
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p
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mt

dt
t= + + +21 24 23 2

I g g Y g D ut t t t= + + +−31 34 1 35 3

Y C C I X Mt pt gt t t t= + + + −
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VECTOR AUTOREGRESSION MODELS

Some well-known econometricians have challenged the basic underpinnings of struc-
tural models. Liu (1960) was probably the first to do so in an articulate manner when  
he challenged the constancy of the parameters over time. Lucas (1976) provided what  
is perhaps the best-known critique of such models: policies being evaluated will  
eventually result in action by economic agents tending to counter the intended effects  
of such policies. Decisions and forecasts based on them are therefore flawed.

In a seminal article, Sims (1980) followed up on these criticisms and challenged  
the usefulness of the “incredible” theoretical restrictions imposed on SF models. He  
instead proposed an approach to modelling based on the following three tenets which  
form the basis of VAR models:

1. There is no a priori endogenous-exogenous dichotomy in the system
2. There are no zero-type restrictions
3. There is no strict underlying economic theory on which the model is based

The last tenet has been the reason behind the naming of the VAR approach to modelling  
as atheoretical econometrics. See Cooley and LeRoy (1985). Modern VAR analysis is  
not totally faithful to these tenets and, in particular, takes into account the endogenous-
exogenous dichotomy, albeit in a limited way. See Giannini (1992).

Let us illustrate a traditional VAR by presenting a VAR alternative to the simple  
import function introduced at the beginning of the chapter. This alternative is dis-
played in equations (14.1) and (14.2) below:

(14.1)

(14.2)

where ε1 and ε2 are correlated white noise processes. You will notice that the current  
value of each variable of interest is “regressed” on all the variables in the system (here,  
only two) lagged a certain number of times (here only two lags). In matrix notation,  
this system can be written as:

or more succinctly as:

(14.3)

where:

M a M a M b Y b Yt t t t t t= + + + +− − − −1 1 2 2 1 1 2 2 1ε

Y c M c M d Y d Yt t t t t t= + + + +− − − −1 1 2 2 1 1 2 2 2ε

M

Y

a b

c d

M

Y

a b

c d

M

Y
t

t

t

t

t

t

t

t

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥

−

−

−

−

1 1

1 1

1

1

2 2

2 2

2

2

1

2

ε
ε

x x xt t t t= + +− −ΠΠ ΠΠ εε1 1 2 2

x t
t

t
j

j j

j j

M

Y

a b

c d
j=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =, , ,ΠΠ 1 2



Vector Autoregression (VAR) Modelling with Some Applications 239

and:

The elements of εεεεt are correlated with each other but are uncorrelated with their own  
lagged values and with xt–i, i = 1, 2, …, k. The correlations are captured in ΩΩΩΩ.

A more general formulation of the two-variable VAR model might be:

(14.4)

(14.5)

This formulation also introduces the possibility of different lag lengths although in  
practice the same length is employed.

There is some resemblance between the VAR formulation shown so far and the  
reduced form of a structural econometric model and, in fact, it constitutes an unre-
stricted reduced form of a structural model in the case where there are no exogenous  
variables. See chapter 7.

Equation (14.3) lends itself to generalization in two directions. In the first place  
it allows for the inclusion of more than two variables if we imagine the x vector is  
of dimension p × 1, p = 2, 3, … . A second generalization involves the incorporation  
of a lag of order k, k = 1, 2, … . The more general form of the model may be written as:

where xt is a vector of p variables, ΠΠΠΠ1, ΠΠΠΠ2, ..., and ΠΠΠΠk are (p × p) matrices of coefficients  
to be estimated, and εεεεt is a vector of innovations with mean zero and covariance matrix ΩΩΩΩ.

There is a possible third generalization which will only receive partial coverage  
in this book. It concerns the generalization resulting from the introduction of purely  
“exogenous” and other deterministic elements into the VAR model. These include  
items such as a constant term, a deterministic trend, dummy variables and other  
variables like the price ratio pmt   /pdt which appears in the SF model above. This is  
the most general form of the VAR which, in standard form, may be written as:

where:

• ΒΒΒΒj, j = 0, 2, …, k are p × K matrices of fixed coefficients
• zt is a (K × 1) vector of exogenous variables
• μμμμ0 is the (G × 1) constant term vector
• μμμμ1 is a (G × 1) vector of fixed coefficients
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• t is the trend variable (used also as the time subscript)
• dt is a (k × 1) vector of “intervention” dummies
• ft is a (s × 1) vector of seasonal dummies (s + 1 is the number of “seasons”)
• ΨΨΨΨ is a (G × k) matrix of fixed coefficients
• ΘΘΘΘ is a (G × s) matrix of fixed coefficients

This very general form of the VAR model has become standard  in modern VAR  
analysis. See Giannini (1992). A special case of this, which we will use in chapter  
15, is the following:

This includes three endogenous variables (Mt, Yt and pmt/pdt) as well as two determin-
istic terms: a constant and a trend term.

ILLUSTRATION OF VECTOR AUTOREGRESSION 
ESTIMATION USING EVIEWS

EViews requires three types of information before it can estimate a VAR. First you  
must specify the lag interval (nearest and farthest lag) to be included for the endogenous  
variables, then the list of endogenous variables, and finally (optionally) any exogenous  
variables (including a constant term).

In the example given above, imports and income are endogenous variables, lags  
1 through 2 are included in the estimation, and no exogenous variables are included.  
EViews allows you to specify flexible lag structures on the endogenous variables.  
Exhibit 14.1 shows the output from EViews applied to equations (14.1) to (14.2).

The coefficient values shown in Exhibit 14.1 are similar to reduced form coeffi-
cients and therefore without great interest in their own right. Evaluation is done  
through an analysis of impulse response functions and forecast error variance decom-
positions, which together make up what is termed innovations accounting.

EVALUATION OF VECTOR AUTOREGRESSION MODELS

The estimated coefficients of a standard form VAR model are difficult to interpret from  
an economic point of view and indeed you should never attempt to do that. We  
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EXHIBIT 14.1
Estimated VAR system:  
Mt = a1Mt–1 + a2Mt–2 + b1Yt–1 + b2Yt–2 + ε1t  
Yt = c1Mt–1 + c2Mt–2 + d1Yt–1 + d2Yt–2 + ε2t  

Vector Autoregression Estimates
========================================
Sample(adjusted): 1969 1991
 Included observations: 23 after adjusting endpoints
 Standard errors & t-statistics in parentheses
========================================
                    INCOME     IMPORTS
========================================
   INCOME(-1)      1.533452    0.190049
                  (0.20350)   (0.12482)
                  (7.53536)   (1.52261)

   INCOME(-2)     -0.490096   -0.121025
                  (0.22140)   (0.13580)
                 (-2.21361)  (-0.89122)

  IMPORTS(-1)     -0.019177    0.718785
                  (0.37682)   (0.23112)
                 (-0.05089)   (3.10995)

  IMPORTS(-2)     -0.157611    0.004760
                  (0.35448)   (0.21742)
                 (-0.44463)   (0.02189)
========================================
 R-squared        0.932780    0.887961
 Adj. R-squared   0.922167    0.870270
 Sum sq. resids   13138812    4942835.
 S.E. equation    831.5747    510.0482
 Log likelihood  -185.0748   -173.8321
 Akaike AIC       16.44129    15.46366
 Schwarz SC       16.63877    15.66114
 Mean dependent   16481.83    3762.002
 S.D. dependent   2980.701    1416.092
========================================
 Determinant Residual Covaria 1.17E+11
 Log Likelihood              -358.3715
 Akaike Information Criteria  31.85839
 Schwarz Criteria             32.25335
========================================
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mentioned above that a VAR resembles the reduced form of a structural model where  
there are no exogenous variables. Let us follow up on this idea to arrive at a model  
whose coefficients would make good economic sense.

Consider the model:

This is an example of a structural VAR. It differs from the standard form VAR by the  
presence of contemporaneous values of all the variables in each equation and by the  
fact that the disturbances, e1 and e2, are uncorrelated. One consequence of this addition  
is that there is now the equivalence of a simultaneous bias and the coefficients of the  
model cannot be estimated by OLS.

If this model is expressed in its reduced form, it will appear in the form of  
equations (14.1) and (14.2). As an exercise, derive the reduced form from the  
structural form. Show in particular that the disturbances in the reduced form are ε1t

= (e1t + B0e2t) and ε2t = (C0e1t + e2t). Clearly the disturbances of the reduced (standard)  
form are correlated even though those of the structural form are not.

The coefficients of the structural form, however, remain unidentifiable unless a  
priori restrictions are imposed on the structural form. A very popular approach is to  
apply the Choleski decomposition. An illustration of this procedure in the current  
context is to set C0 = 0. This in effect converts the structural VAR into a recursive  
system: we can solve for Yt which feeds forward into the solution of Mt. One  
interesting consequence of the decomposition is its implication for impulse response  
functions and variance decompositions, which help us to evaluate the model as well  
as to formulate policy prescriptions.

The Impulse Response Function

An impulse response function traces the response of an endogenous variable to a change  
in one of the innovations. Consider the structural VAR above. A change in e2t will  
immediately change the value of Yt (income). It will also change all future values of  
imports and income through the dynamic structure of the system. An impulse response  
function describes the response of an endogenous variable to a unit change in one of  
the innovations. 

The ambiguity in interpreting impulse response functions arises from the fact  
that the errors in the standard form are not uncorrelated. When the errors are corre-
lated they have a common component which cannot be identified with any specific  
variable. The Choleski decomposition is a somewhat arbitrary method of dealing  
with this problem and it attributes all of the effect of any common component to the  
variable that is first in the ordering of the recursive VAR system. In our example,  
the common component of ε1t and ε2t is totally attributed to ε2t, because it precedes  
ε1t in the solution of the model. Changing the order of the equations can dramatically  
change the impulse responses and care should be given to interpreting the impulse  
response functions. The weaker the correlation between the innovations the less the  
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ordering matters. In EViews you are always required to order the VAR in order to  
determine the nature and extent of the responses.

The tabular version of the impulse response function display, based on a once-
and-for-all shock1 to the income innovations, is shown in Exhibit 14.2(A) for our  
two-variable VAR and for 10 periods.

What does this output tell us? Note first that the ordering is income followed by  
imports. The income innovation, which has been “shocked” by an increase of $755.81  
million (equivalent to one standard deviation), causes income, in the first round, to  
increase by this very amount. The immediate effect on imports is to increase these  
by $98.9 million. By round 2 (one period ahead), income has now increased by  
$1157.11 million, relative to the case of “no shock”, as a result of the exogenous  
shock to income. Imports have increased by $214.7 million. All this seems quite  
reasonable given our understanding of the relationship between income and imports.

EXHIBIT 14.2 (A)
Impulse response function for model (5) to (6): 
response to income innovation  

Effect of One S.D. INCOME Innovation
================================
 Period    INCOME     IMPORTS
================================
   1      755.8126    98.87104
         (111.438)   (95.5574)
   2      1157.106    214.7084
         (217.155)   (111.351)
   3      1384.245    283.2347
         (339.834)   (125.680)
   4      1516.307    327.6429
         (445.237)   (131.460)
   5      1595.846    357.4980
         (526.998)   (134.735)
   6      1645.521    378.3023
         (588.889)   (139.075)
   7      1677.609    393.2128
         (636.262)   (145.177)
   8      1698.903    404.1155
         (673.600)   (152.498)
   9      1713.272    412.1868
         (704.178)   (160.285)
  10      1722.997    418.1939
         (730.289)   (167.987)
================================
 Ordering:  INCOME IMPORTS
================================

1 The size of the shock is equal to one standard deviation of the income varible. This is the default in  
EViews.
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Let us now examine the response of the system to a shock in the imports  
innovations shown in Exhibit 14.2 (B). In this case we see clearly that all the initial  
shock to the imports innovation is absorbed by the imports variable only but by the  
second round (since imports affect income with a lag) income falls by $8.68 million.  
Try yourself to say what happens after.

EViews will also show the two sets of results (shown above) in the alternative  
form shown in Exhibit 14.3 (A). These results combine in a different way the results  
already shown in Exhibits 14.2 (A) and 14.2 (B). The top half of the table shows  
the response of income to a shock to the income innovations (first column) and the  
shock to the imports innovations (second column). The lower half of the table shows  
the response of imports to a shock to the income innovations (first column) and the  
shock to the imports innovations (second column).

The ordering used in Exhibit 14.3 (A) is income–imports, which is what theory  
comes closest to suggesting. What if we reverse the order of the VAR? Look at  
Exhibit 14.3 (B). What does this output tell us? Take the effects of the shocks on  
imports, shown in the bottom half of the table (the upper half of Exhibit 14.3 (B)  
shows the effect on income of the innovation shocks). The imports innovation, which  

EXHIBIT 14.2 (B)
Impulse response function for model (5) to (6): 
response to imports innovation  

Effect of One S.D. IMPORTS Innovation
================================
 Period    INCOME     IMPORTS
================================
   1      0.000000    452.9132
         (0.00000)   (66.7784)
   2     -8.685536    325.5473
         (155.124)   (106.564)
   3     -90.94593    234.5039
         (245.856)   (98.2581)
   4     -191.0113    153.8746
         (331.784)   (107.739)
   5     -288.2456    86.42424
         (414.457)   (117.633)
   6     -374.3064    31.18924
         (490.691)   (126.767)
   7     -446.9323   -13.42196
         (558.430)   (135.423)
   8     -506.5613   -49.13775
         (617.119)   (143.952)
   9     -554.6897   -77.56500
         (667.078)   (152.474)
  10     -593.0940   -100.0983
         (709.030)   (160.904)
================================
 Ordering: INCOME IMPORTS
================================
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EXHIBIT 14.3 (A)
Impulse response function for model (5) to (6):  
response to income and imports innovations

Impulse Response to One S.D. Innovations
================================
 Response of INCOME:
 Period    INCOME     IMPORTS
================================
   1      755.8126    0.000000
         (111.438)   (0.00000)
   2      1157.106   -8.685536
         (217.155)   (155.124)
   3      1384.245   -90.94593
         (339.834)   (245.856)
   4      1516.307   -191.0113
         (445.237)   (331.784)
   5      1595.846   -288.2456
         (526.998)   (414.457)
   6      1645.521   -374.3064
         (588.889)   (490.691)
   7      1677.609   -446.9323
         (636.262)   (558.430)
   8      1698.903   -506.5613
         (673.600)   (617.119)
   9      1713.272   -554.6897
         (704.178)   (667.078)
  10      1722.997   -593.0940
         (730.289)   (709.030)
================================
 Response of IMPORTS:
 Period    INCOME     IMPORTS
================================
   1      98.87104    452.9132
         (95.5574)   (66.7784)
   2      214.7084    325.5473
         (111.351)   (106.564)
   3      283.2347    234.5039
         (125.680)   (98.2581)
   4      327.6429    153.8746
         (131.460)   (107.739)
   5      357.4980    86.42424
         (134.735)   (117.633)
   6      378.3023    31.18924
         (139.075)   (126.767)
   7      393.2128   -13.42196
         (145.177)   (135.423)
   8      404.1155   -49.13775
         (152.498)   (143.952)
   9      412.1868   -77.56500
         (160.285)   (152.474)
  10      418.1939   -100.0983
         (167.987)   (160.904)
================================
 Ordering: INCOME IMPORTS
================================
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EXHIBIT 14.3 (B)
Impulse response function for model (5) to (6)  
(with order of equations reversed)

Impulse Response to One S.D. Innovations
================================
 Response of INCOME:
 Period    INCOME     IMPORTS
================================
   1      738.4226    161.1978
         (108.874)   (155.795)
   2      1132.335    238.2989
         (215.702)   (283.612)
   3      1371.792    206.3748
         (332.634)   (383.073)
   4      1522.158    136.7776
         (433.419)   (468.632)
   5      1620.605    58.74455
         (513.617)   (544.312)
   6      1687.492   -14.74162
         (576.278)   (610.893)
   7      1734.331   -78.85290
         (625.671)   (668.806)
   8      1767.853   -132.5683
         (665.468)   (718.645)
   9      1792.156   -176.5248
         (698.448)   (761.116)
  10      1809.847   -211.9715
         (726.650)   (796.961)
================================
 Response of IMPORTS:
 Period INCOME    IMPORTS
================================
   1      0.000000    463.5794
         (0.00000)   (68.3511)
   2      140.3364    363.8495
         (86.2886)   (112.061)
   3      226.7036    289.5159
         (109.135)   (115.686)
   4      287.2864    220.2130
         (121.995)   (128.707)
   5      330.8402    160.6820
         (129.874)   (139.850)
   6      362.9463    111.1550
         (136.811)   (149.598)
   7      387.0282    70.75028
         (144.115)   (158.591)
   8      405.2975    38.18156
         (151.877)   (167.177)
   9      419.2460    12.12980
         (159.796)   (175.458)
  10      429.9207   -8.603849
         (167.561)   (183.394)
================================
 Ordering: IMPORTS INCOME
================================
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has been “shocked” by an increase of $463.57 million (equivalent to one standard  
deviation), causes imports, in the first round, to increase by this very amount. But  
the income innovation has no effect on imports in this round. By round 2 (one period  
ahead), imports have increased by $363.8 million relative to the “base” period as a  
result of the exogenous shock to imports and by $140.3 million as a result of the  
income shock (and so on).

The question then arises: are these responses (both in sign and magnitude)  
reasonable? Would an increase in imports result in increasing income, as is shown  
in the lower half of Exhibit 14.3 (B)? This seems to run counter to all reasonable  
expectations and should then give rise to some doubts about the validity of this  
ordering.

Variance Decomposition

The variance decomposition of a VAR gives information about the relative importance  
of each of the random innovations in the explanation of each variable in the system.  
This is done through an analysis of the forecast error of each variable. Let us elaborate  
on this by explaining the output in Exhibit 14.4, which shows the variance decompo-
sition of income and imports.

The top half of Exhibit 14.4 shows the variance decomposition of income fol-
lowing a shock to the income innovations of TT$ 755.8 million. Given the ordering  
income-imports, the entire change in income in the first round (100%) resulting from  
the shock to the income innovations is due to this initial shock. This shock to the  
income innovations also causes an immediate change in the imports variable, but the  
resulting change in imports has no effect itself on income at this point, since current  
imports has no effect on current income. The import variable only has an effect on  
income in round two, when it accounts for a negligible 0.003% of the change in  
income, with income still accounting for the lion’s share of 99.996% of its own  
variation. For the entire 10-year period considered here, the effect of imports on  
income, following the initial shock to the income innovation, is negligible, never  
getting larger than 6%.

Now look at the lower half of Exhibit 14.4, which traces the variation of income  
and imports due to an initial shock of TT$463.6 million to the imports variable.  
Because of the ordering income-imports, this shock has an immediate effect on  
imports but current income also has an effect on current imports. In round one, the  
import shock accounts for 95.4% of the variation in the import variable, while income  
accounts for the rest of the variation. The round one change in imports has an impact  
on income in round two and this in turn has an impact on imports in round two. This  
time, income accounts for 15% of the variation in imports and imports itself for 85%  
of its own variation. The influence of income on imports increases round after round  
and by the end of the 10-year period it is accounting for 74% of the total variation  
in imports. Imports accounts for only 26% of its own variation by this time, not-
withstanding the fact that the initial push came from the imports variable and it  
accounted then for over 95% of the initial variation in imports.

As with the impulse response functions, the above conclusions depend crucially  
on the ordering of the variables.
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FORECASTING WITH VECTOR AUTOREGRESSION MODELS

VAR models have proven successful for forecasting systems of interrelated time-series  
variables. Structural econometric models (SEMs), you may remember, are frequently  
used for forecasting. In chapter 12, it was pointed out that one of the major attractions  
of forecasting with ARIMA models (as opposed to using SEMs) was that there was  
no need to forecast the exogenous variables as a prelude to obtaining forecasts of the  
variable(s) of interest. The same advantage applies to VAR models that do not include  
exogenous variables so that if, for instance, we wanted to forecast the 1992 import  
value, it is easily obtained as:

EXHIBIT 14.4
Variance decomposition of income and imports

Variance Decomposition
=============================================
Variance Decomposition of INCOME:
 Period   S.E.        INCOME       IMPORTS
=============================================
   1     755.8126     100.0000     0.000000
   2     1382.108     99.99605     0.003949
   3     1958.220     99.78234     0.217664
   4     2484.009     99.27342     0.726576
   5     2966.498     98.54641     1.453589
   6     3412.910     97.69897     2.301028
   7     3829.109     96.80965     3.190347
   8     4219.592     95.93161     4.068393
   9     4587.803     95.09664     4.903360
  10     4936.437     94.32127     5.678730
=============================================
 Variance Decomposition of IMPORTS:
 Period   S.E.        INCOME       IMPORTS
=============================================
   1     463.5794     4.548728     95.45127
   2     605.7942     15.22540     84.77460
   3     708.6611     27.10015     72.89985
   4     795.7561     38.44540     61.55460
   5     876.6423     48.30851     51.69149
   6     955.2943     56.36332     43.63668
   7     1033.143     62.67481     37.32519
   8     1110.454     67.49534     32.50466
   9     1187.022     71.12651     28.87349
  10     1262.508     73.84740     26.15260
=============================================
 Ordering: INCOME IMPORTS
=============================================

M M M Y Yf
1992 1991 1990 1991 19900 719 0 005 0 190 0 121= + + −. . . .
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while the corresponding forecast for the income value is:

You will notice that all the right-hand-side values on which the calculation of  
the forecast is based are known at the time of the operation. To forecast 1993 values,  
the following formulae are applied:

You will notice that the forecasted values for 1992 are used. To forecast values  
for 1994 and onwards, similar recursive formulae are applied so that at any point in  
time the right-hand-side variables are either known or are the (best) forecasts. In  
general, unbiased forecasts of the elements of the vector Xf

n+h, where n is the sample  
size on which estimation is based and h is the forecast horizon, are obtained by the  
recursive formula:

where Xf
n+h–i = Xn+h–i if h ≤ i. Otherwise, it is the forecasted value.

Illustration of Forecasting with Vector Autoregression Models

Exhibit 14.5 shows an example of a program, based on estimation of equations (14.1)  
and (14.2), that may be set up in EViews in order to obtain forecasts. In order to forecast  
to 1993, make sure that the “Range” of the sample period is extended up to 1993. The  
“Solve” command in EViews (choose the “static solution” option) then calculates the  
forecasted values.

Of course, it is a simple enough matter to calculate these values using a pocket  
calculator. Using the forecasting formulae shown above, we can calculate the 1992  
forecasts as:

EXHIBIT 14.5
Example of EViews program for forecasting using VAR estimation in Exhibit 14.1
==============================================================
ASSIGN @ALL F

IMPORTS = 0.71878519*IMPORTS(-1) + 0.0047602133*IMPORTS(-2) + 
0.19004896*INCOME(-1) – 0.12102464*INCOME(-2)

INCOME = – 0.019177043*IMPORTS(-1) – 0.15761087*IMPORTS(-2) + 
1.5334516*INCOME(-1) – 0.49009603*INCOME(-2)
==============================================================

Y M M Y Yf
1992 1991 1990 1991 19900 019 0 158 1 53 0 490= − − + −. . . .

M M M Y Yf f f
1993 1992 1991 1992 19910 719 0 005 0 190 0 121= + + −. . . .

Y M M Y Yf f f
1993 1992 1991 1992 19910 019 0 158 1 53 0 490= − − + −. . . .

X X Xn h
f

n h
f

n h
f

+ + − + −= +ΠΠ ΠΠ1 1 2 2
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Calculate the 1993 forecasts as an exercise.
In larger models, however, or models with longer lags, use of a pocket calculator  

can become very cumbersome. EViews would provide the forecasts and you ought  
to rely on these.

VECTOR AUTOREGRESSION MODELLING AND  
CAUSALITY TESTING

Consider equation (14.1). Taken on its own, this equation is identical in form to an  
ADL model. In the spirit of general-to-specific modelling usually associated with  
ADLs, we may wish to ask a question like the following: are the β coefficients (β1 and  
β2) significantly different from zero? If they are not, then in the interest of parsimony  
(and efficiency) we should eliminate the lagged Y values from these equations and  
explain Mt only in terms of its own past values. In this case, we would say that Y does  
not cause M (in the sense that it does not help to explain or predict it better). On the  
other hand, if the β coefficients turn out to be jointly significant, then the conclusion  
would be that Y causes M.

The concept of causation in science is quite complex and is still the subject of  
passionate debate. It is essentially a philosophical rather than an empirical issue,  
with theories ranging from an extreme “everything causes everything”, to denying  
the existence of any causation whatsoever. However, it is not our place here to enter  
into the debate. Given that philosophical definitions have important influences on  
statistical counterparts, the need for an operational and testable definition of causality  
becomes clear. This concept of causation or causality was first introduced into the  
econometric literature by Granger (1969) and as a consequence is often referred to  
as Granger causality.2 It can be described in the following way:

x is a Granger cause of y (denoted as x → y) if present y can be predicted  
with better accuracy by using past values of x rather than by not doing so,  
other information being identical. (Charemza and Deadman, 1997, p.165)

In simple English, if knowledge of past x allows us to predict y more accurately than  
knowledge of y alone, then x causes y. This definition can be extended to that of  
instantaneous causation (denoted x ⇒ y) which exists if present y can be better  
predicted by using present and past values of x, other information being identical.

The concepts of Granger causality and Granger instantaneous causality may be  
defined in a more formal way. Let Ut be the set of all present and past information  
existing at time t (not restricted to knowledge of x and y) and let Xt be the set of all  
present and past information on a variable x existing at time t, that is, Xt = {x1, x2, …, xt}.
Let yt be the current value of a variable y and  be an unbiased prediction of yt.

2 In what follows, we will take the terms “causality” and “Granger causality” to mean the same thing.

M

Y

f

f

1992

1992

0 719 4108 5 0 005 3644 4 0 190 16636 8 0 121 16134 4 4179 6

0 019 4108 5 0 158 3644 4 1 53 16636 8 0 490 16134 4 16951 1
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Granger causality

Granger instantaneous causality

The causality defined so far is unidirectional, but it is also possible that y can cause x  
in the same manner. If y → x and x → y, then we have feedback causality.

In the above definitions, there is the use of the vague notion of “all information”  
(Ut). Since the set of all information is not well defined, it is up to the researcher to  
decide which available information is to be used and which is to be ignored. The set  
of “all information” then becomes the set of “all relevant information”, with the  
decision of what information is to be considered “relevant” being an arbitrary one.  
We can assume that the set of all relevant information is that which is included in  
an econometric model, allowing for the inclusion of some irrelevant information,  
which will be inevitable prior to estimation and testing. In the light of the previous  
discussions, a general unrestricted VAR model fits the bill perfectly, with the problem  
of testing whether x → y reducing simply to the question of whether x can be  
eliminated from that part of a VAR model that describes y. The tests for causality  
that we shall now consider (as well as many other tests that can be found in the  
extensive literature on the subject) are based on this general principle.

TESTING FOR CAUSALITY

Direct Granger Tests

If we believe that x causes y, then it seems quite natural to expect that the regression:

[ (14.6)

will have significantly more explanatory power than the regression:

(14.7)

This appears to be a classic case of an “unrestricted” versus a “restricted” model as  
was discussed in previous chapters, with the restrictions imposed on equation (14.7)  
being that βj = 0, j = 1, 2, …, k. A natural statistic that can be used to establish causality  
would therefore be:

if MSE MSE  then˜ ˜ \ ,y U y U X x yt t t t t− − −( ) < ( ) →1 1 1
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where SSEu is the sum of squared errors associated with equation 14.6 (the uncon-
strained form of the model) and SSEc is the sum of squared errors associated with  
equation 14.7 (the constrained form of the model) and:

k = the number of constraints (equal to the number of lags)
n = the number of observations

Under the null hypothesis that equation (14.7) is the true model, this statistic is  
asymptotically distributed as χ2/k(k), and can be approximated by Fk,n–2k.

This most natural testing procedure is often identified in the literature as a direct  
Granger test. Other direct Granger tests have been proposed based on the Wald,  
likelihood ratio and Lagrange multiplier principles. The following are considered in  
Geweke et al. (1981):

These are all asymptotically distributed as χk
2 under the null hypothesis. Note, however,  

that these are all large sample tests, and small sample use may not be reliable.
Given the definitions of our null and alternative hypotheses in equations (14.6)  

and (14.7), these tests are all for non-instantaneous causality. It would seem natural  
to extend to the instantaneous case by writing the alternative hypothesis or the  
restricted model of equation (14.6) as:

EXHIBIT 14.6
Testing Granger causality between imports and income
====================================================================
Pairwise Granger Causality Tests
Sample: 1967 1991
Lags: 2
====================================================================
  Null Hypothesis:                      Obs  F-Statistic Probability
====================================================================
  INCOME does not Granger Cause IMPORTS  23    3.96833     0.03734
  IMPORTS does not Granger Cause INCOME        0.90966     0.42039
====================================================================
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and adapting the test as required. There are, however, “identification” problems  
involved in using this equation. See Pierce and Haugh (1977), who show that it is  
impossible to determine a unique direction of causality if instantaneous causality exists.

Illustration of Direct Granger Tests

Exhibit 14.6 shows the output obtained from EViews when testing for causality between  
imports (Mt) and income (Yt). The clear conclusion is that there is unidirectional  
causality from income to imports.

The Sims Test

The notion that the future cannot “cause” the present is one of the most straightforward  
features of the contemporary concept of causality, and is what was used by Sims (1972)  
to develop this second causality test. Consider the following VAR system:

where a(L), b(L), c(L) and d(L) are polynomials in L of appropriate order. This can  
be written more succinctly as:

(14.8)

Clearly, if x is not causing y, then b(L) = 0, and if y is not causing x, then c(L) = 0.  
We can rewrite equation (14.8) as:

(14.9)

This is what is known as the “Wold decomposition” which here explains time  
series xt and yt in terms of an infinite linear combination of white noise processes.  
If x does not Granger cause y, then β(L) = 0, and if y does not Granger cause x,  
φ(L) = 0.

Let us consider the possibility that x does not Granger cause y as our null  
hypothesis. The system of equation (14.9) then becomes (in equation form):

(14.10)
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(14.11)

Under the null hypothesis, therefore, we can substitute for εt = α–1(L) yt from equation  
(14.10) into equation (14.11), to obtain:

(14.12)

Note the negative lower summation limit of equation (14.12), which means that  
it contains future (as well as past) values of y. Evidently, if the coefficients of the  
leading y values are all zeros, then we would have a typical VAR equation for xt.  
But what if the hypothesis that θ–1 = θ–2 = ... = θ–(i–1) = 0 cannot be rejected? Since  
the future cannot cause the present, then future y values cannot cause the current x.  
Indeed, a necessary condition for x not to cause y is that the leading y terms in  
equation (14.12) have zero coefficients. Thus, the logical conclusion of finding non-
zero coefficients on leading y terms is that x Granger causes y. The technique for  
computing the Wald, likelihood ratio and Lagrange multiplier statistics is analogous  
to that described for the Granger test, with the unrestricted and restricted forms  
defined as:

It is difficult to say which of these two sets of tests (direct Granger and Sims) is  
better. Geweke et al. (1981) show experimentally that direct Granger tests are supe-
rior. They are certainly more intuitively appealing and easier to carry out. We also  
cannot deny the fact that the Sims test is more costly in terms of degrees of freedom,  
since we have more parameters to estimate (with some of them associated with  
leading variables!). Nevertheless, because of the different philosophical backgrounds  
of the tests, it is advisable to consider them as complements to, rather than substitutes  
for, one another. EViews only provides for the direct Granger tests.
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EXERCISES

1. Discuss the following in some detail:
a) VAR models
b) Granger causality
c) Causality tests

2. Using the data provided in Appendix 1.2, Chapter 1:
a) Estimate a VAR involving M, Y and pm/pd (the ratio of foreign to domestic  

prices). Analyse the impulse response to a shock to Y and carry out a  
variance decomposition analysis.

b) Test for Granger causality between M and Y.
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APPENDIX 14.1

Critical values for DF and ADF tests for unit roots

No.  
of Obs

No Constant, 
No Trend in test equation

Constant, 
No Trend in test equation

Constant and 
Trend in test equation

1% 5% 10% 1% 5% 10% 1% 5% 10%

19 –2.697 –1.960 –1.625 –3.830 –3.029 –2.655 –4.535 –3.675 –3.276
20 –2.689 –1.959 –1.625 –3.807 –3.020 –2.650 –4.500 –3.659 –3.268
21 –2.682 –1.958 –1.624 –3.786 –3.011 –2.646 –4.469 –3.645 –3.260
22 –2.676 –1.957 –1.624 –3.767 –3.004 –2.642 –4.441 –3.633 –3.253
23 –2.670 –1.957 –1.623 –3.750 –2.997 –2.638 –4.417 –3.622 –3.247
24 –2.665 –1.956 –1.623 –3.734 –2.991 –2.635 –4.394 –3.612 –3.242
25 –2.660 –1.955 –1.623 –3.720 –2.985 –2.632 –4.374 –3.603 –3.237
26 –2.656 –1.955 –1.623 –3.708 –2.980 –2.629 –4.355 –3.594 –3.232
27 –2.652 –1.954 –1.622 –3.696 –2.975 –2.627 –4.338 –3.587 –3.228
28 –2.649 –1.954 –1.622 –3.685 –2.971 –2.624 –4.323 –3.580 –3.224
29 –2.645 –1.953 –1.622 –3.675 –2.966 –2.622 –4.308 –3.573 –3.220
30 –2.642 –1.953 –1.622 –3.666 –2.963 –2.620 –4.295 –3.567 –3.217
31 –2.639 –1.952 –1.621 –3.658 –2.959 –2.618 –4.283 –3.561 –3.214
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CHAPTER 15

Cointegration

INTRODUCTION

This is an important chapter, which introduces a concept that has radically altered the  
discipline of econometrics. To begin the discussion, let us consider the following very  
simple form of the import function, which we also considered in the previous chapter:

(15.1)

Now take a look at the time plots of both variables shown in Exhibit 15.1 (drawn to  
two separate scales). Both these series are clearly nonstationary. In chapter 12, we said  
that a series was integrated of order 1, and written I(1), if it became stationary after  
first differencing. It is then said to have one unit root.

Strictly speaking, estimation and hypothesis testing based on OLS is justified  
only if the two variables involved are I(0). Since both Mt and Yt are I(1), a fairly  
reasonable expectation is that any linear combination of these two variables, such  
as et, would also be I(1). This violates the basic assumptions for OLS estimation and  
if we insist on applying OLS, we are likely to establish nothing more than spurious  
correlation, i.e. a correlation that does not establish any causal relationship between  
the two variables. See Granger and Newbold (1974).

A tempting solution to this apparent problem is to fit the regression using the  
first differences of both variables. But in a seminal paper, Davidson, Hendry, Srba  
and Yeo (1978) argue that such an approach would ignore valuable information about  
the “long run”. They propose instead an approach that blends the two and incorporates  
the short run dynamics implied by the first differences as well as the static or long  
run relationship between the undifferenced values which enter the relationship as an  
“error correction mechanism” (ECM).

In yet another seminal paper, Engle and Granger (1987) show that the solution  
proposed by Davidson et al. (1978) is possible if and only if the variables involved  
in the relationship are cointegrated. Before we develop a formal definition of coin-
tegration, let us get an intuitive feel for this important concept, which has revolu-
tionized the way in which econometricians approach the estimation problem.

Look once again at the plots in Exhibit 15.1. Notwithstanding the fact that both  
variables appear to be nonstationary, an examination of the plots tends to suggest  
that they do not diverge systematically over time. This, in turn, suggests that the  
error term et has a constant mean (of zero), a constant variance and so on, in which  

M Y et t t= +β
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case et might be I(0). Put another way, although Mt and Yt increase or decrease  
systematically over time, the linear combination of the two variables represented by:

(15.2)

does not and in fact appears to vary around a fixed mean (zero in this case). When this  
happens, Mt and Yt are said to be cointegrated. This simply means that they tend to  
move together in the long run and equation (15.2) has the simple intuitive economic  
interpretation of being the long-run or equilibrium relationship so that M will return  
to the value βY in the long run. Naturally, et can be interpreted as an equilibrium error  
at a given point in time. As we will see, when two (or more) variables are cointegrated,  
OLS regression involving variables that are not I(0) is still possible.

It is quite another matter if the two (or more) variables in a regression are not  
cointegrated. For instance, consider the regression:

(15.3)

Compare the plots of imports (M) and domestic prices (pd) shown in Exhibit 15.2. The  
paths of the two variables seem to have nothing in common and we can therefore  
expect that the error term in this case would not be I(0). In this case the two variables  
are not cointegrated.

EXHIBIT 15.1
Time plots of imports and income

e M Yt t t= − β

M p et dt t= +β
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The process of eyeballing the data, such as was done above, is useful in getting  
a feel for the existence of cointegration between variables but should not be used as  
proof of this existence. To do this, we will use the more formal tests which are  
developed below.

THE VECTOR ERROR CORRECTION MODEL (VECM)

We will begin the discussion using a very simple model. Consider the two-variable  
VAR system we introduced in chapter 14:

In matrix notation, this may be represented as:

where:

EXHIBIT 15.2
Time plots of imports and domestic prices variables

M a M a M b Y b Y

Y c M c M d Y d Y

t t t t t t

t t t t t t

= + + + +

= + + + +

− − − −

− − − −

1 1 2 2 1 1 2 2 1

1 1 2 2 1 1 2 2 2

ε

ε

x x xt t t t= + +− −ΠΠ ΠΠ εε1 1 2 2
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It is easy to show that this VAR system may be rewritten as:

(15.4)

where:

and:

This form of the model is frequently referred to as a vector error correction model  
(VECM). It is a VAR in first differences with xt–1 as an “exogenous” variable. The term  
ΓΓΓΓxt–1 is the error correction term (we will understand this more clearly soon), which  
is at the heart of the cointegration problem. There are three cases to consider and they  
relate to the rank of ΓΓΓΓ:

1. The rank of ΓΓΓΓ is equal to 0. This can only occur if ΓΓΓΓ is the null matrix so  
that equation (15.4) reduces to:

which is a VAR in first difference. Since xt is I(1), Δxt is I(0) and there is  
no cointegration.

2. The rank of ΓΓΓΓ is equal to 2 (the number of variables in the system). This  
is possible only if xt is a vector of I(0) variables, which contradicts the  
original assumption that they are I(1). In this case, Δxt is over-differenced  
and the correct model would be in levels rather than in differences.

3. The rank of ΓΓΓΓ is equal to 1. In this case, there exists a factorization of ΓΓΓΓ
such that

where αααα and ββββ are both (2, 1) matrices. In this case, equation (15.4) may  
be rewritten as:

(15.5)

x t
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ΔΔ ΓΓ ΔΔ ΓΓ εεx x xt t t t= + +− −1 1 1

ΓΓ ΠΠ1 2= −

ΓΓ ΠΠ ΠΠ= − + +( )I 1 2

ΔΔ ΓΓ ΔΔ εεx xt t t= +−1 1

ΓΓ ααββ= ′

ΔΔ ΓΓ ΔΔ ααββ εεx x xt t t t= + ′ +− −1 1 1
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ββββ is the cointegrating vector which has the property that ββββ′xt is I(0) (i.e. the  
elements of the vector xt are cointegrated) and αααα is the matrix of adjustment param-
eters. There is an element of arbitrariness about both the vectors, αααα and ββββ, in that  
we can replace ββββ by ββββΒΒΒΒ, as long as ΒΒΒΒ is a nonsingular matrix of size (r, r), and αααα
by αααα(ΒΒΒΒ′)–1 and leave the matrix multiplying xt–1 in equation (15.5) unchanged. This  
means that the parameters of the two matrices, αααα and ββββ, are not identified. Identifi-
cation is obtained through normalization of ββββ, which is always arbitrary. This amounts  
to choosing a matrix ΒΒΒΒ to attain the normalization required. Let us illustrate these  
points using our model.

A possible ECM formulation of this model might be:

When normalized, it may look like:

(15.6)

(15.7)

where α*1 = – α1β1, α*2 = – α2β1 and β = –(β2/β1). A formulation such as that in  
equations (15.6) and (15.7) has a simple yet interesting economic interpretation: it  
presupposes that some variable M has an equilibrium path defined by:

and, at any point in time t, there are deviations from the long run path equal to et.  
Adjustments are made from one period to the next with the speed of adjustment equal  
to α*1 and α*2. This was the idea behind the consumption function of the United  
Kingdom by Davidson et al. (1978).

We have already seen that, if Mt and Yt are I(1) while et is I(0), then M and Y  
are cointegrated. Furthermore, equations (15.6) and (15.7) contain only I(0) variables.  
It was shown by Engle and Granger (1987) that if M and Y are cointegrated as  
indicated, then there exists an error correction such as the one appearing in equation  
(15.5). What is more, the converse is true: if an error correction formulation such as  
equation (15.5) can be found, then M and Y are cointegrated. This is the famous  
Granger representation theorem. An important implication of the theorem is that at  
least one of the adjustment coefficients (α*1 and α*2) must be non-zero.

There are two distinct problems associated with a model like equation (15.5). In  
the first place we must establish that the variables in question (here M and Y) are  
cointegrated and, second, we must establish a procedure for estimating the parameters  
of the model. In what follows, we shall concentrate on two of these procedures that  

Δ Δ Δ

Δ Δ Δ

M M Y M Y

Y M Y M Y

t t t t t t

t t t t t t
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γ γ α β β ε
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Δ Δ ΔM M Y M Yt t t t t t= + − ∗ −( ) +− − − −γ γ α β ε11 1 12 1 1 1 1 1

Δ Δ ΔY M Y M Yt t t t t t= + − ∗ −( ) +− − − −γ γ α β ε21 1 22 1 2 1 1 2

M Yt t= β



262 A Practical Introduction to Econometric Methods: Classical and Modern

will allow us to do both these things: the one proposed by Engle and Granger (1987)  
and the other proposed by Johansen (1988).

THE ENGLE–GRANGER (EG) TWO-STEP PROCEDURE

This procedure, first proposed in the seminal article by Engle and Granger (1987),  
enjoyed widespread popularity in the 1990s. Its greatest appeal is its simplicity and  
indeed nontechnical applied economists find it much easier to understand than its  
competitors. However, it suffers from some serious shortcomings, which we shall allude  
to below.

Step 1 of the EG procedure has two facets to it: in the first place, it involves a  
preliminary test for the cointegratability of the variables M and Y and then, following  
from this, the error correction term is estimated. The preliminary test for cointegrat-
ability of the variables is based on the application of OLS to the equation Mt = βYt

+ et (which Engle and Granger call the cointegrating equation) and the consequent  
application of unit root tests on the OLS residuals:

(15.8)

where  is the OLS estimator of β. The mechanism of the unit root tests described in  
the previous chapter is applicable here (the DF and ADF tests) and, in this instance,  
the null and alternative hypotheses are:

H0: The variables are not cointegrated (i.e. the OLS residuals admit a unit root)
H1: The variables are cointegrated (i.e. the OLS residuals do not admit a unit root)

However, Engle and Granger also suggest the use of the cointegrating regression  
Durbin–Watson (CRDW) statistic. This statistic is identical in appearance to the stan-
dard Durbin–Watson statistic that we met in chapter 4 but it is applied in a somewhat  
different way here. In the presence of spurious correlation (i.e. the absence of cointe-
gratability), the CRDW statistic tends to zero. However, the ADF test is shown by  
Engle and Granger to be more powerful than the CRDW test. If cointegratability is  
established, the error correction term is estimated by equation (15.8).

Step 2 of the EG makes use of the estimated error correction term defined to  
formulate a model such as:

(15.9)

(15.10)

or, given that 

(15.11)

ˆ ˆe M Yt t t= − β

β̂

Δ Δ ΔM M Y M Yt t t t t t= + + −( ) +− − − −γ γ α β ε11 1 12 1 1 1 1 1
ˆ

Δ Δ ΔY M Y M Yt t t t t t= + + −( ) +− − − −γ γ α β ε21 1 22 1 2 1 1 2
ˆ

ˆ ˆ :e M Yt t t= − β

Δ Δ ΔM M Y et t t t t= + + +− − −γ γ α ε11 1 12 1 1 1 1
ˆ
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(15.12)

The coefficients γ11, γ12, γ21, γ22, α1 and α2 are then estimated by OLS. The model  
is acceptable if at least one of the α coefficients is significant and economically  
meaningful and if εt is a stationary process.

Illustration of the Engle–Granger Two-Step Procedure1

For this illustration, we consider the import function:

This is the “cointegrating regression” to be tested.
Step 1 of the EG two-step procedure requires that we fit the cointegrating regres-

sion (by OLS) and test the residuals for unit roots (we have already established that  
M and Y are I(1)). If the residuals are stationary, then we must reject the null of no  
cointegration. If they are nonstationary (the null hypothesis), then they do not coin-
tegrate. Exhibit 15.3 displays the results of the OLS regression.

A crude test for cointegratability may be one based on the CRDW statistic, here  
approximately 0.32. The critical values for the test given by Engle and Granger  
(1987) are reproduced in Appendix 15.1. They show that the null of no cointegration  
is just barely rejected at the10% level (critical value 0.32). Selected results obtained  
from the application of the more formal ADF tests to the residuals (saved under the  
label RES_C) are shown in Exhibit 15.4. The fitted test equation has an intercept  
but no trend.

EXHIBIT 15.3
OLS fit of Mt = βYt + et

==============================================================
Dependent Variable: IMPORTS
Method: Least Squares
Sample: 1967 1991
Included observations: 25
==============================================================
     Variable     Coefficient Std. Error  T-Statistic    Prob.
==============================================================
      INCOME         0.229811   0.010790   21.29823     0.0000
==============================================================
R-squared            0.667623   Mean dependent var    3556.082
Adjusted R-squared   0.667623   S.D. dependent var    1531.723
S.E. of regression   883.0718   Akaike info criter    16.44387
Sum squared resid    18715578   Schwarz criterion     16.49262
Log likelihood      -204.5483   Durbin-Watson stat    0.318164
==============================================================

1 The reader should also refer to the very simple illustration in Engle and Granger (1987).

Δ Δ ΔY M Y et t t t t= + + +− − −γ γ α ε21 1 22 1 2 1 2
ˆ

M Y et t t= +β
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A word of caution is necessary here. Great care should be exercised in using the  
“canned” routine in EViews since the critical values shown above are not applicable  
to the OLS residuals obtained from the fit shown in Exhibit 15.3. Appropriate critical  
values are shown in Appendix 15.1 under the heading “Two Variable Case” with no  
trend in the test equation. They are calculated on the basis of a formula given by  
MacKinnon (1991). For 24 observations, the critical values at the 1%, 5% and 10%  
significance levels are read as:

As you can see, these values are “further to the left” than the values shown in  
Exhibit 15.4 and which in fact are identical to those shown for the unit root tests in  
Appendix 12.1. Our calculated value of –1.75 cannot reject the null of “no cointe-
gration”. Evidence for the cointegration appears tenuous and will have to depend a  
lot on the CRDW statistic, and the latter is not convincing.

Suppose we were to reject the null hypothesis of “no cointegration” based on  
the evidence of the CRDW statistic. The next step in the EG procedure is to estimate  
the short-run dynamics in an equation system such as equations (15.11) and (15.12)  
above, with:

The results are shown in Exhibit 15.5.2

α1 is estimated as –0.265. It has correctly signed and it is significant at about  
6%. This is enough to confirm that M and Y are cointegrated and that the ECM form  
estimated here is a valid representation of the model. α2 is estimated as –0.171 but  
it is not significant. A test of the residuals of these equations verifies that they are  
white noise. This is further evidence of the cointegratability of M and Y.

EXHIBIT 15.4
Testing for cointegratability
==============================================================
ADF Test Statistic  -1.753580   1%    Critical Value*  -3.7343
                                5%    Critical Value   -2.9907
                                10%   Critical Value   -2.6348
*MacKinnon critical values for rejection of hypothesis of a 
unit root.
==============================================================

1% 5% 10%

–4.391 –3.602 –3.226

2 We show the results obtained from the application of OLS to each equation. However, since the system  
is really a VAR with an added “exogenous” term (the error correction term), we may estimate it as  
such in EViews. Try it and see that you will get the same results.

ˆ .e M Yt t t− − −= −1 1 10 2298



Cointegration 265

EXHIBIT 15.5 (A)
OLS fit of ΔMt = γ11ΔMt–1 + γ12ΔYt–1 + α1  + ε1t

==============================================================
Dependent Variable: D(IMPORTS)
Method: Least Squares
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
    D(IMPORTS(-1))    0.010164   0.214925    0.047291   0.9628
    D(INCOME(-1))     0.141856   0.132359    1.071752   0.2966
    RES_C(-1)        -0.265201   0.135528   -1.956797   0.0645
==============================================================
R-squared             0.256055   Mean dependent var   126.3800
Adjusted R-squared    0.181661   S.D. dependent var   559.2994
S.E. of regression    505.9540   Akaike info criter   15.41188
Sum squared resid     5119790.   Schwarz criterion    15.55998
Log likelihood       -174.2366   F-statistic          3.441858
Durbin-Watson stat    2.107495   Prob(F-statistic)    0.051929
==============================================================

EXHIBIT 15.5 (B)
OLS fit of ΔYt = γ21ΔMt–1 + γ22ΔYt–1 + α2  + ε2t

==============================================================
Dependent Variable: D(INCOME)
Method: Least Squares
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
==============================================================
     Variable      Coefficient Std. Error  T-Statistic   Prob.
==============================================================
    D(IMPORTS(-1))    0.165008   0.344870    0.478465   0.6375
    D(INCOME(-1))     0.500450   0.212384    2.356343   0.0288
    RES_C(-1)        -0.171198   0.217469   -0.787228   0.4404
==============================================================
R-squared             0.341743   Mean dependent var   220.6522
Adjusted R-squared    0.275917   S.D. dependent var   954.0802
S.E. of regression    811.8562   Akaike info criter   16.35763
Sum squared resid     13182208   Schwarz criterion    16.50574
Log likelihood       -185.1128   F-statistic          5.191626
Durbin-Watson stat    2.215414   Prob(F-statistic)    0.015274
==============================================================

  ̂et–1

êt–1
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Strengths and Weaknesses of the Engle–Granger Two-Step Procedure

The EG two-step procedure is very attractive to the applied economist largely because  
of its apparent simplicity. It separates the estimation of the long run parameter(s) from  
those of the short run and requires, in each instance, the use of standard OLS methods.  
This means, in particular, that no specialist programming skills are required. But what  
theoretical justifications can be advanced for the use of OLS at each stage and are  
there any serious theoretical shortcomings in so doing?

Let us look first of all at the estimation of the parameter(s) of the cointegrating  
regression (step 1). Stock (1987) shows that OLS estimation of the long run param-
eter(s) is consistent and highly efficient. Indeed, the estimator is super consistent in  
the sense that it converges even more quickly than the OLS estimator in the standard  
case (i.e. where the variables are I(0)). Stock also shows that the consistency property  
does not require the absence of correlation between the explanatory variable(s) and  
the error term, unlike consistency results in the classical regression context.

However, as Banerjee et al. (1986) show, in small samples, bias is likely to be  
considerable. In the two variable case that we are considering here, this bias is  
negatively correlated with the R2 statistic of the cointegrating regression (although  
this result does not carry over to the multivariate case, which we will consider below).  
Little trust, therefore, should be placed in results obtained when R2 differs appreciably  
from unity. In addition to this, Phillips and Ouliaris (1990) show that the asymptotic  
distribution of the OLS estimator of the parameter(s) of the cointegrating regression  
is highly dependent on “nuisance” parameters. Similarly, the standard t- and F-
statistics based on this estimator have very complicated asymptotic distributions so  
it is not possible to make inferences by the use of standard test statistics.

Turning now to OLS estimation of the short run parameters (step 2), the picture  
is a little bit more encouraging. First, this estimator is not only consistent but is  
efficient asymptotically as if obtained using the true value of the long run parameter  
(rather than its OLS estimate obtained in step 1). Finally, the standard t- and F-
statistics can be used to make inferences about the parameter estimates.

Let us now consider the normalization. If et is I(0) while Mt and Yt are I(1), then  
the (2, 1) vector ββββ represents the linear combination of the two I(1) variables, which  
“transforms” these variables into an I(0) variable. Clearly, if ββββ is a “cointegrating  
vector” in the sense that ββββ′xt is stationary, then, for any scalar λ ≠ 0, λββββ′ is also a  
cointegrating vector since λββββ′xt is also stationary. However, this vector, if it exists,  
is unique provided that one of the variables is normalized to be 1, as is the case for  
M. Consider, for instance, replacing β by (β + λ). This would yield:

We know, by assumption, that (Mt – βYt) is I(0) and that λYt is I(1), in which case et

must be I(1), which contradicts the original assumption unless λ = 0.
However, the question still arises: on which variable is the normalization to be  

carried out? This question is never satisfactorily answered and, in the end, it must  
be arbitrarily imposed. Implicit in this imposition is the economist’s a priori view  
about the exogenous-endogenous dichotomy typical of traditional econometrics,  
which we met in the early chapters of this book. The test for cointegration is  

e M Y Yt t t t= − −β λ
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asymptotically invariant to the normalization but, as Dickey et al. (1991) have shown,  
the test results may be very sensitive to the normalization in small samples.

Let us now consider the problems arising when there are more than two variables  
in the system. Up to now, we have considered the very special case of a two-variable  
model. Cointegration would indeed be very limited in scope if it could only deal  
with cases of relationships between only two variables for, as we already know, more  
than two variables can be related in an economic sense. Indeed, the general linear  
regression model that we met in chapter 2 is based on this assumption and if  
cointegration is to be an improvement on this it would have to contend with the  
multivariate case, and not simply the bivariate one that has occupied our attention  
up to now.

Consider a (p, 1) vector of I(1) variables xt and consider the following vector  
autoregressive (VAR) representation of it:

(15.13)

where the ΠΠΠΠs are (p, p) matrices. This VAR form can be shown to be equivalent to the  
following:

(15.14)

where:

and:

Cointegration this time is synonymous with the case where the rank of ΓΓΓΓ is r, 0 < r <  
p. In other words, we must now allow for the possibility of up to (p – 1) cointegrating  
vectors. If r = 0, the variables are not cointegrated and equation (15.14) is a VAR in  
first differences. If r = p, we are in the stationary case, in which case equation (15.13),  
which is in levels, should be used to estimate the coefficient values. For 0 < r < p,  
there exists a representation of ΓΓΓΓ such that:

(15.15)

where αααα and ββββ are both (p, r) matrices.
Consider, for instance, the introduction of a new variable, pmt/pdt (the relative  

price) so that we now have three variables: Mt, Yt and pmt/pdt. The EG two-step  
procedure has been used widely in the literature to establish the cointegratability of  
three or more variables (see Hall, 1986). However, there are certain limitations in  
applying it to such cases. In the first place, and most importantly, there may now be  
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more than one cointegrating vector. In fact, in the three-variable case there may exist  
another cointegrating vector that is linearly independent of the first. There may be  
two (at most) long run relationships linking the three variables.

This possibility of more than one cointegrating vector highlights the most fun-
damental weakness in the EG two-step procedure, since underlying it is the assump-
tion that there is only one cointegrating vector (which means that it is not possible  
to test for the number of cointegrating vectors in a multivariate system). Clearly, an  
economist would want to know if there are more than one “equilibrium” relationship  
among a set of variables. If OLS is used to estimate one static cointegrating regression  
equation, it will not yield consistent estimators if there are in fact more than one  
cointegrating vector. Furthermore, the ECM formulation in step 2 of this procedure  
will be misspecified if all equilibrium conditions are not taken into account.

In the more general case of p variables and r cointegrating vectors (r ≤ p – 1),  
the matrices αααα and ββββ are (p, r) and are full column rank. They will look like:

The r columns of ββββ (or, equivalently, the r rows of ββββ′) are the r non-normalized  
cointegrating vectors.

It is important to understand that, when there are r cointegrating vectors, there  
are automatically r error correction terms in the system as a whole and all of these  
terms appear in each of the p equations in equation (15.14). For example, in the first  
equation, which explains Δx1t (first element of Δx), ααααββββ′xt-1 will contribute:

to the explanation of Δx1t. Leaving out any of these r terms is tantamount to a mis-
specification.

THE JOHANSEN PROCEDURE

We have noted the many (theoretical) shortcomings of the EG two-step procedure when  
there are more than two variables in the system. A theoretically more satisfying  
approach, though not as intuitively appealing to the applied economist, is the maximum  
likelihood method of Johansen (1988). This approach can be used for two purposes:  
(1) determining the maximum number of cointegrating vectors and (2) obtaining  
maximum likelihood estimators of the cointegrating matrix (ββββ) and adjustment param-
eters (αααα). The Johansen procedure is based on the factorization shown in equation  
(15.15) and produces maximum likelihood estimators of αααα and ββββ for a given value of  
r (which is obtained through a testing sequence to be described below). Once αααα and  
ββββ are estimated, OLS may be applied to each of the following p equations to obtain  
consistent estimators of the “short run” parameters ΓΓΓΓ1, ΓΓΓΓ2, ..., ΓΓΓΓk–1:
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where  (the ^ over αααα and ββββ indicates that they are the Johansen maximum  
likelihood estimators). EViews employs a slight modification of this approach: it applies  
OLS in turn to each of the equations in the system:

to obtain consistent estimators of ΓΓΓΓi, i = 1, 2, …, (k – 1) and αααα, which is similar to  
the second step of the EG two-step procedure. As in that case, we may make use of  
the fact that this is a VAR in first differences with the addition of an “exogenous” term  

xt–1 (the error correction term).

Estimation of αααα and ββββ

The likelihood function of equation (15.14) is proportional to:

where T is the number of observations and ΩΩΩΩ is the covariance matrix of εεεεt.

Step 1(a)
Regress Δxt on Δxt–1, Δxt–2, …, Δxt–k+1 (p separate regressions). Construct the vectors  
of residuals  t = 1, 2, …,T.

Step 1(b)
Regress xt–k on Δxt–1, Δxt–2, …, Δxt–k+1. Construct a series of residual vectors Rkt, t =  
1, 2, …, T, based on these regressions.

Step 2
Compute the four p × p matrices:

Step 3

Solve the following polynomial equation in λ:

that is, find the roots (eigenvalues) of the polynomial equation in λ (this is a nonstandard  
form of the eigenvalue problem). Obtain  (going from the largest to the  
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smallest) and associated eigenvectors  obtained such that the eigenvectors  
are normalized using:

where:

If ββββ is of rank 0 < r ≤ p – 1, then the first r eigenvectors are the cointegrating  
vectors, i.e. the maximum likelihood estimator of ββββ is:

The maximum likelihood estimator of αααα is derived from this as:

Testing for the Cointegrating Rank r

If ββββ is of rank r, clearly:

where λi is the “population” parameter associated with . If λ1 = 0, then r = 0 (there  
are no cointegrating vectors). If λ2 = 0, and λ1 ≠ 0, then r = 1 (there is one cointegrating  
vector) and so on. We therefore wish to test:

for i = r + 1, r + 2, …, p. Johansen proposes a test based on the trace statistic, computed  
as:

He also proposes a second test (weaker than the first) based on the “maximum eigen-
value” statistic:
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where  is the largest eigenvalue. Johansen (1988) establishes the distribution of these  
two statistics under the null that r is the cointegrating rank and Osterwald–Lenum  
(1992) calculates critical values for them at various levels of significance by simulation  
methods. However, only the 1% and 5% critical values are available in EViews.

Whichever of the trace or the maximum eigenvalue statistics is used, the test to  
determine the cointegrating rank proceeds as follows. In the first instance, we dis-
criminate between the following two alternatives:

If the null is rejected, the following two alternatives are then considered:

If the null hypothesis is not rejected (but r = 0 is rejected) then r = 1. If the null  
is rejected, then we move on to:

and so on.

Illustration of the Johansen Procedure

In this section, the Johansen procedure will be applied to the three variables, Mt, Yt

and pmt/pdt which appear in the import function introduced in chapter 1. The underlying  
VAR system used is:

Mt = m01 + m11t + a11Mt–1 + a12Mt–2 + b11Yt–1 + b12Yt–2 +f11(pmt  /pdt)–1  

+f12(pmt  /pdt)–2 + ε1t

Yt = m02 + m12t + a21Mt–1 + a22Mt–2 + b21Yt–1 + b22Yt–2 + +f21(pmt  /pdt)–1  

+f22(pmt  /pdt)–2 + ε2t

(pmt  /pdt) = m03 + m13t + a31Mt–1 + a32Mt–2 + b31Yt–1 + b32Yt–2 +  

+f31(pmt  /pdt)–1 +f32(pmt  /pdt)–2 + ε2t

You will notice that, in addition to the introduction of the relative price ratio, we  
have also introduced two deterministic elements into the system: a constant and a  
trend term t. You may recall that this system was introduced in the previous chapter.  
The more general form of a system like this one, in matrix notation, is:

(15.16)
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As an exercise, determine the terms of the various vectors and matrices for the specific  
case that we are considering here so that the system appears as in equation (15.16).

Now consider the following decompositions:

where αααα⊥ is a p × (p – r) matrix of full rank, orthogonal to αααα. It can be shown that  
equation (15.16) may be rewritten as:

(15.17)

where  = (x′t, 1, t).
This may appear foreboding but it is in fact very simple. Suppose in the model  

that we are using for the illustration, we obtain only one cointegrating equation. The  
cointegration equation may appear as (normalization assumed):

A possible specific form of system (15.17) may be:

ΔMt = v01 + v11t + γ11ΔMt–1 + γ12ΔYt–1 +γ13Δ(pmt/pdt)–1 + α1et–1+ ε1t

ΔYt = v02 + v12t + γ21ΔMt–1 + γ22ΔYt–1 +γ23Δ(pmt/pdt)–1 + α2et–1 + ε2t

Δ(pmt/pdt) = v03 + v13t + γ31ΔMt–1 + γ32ΔYt–1 +γ33Δ(pmt/pdt)–1 + α3et–1 + ε3t

Constant and trend terms appear not only in the VAR but also in the cointegrating  
equation. Try and write out the vectors and matrices that will make this system appear  
as equation (15.17).

Five assumptions are possible in the case where constant and trend terms are  
being used (they are all available in EViews):

1. μμμμ1 = 0 and μμμμ2 = 0. There is no deterministic trend in the data, with no  
intercept or trend in the cointegrating equation (CE) or test VAR (this is  
the case we have been using so far but, in practice, it is perhaps the most  
unlikely).

2. μμμμ2 = 0, μμμμ11 = 0, μμμμ01 unrestricted. There is no deterministic trend in the data,  
but there is an intercept (no trend) in the CE (and no intercept in the VAR).

3. μμμμ2 = 0, μμμμ11 and μμμμ01 unrestricted. There is a linear deterministic trend in the  
data, as well as an intercept (but no trend) in the CE and test VAR.
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4. μμμμ12 = 0, μμμμ11, μμμμ01 and μμμμ02 unrestricted. This allows for a linear deterministic  
trend in the data, an intercept and trend in the CE but no trend in the VAR.

5. μμμμ12, μμμμ11, μμμμ01 and μμμμ02 unrestricted. This allows for a quadratic deterministic  
trend in the data, an intercept and trend in CE and a linear trend in the  
VAR (you must have proper justification of quadratic trend if you want to  
use this case).

Osterwald–Lenum (1992) gives critical values for these five cases at various signifi-
cance levels. The 1% and 5% values are available in EViews.

The first step is to establish whether the variables are cointegrated and, indeed,  
whether there may be more than one cointegrating vector (a maximum of two is possible  
here). We use assumption 2 (no deterministic trend in the data, intercept in the CE) and  
an underlying VAR with two lags. The results are displayed in Exhibit 15.6.

The first thing to do is to test the null of r = 0 against the alternative r ≥ 1.  
Unfortunately, the 10% critical value is not shown by EViews but it can be found  
in Osterwald–Lenum (1992), Table 1*. For the test based on the trace statistic, it is  
32 so that the null is rejected at this level, since the trace statistic is calculated as  
34.74. In the case of the maximum eigenvalue statistic, the critical value is 19.77 so  
that the null cannot be rejected, since the maximum eigenvalue statistic is calculated  
as 18.88. Let us accept the result based on the trace statistic that, at the 10% level  
of significance, there is at least one cointegrating vector.

The next step is to test the null of r = 1 against the alternative of r ≥ 2. Here, the  
null cannot be rejected using either the trace statistic (the 10% critical value is 17.85  
while the calculated value is 15.85) or the maximum eigenvalue statistic (the 10%  
critical value is 13.75 while the calculated value is 11.55), and so we conclude that  
there is exactly one cointegrating vector.

The normalized cointegrating vector is estimated as (including the constant term):

The corresponding cointegrating regression deduced from normalization in  
EViews is (the constant term is included):

et = Mt – 0.4066Yt + 464.01pmt    /pdt + 2065.87

where the right-hand side of this equation is in the form xt. For purposes of com-
parison with OLS, it is perhaps better to write this result in the following more  
conventional format:

Mt = –2065.87 + 0.4066Yt – 464.01pmt   /pdt + et

This is somewhat different from the OLS result (which would have been the cointe-
grating vector obtained by application of the EG two-step procedure) although the  
difference is not dramatic.3

3 The direct OLS estimation of this equation is: Mt = –1188.64 + 0.378 Yt – 688.7 pmt   /  pdt.

ˆ . . .′ = −( )β 1 0 4066 464 01 2065 87

ˆ ′ββ
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EXHIBIT 15.6
Johansen Cointegration Test on Mt, Yt and pmt/pdt

                         Johansen Cointegration Test
====================================================================
Sample(adjusted): 1969 1991
Included observations: 23 after adjusting endpoints
Trend assumption: No deterministic trend (restricted constant)
Series: IMPORTS INCOME RATIO
Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test

Hypothesized                  Trace      5 Percent    1 Percent
No. of CE(s)  Eigenvalue    Statistic  Critical ValuCritical Value
====================================================================
    None        0.559910     34.73371      34.91        41.07
  At most 1     0.394761     15.85584      19.96        24.60
  At most 2     0.170765     4.306792       9.24        12.97
====================================================================
 *(**) denotes rejection of the hypothesis at the 5%(1%) level
 Trace test indicates no cointegration at both 5% and 1% levels

====================================================================
Hypothesized                Max-Eigen    5 Percent    1 Percent
No. of CE(s)  Eigenvalue    Statistic  Critical ValuCritical Value
====================================================================
    None        0.559910     18.87787      22.00        26.81
  At most 1     0.394761     11.54905      15.67        20.20
  At most 2     0.170765     4.306792       9.24        12.97
====================================================================
 *(**) denotes rejection of the hypothesis at the 5%(1%) level
 Max-
eigenvalue test indicates no cointegration at both 5% and 1% levels

 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):
====================================================================
   IMPORTS      INCOME        RATIO          C
   0.003415    -0.001389     1.584668     7.055307
  -0.000632    -3.61E-05    -1.619548     5.061472
  -1.13E-05     0.000237    -0.509962    -3.379694
====================================================================

 Unrestricted Adjustment Coefficients (alpha):
====================================================================
 D(IMPORTS)    -271.1813     102.1383    -70.91229
  D(INCOME)     257.6051     239.8087    -198.7632
  D(RATIO)      0.067624     0.094435     0.024198
====================================================================

1 Cointegrating Equation(sLog likelihood -336.1931
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We turn now to the estimation of the ECM model which, in this case, contains  
three equations. This can be done directly in EViews. The results obtained are shown  
in Exhibit 15.7.

At the top of Exhibit 15.7 the (normalized) cointegrating vector (which also  
appears in Exhibit 15.6) is displayed and, below, the ECMs involving ΔMt, ΔYt and  
Δpmt/pdt as “dependent” variables are shown. On the right-hand side of each equation  
appears the cointegrating regression (CointEq1) and the coefficient attached to it is  
the “adjustment parameter”. Here the adjustment coefficient associated with the ΔMt

equation is negative (–0.926131) and it is also significant (t-statistic = 3.50592). This  
is sufficient to reject any “no cointegration” hypothesis. The other two adjustment  
factors are not significant at the 5% level but are close to being significant at the  
10% level. Can you give a possible economic interpretation of these results?

EXHIBIT 15.6 (continued)
Johansen Cointegration Test on Mt, Yt and pmt/pdt
====================================================================
Normalized cointegrating coefficients (std.err. in parentheses)
   IMPORTS      INCOME        RATIO          C
   1.000000    -0.406650     464.0084     2065.872
               (0.02450)    (151.874)    (615.301)

Adjustment coefficients (std.err. in parentheses)
 D(IMPORTS)    -0.926131
               (0.26416)
  D(INCOME)     0.879765
               (0.51329)
  D(RATIO)      0.000231
               (0.00013)
====================================================================

2 Cointegrating Equation(sLog likelihood -330.4185
====================================================================
Normalized cointegrating coefficients (std.err. in parentheses)
   IMPORTS      INCOME        RATIO          C
   1.000000     0.000000     2303.680    -6766.759
                            (796.257)    (1554.81)
   0.000000     1.000000     4523.972    -21720.49
                            (1974.87)    (3856.23)

Adjustment coefficients (std.err. in parentheses)
 D(IMPORTS)    -0.990699     0.372925
               (0.25603)    (0.10241)
  D(INCOME)     0.728167    -0.366410
               (0.48578)    (0.19431)
  D(RATIO)      0.000171    -9.73E-05
               (0.00011)    (4.6E-05)
====================================================================
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EXHIBIT 15.7
Estimation of the (Vector) ECM model using Mt, Yt and pmt/pdt:  
EViews output

          Vector Error Correction Estimates
====================================================
 Vector Error Correction Estimates
 Sample(adjusted): 1969 1991
 Included observations: 23 after adjusting endpoints
 Standard errors in ( ) & t-statistics in [ ]
====================================================
Cointegrating Eq: CointEq1
====================================================
  IMPORTS(-1)     1.000000

   INCOME(-1)    -0.406650
                  (0.02450)
                 [-16.5986]

   RATIO(-1)      464.0084
                  (151.874)
                 [ 3.05521]

       C          2065.872
                  (615.301)
                 [ 3.35750]
====================================================
Error Correction:D(IMPORTS)  D(INCOME)    D(RATIO)
====================================================
    CointEq1     -0.926131    0.879765    0.000231
                  (0.26416)   (0.51329)   (0.00013)
                 [-3.50592]  [ 1.71398]  [ 1.71290]

 D(IMPORTS(-1))   0.143153   -0.568999   -0.000167
                  (0.20941)   (0.40690)   (0.00011)
                 [ 0.68361]  [-1.39839]  [-1.55891]

 D(INCOME(-1))    0.161389    0.987717    7.62E-05
                  (0.12235)   (0.23774)   (6.2E-05)
                 [ 1.31908]  [ 4.15470]  [ 1.21984]

  D(RATIO(-1))   -1381.890   -2160.797   -0.025090
                  (476.167)   (925.231)   (0.24304)
                 [-2.90211]  [-2.33541]  [-0.10323]
====================================================
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COINTEGRATION AND CAUSALITY

In chapter 14, we used the following equation to test for Granger causality:

You should know by now that the OLS fit of this equation is valid if either y and x  
are both I(0) or they are cointegrated. It would therefore seem necessary to test for  
cointegration between the two variables as a prelude to causality testing.4 If y and x  
are both I(1) and they are cointegrated, then estimation of the coefficients of equation  
(14.6) is a valid exercise. On the other hand, if they are not cointegrated, then the test  
for causality must be based on equations involving the use of first differences. In other  
words, instead of equations (14.6) and (14.7) of chapter 14, we would use:

(15.18)

(15.19)

EXHIBIT 15.7 (continued)
Estimation of the (Vector) ECM model using Mt, Yt and pmt/pdt:  
EViews output  

 R-squared        0.620087    0.507071    0.018084
 Adj. R-squared   0.560101    0.429240   -0.136955
 Sum sq. resids   2614543.    9871357.    0.681120
 S.E. equation    370.9549    720.7948    0.189337
 F-statistic      10.33714    6.515033    0.116643
 Log likelihood  -166.5083   -181.7866    7.838787
 Akaike AIC       14.82681    16.15536   -0.333808
 Schwarz SC       15.02429    16.35283   -0.136330
 Mean dependent   126.3800    220.6522   -0.071203
 S.D. dependent   559.2994    954.0802    0.177567
====================================================
 Determinant Residual Covaria 1.77E+09
 Log Likelihood              -336.1931
 Log Likelihood (d.f. adjuste-342.7845
 Akaike Information Criteria  31.19865
 Schwarz Criteria             31.98856
====================================================

4 Mosconi and Giannini (1992) establish a framework for the simultaneous determination of cointegration
and causality that results in a substantial gain in the efficiency of the estimators.
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A frequent error that appears in the literature is the use of equations (15.18) and  
(15.19) with no regard as to whether y and x are cointegrated. If they are, then the  
Granger representation theorem makes it quite clear that equation (15.18) is mis-
specified, since it does not contain an error correction term (see MacDonald and  
Kearney, 1987).

EXERCISES

1. Explain the term “cointegration”.
2. Use the Engle–Granger two-step procedure to determine whether the fol-

lowing pairs of variables (see Appendix 1.2, chapter 1) are cointegrated:
a) X and Y
b) M and Y
c) Cp and Y
d) M and pm

3. Use the Engle–Granger two-step procedure and the Johansen procedure  
to establish whether the following four variables admit cointegrating  
relationships:

M, Y, pm, pd

Compare the results obtained following the two procedures.
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APPENDIX 15.1: CRITICAL VALUES FOR ADF TESTS  
OF COINTEGRATABILITY
(constant term included in test equations)

Two-Variable Case

No. of  
Obs

No Trend in test equation Trend in test equation

1% 5% 10% 1% 5% 10%

19 –4.538 –3.677 –3.276 –5.238 –4.318 –3.886
20 –4.502 –3.659 –3.264 –5.188 –4.290 –3.866
21 –4.470 –3.642 –3.253 –5.143 –4.264 –3.848
22 –4.441 –3.627 –3.243 –5.103 –4.240 –3.832
23 –4.415 –3.614 –3.234 –5.066 –4.219 –3.817
24 –4.391 –3.602 –3.226 –5.033 –4.200 –3.803
25 –4.370 –3.591 –3.218 –5.002 –4.182 –3.790
26 –4.350 –3.580 –3.211 –4.974 –4.166 –3.779
27 –4.331 –3.571 –3.205 –4.949 –4.150 –3.768
28 –4.315 –3.562 –3.199 –4.925 –4.137 –3.758
29 –4.299 –3.554 –3.193 –4.903 –4.124 –3.749
30 –4.285 –3.547 –3.188 –4.882 –4.112 –3.740
31 –4.271 –3.540 –3.183 –4.863 –4.100 –3.732

Three-Variable Case

No. of  
Obs

No Trend in test equation Trend in test equation

1% 5% 10% 1% 5% 10%

19 –5.152 –4.220 –3.788 –5.778 –4.789 –4.331
20 –5.104 –4.194 –3.771 –5.716 –4.753 –4.306
21 –5.060 –4.171 –3.755 –5.660 –4.722 –4.283
22 –5.021 –4.150 –3.741 –5.610 –4.693 –4.262
23 –4.985 –4.131 –3.728 –5.565 –4.667 –4.243
24 –4.953 –4.114 –3.717 –5.524 –4.643 –4.226
25 –4.924 –4.098 –3.706 –5.486 –4.621 –4.210
26 –4.897 –4.084 –3.696 –5.452 –4.601 –4.195
27 –4.872 –4.071 –3.687 –5.420 –4.583 –4.181
28 –4.850 –4.058 –3.678 –5.391 –4.565 –4.169
29 –4.829 –4.047 –3.670 –5.364 –4.550 –4.157
30 –4.809 –4.036 –3.663 –5.339 –4.535 –4.146
31 –4.791 –4.026 –3.656 –5.315 –4.521 –4.136
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Four-Variable Case

No. of  
Obs

No Trend in test equation Trend in test equation

1% 5% 10% 1% 5% 10%

19 –5.718 –4.725 –4.252 –6.293 –5.247 –5.032
20 –5.657 –4.691 –4.229 –6.220 –5.203 –5.000
21 –5.602 –4.661 –4.208 –6.155 –5.164 –4.971
22 –5.553 –4.633 –4.189 –6.096 –5.129 –4.945
23 –5.509 –4.608 –4.171 –6.043 –5.097 –4.922
24 –5.468 –4.585 –4.156 –5.994 –5.068 –4.900
25 –5.432 –4.564 –4.141 –5.950 –5.041 –4.880
26 –5.398 –4.545 –4.128 –5.909 –5.016 –4.861
27 –5.367 –4.528 –4.115 –5.872 –4.993 –4.844
28 –5.339 –4.511 –4.104 –5.837 –4.972 –4.829
29 –5.312 –4.496 –4.093 –5.805 –4.953 –4.814
30 –5.288 –4.482 –4.083 –5.775 –4.934 –4.801
31 –5.265 –4.469 –4.074 –5.748 –4.918 –4.788

Five-Variable Case

No. of  
Obs

No Trend in test equation Trend in test equation

1% 5% 10% 1% 5% 10%

19 –6.227 –5.195 –4.708 –6.787 –5.679 –5.169
20 –6.159 –5.153 –4.678 –6.704 –5.628 –5.132
21 –6.098 –5.116 –4.652 –6.629 –5.583 –5.098
22 –6.042 –5.082 –4.628 –6.561 –5.542 –5.067
23 –5.992 –5.052 –4.606 –6.500 –5.505 –5.039
24 –5.946 –5.024 –4.585 –6.444 –5.470 –5.013
25 –5.904 –4.998 –4.567 –6.393 –5.439 –4.990
26 –5.865 –4.974 –4.550 –6.346 –5.410 –4.968
27 –5.830 –4.953 –4.534 –6.303 –5.384 –4.948
28 –5.797 –4.933 –4.520 –6.263 –5.359 –4.930
29 –5.766 –4.914 –4.506 –6.226 –5.336 –4.912
30 –5.738 –4.897 –4.493 –6.192 –5.315 –4.896
31 –5.712 –4.881 –4.482 –6.160 –5.295 –4.881

Critical values for CRDW test for cointegratability

Significance Levels

1% 5% 10%
0.511 0.386 0.322



Appendices





283

Statistical Tables
APPENDIX 1
Standard Normal Distribution

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8079 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2 0.9773 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

This table displays the values of Pr (Z ≤ z).

E.G. Pr (Z ≤1.29) = 0.90.
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APPENDIX 2
The t Distribution 

p

0.10 0.05 0.025 0.010 0.005

D
eg

re
es

 o
f 

Fr
ee

do
m

1 3.0777 6.3138 12.7062 31.8205 63.6567
2 1.8856 2.9200 4.3027 6.9646 9.9248
3 1.6377 2.3534 3.1825 4.5407 5.8409
4 1.5332 2.1319 2.7765 3.7470 4.6041
5 1.4759 2.0151 2.5706 3.3649 4.0321
6 1.4398 1.9432 2.4469 3.1427 3.7074
7 1.4149 1.8946 2.3646 2.9980 3.4995
8 1.3968 1.8596 2.3060 2.8965 3.3554
9 1.3830 1.8331 2.2622 2.8214 3.2498

10 1.3722 1.8125 2.2281 2.7638 3.1693
11 1.3634 1.7959 2.2010 2.7181 3.1058
12 1.3562 1.7823 2.1788 2.6810 3.0545
13 1.3502 1.7709 2.1604 2.6503 3.0123
14 1.3450 1.7613 2.1448 2.6245 2.9768
15 1.3406 1.7531 2.1315 2.6025 2.9467
16 1.3368 1.7459 2.1199 2.5835 2.9208
17 1.3334 1.7396 2.1098 2.5669 2.8982
18 1.3304 1.7341 2.1009 2.5524 2.8784
19 1.3277 1.7291 2.0930 2.5395 2.8609
20 1.3253 1.7247 2.0860 2.5280 2.8453
21 1.3232 1.7207 2.0796 2.5177 2.8314
22 1.3212 1.7171 2.0739 2.5083 2.8188
23 1.3195 1.7139 2.0687 2.4999 2.8073
24 1.3178 1.7109 2.0639 2.4922 2.7969
25 1.3164 1.7081 2.0595 2.4851 2.7874
26 1.3150 1.7056 2.0555 2.4786 2.7787
27 1.3137 1.7033 2.0518 2.4727 2.7707
28 1.3125 1.7011 2.0484 2.4671 2.7633
29 1.3114 1.6991 2.0452 2.4620 2.7564
30 1.3104 1.6973 2.0423 2.4573 2.7500  

40 1.3031 1.6839 2.0211 2.4233 2.7045  

50 1.2987 1.6759 2.0086 2.4033 2.6778  

60 1.2958 1.6707 2.0003 2.3901 2.6603  

∞ 1.29 1.65 1.96 2.33 2.57

This table displays the values of tα for given p = Pr (T ≥ tα), where α is the number  
of degrees of freedom.

E.G. For p = 0.05 and α = 20, tα = 1.7247.
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APPENDIX 3
The Chi-Square Distribution

0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005

D
eg

re
es

 o
f 

Fr
ee

do
m

1 0.00004 0.00016 0.00098 0.00393 3.84146 5.02389 6.6349 7.87944
2 0.01 0.0201 0.0506 0.1026 5.9915 7.3778 9.2103 10.5966
3 0.0717 0.1148 0.2158 0.3518 7.8147 9.3484 11.3449 12.8382
4 0.207 0.2971 0.4844 0.7107 9.4877 11.1433 13.2767 14.8603
5 0.4117 0.5543 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496
6 0.6757 0.8721 1.2373 1.6354 12.5916 14.4494 16.8119 18.5476
7 0.9893 1.239 1.6899 2.1673 14.0671 16.0128 18.4753 20.2777
8 1.3444 1.6465 2.1797 2.7326 15.5073 17.5345 20.0902 21.955
9 1.7349 2.0879 2.7004 3.3251 16.919 19.0228 21.666 23.5894

10 2.1559 2.5582 3.247 3.9403 18.307 20.4832 23.2093 25.1882
11 2.6032 3.0535 3.8157 4.5748 19.6751 21.92 24.725 26.7568
12 3.0738 3.5706 4.4038 5.226 21.0261 23.3367 26.217 28.2995
13 3.565 4.1069 5.0088 5.8919 22.362 24.7356 27.6882 29.8195
14 4.0747 4.6604 5.6287 6.5706 23.6848 26.1189 29.1412 31.3193
15 4.6009 5.2293 6.2621 7.2609 24.9958 27.4884 30.5779 32.8013
16 5.1422 5.8122 6.9077 7.9616 26.2962 28.8454 31.9999 34.2672
17 5.6972 6.4078 7.5642 8.6718 27.5871 30.191 33.4087 35.7185
18 6.2648 7.0149 8.2307 9.3905 28.8693 31.5264 34.8053 37.1565
19 6.844 7.6327 8.9065 10.117 30.1435 32.8523 36.1909 38.5823
20 7.4338 8.2604 9.5908 10.8508 31.4104 34.1696 37.5662 39.9968
21 8.0337 8.8972 10.2829 11.5913 32.6706 35.4789 38.9322 41.4011
22 8.6427 9.5425 10.9823 12.338 33.9244 36.7807 40.2894 42.7957
23 9.2604 10.1957 11.6886 13.0905 35.1725 38.0756 41.6384 44.1813
24 9.8862 10.8564 12.4012 13.8484 36.415 39.3641 42.9798 45.5585
25 10.5197 11.524 13.1197 14.6114 37.6525 40.6465 44.3141 46.9279
26 11.1602 12.1981 13.8439 15.3792 38.8851 41.9232 45.6417 48.2899
27 11.8076 12.8785 14.5734 16.1514 40.1133 43.1945 46.9629 49.6449
28 12.4613 13.5647 15.3079 16.9279 41.3371 44.4608 48.2782 50.9934
29 13.1211 14.2565 16.0471 17.7084 42.557 45.7223 49.5879 52.3356
30 13.7867 14.9535 16.7908 18.4927 43.773 46.9792 50.8922 53.672

40 20.7065 22.1643 24.433 26.5093 55.7585 59.3417 63.6907 66.766

60 35.5345 37.4849 40.4817 43.188 79.0819 83.2977 88.3794 91.9517

120 83.852 86.923 91.573 95.705 146.567 152.211 158.95 163.648

This table displays the values of χ2 for given p = Pr (C ≥ χ2) for number of degrees of freedom (DF) stated.

E.G. For p =0.05 and DF = 20, χ2 = 31.41.
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APPENDIX 4
The F Distribution

Degrees of Freedom for the Numerator

1 2 3 4 5 6 7 8 9

D
eg

re
es

 o
f 

Fr
ee

do
m

 f
or

 t
he

 D
en

om
in

at
or

1  4052.18  4999.5  5403.35  5624.58  5763.65  5858.99  5928.36  5981.07  6022.47
2 98.5025 99 99.1662 99.2494 99.2993 99.3326 99.3564 99.3742 99.3881
3 34.1162 30.8165 29.4567 28.7099 28.2371 27.9107 27.6717 27.4892 27.3452
4 21.1977 18 16.6944 15.977 15.5219 15.2069 14.9758 14.7989 14.6591
5 16.2582 13.2739 12.06 11.3919 10.967 10.6723 10.4555 10.2893 10.1578
6 13.745 10.9248 9.77954 9.1483 8.7459 8.46613 8.26 8.10165 7.97612
7 12.2464 9.54658 8.45129 7.84665 7.46044 7.1914 6.99283 6.84005 6.71875
8 11.2586 8.64911 7.59099 7.00608 6.63183 6.37068 6.17762 6.02887 5.91062
9 10.5614 8.02152 6.99192 6.42209 6.05694 5.80177 5.61287 5.46712 5.35113

10 10.0443 7.55943 6.55231 5.99434 5.63633 5.38581 5.20012 5.05669 4.94242
11 9.64603 7.20571 6.21673 5.6683 5.31601 5.06921 4.88607 4.74447 4.63154
12 9.33021 6.92661 5.95254 5.41195 5.06434 4.82057 4.6395 4.49937 4.38751
13 9.07381 6.70096 5.73938 5.20533 4.86162 4.62036 4.441 4.30206 4.19108
14 8.86159 6.51488 5.56389 5.03538 4.69496 4.45582 4.27788 4.13995 4.02968
15 8.68312 6.35887 5.41696 4.89321 4.55561 4.31827 4.14155 4.00445 3.89479
16 8.53097 6.22624 5.29221 4.77258 4.43742 4.20163 4.02595 3.88957 3.78042
17 8.39974 6.11211 5.185 4.66897 4.33594 4.10151 3.92672 3.79096 3.68224
18 8.28542 6.0129 5.09189 4.57904 4.24788 4.01464 3.84064 3.70542 3.59707
19 8.18495 5.92588 5.01029 4.50026 4.17077 3.93857 3.76527 3.63052 3.5225
20 8.09596 5.84893 4.93819 4.43069 4.10268 3.87143 3.69874 3.56441 3.45668
21 8.0166 5.78042 4.87405 4.36882 4.04214 3.81173 3.63959 3.50563 3.39815
22 7.94539 5.71902 4.81661 4.31343 3.98796 3.7583 3.58666 3.45303 3.34577
23 7.88113 5.6637 4.76488 4.26357 3.93919 3.71022 3.53902 3.40569 3.29863
24 7.82287 5.61359 4.71805 4.21845 3.89507 3.66672 3.49593 3.36287 3.25599
25 7.7698 5.568 4.67546 4.17742 3.85496 3.62717 3.45675 3.32394 3.21722

30 7.56248 5.39035 4.50974 4.01788 3.69902 3.47348 3.3045 3.17262 3.06652

40 7.3141 5.17851 4.31257 3.82829 3.51384 3.29101 3.12376 2.99298 2.88756

60 7.07711 4.97743 4.12589 3.64905 3.33888 3.11867 2.95305 2.82328 2.71845

120 6.85089 4.78651 3.9491 3.47953 3.17355 2.95585 2.79176 2.66291 2.55857

Areas in the Right Tail under the F Distribution Curve = 0.01.
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APPENDIX 4 (continued)
The F Distribution

Degrees of Freedom for the Numerator

10 12 15 20 24 30 40 60 120

D
eg

re
es

 o
f 

Fr
ee

do
m

 f
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 t
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 D
en

om
in

at
or

1  6055.85  6106.32  6157.28  6208.73  6234.63  6260.65  6286.78  6313.03  6339.39
2 99.3992 99.4159 99.4325 99.4492 99.4575 99.4658 99.4742 99.4825 99.4908
3 27.2287 27.0518 26.8722 26.6898 26.5975 26.5045 26.4108 26.3164 26.2211
4 14.5459 14.3736 14.1982 14.0196 13.9291 13.8377 13.7454 13.6522 13.5581
5 10.051 9.88828 9.72222 9.55265 9.46647 9.37933 9.29119 9.20201 9.11177
6 7.87412 7.71833 7.55899 7.39583 7.31272 7.22853 7.14322 7.05674 6.96902
7 6.62006 6.46909 6.31433 6.15544 6.07432 5.99201 5.90845 5.82357 5.73729
8 5.81429 5.66672 5.51512 5.35909 5.27926 5.19813 5.11561 5.03162 4.94605
9 5.25654 5.11143 4.96208 4.808 4.729 4.64858 4.56665 4.48309 4.39777

10 4.84915 4.70587 4.55814 4.40539 4.32693 4.24693 4.16529 4.08186 3.99648
11 4.53928 4.3974 4.25087 4.09905 4.02091 3.94113 3.85957 3.77607 3.69044
12 4.29605 4.15526 4.00962 3.85843 3.78049 3.70079 3.61918 3.53547 3.44944
13 4.10027 3.96033 3.81537 3.66461 3.58675 3.50704 3.42529 3.34129 3.25476
14 3.9394 3.80014 3.6557 3.50522 3.42739 3.3476 3.26564 3.18127 3.09419
15 3.80494 3.66624 3.52219 3.37189 3.29403 3.21411 3.13191 3.04713 2.95945
16 3.69093 3.55269 3.40895 3.25874 3.18081 3.10073 3.01825 2.93305 2.84474
17 3.59307 3.4552 3.31169 3.16152 3.0835 3.00324 2.92046 2.83481 2.74585
18 3.50816 3.37061 3.22729 3.0771 2.99897 2.91852 2.83542 2.74931 2.6597
19 3.43382 3.29653 3.15334 3.00311 2.92487 2.8442 2.76079 2.67421 2.58394
20 3.36819 3.23112 3.08804 2.93774 2.85936 2.77848 2.69475 2.60771 2.51678
21 3.30983 3.17295 3.02995 2.87956 2.80105 2.71995 2.6359 2.54839 2.45681
22 3.25761 3.12089 2.97795 2.82745 2.7488 2.66749 2.58311 2.49515 2.40292
23 3.2106 3.07402 2.93112 2.7805 2.70172 2.62019 2.5355 2.44708 2.35421
24 3.16807 3.03161 2.88873 2.738 2.65907 2.57733 2.49232 2.40346 2.30996
25 3.12941 2.99306 2.85019 2.69932 2.62026 2.53831 2.45299 2.36369 2.26956

30 2.97909 2.8431 2.70018 2.54866 2.46892 2.38597 2.29921 2.20785 2.11076

40 2.80055 2.66483 2.52162 2.36888 2.288 2.20338 2.11423 2.01941 1.91719

60 2.63175 2.49612 2.3523 2.19781 2.11536 2.02848 1.93602 1.83626 1.72632

120 2.47208 2.3363 2.1915 2.03459 1.95002 1.86001 1.76285 1.65569 1.53299

Areas in the Right Tail under the F Distribution Curve = 0.01.
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APPENDIX 4 (continued)
The F Distribution

Degrees of Freedom for the Numerator

1 2 3 4 5 6 7 8 9

D
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1  161.45  199.5  215.71  224.58  230.16  233.99  236.77  238.88  240.54
2 18.5128 19 19.1643 19.2468 19.2964 19.3295 19.3532 19.371 19.3848
3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452 8.8123
4 7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.041 5.9988
5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725
6 5.9874 5.1433 4.75706 4.53368 4.38737 4.28387 4.20666 4.1468 4.09902
7 5.5914 4.73741 4.34683 4.12031 3.97152 3.86597 3.78704 3.72573 3.67667
8 5.3177 4.45897 4.06618 3.83785 3.6875 3.58058 3.50046 3.4381 3.38813
9 5.1174 4.25649 3.86255 3.63309 3.48166 3.37375 3.29275 3.22958 3.17889

10 4.9646 4.10282 3.70826 3.47805 3.32583 3.21717 3.13546 3.07166 3.02038
11 4.84434 3.9823 3.58743 3.35669 3.20387 3.09461 3.01233 2.94799 2.89622
12 4.74723 3.88529 3.49029 3.25917 3.10588 2.99612 2.91336 2.84857 2.79638
13 4.66719 3.80557 3.41053 3.17912 3.02544 2.91527 2.8321 2.76691 2.71436
14 4.60011 3.73889 3.34389 3.11225 2.95825 2.84773 2.7642 2.69867 2.64579
15 4.54308 3.68232 3.28738 3.05557 2.90129 2.79046 2.70663 2.6408 2.58763
16 4.494 3.63372 3.23887 3.00692 2.85241 2.74131 2.6572 2.5911 2.53767
17 4.45132 3.59153 3.19678 2.96471 2.81 2.69866 2.6143 2.54796 2.49429
18 4.41387 3.55456 3.15991 2.92774 2.77285 2.6613 2.57672 2.51016 2.45628
19 4.38075 3.52189 3.12735 2.89511 2.74006 2.62832 2.54353 2.47677 2.4227
20 4.35124 3.49283 3.09839 2.86608 2.71089 2.59898 2.51401 2.44706 2.39281
21 4.32479 3.4668 3.07247 2.8401 2.68478 2.57271 2.48758 2.42046 2.36605
22 4.30095 3.44336 3.04912 2.81671 2.66127 2.54906 2.46377 2.3965 2.34194
23 4.27934 3.42213 3.028 2.79554 2.64 2.52766 2.44223 2.37481 2.32011
24 4.25968 3.40283 3.00879 2.77629 2.62065 2.50819 2.42263 2.35508 2.30024
25 4.2417 3.38519 2.99124 2.75871 2.60299 2.49041 2.40473 2.33706 2.2821

30 4.17088 3.31583 2.92228 2.68963 2.53355 2.42052 2.33434 2.26616 2.2107

40 4.08475 3.23173 2.83875 2.60597 2.44947 2.33585 2.24902 2.18017 2.12403

60 4.00119 3.15041 2.75808 2.52522 2.36827 2.25405 2.16654 2.09697 2.0401

120 3.92012 3.07178 2.68017 2.44724 2.28985 2.17501 2.08677 2.01643 1.95876

Areas in the Right Tail under the F Distribution Curve = 0.05.
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APPENDIX 4 (continued)
The F Distribution

Degrees of Freedom for the Numerator

10 12 15 20 24 30 40 60 120

D
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1  241.88  243.91  245.95  248.01  249.05  250.1  251.14  252.2  253.25
2 19.3959 19.4125 19.4291 19.4458 19.4541 19.4624 19.4707 19.4791 19.4874
3 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.572 8.5494
4 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.717 5.6877 5.6581
5 4.7351 4.6777 4.61876 4.55813 4.52715 4.49571 4.46379 4.43138 4.39845
6 4.05996 3.99994 3.93806 3.87419 3.84146 3.80816 3.77429 3.7398 3.70467
7 3.63652 3.57468 3.51074 3.44452 3.41049 3.37581 3.34043 3.30432 3.26745
8 3.34716 3.28394 3.21841 3.15032 3.11524 3.07941 3.04278 3.0053 2.96692
9 3.13728 3.07295 3.0061 2.93646 2.90047 2.86365 2.82593 2.78725 2.74752

10 2.97824 2.91298 2.84502 2.77402 2.73725 2.69955 2.66086 2.62108 2.58012
11 2.85362 2.78757 2.71864 2.64645 2.60897 2.57049 2.53091 2.49012 2.44802
12 2.75339 2.68664 2.61685 2.54359 2.50548 2.46628 2.42588 2.38417 2.34099
13 2.67102 2.60366 2.53311 2.45888 2.4202 2.38033 2.33918 2.2966 2.25241
14 2.60216 2.53424 2.463 2.3879 2.34868 2.30821 2.26635 2.22295 2.17781
15 2.54372 2.47531 2.40345 2.32754 2.28783 2.24679 2.20428 2.16011 2.11406
16 2.49351 2.42466 2.35222 2.27557 2.23541 2.19384 2.15071 2.10581 2.0589
17 2.44992 2.38065 2.30769 2.23035 2.18977 2.14771 2.104 2.05841 2.01066
18 2.4117 2.34207 2.26862 2.19065 2.14966 2.10714 2.06289 2.01664 1.9681
19 2.37793 2.30795 2.23406 2.1555 2.11414 2.07119 2.02641 1.97954 1.93024
20 2.34788 2.27758 2.20327 2.12416 2.08245 2.03909 1.99382 1.94636 1.89632
21 2.32095 2.25036 2.17567 2.09603 2.054 2.01025 1.96452 1.91649 1.86574
22 2.2967 2.22583 2.15078 2.07066 2.02832 1.9842 1.93802 1.88945 1.83802
23 2.27473 2.20361 2.12822 2.04764 2.00501 1.96054 1.91394 1.86484 1.81276
24 2.25474 2.18338 2.10767 2.02666 1.98376 1.93896 1.89195 1.84236 1.78964
25 2.23647 2.16489 2.08889 2.00747 1.96431 1.91919 1.8718 1.82173 1.7684

30 2.16458 2.09206 2.0148 1.93165 1.88736 1.84087 1.79179 1.73957 1.68345

40 2.07725 2.00346 1.92446 1.83886 1.79294 1.74443 1.6928 1.63725 1.57661

60 1.99259 1.9174 1.83644 1.74798 1.70012 1.64914 1.59427 1.53431 1.46727

120 1.91046 1.8337 1.7505 1.65868 1.60844 1.55434 1.4952 1.42901 1.35189

Areas in the Right Tail under the F Distribution Curve = 0.05.
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APPENDIX 4 (continued)
The F Distribution

Degrees of Freedom for the Numerator

1 2 3 4 5 6 7 8 9
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1 39.86 49.5 53.59 55.83 57.24 58.2 58.91 59.44 59.86
2 8.5263 9 9.1618 9.2434 9.2926 9.3255 9.3491 9.3668 9.3805
3 5.5383 5.4624 5.3908 5.3426 5.3092 5.2847 5.2662 5.2517 5.24
4 4.5448 4.3246 4.1909 4.1072 4.0506 4.0097 3.979 3.9549 3.9357
5 4.0604 3.7797 3.6195 3.5202 3.453 3.4045 3.3679 3.3393 3.3163
6 3.7759 3.4633 3.28876 3.18076 3.10751 3.05455 3.01446 2.98304 2.95774
7 3.5894 3.25744 3.07407 2.96053 2.88334 2.82739 2.78493 2.75158 2.72468
8 3.4579 3.11312 2.9238 2.80643 2.72645 2.66833 2.62413 2.58935 2.56124
9 3.3603 3.00645 2.81286 2.69268 2.61061 2.55086 2.50531 2.46941 2.44034

10 3.285 2.92447 2.72767 2.60534 2.52164 2.46058 2.41397 2.37715 2.34731
11 3.2252 2.85951 2.66023 2.53619 2.45118 2.38907 2.34157 2.304 2.2735
12 3.17655 2.8068 2.60552 2.4801 2.39402 2.33102 2.28278 2.24457 2.21352
13 3.13621 2.76317 2.56027 2.43371 2.34672 2.28298 2.2341 2.19535 2.16382
14 3.10221 2.72647 2.52222 2.39469 2.30694 2.24256 2.19313 2.1539 2.12195
15 3.07319 2.69517 2.48979 2.36143 2.27302 2.20808 2.15818 2.11853 2.08621
16 3.04811 2.66817 2.46181 2.33274 2.24376 2.17833 2.128 2.08798 2.05533
17 3.02623 2.64464 2.43743 2.30775 2.21825 2.15239 2.10169 2.06134 2.02839
18 3.00698 2.62395 2.41601 2.28577 2.19583 2.12958 2.07854 2.03789 2.00467
19 2.9899 2.60561 2.39702 2.2663 2.17596 2.10936 2.05802 2.0171 1.98364
20 2.97465 2.58925 2.38009 2.24893 2.15823 2.09132 2.0397 1.99853 1.96485
21 2.96096 2.57457 2.36489 2.23334 2.14231 2.07512 2.02325 1.98186 1.94797
22 2.94858 2.56131 2.35117 2.21927 2.12794 2.0605 2.0084 1.9668 1.93273
23 2.93736 2.54929 2.33873 2.20651 2.11491 2.04723 1.99492 1.95312 1.91888
24 2.92712 2.53833 2.32739 2.19488 2.10303 2.03513 1.98263 1.94066 1.90625
25 2.91774 2.52831 2.31702 2.18424 2.09216 2.02406 1.97138 1.92925 1.89469

30 2.88069 2.48872 2.27607 2.14223 2.04925 1.98033 1.92692 1.88412 1.84896

40 2.83535 2.44037 2.22609 2.09095 1.99682 1.92688 1.87252 1.82886 1.7929

60 2.79107 2.39325 2.17741 2.04099 1.94571 1.87472 1.81939 1.77483 1.73802

120 2.74781 2.34734 2.12999 1.9923 1.89587 1.82381 1.76748 1.72196 1.68425

Areas in the Right Tail under the F Distribution Curve = 0.10.
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APPENDIX 4 (continued)
The F Distribution

Degrees of Freedom for the Numerator

10 12 15 20 24 30 40 60 120
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1 60.19 60.71 61.22 61.74 62 62.26 62.53 62.79 63.06
2 9.3916 9.4081 9.4247 9.4413 9.4496 9.4579 9.4662 9.4746 9.4829
3 5.2304 5.2156 5.2003 5.1845 5.1764 5.1681 5.1597 5.1512 5.1425
4 3.9199 3.8955 3.8704 3.8443 3.831 3.8174 3.8036 3.7896 3.7753
5 3.2974 3.26824 3.23801 3.20665 3.19052 3.17408 3.15732 3.14023 3.12279
6 2.93693 2.90472 2.87122 2.83634 2.81834 2.79996 2.78117 2.76195 2.74229
7 2.70251 2.66811 2.63223 2.59473 2.57533 2.55546 2.5351 2.51422 2.49279
8 2.53804 2.50196 2.46422 2.42464 2.4041 2.38302 2.36136 2.3391 2.31618
9 2.41632 2.37888 2.33962 2.29832 2.27683 2.25472 2.23196 2.20849 2.18427

10 2.3226 2.28405 2.24351 2.20074 2.17843 2.15543 2.13169 2.10716 2.08176
11 2.24823 2.20873 2.16709 2.12305 2.10001 2.07621 2.05161 2.02612 1.99965
12 2.18776 2.14744 2.10485 2.05968 2.03599 2.01149 1.9861 1.95973 1.93228
13 2.13763 2.09659 2.05316 2.00698 1.98272 1.95757 1.93147 1.90429 1.87591
14 2.0954 2.05371 2.00953 1.96245 1.93766 1.91193 1.88516 1.85723 1.828
15 2.05932 2.01707 1.97222 1.92431 1.89904 1.87277 1.84539 1.81676 1.78672
16 2.02815 1.98539 1.93992 1.89127 1.86556 1.83879 1.81084 1.78156 1.75075
17 2.00094 1.95772 1.91169 1.86236 1.83624 1.80901 1.78053 1.75063 1.71909
18 1.97698 1.93334 1.88681 1.83685 1.81035 1.78269 1.75371 1.72322 1.69099
19 1.95573 1.9117 1.86471 1.81416 1.78731 1.75924 1.72979 1.69876 1.66587
20 1.93674 1.89236 1.84494 1.79384 1.76667 1.73822 1.70833 1.67678 1.64326
21 1.91967 1.87497 1.82715 1.77555 1.74807 1.71927 1.68896 1.65691 1.62278
22 1.90425 1.85925 1.81106 1.75899 1.73122 1.70208 1.67138 1.63885 1.60415
23 1.89025 1.84497 1.79643 1.74392 1.71588 1.68643 1.65535 1.62237 1.58711
24 1.87748 1.83194 1.78308 1.73015 1.70185 1.6721 1.64067 1.60726 1.57146
25 1.86578 1.82 1.77083 1.71752 1.68898 1.65895 1.62718 1.59335 1.55703

30 1.81949 1.7727 1.72227 1.66731 1.63774 1.60648 1.57323 1.53757 1.49891

40 1.76269 1.71456 1.66241 1.60515 1.57411 1.54108 1.50562 1.46716 1.42476

60 1.70701 1.65743 1.60337 1.54349 1.51072 1.47554 1.43734 1.3952 1.34757

120 1.65238 1.6012 1.545 1.48207 1.44723 1.40938 1.3676 1.32034 1.26457

Areas in the Right Tail under the F Distribution Curve = 0.10.
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APPENDIX 5A
Durbin–Watson Statistic: 1% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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APPENDIX 5A (continued)
Durbin–Watson Statistic: 1% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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APPENDIX 5A (continued)
Durbin–Watson Statistic: 1% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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APPENDIX 5A (continued)
Durbin–Watson Statistic: 1% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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APPENDIX 5B
Durbin–Watson Statistic: 5% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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APPENDIX 5B (continued)
Durbin–Watson Statistic: 5% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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APPENDIX 5B (continued)
Durbin–Watson Statistic: 5% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.



Appendices 299

APPENDIX 5B (continued)
Durbin–Watson Statistic: 5% Significance points of dL and dU

Note: k′ is the number of regressors excluding the intercept.

Source: N.E. Savin and K.J. White (1977), “The Durbin–Watson Test for Serial Correlation with Extreme Sample  
Sizes or Many Regressors”, Econometrica, 45, pp. 1992–1995. Reproduced with the permission of the Econometric  
Society.
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Adaptive expectations model, 94–96
Almon’s polynomial distributed lag scheme, 

85–90
ARIMA models, 206–210
Autocorrelation, 15, 57, 68–81

estimation in presence of, 75–78, 212–214
Cochrane-Orcutt procedure, 76–77
EViews procedure, 77–78
Hildreth-Lu procedure, 76–77

identification, 68–75
Durbin-Watson test, 71–75, 99–100

model specification and, 78–81
Autocovariance, 70, 213
Autoregressive distributed lag, 98–99, 171

B
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Box-Jenkins iterative cycle, 214–223
Box-Pierce test, 184, 185
Breusch-Godfrey test, 187–189

application, 190

C
Causality

cointegration and, 277–278
Granger test, 251–253
Sims test, 253–254
vector autoregression models and, 250–251

Chow test, 189–192
Cochrane-Orcutt procedure, see autocorrelation 
Cointegration, 257

causality and, 277–278
Engle-Granger two-step procedure, 262–264

illustration of, 263–264
strengths and weaknesses of, 266–268

Johansen procedure, 268–277
Cramer-Rao lower bound, 158–159

D
Data mining, 35
Dickey-Fuller test, 197–201, 200
Dickey-Pantula test, 202–204
Dummy variable trap, 52
Dummy variables, 51–55
Durbin-Watson test, 36, 71–75, 99–100, 296–302
Dynamic response, in multiple equation model, 

148–151

E
Economic model vs. econometric model, 3
Endogenous variables, 4, 9

lagged, 84
Engle-Granger two-step procedure, see 

cointegration
Error correction mechanism model, 94–96
Error term, 7–9

desirable properties, 8–9
Exogenous variables, 4, 9

lagged, 84

F
F Distribution, 289–295
Fisher’s information matrix, 171
Forecasting, 14

horizon, 223
with single equation model, 143
with vector autoregression

models, 238–240

G
Gauss-Markov theorem, 15–18
Generalized least squares, 57–63

consequences of using OLS in place of, 61–63
Goldfeld-Quandt test, see heteroscedasticity
Granger representation theorem, 278
Granger test of causality, see causality
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H
Heteroscedasticity, 63

estimation in presence of, 67–68
identification, 64–68

Goldfeld-Quandt test, 64–66
Koenker test, 66–67
White test for, 186–187

Hildreth-Lu procedure, see autocorrelation

I
Indirect least squares, 117

two stage least squares and, 128–129

J
Jarque-Bera test for normality, 182–184

illustration, 184
Johansen procedure, see cointegration

K
Keynesian-type open economy model, 3
Koenker test, see heteroscedasticity
Koyck transformation, 90–92

L
Lagrange multiplier test, 169–175
Least squares criterion, 10
Likelihood function, 157
Likelihood ratio test, 166–167
Linear regression model, 9–10

maximum likelihood estimation of,  
160–162

special case of two variables, 11–12
Ljung-Box test, 184, 185

application, 184, 185

M
Maximum likelihood, 155–162

properties of, 159–160
Mean absolute error, 137–138
Misspecification, 47–51

Ramsey’s reset test for, 179–182
Illustration 181-182

Multicollinearity
coefficient estimates and, 41
detection, 44–45
illustration, 45–47
nature of, 39–44
solution, 45

Multiple equation model, 4
dynamic response in, 148–151

N
Normality, Jarque-Bera test for, 182–184

O
Ordinary least squares, 28-35

confidence intervals, 28–31
goodness-of-fit, 26–28
reporting results, 36
residuals, 25
significance tests, 31–33
testing simultaneous nullity of slope 

coefficients, 33–35
consistency of, 105–106
GLS vs., 61–63
OLS and, 18

P
Parameter redundancy, 171, 173

test, 175
Parameter space, defining restrictions on, 163–165
Partial adjustment model, 92–94
Partial autocorrelation function, 210–212
Pseudo-collinearity, 41

R
Ramsey’s reset test for misspecification, see 

misspecification 
Random matrices, 221–22
Random variables, 20
Random vectors, 221–22
Root mean square error, 136–137

S
Seasonal ARIMA models, 223–233
Simulation, dynamic vs. static, 135–136
Simultaneous equation model, 4
Single equation model, 4

forecasting with, 143
Standard normal distribution, 287
Stationarity

concept, 193
strict, 195

Structural form, 115, 118, 189
Structural shifts, 189

T
t Distribution, 288
Theil decomposition, 138–140
Theil inequality coefficient, 138
Time-series data, 5, 23
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Two stage least squares estimator, 125-132 
consistency, 126–128
illustration of, 129–132
as instrumental variable estimator, 128
indirect least squares and, 128–129

U
Unit roots, 196–204

definition, 196–197
formal testing for, 197–204

Dickey-Fuller test, 197–201
Dickey-Pantula test, 202–204

informal approach to detection, 197

V

Vector autoregression models, 238-240
causality testing and, 250–251
estimation using EViews, 240
evaluation, 240–248
forecasting with, 248–250

Vector error correction model, 259–262

W
Wald test, 167–169
White noise, 9, 184–185
White test, see heteroscedasticity 




