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Foreword

If one invests in a financial asset today the return received at some pre-
specified point in the future should be considered as a random variable.
Such a variable can only be fully characterized by a distribution func-
tion or, more easily, by a density function. The main, single and most
important feature of the density is the expected or mean value, repre-
senting the location of the density. Around the mean is the uncertainty or
the volatility. If the realized returns are plotted against time, the jagged
oscillating appearance illustrates the volatility. This movement contains
both welcome elements, when surprisingly large returns occur, and also
certainly unwelcome ones, the returns far below the mean. The well-
known fact that a poor return can arise from an investment illustrates
the fact that investing can be risky and is why volatility is sometimes
equated with risk.

Volatility is itself a stock variable, having to be measured over a period
of time, rather than a flow variable, measurable at any instant of time.
Similarly, a stock price is a flow variable but a return is a stock variable.
Observed volatility has to be observed over stated periods of time, such
as hourly, daily, or weekly, say.

Having observed a time series of volatilities it is obviously interesting
to ask about the properties of the series: is it forecastable from its own
past, do other series improve these forecasts, can the series be mod-
eled conveniently and are there useful multivariate generalizations of
the results? Financial econometricians have been very inventive and in-
dustrious considering such questions and there is now a substantial and
often sophisticated literature in this area.

The present book by Professor Ser-Huang Poon surveys this literature
carefully and provides a very useful summary of the results available.
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By so doing, she allows any interested worker to quickly catch up with

the field and also to discover the areas that are still available for further
exploration.

Clive W.J. Granger

December 2004



Preface

Volatility forecasting is crucial for option pricing, risk management and
portfolio management. Nowadays, volatility has become the subject of
trading. There are now exchange-traded contracts written on volatility.
Financial market volatility also has a wider impact on financial regula-
tion, monetary policy and macroeconomy. This book is about financial
market volatility forecasting. The aim is to put in one place models, tools
and findings from a large volume of published and working papers from
many experts. The material presented in this book is extended from two
review papers (‘Forecasting Financial Market Volatility: A Review’ in
the Journal of Economic Literature,2003, 41,2, pp. 478-539, and ‘Prac-
tical Issues in Forecasting Volatility’ in the Financial Analysts Journal,
2005, 61, 1, pp. 45-56) jointly published with Clive Granger.

Since the main focus of this book is on volatility forecasting perfor-
mance, only volatility models that have been tested for their forecasting
performance are selected for further analysis and discussion. Hence, this
book is oriented towards practical implementations. Volatility models
are not pure theoretical constructs. The practical importance of volatil-
ity modelling and forecasting in many finance applications means that
the success or failure of volatility models will depend on the charac-
teristics of empirical data that they try to capture and predict. Given
the prominent role of option price as a source of volatility forecast, I
have also devoted much effort and the space of two chapters to cover
Black—Scholes and stochastic volatility option pricing models.

This book is intended for first- and second-year finance PhD students
and practitioners who want to implement volatility forecasting models
but struggle to comprehend the huge volume of volatility research. Read-
ers who are interested in more technical aspects of volatility modelling



XVi Preface

could refer to, for example, Gourieroux (1997) on ARCH models,
Shephard (2003) on stochastic volatility and Fouque, Papanicolaou and
Sircar (2000) on stochastic volatility option pricing. Books that cover
specific aspects or variants of volatility models include Franses and van
Dijk (2000) on nonlinear models, and Beran (1994) and Robinson (2003)
on long memory models. Specialist books that cover financial time se-
ries modelling in a more general context include Alexander (2001),
Tsay (2002) and Taylor (2005). There are also a number of edited series
that contain articles on volatility modelling and forecasting, e.g. Rossi
(1996), Knight and Satchell (2002) and Jarrow (1998).

I am very grateful to Clive for his teaching and guidance in the last
few years. Without his encouragement and support, our volatility survey
works and this book would not have got started. I would like to thank all
my co-authors on volatility research, in particular Bevan Blair, Namwon
Hyung, Eric Jondeau, Martin Martens, Michael Rockinger, Jon Tawn,
Stephen Taylor and Konstantinos Vonatsos. Much of the writing here
reflects experience gained from joint work with them.



1
Volatility Definition and

Estimation

1.1 WHAT IS VOLATILITY?

It is useful to start with an explanation of what volatility is, at least
for the purpose of clarifying the scope of this book. Volatility refers
to the spread of all likely outcomes of an uncertain variable. Typically,
in financial markets, we are often concerned with the spread of asset
returns. Statistically, volatility is often measured as the sample standard
deviation

T

~ 1
6= |5 i —w’ (1.1

t=1

where r; is the return on day ¢, and w is the average return over the 7 -day
period.

Sometimes, variance, o -, is used also as a volatility measure. Since
variance is simply the square of standard deviation, it makes no differ-
ence whichever measure we use when we compare the volatility of two
assets. However, variance is much less stable and less desirable than
standard deviation as an object for computer estimation and volatility
forecast evaluation. Moreover standard deviation has the same unit of
measure as the mean, i.e. if the mean is in dollar, then standard devi-
ation is also expressed in dollar whereas variance will be expressed in
dollar square. For this reason, standard deviation is more convenient and
intuitive when we think about volatility.

Volatility is related to, but not exactly the same as, risk. Risk is associ-
ated with undesirable outcome, whereas volatility as a measure strictly
for uncertainty could be due to a positive outcome. This important dif-
ference is often overlooked. Take the Sharpe ratio for example. The
Sharpe ratio is used for measuring the performance of an investment by
comparing the mean return in relation to its ‘risk’ proxy by its volatility.

2



2 Forecasting Financial Market Volatility

The Sharpe ratio is defined as

Average |  (Risk-free interest
return, (U rate, e.g. T-bill rate

Standard deviation of returns, o

Sharpe ratio =

The notion is that a larger Sharpe ratio is preferred to a smaller one. An
unusually large positive return, which is a desirable outcome, could lead
to a reduction in the Sharpe ratio because it will have a greater impact
on the standard deviation, o, in the denominator than the average return,
I, in the numerator.

More importantly, the reason that volatility is not a good or perfect
measure for risk is because volatility (or standard deviation) is only
a measure for the spread of a distribution and has no information on
its shape. The only exception is the case of a normal distribution or a
lognormal distribution where the mean, i, and the standard deviation,
o, are sufficient statistics for the entire distribution, i.e. with y and o
alone, one is able to reproduce the empirical distribution.

This book is about volatility only. Although volatility is not the sole
determinant of asset return distribution, it is a key input to many im-
portant finance applications such as investment, portfolio construction,
option pricing, hedging, and risk management. When Clive Granger and
I completed our survey paper on volatility forecasting research, there
were 93 studies on our list plus several hundred non-forecasting papers
written on volatility modelling. At the time of writing this book, the
number of volatility studies is still rising and there are now about 120
volatility forecasting papers on the list. Financial market volatility is a
‘live’ subject and has many facets driven by political events, macroecon-
omy and investors’ behaviour. This book will elaborate some of these
complexities that kept the whole industry of volatility modelling and
forecasting going in the last three decades. A new trend now emerging
is on the trading and hedging of volatility. The Chicago Board of Ex-
change (CBOE) for example has started futures trading on a volatility
index. Options on such futures contracts are likely to follow. Volatility
swap contracts have been traded on the over-the-counter market well
before the CBOE’s developments. Previously volatility was an input to
a model for pricing an asset or option written on the asset. It is now the
principal subject of the model and valuation. One can only predict that
volatility research will intensify for at least the next decade.
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1.2 FINANCIAL MARKET STYLIZED FACTS

To give a brief appreciation of the amount of variation across different
financial assets, Figure 1.1 plots the returns distributions of a normally

(a) Normal N(0,1) (b) Daily returns on S&P100
Jan 1965 — Jul 2003

-4 3 2 1 0 1 2 3 4 5 5 43 -2-10 1 2 3 4 5

(c) £ vs. yen daily exchange rate returns  (d) Daily returns on Legal & General share
Sep 1971 — Jul 2003 Jan 1969 — Jul 2003

4 10
(e) Daily returns on UK Small Cap Index (f) Daily returns on silver

Jan 1986 — Jul 2003 Aug 1971 — Jul 2003
-4 -3 -2 -1 0 1 2 3 4 -10 -5 0 5 10

Figure 1.1 Distribution of daily financial market returns. (Note: the dotted line is
the distribution of a normal random variable simulated using the mean and standard
deviation of the financial asset returns)
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distributed random variable, and the respective daily returns on the US
Standard and Poor market index (S&P100),' the yen—sterling exchange
rate, the share of Legal & General (a major insurance company in the
UK), the UK Index for Small Capitalisation Stocks (i.e. small compa-
nies), and silver traded at the commodity exchange. The normal distri-
bution simulated using the mean and standard deviation of the financial
asset returns is drawn on the same graph to facilitate comparison.

From the small selection of financial asset returns presented in Fig-
ure 1.1, we notice several well-known features. Although the asset re-
turns have different degrees of variation, most of them have long ‘tails’ as
compared with the normally distributed random variable. Typically, the
asset distribution and the normal distribution cross at least three times,
leaving the financial asset returns with a longer left tail and a higher peak
in the middle. The implications are that, for a large part of the time, finan-
cial asset returns fluctuate in a range smaller than a normal distribution.
But there are some occasions where financial asset returns swing in a
much wider scale than that permitted by a normal distribution. This phe-
nomenon is most acute in the case of UK Small Cap and silver. Table 1.1
provides some summary statistics for these financial time series.

The normally distributed variable has a skewness equal to zero and
a kurtosis of 3. The annualized standard deviation is simply +/2520,
assuming that there are 252 trading days in a year. The financial asset
returns are not adjusted for dividend. This omission is not likely to have
any impact on the summary statistics because the amount of dividends
distributed over the year is very small compared to the daily fluctuations
of asset prices. From Table 1.1, the Small Cap Index is the most nega-
tively skewed, meaning that it has a longer left tail (extreme losses) than
right tail (extreme gains). Kurtosis is a measure for tail thickness and
it is astronomical for S&P100, Small Cap Index and silver. However,
these skewness and kurtosis statistics are very sensitive to outliers. The
skewness statistic is much closer to zero, and the amount of kurtosis
dropped by 60% to 80%, when the October 1987 crash and a small
number of outliers are excluded.

Another characteristic of financial market volatility is the time-
varying nature of returns fluctuations, the discovery of which led to
Rob Engle’s Nobel Prize for his achievement in modelling it. Figure 1.2
plots the time series history of returns of the same set of assets presented

! The data for S&P100 prior to 1986 comes from S&P500. Adjustments were made when the two series were
grafted together.
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Volatility Definition and Estimation 7

in Figure 1.1. The amplitude of the returns fluctuations represents the
amount of variation with respect to a short instance in time. It is clear
from Figures 1.2(b) to (f) that fluctuations of financial asset returns are
‘lumpier’ in contrast to the even variations of the normally distributed
variable in Figure 1.2(a). In the finance literature, this ‘lumpiness’ is
called volatility clustering. With volatility clustering, a turbulent trad-
ing day tends to be followed by another turbulent day, while a tranquil
period tends to be followed by another tranquil period. Rob Engle (1982)
is the first to use the ARCH (autoregressive conditional heteroscedastic-
ity) model to capture this type of volatility persistence; ‘autoregressive’
because high/low volatility tends to persist, ‘conditional’ means time-
varying or with respect to a point in time, and ‘heteroscedasticity’ is a
technical jargon for non-constant volatility.?

There are several salient features about financial market returns and
volatility that are now well documented. These include fat tails and
volatility clustering that we mentioned above. Other characteristics doc-
umented in the literature include:

(i) Asset returns, r,, are not autocorrelated except possibly at lag one
due to nonsynchronous or thin trading. The lack of autocorrelation
pattern in returns corresponds to the notion of weak form market
efficiency in the sense that returns are not predictable.

(ii) The autocorrelation function of |r,| and r? decays slowly and
corr (|ry|, |ri—1]) > corr (rtz, rtz_]). The decay rate of the auto-
correlation function is much slower than the exponential rate of
a stationary AR or ARMA model. The autocorrelations remain
positive for very long lags. This is known as the long memory
effect of volatility which will be discussed in greater detail in

Chapter 5. In the table below, we give a brief taste of the finding:

Yolrh X X pdnlrl) X p(Tr)

S&P100 35.687 3912 27.466 41.930
Yen/£ 4.111 1.108 0.966 5.718
L&G 25.898 14.767 29.907 28.711
Small Cap  25.381 3.712 35.152 38.631
Silver 45.504 8.275 88.706 60.545

21t is worth noting that the ARCH effect appears in many time series other than financial time series. In fact
Engle’s (1982) seminal work is illustrated with the UK inflation rate.



8 Forecasting Financial Market Volatility

(iii) The numbers reported above are the sum of autocorrelations for the
first 1000 lags. The last column, p(]T'r|), is the autocorrelation of
absolute returns after the most extreme 1% tail observations were
truncated. Let 799, and rg.99 be the 98% confidence interval of the
empirical distribution,

Tr = Min|r, rog9], or Max|[r, ro.o1] . (1.2)

The effect of such an outlier truncation is discussed in Huber (1981).
The results reported in the table show that suppressing the large
numbers markedly increases the long memory effect.

(iv) Autocorrelation of powers of an absolute return are highest at power
one: corr (|r¢], |ri—1]) > corr (rtd, rtd_l), d # 1. Granger and Ding
(1995) call this property the Taylor effect, following Taylor (1986).
We showed above that other means of suppressing large numbers
could make the memory last longer. The absolute returns || and
squared returns > are proxies of daily volatility. By analysing the
more accurate volatility estimator, we note that the strongest auto-
correlation pattern is observed among realized volatility. Figure 1.3
demonstrates this convincingly.

(v) Volatility asymmetry: it has been observed that volatility increases if
the previous day returns are negative. This is known as the leverage
effect (Black, 1976; Christie, 1982) because the fall in stock price
causes leverage and financial risk of the firm to increase. The phe-
nomenon of volatility asymmetry is most marked during large falls.
The leverage effect has not been tested between contemporaneous
returns and volatility possibly due to the fact that it is the previ-
ous day residuals returns (and its sign dummy) that are included
in the conditional volatility specification in many models. With the
availability of realized volatility, we find a similar, albeit slightly
weaker, relationship in volatility and the sign of contemporaneous
returns.

(vi) The returns and volatility of different assets (e.g. different company
shares) and different markets (e.g. stock vs. bond markets in one
or more regions) tend to move together. More recent research finds
correlation among volatility is stronger than that among returns and
both tend to increase during bear markets and financial crises.

The art of volatility modelling is to exploit the time series proper-
ties and stylized facts of financial market volatility. Some financial time
series have their unique characteristics. The Korean stock market, for
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(a) Autocorrelation of daily returns on S&P100

(b) Autocorrelation of daily squared returns on S&P100

(c) Autocorrelation of daily absolute returns on S&P100

Figure 1.3 Aurocorrelation of daily returns and proxies of daily volatility of S&P100.
(Note: dotted lines represent two standard errors)

example, clearly went through a regime shift with a much higher volatil-
ity level after 1998. Many of the Asian markets have behaved differently
since the Asian crisis in 1997. The difficulty and sophistication of volatil-
ity modelling lie in the controlling of these special and unique features
of each individual financial time series.
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1.3 VOLATILITY ESTIMATION

Consider a time series of returns r;, t = 1,---, T, the standard de-
viation, o, in (1.1) is the unconditional volatility over the T period.
Since volatility does not remain constant through time, the conditional
volatility, o; ; is a more relevant information for asset pricing and risk
management at time #. Volatility estimation procedure varies a great deal
depending on how much information we have at each sub-interval ¢, and
the length of 7, the volatility reference period. Many financial time series
are available at the daily interval, while t could vary from 1 to 10 days
(for risk management), months (for option pricing) and years (for in-
vestment analysis). Recently, intraday transaction data has become more
widely available providing a channel for more accurate volatility esti-
mation and forecast. This is the area where much research effort has
been concentrated in the last two years.

When monthly volatility is required and daily data is available,
volatility can simply be calculated using Equation (1.1). Many macro-
economic series are available only at the monthly interval, so the current
practice is to use absolute monthly value to proxy for macro volatility.
The same applies to financial time series when a daily volatility estimate
is required and only daily data is available. The use of absolute value
to proxy for volatility is the equivalent of forcing 7 = 1 and & = 0 in
Equation (1.1). Figlewski (1997) noted that the statistical properties of
the sample mean make it a very inaccurate estimate of the true mean es-
pecially for small samples. Taking deviations around zero instead of the
sample mean as in Equation (1.1) typically increases volatility forecast
accuracy.

The use of daily return to proxy daily volatility will produce a very
noisy volatility estimator. Section 1.3.1 explains this in a greater detail.
Engle (1982) was the first to propose the use of an ARCH (autoregres-
sive conditional heteroscedasticity) model below to produce conditional
volatility for inflation rate 7;

e =Wn+ &, <9t"“N<0»\/l’Tt)-

& = 2y hy,

hy=w+oaie] | +are; 5+ (1.3)
The ARCH model is estimated by maximizing the likelihood of {e,}.

This approach of estimating conditional volatility is less noisy than the
absolute return approach but it relies on the assumption that (1.3) is the
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true return-generating process, ¢; is Gaussian and the time series is long
enough for such an estimation.

While Equation (1.1) is an unbiased estimator for o2, the square root
of &2 is a biased estimator for o due to Jensen inequality.’ Ding, Granger
and Engle (1993) suggest measuring volatility directly from absolute re-
turns. Davidian and Carroll (1987) show absolute returns volatility spec-
ification is more robust against asymmetry and nonnormality. There is
some empirical evidence that deviations or absolute returns based mod-
els produce better volatility forecasts than models that are based on
squared returns (Taylor, 1986; Ederington and Guan, 2000a; McKenzie,
1999). However, the majority of time series volatility models, especially
the ARCH class models, are squared returns models. There are methods
for estimating volatility that are designed to exploit or reduce the influ-
ence of extremes.* Again these methods would require the assumption
of a Gaussian variable or a particular distribution function for returns.

1.3.1 Using squared return as a proxy for daily volatility

Volatility is a latent variable. Before high-frequency data became widely
available, many researchers have resorted to using daily squared returns,
calculated from market daily closing prices, to proxy daily volatility.
Lopez (2001) shows that €2 is an unbiased but extremely imprecise
estimator of o2 due to its asymmetric distribution. Let

Yi=pn+e¢&, & =0z, (1.4)
and z; ~ N (0, 1). Then
E[ef|®_1] =0 E[z}| ®i1] = 0}
since z; ~ x(,. However, since the median of a x 3, distribution is 0.455,

g? is less than 107

1,3 13
Pr (83 € [Eaf, 503]) =Pr <z,2 € |:§ 5]) = 0.2588,

which means that &7 is 50% greater or smaller than o nearly 75% of
the time!

more than 50% of the time. In fact

3If r, ~ N (0,0?), then E (|r;|) = 0,4/2/m. Hence, G, = |r;|/+/2/7 if r; has a conditional normal distri-
bution.

* For example, the maximum likelihood method proposed by Ball and Torous (1984), the high—low method
proposed by Parkinson (1980) and Garman and Klass (1980).
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Under the null hypothesis that returns in (1.4) are generated by a
GARCH(1,1) process, Andersen and Bollerslev (1998) show that the
population R? for the regression

2 ~2
e =a+ po; +u

is equal to k ~! where « is the kurtosis of the standardized residuals and «
is finite. For conditional Gaussian error, the R? from a correctly specified
GARCH(1,1) model cannot be greater than 1/3. For thick tail distribu-
tion, the upper bound for R? is lower than 1/3. Christodoulakis and
Satchell (1998) extend the results to include compound normals and the
Gram—Charlier class of distributions confirming that the mis-estimation
of forecast performance is likely to be worsened by nonnormality known
to be widespread in financial data.

Hence, the use of & as a volatility proxy will lead to low R? and under-
mine the inference on forecast accuracy. Blair, Poon and Taylor (2001)
report an increase of R? by three to four folds for the 1-day-ahead fore-
cast when intraday 5-minutes squared returns instead of daily squared
returns are used to proxy the actual volatility. The R? of the regression
of |&| on o;"" is 28.5%. Extra caution is needed when interpreting em-
pirical findings in studies that adopt such a noisy volatility estimator.
Figure 1.4 shows the time series of these two volatility estimates over
the 7-year period from January 1993 to December 1999. Although the
overall trends look similar, the two volatility estimates differ in many
details.

1.3.2 Using the high-low measure to proxy volatility

The high—low, also known as the range-based or extreme-value, method
of estimating volatility is very convenient because daily high, low, open-
ing and closing prices are reported by major newspapers, and the cal-
culation is easy to program using a hand-held calculator. The high—low
volatility estimator was studied by Parkinson (1980), Garman and Klass
(1980), Beckers (1993), Rogers and Satchell (1991), Wiggins (1992),
Rogers, Satchell and Yoon (1994) and Alizadeh, Brandt and Diebold
(2002). It is based on the assumption that return is normally distributed
with conditional volatility o;. Let H, and L, denote, respectively, the
highest and the lowest prices on day ¢. Applying the Parkinson (1980)
H-L measure to a price process that follows a geometric Brownian
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(a) Conditional variance proxied by daily squared returns
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Figure 1.4 S&P100 daily volatility for the period from January 1993 to December
1999

motion results in the following volatility estimator (Bollen and Inder,
2002):

_, (InH, —1InL,)?
o, = ——————
4In2

The Garman and Klass (1980) estimator is an extension of Parkinson
(1980) where information about opening, p,_;, and closing, p;, prices
are incorporated as follows:

H 2 p 2
62=0.5 (ln L—’) —0.39 <ln d )
t Pi—1

We have already shown that financial market returns are not likely to
be normally distributed and have a long tail distribution. As the H-L
volatility estimator is very sensitive to outliers, it will be useful to ap-
ply the trimming procedures in Section 1.4. Provided that there are no
destabilizing large values, the H-L volatility estimator is very efficient
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and, unlike the realized volatility estimator introduced in the next sec-
tion, it is least affected by market microstructure effect.

1.3.3 Realized volatility, quadratic variation and jumps

More recently and with the increased availability of tick data, the term
realized volatility is now used to refer to volatility estimates calculated
using intraday squared returns at short intervals such as 5 or 15 minutes.’
For a series that has zero mean and no jumps, the realized volatility con-
verges to the continuous time volatility. To understand this, we assume
for the ease of exposition that the instantaneous returns are generated by
the continuous time martingale,

dp; = o:dW;, (L.5)

where dW, denotes a standard Wiener process. From (1.5) the con-
ditional variance for the onme-period returns, r,4i = p;+1 — ps, 1S
fttH oszds which is known as the integrated volatility over the period ¢
to ¢ + 1. Note that while asset price p, can be observed at time ¢, the
volatility o, is an unobservable latent variable that scales the stochastic
process d W, continuously through time.

Let m be the sampling frequency such that there are m continuously
compounded returns in one unit of time and

T'mt = Pt — Dt— 1/m (16)
and realized volatility
Z 2
RVt-H = rm,t+j/m'
j=lm

If the discretely sampled returns are serially uncorrelated and the sample
path for o, is continuous, it follows from the theory of quadratic variation
(Karatzas and Shreve, 1988) that

t+1
: 2 2 _
pmh_r)rcl)o / o;ds — E Tt jfm | = 0.
t j=Lmm

Hence time ¢ volatility is theoretically observable from the sample path
of the return process so long as the sampling process is frequent enough.

3 See Fung and Hsieh (1991) and Andersen and Bollerslev (1998). In the foreign exchange markets, quotes
for major exchange rates are available round the clock. In the case of stock markets, close-to-open squared return
is used in the volatility aggregation process during market close.
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When there are jumps in price process, (1.5) becomes
dp; = 0,dW,; + Kk, dq;,

where dg; is a Poisson process with dg, = 1 corresponding to a jump at
time ¢, and zero otherwise, and «; is the jump size at time ¢ when there
is a jump. In this case, the quadratic variation for the cumulative return
process is then given by

t+1
f olds + Y K (s), (1.7)

t<s<t+1

which is the sum of the integrated volatility and jumps.

In the absence of jumps, the second term on the right-hand side of (1.7)
disappears, and the quadratic variation is simply equal to the integrated
volatility. In the presence of jumps, the realized volatility continues to
converge to the quadratic variation in (1.7)

t+1 m
p lim / olds+ Y « (s)—Zm,+,/m =0. (1.8
t

t<s<t+1 j=1

Barndorff-Nielsen and Shephard (2003) studied the property of the stan-
dardized realized bipower variation measure

m—
b] b)/2—1 Z a b
BVn[zaH_ = pllet+b)/2-1] |rm,t+j/m| |rm,t+(j+1)/m| , a,b>0.
Jj=1

They showed that when jumps are large but rare, the simplest case where
a=b=1,

t
WEBV, = MIZZ [P ] [ Gvym| = f
t

where ©; = «/2/m. Hence, the realized volatility and the realized
bipower variation can be substituted into (1.8) to estimate the jump
component, ;. Barndorff-Nielsen and Shephard (2003) suggested im-
posing a nonnegative constraint on «,. This is perhaps too restrictive.
For nonnegative volatility, «, + ,usz Vi > 0 will be sufficient.
Characteristics of financial market data suggest that returns measured
at an interval shorter than 5 minutes are plagued by spurious serial
correlation caused by various market microstructure effects including
nonsynchronous trading, discrete price observations, intraday periodic
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volatility patterns and bid—ask bounce.® Bollen and Inder (2002), Ait-
Sahalia, Mykland and Zhang (2003) and Bandi and Russell (2004) have
given suggestions on how to isolate microstructure noise from realized
volatility estimator.

1.3.4 Scaling and actual volatility

The forecast of multi-period volatility o7 7. ; (i.e. for j period) is taken to
be the sum of individual multi-step point forecasts X;_ A7 jjr. These
multi-step point forecasts are produced by recursive substitution and
using the fact that &7, = hyiyr for i >0 and &7, , = &}, for
T 4+ i < 0. Since volatility of financial time series has complex struc-
ture, Diebold, Hickman, Inoue and Schuermann (1998) warn that fore-
cast estimates will differ depending on the current level of volatility,
volatility structure (e.g. the degree of persistence and mean reversion
etc.) and the forecast horizon.

If returns are iid (independent and identically distributed, or strict
white noise), then variance of returns over a long horizon can be derived
as a simple multiple of single-period variance. But, this is clearly not the
case for many financial time series because of the stylized facts listed in
Section 1.2. While a point forecast of 6 7_1 7 |,—1 becomes very noisy
as T — oo, a cumulative forecast, o, r;—1, becomes more accurate
because of errors cancellation and volatility mean reversion except when
there is a fundamental change in the volatility level or structure.’

Complication in relation to the choice of forecast horizon is partly
due to volatility mean reversion. In general, volatility forecast accu-
racy improves as data sampling frequency increases relative to forecast
horizon (Andersen, Bollerslev and Lange, 1999). However, for forecast-
ing volatility over a long horizon, Figlewski (1997) finds forecast error
doubled in size when daily data, instead of monthly data, is used to fore-
cast volatility over 24 months. In some cases, where application is of
very long horizon e.g. over 10 years, volatility estimate calculated using

% The bid-ask bounce for example induces negative autocorrelation in tick data and causes the realized
volatility estimator to be upwardly biased. Theoretical modelling of this issue so far assumes the price process
and the microstructure effect are not correlated, which is open to debate since market microstructure theory
suggests that trading has an impact on the efficient price. I am grateful to Frank de Jong for explaining this to me
at a conference.

TGt |1—1 denotes a volatility forecast formulated at time ¢ — 1 for volatility over the period from ¢ to 7'. In
pricing options, the required volatility parameter is the expected volatility over the life of the option. The pricing
model relies on a riskless hedge to be followed through until the option reaches maturity. Therefore the required
volatility input, or the implied volatility derived, is a cumulative volatility forecast over the option maturity and
not a point forecast of volatility at option maturity. The interest in forecasting o', 7 |,—1 goes beyond the riskless
hedge argument, however.
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weekly or monthly data is better because volatility mean reversion is
difficult to adjust using high frequency data. In general, model-based
forecasts lose supremacy when the forecast horizon increases with re-
spect to the data frequency. For forecast horizons that are longer than
6 months, a simple historical method using low-frequency data over a
period at least as long as the forecast horizon works best (Alford and
Boatsman, 1995; and Figlewski, 1997).

As far as sampling frequency is concerned, Drost and Nijman (1993)
prove, theoretically and for a special case (i.e. the GARCH(1,1) process,
which will be introduced in Chapter 4), that volatility structure should be
preserved through intertemporal aggregation. This means that whether
one models volatility at hourly, daily or monthly intervals, the volatility
structure should be the same. But, it is well known that this is not the
case in practice; volatility persistence, which is highly significant in
daily data, weakens as the frequency of data decreases. 3 This further
complicates any attempt to generalize volatility patterns and forecasting
results.

1.4 THE TREATMENT OF LARGE NUMBERS

In this section, I use large numbers to refer generally to extreme values,
outliers and rare jumps, a group of data that have similar characteristics
but do not necessarily belong to the same set. To a statistician, there are
always two ‘extremes’ in each sample, namely the minimum and the
maximum. The H-L method for estimating volatility described in the
previous section, for example, is also called the extreme value method.
We have also noted that these H-L estimators assume conditional dis-
tribution is normal. In extreme value statistics, normal distribution is but
one of the distributions for the tail. There are many other extreme value
distributions that have tails thinner or thicker than the normal distribu-
tion’s. We have known for a long time now that financial asset returns are
not normally distributed. We also know the standardized residuals from
ARCH models still display large kurtosis (see McCurdy and Morgan,
1987; Milhoj, 1987; Hsieh, 1989; Baillie and Bollerslev, 1989). Con-
ditional heteroscedasticity alone could not account for all the tail thick-
ness. This is true even when the Student-# distribution is used to construct

8 See Diebold (1988), Baillie and Bollerslev (1989) and Poon and Taylor (1992) for examples. Note that
Nelson (1992) points out separately that as the sampling frequency becomes shorter, volatility modelled using
discrete time model approaches its diffusion limit and persistence is to be expected provided that the underlying
returns is a diffusion or a near-diffusion process with no jumps.
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the likelihood function (see Bollerslev, 1987; Hsieh, 1989). Hence, in the
literature, the extreme values and the tail observations often refer to those
data that lie outside the (conditional) Gaussian region. Given that jumps
are large and are modelled as a separate component to the Brownian
motion, jumps could potentially be seen as a set similar to those tail
observations provided that they are truly rare.

Outliers are by definition unusually large in scale. They are so large
that some have argued that they are generated from a completely dif-
ferent process or distribution. The frequency of occurrence should be
much smaller for outliers than for jumps or extreme values. Outliers
are so huge and rare that it is very unlikely that any modelling effort
will be able to capture and predict them. They have, however, undue
influence on modelling and estimation (Huber, 1981). Unless extreme
value techniques are used where scale and marginal distribution are of-
ten removed, it is advisable that outliers are removed or trimmed before
modelling volatility. One such outlier in stock market returns is the Oc-
tober 1987 crash that produced a 1-day loss of over 20% in stock markets
worldwide.

The ways that outliers have been tackled in the literature largely de-
pend on their sizes, the frequency of their occurrence and whether these
outliers have an additive or a multiplicative impact. For the rare and
additive outliers, the most common treatment is simply to remove them
from the sample or omit them in the likelihood calculation (Kearns and
Pagan, 1993). Franses and Ghijsels (1999) find forecasting performance
of the GARCH model is substantially improved in four out of five stock
markets studied when the additive outliers are removed. For the rare
multiplicative outliers that produced a residual impact on volatility, a
dummy variable could be included in the conditional volatility equation
after the outlier returns has been dummied out in the mean equation
(Blair, Poon and Taylor, 2001).

re=Wn+vY1D + &, Et:mzt
hi =+ Bh_ +ag’ | + YD,

where D, is 1 when ¢ refers to 19 October 1987 and O otherwise. Per-
sonally, I find a simple method such as the trimming rule in (1.2) very
quick to implement and effective.

The removal of outliers does not remove volatility persistence. In fact,
the evidence in the previous section shows that trimming the data using
(1.2) actually increases the ‘long memory’ in volatility making it appear
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to be extremely persistent. Since autocorrelation is defined as
Cov(ri,ri—1)
Var (ry)

the removal of outliers has a great impact on the denominator, reduces
Var (r;) and increases the individual and the cumulative autocorrelation
coefficients.

Once the impact of outliers is removed, there are different views about
how the extremes and jumps should be handled vis-a-vis the rest of the
data. There are two schools of thought, each proposing a seemingly
different model, and both can explain the long memory in volatility. The
first believes structural breaks in volatility cause mean level of volatility
to shift up and down. There is no restriction on the frequency or the size
of the breaks. The second advocates the regime-switching model where
volatility switches between high and low volatility states. The means of
the two states are fixed, but there is no restriction on the timing of the
switch, the duration of each regime and the probability of switching.
Sometimes a three-regime switching is adopted but, as the number of
regimes increases, the estimation and modelling become more complex.
Technically speaking, if there are infinite numbers of regimes then there
is no difference between the two models. The regime-switching model
and the structural break model will be described in Chapter 5.

pri,ri—) =
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Volatility Forecast Evaluation

Comparing forecasting performance of competing models is one of the
most important aspects of any forecasting exercise. In contrast to the
efforts made in the construction of volatility models and forecasts, little
attention has been paid to forecast evaluation in the volatility forecasting
literature. Let /)?, be the predicted variable, X, be the actual outcome and
& = 3?, — X, be the forecast error. In the context of volatility forecast,
X ¢ and X, are the predicted and actual conditional volatility. There are
many issues to consider:

(i) The form of X,: should it be o* or o,?

(i) Given that volatility is a latent variable, the impact of the noise
introduced in the estimation of X, the actual volatility.

(iii) Which form of ¢, is more relevant for volatility model selection;
Zstz, X |&| or Xle|/X,? Do we penalize underforecast, X, < X,
more than overforecast, X, > X,?

(iv) Given that all error statistics are subject to noise, how do we know
if one model is truly better than another?

(v) How do we take into account when X, and X, (and similarly for
&; and X ¢) cover a large amount of overlapping data and are serially
correlated?

All these issues will be considered in the following sections.

2.1 THE FORM OF X,

Here we argue that X, should be oy, and that if o, cannot be estimated
with some accuracy it is best not to perform comparison across predictive
models at all. The practice of using daily squared returns to proxy daily
conditional variance has been shown time and again to produce wrong
signals in model selection.

Given that all time series volatility models formulate forecasts based
on past information, they are not designed to predict shocks that are new



22 Forecasting Financial Market Volatility

to the system. Financial market volatility has many stylized facts. Once
a shock has entered the system, the merit of the volatility model depends
on how well it captures these stylized facts in predicting the volatility of
the following days. Hence we argue that X, should be o;. Conditional
variance o> formulation gives too much weight to the errors caused by
‘new’ shocks and especially the large ones, distorting the less extreme
forecasts where the models are to be assessed.

Note also that the square of a variance error is the fourth power of
the same error measured from standard deviation. This can complicate
the task of forecast evaluation given the difficulty in estimating fourth
moments with common distributions let alone the thick-tailed ones in
finance. The confidence interval of the mean error statistic can be very
wide when forecast errors are measured from variances and worse if they
are squared. This leads to difficulty in finding significant differences
between forecasting models.

Davidian and Carroll (1987) make similar observations in their study
of variance function estimation for heteroscedastic regression. Using
high-order theory, they show that the use of square returns for modelling
variance is appropriate only for approximately normally distributed data,
and becomes nonrobust when there is a small departure from normal-
ity. Estimation of the variance function that is based on logarithmic
transformation or absolute returns is more robust against asymmetry
and nonnormality.

Some have argued that perhaps X, should be [no, to rescale the size of
the forecast errors (Pagan and Schwert, 1990). This is perhaps one step
too far. After all, the magnitude of the error directly impacts on option
pricing, risk management and investment decision. Taking the logarithm
of the volatility error is likely to distort the loss function which is directly
proportional to the magnitude of forecast error. A decision maker might
be more risk-averse towards the larger errors.

We have explained in Section 1.3.1 the impact of using squared returns
to proxy daily volatility. Hansen and Lunde (2004b) used a series of
simulations to show that ...the substitution of a squared return for
the conditional variance in the evaluation of ARCH-type models can
result in an inferior model being chosen as [the] best with a probability
converges to one as the sample size increases ... . Hansen and Lunde
(2004a) advocate the use of realized volatility in forecast evaluation but
caution the noise introduced by market macrostructure when the intraday
returns are too short.
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2.2 ERROR STATISTICS AND THE FORM OF ¢,

Ideally an evaluation exercise should reflect the relative or absolute use-
fulness of a volatility forecast to investors. However, to do that one
needs to know the decision process that require these forecasts and the
costs and benefits that result from using better forecasts. Utility-based
criteria, such as that used in West, Edison and Cho (1993), require some
assumptions about the shape and property of the utility function. In prac-
tice these costs, benefits and utility function are not known and one often
resorts to simply use measures suggested by statisticians.
Popular evaluation measures used in the literature include
Mean Error (ME)

1 &N N
EONEE DR
=1 =1
Mean Square Error (MSE)
DICEEDY
2 ~ 2
N7 8[ = = (Ut - Gl‘) )
N t=1 N t=1
Root Mean Square Error (RMSE)
DTS
2 ~ 2
~ &= |\ % (01 —o1),
N t=1 N t=1
Mean Absolute Error (MAE)
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Mean Absolute Percent Error (MAPE)
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Bollerslev and Ghysels (1996) suggested a heteroscedasticity-
adjusted version of MSE called HMSE where

1 N lo} 2
HMSE = — L
volE ]
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This is similar to squared percentage error but with the forecast error
scaled by predicted volatility. This type of performance measure is not
appropriate if the absolute magnitude of the forecast error is a major
concern. It is not clear why it is the predicted and not the actual volatility
that is used in the denominator. The squaring of the error again will give
greater weight to large errors.

Other less commonly used measures include mean logarithm of ab-
solute errors (MLAE) (as in Pagan and Schwert, 1990), the Theil-U
statistic and one based on asymmetric loss function, namely LINEX:
Mean Logarithm of Absolute Errors (MLAE)

1 & 1 &
ﬁz;1n|g,| = NZIM&}—J,
= =

Theil-U measure

Theil-U =

; 2.1)

where O'B M is the benchmark forecast, used here to remove the effect of

any scalar transformation applied to o;.
LINEX has asymmetric loss function whereby the positive errors are
weighted differently from the negative errors:

1 & _ ~
LINEX = — ;[exp (—a@,— o) +a@ —ar)—1]. (2.2)

The choice of the parameter a is subjective. If a > 0, the function is
approximately linear for overprediction and exponential for underpre-
diction. Granger (1999) describes a variety of other asymmetric loss
functions of which the LINEX is an example. Given that most investors
would treat gains and losses differently, the use of asymmetric loss func-
tions may be advisable, but their use is not common in the literature.

2.3 COMPARING FORECAST ERRORS
OF DIFFERENT MODELS

In the special case where the error distribution of one forecasting
model dominates that of another forecasting model, the comparison is
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straightforward (Granger, 1999). In practice, this is rarely the case, and
most comparisons of forecasting results are made based on the error
statistics described in Section 2.2. It is important to note that these er-
ror statistics are themselves subject to error and noise. So if an error
statistic of model A is higher than that of model B, one cannot conclude
that model B is better than A without performing tests of significance.
For statistical inference, West (1996), West and Cho (1995) and West
and McCracken (1998) show how standard errors for ME, MSE, MAE
and RMSE may be derived taking into account serial correlation in the
forecast errors and uncertainty inherent in volatility model parameter
estimates.

If there are T number of observations in the sample and 7T is large,
there are two ways in which out-of-sample forecasts may be made.
Assume that we use n number of observations for estimation and make
T — n number of forecasts. The recursive scheme starts with the sample
{1,---,n} and makes first forecast at n 4+ 1. The second forecast for
n + 2 will include the last observation and form the information set
{1,---,n 4+ 1}. It follows that the last forecast for 7' will include all
but the last observation, i.e. the information set is {1,---, T — 1}. In
practice, the rolling scheme is more popular, where a fixed number of
observations is used in the estimation. So the forecast for n 4 2 will be
based on information set {2, - - -, n + 1}, and the last forecast at T will be
basedon {T — n, ---, T — 1}. The rolling scheme omits information in
the distant past. It is also more manageable in terms of computation when
T is very large. The standard errors developed by West and co-authors
are based on asymptotic theory and work for recursive scheme only. For
smaller sample and rolling scheme forecasts, Diebold and Mariano’s
(1995) small sample methods are more appropriate.

Diebold and Mariano (1995) propose three tests for ‘equal accuracy’
between two forecasting models. The tests relate prediction error to
some very general loss function and analyse loss differential derived
from errors produced by two competing models. The three tests include
an asymptotic test that corrects for series correlation and two exact fi-
nite sample tests based on sign test and the Wilcoxon sign-rank test.
Simulation results show that the three tests are robust against non-
Gaussian, nonzero mean, serially and contemporaneously correlated
forecast errors. The two sign-based tests in particular continue to work
well among small samples. The Diebold and Mariano tests have been
used in a number of volatility forecasting contests. We provide the test
details here.
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Let {Xl,}t , and {X]t}, | be two sets of forecasts for {X,} _, from
models i and j respectively. Let the associated forecast errors be {e; ,}t: 1
and {e jt}zT=1- Let g (-) be the loss function (e.g. the error statistics in
Section 2.2) such that

g(Xt» /)Eit) =g (eir).

Next define loss differential
d=g(ei)— g (ejt) .

The null hypothesis is equal forecast accuracy and zero loss differential

2.3.1 Diebold and Mariano’s asymptotic test

The first test targets on the mean
S
d=—) I8t = gle)l
=1

with test statistic

1=—(T—1)
1 & - —

PO =1 O (=) (o= 2).
t=|t|+1

The operator 1 (z/S (T)) is the lag window, and S (7') is the truncation
lag with

1( T )_ 1 for SET) <
$(T) 0 otherwise
Assuming that k-step ahead forecast errors are at most (k — 1)-

dependent, it is therefore recommended that S (7') = (k — 1). Itis not
likely that fd (0) will be negative, but in the rare event that fd 0) <0,
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it should be treated as zero and the null hypothesis of equal forecast
accuracy be rejected automatically.

2.3.2 Diebold and Mariano’s sign test
The sign test targets on the median with the null hypothesis that

Med(d) = Med (g(ei) — g (e}:))
—0.

Assuming that d; ~ iid, then the test statistic is

T
Sp=)  Ls(d)
t=1

where

1 ifd, >0
0 otherwise *

I+ (dt) = {

For small sample, S, should be assessed using a table for cumulative
binomial distribution. In large sample, the Studentized verson of S, is
asymptotically normal

6 2 Sm0ST 4 o
T J02sT o

2.3.3 Diebold and Mariano’s Wilcoxon sign-rank test

As the name indicates, this test is based on both the sign and the rank of
loss differential with test statistic

T
S3=) I+ (d)rank (d,])
=1
represents the sum of the ranks of the absolute values of the positive
observations. The critical values for S5 have been tabulated for small
sample. For large sample, the Studentized verson of S5 is again asymp-
totically normal
T(T +1)
S3 — — 1 .
Sou = ~N(@O,1).
\/T(T +1DQT +1)

24
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2.3.4 Serially correlated loss differentials

Serial correlation is explicitly taken care of in S;. For S, and S5 (and
their asymptotic counter parts S,, and S3,), the following k-set of loss
differentials have to be tested jointly

{dij1s dijorsks dijasons -}

{dij2. dijask dijorons -}

{dijks dijos dij, -}

A test with size bounded by « is then tested k times, each of size «/k,
on each of the above & loss-differentials sequences. The null hypothesis
of equal forecast accuracy is rejected if the null is rejected for any of the
k samples.

2.4 REGRESSION-BASED FORECAST EFFICIENCY
AND ORTHOGONALITY TEST

The regression-based method for examining the informational content
of forecasts is by far the most popular method in volatility forecasting.
It involves regressing the actual volatility, X;, on the forecasts literature,
X;, as shown below:

X, =a+BX,+u. 2.3)

Conditioning upon the forecast, the prediction is unbiased only if &« = 0
and 8 = 1.

Since the error term, vy, is heteroscedastic and serially correlated when
overlapping forecasts are evaluated, the standard errors of the parameter
estimates are often computed on the basis of Hansen and Hodrick (1980).
Let Y be the row matrix of regressors including the constant term. In
(2.3), Y, = (1 X,)isal x 2 matrix. Then

T
U=7""> "0y,
t=1

T T
7YY 0k (V% + YY),

k=1 t=k+1
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where vy and v, are the residuals for observation k and ¢ from the regres-
sion. The operator Q (k, ¢) is an indicator function taking the value 1 if
there is information overlap between Y} and Y;. The adjusted covariance
matrix for the regression coefficients is then calculated as

Q= (Y’Y)_1 7 (Y’Y)_1 . (2.4)

Canina and Figlewski (1993) conducted some simulatation studies and
found the corrected standard errors in (2.4) are close to the true values,
and the use of overlapping data reduced the standard error between one-
quarter and one-eighth of what would be obtained with only nonover-
lapping data.

In cases where there are more than one forecasting model, additional
forecasts are added to the right-hand side of (2.3) to check for incremen-
tal explanatory power. Such a forecast encompassing test dates back
to Theil (1966). Chong and Hendry (1986) and Fair and Shiller (1989,
1990) provide further theoretical exposition of such methods for testing
forecast efficiency. The first forecast is said to subsume information con-
tained in other forecasts if these additional forecasts do not significantly
increase the adjusted regression R?. Alternatively, an orthogonality test
may be conducted by regressing the residuals from (2.3) on other fore-
casts. If these forecasts are orthogonal, i.e. do not contain additional
information, then the regression coefficients will not be different from
Zero.

While it is useful to have an unbiased forecast, it is important to
distinguish between bias and predictive power. A biased forecast can
have predictive power if the bias can be corrected. An unbiased forecast
is useless if all forecast errors are big. For X to be considered as a good
forecast, Var(v,) should be small and R? for the regression should tend
to 100%. Blair, Poon and Taylor (2001) use the proportion of explained
variability, P, to measure explanatory power

S\2
X — X;
poro WX 23

S —pux?

The ratio in the right-hand side of (2.5) compares the sum of squared
prediction errors (assuming ¢ = 0 and 8 = 1 in (2.3)) with the sum
of squared variation of X;. P compares the amount of variation in the
forecast errors with that in actual volatility. If prediction errors are small,
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P iscloserto 1. Given that a regression model that produces (2.5) is more
restrictive than (2.3), P is likely to be smaller than conventional R%. P
can even be negative since the ratio on the right-hand side of (2.5) can
be greater than 1. A negative P means that the forecast errors have
a greater amount of variation than the actual volatility, which is not a
desirable characteristic for a well-behaved forecasting model.

2.5 OTHER ISSUES IN FORECAST EVALUATION

In all forecast evaluations, it is important to distinguish in-sample and
out-of-sample forecasts. In-sample forecast, which is based on param-
eters estimated using all data in the sample, implicitly assumes parameter
estimates are stable across time. In practice, time variation of parameter
estimates is a critical issue in forecasting. A good forecasting model
should be one that can withstand the robustness of out-of-sample test —
a test design that is closer to reality.

Instead of striving to make some statistical inference, model perfor-
mance could be judged on some measures of economic significance. Ex-
amples of such an approach include portfolio improvement derived from
better volatility forecasts (Fleming, Kirby and Ostdiek, 2000, 2002).
Some papers test forecast accuracy by measuring the impact on option
pricing errors (Karolyi, 1993). In the latter case, pricing error in the
option model will be cancelled out when the option implied volatility is
reintroduced into the pricing formula. So it is not surprising that evalu-
ation which involves comparing option pricing errors often prefers the
implied volatility method to all other time series methods.

Research in financial market volatility has been concentrating on
modelling and less on forecasting. Work on combined forecast is rare,
probably because the groups of researchers in time series models and
option pricing do not seem to mix. What has not yet been done in the
literature is to separate the forecasting period into ‘normal’ and ‘excep-
tional’ periods. It is conceivable that different forecasting methods are
better suited to different trading environment and economic conditions.
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. Historical Volatility Models

Compared with the other types of volatility models, the historical volatil-
ity models (HIS) are the easiest to manipulate and construct. The well-
known Riskmetrics EWMA (equally weighted moving average) model
from JP Morgan is a form of historical volatility model; so are models
that build directly on realized volatility that have became very popu-
lar in the last few years. Historical volatility models have been shown
to have good forecasting performance compared with other time series
volatility models. Unlike the other two time series models (viz. ARCH
and stochastic volatility (SV)) conditional volatility is modelled sepa-
rately from returns in the historical volatility models, and hence they
are less restrictive and are more ready to respond to changes in volatil-
ity dynamic. Studies that find historical volatility models forecast better
than ARCH and/or SV models include Taylor (1986, 1987), Figlewski
(1997), Figlewski and Green (1999), Andersen, Bollerslev, Diebold and
Labys (2001) and Taylor, J. (2004). With the increased availability of
intraday data, we can expect to see research on the realized volatility
variant of the historical model to intensify in the next few years.

3.1 MODELLING ISSUES

Unlike ARCH SV models where returns are the main input, HIS models
donot normally use returns information so long as the volatility estimates
are ready at hand. Take the simplest form of ARCH(1) for example,

re =W+ &, & ~ N (0, 0) 3.1)
&t = Z;0y, zz~N(@O,1)
of =w+ae; . (3.2)

The conditional volatility o2 in (3.2) is modelled as a ‘byproduct’
of the return equation (3.1). The estimation is done by maximizing
the likelihood of observing {e;} using the normal, or other chosen,
density. The construction and estimation of SV models are similar to
those of ARCH, except that there is now an additional innovation term
in (3.2).
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In contrast, the HIS model is built directly on conditional volatility,
e.g. an AR(1) model:

o=y + Bi1or-1+v. (3.3)

The parameters y and 8 are estimated by minimizing in-sample forecast
errors, v;, where

vy =0, =Y — B10:-1,

and the forecaster has the choice of reducing mean square errors, mean
absolute errors etc., as in the case of choosing an appropriate forecast
error statistic in Section 2.2.

The historical volatility estimates o, in (3.3) can be calculated as
sample standard deviations if there are sufficient data for each ¢ in-
terval. If there is not sufficient information, then the H-L method of
Section 1.3.2 may be used, and in the most extreme case, where only
one observation is available for each ¢ interval, one often resorts to using
absolute return to proxy for volatility at 7. In Section 1.3.1 we have high-
lighted the danger of using daily absolute or squared returns to proxy
‘actual’ daily volatility for the purpose of forecast evaluation, as this
could lead to very misleading model ranking. The problem with the use
of daily absolute return in volatility modelling is less severe provided
that long distributed lags are included (Nelson, 1992; Nelson and Foster,
1995). With the increased availability of intraday data, historical volatil-
ity estimates can be calculated quite accurately as realized volatility
following Section 1.3.3.

3.2 TYPES OF HISTORICAL VOLATILITY MODELS

There are now two major types of HIS models: the single-state and the
regime-switching models. All the HIS models differ by the number of lag
volatility terms included in the model and the weights assigned to them,
reflecting the choice on the tradeoff between increasing the amount of
information and more updated information.

3.2.1 Single-state historical volatility models

The simplest historical price model is the random walk model, where
the difference between consecutive period volatility is modelled as a
random noise;

0y = 0r—1 + Vs,
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So the best forecast for tomorrow’s volatility is today’s volatility:
6—\I+1 = 0Oy,

where o, alone is used as a forecast for ;1.
In contrast, the historical average method makes a forecast based on
the entire history

R 1
O't+1:?(0't+0't—l+"‘+01)-

The simple moving average method below,

- 1
Oty1 = ; (or +0i1+ -+ 01—c-1),

is similar to the historical average method, except that older information
is discarded. The value of t (i.e. the lag length to past information
used) could be subjectively chosen or based on minimizing in-sample
forecast error, ¢;11 = 0,41 — 0,+1. The multi-period forecasts 7, , for
7 > 1 will be the same as the one-step-ahead forecast 6, for all three
methods above.

The exponential smoothing method below,

oo=(1—-pB)oy_1+ o1 +& and 0<p <1,
3t+1 =(1 _,B)Ut‘i‘,gat,

is similar to the historical method, but more weight is given to the recent
past and less weight to the distant past. The smoothing parameter g is
estimated by minimizing the in-sample forecast errors &;.

The exponentially weighted moving average method (EWMA) below
is the moving average method with exponential weights:

T T )
D WLREY
i=1 i=1

Again the smoothing parameter 8 is estimated by minimizing the in-
sample forecast errors &. The JP Morgan Riskmetrics™ model is a
procedure that uses the EWMA method.

All the historical volatility models above have a fixed weighting
scheme or a weighting scheme that follows some declining pattern. Other
types of historical model have weighting schemes that are not prespec-
ified. The simplest of such models is the simple regression method,

or=y+Bio_1+proyr+ -+ Buo_n + 1y,
O =Y+ B0+ o1+ + BunOi_nti,
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which expresses volatility as a function of its past values and an error
term.

The simple regression method is principally autoregressive. If past
volatility errors are also included, one gets the ARMA model

o1 =pio+ho i+ Fvivit v+

Introducing a differencing order 1(d), we get ARIMA when d = 1 and
ARFIMA whend < 1.

3.2.2 Regime switching and transition exponential smoothing

In this section, we have the threshold autoregressive model from Cao
and Tsay (1992):

o, = (’)+¢§’)O-t_ "'+¢g)o't—p+vtv i=1,2,...,k
6’\{4_] = + ¢Y)0—[ -+ ¢S)Ut+]_p,

where the thresholds separate volatility into states with independent
simple regression models and noise processes in each state. The predic-
tion &, could be based solely on current state information i assuming
the future will remain on current state. Alternatively it could be based on
information of all states weighted by the transition probability for each
state. Cao and Tsay (1992) found the threshold autoregressive model
outperformed EGARCH and GARCH in forecasting of the 1- to 30-
month volatility of the S&P value-weighted index. EGARCH provided
better forecasts for the S&P equally weighted index, possibly because
the equally weighted index gives more weights to small stocks where
the leverage effect could be more important.

The smooth transition exponential smoothing model is from Taylor,
J. (2004):

Ut—at 18 1+(1_at I)U 1+ vr, 3.4)

where
1

1 +exp(B + th—l)’

and V,_ = ag,_1 + b |e;_1]| is the transition variable. The smoothing
parameter «,_; varies between 0 and 1, and its value depends on the
size and the sign of &,_. The dependence on &,_; means that multi-step-
ahead forecasts cannot be made except through simulation. (The same
would apply to many nonlinear ARCH and SV models as we will show
in the next few chapters.)

01 =
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One-day-ahead forecasting results show that the smooth transition ex-
ponential smoothing model performs very well against several ARCH
counterparts and even outperformed, on a few occasions, the realized
volatility forecast. But these rankings were not tested for statistical sig-
nificance, so it is difficult to come to a conclusion given the closeness
of many error statistics reported.

3.3 FORECASTING PERFORMANCE

Taylor (1987) was one of the earliest to test time-series volatility fore-
casting models before ARCH/GARCH permeated the volatility litera-
ture. Taylor (1987) used extreme value estimates based on high, low and
closing prices to forecast 1 to 20 days DM/$ futures volatility and found
a weighted average composite forecast performed best. Wiggins (1992)
also gave support to extreme-value volatility estimators.

In the pre-ARCH era, there were many studies that covered a wide
range of issues. Sometimes forecasters would introduce ‘learning’ by
allowing parameters and weights of combined forecasts to be dynam-
ically updated. These frequent updates did not always lead to better
results, however. Dimson and Marsh (1990) found ex ante time-varying
optimized weighting schemes do not always work well in out-of-sample
forecasts. Sill (1993) found S&P500 volatility was higher during reces-
sion and that commercial T-Bill spread helped to predict stock-market
volatility.

The randow walk and historical average method seems naive at first,
but they seem to work very well for medium and long horizon forecasts.
For forecast horizons that are longer than 6 months, low-frequency data
over a period at least as long as the forecast horizon works best. To
provide equity volatility for investment over a 5-year period for exam-
ple, Alford and Boatsman (1995) recommended, after studying a sam-
ple of 6879 stocks, that volatility should be estimated from weekly or
monthly returns from the previous 5 years and that adjustment made
based on industry and company size. Figlewski (1997) analysed the
volatility of the S&P500, the long- and short-term US interest rate and
the Deutschemark—dollar exchange rate and the use of monthly data
over a long period provides the best long-horizon forecast. Alford and
Boatsman (1995), Figlewski (1997) and Figlewski and Green (1999) all
stressed the importance of having a long enough estimation period to
make good volatility forecasts over long horizon.






4
ARCH

Financial market volatility is known to cluster. A volatile period tends to
persist for some time before the market returns to normality. The ARCH
(AutoRegressive Conditional Heteroscedasticity) model proposed by
Engle (1982) was designed to capture volatility persistence in inflation.
The ARCH model was later found to fit many financial time series and its
widespread impact on finance has led to the Nobel Committee’s recog-
nition of Rob Engle’s work in 2003. The ARCH effect has been shown
to lead to high kurtosis which fits in well with the empirically observed
tail thickness of many asset return distributions. The leverage effect, a
phenomenon related to high volatility brought on by negative return,
is often modelled with a sign-based return variable in the conditional
volatility equation.

4.1 ENGLE (1982)

The ARCH model, first introduced by Engle (1982), has been ex-
tended by many researchers and extensively surveyed in Bera and
Higgins (1993), Bollerslev, Chou and Kroner (1992), Bollerslev,
Engle and Nelson (1994) and Diebold and Lopez (1995). In contrast to
the historical volatility models described in the previous chapter, ARCH
models do not make use of the past standard deviations, but formulate
conditional variance, &,, of asset returns via maximum likelihood pro-
cedures. (We follow the ARCH literature here by writing o> = &,.) To
illustrate this, first write returns, r;, as

rl == lu/ + Sl"

& =z, (4.1)
where z, ~ D (0, 1) is a white noise. The distribution D is often taken as
normal. The process z; is scaled by #,, the conditional variance, which

in turn is a function of past squared residual returns. In the ARCH(gq)
process proposed by Engle (1982),

q
hy =w+ Zajetz_j (4.2)
Jj=l1
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with @ > 0 and «; > O to ensure /4, is strictly positive variance. Typi-
cally, g is of high order because of the phenomenon of volatility per-
sistence in financial markets. From the way in which volatility is con-
structed in (4.2), h, isknown attime ¢ — 1. So the one-step-ahead forecast
is readily available. The multi-step-ahead forecasts can be formulated
by assuming E [sfﬁ] = Nye.

The unconditional variance of r; is

2 ®

7 .

I—E O[j
j=1

The process is covariance stationary if and only if the sum of the autore-
gressive parameters is less than one Z(/I':l aj < 1.

o

4.2 GENERALIZED ARCH

For high-order ARCH(g) process, it is more parsimonious to model
volatility as a GARCH(p, q) (generalized ARCH due to Bollerslev
(1986) and Taylor (1986)), where additional dependencies are permitted
on p lags of past /; as shown below:

)4 q
=0 > A+ Y el
i=1 j=1

and w > 0. For GARCH(1, 1), the constraints «; > 0 and B; > 0 are
needed to ensure /; is strictly positive. For higher orders of GARCH,
the constraints on B; and «; are more complex (see Nelson and Cao
(1992) for details). The unconditional variance equals

2 w
= p q
Ya-Ye
i=1 j=1

The GARCH(p, ¢) model is covariance stationary if and only if
iz1 Bi + Zj’:l aj < L.
Volatility forecasts from GARCH(1, 1) can be made by repeated sub-
stitutions. First, we make use of the relationship (4.1) to provide an
estimate for the expected squared residuals

o
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The conditional variance /,, and the one-step-ahead forecast is known
at time ¢,

hest = o+ aiel + Bib. (4.3)

The forecast of /;,, makes use of the fact that £ [8[2 o 1] = h,,1 and we
get

T2 = o+ aiel, + Brhis
=w+ (o1 + B1) Ay

Similarly,

Ty = 0+ (@ 4 B1) hiya
=w+ (o + 1)+ (@ + B1) hi
=w+ o+ p1)+ o+ 1) + (a1 + B [aig] + Bih].

As the forecast horizon t lengthens,

-~ w
hive = m + (a1 + B1)’ [Ollezz + ,BIht] . 4.4
If a1 + B1 < 1, the second term on the RHS of (4.4) dies out eventually
and A, . converges to w/[1 — («; + B1)], the unconditional variance.
If we write v, = stz — h; and substitute i, = etz — v, into (4.3), we
get

512 —v =0+ 0‘18?—1 + ﬂlgtz—l — Brvi—1

8,2 =w+ (o + ﬂl)stz_l + v — Brui—g. 4.5)
Hence, &2, the squared residual returns follow an ARMA process with
autoregressive parameter (o + B1). If o 4 B, is close to 1, the autore-
gressive process in (4.5) dies out slowly.

4.3 INTEGRATED GARCH

For a GARCH(p, q) process, when } [ o; + > 9_, B; = 1, the un-
conditional variance o> — oo is no longer definite. The series 7, is not
covariance stationary, although it remains strictly stationary and ergodic.
The conditional variance is then described as an integrated GARCH (de-

noted as IGARCH) and there is no finite fourth moment.!

! This is not the same as, and should not be confused with, the ‘integrated volatility” described in Section 1.3.3.
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An infinite volatility is a concept rather counterintuitive to real phe-
nomena in economics and finance. Empirical findings suggest that
GARCH(1, 1) is the most popular structure for many financial time
series. It turns out that Riskmetrics™ EWMA (exponentially weighted
moving average) is a nonstationary version of GARCH(1, 1) where the
persistence parameters, &y and 81, sum to 1. To see the parallel, we first
make repeated substitution of (4.3) and obtain

hivr = 0 +agf, + Bhi

=+ wp +ac),, +afel + fh,

T T
Nyt = wZﬂ“l + Zﬂ“letzﬂ,l + BT h;.

i=1 i=1

When t — o0, and provided that 8 < 1 we can infer that

h, = “’ﬁ +a gl (4.6)

- i=1

Next, we have the EWMA model for the sample standard deviations,
where

R 1
Utz = ( ) (0}2_1 + )\0}2_1 + ce + )hno}z_n) .

LA +22 4+ an

Asn — oo, and provided that A < 1

o
Gi=01-n) xlol,. (4.7)

i=1

If we view &2 as a proxy for o2, (4.6) and (4.7) are both autoregressive

series with long distributed lags, except that (4.6) has a constant term
and (4.7) has not.?

While intuitively unconvincing as a volatility process because of the
infinite variance, the EWMA model has nevertheless been shown to be
powerful in volatility forecasting as it is not constrained by a mean level
of volatility (unlike e.g. the GARCH(1, 1) model), and hence it adjusts
readily to changes in unconditional volatility.

2EWMA, a sample standard deviation model, is usually estimated based on minimizing in-sample forecast
errors. There is no volatility error in GARCH conditional variance. This is why Etz in (4.7) has a hat and 4, in
(4.6) has not.
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4.4 EXPONENTIAL GARCH

The exponential GARCH (denoted as EGARCH) model is due to Nelson
(1991). The EGARCH(p, g) model specifies conditional variance in log-
arithmic form, which means that there is no need to impose an estimation
constraint in order to avoid negative variance;

q
Inh, =ao+ Y Bilnh,_;

Jj=1

+ Zp: I:Gkét—k + v (Ie,_k| — \/2/—7T)]

k=1
N

Here, h; depends on both the size and the sign of &,. With appropriate
conditioning of the parameters, this specification captures the stylized
fact that a negative shock leads to a higher conditional variance in the
subsequent period than a positive shock. The process is covariance sta-
tionary if and only if Z?Zl B; < 1.

Forecasting with EGARCH is a bit involved because of the logarithmic
transformation. Tsay (2002) showed how forecasts can be formulated
with EGARCH(1, 0) and gave the one-step-ahead forecast as

Rist = i exp (1 — ay) gl exp g (€)]
g©@=061+y (Il = v2/7).
For the multi-step forecast
Rie =} (t = 1) exp (@) {exp[0.5(0 + ¥)*] @ (0 + ¥)
+exp[0.560 —y?] @6 - ),
where
o=~0—-a)ay—yy2/m

and & (-) is the cumulative density function of the standard normal dis-
tribution.

4.5 OTHER FORMS OF NONLINEARITY

Models that also allow for nonsymmetrical dependencies include the
GJR-GARCH (Glosten, Jagannathan and Runkle, 1993) as shown
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below:

p q
ho=w+Y Bihii+ Y (e +8Dj 6] )

i=1 j=1

)1 ifeg1 <0
D’—‘—{o ife,.1 >0

The conditional volatility is positive when parameters satisfy g > 0,
a>0,a;,+y;,>20and ; >0,fori=1,---, pand j=1,---, q.
The process is covariance stationary if and only if

P
Zﬁ,+Z(a,+2yj) < 1.

i=1 =1

Take the GJR-GARCH(1, 1) case as an example. The one-step-ahead
forecast is

ﬁt-&-l =w+ Bih + 0l18,2 + 81812Dt7
and the multi-step forecast is
—~ 1
hiyr = o+ 3 (cr +y)+B1 ) hige
and use repeated substitution for 4,4 ;.

The TGARCH (threshold GARCH) model from Zakoian (1994) is
similar to GJR-GARCH but is formulated with absolute return instead:

p q
o =0+ Z [oi lei—il + vi Dy i ler—il] + Zﬁjm—j- (4.8)
i=1 j=1
The conditional volatility is positive when ¢g > 0, ; > 0, ; +y; > 0

and B; > 0,fori =1,---, pand j =1, ---, q. The process is covari-
ance stationary, in the case p = g = 1, if and only if

B + [“1 + (1 + )]+ Bi (a1 +y1) < 1.

2
V27

QGARCH (quadratic GARCH) and various other nonlinear GARCH
models are reviewed in Franses and van Dijk (2000). A QGARCH(1, 1)
has the following structure

hy=w+a(e_1—y) + Bhei.
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4.6 FORECASTING PERFORMANCE

Although Taylor (1986) was one of the earliest studies to test the pre-
dictive power of GARCH Akigray (1989) is more commonly cited in
many subsequent GARCH studies, although an earlier investigation had
appeared in Taylor (1986). In the following decade, there were no fewer
than 20 papers that test GARCH predictive power against other time
series methods and against option implied volatility forecasts. The ma-
jority of these forecast volatility of major stock indices and exchange
rates.

The ARCH class models, and their variants, have many supporters.
Akgiray finds GARCH consistently outperforms EWMA and RW in
all subperiods and under all evaluation measures. Pagan and Schwert
(1990) find EGARCH is best, especially in contrast to some nonpara-
metric methods. Despite a low R?, Cumby, Figlewski and Hasbrouck
(1993) conclude that EGARCH is better than RW. Figlewski (1997)
finds GARCH superiority confined to the stock market and for forecast-
ing volatility over a short horizon only.

In general, models that allow for volatility asymmetry come out well
in the forecasting contest because of the strong negative relationship be-
tween volatility and shock. Cao and Tsay (1992), Heynen and Kat (1994),
Lee (1991) and Pagan and Schwert (1990) favour the EGARCH model
for volatility of stock indices and exchange rates, whereas Brailsford
and Faff (1996) and Taylor, J. (2004) find GJR-GARCH outperforms
GARCH in stock indices. Bali (2000) finds a range of nonlinear models
work well for forecasting one-week-ahead volatility of US T-Bill yields.
Cao and Tsay (1992) find the threshold autoregressive model (TAR in
the previous chapter) provides the best forecast for large stocks and
EGARCH gives the best forecast for small stocks, and they suspect that
the latter might be due to a leverage effect.

Other studies find no clear-cut result. These include Lee (1991),
West and Cho (1995), Brailsford and Faff (1996), Brooks (1998), and
McMillan, Speight and Gwilym (2000). All these studies (and many
other volatility forecasting studies) share one or more of the following
characteristics: (i) they test a large number of very similar models all
designed to capture volatility persistence, (ii) they use a large number
of forecast error statistics, each of which has a very different loss func-
tion, (iii) they forecast and calculate error statistics for variance and
not standard deviation, which makes the difference between forecasts
of different models even smaller, (iv) they use squared daily, weekly or
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monthly returns to proxy daily, weekly or monthly ‘actual’ volatility,
which results in extremely noisy ‘actual’ volatility estimates. The noise
in the ‘actual’ volatility estimates makes the small differences between
forecasts of similar models indistinguishable.

Unlike the ARCH class model, the ‘simpler’ methods, including the
EWMA method, do not separate volatility persistence from volatility
shocks and most of them do not incorporate volatility mean reversion.
The ‘simpler’ methods tend to provide larger volatility forecasts most
of the time because there is no constraint on stationarity or convergence
to the unconditional variance, and may result in larger forecast errors
and less frequent VaR violations. The GJR model allows the volatility
persistence to change relatively quickly when return switches sign from
positive to negative and vice versa. If unconditional volatility of all
parametric volatility models is the same, then GJR will have the largest
probability of an underforecast.’> This possibly explains why GJR was
the worst-performing model in Franses and Van Dijk (1996) because they
use MedSE (median standard error) as their sole evaluation criterion. In
Brailsford and Faff (1996), the GJR(1, 1) model outperforms the other
models when MAE, RMSE and MAPE are used.

There is some merit in using ‘simpler’ methods, and especially mod-
els that include long distributed lags. As ARCH class models assume
variance stationarity, the forecasting performance suffers when there are
changes in volatility level. Parameter estimation becomes unstable when
the data period is short or when there is a change in volatility level. This
has led toa GARCH convergence problem in several studies (e.g. Tse and
Tung (1992) and Walsh and Tsou (1998)). Taylor (1986), Tse (1991),
Tse and Tung (1992), Boudoukh, Richardson and Whitelaw (1997),
Walsh and Tsou (1998), Ederington and Guan (1999), Ferreira (1999),
and Taylor, J, (2004) all favour some form of exponential smoothing
method to GARCH for forecasting volatility of a wide range of assets
ranging from equities, exchange rates to interest rates.

3 This characteristic is clearly evidenced in Table 2 of Brailsford and Faff (1996). The GJR(1, 1) model
underforecasts 76 (out of 90) times. The RW model has an equal chance of underforecasts and overforecasts,
whereas all the other methods overforecast more than 50 (out of 90) times.



5
Linear and Nonlinear Long

Memory Models

As mentioned before, volatility persistence is a feature that many time
series models are designed to capture. A GARCH model features an
exponential decay in the autocorrelation of conditional variances. How-
ever, it has been noted that squared and absolute returns of financial
assets typically have serial correlations that are slow to decay, similar to
those of an I(d) process. A shock in the volatility series seems to have
very ‘long memory’ and to impact on future volatility over a long hori-
zon. The integrated GARCH (IGARCH) model of Engle and Bollerslev
(1986) captures this effect, but a shock in this model impacts upon future
volatility over an infinite horizon and the unconditional variance does
not exist for this model.

5.1 WHAT IS LONG MEMORY IN VOLATILITY?

Let p, denote the correlation between x, and x;_,. The time series x,
is said to have a short memory if ) "_, p, converges to a constant as n
becomes large. A long memory series has autocorrelation coefficients
that decline slowly at a hyperbolic rate. Long memory in volatility oc-
curs when the effects of volatility shocks decay slowly which is often
detected by the autocorrelation of measures of volatility, such as abso-
lute or squared returns. A long memory process is covariance stationary

n 1

if > pe/ 724=1 for some positive d < 5, converges to a constant as

n — o0o. Whend > % , the volatility series is not covariance stationary
although it is still strictly stationary. Taylor (1986) was the first to note
that autocorrelation of absolute returns, |r;|, is slow to decay compared
with that of . The highly popular GARCH model is a short memory
model based on squared returns 2. Following the work of Granger and
Joyeux (1980) and Hosking (1981), where fractionally integrated se-
ries was shown to exhibit long memory property described above, Ding,
Granger and Engle (1993) propose a fractionally integrated model based
on |r; |d where d is a fraction. The whole issue of Journal of Economet-
rics, 1996, vol. 73, no. 1, edited by Richard Baillie and Maxwell King
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was devoted to long memory and, in particular, fractional integrated
series.

There has been a lot of research investigating whether long memory of
volatility can help to make better volatility forecasts and explain anom-
alies in option prices. Hitherto much of this research has used the frac-
tional integrated models described in Section 5.3. More recently, several
studies have showed that a number of nonlinear short memory volatility
models are capable of producing spurious long memory characteris-
tics in volatility as well. Examples of such nonlinear models include the
break model (Granger and Hyung, 2004), the volatility component model
(Engle and Lee, 1999), and the regime-switching model (Hamilton and
Susmel, 1994; Diebold and Inoue, 2001). In these three models, volatil-
ity has short memory between breaks, for each volatility component
and within each regime. Without controlling for the breaks, the different
components and the changing regimes, volatility will produce spuri-
ous long memory characteristics. Each of these short memory nonlinear
models provides a rich interpretation of the financial market volatil-
ity structure compared with the apparently myopic fractional integrated
model which simply requires financial market participants to remem-
ber and react to shocks for a long time. Discussion of these competing
models is provided in Section 5.4.

5.2 EVIDENCE AND IMPACT OF VOLATILITY
LONG MEMORY

The long memory characteristic of financial market volatility is well
known and has important implications for volatility forecasting and op-
tion pricing. Some evidence of long memory has already been presented
in Section 1.3. In Table 5.1, we present some statistics from a wider
range of assets and through simulation that we published in the Finan-
cial Analysts Journal recently. In the table, we report the sum of the first
1000 autocorrelation coefficients for a number of volatility proxies for
a selection of stock indices, stocks, exchange rates, interest rates and
commodities. We have also presented the statistics for GARCH(1, 1)
and GJR-GARCH(1, 1) series, both simulated using high volatility per-
sistence parameters. The statistics for the simulated series are in the
range of 0.478 to 2.308 while the empirical statistics are much higher.
As noted by Taylor (1986), the absolute return has a longer memory
than the square returns. This has been known as the ‘Taylor effect’.
But, taking logs or trimming the data by capping the values in the 0.1%
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tails often lengthens the memory. This phenomenon continues to puzzle
volatility researchers.

The impact of volatility long memory on option pricing has been
studied in Bollerslev and Mikkelsen (1996, 1999), Taylor (2000) and
Ohanissian, Russel and Tsay (2003). The effect is best understood an-
alytically from the stochastic volatility option pricing model which is
based on stock having the stochastic process below:

dS, = uSdt + /v, Sdzs.,,
dv, =k [0 — v,]dt + 0,/vdzy,,
which, in a risk-neutral option pricing framework, becomes
dv; =k [0 — v, ]dt — Avdt + cru\/v_tdz:i,
=« [0* — v,] dl—i—au\/adz:i,, 5.1

where v, is the instantaneous variance, « is the speed of mean reversion, 8
is the long run level of volatility, o, is the ‘volatility of volatility’, A is the
market price of (volatility) risk, and k™ = x + A and 6 = k0 /(k + 1).
The two Wiener processes, dz;,; and dz,,; have constant correlation p.
Here « ¥ is the risk-neutral mean reverting parameter and 0™ is the risk-
neutral long run level of volatility. The parameter o, and p implicit in
the risk-neutral process are the same as that in the real volatility process.

In the risk-neutral stochastic volatility process in (5.1), alow « (or « )
corresponds to strong volatility persistence, volatility long memory and
high kurtosis. A fast, mean reverting volatility will reduce the impact of
stochastic volatility. The effect of low « (or high volatility persistence)
is most pronounced when 6 the long run level is low but the initial
‘instantaneous’ volatility is high as shown in the table below. The table
reports kurtosis of the simulated distribution whenx = 0.1,A = p = 0.
When the correlation coefficient p is zero, the distribution is symmetrical
and has zero skewness.

v\ 0 0.05 0.1 0.15 002 025 03

0.1 590 445 397 373 358 348
0.2 1461 880 687 590 532 494
0.3 29.12 16.06 11.71 9.53 822 7.35
0.4 4944 2622 18.48 14.61 12.29 10.74
0.5 75.56 3928 27.19 21.14 17.51 15.09

At low mean version «, the option pricing impact crucially de-
pends on the initial volatility, however. Figure 5.1 below presents the
Black—Scholes implied volatility inverted from simulated option prices



961801 €€TOI1 TSL01 LO1'T6 SALVY LSHIYHALNI 95eI0Ay
879°96 9LT'LS 00T'Cl £69'%S 109T [[eD 1YSIUILDAQ BAIOY INOS
00861 $86°C¢ Pr6'6 9€T 61 6LTE puog Apeld Yvd B[onzousA
LS9'ST 106'CC 0800 669°C1 8L yjuow-| YueqIaju[
LLSTEE OLL'LTE T8L°0C 66L°18C 168 sitsodap Tefjopoinyg yiuow [ S
:S2IDY 1Sa42]U]

685°S€E 0%9°0S €8L°L T€8°6C SHIVYI ADONVHOXH 95eI0AyY
€SL1T 60S'1¢€ LT6Y 618°0C 7962 3 3N 01 yeirdny uersauopuy
TE6'P1 09L°€1 10S°T SHS'6 76£S F 3N 01 053d ULIIXI
1778y TLSTL 7500 LS9TE 6S8L F 31N 01 § uerensny
EVLS LILY8 T897C 80£°9S 6L FAN O § SN
1S2IDY ISUDYIXT

P 0p 8S1°8S WSl T6£°8¢ SMOOLS d8e1oAy
£€6'8C TsIse TILE 18€°6T LEvY xopuy de) [[ews gS14
SE00 IILvY 8L0°0C LY6'8¢ 118 uodsuel], [[yg
SLSTH 08%'L9 17S°LI SE9'0F 60LL dnouig 10ouadg % SHIRN
§€T'0S 887'G8 9¢T 61 L09'8% 8IYL saddomuyog Amgpe)
'8§Y0018

011°6S 888'8¢ 00681 686'7S SHADIANI MDOLS d5eroay
661°¢E 76£'81 S19°Tl L18°0€ vIL8 00TASLA pue areys [V ISLA N
6£S°9Y TEY'TT LOV'LT 01gey 9.78 0% VO eouer]
68L°S6 LSTY8 SOT'€T 655°68 €ry8 93RI0AY Y201S GTT IAMMIN uedef
981°6L 068'T¥ T01°LE 1LS°SL Y£96 [eLusnpuy O¢ X v Aueuton
8€8°0F 99t°'LT [4x3 L89°S€E 9196 ansodwo) )0Sd®S VSN
J8§221pUf JYAD A 32018

(l4xhd (l4lupo (D9 (l4ho X 590 Jo 'ON

$9550001d YD) pue HOYVDO PAIL[NWIS PUL SILIOS W) [BIOUBUY PAJOI[as 10J sSe] 000 ISIY Y3 JO SJUSIOYJO0D UOTIB[ALIOO0INE JO WNS  [°S d[qEL,



"PAAISSY SIYSTY [V Insu] VD woly uorsstuad yirm fewanor sjsA[euy [eroueur] woij paystjqndar pue paonpoidoy -ymnsu V4D ‘+00z WStAdoD

"9SIMIdYIO o“ =g

0> ’310] |

Il
<

1ls11q60°0 + /3600 + 160 + (60°0 X §°0 — €010 — 60 — 1)
(TON~'8  ‘ypiz='s

s1 ss9001d YD) pare[nWIs YT,
1800+ 4960+ (T00 — 960 — 1) = 'y
T'ON~"3  ypz =13

st sseoo1d HOYVO pajernuuls ay [,
"a[muenb 9, 10" 2y} JO an[eA Y} NE) [1B) % [()'() Y3 UI SUINJI KQAISYM SUINJAI PIWIWLE) JOUIP ], ‘2JON

(099°1) (806°0) (8%00) (60L°T) UOIBIAQD pIepuels
668’1 0L8°0 80€C SH6'l 00001 ueaw RO pajenwis OO0 [
(980°1) (889°0) (zeT D (660°1) UOTJBIASD PIEPUE)S
€601 8LY°0 90T'1 SHO'T 00001 ugdw  : HOYVO pajenuis 0Q0 [
6619 S67°S9 CITPI 1€6'%S TIV 98eIeay
86°59 8LL6L €89°LT 78L°09 SHLLIAOWINOD d3eIoAy
1811 7886 691°S TESTT 68¢T [o118q/$ (Premloy ypuowt [) [IQ judrg
¥S1°CS 90L'88 SLT'S Y0S'SP 08LL 70 KO1/SIudd Ysed ‘(INGT) XId OATIS
088°¢€l LyLOY1 S0¢'6¢ 60¢°STT 9¢59 3s0[0 (Surxy uopuor) zo Kom/$ ‘uor[ng ‘p[ooH

:Sa11poUIUI0))
(ponuyuo))  1°S Qe



50 Forecasting Financial Market Volatility

—<>—1c=0.01,\/v,=0.7 —D—K=3,\/U,=O.7
x£=0.01, Vv,=0.15 x=3,vYv,=0.15
0.8 4
0.7 H_H A Oo—= o
>g:§:DD—EDDDDDDDD
7 04
M 03
0.2 4
0.1
0 i i i i 0'.1049 i i i i i
50 60 70 80 90 100 110 120 130 140 150

Strike Price, K

Figure 5.1 Effect of kappa
(=100, r=0,T=1,A=0,0v=0.6,0=0.2)

produced from a stochastic option pricing model. The Black—Scholes
model is used here only to get the implied volatility which gives a
clearer relative pricing relationship. The Black—Scholes implied volatil-
ity (BSIV) is directly proportional to option price. First we look at the
high volatility state where v; = 0.7. The implied volatility for x = 0.01
ishigher than thatfor « = 3.0, which means that along memory volatility
(slow mean reversion and high volatility persistence) will lead to a higher
option price. But, in reverse, long memory volatility will result in lower
option prices, hence lower implied volatility at low volatility state, e.g.
/vy = 0.15. So unlike the conclusion in previous studies, long memory
in volatility does not always lead to higher option prices. It is conditioned
on the current level of volatility vis-a-vis the long run level of volatility.

5.3 FRACTIONALLY INTEGRATED MODEL

Both the historical volatility models and the ARCH models have been
tested for fractional integration. Baillie, Bollerslev and Mikkelsen (1996)
fitted FIGARCH to US dollar—Deutschemark exchange rates. Bollerslev
and Mikkelsen (1996, 1999) used FIEGARCH to study S&P500
volatility and option pricing impact, and so did Taylor (2000). Vilasuso
(2002) tested FIGARCH against GARCH and IGARCH for volatility
prediction for five major currencies. In Andersen, Bollerslev, Diebold
and Labys (2003), a vector autoregressive model with long distributed
lags was built on the realized volatility of three exchange rates, which
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they called the VAR-RV model. In Zumbach (2002) the weights applied
to the time series of realized volatility follow a power law, which he
called the LM-ARCH model. Three other papers, viz. Li (2002), Martens
and Zein (2004) and Pong, Shackleton, Taylor and Xu (2004), compared
long memory volatility model forecasts with option implied volatility. Li
(2002) used ARFIMA whereas the other two papers used log-ARFIMA.
Hwang and Satchell (1998) studied the log-ARFIMA model also, but
they forecast Black—Scholes ‘risk-neutral’ implied volatility of the eq-
uity option instead of the underlying asset.

5.3.1 FIGARCH
The FIGARCH(1, d, 1) model below:

hi=w+[1—BL—(1—¢ L)1 — L) e+ Bih

was used in Baillie, Bollerslev and Mikkelsen (1996), and all the fol-
lowing specifications are equivalent:

(1 =Bl =w~+[1—BiL—(1—¢ L)1 — L) e},
hh=ol-)"+0-6L)"
x[(1 = Bi1L) — (1 — ¢, L)(1 — L)*1¢?,
hy=w(l =)+ 1= —-pL)7"A—¢ L)1 — L)l
For the one-step-ahead forecast
= —B) " + 1 — (1 —BiL)'(1 — ¢ L)1 — L)]e?,
and the multi-step-ahead forecast is
hrie =01 =B+ 1= = BL) "1 — ¢ L)1 — L) et ;.

The FIGARCH model is estimated based on the approximate maxi-
mum likelihood techniques using the truncated ARCH representation.
We can transform the FIGARCH model to the ARCH model with infinite
lags. The parameters in the lag polynomials

ML)=1—(1—pL)y (1 —¢ L)1 —L)*

may be written as

A =¢—pB1+d,
M= Brak—1 + (T — p1mr—y) fork > 2,
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where
oo .
(1-L)Y = anu,
Jj=0

7T0:0.

In the literature, a truncation lag at / = 1000 is common.

5.3.2 FIEGARCH

Bollerslev and Mikkelsen (1996) find fractional integrated models pro-
vide better fit to S&P500 returns. Specifically, they find that frac-
tionally integrated models perform better than GARCH(p, ¢) and
IGARCH(p, ¢g), and that FIEGARCH specification is better than FI-
GARCH. Bollerslev and Mikkelsen (1999) confirm that FIEGARCH
beats EGARCH and IEGARCH in pricing options of S&P500 LEAPS
(Long-term Equity Anticipation Securities) contracts. Specifically
Bollerslev and Mikkelsen (1999) fitted an AR(2)-FIEGARCH(1, d, 1)
as shown below:

rt=/'L+(p1L+p2L2)rt+Zt’ (5.2)
o2 =w +(+yiL)A—p L)' —L)?g(e),

gle)=0e_1+ylle—1l — Ele—ill,
Cl)t =a)+ln(l+5N,)

The FIEGARCH model in (5.2) is truly a model for absolute return.
Since both EGARCH and FIEGARCH provide forecasts for Ino, to
infer forecast for o from In o requires adjustment for Jensen inequality
which is not a straightforward task without the assumption of a normal
distribution for Ino.

5.3.3 The positive drift in fractional integrated series

As Hwang and Satchell (1998) and Granger (2001) pointed out, positive
I(d) process has a positive drift term or a time trend in volatility level
which is not observed in practice. This is a major weakness of the frac-
tionally integrated model for it to be adopted as a theoretically sound
model for volatility.

All fractional integrated models of volatility have a nonzero drift.
In practice the estimation of fractional integrated models require an
arbitrary truncation of the infinite lags and as a result the mean will
be biased. Zumbach’s (2002) LM-ARCH will not have this problem
because of the fixed number of lags and the way in which the weights are
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calculated. Hwang and Satchell’s (1998) scaled-truncated log-ARFIMA
model is mean adjusted to control for the bias that is due to this truncation
and the log transformation. The FIGARCH has a positive mean in the
conditional variance equation whereas FIEGARCH has no such problem
because the lag-dependent terms have zero mean.

5.3.4 Forecasting performance

Vilasuso (2002) finds FIGARCH produces significantly better 1- and
10-day-ahead volatility forecasts for five major exchange rates than
GARCH and IGARCH. Zumbach (2002) produces only one-day-ahead
forecasts and find no difference among model performance. Andersen,
Bollerslev, Diebold and Labys (2003) find the realized volatility con-
structed VAR model, i.e. VAR-RYV, produces the best 1- and 10-day-
ahead volatility forecasts. It is difficult to attribute this superior
performance to the fractional integrated model alone because the VAR
structure allows a cross series linkage that is absent in all other univari-
ate models and we also know that the more accurate realized volatility
estimates would result in improved forecasting performance, everything
else being equal.

The other three papers that compare forecasts from LM models with
implied volatility forecasts generally find implied volatility forecast to
produce the highest explanatory power. Martiens and Zein (2004) find
log-ARFIMA forecast beats implied in S&P500 futures but not in ¥/US$
and crude oil futures. Li (2002) finds implied produces better short hori-
zon forecast whereas the ARFIMA provides better forecast for a 6-month
horizon. However, when regression coefficients are constrained to be
o = 0 and B = 1, the regression R? becomes negative at long horizon.
From our discussion in Section 2.4, this suggests that volatility at the
6-month horizon might be better forecast using the unconditional vari-
ance instead of model-based forecasts. Pong, Shackleton, Taylor and Xu
(2004) find implied volatility to outperform time series volatility models
including the log-ARFIMA model in forecasting 1- to 3-month-ahead
volatility of the dollar-sterling exchange rate.

Many of the fractional integration papers were written more recently
and used realized volatilities constructed from intraday high-frequency
data. When comparison is made with option implied volatility, the im-
plied volatility is usually extracted from daily closing option prices,
however. Despite the lower data frequency, implied appears to outper-
form forecasts from LM models that use intraday information.
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5.4 COMPETING MODELS FOR VOLATILITY LONG
MEMORY

Fractionally integrated series is the simplest linear model that produces
long memory characteristics. It is also the most commonly used and
tested model in the literature for capturing long memory in volatility.
There are many other nonlinear short memory models that exhibit spu-
rious long memory in volatility, viz. break, volatility component and
regime-switching models. These three models, plus the fractional inte-
grated model, have very different volatility dynamics and produce very
different volatility forecasts.

The volatility breaks model permits the mean level of volatility to
change in a step function through time with some weak constraint on
the number of breaks in the volatility level. It is more general than the
volatility component model and the regime switching model. In the case
of the volatility component model, the mean level is a slowly evolving
process. For the regime-switching model, the mean level of volatility
could differ according to regimes the total number of which is usually
confined to a small number such as two or three.

5.4.1 Breaks

A break process can be written as
Vi =m; + uy,

where u, is a noise variable and m;, represents occasional level shifts.
m; are controlled by ¢, (a zero—one indicator for the presence of breaks)
and 7, (the size of jump) such that

t
m; = m;_y +q;n; =mo+ qui,
i=1
__ | 0, with probability 1 — p
9= 1 1, with probability p

The expected number of breaks for a given sample is 7p where T
is the total number of observations. Provided that p converges to zero
slowly as the sample size increases, i.e. p — 0 as T — o0, such that
limy_, o Tp is a nonzero constant, Granger and Hyung (2004) showed
that the integrating parameter, / (d), is a function of Tp. While d is
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bounded between 0 and 1, the expected value of d is proportionate to
the number of breaks in the series.

One interesting empirical finding on the volatility break model comes
from Aggarwal, Inclan and Leal (1999) who use the ICSS (integrated
cumulative sums of squares) algorithm to identify sudden shifts in the
variance of 20 stock market indices and the duration of such shifts.
They find most volatility shifts are due to local political events. When
dummy variables, indicating the location of sudden change in variance,
were fitted to a GARCH(1,1) model, most of the GARCH parameters be-
came statistically insignificant. The GARCH(1,1) with occasional break
model can be written as follows:

hy=w1Di+ -+ wr+1Dr+1 +0518,2_1 + Bihi—1,

where Dy, ---, Dgy; are the dummy variables taking the value 1 in
each regime of variance, and zero elsewhere. The one-step-ahead and
multi-step-ahead forecasts are

Tig1 = wgy1 + aig; + Bihy,
hivr = ops1 + (@1 + BNigr—1.

In estimating the break points using the ICSS algorithms, a minimum
length between breaks is needed to reduce the possibility of any tempo-
rary shocks in a series being mistaken as break.

5.4.2 Components model

Engle and Lee (1999) proposed the component GARCH (CGARCH)
model whereby the volatility process is modelled as the sum of a perma-
nent process, m;,, that has memory close to a unit root, and a transitory
mean reverting process, u,, that has a more rapid time decay. The model
can be seen as an extension of the GARCH(1,1) model with the con-
ditional variance mean-revert to a long term trend level, m,, instead of
a fixed position at o. Specifically, m, is permitted to evolve slowly in
an autoregressive manner. The CGARCH(1,1) model has the following
specification:

(hy —m) = a (e}, —me_1) + By —m_y) = up,  (5.3)
my =w-+pmi_1+¢ (812_1 - ht—l) )

where (h, — m;) = u, represents the short-run transitory component and
m, represents a time-varying trend or permanent component in volatility
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which is driven by volatility prediction error (812_1 — ht,l) and is inte-
grated if p = 1.
For the one-step-ahead forecast

/h\z+l =qr+1 +a (5;2 - Qt) + B(h —q1),
Gis1 =+ pq + ¢ (sf —hy),

and for the multi-step-ahead forecast

hive = Gree — (@ + B)Gre—1 + (@ + Bhy 4,
i+ = O+ PGric—1,

where A, and g;,,_ are calculated through repeat substitutions.

This model has various interesting properties: (i) both m, and u, are
driven by (81271 — ht_l); (ii) the short-run volatility component mean-
reverts to zero at a geometric rate of (o + B) if 0 < (¢ 4+ B) < 1; (iii)
the long-run volatility component evolves over time following an AR
process and converge to a constant level defined by w/ (1 — p) if 0 <
p < 1;(@v) itis assumed that 0 < (¢ 4+ B8) < p < 1 so that the long-run
component is more persistent than the short-run component.

This model was found to obey several economic and asset pricing
relationships. Many have observed and proposed that the volatility per-
sistence of large jumps is shorter than shocks due to ordinary news
events. The component model allows large shocks to be transitory. In-
deed Engle and Lee (1999) establish that the impact of the October 1987
crash on stock market volatility was temporary. The expected risk pre-
mium, as measured by the expected amount of returns in excess of the
risk-free interest rate, in the stock market was found to be related to the
long-run component of stock return volatility.! The authors suggested,
but did not test, that such pricing relationship may have fundamen-
tal economic explanations. The well-documented ‘leverage effect’ (or
volatility asymmetry) in the stock market (see Black, 1976; Christie,
1982; Nelson, 1991) is shown to have a temporary impact; the long-run
volatility component shows no asymmetric response to market changes.

The reduced form of Equation (5.3) can be expressed as a
GARCH(2,2) process below:

h=(0—-a—-Po+@+e e +[—¢+p)—aple,
+p+B—p) hi_1 + e+ B)— Bplhi—,

! Merton (1980) and French, Schwert and Stambaugh (1987) also studied and measured the relationships
between risk premium and ‘total’ volatility.
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with all five parameters, «, B, @, ¢ and p, constraint to be positive and
reab, 0 < (¢ +B8)<p<1l,and0 < ¢ < B.

5.4.3 Regime-switching model

One approach for modelling changing volatility level and persistence
is to use a Hamilton (1989) type regime-switching (RS) model, which
like GARCH model is strictly stationary and covariance stationary. Both
ARCH and GARCH models have been implemented with a Hamilton
(1989) type regime-switching framework, whereby volatility persistence
can take different values depending on whether it is in high or low volatil-
ity regimes. The most generalized form of regime-switching model is
the RS-GARCH(1, 1) model used in Gray (1996) and Klaassen (1998)

_ 2
he, s, =ws  +oas &+ PBs, hi-1 s,

where S; indicates the state of regime at time ¢.

It has long been argued that the financial market reacts to large and
small shocks differently and the rate of mean reversion is faster for large
shocks. Friedman and Laibson (1989), Jones, Lamont and Lumsdaine
(1998) and Ederington and Lee (2001) all provide explanations and
empirical support for the conjecture that volatility adjustment in high
and low volatility states follows a twin-speed process: slower adjust-
ment and more persistent volatility in the low volatility state and faster
adjustment and less volatility persistence in the high volatility state.

The earlier RS applications, such as Pagan and Schwert (1990) and
Hamilton and Susmel (1994) are more rigid, where conditional vari-
ance is state-dependent but not time-dependent. In these studies, only
ARCH class conditional variance is entertained. Recent extensions by
Gray (1996) and Klaassen (1998) allow GARCH-type heteroscedas-
ticity in each state and the probability of switching between states to
be time-dependent. More recent advancement is to allow more flexi-
ble switching probability. For example, Peria (2001) allowed the tran-
sition probabilities to vary according to economic conditions with the
RS-GARCH model below:

rel ®-1 N (i, hi) W.p. pis,
h,’, = wj + Oliétz_l + ,Biht_l.

where i represents a particular regime, ‘w.p.” stands for with probability,
pir =Pr(S; =i| ®_)and ) p;; = 1.
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The STGARCH (smooth transition GARCH) model below was tested
in Taylor, J. (2004)

hy =+ —F(e_1)ag;  + F (1) e] | + Bhi_1,

where
1
F(e_1)= for logistic STGARCH,
1 4+ exp(—6e—1)

F(g—1) = 1 +exp(—fe;_,) for exponential STGARCH.

5.4.4 Forecasting performance

The TAR model used in Cao and Tsay (1992) is similar to a SV model
with regime switching, and Cao and Tsay (1992) reported better forecast-
ing performance from TAR than EGARCH and GARCH. Hamilton and
Susmel (1994) find regime-switching ARCH with leverage effect pro-
duces better volatility forecast than the asymmetry version of GARCH.
Hamilton and Lin (1996) use a bivariate RS model and find stock market
returns are more volatile during a period of recession. Gray (1996) fits
a RSGARCH (1,1) model to US 1-month T-Bill rates, where the rate
of mean level reversion is permitted to differ under different regimes,
and finds substantial improvement in forecasting performance. Klaassen
(1998) also applies RSGARCH (1,1) to the foreign exchange market and
finds a superior, though less dramatic, performance.

It is worth noting that interest rates are different to the other assets
in that interest rates exhibit ‘level” effect, i.e. volatility depends on the
level of the interest rate. It is plausible that it is this level effect that Gray
(1996) is picking up that result in superior forecasting performance. This
level effect also appears in some European short rates (Ferreira, 1999).
There is no such level effect in exchange rates and so it is not surprising
that Klaassen (1998) did not find similar dramatic improvement. No
other published forecasting results are available for break and component
volatility models.



6
Stochastic Volatility

The stochastic volatility (SV) model is, first and foremost, a theoretical
model rather than a practical and direct tool for volatility forecast. One
should not overlook the developments in the stochastic volatility area,
however, because of the rapid advancement in research, noticeably by
Ole Barndorft-Nielsen and Neil Shephard. As far as implementation is
concerned, the SV estimation still poses a challenge to many researchers.
Recent publications indicate a trend towards the MCMC (Monte Carlo
Markov Chain) approach. A good source of reference for the MCMC
approach for SV estimation is Tsay (2002). Here we will provide only an
overview. An early survey of SV work is Ghysels, Harvey and Renault
(1996) but the subject is rapidly changing. A more recent SV book is
Shephard (2003). The SV models and the ARCH models are closely
related and many ARCH models have SV equivalence as continuous time
diffusion limit (see Taylor, 1994; Duan, 1997; Corradi, 2000; Fleming
and Kirby, 2003).

6.1 THE VOLATILITY INNOVATION

The discrete time SV model is

rh=pn+é&,
& = z,exp(0.5h,),
h[ = + ,Bhl—l + Uy,

where v; may or may not be independent of z;. We have already seen this
continuous time specification in Section 5.2, and it will appear again in
Chapter 9 when we discuss stochastic volatility option pricing models.

The SV model has an additional innovative term in the volatility dy-
namics and, hence, is more flexible than ARCH class models. It has been
found to fit financial market returns better and has residuals closer to stan-
dard normal. Modelling volatility as a stochastic variable immediately
leads to fat tail distributions for returns. The autoregressive term in the
volatility process introduces persistence, and the correlation between
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the two innovative terms in the volatility process and the return pro-
cess produces volatility asymmetry (Hull and White, 1987, 1988). Long
memory SV models have also been proposed by allowing the volatility
process to have a fractional integrated order (see Harvey, 1998).

The volatility noise term makes the SV model a lot more flexible, but
as a result the SV model has no closed form, and hence cannot be esti-
mated directly by maximum likelihood. The quasi-maximum likelihood
estimation (QMLE) approach of Harvey, Ruiz and Shephard (1994) is in-
efficient if volatility proxies are non-Gaussian (Andersen and Sorensen,
1997). The alternatives are the generalized method of moments (GMM)
approach through simulations (Duffie and Singleton, 1993), or analyt-
ical solutions (Singleton, 2001), and the likelihood approach through
numerical integration (Fridman and Harris, 1998) or Monte Carlo in-
tegration using either importance sampling (Danielsson, 1994; Pitt and
Shephard, 1997; Durbin and Koopman, 2000) or Markov chain (e.g.
Jacquier, Polson and Rossi, 1994; Kim, Shephard and Chib, 1998). In
the following section, we will describe the MCMC approach only.

6.2 THE MCMC APPROACH

The MCMC approach to modelling stochastic volatility was made pop-
ular by authors such as Jacquier, Polson and Rossi (1994). Tsay (2002)
has a good description of how the algorithm works. Consider here the
simplest case:

ry = day,

ar = \/h—tgtv

Inh; =ap+a;Inh,_; + v;, (6.1)

where ¢, ~ N(0, 1), v; ~ N(O, af) and ¢, and v, are independent.

Letw = (g, @1, 02) . Let R = (ry, - - -, ;) be the collection of n ob-
served returns, and H = (hy, - - -, h,)’ be the n-dimension unobservable
conditional volatilities. Estimation of model (6.1) is made complicated
because the likelihood function is a mixture over the n-dimensional H
distribution as follows:

FR w>=ff(R VHY. FCH | w)dH.

The objective is still maximizing the likelihood of {a,}, but the density
of R is determined by H which in turn is determined by w.
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Assuming that prior distributions for the mean and the volatility equa-
tions are independent, the Gibbs sampling approach to estimating model
(6.1) involves drawing random samples from the following conditional
posterior distributions:

fBIR X, H,w), f(H|R,X,B,w) and f(w|R,X,B, H)

This process is repeated with updated information till the likelihood tol-
erance or the predetermined maximum number of iterations is reached.

6.2.1 The volatility vector H
First, the volatility vector H is drawn element by element

f(hl |Rv H—lv w)
o< flag |he,re) f(hy [hi—1, w) f(hygr LAy, w)

2 Inh, — 2
o 1705 exp <_2Lh) - h'exp [——( - ’202“’) ] 6.2)
13

where

1
[ = (1 +a%) [oo(1 — ay) +ay(Inh, o +1Inh, )],

2

2 0,

o° =
1+ o}

Equation (6.2) can be obtained using results for a missing value in an
AR(1) model. To see how this works, start from the volatility equation
Inh; =apg+o;Inh;—y + ay,
oo+ arInh,_y= 1 xInh; —a;,
Yt X b
y[ = X; ll’lh[ +b[, (63)
and forr + 1

Inhy —ag =0y +1Inh; +ar,
Vit1 = Xep1 Inhy + by (6.4)

Given that b, and b, | have the same distribution because q; is also
N(O, af), Inh, can be estimated from (6.3) and (6.4) using the least
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squares principle,

— XY + Xep1 Vet
Inh = ————
X; —|—x,Jrl
_ag(l —aq) +on(Inhiyy +1Inh,y)
B 1 +oe12 )

This is the conditional mean p, in Equation (6.2). Moreover, lﬁ-ﬁ, is
normally distributed

— o2
Inh; ~ N (lnh,, —”2> , or
I +a

~ N(w;, 0%)

6.2.2 The parameter w

First partition w as « = («g, ;)" and af. The conditional posterior dis-
tributions are:

(i) f(@|R, H,02) = f(a|H, 0?2). Note that In 4, has an AR(1) struc-
ture. Hence, if prior distribution of « is multivariate normal, o ~
M N(ayp, Cp), then posterior distribution f (o |H , avz |) is also mul-
tivariate normal with mean «x and covariance Cx, where

_ 1 (& _
Ci' =3 (Zmé> +C5 ',
v =2
1 X _1
ax = Cx ; Zztlnht —|—C0 oo |, and

v t=2

z=(,Inh,) . (6.5)

(i) f(@2|R,H,a)= f(o}| H,a). If the prior distribution of o7 is
mh /o2 ~ x2, then the conditional posterior distribution of o2 is an
inverted chi-squared distribution with m +n — 1 degrees of free-
dom, i.e.

1 2 2
" (mk + 22:1),) ~ Xpmin_1» and
% 1=

vi=Inh; —ay—oyInh,_; fort=2,---,n. (6.6)
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Tsay (2002) suggested using the ARCH model parameter estimates as
the starting value for the MCMC simulation.

6.3 FORECASTING PERFORMANCE

In a PhD thesis, Heynen (1995) finds SV forecast is best for a number
of stock indices across several continents. There are only six other SV
studies and the view about SV forecasting performance is by no means
unanimous at the time of writing this book.

Heynen and Kat (1994) forecast volatility for seven stock indices and
five exchange rates they find SV provides the best forecast for indices
but produces forecast errors that are 10 times larger than EGARCH’s and
GARCH’s for exchange rates. Yu (2002) ranks SV top for forecasting
New Zealand stock market volatility, but the margin is very small, partly
because the evaluation is based on variance and not standard deviation.
Lopez (2001) finds no difference between SV and other time series
forecasts using conventional error statistics. All three papers have the
1987s crash in the in-sample period, and the impact of the 1987 crash
on the result is unclear.

Three other studies, Bluhm and Yu (2000), Dunis, Laws and Chau-
vin (2000) and Hol and Koopman (2002) compare SV and other time
series forecasts with option implied volatility forecast. Dunis, Laws and
Chauvin (2000) find combined forecast is the best for six exchange rates
so long as the SV forecast is excluded. Bluhm and Yu (2000) rank SV
equal to GARCH. Both Bluhm and Yu (2000) and Hol and Koopman
(2002) conclude that implied is better than SV for forecasting stock
index volatility.






7
. Multivariate Volatility Models

At the time of writing this book, there was no volatility forecasting
contest that is based on the multivariate volatility model. However, there
have been a number of studies that examined cross-border volatility
spillover in stock markets (Hamao, Masulis and Ng, 1989; King and
Wadhwani, 1990; Karolyi, 1995; Koutmos and Booth, 1995), exchange
rates (Baillie, Bollerslev and Redfearn, 1993; Hong, 2001), and interest
rates (Tse and Booth, 1996). The volatility spillover relationships are
potential source of information for volatility forecasting, especially in
the very short term and during global turbulent periods. Several vari-
ants of multivariate ARCH models have existed for a long time while
multivariate SV models are fewer and more recent. Truly multivariate
volatility models (i.e. beyond two or three returns variables) are not easy
to implement. The greatest challenges are parsimony, nonlinear relation-
ships between parameters, and keeping the variance—covariance matrix
positive definite. In the remainder of this short chapter, I will just illus-
trate one of the more recent multivariate ARCH models that I use a lot
in my research. It is the asymmetric dynamic covariance (ADC) model
due to Kroner and Ng (1998). I must admit that I have not used ADC
to fit more than three variables! The ADC model encompasses many
older multivariate ARCH models as we will explain later. Readers who
are interested in multivariate SV models could refer to Liesenfeld and
Richard (2003).

7.1 ASYMMETRIC DYNAMIC COVARIANCE
MODEL

In implementing multivariate volatility of returns from different coun-
tries, the adjustment for time zone differences is important. In this sec-
tion, I rely much on my joint work with Martin Martens that was pub-
lished in the Journal of Banking and Finance in 2001. The model we
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used is presented below

rr=u+e+Me_y, &~N(QO, H),
hm = Ous,
hije = Py hiin/ hje + @i,

O = Wi+ biH_1bj + ajei_18;_,a; + +8iNi-11;_18;-

The matrix M is used for adjusting nonsynchronous returns. It has non-
zero elements only in places where one market closes before another,
except in the case of the USA where the impact could be delayed till the
next day. So Japan has an impact on the European markets but not the
other way round. Europe has an impact on the USA market and the USA
has an impact on the Japanese market on the next day. The conditional
variance—covariance matrix H, has different specifications for diagonal
(conditional variance h;;) and off-diagonal (conditional covariance h;;,)
elements.
Consider the following set of conditions:

(1) a; = a;e; and b; = B;e; Vi, where ¢; is the ith column of an (n, n)

identity matrix, and ; and B;,i = 1, - - -, n, are scalars.
(i) A = a(wA’) and B = B(w)’) where A =(ay,---,a,), B=
by, -+, by), wand A are (n, 1) vectors and « and 8 are scalars.
The ADC model reduces to:

(i) a restricted VECH model of Bollerslev, Engle and Wooldridge

(1988) if p;» = 0 and under condition (i) with the restrictions that
Bij = BiBj;

(i1) the constant correlation model of Bollerslev (1990) if ¢, = 0 and
under condition (i);

(iii) the BEKK model of Engle and Kroner (1995) if p;; =0 and
=1

(iv) the factor ARCH (FARCH) model of Engle, Ng and Rothschild
(1990) if p1» = 0, ¢p1» = 1 and under condition (ii),

and, unlike most of its predecessors, it allows for volatility asymmetry
in the spillover effect as well through the last term in 6.
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7.2 A BIVARIATE EXAMPLE

Take a two-variable case as an example;
Elr min (0, &1)
& = sy M = : )
€ min (0, &2,)

ai; b 81i
4= |:a2ii|’ bi = |:b2i:|’ 8= [82ii|'
The condition variance of, for example, first return is
hii = o1 + Buhi -1 + ajg—16,_ja1 + g1mi—1m,_1&1
= w1 + Biihi -1 + aflé‘%,_l + 2a11a2181-1821-1
+a3,6% . + &h 1 + 28081021 + 85171

and similarly for the second return from, for example, another country.
Here, we set By k) ,—; as a single element, although one could also have
B as a matrix, bringing in previous day conditional variance of returns
from the second country as Bj1haz,—1. In the above specification, we
only allow spillover to permeate through 8%71 and assume that the impact
will then be passed on ‘internally’ through Ay ;1.

The conditional covariance h;j; = hyy is slightly more complex. It
accommodates both constant and time-varying components as follows:

hie = prav/ by hoo + ¢>12hT2t,

th, = w1+ Biohio—1 +aj&_16,_1ar + g16-16,_1 82
= wip + Biohio,—1 +ananet,_; + ananei 16—
+ana&i—182-1+ 612161228%[_1 + g11g1277%t_1
+ 81182 M- 1021 + 812821 M1—1M21—1 + 821822131
with p1, capturing the constant correlation and h;k%’ a time-varying co-

variance weighted by ¢1,. In Martens and Poon (2001), we calculate
time-varying correlation as

In the implementation, we first estimate all returns as univariate GJR-
GARCH and estimate the MA parameters for synchronization correction
independently. These parameter estimates are fed into the ADC model
as starting values.
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7.3 APPLICATIONS

The future of multivariate volatility models very much depends on their
use. Their use in long horizon forecasting is restricted unless one adopts
a more parsimonious factor approach (see Sentana, 1998; Sentana and
Fiorentini, 2001). For capturing volatility spillover, multivariate volatil-
ity models will continue to be useful for short horizon forecast and
univariate risk management. The use of multivariate volatility mod-
els for estimating conditional correlation and multivariate risk man-
agement will be restrictive because correlation is a linear concept and
a poor measure of dependence, especially among large values (Poon,
Rockinger and Tawn, 2003, 2004). There are a lot of important de-
tails in the modelling of multivariate extremes of financial asset returns
and we hope to see some new results soon. It will suffice to illustrate
here some of these issues with a simple example on linear relationship
alone.

Let Y; be a stock return and X, be the returns on the stock market
portfolio or another stock return from another country. The stock returns
regression gives

YVi=a+BX: +e&, (7.1)
B = Cov (Y, X;) _ /Onyy’ or
Var (X;) Oy
Box
Pxy = .
y O,y

If the factor loading, B, in (7.1) remains constant, then p,, could increase
simply because o, /o, increases during the high-volatility state. This is
the main point in Forbes and Rigobon (2002) who claim findings in
many contagion studies are being driven by high volatility.

However, B, the factor loading, need not remain constant. One com-
mon feature in financial crisis is that many returns will move together
and jointly become more volatile. This means that indiosyncratic risk
will be small ‘752 — 0, and from (7.1)

2 2 2
o, = poy,

Oy
ﬁ:a—, and p,, — L.
X

The difficulty in generalizing this relationship is that there are crises
that are local to a country or a region that have no worldwide impact or
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impact on the neighbouring country. We do not yet have a model that
will make such a distinction, let alone one that will predict it.

The study of univariate jump risk in option pricing is a hot topic
just now. The study of the joint occurrence of jumps and multivariate
volatility models will probably ‘meet up’ in the not so-distant future.
Before we understand how the large events jointly occur, the use of the
multivariate volatility model on its own in portfolio risk management
will be very dangerous. The same applies to asset allocation and portfolio
formation, although the impact here is over a long horizon, and hence
will be less severely affected by joint-tail events.






8
Black—Scholes

A European-style call (put) option is a right, but not an obligation, to
purchase (sell) an asset at the agreed strike price on option maturity date,
T. An American-style option is a European option that can be exercised
priorto 7.

8.1 THE BLACK-SCHOLES FORMULA
The Black—Scholes (BS) formula below is for pricing European call and

put options:
c=SN(d)—Ke""N(dy), (8.1)
p=Ke "N (—dy) — SN (—d,).
In(So/K)+ (r +30%) T
1= 0«/7 s
d=d —o~T,

8.2)

N(d]) — 70.512dz’

1[4
V271 J o
where ¢ (p) is the price of the European call (put), Sy is the current
price of the underlying assset, K is the strike or exercise price, r is
the continuously compounded risk-free interest rate, and 7 is the time
to option maturity. N (d;) is the cumulative probability distribution of
a standard normal distribution for the area below d;, and N (—d;) =
1 — N ().

AsT — 0,

d1 and d2 — 00,
N(d;) and N (d) — 1,
N(—dy) and N (—dp)— 0,

which means

c>S—-K, p=>0 for S > K, (8.3)
c>0, p=K—5 for Sy < K. (8.4)
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As o — 0, again

N(d)) and N (dy) — 1,
N(—d;) and N (—dp)— 0.

This will lead to

c>Sy—Ke'T, and (8.5)
p=>Ke T —8. (8.6)

The conditions (8.3), (8.4), (8.5) and (8.6) are the boundary conditions
for checking option prices before using them for empirical tests. These
conditions need not be specific to Black—Scholes. Options with market

prices (transaction or quote) violating these boundary conditions should
be discarded.

8.1.1 The Black—Scholes assumptions
(i) For constant u and o, dS = uSdt + o Sdz.
(i1) Short sale is permitted with full use of proceeds.
(iii) No transaction costs or taxes; securities are infinitely divisible.
(iv) No dividend before option maturity.
(v) No arbitrage (i.e. market is at equilibrium).

(vi) Continuous trading (so that rebalancing of portfolio is done
instantaneously).

(vii) Constant risk-free interest rate, r.

(viii) Constant volatility, o.

Empirical findings suggest that option pricing is not sensitive to the as-
sumption of a constant interest rate. There are now good approximating
solutions for pricing American-style options that can be exercised early
and options that encounter dividend payments before option maturity.
The impact of stochastic volatility on option pricing is much more pro-
found, an issue which we shall return to shortly. Apart from the constant
volatility assumption, the violation of any of the remaining assumptions
will result in the option price being traded within a band instead of at
the theoretical price.
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8.1.2 Black-Scholes implied volatility

Here, we first show that
0Cps
do

which means that Cgg is a monotonous function in ¢ and there is a
one-to-one correspondence between Cpgg and o.

> 0,

From (8.1)
aC oN dd oN dad
B — L _Ke T2 8.7)
do dd; do od, do
dN (x) 1 1
= e s
0x 2w
od d
_1 — T —1t— _l’
do
od d
T -2 T ===
do o o
Substitute these results into (8.7) and get
—r(T—t)
s _ _5_o-tai (m - ﬂ) TRLCRES S
Jo 27 o V21 o
_ Se i YT —1 L d
V2 o2
X [—Se_%dlz + Ke_r(T_t)e_%(dl_"m)z]
_ Se YT =1 L4
N2 o2
« [_Se—%df 4 Ke—r(T—t)e(—%d%—&—dlo./T—t—%GZ(T—I))]
Se_%dl2 T —t d]e_%dl2
= +
N2 o2
x [=5 4 KerTnrdiedT=iia -0 (8.8)

Also from (8.2)

dioNT — 1t — %02 (T —t)—r (T —1) = log (%) (8.9)
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and substituting this result into (8.8), we get

BCBS _ Se_%dlzy/T —t " dle_%dlz |:_S N K£:|
do V2 o2 K

Se_%dlZ«/T —t
= - >

0
N2

8.1.3 Black-Scholes implied volatility smile

Given an observed European call option price C°* for a contract with
strike price K and expiration date T, the implied volatility o;, is de-
fined as the input value of the volatility parameter to the Black—Scholes
formula such that

Cps(t, S; K, T;0,,) = CO, (8.10)

The option implied volatility o;, is often interpreted as a market’s expec-
tation of volatility over the option’s maturity, i.e. the period from 7 to 7T'.
We have shown in the previous section that there is a one-to-one corre-
spondence between prices and implied volatilities. Since dCps/d0 > 0,
the condition

Cobs =Cps(t,S; K, T;04,) > Cps (¢, S; K, T;0)

means o;, > 0; i.e. implied volatility is always greater than zero. The
implied volatilities from put and call options of the same strike price
and time to maturity are the same because of put—call parity. Traders
often quote derivative prices in terms of o;, rather than dollar prices, the
conversion to price being made through the Black—Scholes formula.

Given the true (unconditional) volatility is o over period 7. If Black—
Scholes is correct, then

Cps(t,S;K,T;04) =Cps(t,S;K, T;0)

for all strikes. That is the function (or graph) of o;, (K) against K for
fixed ¢, S, T and r, observed from market option prices is supposed to be
a straight horizontal line. But, it is well known that the Black—Scholes
0;y, differ across strikes. There is plenty of documented empirical ev-
idence to suggest that implied volatilities are different across options
of different strikes, and the shape is like a smile when we plot Black—
Scholes implied volatility o;, against strike price K, the shape is anything
but a straight line. Before the 1987 stock market crash, o;, (K) against
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K was often observed to be U-shaped, with the minimum located at
or near at-the-money options, K = Se """, Hence, this gives rise to
the term ‘smile effect’. After the stock market crash in 1987, o;, (K)
is typically downward sloping at and near the money and then curves
upward at high strikes. Such a shape is now known as a ‘smirk’. The
smile/smirk usually ‘flattens’ out as 7' gets longer. Moreover, implied
volatility from option is typically higher than historical volatility and
often decreases with time to maturity.

Since 0Cps/d0 > 0, the smile/smirk curve, tells us that there is a pre-
mium charged for options at low strikes (OTM puts and ITM calls see
footnote 2) above their BS price as compared with the ATM options. Al-
though the market uses Black—Scholes implied volatility, o;,, as pricing
units, the market itself prices options as though the constant volatility
lognormal model fails to capture the probabilities of large downward
stock price movements and so supplement the Black—Scholes price to
account for this.

8.1.4 Explanations for the ‘smile’

There are at least two theoretical explanations (viz. distributional as-
sumption and stochastic volatility) for this puzzle. Other explanations
that are based on market microstructure and measurement errors (e.g.
liquidity, bid—ask spread and tick size) and investor risk preference (e.g.
model risk, lottery premium and portfolio insurance) have also been pro-
posed. In the next chapter on option pricing using stochastic volatility,
we will explain how violation of distributional assumption and stochastic
volatility could induce BS implied volatility smile. Here, we will con-
centrate on understanding how Black—Scholes distributional assumption
produces volatility smile. Before we proceed, we need to make use of
the positive relationship between volatility and option price, and the
put—call parity'

e+ Ke'T=0 = p, + 8, (8.11)
which establishes the positive relationship between call and put option
prices. Since implied volatility is positively related to option price, Equa-
tion (8.11) suggests there is also a positive relationship between implied

volatilities derived from call and put options that have the same strike
price and the same time to maturity.

! The discussion here is based on Hull (2002).
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As mentioned before, Black—Scholes requires stock price to follow a
lognormal distribution or the logarithmic stock returns to have a normal
distribution. There is now widely documented empirical evidence that
risky financial asset returns have leptokurtic tails. In the case where the
strike price is very high, the call option is deep-out-of-the-money? and
the probability for this option to be exercised is very low. Nevertheless,
a leptokurtic right tail will give this option a higher probability, than
that from a normal distribution, for the terminal asset price to exceed the
strike price and the call option to finish in the money. This higher prob-
ability leads to a higher call price and a higher Black—Scholes implied
volatility at high strike.

Next, we look at the case when the strike price is low. First note
that option value has two components: intrinsic value and time value.
Intrinsic value reflects how deep the option is in the money. Time value
reflects the amount of uncertainty before the option expires, hence it
is most influenced by volatility. A deep-in-the-money call option has
high intrinsic value and little time value, and a small amount of bid—ask
spread or transaction tick size is sufficient to perturb the implied volatility
estimation. We could, however, make use of the previous argument but
apply it to an out-of-the-money (OTM) put option at low strike price. An
OTM put option has a close to nil intrinsic value and the put option price
is due mainly to time value. Again because of the thicker tail on the left,
we expect the probability that the OTM put option finishes in the money
to be higher than that for a normal distribution. Hence the put option
price (and hence the call option price through put—call parity) should be
greater than that predicted by Black—Scholes. If we use Black—Scholes to
invert volatility estimates from these option prices, the Black—Scholes
implied will be higher than actual volatility. This results in volatility
smile where implied volatility is much higher at very low and very high
strikes.

The above arguments apply readily to the currency market where ex-
change rate returns exhibit thick tail distributions that are approximately
symmetrical. In the stock market, volatility skew (i.e. low implied at high
strike but high implied at low strike) is more common than volatility
smile after the October 1987 stock market crash. Since the distribution

2 In option terminology, an option is out of the money when it is not profitable to exercise the option. For a
call option, this happens when S < X, and in the case of a put, the condition is § > X. The reverse is true for an
in-the-money option. A call or a put is said to be at the money (ATM) when S = X. A near-the-money option is
an option that is not exactly ATM, but close to being ATM. Sometimes, discounted values of S and X are used
in the conditions.
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is skewed to the far left, the right tail can be thinner than the normal
distribution. In this case implied volatility at high strike will be lower
than that expected from a volatility smile.

8.2 BLACK-SCHOLES AND NO-ARBITRAGE PRICING
8.2.1 The stock price dynamics

The Black—Scholes model for pricing European equity options assumes
the stock price has the following dynamics:

dS = puSdt + o0 Sdz, (8.12)
and for the growth rate on stock:
ds
5= pdt +odz. (8.13)

From Ito’s lemma, the logarithm of the stock price has the following
dynamics:

1
dlnS = (u — 50—2) dt + odz, (8.14)

which means that the stock price has a lognormal distribution or the
logarithm of the stock price has a normal distribution. In discrete time

1
dinS = (u— 502> dt +odz,
1
AlnS = (M— 502) At + o eV At,
1
In St —lnS0~N|:(,u— 502> T, UVT],

1
InS;y ~ N [m So + (M — 502) T, aﬁ] . (8.15)

8.2.2 The Black-Scholes partial differential equation

The derivation of the Black—Scholes partial differential equation (PDE)
is based on the fundamental fact that the option price and the stock price
depend on the same underlying source of uncertainty. A portfolio can
then be created consisting of the stock and the option which eliminates
this source of uncertainty. Given that this portfolio is riskless, it must
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therefore earn the risk-free rate of return. Here is how the logic works:

AS = uSAt + o SAz, (8.16)
af af  13*f ,, of

Af = 2uS+ =+ -——2028?| At + —0SAz. (8.17

/ [as“ T Taas? tasosAn 17

We set up a hedged portfolio, I1, consisting of df /9.5 number of shares
and short one unit of the derivative security. The change in portfolio
value is

af

All = —-A —AS
S+ S

[Of af  13*f ,, of
s+ 28T ot ay — Y oA
95" T o T2952° a5t
of of

Y sar+ Losa

gsHo Bl T g As

faf 192 .,
= | Y 20 g2 | A
5 T2952°

Note that uncertainty due to Az is cancelled out and j, the premium for
risk (returns on S§), is also cancelled out. Not only has AIT no uncer-
tainty, it is also preference-free and does not depend on u, a parameter
controlled by the investor’s risk aversion.

If the portfolio value is fully hedged, then no arbitrage implies that it
must earn only a risk-free rate of return

rTIAr = AT,
MAr = —Af + O As
r = — — ,
3S
af of f [ 18°f 50 af
—f4+ =S|At=—|=uS+ L + -0 | At — =0 SA
r( f+as) [as’”‘ T T aas2? 85775t
+af[ SAt + 0 SAz]
—_— o} s
as ¢
af af af 13%f ,
—f)At = —rS—= At — ——uSAt — — At — ——=028> At
r=f) "t T st or 20827
of af of
——0SAz+ L uSAt + ——0SAz,
P T T i
and finally we get the well-known Black—Scholes PDE
) ) 192
rf = s + o + 1) 2 (8.18)

as  dr 208?
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8.2.3 Solving the partial differential equation

There are many solutions to (8.18) corresponding to different derivatives,
f, with underlying asset S. In other words, without further constraints,
the PDE in (8.18) does not have a unique solution. The particular security
being valued is determined by its boundary conditions of the differential
equation. In the case of an European call, the value at expiry ¢ (S, T) =
max (S — K, 0) serves as the final condition for the Black—Scholes PDE.
Here, we show how BS formula can be derived using the risk-neutral
valuation relationship. We need the following facts:

(1) From (8.15),
InS~N (lnSo+,u — %oz,o) .
Under risk-neutral valuation relationship, 4 = r and
InS~N <lnSo +r— %02,0) .

(ii) If y is a normally distributed variable,

w p—
/ e’ f(y)dy=N (,u,y ? + O'y) ey
a o

y

(iii) From the definition of cumulative normal distribution,

[ o n(52) (%),
a Oy oy

Now we are ready to solve the BS formula. First, the terminal value of
acall is

cr = E[max (S — K, 0)]
2/ S —K)f(SdS
K

:/OO elnsf(lnS)dlnS—K/OOf(lnS)dlnS.
1 |

n K n K

Substituting facts (ii) and (iii) and using information from (i) with

1,
MyzlnSo—i-r—Eo,

oy =0,
a=InKk,
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we get
InSy+r+ %02 —InK
cr = Spe' N
InK
InSy+r—302—Ink
— KN
InK

= Soe'N(d)) — KN (d»), (8.19)

where

InSo/K +r — 302

1 ’
o

dg:dl—a.

The present value of the call option is derived by applying e~ to both
sides. The put option price can be derived using put—call parity or using
the same argument as above. The o in the above formula is volatility
over the option maturity. If we use o as the annualized volatility then
we replace o with o'+/T in the formula.

There are important insights from (8.19), all valid only in a ‘risk-
neutral” world:

(1) N (d,) is the probability that the option will be exercised.

(ii) Alternatively, N (d») is the probability that call finishes in the
money.

(iii) XN (d,) is the expected payment.

(iv) Spe’T N (d,) is the expected value E [S; — X]*, where E [-]" is
expectation computed for positive values only.

(v) In other words, Spe’” N (d,) is the risk-neutral expectation of Sz,
EC[Sr] with S7 > X.

8.3 BINOMIAL METHOD

In a highly simplified example, we assume a stock price can only move
up by one node or move down by one node over a 3-month period as
shown below. The option is a call option for the right to purchase the
share at $21 at the end of the period (i.e. in 3 month’s time).
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stock price =22
option price = 1

stock price = 20
option price = ¢

stock price = 18
option price =0

Construct a portfolio consisting of A amount of shares and short one
call option. If we want to make sure that the value of this portfolio is the
same whether it is up state or down state, then

$22 x A —$1 =3$18 x A + $0,
A =0.25.

stock price =22
stock price = 20 portfoliovalue =22 x 0.25—-1=4.5

portfoliovalue
— 4'5670A12><3/12

= 4.367 stock price = 18
portfoliovalue = 18 x 0.25 =4.5

Given that the portfolio’s value is $4.367, this means that
$20 x 0.25 — f = $4.367
f =$0.633.

This is the value of the option under no arbitrage.
From the above simple example, we can make the following general-
ization;

SQM
Ju
So
f
Sod

Ja
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The amount A is calculated using
S()MXA—fMZSOdXA—fd,

fu - fd
A= —7—. 8.20
S()M—S()d ( )

Since the terminal value of the ‘riskless’ portfolio is the same in the up
state and in the down state, we could use any one of the values (say the
up state) to establish the following relationship

Sox A— f=(SouxA—f)e',
f=8S xA—SouxA—f)eT. (8.21)

Substituting the value of A from (8.20) into (8.21), we get

_ fu_fd _ fu_fd _ T
f =X g T (S"” " S — Sod f”>e
:fu_fd_<ux fu_fd_fu>er7"
u—d u—d

_ (erT(fu_fd) _ u(fu— fa) + “fu_dfu)e_r]"
N u—d u—d u—d

— (erTfu - erde + ufd _dfu) e_rT

u—d u—d
erT_df +u_erTf o7
= P e .
u—d u—d d

By letting p = (¢'T — d)/(u — d), we get
f=e""Ipfi+1—p) fd (8.22)
and
u—d—el+d u—e’
u—d u—d

We can see from (8.22) that although p is not the real probability dis-
tribution of the stock price, it has all the characteristics of a probability
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measure (viz. sum to one and nonnegative). Moreover, when the ex-
pectation is calculated based on p, the expected terminal payoff is dis-
counted using the risk-free interest. Hence, p is called the risk-neutral
probability measure.

We can verify that the underlying asset S also produces a risk-free
rate of returns under this risk-neutral measure.

erT_d u_erT
Soe! = S Sod,
o= (S s (827 ) s
ue’’ —ud + ud —de'"

u—d ’

M —

I ) L
u—d

nw=r.

The actual return of the stock is no longer needed and neither is the
actual distribution of the terminal stock price. (This is a rather amazing
discovery in the study of derivative securities!!!)

8.3.1 Matching volatility with z and d

We have already seen in the previous section and Equation (8.22) that
the risk-neutral probability measure is set such that the expected growth
rate is the risk-free rate, r.

erT_d u_erT
f=( Ju fd)e_’T
u—d

= [pfu+ 1 =p)fale",

et —d

u—d
This immediately leads to the question of how does one set the values
of u and d? The key is that # and d are jointly determined such that the

volatility of the binomial process equal to o which is given or can be
estimated from prices of the asset underlying the option contract. Given

p:



84 Forecasting Financial Market Volatility

that there are two unknowns and there is only one constant o, there
are a number of ways to specify u and d. The good or better ways are
those that guarantee the nodes recombined after an upstate followed by
a downstate, and vice versa. In Cox, Ross and Rubinstein (1979), u and
d are defined as follows:

u = e”m, and d=e V%,

It is easy to verify that the nodes recombine since ud = du = 1. So
after each up move and down move (and vice versa), the stock price will
return to Sp.

To verify that the volatility of stock refurns is approximately o /8¢
under the risk-neutral measure, we note that

Var = E [x*] — [E (0)]*,
Inu = o+/3t, and Ind = —o /5t

The expected stock returns is

S()I/l S()d
Ex)y=plh—+ {1 - p)In—
So So

= po*\/g— 1 - p)a«/g
=@2p — 1) o/ét,

and
Sou \ Sod \*
E[x]=p(mn=2) +1-p(m22
So So

= pa?8t + (1 — p)o?st
= o 281.

Hence

Var = 028t — 2p — 1)? 025t
=025t (1 —4p>+4p —1)
=028t x4p (1 — p).

It has been shown elsewhere that as 8t — 0, p — 0.5 and Var — o%68t.
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8.3.2 A two-step binomial tree and American-style options

S()Mz
1 %) fuu
S()M
Ju
P1
1—ps
SO Soud
f fud
P2
1—pi Sod
fa
1 —p; Sod?
fdd

The binomial tree is often constructed in such a way that the branches
recombine. If the volatilities in period 1 and period 2 are different, then,
in order to make the binomial tree recombine, p; # p,. (This is a more
advanced topic in option pricing.) Here, we take the simple case where
volatility is constant, and p; = p, = p. Hence, to price a European
option, we simply take the expected terminal value under the risk-neutral
measure and discount it with a risk-free interest rate, as follows:

f=e7[p?fuu+2p (A = p) fua + (1 = p)* fua] . (8.23)

Note that the hedge ratio for state 2 will be different depending on
whether state 1 is an up state or a down state

AO — fu - fd ’
S()u — Sod
Al L= fuu - fud ’
’ S0u2 - Sol/td
Jua — faa
Apg=—C 2
Ld Soud — S0d2

This also means that, for such a model to work in practice, one has to
be able to continuously and costlessly rebalance the composition of the
portfolio of stock and option. This is a very important assumption and
should not be overlooked.
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We can see from (8.23) that the intermediate nodes are not required
for the pricing of European options. What are required are the range of
possible values for the terminal payoff and the risk-neutral probability
density for each node. This is not the case for the American option and all
the nodes in the intermediate stages are needed because of the possibility
of early exercise. As the number of nodes increases, the binomial tree
converges to a lognormal distribution for stock price.

8.4 TESTING OPTION PRICING MODEL
IN PRACTICE

Let C = f (K, S,r,o0, T —t) denote the theoretical (or model) price
of the option and f is some option pricing model, e.g. fzs denotes
the Black—Scholes formula. At any one time, we have options of many
different strikes, K, and maturities, 7 — t. (Here we use t and 7 as dates;
t isnow and 7 is option maturity date. So the time to maturity is 7 — t.)
Since o, and o,, need not be the same for #; # 1,, we tend to use only
options with the same maturity 7 — ¢ because volatility itself has a term
structure. Assuming that there are C{**, C5”* and C5”* observed option
prices (possibly these are market-traded option prices) associated with
three exercise prices K, K, and K3. To find the theoretical option price
C, we need the five parameters K, S, r, 0 and T — ¢t. Except for o, the
other four parameters K, S, r and T — ¢ can be determined accurately
and easily. We could estimate o from historical stock prices. The problem
with this approach is that when C # C°* (i.e. the model price is not the
same as the market price), we do not know if this is because we did not
estimate o properly or because the option pricing model f (-) is wrong.
A better approach is to use ‘backward induction’, i.e. use an iterative
procedure to find the o that minimizes the pricing errors

C,—C%, Cy—C$», and C;—C§™.

The above is usually done by minimizing the unsigned errors
> owilc — )" (8.24)
i=1

with an optimization routine searching over all possible values of o; n
is the number of observed option prices (three in this case), and W; is
the weight applied to observation i.
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In the simplest case, W; = 1 for all i. To give the greatest weight to
the ATM option, we could set

10,000 for § = Ke_r(T_t)
W, = S+ for S #£ Ke 7(T-1 .
‘Xe—r(T—t) - 1‘

W; = 10000 is equivalent to an option price that is 0.0001 away from
being at the money.

The power term, m, is the control for large pricing error. The larger
the value of m, the greater the emphasis placed on large errors for errors
> 1. If a very large error is due to data error, then a large m means the
entire estimation will be driven by this data error. Typically, m is set
equal to 1 or 2 corresponding to ‘absolute errors’ and ‘squared errors’ .

Since the option price is much greater for an I'TM option than for
an OTM option, the pricing error is likely to be of a greater magnitude
for an ITM option. Hence, for an ITM option and an OTM option that
are an equal distance from being ATM, the procedure in (8.24) will
place a greater weight on pricing an ITM option correctly and pay little
or negligible attention to OTM options. One way to overcome this is
to minimize their Black—Scholes implied volatilities instead. Here, we
are using BS as a conversion tool. So long as dC%5 /95 > 0 and there
is a one-to-one correspondence between option price and BS implied
volatility. Such a procedure does not require the assumption that the BS
model is correct.

To implement the new procedure, we start with an initial value o™
and get Cy, C, and C3 from f, the option pricing model that we wish
to test. f could even be Black—Scholes, if it is our intention to test
Black—Scholes. Use the Black—Scholes model fzg to invert BS implied
volatility 1V;, IV, and I V3 from the theoretical prices Cy, C, and C3
calculated in the previous step. If f in the previous step is indeed Black—
Scholes, then IV, = IV, = [ V3 = o™, Use the Black—Scholes model
fgs to invert BS implied volatility 7V,°%, I1V,°" and IV3°%* from the
market observed option prices C;%*, C,°* and C3".

Finally, minimize the function

W; |1v; — IV
1

n
‘m

1

using the algorithm and logic as before.
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8.5 DIVIDEND AND EARLY EXERCISE PREMIUM

As option holders are not entitled to dividends, the option price should
be adjusted for known dividends to be distributed during the life of the
option and the fact that the option holder may have the right to exercise
early to receive the dividend.

8.5.1 Known and finite dividends

Assume that there is only one dividend at 7. Should the call option
holder decide to exercise the option, she will receive S; — K at time t
and if she decides not to exercise the option, her option value will be
worth c¢(S; — D., K, r, T, o). The Black (1975) approximation involves
making such comparisons for each dividend date. If the decision is not to
exercise, then the option is priced now at ¢ (S, —D,e7 D K or T, o).
If the decision is to exercise, then the option is priced according to
c(S;, K, r,t,0). We note that if the decision is not to exercise, the
American call option will have the same value as the European call option
calculated by removing the discounted dividend from the stock price.

A more accurate formula that takes into account of the probability of
early exercise is that by Roll (1977), Geske (1979), and Whaley (1981),
and presented in Hull (2002, appendix 11). These formulae (even the
Black-approximation) work quite well for American calls. In the case
of an American put, a better solution is to implement the Barone-Adesi
and Whaley (1987) formula (see Section 8.5.3).

8.5.2 Dividend yield method

When the dividend is in the form of yield it can be easily ‘netted off’
from the risk-free interest rate as in the case of a currency option. To
calculate the dividend yield of an index option, the dividend yield, ¢, is
the average annualized yield of dividends distributed during the life of
the option:

S+ Dert=m

=—1In i=l
1=7 S

where D; and #; are the amount and the timing of the ith dividend on
the index with #; should also be annualized in a similar fashion as 7. The
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dividend yield rate computed here is thus from the actual dividends paid
during the option’s life which will therefore account for the monthly
seasonality in dividend payments.

8.5.3 Barone-Adesi and Whaley quadratic approximation
Define M = (% and N = 2(r — q)/o?, then® for an American call op-
tion
S q2
c(S)+ A, (—*) when S < §*
S
S—K when S > S*.

C(S) = (8.25)

The variable S™ is the critical price of the index above which the option

should be exercised. It is estimated by solving the equation,
S*
$* = K =e(8%) 4 {1 = N [a (5]}

2

iteratively. The other variables are

_ | 1 N+\/(N D? + addl
©2=3 et |’

S*
Az = g {1 — €_qtN [d] (S*)]} N
_ In(S*/K) 4+ —q+050%)

o/t

To compute delta and vega for hedging purposes

di (5¥) (8.26)

4.

(g2—1)
Ac o = { e "' N(d (9)) + % (%) when S < §*

= S
as 1 when § > §*,
_9C _ [SVIN' (dy) e when S < S§*
Ae=5 = {0 when §>gs*. 827

? Note that in Barone-Adesi and Whaley (1987), K (1) is (1 — ™), and b is (r — ¢).

4 Vega for the American options cannot be evaluated easily because C partly depends on S*, which itself is a
complex function of o. The expression for vega in the case when § < S* in Equation (8.27) represents the vega
for the European component only. Vega for the American option could be derived using numerical methods.
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For an American put option, the valuation formula is:

q1
p(S)+ A (s*i*> when S > §**

(8.27a)
K-S when S < §**,

P(S):{

The variable S** is the critical index price below which the option should
be exercised. It is estimated by solving the equation,

kK *ok —qt *ok §**
K-8 =p(S™)—{1—e?N[-d (S )]}7,

iteratively. The other variables are

) R \/(N 1)* + aild
1= et |’

S** o .
Alz—j{l—e N [—di (S7)]},

_ In(S™/K) 4+ —q+0.50%)
= e :

To compute delta and vega for hedging purposes:

d (S**)

A S (QI—l)
P | —e=4' N (dy (S)) + =L <—) when § > §**

Ap=—= GFF | gEk
N when § < §**,
8P aC / —qt sk
Ap=20 = ngﬂN(dl)eq when S > S
oo 0 when § < Sx*.

8.6 MEASUREMENT ERRORS AND BIAS

Early studies of option implied volatility suffered many estimation prob-
lems,’ such as the improper use of the Black—Scholes model for an
American style option, the omission of dividend payments, the option
price and the underlying asset prices not being recorded at the same
time, or stale prices being used. Since transactions may take place at bid
or ask prices, transaction prices of the option and the underlying assets
are subject to bid—ask bounce making the implied volatility estimation

5 Mayhew (1995) gives a detailed discussion on such complications involved in estimating implied volatility
from option prices, and Hentschel (2001) provides a discussion of the confidence intervals for implied volatility
estimates.
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unstable. Finally, in the case of an S&P100 OEX option, the privilege
of a wildcard option is often omitted.® In more recent studies, many of
these measurement errors have been taken into account. Many studies
use futures and options futures because these markets are more active
than the cash markets and hence there is a smaller risk of prices being
stale.

Conditions in the Black—Scholes model include: no arbitrage, trans-
action cost is zero and continuous trading. As mentioned before, the
lack of such a trading environment will result in options being traded
within a band around the theoretical price. This means that implied
volatility estimates extracted from market option prices will also lie
within a band even without the complications described in Chapter 10.
Figlewski (1997) shows that implied volatility estimates can differ by
several percentage points due to bid—ask spread and discrete tick size
alone. To smooth out errors caused by bid—ask bounce, Harvey and Wha-
ley (1992) use a nonlinear regression of ATM option prices, observed in
a 10-minute interval before the market close, on model prices.

Indication of nonideal trading environment is usually reflected in poor
trading volume. This means implied volatility of options written on
different underlying assets will have different forecasting power. For
most option contracts, ATM option has the largest trading volume. This
supports the popularity of ATM implied volatility referred to later in
Chapter 10.

8.6.1 Investor risk preference

In the Black—Scholes world, investor risk preference is irrelevant in
pricing options. Given that some of the Black—Scholes assumptions have
been shown to be invalid, there is now a model risk. Figlewski and
Green (1999) simulate option writers positions in the S&P500, DM/$,
US LIBOR and T-Bond markets using actual cash data over a 25-year
period. The most striking result from the simulations is that delta hedged
short maturity options, with no transaction costs and a perfect knowledge
of realized volatility, finished with losses on average in all four markets.
This is clear evidence of Black—Scholes model risk. If option writers
are aware of this model risk and mark up option prices accordingly, the
Black—Scholes implied volatility will be greater than the true volatility.

© This wildcard option arises because the stock market closes later than the option market. The option trader
is given the choice to decide, before the stock market closes, whether or not to trade on an option whose price is
fixed at an earlier closing time.
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In some situations, investor risk preference may override the risk-
neutral valuation relationship. Figlewski (1997), for example, compares
the purchase of an OTM option to buying a lottery ticket. Investors are
willing to pay a price that is higher than the fair price because they like
the potential payoff and the option premium is so low that mispricing
becomes negligible. On the other hand, we also have fund managers who
are willing to buy comparatively expensive put options for fear of the
collapse of their portfolio value. Both types of behaviour could cause
the market price of options to be higher than the Black—Scholes price,
translating into a higher Black—Scholes implied volatility. Arbitrage ar-
guments do not apply here because these are unique risk preferences
(or aversions) associated with some groups of individuals. Franke, Sta-
pleton and Subrahmanyam (1998) provide a theoretical framework in
which such option trading behaviour may be analysed.

8.7 APPENDIX: IMPLEMENTING BARONE-ADESI
AND WHALEY’S EFFICIENT ALGORITHM

The determination of $* and $™* in Equations (8.25) and (8.27a) are
not exactly straightforward. We have some success in solving S* and
S** using NAG routing COSNCF. Barone-Adesi and Whaley (1987),
however, have proposed an efficient method for determining S*, details
of which can be found in Barone-Adesi and Whaley (1987, hereafter
referred to as BAW) pp. 309 to 310. BAW claimed that convergence of
S* and §™* can be achieved with three or fewer iterations.

American calls

The following are step-by-step procedures for implementing BAW’s
efficient method for estimating $* of the American call.

Step 1. Make initial guess of o and denote this initial guess as o; with
j=1
Step 2. Make initial guess of § * S (with i = 1), as follow; denoting
S*at T = +o0as §* (00):
Si=X+[5%(00) — K][1—e€"], (8.28)

where

¥ (00) = (8.29)
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Step 3.

Step 4.

Step 5.

Step 6.

g2 (00) = % [1 —N++(N— 1)2+4M], (8.30)

hzz—((r—q)t—I-ZG\/;){ (8.31)

K
S*¥(0)—K |’
Note that the lower bound of S* is K. So if S| < K, reset
S; = K. However, the condition S* < K rarely occurs.
Compute the Lh.s. and r.h.s. of Equation (8.25a) as follows:

Lhs.(S) =S —X, and (8.32)
rhs. () =c(S) + {1 — e I'N[di (S)1} Si/q2. (8.33)

Compute starting value of ¢ (5;) using the simple Black—Scholes
Equation (8.25) and d; (S;) using Equation (8.26). It will be
useful to set up a function (or subroutine variable) for d;.
Check tolerance level,

|Lh.s. (S;) —rhs. (S;)| /K < 0.00001. (8.34)

If Equation (8.34) is not satisfied; compute the slope of Equation
(8.33), b;, and the next guess of S*, Sii1, as follows:

by = e N [d; (S)1(1 — 1/q2)

1= e ndi (SDVoi] fa2 (8.35)
Siv1 =[X +rhs.(S)—b;S;1/ (1 —by), (8.36)

where n (.) is the univariate normal density function. Repeat
from step 3.

When Equation (8.34) is satisfied, compute C (S) according to
Equation (8.25). If C (S) is greater than the observed American
call price, try a smaller o1, otherwise try a larger o ;. Repeat
steps 1 to 5 until C (S) is the same as the observed American
call price. Step 6 could be handled by a NAG routine such as
CO5ADF for a quick solution.

American puts

To approximate S™* for American puts, steps 2, 3 and 5 have to be
modified.

Step 1.

Make initial guess of o and denote this initial guess as o; with
j=1
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Step 2.

Step 3.

Step 4.

Step 5.

Make initial guess of S S (with i = 1), as follows, denoting
S* at T = +o0 as §** (c0):

Si = 8" (00) + [K — §** (c0)] €™, (8.37)
where
5" (00) = ———.
 q1(00)

q1<oo)=%[1—N—\/<N—1)2+4M],

h1=((r—q)t—20\/;>{ K

Note that the upper bound of S** is K. So if §; > K, reset
S1 = K. Again, the condition S** S X rarely occurs. Accord-
ing to Barone-Adesi and Whaley (1987, footnote 9), the influ-
ence of (r — g) must be bounded in the put exponent to ensure
critical prices monotonically decrease in ¢, for very large val-
ues of (r — ¢) and ¢. A reasonable bound on (r — ¢) is 0.60 /2,
so the critical stock price declines with a minimum velocity

¢~ 149V This check is required before computing %, in Equa-
tion (8.38).
Compute the Lh.s. and r.h.s. of Equation (8.37) as follows:

Lhs.(S;)) =K —§;, and
rhs. (S) = p(S) — {1 — e N [—dy (S)1} Si/q1. (8.39)

Check tolerance level, as before,
[Lh.s. (S;) — rhs. (S;)] /K < 0.00001. (8.40)

If Equation (8.40) is not satisfied; compute the slope of Equation
(8.39), b;, and the next guess of S S; 11, as follows:

bi = —e ' N [—d; ($)1(1 — 1/q1)

=1+ e ntd s o i fan,
Si+1 = [X —r.h.s. (S,‘) + bl‘S,'] / (1 + bi) .

Repeat from step 3 above.
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Step 6. When Equation (8.40) is satisfied, compute P (S) using Equa-
tion (8.27a). If P () is greater than the observed American call
price, try alarger o1, otherwise try a smaller o ;. Then repeat
steps 1 to 5 until P (S) is the same as the observed American put
price. Similarly the case for the American call, step 6 could be
handled by a NAG routine such as COSADF for a quick solution.






9
Option Pricing with Stochastic

Volatility

If Black—Scholes (BS) is the correct option pricing model, then there
can only be one BS implied volatility regardless of the strike price of
the option, or whether the option is a call or a put. BS implied volatility
smile and skew are clear evidence that market option prices are not priced
according to the BS formula. This raises the important question about
the relationship between BS implied volatility and the true volatility.

The BS option price is a positive function of the volatility of the
underlying asset. If the BS model is correct, then market option price
should be the same as the BS option price and the BS implied volatility
derived from market option price will be the same as the true volatility.
If the BS price is incorrect and is lower than the market price, then BS
implied volatility overstates the true volatility. The reverse is true if the
BS price is higher than the market price. The problem is complicated
by the fact that BS implied volatility differs across strike prices. All the
theories that predict the relationship between BS price and the market
option price are all contingent on the proposed alternative option pricing
model or the proposed alternative pricing dynamic being correct. Given
that the BS implied volatility, despite all its shortcomings, has been
proven overwhelmingly to be the best forecast of volatility, it will be
useful to understand the links between BS implied volatility bias and
the true volatility. This is the objective of this chapter.

There have been a lot of efforts made to solve the BS anomalies.
The stochastic volatility (SV) option pricing model is one of the most
important extensions of Black—Scholes. The SV option pricing model
is motivated by the widespread evidence that volatility is stochastic and
that the distribution of risky asset returns has tail(s) longer than that of
a normal distribution. An SV model with correlated price and volatility
innovations can address both anomalies. The SV option pricing model
was developed roughly over a decade with contributions from Johnson
and Shanno (1987), Wiggins (1987), Hull and White (1987, 1988), Scott
(1987), Stein and Stein (1991) and Heston (1993). It was in Heston
(1993) that a closed form solution was derived using the characteristic
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function of the price distribution. Section 9.1 presents this landmark
Heston SV option pricing model while some details of the derivation are
presented in the Appendix to this chapter (Section 9.5). In Section 9.2,
we simulate a series of Heston option prices from a range of parameters.
Then we use these option prices as if they were the market option prices
to back out the corresponding BS implied volatilities. If market option
prices are priced according to the Heston formula, the simulations in
this section will give us some insight into the relationship between BS
implied volatility bias and the true volatility. In Section 9.3, we analyse
the usefulness and practicality of the Heston model by looking at the
impact of Heston model parameters on skewness and kurtosis range and
sensitivity, and some empirical tests of Heston model. Finally, Section
9.4 analyses empirical findings on the the predictive power of Heston
implied volatility as a volatility forecast.

9.1 THE HESTON STOCHASTIC VOLATILITY
OPTION PRICING MODEL

Heston (1993) specifies the stock price and volatility price processes as
follows:

dSt - lLSdt + «/U_tSdZs’t,
dv, =k [0 — v,]dt +GV\/UleU,t’

where v, is the instantaneous variance, « is the speed of mean reversion,
6 is the long-run level of volatility and o, is the ‘volatility of volatility’.
The two Wiener processes, dz;; and dz,,; have constant correlation p.
The assumption that consumption growth has a constant correlation with
spot-asset returns generates a risk premium proportional to v,. Given the
volatility risk premium, the risk-neutral volatility process can be written
as

dv;, =k [0 — v,]dt — Avdt + Gv\/v;tdzjt
=i [9* — v,] dt + a,,ﬂdzj,,

where A is the market price of (volatility) risk, and k™ =k 4+ A and
6% = k6 /(k + 1). Here k* is the risk-neutral mean reverting parameter
and 6™ is the risk-neutral long-run level of volatility. The parameter o,
and p implicit in the risk-neutral process are the same as that in the
real volatility process. Given the price and the volatility dynamics, the
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Heston (1993) formula for pricing European calls is

c=8P — Ke"T-0p,,

1 1 o] e—izpanfi L
fi=exp{C(T —1;0)+ D(T —1;¢)v +igx},

where

x=InS§, t=T-t1,
1— dt
. a . ge
C(T;¢)=r¢lf+—2{(bj—po,)¢l+d)r—2ln|:—“,
o 1—g
i — poydi +d 1 —el"
o} 1 —gedr |’
__bj—poypi+d
g_bj—pcruqﬁi—d’

d :\/(,oav(ﬁi —b,-)2 — o2 2upi — ¢?),
p=1/2, p=-1/2, a=x0 =x"0",
b1=K+A—pav=K*—pov, bg:/{—l—k:/c*.

b
D(t;¢) =

9.2 HESTON PRICE AND BLACK-SCHOLES IMPLIED

In this section, we analyse possible BS implied bias by simulating a
series of Heston option prices with parameter values similar to those in
Bakshi, Cao and Chen (1997), Nandi (1998), Das and Sundaram (1999),
Bates (2000), Lin, Strong and Xu (2001), Fiorentini, Angel and Rubio
(2002) and Andersen, Benzoni and Lund (2002). For the simulations, we
set the asset price as 100, interest rate as zero, time to maturity is 1 year,
and strike prices ranging from 50 to 150. In most simulations, and unless
otherwise stated, the current ‘instantaneous’ volatility, oy, is set equal to
the long-run level, 6, at 20%. There are five other parameters used in the
Heston formula, namely, «, the speed of mean reversion, 6, the long-run
volatility level, A, the market price of risk, o, volatility of volatility, and
p, the correlation between the price and the volatility processes. If we
set A = 0, then the volatility process becomes risk-neutral, and « and 6
become k™ and 6™ respectively.

The first set of simulations presented in Figure 9.1(a) involves repli-
cating the Black—Scholes prices as a special case. Here we set o, = 0.
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Figure 9.1 Relationships between Heston option prices and Black—Scholes implied
volatility

Since there is no volatility risk, A = 0. This is a special case where
the Heston price and the Black—Scholes price are identical and the BS
implied volatility is the same across strike prices. In this special case,
BS implied volatility (at any strike price) is a perfect representation of
true volatility.
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In the second set of simulations presented in Figure 9.1(b), we al-
ter o, the volatility of volatility, and keep all the other parameters the
same and constant. The effect of an increase in o, is to increase the
unconditional volatility and kurtosis of risk-neutral price distribution. It
is the risk-neutral distribution because A, the market price of risk, is set
equal to zero. As o, increases and without appropriate compensation for
volatility risk premium, ATM (at-the-money) implied volatility under-
estimates true volatility while OTM (out-of-the-money) implied volatil-
ity overestimates it. This is the same outcome as Hull and White (1987)
where the price and the volatility processes are not correlated and there
is no risk premium for volatility risk. With appropriate adjustment for
volatility (which will require a volatility risk premium input), the ATM
implied volatility will be at the right level, but Black—Scholes will con-
tinue to underprice OTM options (and OTM BS implied overestimates
true volatility) because of the BS lognormal thin tail assumptions. As-
suming that p = O or at least is constant over time, and that o, and A are
relatively stable, a time series regression of historical ‘actual volatility’
on historical ‘implied volatility’ at a particular strike will be sufficient
to correct for these biases. This is basically the Ederington and Guan
(1999) approach. We will show in the next section that p is not likely to
be stable. When p is not constant, the analysis below and Figure 9.1(c)
show that ATM implied volatility is least affected by changing p. This
explains why ATM implied volatility is the most robust and popular
choice of volatility forecast.

In Figure 9.1(c), it is clear that changing the correlation coefficient
alone has no impact on ATM implied volatility. Correlation has the
greatest impact on skewness of the price distribution and determines the
shape of volatility smile or skew. Its impact on kurtosis is less marked
when compared with o, the volatility of volatility.

Figure 9.1(d) highlights the impact of k, the mean reversion parameter
which we have already briefly touched on in relation to the long memory
of volatility in Chapter 5. The higher the rate of mean reversion, the more
likely the return distribution will be normal even when the volatility of
volatility, o,,, and the initial volatility, ,/v;, are both high. When this is
the case, there is no strike price bias in BS implied (i.e. there will not be
volatility smile). When « is low, this is when the problem starts. A low «
corresponds with volatility persistence where BS implied volatility will
be sensitive to the current state of volatility level. At high volatility state,
high ,/v; compensates for the low « and the strike price bias is less severe.
Strike price effect or the volatility smile is the most acute when initial
volatility level ,/v; is low. ATM options will be overpriced vis-a-vis
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OTM options.! (Note that we have set A = 0 in this set of simulations.)
When o, =0.6,0 = 0.2, ,/v; = 0.15 and « = 0.01, the ATM BS im-
plied is only 0.1049 much lower than any of the volatility parameters.

Figure 9.1(e) and 9.1(f) can be used to infer the impacts of parameter
estimates above when the volatility risk premium A is omitted. In the
literature, we often read ‘... volatility risk premium is negative reflect-
ing the negative correlation between the price and the volatility dyna-
mics ... (Buraschi and Jackwerth, 2001; Bakshi and Kapadia, 2003.
All series in Figure 9.1(e) have correlation p = —0.5 and all series in
Figure 9.1(f) have correlation p = 40.5. A negative A (volatility risk
premium) produces higher Heston price and higher BS implied volatil-
ity. The impact is the same whether the correlation p is negative or
positive. We will see later in the next section that empirical evidence in-
dicates that Figure 9.1(f) is just as likely a scenario as Figure 9.1(e). As
k* =Kk 4+ rand 0™ = k6 /(k + 1), a negative A has the effect of reduc-
ing «* (resulting in a smaller option price) and increasing 6 (resulting
in a bigger option price). Simulations, not reported here, show that the
price impact of 6 is much greater than that of «*, so the outcome will
be a higher option price due to the negative A. Hence, a ‘negative risk
premium’ is to be expected whether the price and the volatility processes
are positively or negatively correlated.> This also means that, without
accounting for the volatility risk premium, the BS option price will be
too low and the BS implied will always overstate true volatility. Both
volatility and volatility risk premium have positive impact on option
price. The omission of volatility risk premium will cause the volatil-
ity risk premium component to be ‘translated’ into higher BS implied
volatility.

9.3 MODEL ASSESSMENT

In this section, we evaluate the Heston model using simulations. In par-
ticular, we examine the skewness and kurtosis planes covered by a range
of Heston parameter values. We have no information on the volatility
risk premium. Hence, to avoid an additional dimension of complexity,
we will evaluate the risk-neutral parameters « * and 6™ instead of x and
6 for the true volatility process.

! When BS overprice options, the BS implied volatility will understate volatility because BS implied is
inverted from market price, which is lower than the BS price.

2 This is really a misnomer: while the A parameter is negative, it actually results in a higher option price. So
strictly speaking the volatility risk premium is positive!
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9.3.1 Zero correlation

We learn from the simulations in Section 9.2 and from Figure 9.1 that,
according to the Heston model, skewness in stock returns distribution
and BS implied volatility asymmetry are determined completely by the
correlation parameter, p. When the correlation parameter is equal to
zero, we get zero skewness and both the returns distribution and BS
implied volatility will be symmetrical. Figure 9.2 presents the kurtosis
values produced by different combinations of «, 6 and o,,. One important
pattern emerged that highlights the importance of the mean reversion
parameter, k. When « is low we have high volatility persistence, and
vice versa for high value of «.

Athigh value of k, kurtosis is close to 3, regardless of the value of 6 and
o,. This is, unfortunately, the less likely scenario for a financial market
time series that typically has high volatility persistence and low value
of k. At low value of «, the kurtosis is the highest at low level of o, the
parameter for volatility of volatility. At high level of o,, kurtosis drops
to 3 very consistently, regardless of the value of the other parameters.
At low level of 0, the long-term level of volatility, 6, comes into effect.
The higher the value of 9, the lower the kurtosis value, even though it is
still much greater than 3.

When skewness is zero and kurtosis is low (i.e. relatively flat BS im-
plied volatility), it will be difficult to differentiate whether it is due to
a high «, a high o, or both. This also reflects the underlying prop-
erty that a high «, a high o, or both make the stochastic volatility
structure less important and the BS model will be adequate in this
case.

9.3.2 Nonzero correlation

In Figures 9.3 and 9.4, we illustrate skewness and kurtosis, respectively,
for the case when the correlation coefficient, p, is greater than 0. The
case for p < 0 will not be discussed here as it is the reflective image
of p > 0 (e.g. instead of positive skewness, we get negative skewness
etc.).

Figure 9.3 shows that skewness is first ‘triggered’ by a nonzero cor-
relation coefficient, after which « and o, combine to drive skewness.
High skewness occurs when o, is high and « is low (i.e. high volatility
persistence). At relatively low skewness level, there is a huge range of
high «, low o, or both that produce similar values of skewness. A low 6
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(a) k=1, p=0, Skewness =0
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Figure 9.2 Impact of Heston parameters on kurtosis for symmetrical distribution with
zero correlation and zero skewness

and high p produces high skewness, but at low level of o, skewness is
much less sensitive to these two parameters.

Figure 9.4 gives a similar pattern for kurtosis. Except when o, is very
high and « is low, the plane for kurtosis is very flat and not sensitive to
0 or p.
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k=1,0,=0.5

Skewness Skewness

k=1,0,=0.1
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Figure 9.3 Impact of Heston parameters on skewness

9.4 VOLATILITY FORECAST USING THE
HESTON MODEL

The thick tail and nonsymmetrical distribution found empirically could
be a result of volatility being stochastic. The simulation results in the
previous section suggest that o,, the volatility of volatility, is the main
driving force for kurtosis and skewness (if correlation is not equal to
zero). At high «, volatility mean reversion will cancel out much of
the o, impact on kurtosis and some of that on skewness. Correlation
between the price and the volatility processes, p, determines the sign of
the skewness. But beyond that its impact on the magnitude of skewness
is much less compared with o, and k. Correlation has negligible impact
on kurtosis. The long-run volatility level, 6, has very little impact on
skewness and kurtosis, except when o, is very high and « is very low. So
a stochastic volatility pricing model is useful and will outperform Black—
Scholes only when volatility is truly stochastic (i.e. high o) and volatility
is persistent (i.e. low k). The difficulty with the Heston model is that, once
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Figure 9.4 Impact of Heston parameters on kurtosis

we move away from the high o, and low « region, a large combination
of parameter values can produce similar skewness and kurtosis. This
contributes to model parameter instability and convergence difficulty
during estimation.

Through simulation results we can predict the degree of Black—
Scholes pricing bias as a result of stochastic volatility. In the case where
volatility is stochastic and p = 0, Black—Scholes overprices near-the-
money (NTM) or at-the-money (ATM) options and the degree of over-
pricing increases with maturity. On the other hand, Black—Scholes un-
derprices both in- and out-of-the-money options. In term of implied
volatility, ATM implied volatility will be lower than actual volatility
while implied volatility of far-from-the-money options (i.e. either very
high or very low strikes) will be higher than actual volatility. The pattern
of pricing bias will be much harder to predict if p is not zero, when there
is a premium for bearing volatility risk, and if either or both values vary
through time.
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Some of the early work on option implied volatility focuses on find-
ing an optimal weighting scheme to aggregate implied volatility of op-
tions across strikes. (See Bates (1996) for a comprehensive survey of
these weighting schemes.) Since the plot of implied volatility against
strikes can take many shapes, it is not likely that a single weighting
scheme will remove all pricing errors consistently. For this reason and
together with the liquidity argument, ATM option implied volatility is
often used for volatility forecast but not implied volatilities at other
strikes.

9.5 APPENDIX: THE MARKET PRICE OF
VOLATILITY RISK

9.5.1 Ito’s lemma for two stochastic variables

Given two stochastic processes,?

dS; = 1 (S, So, t)dt + 01 (81, $2, 1) d X,
dS) = a2 (S, S2, t)dt + 02 (81, $2, 1) d X,
E{dX,dX,) = pdt.

where X and X, are two related Brownian motions.
From Ito’s lemma, the derivative function V (S, S», t) will have the
following process:
1 1
dV = {Vt + EGEVSISI + /)0'10’2‘/3152 + 50’22‘/3232} dt
+Vs,dS) + Vs,dSs,

where

v Vv v 9%V 4 v 9 [3V
= —, = — an = — —_— .
T T 82 %95\ 88,

9.5.2 The case of stochastic volatility

Here, we assume S, is the underlying asset and S, is the stochastic
volatility o as follows:

dS; = w1 (S1,0,t)dt + 0, (S1,0,t)d X, 9.1
doy = p(S1,0,t)dt +q(S1,0,1)dX>,
E{dXdX,} = pdt,

31 am grateful to Konstantinos Vonatsos for helping me with materials presented in this section.
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and from Ito’s lemma, we get:

1 1
dV = {Vt —+ 50’12‘/5151 + pqo VS]U + 56]2‘/520} dt (92)

+V51dS1 + V,do.

In the following stochastic volatility derivation, ; = .S, is the mean
drift of the stock price process. The volatility of S}, o1 = f (o) S is
stochastic and is level-dependent. The mean drift of the volatility pro-
cess is more complex as volatility cannot become negative and should
be stationary in the long run. Hence an OU (Ornstein—Uhlenbeck)
process is usually recommended with p (Si,0,t) =« (m — o) and

q(S,0,t)= B:
doy =a(m — o1)dt + BdX>.

Here, p = a (m — o) is the mean drift of the volatility process, m is
the long-term mean level of the volatility, and « is the speed at which
volatility reverts to m, and B is the volatility of volatility.

9.5.3 Constructing the risk-free strategy

To value an option V (S, o, ) we must form a risk-free portfolio using
the underlying asset to hedge the movement in S, and use another option
V (8, o, t) to hedge the movement in o . Let the risk-free portfolio be:

M=V —AV—AS.

Applying Ito’s lemma from (9.2) on the risk-free portfolio IT,

1 1
dIl = {Vt + 50'12VS151 + quvaa + pqo-l‘/SlU} dt

—A {Vz + 50'12VSIS1 + quVw + quIVS|0} dt

+{Vs, — A Vs, — A}dS,
+{Vo — AV, } do.
To eliminate do, set

V, — AV, =0,
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and, to eliminate d Sy, set

Vy —
— Vs —A=0,

(o2

Vs

1
Vo —
A=Vs — V—gvsl.

This results in:

1 1
dll = {Vt + 5012‘/5151 + quvaa + PC]UIVSIJ} dt

Vo [ 1 0 1, _
_V_ V[ + 50’1 VSISI + Eq Vo'g' + ,Oq0'1VSlg dt

o

= rIldt
Vo = Vo =
=ryV——V— VS]_V_VS] Sl dt.

o o

Dividing both sides by V,, we get:

1 1, 1,
— Vi + =07 Vs, + ¢ Voo + pqo1Vs,s

Vs 2 2
[ S U G _
_V_a Vi+ 501 Vs + 24 Voo + 0901V 516
1% v V. v
=r— —r——r SlSl—{—rViS].
Vs Ve Vs |7

Now we separate the two options by moving V to one side and V to the
other:

1 1 1
A {Vr + Ealesls. + ECZZVM + pqo1Vs,e — 1V +FV5151}

1 [— 1 — 1 — — —
= — {V, + 5012‘/5181 + quV(m +pqoVse —rV +rVSlS1} .

o

Each side of the equation is a function of S;, o and 7, and is independent
of the other option. So we may write:

1 1 1

v {Vz + 5012\/5151 + quvﬂ(r + pqo1 Vs — 1V +FV5151}
:f(S],J, t)v
1 1

Vi + EUEVSISI + 5612Voo + pqo1Vs,e —1rV +1rVs S

= f(S1,0,0) Vs, (9.3)
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and similarly for the RHS. In order to solve the PDE, we need to under-
stand the function f (Si, o, t) which depends on whether or not d.S; and
do are correlated.

9.5.4 Correlated processes

If two Brownian motions d X; and d X, are correlated with correlation
coefficient p, then we may write:

dX, = pdX, ++/1— p2de,,

where de, is the part of d X, that is not related to d X ;.
Now consider the hedged portfolio,

M=V —AS,, 9.4)

where only the risk that is due to the underlying asset and its correlated
volatility risk are hedged. Volatility risk orthogonal to d S is not hedged.
From Ito’s lemma, we get:

dl1 =dV — AdS,

= {Vt + %‘ﬂzVS]sl + pqo1Vs,e + %qzvaa}dt
+Vs,dS) + Vodo — AdS). 9.5)
Now write:
dS, = udt +01dX;, and
do = pdt +qdX,

= pdi +q [,oXm +V/1— pZde,] .

Substitute this result into (9.5) and get:

1 1
dll = {Vt + 50—12‘/5151 + pqoi VSW + quvorr} dt

Vs, (dt + 01d X1} + V, {pdt tq [del +V/1— p2de,]}
—A{udt +01d X}

1 1
= {Vt + EafVSIS] + pqo1Vs,e + quvm} dt

+ (Vsl,ul + Vop — A;Ll)dt + (Vslal + Voqp — Aal)Xm

+V,q/1 — p2de,. (9.6)
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So to get rid of d X, the hedge ratio should be:

VSIGI + Voqp - AU] - 07
Vo
A= Vs + 212
(of|

With this hedge ratio, only the uncorrelated volatility risk,
V,q+/1 — p2de,, is left in the portfolio. If p = 1, the portfolio IT would
be risk-free.

Now substitute value of A into (9.6). We get:

1 1
dTl = {V, + Eastlsl + pqo1 Vs, + quvw } dt
Vo
‘”"“) dt + V,qy/1 — p2de,
1
1 2 1 2
= Vt + 501 VS151 + P40 VS[G + 56] Vaa dt

o
Vo
4 (Vap _ %) dt + V,q/1 — p2de,. 9.7)

+ (VSULLI + Vap - VSll"Ll -

9.5.5 The market price of risk

Next we made the assumption that the partially hedged portfolio IT in
(9.4) will earn a risk-free return plus a premium for unhedged volatility
risk, €2, such that

dTl = rTldt + Q
=r(V—AS)dt +Q

V.
=r (V — VS]S1 — cdp
o1

S1>dt+£2. 9.8)
Substituting dI1 from (9.7), we get:
1, 1,
Vt + 501 VS]SI + LPqo] VS]G’ + 561 VG’O‘ dt

|
+ (V(,p _ %) dt + V,q/1 — p2de,

Voqp

=rVdt —rVg Sidt —r
g1

Sidt + 2,
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1 1
Q= {Vt—}—EO'IZVSlSl —|—pq0'1V510 +§q2Vo'o' —VV—}—VVSISl}dt

v,
+ [Vap n 0‘“’ (rS; — m)} di + V,qy/1 — p2de,.
1

Now replace the {} term with f (S1, o, ) in (9.3) we get:

ol

+p+ LS — )
:Vaq\/l—,oZH:f LT P

qy'1—p?

Vs
Q=(ﬂ@+%p+ qp@&—uﬂ>m+wﬂvl—ﬁ%z

Now define ‘market price of risk’ y':
qp
f+P+G—(FS1 - [41)
1

Y= :
qv/'1—p?
where ¥ is the ‘returns’ associated with each unit of risk that is due to de,

(i.e. the unhedged volatility risk), hence, the denominator g/1 — p2.
From (9.9), we can get an expression for f:

qp ~
f=—P+G—l(M1—7‘51)+qu1—/02-

9.9)

Substituting p =a(m — o), g = B, u1 = uS1, and oy = f (o) S1:

f=—am-o0)+ Pr (uS1 —rS) +v¥Bv1—p*

f (o) S
f (o)

We can now price the option with stochastic volatility in (9.3) using the
expression for f above and get:

1 1
0=V, + EfZSZVSISI + Eﬁsz + pBf S Vs,e — 1V + 1V, S

+|:a(m—a)—ﬁ<w+')7 1—,02>i|V(, (9.10)
S (o)

Now write

_pu=r) o

/e 7 2
A(S1,0,1) = 70)

1— p=°.
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We write (9.10) as

1
Vi + Efzslzvslsl +r (VSl S — V) +/0ﬁfsl VS](r
—_—

correlation

Black—Scholes

1
+=B* Vo +a(m —0)V, — BAV, =0 (9.11)
2 _—

premium

Lou

or, on rearrangement,4

1 1
Vi + = 287 Vs,s, + Vs, S1 + pBfSiVsie + =B Voo +a(m — o) V,
2 _— 2

correlation

Black—Scholes Loy
= rv + BAV,
—— ——

risk-free return as in BS ~ premium for volatility risk

This analysis show that when volatility is stochastic in the form in
(9.1), the option price will be higher. The additional risk premium is
related to the correlation between volatility and the stock price processes
and the mean-reverting dynamic of the volatility process.

* This result is shown in Fouque, Papanicolaou and Sircar (2000).
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Option Forecasting Power

Option implied volatility has always been perceived as a market’s
expectation of future volatility and hence it is a market-based volatil-
ity forecast. It makes use of a richer and more up-to-date information
set, and arguably it should be superior to time series volatility forecast.
On the other hand, we showed in the previous two chapters that op-
tion model-based forecast requires a number of assumptions to hold for
the option theory to produce a useful volatility estimate. Moreover, op-
tion implied also suffers from many market-driven pricing irregularities.
Nevertheless, the volatility forecasting contests show overwhelmingly
that option implied volatility has superior forecasting capability, out-
performing many historical price volatility models and matching the
performance of forecasts generated from time series models that use a
large amount of high-frequency data.

10.1 USING OPTION IMPLIED STANDARD
DEVIATION TO FORECAST VOLATILITY

Once an implied volatility estimate is obtained, it is usually scaled by
J/n to get an n-day-ahead volatility forecast. In some cases, a regression
model may be used to adjust for historical bias (e.g. Ederington and
Guan, 2000b), or the implied volatility may be parameterized within a
GARCH/ARFIMA model with or without its own persistence adjust-
ment (e.g. Day and Lewis, 1992; Blair, Poon and Taylor, 2001; Hwang
and Satchell, 1998).

Implied volatility, especially that of stock options, can be quite un-
stable across time. Beckers (1981) finds taking a 5-day average improves
the forecasting power of stock option implied. Hamid (1998) finds such
an intertemporal averaging is also useful for stock index option dur-
ing very turbulent periods. On a slightly different note, Xu and Taylor
(1995) find implied estimated from a sophisticated volatility term struc-
ture model produces similar forecasting performance as implied from
the shortest maturity option.
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In contrast to time series volatility forecasting models, the use of im-
plied volatility as a volatility forecast involves some extra complexities.
A test on the forecasting power of option implied standard deviation
(ISD) is a joint test of option market efficiency and a correct option pric-
ing model. Since trading frictions differ across assets, some options are
easier to replicate and hedge than the others. It is therefore reasonable
to expect different levels of efficiency and different forecasting power
for options written on different assets.

While each historical price constitutes an observation in the sample
used in calculating volatility forecast, each option price constitutes a
volatility forecast over the option maturity, and there can be many option
prices atany one time. The problem of volatility smile and volatility skew
means that options of different strike prices produce different Black—
Scholes implied volatility estimates.

The issue of a correct option pricing model is more fundamental
in finance. Option pricing has a long history and various extensions
have been made since Black—Scholes to cope with dividend payments,
early exercise and stochastic volatility. However, none of the option
pricing models (except Heston (1993)) that appeared in the volatility
forecasting literature allows for a premium for bearing volatility risk.
In the presence of a volatility risk premium, we expect the option price
to be higher which means implied volatility derived using an option
pricing model that assumes zero volatility risk premium (such as the
Black—Scholes model) will also be higher, and hence automatically be
more biased as a volatility forecast. Section 10.3 examines the issue of
biasedness of ISD forecasts and evaluates the extent to which implied
biasedness is due to the omission of volatility risk premium.

10.2 AT-THE-MONEY OR WEIGHTED IMPLIED?

Since options of different strikes have been known to produce differ-
ent implied volatilities, a decision has to be made as to which of these
implied volatilities should be used, or which weighting scheme should
be adopted, that will produce a forecast that is most superior. The most
common strategy is to choose the implied derived from an ATM op-
tion based on the argument that an ATM option is the most liquid and
hence ATM implied is least prone to measurement errors. The analysis
in Chapter 9 shows that, omitting volatility risk premium, ATM implied
is also least likely to be biased.

If ATM implied is not available, then an NTM (nearest-to-the-money)
option is used instead. Sometimes, to reduce measurement errors and
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the effect of bid—ask bounce, an average is taken from a group of NTM
implied volatilities. Weighting schemes that also give greater weight
to ATM implied are vega (i.e. the partial derivative of option price
w.r.t. volatility) weighted or trading volume weighted, weighted least
squares (WLS) and some multiplicative versions of these three. The
WLS method, first appeared in Whaley (1982), aims to minimize the
sum of squared errors between the market and the theoretical prices of a
group of options. Since the ATM option has the highest trading volume
and the ATM option price is the most sensitive to volatility input, all
three weighting schemes (and the combinations thereof) have the ef-
fect of placing the greatest weight on ATM implied. Other less popular
weighting schemes include equally weighted, and weight based on the
elasticity of option price to volatility.

The forecasting power of individual and composite implied volatilities
has been tested in Ederington and Guan (2000b), Fung, Lie and Moreno
(1990), Gemmill (1986), Kroner, Kneafsey and Claessens (1995), Scott
and Tucker (1989) and Vasilellis and Meade (1996). The general con-
sensus is that among the weighted implied volatilities, those that favour
the ATM option such as the WLS and the vega weighted implied are
better. The worst performing ones are equally weighted and elastic-
ity weighted implied using options across all strikes. Different findings
emerged as to whether an individual implied volatility forecasts better
than a composite implied. Beckers (1981) Feinstein (1989b), Fung, Lie
and Moreno (1990) and Gemmill (1986) find evidence to support indi-
vidual implied although they all prefer a different implied (viz. ATM,
Just-OTM, OTM and ITM respectively for the four studies). Kroner,
Kneafsey and Claessens find composite implied volatility forecasts bet-
ter than ATM implied. On the other hand, Scott and Tucker (1989) con-
clude that when emphasis is placed on ATM implied, which weighting
scheme one chooses does not really matter.

A series of studies by Ederington and Guan have reported some inter-
esting findings. Ederington and Guan (1999) report that the information
content of implied volatility of S&P500 futures options exhibits a frown
shape across strikes with options that are NTM and have moderately
high strike (i.e. OTM calls and ITM puts) possess the largest informa-
tion content with R? equal to 17% for calls and 36% for puts.

10.3 IMPLIED BIASEDNESS

Usually, forecast unbiasedness is not an overriding issue in any forecast-
ing exercise. Forecast bias can be estimated and corrected if the degree
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of bias remains stable through time. Testing for biasedness is usually
carried out using the regression equation (2.3), where X =X ¢ 1s the
implied forecast of period ¢ volatility. For a forecast to be unbiased, one
would require « = 0 and 8 = 1. Implied forecast is upwardly biased if
a>0and B=1,ora=0and B > 1. In the case where o > 0 and
B < 1, which is the most common scenario, implied underforecasts low
volatility and overforecasts high volatility.

It has been argued that implied bias will persist only if it is difficult
to perform arbitrage trades that are needed to remove the mispricing.
This is more likely in the case of stock index options and less likely
for futures options. Stocks and stock options are traded in different
markets. Since trading of a basket of stocks is cumbersome, arbitrage
trades in relation to a mispriced stock index option may have to be
done indirectly via index futures. On the other hand, futures and futures
options are traded alongside each other. Trading in these two contracts
are highly liquid. Despite these differences in trading friction, implied
biasedness is reported in both the S&P100 OEX market (Canina and
Figlewski, 1993; Christensen and Prabhala, 1998; Fleming, Ostdiek and
Whaley, 1995; Fleming, 1998) and the S&P500 futures options market
(Feinstein, 1989b; Ederington and Guan, 1999, 2002).

Biasedness is equally widespread among implied volatilities of cur-
rency options (see Guo, 1996b; Jorion, 1995; Li, 2002; Scott and Tucker,
1989; Wei and Frankel, 1991). The only exception is Jorion (1996) who
cannot reject the null hypothesis that the one-day-ahead forecasts from
implied are unbiased. The five studies listed earlier use implied to fore-
cast exchange rate volatility over a much longer horizon ranging from
one to nine months.

Unbiasedness of implied forecast was not rejected in the Swedish mar-
ket (Frennberg and Hansson, 1996). Unbiasedness of implied forecast
was rejected for UK stock options (Gemmill, 1986), US stock options
(Lamoureux and Lastrapes, 1993), options and futures options across a
range of assets in Australia (Edey and Elliot, 1992) and for 35 futures
options contracts traded over nine markets ranging from interest rate
to livestock futures (Szakmary, Ors, Kim and Davidson, 2002). On the
other hand, Amin and Ng (1997) find the hypothesis that « = 0 and
B = 1 cannot be rejected for the Eurodollar futures options market.

Where unbiasedness was rejected, the bias in all but two cases was
dueto« > 0 and B < 1. These two exceptions are Fleming (1998) who
reports « = O and 8 < 1 for S&P100 OEX options, and Day and Lewis
(1993) who find o > 0 and 8 = 1 for distant-term oil futures options
contracts.
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Christensen and Prabhala (1998) argue that implied is biased because
of error-in-variable caused by measurement errors. Using last period
implied and last period historical volatility as instrumental variables to
correct for these measurement errors, Christensen and Prabhala (1998)
find unbiasedness cannot be rejected for implied volatility of the S&P100
OEX option. Ederington and Guan (1999, 2002) find bias in S&P500
futures options implied also disappeared when similar instrument vari-
ables were used.

10.4 VOLATILITY RISK PREMIUM

It has been suggested that implied biasedness could not have been caused
by model misspecification or measurement errors because this has rel-
atively small effects for ATM options, used in most of the studies that
report implied biasedness. In addition, the clientele effect cannot explain
the bias either because it only affects OTM options. The volatility risk
premium analysed in Chapter 9 is now often cited as an explanation.

Poteshman (2000) finds half of the bias in S&P500 futures options
implied was removed when actual volatility was estimated with a more
efficient volatility estimator based on intraday 5-minute returns. The
other half of the bias was almost completely removed when a more
sophisticated and less restrictive option pricing model, i.e. the Heston
(1993) model, was used. Further research on option volatility risk pre-
mium is currently under way in Benzoni (2001) and Chernov (2001).
Chernov (2001) finds, similarly to Poteshman (2000), that when implied
volatility is discounted by a volatility risk premium and when the errors-
in-variables problems in historical and realized volatility are removed,
the unbiasedness of the S&P100 index option implied volatility cannot
be rejected over the sample period from 1986 to 2000. The volatility risk
premium debate continues if we are able to predict the magnitude and
the variations of the volatility premium and if implied from an option
pricing model that permits a nonzero market price of risk will outperform
time series models when all forecasts (including forecasts of volatility
risk premium) are made in an ex ante manner.

Ederington and Guan (2000b) find that using regression coefficients
produced from in-sample regression of forecast against realized volatil-
ity is very effective in correcting implied forecasting bias. They also
find that after such a bias correction, there is little to be gained from
averaging implied across strikes. This means that ATM implied together
with a bias correction scheme could be the simplest, and yet the best,
way forward.
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. Volatility Forecasting Records

11.1 WHICH VOLATILITY FORECASTING MODEL?

Our JEL survey has concentrated on two questions: is volatility fore-
castable? If it is, which method will provide the best forecasts? To con-
sider these questions, a number of basic methodological viewpoints need
to be discussed, mostly about the evaluation of forecasts. What exactly is
being forecast? Does the time interval (the observation interval) matter?
Are the results similar for different speculative markets? How does one
measure predictive performance?

Volatility forecasts are classified in this section as belonging in one
of the following four categories:

e HISVOL.: for historical volatility, which include random walk, histor-
ical averages of squared returns, or absolute returns. Also included
in this category are time series models based on historical volatility
using moving averages, exponential weights, autoregressive models,
or even fractionally integrated autoregressive absolute returns, for ex-
ample. Note that HISVOL models can be highly sophisticated. The
multivariate VAR realized volatility model in Andersen, Bollerslev,
Diebold and Labys (2001) is classified here as a ‘HISVOL’ model. All
models in this group model volatility directly, omitting the goodness
of fit of the returns distribution or any other variables such as option
prices.

e GARCH: any member of the ARCH, GARCH, EGARCH and so forth
family is included.

e SV: for stochastic volatility model forecasts.

e ISD: for option implied standard deviation, based on the Black—
Scholes model and various generalizations.

The survey of papers includes 93 studies, but 25 of them did not
involve comparisons between methods from at least two of these groups,
and so were not helpful for comparison purposes.

Table 11.1 involves just pairwise comparisons. Of the 66 studies that
were relevant, some compared just one pair of forecasting techniques,
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Table 11.1 Pair-wise comparisons of forecasting performance
of various volatility models

Number of studies  Studies percentage

HISVOL > GARCH 22 56%
GARCH > HISVOL 17 44%
HISVOL > ISD 8 24%
ISD > HISVOL 26 76%
GARCH > ISD 1 6%
ISD > GARCH 17 94%
SV > HISVOL 3
SV > GARCH 3
GARCH > SV 1
ISD > SV 1

Note: “A > B” means model A’s forecasting performance is better than
that of model B’s

other compared several. For those involving both HISVOL and GARCH
models, 22 found HISVOL better at forecasting than GARCH (56% of
the total), and 17 found GARCH superior to HISVOL (44%).

The combination of forecasts has a mixed picture. Two studies find it
to be helpful but another does not.

The overall ranking suggests that ISD provides the best forecasting
with HISVOL and GARCH roughly equal, although possibly HISVOL
does somewhat better in the comparisons. The success of the implied
volatility should not be surprising as these forecasts use a larger, and
more relevant, information set than the alternative methods as they use
option prices. They are also less practical, not being available for all
assets.

Among the 93 papers, 17 studies compared alternative version of
GARCH. It is clear that GARCH dominates ARCH. In general, mod-
els that incorporate volatility asymmetry such as EGARCH and GJR-
GARCH, perform better than GARCH. But certain specialized specifi-
cations, such as fractionally integrated GARCH (FIGARCH) and regime
switching GARCH (RSGARCH) do better in some studies. However,
it seems clear that one form of study that is included is conducted just
to support a viewpoint that a particular method is useful. It might not
have been submitted for publication if the required result had not been
reached. This is one of the obvious weaknesses of a comparison such as
this: the papers being reported have been prepared for different reasons
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and use different data sets, many kinds of assets, various intervals and
a variety of evaluation techniques. Rarely discussed is if one method
is significantly better than another. Thus, although a suggestion can be
made that a particular method of forecasting volatility is the best, no
statement is available about the cost—benefit from using it rather than
something simpler or how far ahead the benefits will occur.

Financial market volatility is clearly forecastable. The debate is on
how far ahead one can accurately forecast and to what extent volatility
changes can be predicted. This conclusion does not violate market effi-
ciency since accurate volatility forecast is not in conflict with underlying
asset and option prices being correct. The option implied volatility, being
a market-based volatility forecast, has been shown to contain most in-
formation about future volatility. The supremacy among historical time
series models depends on the type of asset being modelled. But, as a
rule of thumb, historical volatility methods work equally well compared
with more sophisticated ARCH class and SV models. Better reward
could be gained by making sure that actual volatility is measured accu-
rately. These are broad-brush conclusions, omitting the fine details that
we outline in this book. Because of the complex issues involved and the
importance of volatility measure, volatility forecasting will continue to
remain a specialist subject and to be studied vigorously.

11.2 GETTING THE RIGHT CONDITIONAL
VARIANCE AND FORECAST WITH THE
‘WRONG’ MODELS

Many of the time series volatility models, including the GARCH mod-
els, can be thought of as approximating a deeper time-varying volatility
construction, possibly involving several important economic explana-
tory variables. Since time series models involve only lagged returns it
seems likely that they will provide an adequate, possibly even a very
good, approximation to actuality for long periods but not at all times.
This means that they will forecast well on some occasions, but less well
on others, depending on fluctuations in the underlying driving variables.

Nelson (1992) proves that if the true process is a diffusion or near-
diffusion model with no jumps, then even when misspecified, appropri-
ately defined sequences of ARCH terms with a large number of lagged
residuals may still serve as consistent estimators for the volatility of
the true underlying diffusion, in the sense that the difference between
the true instantaneous volatility and the ARCH estimates converges to
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zero in probability as the length of the sampling frequency diminishes.
Nelson (1992) shows that such ARCH models may misspecify both the
conditional mean and the dynamic of the conditional variance; in fact the
misspecification may be so severe that the models make no sense as data-
generating processes, they could still produce consistent one-step-ahead
conditional variance estimates and short-term forecasts.

Nelson and Foster (1995) provide further conditions for such mis-
specified ARCH models to produce consistent forecasts over the medium
and long term. They show that forecasts by these misspecified models
will converge in probability to the forecast generated by the true diffusion
or near-diffusion process, provided that all unobservable state variables
are consistently estimated and that the conditional mean and conditional
covariances of all state variables are correctly specified. An example
of a true diffusion process given by Nelson and Foster (1995) is the
stochastic volatility model described in Chapter 6.

These important theoretical results confirm our empirical observa-
tions that under normal circumstances, i.e. no big jumps in prices, there
may be little practical difference in choosing between volatility mod-
els, provided that the sampling frequency is small and that, whichever
model one has chosen, it must contain sufficiently long lagged residuals.
This might be an explanation for the success of high-frequency and long
memory volatility models (e.g. Blair, Poon and Taylor, 2001; Andersen,
Bollerslev, Diebold and Labys, 2001).

11.3 PREDICTABILITY ACROSS DIFFERENT ASSETS

Early studies that test the forecasting power of option ISD are fraught
with many estimation deficiencies. Despite these complexities, option
ISD has been found empirically to contain a significant amount of in-
formation about future volatility and it often beats volatility forecasts
produced by sophisticated time series models. Such a superior perfor-
mance appears to be common across assets.

11.3.1 Individual stocks

Latane and Rendleman (1976) were the first to discover the forecast-
ing capability of option ISD. They find actual volatilities of 24 stocks
calculated from in-sample period and extended partially into the future
are more closely related to implied than historical volatility. Chiras and
Manaster (1978) and Beckers (1981) find prediction from implied can
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explain a large amount of the cross-sectional variations of individual
stock volatilities. Chiras and Manaster (1978) document an R? of 34—
70% for a large sample of stock options traded on CBOE whereas
Beckers (1981) reports an R? of 13-50% for a sample that varies from
62 to 116 US stocks over the sample period. Gemmill (1986) produces
an R? of 12-40% for a sample of 13 UK stocks. Schmalensee and
Trippi (1978) find implied volatility rises when stock price falls and that
implied volatilities of different stocks tend to move together. From a
time series perspective, Lamoureux and Lastrapes (1993) and Vasilellis
and Meade (1996) find implied volatility could also predict time series
variations of equity volatility better than forecasts produced from time
series models.

The forecast horizons of this group of studies that forecast equity
volatility are usually quite long, ranging from 3 months to 3 years. Stud-
ies that examine incremental information content of time series fore-
casts find volatility historical average provides significant incremental
information in both cross-sectional (Beckers, 1981; Chiras and Man-
aster, 1978; Gemmill, 1986) and time series settings (Lamoureux and
Lastrapes, 1993) and that combining GARCH and implied volatility
produces the best forecast (Vasilellis and Meade, 1996). These findings
have been interpreted as an evidence of stock option market inefficiency
since option implied does not subsume all information. In general, stock
option implied volatility exhibits instability and suffers most from mea-
surement errors and bid—ask spread because of the lower liquidity.

11.3.2 Stock market index

There are 22 studies that use index option ISD to forecast stock index
volatility; seven of these forecast volatility of S&P100, ten forecast
volatility of S&P500 and the remaining five forecast index volatility
of smaller stock markets. The S&P100 and S&P500 forecasting results
make an interesting contrast as almost all studies that forecast S&P500
volatility use S&P500 futures options which is more liquid and less
prone to measurement errors than the OEX stock index option written
on S&P100. We have dealt with the issue of measurement errors in the
discussion of biasness in Section 10.3.

All but one study (viz. Canina and Figlewski, 1993) conclude that
implied volatility contains useful information about future volatility.
Blair, Poon and Taylor (2001) and Poteshman (2000) record the highest
R? for S&P100 and S&P500 respectively. About 50% of index volatility
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is predictable up to a 4-week horizon when actual volatility is estimated
more accurately using very high-frequency intraday returns.

Similar, but less marked, forecasting performance emerged from the
smaller stock markets, which include the German, Australian, Canadian
and Swedish markets. For a small market such as the Swedish market,
Frennberg and Hansson (1996) find seasonality to be prominent and that
implied volatility forecast cannot beat simple historical models such as
the autoregressive model and random walk. Very erratic and unstable
forecasting results were reported in Brace and Hodgson (1991) for the
Australian market. Doidge and Wei (1998) find the Canadian Toronto
index is best forecast with GARCH and implied volatility combined,
whereas Bluhm and Yu (2000) find VDAX, the German version of VIX,
produces the best forecast for the German stock index volatility.

A range of forecast horizons were tested among this group of stud-
ies, though the most popular choice is 1 month. There is evidence that
the S&P implied contains more information after the 1987 crash (see
Christensen and Prabhala (1998) for S&P100 and Ederington and Guan
(2002) for S&P500). Some described this as the ‘awakening’ of the S&P
option markets.

About half of the papers in this group test if there is incremental
information contained in time series forecasts. Day and Lewis (1992),
Ederington and Guan (1999, 2004), and Martens and Zein (2004) find
ARCH class models and volatility historical average add a few percent-
age points to the R?, whereas Blair, Poon and Taylor (2001), Christensen
and Prabhala (1998), Fleming (1998), Fleming, Ostdiek and Whaley
(1995), Hol and Koopman (2001) and Szakmary, Ors, Kim and Davidson
(2002) all find option implied dominates time series forecasts.

11.3.3 Exchange rate

The strong forecasting power of implied volatility is again confirmed
in the currency markets. Sixteen papers study currency options for a
number of major currencies, the most popular of which are DM/US$
and ¥/US$. Most studies find implied volatility to contain information
about future volatility for a short horizon up to 3 months. Li (2002) and
Scott and Tucker (1989) find implied volatility forecast well for up to a
6-9-month horizon. Both studies register the highest R? in the region of
40-50%.

A number of studies in this group find implied volatility beats time
series forecasts including volatility historical average (see Fung, Lie and
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Moreno, 1990; Wei and Frankel, 1991) and ARCH class models (see
Guo, 1996a, 1996b; Jorion, 1995, 1996; Martens and Zein, 2004; Pong,
Shackleton, Taylor and Xu, 2002; Szakmary, Ors, Kim and Davidson,
2002; Xu and Taylor, 1995). Some studies find combined forecast is the
best choice (see Dunis, Law and Chauvin, 2000; Taylor and Xu, 1997).
Two studies find high-frequency intraday data can produce more ac-
curate time series forecast than implied. Fung and Hsieh (1991) find
one-day-ahead time series forecast from a long-lag autoregressive model
fitted to 15-minutes returns is better than implied volatility. Li (2002)
finds the ARFIMA model outperformed implied in long-horizon fore-
casts while implied volatility dominates over shorter horizons. Implied
volatility forecasts were found to produce higher R? than other long
memory models, such as the Log-ARFIMA model in Martens and Zein
(2004) and Pong, Shackleton, Taylor and Xu (2004). All these long mem-
ory forecasting models are more recent and are built on volatility com-
piled from high-frequency intraday returns, while the implied volatility
remains to be constructed from less frequent daily option prices.

11.3.4 Other assets

The forecasting power of implied volatility from interest rate options was
tested in Edey and Elliot (1992), Fung and Hsieh (1991) and Amin and
Ng (1997). Interest rate option models are very different from other
option pricing models because of the need to price the whole term
structure of interest rate derivatives consistently all at the same time in
order to rule out arbitrage opportunities. Trading in interest rate instru-
ments is highly liquid as trading friction and execution cost are negli-
gible. Practitioners are more concerned about the term structure fit than
the time series fit, as millions of pounds of arbitrage profits could change
hands instantly if there is any inconsistency in contemporaneous prices.

Earlier studies such as Edey and Elliot (1992) and Fung and Hsieh
(1991) use the Black model (a modified version of Black—Scholes) that
prices each interest rate option without cross-referencing to prices of
other interest rate derivatives. The single factor Heath—Jarrow—Morton
model, used in Amin and Ng (1997) and fitted to short rate only, works
in the same way, although the authors have added different constraints
to the short-rate dynamics as the main focus of their paper is to compare
different variants of short-rate dynamics. Despite the complications, all
three studies find significant forecasting power is implied of interest rate
(futures) options. Amin and Ng (1997) in particular report an R? of 21%
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for 20-day-ahead volatility forecasts, and volatility historical average
adds only a few percentage points to the R>.

Implied volatilities from options written on nonfinancial assets were
examined in Day and Lewis (1993, crude oil), Kroner, Kneafsey and
Claessens (1995, agriculture and metals), Martens and Zein (2004,
crude oil) and a recent study (Szakmary, Ors, Kim and Davidson, 2002)
that covers 35 futures options contracts across nine markets including
S&P500, interest rates, currency, energy, metals, agriculture and live-
stock futures. All four studies find implied volatility dominates time
series forecasts although Kroner, Kneafsey and Claessens (1995) find
combining GARCH and implied produces the best forecast.



12
Volatility Models in Risk

Management

The volatility models described in this book are useful for estimating
value-at-risk (VaR), a measure introduced by the Basel Committee in
1996. In many countries, it is mandatory for banks to hold a minimum
amount of capital calculated as a function of VaR. Some financial in-
stitutions other than banks also use VaR voluntarily for internal risk
management. So volatility modelling and forecasting has a very impor-
tant role in the finance and banking industries. In Section 12.1, we give
a brief background of the Basel Committee and the Basel Accords. In
Section 12.2, we define VaR and explain how the VaR estimate is tested
according to regulations set out in the Basel Accords. Section 12.3 de-
scribes how volatility models can be combined with extreme value theory
to produce, hitherto the most accurate, VaR estimate. The content in this
section is largely based on McNeil and Frey (2000) in the context where
there is only one asset (or one risk factor). A multivariate extension is
possible but is still under development. Section 12.4 describes various
ways to evaluate the VaR model based on Lopez (1998).

Market risk and VaR represent only one of the many types of risk
discussed in the Basel Accords. We have specifically omitted credit risk
and operational risk as volatility models have little use in predicting
these risks. Readers who are interested in risk management in a broader
context could refer to Jorion (2001) or Banks (2004).

12.1 BASEL COMMITTEE AND BASEL
ACCORDSI & 11

The Basel Accords have been in place for anumber of years. They set out
an international standard for minimum capital requirement among in-
ternational banks to safeguard against credit, market and operational
risks. The Bank for International Settlements (BIS) based at Basel,
Switzerland, hosts the Basel Committee who in turn set up the Basel
Accords. While Basel Committee members are all from the G10 coun-
tries and have no formal supranational supervisory authority, the Basel
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Accords have been adopted by almost all countries that have active
international banks. Many financial institutions that are not regulated
by the national Banking Acts also pay attention to the risk management
procedures set out in the Basel Accords for internal risk monitoring
purposes. The IOSCO (International Organization of Securities Com-
missions), for example, has issued several parallel papers containing
guidelines similar to the Basel Accords for the risk management of
derivative securities.

The first Basel Accord, which was released in 1988 and which became
known as the Capital Accord, established a minimum capital standard
at 8% for assets subject to credit risk:

Liquidity-weighted assets

- - > 8%. (12.1)
Risk-weighted assets

Detailed guidelines were set for deriving the denominator according to

some predefined risk weights; typically a very risky loan will be given

a 100% weight. The numerator consists of bank capital weighted the

liquidity of the assets according to a list of weights published by the

Basel Committee.

In April 1995, an amendment was issued to include capital charge
for assets that are vulnerable to ‘market risk’, which is defined as the
risk of loss arising from adverse changes in market prices. Specifically,
capital charges are to be supplied: (i) to the current market value of
open positions (including derivative positions) in interest rate related
instruments and equities in banks’ trading books, and (ii) to banks’ total
currency and commodities position in respect of foreign exchange and
commodities risk respectively. A detailed ‘Standardised Measurement
Method’ was prescribed by the Basel Committee for calculating the
capital charge for each market risk category.

If we rearrange Equation (12.1) such that

Liquidity-weighted assets > 8% x Risk-weighted assets, (12.2)

then the market risk related capital charge is added to credit risk related
‘Liquidity-weighted assets’ in the L.h.s. of Equation (12.2). This effec-
tively increases the ‘Risk-weighted assets’ in the r.h.s. by 12.5 times the
additional market risk related capital charge.

In January 1996, another amendment was made to allow banks to use
their internal proprietary model together with the VaR approach for cal-
culating market risk related risk capital. This is the area where volatility
models could play an important role because, by adopting the internal
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approach, the banks are given the flexibility to specify model parameters
and to take into consideration the correlation (and possible diversifica-
tion) effects across as well as within broad risk factor categories. The
condition for the use of the internal model is that it is subject to regular
backtesting procedures using at least one year’s worth of historical data.
More about VaR estimation and backtesting will be provided in the next
sections.

In June 2004, Basel II was released with two added dimensions, viz.
supervisory review of an institution’s internal assessment process and
capital adequacy, and market discipline through information disclosure.
Basel II also saw the introduction of operational risk for the first time
in the calculation of risk capital to be included in the denominator in
Equation (12.1). ‘Operational risk’ is defined as the risk of losses result-
ing from inadequate or failed internal processes, people and systems, or
external events. The Basel Committee admits that assessments of oper-
ational risk are imprecise and it will accept a crude approximation that
is based on applying a multiplicative factor to the bank’s gross income.

12.2 VaR AND BACKTEST

In this section, we discuss market risk related VaR only, since this is the
area where volatility models can play an important role. The computa-
tion of VaR is needed only if the bank chooses to adopt its own internal
model for calculating market risk related capital requirement.

12.2.1 VaR

‘Value-at-risk’ (VaR) is defined as the 1% quantile of the lower tail
distribution of the trading book held over a 10-day period.' The capital
charge will then be the higher of the previous day’s VaR or three times the
average daily VaR of the preceding 60 business days. The multiplicative
factor of three was used as a cushion for cumulative losses arising from
adverse market conditions and to account for potential weakness in the
modelling process.”> Given that today’s portfolio value is known, the
prediction of losses over a 10-day period amounts to predicting the rate
of change (or portfolio returns) over the 10-day period (Figure 12.1).

! A separate VaR will be calculated for each risk factor. So there will be separate VaR for interest rate related
instruments, equity, foreign exchange risk and commodities risk. If correlations among the four risk factors are
not considered, then the total VaR will be the sum of the four VaR estimates.

2 While one may argue that such a multiplicative factor is completely arbitrary, it is nevertheless mandatory.
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1% |
T

9.9 0

Figure 12.1 Returns distribution and VaR

The VaR estimate for tomorrow’s trading position is then calculated as
today’s portfolio value times the 1% quantile value if it is a negative
return. (A positive return will not attract any risk capital.)

The discovery of stochastic volatility has led to the common practice of
modelling returns distribution conditioned on volatility level at a specific
point in time. Volatility dynamic has been extensively studied since the
seminal work of Engle (1982). It is now well known that a volatile period
in the financial markets tends to be followed by another volatile period,
whereas a tranquil period tends to be followed by another tranquil period.
VaR as defined by the Basel Committee is a short-term forecast. Hence a
good VaR model should fully exploit the dynamic of volatility structure.

12.2.2 Backtest

For banks who decide to use their own internal models, they have to
perform a backtest procedure at least at a quarterly interval. The back-
test procedure involves comparing the bank’s daily profits and losses
with model-generated VaR measures in order to gauge the quality and
accuracy of their risk measurement systems. Specifically, this is done by
counting from the record of the last 12 months (or 250 trading days) the
number of times when actual losses are greater than the predicted risk
measure. The proportion actually covered can then be checked to see if
it is consistent with a 99% level of confidence.

In the 1996 backtest document, the Basel Committee was unclear
about whether the exceptional losses should take into account fee income
and changes in portfolio position. Hence the long discussion about the
choice of 10-day, 1-day or intraday intervals for calculating exceptional
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losses, and the discussion of whether actual or simulated trading results
should be tested. Before we discuss these two issues, it is important
to note that (i) actual VaR violations could be due to an inadequate
(volatility) model or a bad decision (e.g. a decision to change portfolio
composition at the wrong time); (ii) financial market volatility often does
not obey the scaling law, i.e. variance of 10-day return is not equal to
1-day variance times +/10.

To test model adequacy, the backtest should be based on a simulated
portfolio assuming that the bank has been holding the same portfolio for
the last 12 months. This will help to separate a bad model from a bad
decision. Given that the VaR used for calculating the capital requirement
is for a 10-day holding period, the backtest should also be performed
using a 10-day window to accumulate profits/losses. The current rules,
which require the VaR test to be calculated for a 1-day profits/losses,
fail to recognize the volatility dynamics over the 10-day period is vastly
different from the 1-day volatility dynamic.

The Basel Committee recommends that backtest also be conducted on
actual trading outcomes in addition to the simulated portfolio position.
Specifically, it recommends a comprehensive approach that involves a
detailed attribution of income by source, including fees, spreads, market
movements and intraday trading results. This is very useful for uncov-
ering risks that are not captured in the volatility model.

12.2.3 The three-zone approach to backtest evaluation

The Basel Committee then specifies a three-zone approach to evaluate
the outcome of the backtest. To understand the rationale of the three-zone
approach, it is important to recognize that all appropriately implemented
control systems are subject to random errors. On the other hand, there
are cases where the control system is a bad one and yet there are no
failures. The objective of the backtest is to distinguish the two situations
which are known as type I (rejecting a system when it is working) and
type II (accepting a bad system) errors respectively.

Given that the confidence level set for the VaR measure is 99%, there
is a 1% chance of exceptional losses that are tolerated. For 250 trad-
ing days, this translates into 2.5 occurrences where the VaR estimate
will be violated. Figure 12.2 shows the outcome of simulations involv-
ing a system with 99% coverage and 95% coverage as reported in the
Basel document (January 1996, Table 1). We can see that the number
of exceptions under the true 99% coverage can range from 0 to 9, with
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Figure 12.2 Type I and II backtest errors

most of the instances centred around 2. If the true coverage is 95%, we
might get four or more exceptions with the mean centred around 12. If
only these two coverages are possible then one may conclude that if the
number of exceptions is four or below, then the 99% coverage is true. If
there are ten or more exceptions it is more likely that the 99% coverage
is not true. If the number of exceptions is between five and nine, then it
is possible that the true coverage might be from either the 99% or the
95% population and it is impossible to make a conclusion.

The difficulty one faces in practice is that there could potentially be an
endless range of possible coverages (i.e. 98%, 97%, 96%, . . ., etc). So
while we are certain about the range of type I errors (because we know
that our objective is to have a 99% coverage), we cannot be precise about
the possible range of type II errors (because we do not know the true
coverage). The three-zone approach and the recommended increase in
scaling factors (see Table 12.1) is the Basel Committee’s effort to seek
a compromise in view of this statistical uncertainty. From Table 12.1,
if the backtest reveals that in the last trading year there are 10 or more
VaR violations, for example, then the capital charge will be four times
VaR, instead of three times VaR.
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Table 12.1 Three-zone approach to internal backtesting of VaR

No. of Increase in Cumulative
Zones exceptions scaling factor probability
Green 04 0 8.11 t0 89.22%
5 +0.40 95.88%
6 +0.50 98.63%
Yellow 7 +0.65 99.60%
8 +0.75 99.89%
9 +0.85 99.97%
Red 10 or more +1 99.99%

Note: The table is based on a sample of 250 observations. The cumulative
probability is the probability of obtaining a given number of or fewer ex-
ceptions in a sample of 250 observations when the true coverage is 99%.
(Source: Basel 1996 Amendment, Table 2).

When the backtest signals a red zone, the national supervisory body
will investigate the reasons why the bank’s internal model produced such
a large number of misses, and may demand the bank to begin working
on improving its model immediately.

12.3 EXTREME VALUE THEORY AND
VaR ESTIMATION

The extreme value approach to VaR estimation is a response to the find-
ing that standardized residuals of many volatility models have longer
tails than the normal distribution. This means that a VaR estimate pro-
duced from the standard volatility model without further adjustment will
underestimate the 1% quantile. Using GARCH-¢, where the standard-
ized residuals are assumed to follow a Student-¢ distribution, partially
alleviates the problem, but GARCH-¢ is inadequate when the left tail
and the right tail are not symmetrical. The EVT-GARCH method pro-
posed by McNeil and Frey (2000) is to model conditional volatility and
marginal distribution of the left tail separately. We need to model only
the left tail since the right tail is not relevant as far as VaR computation
is concerned.

Tail event is by definition rare and a long history of data is required to
uncover the tail structure. For example, one would not just look into the
last week’s or the last year’s data to model and forecast the next earth-
quake or the next volcano eruption. The extreme value theory (EVT) is
best suited for studying rare extreme events of this kind where sound
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statistical theory for maximal has been well established. There is a prob-
lem, however, in using a long history of data to produce a short-term
forecast. The model is not sensitive enough to current market condition.
Moreover, one important assumption of EVT is that the tail events are
independent and identically distributed (iid). This assumption is likely
to be violated because of stochastic volatility and volatility persistence
in particular. Volatility persistence suggests one tail event is likely to
be followed by another tail event. One way to overcome this violation
of the iid assumption is to filter the data with a volatility model and
study the volatility filtered iid residuals using EVT. This is exactly what
McNeil and Frey (2000) proposed. In order to produce a VaR estimate in
the original return scale to conform with the Basel requirement, we then
trace back the steps by first producing the 1% quantile estimate for the
volatility filtered return residuals, and convert the 1% quantile estimate
to the original return scale using the conditional volatility forecast for
the next day.

12.3.1 The model

Following the GARCH literature, let us write the return process as

re =+ 2/ hy. (12.3)

In the process above, we assume there is no serial correlation in daily
return. (Otherwise, an AR(1) or an MA(1) term could be added to the
r.h.s. of (12.3).) Equation (12.3) is estimated with some appropriate
specification for the volatility process, /; (see Chapter 4 for details). For
stock market returns, &, typically follows an EGARCH(1,1) or a GJR-
GARCH(1,1) process. The GARCH model in (12.3) is estimated using
quasi-maximum likelihood with a Gaussian likelihood function, even
though we know that z, is not normally distributed. QME estimators are
unbiased and since the standardized residuals will be modelled using an
extreme value distribution, such a procedure is deemed appropriate.
The standardized residuals z, are obtained by rearranging (12.3)

ry —p

Vhi
Since our main concern is about losses, we could multiply z; by —1 so
that we are always working with positive values for convenience. The

z; variable is then ranked in descending order, such that zy > z2) >
- > Zz(n where n is the number of observations.

r =
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The next stage involves estimating the generalized Pareto distribu-
tion (GPD) to all z that are greater than a high threshold . The GPD
distribution has density function

E@—uw]
1—11 - - f 0
F)= [ T ] orf#0,

1 — e Gw/p foré =0

The parameter £ is called the tail index and S is the scale parameter.

The estimation of the model parameters (the tail index £ in particular)
and the choice of the threshold u are not independent processes. As
u becomes larger, there will be fewer and fewer observations being
included in the GPD estimation. This makes the estimation of & very
unstable with a large standard error. But, as u decreases, the chance of an
observation that does not belong to the tail distribution being included in
the GPD estimation increases. This increases the risk of the & estimate
being biased. The usual advice is to estimate £ (and 8) at different
levels of u. Then starting from the highest value of u, a lower value of
u is preferred unless there is a change in the level of £ estimate, which
indicates there may be a possible bias caused by the inclusion of too
many observations in the GPD estimation.

Once the parameters £ and 8 are estimated, the 1% quantile is obtained
by inverting the cumulative density function

k ~(z7—u -l

n B
Bl (1=-49\"
Z"‘”?[(k/n) _1}’

where ¢ = 0.01 and & is the number of z exceeding the threshold u.

We are now ready to calculate the VaR estimate using (12.3) and the
volatility forecast for the next day:

VaR,, | = current position X (M — zq\//};pr]) .

12.3.2  10-day VaR

Itis well-known that the variance of a Gaussian variable follows a simple
scaling law and the Basel Committee, in its 1996 Amendment, states that
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it will accept a simple +/7 scaling of 1-day VaR for deriving the 10-day
VaR required for calculating the market risk related risk capital.

The stylized facts of financial market volatility and research findings
have repeatedly shown that a 10-day VaR is not likely to be the same as
/10 x 1-day VaR. First, the dynamic of a stationary volatility process
suggests that if the current level of volatility is higher than unconditional
volatility, the subsequent daily volatility forecasts will decline and con-
verge to unconditional volatility, and vice versa for the case where the
initial volatility is lower than the unconditional volatility. The rate of
convergence depends on the degree of volatility persistence. In the case
where initial volatility is higher than unconditional volatility, the scal-
ing factor will be less than +/10. In the case where initial volatility is
lower than unconditional volatility, the scaling factor will be more than
V'10. In practice, due to volatility asymmetry and other predictive vari-
ables that might be included in the volatility model, it is always best
to calculate h;11, hyip, - -+, hyy10 separately. The 10-day VaR is then
produced using the 10-day volatilty estimate calculated from the sum of
hiv1, higo, -+, Bygro.

Secondly, financial asset returns are not normally distributed.
Danielsson and deVries (1997) show that the scaling parameter for
quantile derived using the EVT method increases at the approximate
rate of 7%, which is typically less than the square-root-of-time adjust-
ment. For a typical value of £ (= 0.25), T¢ = 1.778, which is less than
10% (= 3.16). McNeil and Frey (2000) on the other hand dispute this
finding and claim the exponent to be greater than 0.5. The scaling fac-
tor of 10°> produced far too many VaR violations in the backtest of five
financial series, except for returns on gold. In view of the conflicting em-
pirical findings, one possible solution is to build models using 10-day
returns data. This again highlights the difficulty due to the inconsistency
in the rule applies to VaR for calculating risk capital and that applies to
VaR for backtesting.

12.3.3 Multivariate analysis

The VaR computation described above is useful for the single asset case
and cases where there is only one risk factor. The cases for multi-asset
and multi-risk-factor are a lot more complex which require multivariate
extreme theories and a better understanding of the dependence struc-
ture between the variables of interest. Much research in this area is
still ongoing. But it is safe to say that correlation coefficient, the key
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measure used in portfolio diversification, can produce very misleading
information about the dependence structure of extreme events in finan-
cial markets (Poon, Rockinger and Tawn, 2004). The VaR of a portfolio
is not a simple function of the weighted sum of the VaR of the individ-
ual assets. Detailed coverage of multivariate extreme value theories and
applications is beyond the scope of this book. The simplest solution we
could offer here is to treat portfolio returns as a univariate variable and
apply the procedures above. Such an approach does not provide insight
about the tail relationship between assets and that between risk factors,
but it will at least produce a sensible estimate of portfolio VaR.

12.4 EVALUATION OF VaR MODELS

In practice, there will be many different models for calculating VaR,
many of which will satisfy Basel’s backtest requirement. The important
questions are ‘Which model should one use?’ and ‘If there are excep-
tions, how do we know if the model is malfunctioning?’. Lopez (1998)
proposes two statistical tests and a supplementary evaluation that is based
on the user specifying a loss function.

The first statistical test involves modelling the number of exceptions
as independent draws from a binomial distribution with a probability
of occurrence equal to 1%. Let x be the actual number of exceptions
observed for a sample of 250 trading outcomes. The probability of ob-
serving x exceptions from a 99 % coverage is

Pr(x) = C?° x 0.01" x 0.99%°,

The likelihood ratio statistic for testing if the actual unconditional cov-
erage o = x/250 = 0.01 is

LR, = 2[log (o* x (1 — &)™*™*) — log (0.01* x 0.997°7)].

The LR, test statistic has an asymptotic 2 distribution with one degree
of freedom.

The second test makes use of the fact that VaR is the interval forecast
of the lower 1% tail of the one-step-ahead conditional distribution of re-
turns. So given a set of VaR,, the indicator variable [, is constructed as

1. = 1 forr,y < VaR;
*1=10 forr, > VaR, "



140 Forecasting Financial Market Volatility

If VaR, provides correct conditional coverage, X/,.; must equal un-
conditional coverage, and I, must be serially independent. The LR,
test is a joint test of these two properties. The relevant test statistic is

LRCC = LRus + LRinds

which has an asymptotic x? distribution with two degrees of freedom.
The LR;,, statistic is the likelihood ratio statistic for the null hypothesis
of serial independence against first-order serial dependence.

The LR,. test and the LR,.. test are formal statistical tests for the
distribution of VaR exceptions. It is useful to supplement these formal
tests with some numerical scores that are based on the loss function of
the decision maker. The loss fuction is specified as the cost of various
outcomes below:

Cooi = f (rig1, VaR,)  forry < VaR,
t+1 g (ri11, VaR,) forr,,; > VaR; ~

Since this is a cost function and the prevention of VaR exception is of
paramount importance, f (x, y) > g (x, y) for a given y. The best VaR
model is one that provides the smallest total cost, XC; ;.

There are many ways to specify f and g depending on the con-
cern of the decision maker. For example, for the regulator, the concern
is principally about VaR exception where r,y; < VaR, and not when
ri+1 > VaR,. So the simplest specification for f and g will be f =1
and g = 0 as follows:

Co. = 1 forrq < VaR,
1710 forr.; > VaR,"

If the exception as well as the magnitude of the exception are both
important, one could have

T R G VaR,)? forr,4; < VaR,
#1710 for r;4 1 > VaR,’

The expected shortfall proposed by Artzner, Delbaen, Eber and Heath
(1997, 1999) is similar in that the magnitude of loss above VaR is
weighted by the probability of occurrence. This is equivalent to

Coot = |rip1 — VaR,|  forrq < VaR,
#1710 for r;;1 > VaR,’

For banks who implement the VaR model and has to set aside capital
reserves, g = 0 is not appropriate because liquid assets do not provide
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good returns. So one cost function that will take into account the oppor-
tunity cost of money is

|I’t+1 - VaR,P/ fOI‘ rt+1 S VaR[

Cii = .
#+1 ;o1 — VaR,| x i forr,;; > VaR,’

where y reflects the seriousness of large exception and i is a function of
interest rate.






13
. VIX and Recent Changes in VIX |

The volatility index (VIX) compiled by the Chicago Board of Option
Exchange has always been shown to capture financial turmoil and pro-
duce good forecast of S&P100 volatility (Fleming, Ostdiek and Whaley,
1995; Ederington and Guan, 2000a; Blair, Poon and Taylor, 2001; Hol
and Koopman, 2002). It is compiled on a real-time basis aiming to re-
flect the volatility over the next 30 calendar days. In September 2003,
the CBOE revised the way in which VIX is calculated and in March
2004 it started futures trading on VIX. This is to be followed by options
on VIX and another derivative product may be variance swap. The old
version of VIX, now renamed as VXO, continued to be calculated and
released during the transition period.

13.1 NEW DEFINITION FOR VIX

There are three important differences between VIX and VXO:

(i) The new VIX uses information from out-of-the-money call and put
options of a wide range of strike prices, whereas VXO uses eight
at- and near-the-money options.

(i) The new VIX is model-free whereas VXO is a weighted average of
Black—Scholes implied volatility.

(ii1)) The new VIX is based on S&P500 index options whereas VXO is
based on S&P100 index options.

The VIX is calculated as the aggregate value of a weighted strip of
options using the formula below:

2 AK; 1 F 2
2 N T (K — — | — — 1, 13.1
O Z ¢TQ (K T[ (13.)

T K? Ko
F=Ko+eT (co— po), (13.2)
K; K;_
AK; = Rivr + izt (13.3)

2
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where r is the continuously compounded risk-free interest rate to expi-
ration, T is the time to expiration (in minutes!), F' is the forward price of
the index calculated using put—call parity in (13.2), Ky is the first strike
just below F, K; is the strike price of ith out-of-the-money options (i.e.
callif K; > F and putif K; < F), Q (K;) is the midpoint of the bid—ask
spread for option at strike price K;, A K; in (13.3) is the interval between
strike prices. If i is the lowest (or highest) strike, then AK; = K;1; — K;
(OI' AKZ = K,' — Ki—])-

Equations (13.1) to (13.3) are applied to two sets of options contracts
for the near term 7} and the next near term 75 to derive a constant 30-day
volatility index VIX:

Np, — N Ny — N N
VIX=100 x | {To? (—2—2) + Tho? (22— )1 x =2,
Nz, — N, Nr, — N, N3

where N, is the number of minutes (N3g = 30 x 1400 = 43,200 and
N5 = 365 x 1400 = 525,600).

13.2 WHAT IS THE VXO?

VXO, the predecessor of VIX, was released in 1993 and replaced by
the new VIX in September 2003. VXO is an implied volatility com-
posite compiled from eight options written on the S&P100. It is con-
structed in such a way that it is at-the-money (by combining just-in-
and just-out-of-the-money options) and has a constant 28 calendar days
to expiry (by combining the first nearby and second nearby options
around the targeted 28 calendar days to maturity). Eight option prices are
used, including four calls and four puts, to reduce any pricing bias and
measurement errors caused by staleness in the recorded index level.
Since options written on S&P100 are American-style, a cash-dividend
adjusted binomial model was used to capture the effect of early ex-
ercise. The mid bid—ask option price is used instead of traded price
because transaction prices are subject to bid—ask bounce. (See Whaley
(1993) and Fleming, Ostdiek and Whaley (1995) for further details.)
Owing to the calendar day adjustment, VIX is about 1.2 times (i.e.
/365/252) greater than historical volatility computed using trading-day
data.
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13.3 REASON FOR THE CHANGE

There are many reasons for the change; if nothing else the new volatility
index is hedgeable and the old one is not. The new VIX can be replicated
with a static portfolio of S&P500 options or S&P500 futures. Hence, it
allows hedging and, more importantly, the corrective arbitrage options of
VIX derivatives if prices are not correct. The CBOE argues that the new
VIX reflect information in a broader range of options rather than just the
few at-the-money options. More importantly, the new VIX is aiming to
capture the information in the volatility skew. It is linked to the broader-
based S&P500 index instead of the S&P100 index. The S&P500 is the
primary index for most portfolio benchmarking so derivative products
that are more closely linked to S&P500 will facilitate risk management.

Although the two volatility indices are compiled very differently, their
statistical properties are very similar. Figures 13.1(a) and 13.1(b) show
the time series plots of VIX and VXO over the period 2 January 1990
to 28 June 2004, and Figure 13.1(c) provides a scatterplot showing the
relationship between the two. The new VIX has a smaller mean and is
more stable than the old VXO. There is no doubt that researchers are
already investigating the new index and all the issues that it has brought
about, such as the pricing and hedging of derivatives written on the
new VIX.



14
Where Next?

The volatility forecasting literature is still very active. Many more new
results are expected in the near future. There are several areas where
future research could seek to make improvements. First is the issue
about forecast evaluation and combining forecasts of different models.
It would be useful if statistical tests were conducted to test whether the
forecast errors from Model A are significantly smaller, in some sense,
than those from Model B, and so on for all pairs. Even if Model A is found
to be better than all the other models, the conclusion is NOT that one
should henceforth forecast volatility with Model A and ignore the other
models as it is very likely that a linear combination of all the forecasts
might be superior. To find the weights one can either run a regression
of empirical volatility (the quantity being forecast) on the individual
forecasts, or as an approximation just use equal weights. Testing the
effectiveness of a composite forecast is just as important as testing the
superiority of the individual models, but this has not been done very
often or across different data sets.

A mere plot of any measure of volatility against time will show the
familiar ‘volatility clustering’ which indicates some degree of forecast-
ability. The biggest challenge lies in predicting changes in volatility. If
implied volatility is agreed to be the best performing forecast, on average,
this is in agreement with the general forecast theory, which emphasizes
the use of a wider information set than just the past of the process
being forecast. Implied volatility uses option prices and so potentially
the information set is richer. What needs further consideration is if all
of its information is now being extracted and if it could still be widened
to further improve forecast accuracy especially that of long horizon
forecasts. To achieve this we need to understand better the cause of
volatility (both historical and implied). Such an understanding will help
to improve time series methods, which are the only viable methods when
options, or market-based forecast, are not available.

Closely related to the above is the need to understand the source of
volatility persistence and the volume-volatility research appears to be
promising in providing a framework in which volatility persistence may
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be closely scrutinized. The mixture of distribution hypothesis (MDH)
proposed by Clark (1973), the link between volume-volatility and mar-
ket trading mechanism in Tauchen and Pitts (1983), and the empirical
findings of the volume-volatility relationship surveyed in Karpoff (1987)
are useful starting points. Given that Lamoureux and Lastrapes (1990)
find volume to be strongly significant when it is inserted into the ARCH
variance process, while returns shocks become insignificant, and that
Gallant, Rossi and Tauchen (1993) find conditioning on lagged vol-
ume substantially attenuates the ‘leverage’ effect, the volume-volatility
research may lead to a new and better way for modelling returns distri-
butions. To this end, Andersen (1996) puts forward a generalized frame-
work for the MDH where the joint dynamics of returns and volume are
estimated, and reports a significant reduction in the estimated volatility
persistence. Such a model may be useful for analysing the economic
factors behind the observed volatility clustering in returns, but such a
line of research has not yet been pursued vigorously.

There are many old issues that have been around for a long time.
These include consistent forecasts of interest rate volatilities that sat-
isfies the no-arbitrage relationship across all interest rate instruments,
more tests on the use of absolute returns models in comparison with
squared returns models in forecasting volatility, a multivariate approach
to volatility forecasting where cross-correlation and volatility spillover
may be accommodated, etc.

There are many new adventures that are currently under way as well.!
These include the realized volatility approach, noticeably driven by
Andersen, Bollerslev, Diebold and various co-authors, the estimation
and forecast of volatility risk premium, the use of spot and option price
data simultaneously (e.g. Chernov and Ghysels, 2000), and the use of
Bayesian and other methods to estimate stochastic volatility models (e.g.
Jones, 2001), etc.

It is difficult to envisage in which direction volatility forecasting re-
search will flourish in the next five years. If, within the next five years,
we can cut the forecast error by half and remove the option pricing bias in
ex ante forecast, this will be a very good achievement indeed. Producing
by then forecasts of large events will mark an important milestone.

! We thank a referee for these suggestions.
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