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PREFACE

It is impossible to imagine that any of the modern industries at the beginning of 
twenty‐first century may survive and progress without application of computational 
modeling. This observation is reflected in industries such as aviation and space, 
chemical, oil/gas, materials, and pharmaceuticals. In pharmaceutical industry, 
 molecular modeling applications in Drug Discovery have a 30‐year history of great 
accomplishments; many of society’s greatest medicines were made possible, in part, 
due to computational modeling. However, computational modeling support of Drug 
Development has emerged only recently in full strength. An explanation for this 
 hindrance is the high complexity of the modeling systems (solid and liquid phases of 
relatively large and flexible molecules) coupled with high expectations for accurate 
predictions that accompany late‐stage drug development. It is fair to state that in 
order to overcome these challenges, typical modeling applications in Drug 
Development are pushing the boundaries of fundamental theories and methods ini-
tially tested on the simpler “classical” systems. Therefore, many of the modeling 
applications in Drug Development became more feasible only with the recent 
advances in computational power of high‐performance computing systems.

There are a number of chemistry books available related to computational 
 materials science and to modeling of molecular solid state, but none of the books 
cover current pharmaceutical industry applications. The intention of this book is to 
highlight the importance of the computational pharmaceutical solid‐state chemistry 
and to fill the gap in the current literature. The book examines the state‐of‐the‐art 
computational approaches to guide and analysis of solid form experiments and to 
optimize the physical and chemical properties of active pharmaceutical ingredient 
(API) related to its stability, bioavailability, and formulatability. While all methods 
and approaches described in the book appear to be state of the art, the book is 
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addressed to a wide audience, including experts within the field and those without 
much experience in molecular modeling. I anticipate the book will be useful not only 
to the professional modelers in Drug Development but also to computational chem-
istry community in Drug Discovery as well as to experimental researchers and 
 students working in the fields of pharmaceutical sciences, solid‐state chemistry, 
materials science, and medicinal chemistry.

The outline of the book is as follows. The book starts with a high‐level introduc-
tion into the field of computational pharmaceutical solid‐state chemistry. Chapters 
2–5 consider different computational approaches allowing physical stability analysis 
(risk assessment) of pharmaceutical solid forms. Chapters 6 and 7 present industrial 
examples of the application of computational pharmaceutical solid‐state chemistry at 
Pfizer and AstraZeneca, respectively. Chapter 8 considers synthonic engineering of 
pharmaceutical solid dosage form with a special focus on a surface energy and 
 morphology prediction. Chapters 9–11 consider current state‐of‐the‐art computa-
tional approaches of solubility prediction of solid drug‐like compounds. Chapter 12 
reviews the use of solid‐state NMR (SSNMR) for studying small pharmaceutical 
molecules in synergy with theoretical calculations of NMR parameters. A review of 
molecular dynamic simulation of the various properties of amorphous pharmaceu-
tical compounds is presented in Chapter 13. Finally, Chapter 14 presents numerical 
simulations of unit operations in pharmaceutical solid dose manufacturing with a 
focus on contact drying, film coating, and milling.

I would like to thank all the contributors of this book for writing excellent  chapters. 
I am also grateful to my colleague Brian Samas for valuable discussions and sugges-
tions, which I believe made this book better. Finally, special thanks to my wife and 
sister (Marina Skornyakova and Elena Abramova, respectively) for their support 
 during the preparation of this book.

Yuriy A. Abramov,
August 2015
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1
COMPUTATIONAL PHARMACEUTICAL 
SOLID‐STATE CHEMISTRY: 
AN INTRODUCTION

Yuriy A. Abramov
Pfizer Worldwide Research & Development, Groton, CT, USA

1.1 INTRODUCTION

Traditionally, pharmaceutical industry is focusing on discovery and manufacturing 
of small‐molecule drug compounds. Pharmaceutical industry workflow is character-
ized by two somewhat overlapping stages—Drug Discovery and Drug Development. 
At the first stage, a new chemical entity (drug candidate molecule for clinical 
development) is being discovered and tested on animals. At the end of this stage it is 
important to make sure that the selected molecule passes preclinical testing such as 
in vivo biological activity in animal models, in vitro metabolism, pharmacokinetic 
profiling in animals, and animal toxicology studies. The drug candidate progresses 
into an early development stage to pass proof of concept (POC), which refers to early 
clinical studies on human divided into Phase I and Phase IIa. At this step the candi-
date molecule becomes an active pharmaceutical ingredient (API) of drug product 
and is typically formulated in a solid form. The subsequent Drug Development 
 process is focused on drug product and process development to ensure reliable 
performance, manufacturing, and storage.

Along the pharmaceutical industry workflow path, a drug substance undergoes 
a significant physical transformation (Fig. 1.1). It starts in early Drug Discovery 
as a single molecule (ligand) binding to a receptor in order to activate or inhibit 
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the receptor’s associated biochemical pathway. Then the drug molecule becomes a 
biologically active component of a typically solid‐state (e.g., crystalline or amor-
phous) formulation in early Drug Development. Finally, the drug molecule acts as an 
API of the solid particles of the drug product at the later stages of Drug Development. 
This transformational pathway reflects the complex nature of the drug design work-
flow and dictates a diversity of experimental and especially computational methods, 
which are applied to support Drug Discovery and Drug Development.

The pharmaceutical industry as a whole has faced many challenges in recent 
years in addition to patent expirations of blockbuster drugs. In particular, the Drug 
Development branch faces challenges of accelerated development under a high 
regulatory pressure. An ability to rationalize and guide Drug Development process 
has become crucial [1]. Computational chemistry methods have become deeply 
integrated into Drug Discovery over the past 30 years [2, 3]. However, the computa-
tional support of Drug Development has emerged only in recent years and is now 
tasked with the whole spectrum of Drug Development fields including drug 
 formulation and product design, process chemistry, chemical engineering and 
 analytical research and development. This chapter provides a high‐level overview of 
 pharmaceutical solid‐state landscape and introduces a field of computational 
 modeling in Drug Development, hereinafter called computational pharmaceutical 
solid‐state chemistry (CPSSC).

1.2 PHARMACEUTICAL SOLID‐STATE LANDSCAPE

1.2.1 Some Definitions

Approximately 70% of the drug products marketed worldwide are formulated in oral 
solid dosage forms [4]. The pharmaceutical solid state may be characterized by 
molecular arrangement displaying long‐range order in all directions (crystalline), 
long‐range order in one or two directions (liquid crystals), or only close‐range 
order (amorphous). An overall pharmaceutical solid‐state landscape is presented in 
Figure 1.2. The advantage of formulation of drug substances in crystalline form is 

Molecule Solid Particle

Drug development
Drug discovery

FIgURE 1.1 Physical transformation of a drug substance along the pharmaceutical industry 
workflow.
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dictated by more desirable manufacturing properties: superior stability, purity, and 
manufacturability relative to amorphous and liquid form formulations. All solid 
drugs can be subclassified as single‐ (anhydrous) and multicomponent compounds. 
Multicomponent substances can be crystalline solvates (including solid hydrates) 
[5, 6], cocrystals (or co-crystals) [7], and salts [8]. Solid solvates (also named pseu-
dopolymorphs or solvatomorphs) represent crystal structures in which solvent 
 molecules are integrated into the crystal lattice. Solid hydrates are the most common 
pharmaceutical pseudopolymorphs. Pharmaceutical cocrystals are defined as stoi-
chiometric multicomponent crystals formed by an API (or an intermediate compound) 
with at least one cocrystal former (coformer), which is solid at ambient temperature. 
Within the family of solvates, hydrates, and cocrystals, the components are neutral. 
Pharmaceutical salts are multicomponent materials in which components are ionized 
via proton transfer and are involved in ionic interactions with each other.

Different crystalline structures of one substance (single‐ or multicomponent) are 
named polymorphs [9, 10]. Polymorphism, which exists as a result of different 
crystal packing of rigid molecules, is called a packing polymorphism. Conformational 
polymorphism is a more common phenomenon for typically flexible drug‐like 
 molecules and results from crystallization of different conformers of the same 
 molecule. At a given environmental conditions (temperature, humidity, pressure, 
etc.) only one solid form is thermodynamically stable (lowest free energy), while all 
other forms are considered metastable.

The solid‐state complexity of a typical distribution of pharmaceutical solid forms 
was reflected in a recent analysis of 245 polymorph screens performed at Solid State 
Chemical Information (SSCI) (http://www.ssci‐inc.com) [11]. It was demonstrated 

Solid
form

3D long-range order Short-range order1-2D long-range order

Liquid crystal AmorphousCrystalline

Single component Multi component

Salt

Proton
transfer

CocrystalAPI single
crystal

Polymorphism is possible

Solvates/hydrates

FIgURE 1.2 A typical pharmaceutical solid‐state landscape.

http://www.ssci-inc.com
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that about 90% of the compounds screened exhibited multiple crystalline and 
 noncrystalline forms. About half of the compounds screened were polymorphic, 
and about a third of the compounds exist in hydrated and solvated forms. In cases 
where cocrystals were attempted for a particular API, 61% of these were able to 
form cocrystals.

1.2.2 Impact of Solid‐State Form on API and Product Properties

Variations of pharmaceutical solid form can result in alternations of physicochemical 
properties of drug product, which may affect drug performance, safety, and processing 
[12]. Therefore, solid form selection is strongly regulated by the Food and Drug 
Administration according to guidelines outlined in an International Conference on 
Harmonisation (ICH; http://www.ich.org) [13] as well as by other regulatory agencies 
around the world. Table 1.1 summarizes major properties that may be affected by 
crystal form change, a selection of these properties are discussed in more detail later.

Solubility and dissolution rate are the key properties of drug product, which are 
directly related to bioavailability and are often vital for the drug performance. These 
two properties display a strong dependence on the solid form selected. The largest 
difference in solubility is observed between crystalline and amorphous pharmaceu-
tical materials and may be as high as several hundred times [14, 15]. Solid crystalline 
hydrates are known to drop the solubility of the drug relative to its anhydrous form 
up to 10 times [16]. On the contrary, solid solvates formed from water‐miscible 
 solvents are typically more soluble in water than the corresponding nonsolvated 
form. Generally, dissolution rate is increased significantly in salt and cocrystal solid 
formulations predominantly due to favorable hydration free energies of counter ion 
and cocrystal former, respectively [17, 18]. Therefore, salt or cocrystal formulations 
are the most popular strategies for improving the solubility (dissolution) of poorly 
soluble drugs [19].

Thermodynamic solubility of a crystalline compound decreases with increased 
stability (lower free energy) of its polymorphic form. It has been reported that there 
is a 95% probability that a thermodynamic solubility ratio between a pair of poly-
morphs is less than twofold [20], although in certain cases it may reach much higher 
values. At first glance an impact of change of polymorphic form on the solubility and 
dissolution rate may seem to be less problematic in comparison with amorphous to 
crystalline or anhydrous to a solid hydrate form transformation. However, in cases 
where drug absorption is not limited by permeability (BCS classes I and II [21]), 
depending on the drug dose even 1.5‐ or 2‐fold decrease of solubility due to a switch 
to a more stable form may have a profound effect on bioavailability of the API (see 
Section 1.2.3 for discussion of polymorph impact on drug performance). In order to 
avoid an unexpected interconversion into a less soluble form (with generally differ-
ent solid‐state properties) during manufacturing or shelf life of the drug product, it is 
a common practice in pharmaceutical industry to perform a stable form screening 
prior to the selection of a commercial solid form.

Another key property of the drug product, which can be impacted by the solid 
form, is chemical stability [22]. Drug degradation in solid dosage forms is mostly 

http://www.ich.org
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determined by the surface characteristics of both the API and the excipient particles. 
Most pharmaceutical reaction rates are typically the greatest in the amorphous 
rather  than crystalline states due to a higher surface area and molecular mobility. 
Additionally, amorphous substances show a higher surface energy and may be 
more  hygroscopic, which may be coupled with chemical stability problems [23]. 
Therefore, an amorphous formulation is generally less preferable than the crystalline 
one. Chemical reactivity in the solid state may also correlate with the nature of the 
crystalline form (polymorphic or pseudopolymorphic) and related crystalline 
 morphology [24]. Generally, a stable solid form is more chemically stable than 
 metastable forms.

A change in the solid form may lead to a different crystal morphology, which may 
have an impact on processibility of the drug product due to the different mechanical 
and flow properties [25]. For example, needle‐shaped crystals are generally undesir-
able for pharmaceutical applications since they are difficult to process [26].

1.2.3 Challenges of Pharmaceutical Industry Related to Solid Form Selection

A likely dependence of drug performance, processing, and safety on the solid form 
selection imposes a series of challenges on the pharmaceutical industry. Here three 
challenges are outlined—solubility improvement, physical stability, and unfavorable 
solvates and hydrates.

An increasing trend toward low solubility is a major issue for Drug Development 
as the formulation of poorly soluble compounds can be quite problematic [27]. 
Aqueous thermodynamic solubility of solid pharmaceutical compound may be 
defined by two contributions—molecular hydration free energy and lattice (or subli-
mation) free energy [28]. Consequently, strategies to enhance solubility and drug 
delivery include molecular modification (lowering hydration free energy) or solid 
form optimization (crystal packing destabilization or/and lowering hydration free 
energy). It is only the latter strategy that is applicable at the Drug Development stage. 
Solid form optimization would typically include counter ion or coformer screening 
for salt or cocrystal formulation, respectively, of the API with improved dissolution 
properties. Additionally, amorphous API formulation could be possible via, for 
example, spray‐dried dispersion (SDD) technique [29].

Physical instability of pharmaceutical solids is related to interconversion into a 
new form in the course of handling, manufacturing, processing, or storage, which 
may have a profound effect on the drug performance and process development. The 
conversion from one form to another is thermodynamically driven and may take 
place when a solid form is metastable relative to a more stable form within specific 
environmental conditions. The most common cases of physical instability are 
 transformation into a stable polymorphic form, desolvation, hydration/dehydration, 
crystallization of amorphous form or amorphization of a crystalline one. A timeline 
of events involving physical stability over the past 30 years is presented in Figure 1.3 
[9]. In most of the cases, the products were recalled as a result of poor performance. 
Perhaps, the most famous example of polymorph‐induced impact is related to the 
marketed drug Norvir® (ritonavir). Abbott Laboratories had to stop sales of Norvir in 



1988 – Clinical failure of
Tegretol (carbamazepine)
tablets, possibly due to phase
conversion of anhydrate form
to dihydrate.

1990 1998 2006

1994

1998 – Product withdrawal of Norvir
(ritonavir) due to dissolution failure
of oral capsules as a result of the
appearance of a more thermody-
namically stable form.

2008 – Batch recall of Neupro
(transdermal rotigotine) patches
due to the crystallization of a new
polymorph that resembled
snowflake-like crystals.

2010 – Drug product recall of 60 million tablets of the blood pressure
medication Avalide, a combination of two anti-hypertensives,
hydrochlorothiazide and irbesartan. Concerns were over possible
variability in the amounts of the less soluble polymorph of irbesartan,
which may result in slower dissolution.

1986 2002 Present
(2010)

1999 – Open letter in the South African
Medical Journal asking that regulatory
or quality control authorities ensure
that analytical tests are performed to
confirm the intended polymorphic form
(Form C) of Vermox (anthelmintic
mebendazole) raw material and tablets.
Solid-state evidence revealed that
imported raw material contained an
inactive or less efficacious polymorph
(Form A) or mixtures of undesired solid
phases (Forms A and B).

2010 – Recall of 1.5 million tablets of the
popular blood thinner Coumadin (warfarin
sodium 2-propanol solvate), due to
concerns with variability in the 2-propanol
levels, which in turn might affect the 
crystallinity of warfarin sodium. Complete
loss of 2-propanol content would result in
amorphous formation.

FIgURE 1.3 A timeline of events concerning solid‐state issue with polymorphism of pharmaceutical drugs over past 
30 years. Adapted from Lee et al. [9]. Reproduced with permission of Annual Reviews.
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1998 due to a failure in a dissolution test, which was caused by the precipitation of a 
more stable and less soluble form II of the compound [30].

Some APIs may display a high propensity for forming stable solvates [31]. Though 
there are marketed drug products that contain solvates such as Prezista®, Crixivan®, 
and Coumadin®, formulation of a drug product in solvated form is typically undesir-
able. Solvates (including hydrates) might be subsequently desolvated in a final drying 
step of the formulation process. In such a situation, the final form could be meta-
stable and may undergo a solid–solid transition during its shelf life. In addition, 
residual solvent levels in the API must be compatible with ICH guidelines. As a 
result hydrates and solvates are generally avoided for the reasons mentioned earlier. 
Therefore, selection of the solvent system for crystallization, which has the lowest 
probability of forming solvates/hydrates with the API, is a good practice.

1.3 PHARMACEUTICAL COMPUTATIONAL  
SOLID‐STATE CHEMISTRY

Given the complexity of the pharmaceutical solid‐state landscape and challenges 
 facing the pharmaceutical industry, an accelerated Drug Development greatly benefits 
from guidance provided by computational methods. The emerging field of the CPSSC 
covers the whole spectrum of state‐of‐the‐art computational approaches, which are 
used to support all steps related to the development of solid‐state pharmaceuticals. 
An outline of these steps in Drug Discovery and Drug Development is presented in 
Figure 1.4. According to the provided broad definition of the field, the CPSSC covers 
more than just solid‐state calculations. In fact, the CPSSC represents a true multiscale 
modeling from quantum mechanical studies of molecules (subnanometer scale) to 
discrete or finite element modeling of solid particles (micron scale) (Fig. 1.5).

Typical CPSSC approaches may be broadly classified into two major categories—
those that are used to guide properties and process optimization (engineering) and 
those that are used for analysis and interpretation of the experimental results. The 
former category includes all kind of virtual screening approaches—solvent selection 
for crystallization and desolvation [34, 35], solvent selection for polymorph screening 

API crystallization

Drug discovery
Drug development

Drug candidate
crystallization

Polymorph screening

Counter ion or coformer
screening

Crystallization of RSMs
and intermediates

Impurity purge

Unit operations such as
drying, coating, and
fragmentation processes

Morphology and surface
energy engineering

Milling and particle size
distribution optimization

Physical and chemical
stability analysis

Solid state properties
analysis (solubility,
dissolution, etc)

Solid form selection Solid dose manufacturingProcess development

FIgURE 1.4 An outline of stages of solid form development in pharmaceutical industry. 
RSM is a regulatory starting material.



CONCLUSIONS 9

[31b, 36], solvent selection for impurity purge via recrystallization [37], cocrystal 
former and counterion selection for crystallization and solubility improvement [35, 38, 
39] as well as for improved relative humidity stability [40], virtual polymorph  screening 
via crystal structure prediction (CSP) to explore lattice energy landscape [41],  solvent 
selection for optimization of size and shape distribution of the crystalline product 
[25, 42], etc. In addition, physical (solubility [43], T

g
 [44], T

m
 [33], surface energy [45], 

etc.) and mechanical [46, 47] properties prediction of solid materials; prediction of 
excipient effect on API chemical degradation [48]; in silico modeling of drug–polymer 
interaction for amorphous pharmaceutical formulations [49]; and simulations of unit 
operations in solid dose manufacturing [50] can be also assigned to this category. The 
second category includes all methods used to support solid form selection via risk 
 analysis of physical stability of a commercial solid form [51], in silico prediction of 
pharmaceutical stress (forced) degradation pathways [52], prediction of structure and 
dynamics in pharmaceutical solids based on analytical methods alternative to single 
crystal diffraction (SSNMR [53] and PXRD [54]), analysis of source of poor solubility 
of the drug substance [28], etc. Approaches from the second category are typically used 
to provide recommendations for a potential experimental follow‐up.

As could be expected, challenges facing the pharmaceutical industry contribute to 
the advancement of the computational solid‐state chemistry. For example, some of 
the virtual screening and other CPSSC methods were developed specifically to help 
address issues of the pharmaceutical industry. Significant progress has been made 
recently in many traditional applications (e.g., solubility prediction [55], CSP [56], 
and morphology prediction [25, 57, 58]) in order to accommodate predictions for 
complex pharmaceutical systems (solid and liquid multicomponent phases of 
relatively large and flexible molecules).

1.4 CONCLUSIONS

A complex nature of the pharmaceutical solid‐state landscape imposes a series of 
challenges on the pharmaceutical industry. Computational modeling enables better 
understanding of the fundamentals of solid‐state chemistry and allows an enriched 
selection of solid form with desired physicochemical and processing properties.

1 Å

API molecule

QM, MM,
statistical QM, MM, MD, MC,

statistical
MM, MD, MC, statistical

DEM, FEM

Solid form — crystalline,
amorphous, liquid crystal

Drug product — Solid form
and excipients

Solid particles

1 μm
Length

FIgURE  1.5 Multiscale modeling in computational pharmaceutical solid‐state chemistry. 
Here DEM and FEM are discrete and finite element methods; MC, Monte Carlo simulation; MD, 
molecular dynamics; MM, molecular mechanics; QM, quantum mechanics, respectively; 
statistical approaches include knowledge‐based models based on database analysis (e.g., 
Cambridge Structure Database [32]) and quantitative structure property relationships (e.g., group 
contributions models [33a]).
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Though the CPSSC is an emerging field, many of the approaches have proved 
their importance for the industry and are already embedded in the workflows of 
 various pharmaceutical companies. Moreover, though it is currently impossible 
to build a reliable statistics regarding the use of CPSSC over the whole industry, it is 
known that some of the methods (like computational support of solid form selection) 
have already been successfully used to support New Drug Applications (NDAs) of 
some of the recently approved drugs.

A future outlook of the CPSSC field envisions a wide acceptance of CPSSC 
support of NDA submissions by all regulatory agencies. Moreover, it is feasible that 
in addition to guidance of the experimental work, future improvements of the CPSSC 
field once validated may lead to replacement of some of the experimental studies by 
accurate predictions.
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2.1 INTRODUCTION

The physical properties of a material depend on the nature and mutual arrangement 
of its constituents. In crystalline materials these constituents, usually molecules or 
ions, are arranged in essentially infinite, repeating three‐dimensional (3D) patterns 
determined by space group symmetry. However, these same constituents can often 
adopt multiple 3D patterns to form different crystal structures – the phenomenon of 
polymorphism [1]. Different polymorphic arrangements, despite being built from the 
same constituents, can lead to materials with very different physical properties. 
Polymorphs can therefore have different stabilities, solubilities, bioavailabilities 
and  storage characteristics, and any change in the crystalline form of an active 
 pharmaceutical ingredient (API) can seriously affect its efficacy as a drug. Hence, 
polymorphism is a crucial factor in drug delivery to patients, a process that relies 
substantially on the delivery of APIs in crystalline forms.

There are several well‐documented cases of the conversion of existing marketed 
drugs to previously unknown polymorphs, for example ritonavir [2] and rotigotine [3], 
with serious medical, social and financial consequences. It is therefore crucial for drug 
development scientists to understand, as far as possible, the solid form landscape, 
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that is the inherent form diversity, of each API to ensure robust and  reliable delivery of 
the medicine. The widely used experimental techniques for ameliorating the risk of 
late‐stage polymorphism are collectively termed ‘screening’, which comprise crystal
lisation experiments using a wide variety of solvents, physical conditions and crystal
lisation methods. However, it is impossible to guarantee that all polymorphs have been 
found and the scope of a screen is often limited by time constraints and budgetary 
considerations. This is a major issue in risk management for new pharmaceuticals as 
identified in Guideline Q9 of the International Conference on Harmonisation of 
Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) [4].

Computational assessment of the likelihoods of occurrence and the relative stabil
ities of polymorphs is not necessarily more effective than the experimental approach. 
Whilst great advances have been made in the field of ab initio crystal structure 
 prediction (CSP), as documented in five international blind tests spanning the years 
1999–2010 [5], it is still not routinely possible to predict whether a molecule is likely 
to be polymorphic or to confirm whether the most thermodynamically stable struc
ture has been found experimentally, especially for molecules of the complexity of a 
typical drug. It is possible to compute the polymorph landscape for a specific flexible 
molecule, but the calculations require considerable expertise, and the timescales and 
computing resources can render CSP impractical for application to even a limited 
portfolio of candidate APIs.

Another route for the inference and examination of polymorph landscapes 
involves analysis of existing crystal structures of compounds that are similar in 
some way to the API(s) under study. The structures of nearly 800,000 carbon‐ 
containing small molecules have been reported in the literature and numerical, 
chemical and bibliographic data for these structures have been collected, curated 
and organised by the Cambridge Crystallographic Data Centre (CCDC) to form the 
Cambridge Structural Database (CSD) [6]. Thus the CSD contains millions of 
 discrete pieces of information about intramolecular geometry and conformation as 
well as similarly extensive information on the intermolecular interactions of atoms 
and chemical functional groups. Software tools included in the CSD System (CSDS) 
(see Section 2.2) allow easy access to all data, particularly to distributions of geo
metrical parameters, both bonded and non‐bonded, and to the frequencies of occur
rence of a wide variety of functional group interactions. Research applications 
of the CSD have generated some 3000 publications since the late 1970s, and many 
of these applications are reviewed elsewhere [7]. The knowledge contained in the 
CSD has been used extensively in the pharmaceutical industry, most notably in the 
drug discovery arena. A series of papers by Stahl and co‐workers [8–10] elegantly 
highlight the utility of structural data in the design of drug molecules. More recently 
the CCDC has been investigating the use of structural knowledge in the later stages 
of the drug discovery and development process: when the solid form, not just the 
active ingredient, is under scrutiny.

By evaluating a structure in the context of existing knowledge in the CSD, it is 
relatively straightforward to identify both common and unusual structural features, 
for example an unusual conformation of a molecule, ring or functional group, a geo
metrically unusual hydrogen‐bonded interaction, or an unusual donor–acceptor 
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combination, which can be regarded as suggesting that alternative crystal forms 
where molecules aggregate without these compromises might possibly exist [11–13]. 
Comparative CSD analysis can give answers easily and quickly and can influence 
and advance the decision‐making process with respect to risk mitigation.

Another area of significant interest to the pharmaceutical and agrochemical indus
tries [14] is that of cocrystallisation of the active ingredient with an acceptable 
coformer. Cocrystals offer a route to access new solid forms and therefore new 
physical properties. This contrasts with polymorphism which, when observed, can be 
difficult to control and rarely represents an opportunity to significantly enhance 
physical properties. A study of drug solubility showed that the ratio of polymorph 
stabilities was typically less than two [15]. Cocrystallisation has shown promise in 
the tuning of a range of physical properties including dissolution rate, compress
ibility and physical stability.

From an academic point of view, a coformer could be any neutral organic mole
cule, so the number of potential coformers is vast. In the pharmaceutical industry, 
however, the list of potential coformers is likely to be restricted to those that are 
regarded as safe for human consumption (i.e. the Generally Regarded as Safe, or 
GRAS, list [16]) which, nevertheless, still encompasses hundreds of compounds. 
This number of potential coformers means that design is crucial as there will always 
be a limit of the number of cocrystallisations that can be attempted, whether that 
limit is based on material availability, time or cost. A method for reducing the list of 
coformers in silico to those most likely to cocrystallise is therefore valuable.

The CSD‐related scientific and software tools developed for polymorph risk 
 mitigation, and cocrystal design, are the central focus of this chapter. We begin 
with a brief summary of the CSDS, and then discuss: (i) the development and 
application of H‐bond propensity analysis, (ii) the study of H‐bond landscapes and 
(iii) informatics‐based cocrystal screening. In each case we provide case studies to 
exemplify the methodology. Ongoing development areas and new opportunities are 
noted in the section ‘Conclusions and Outlook’.

2.2 THE CSD SYSTEM

The CSD [6], at the time of writing, contains information on nearly 800,000 crystal 
structures and increases by around 50,000 structures annually. The database covers 
all published single‐crystal studies of organic and metal‐organic small molecules 
determined by X‐ray (single crystal and powder) and neutron diffraction. Several 
thousand otherwise unpublished structures are also included. All bibliographic, 2D 
chemical connectivity and 3D crystallographic data are checked and evaluated before 
inclusion. In the database (and in this chapter), structures are assigned a reference 
code of the form ABCDEFnn to identify the chemical compound and its publication 
history. The  CSD data itself forms part of the complete CSDS that additionally 
 comprises a range of standard software tools: (i) ConQuest [17], for searching all 
CSD information fields, performing 2D substructure and 3D geometry‐constrained 
searches; (ii) Mercury [17, 18], a comprehensive structure visualiser, with facilities 
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for visual and numerical analyses [19] of structural information at both the molecular 
and intermolecular levels; (iii) Mogul [20], a knowledge base of intramolecular 
geometry that contains greater than 20 million bond lengths, valence angles and 
 torsions organised into chemically searchable distributions, each relating to a specific 
chemical environment or ring; and (iv) IsoStar [21], a library of graphical and 
numerical information about non‐bonded interactions derived from the CSD and 
from protein‐ligand complexes in the Protein Data Bank (PDB) [22]. IsoStar  provides 
more than 25,000 interactive 3D scatterplots showing the distribution of one of 
48 contact groups, for example an H‐bond donor, around a central group, with the 
300 central groups covering a very wide range of chemical functionality. Data made 
available via the tools of the CSDS are fundamental to the scientific approaches 
referred to in the remainder of this chapter.

2.3 HYDROGEN‐BOND PROPENSITY: THEORY 
AND APPLICATIONS TO POLYMORPHISM

2.3.1 Methodology

The aim of this development is to take a simple 2D chemical formula as a target and 
then use CSD information relating to similar compounds as a knowledge base to 
 predict which, if any, of its potential donors and acceptors might form H‐bonds in 
putative crystal structures. The importance of such an answer is clear: H‐bonds are 
strong, reliable interactions which pervade organic structures, and studies have shown 
that H‐bonds between the best donor and acceptor pairs will normally be observed 
[23]. Crystals that display other interactions at the expense of the best donor–acceptor 
pair are unusual and should be distinguishable from expected, stable forms as, for 
example metastable polymorphs, cocrystals or solvates. Recent experience has shown 
that unforeseen new polymorphs, involving changes in H‐bonding with respect to 
existing formulations, can occur: ritonavir is a well‐known example [2], which proved 
to be hugely problematic and costly. This methodology uses a set of purely 1D and 2D 
QSAR‐like chemical descriptors and allows both novel and existing compounds to be 
assessed in a quantifiable manner based on their H‐bonding possibilities. By using 
closely similar compounds to the target, each analysis is bespoke for that target, 
providing a flexible and accurate depiction of H‐bonding which is simpler and easier 
to use and assimilate than computational tools or experimental screening.

The method [24] identifies donor (D) and acceptor (A) pairs, which are assigned 
a propensity to form an H‐bond in a structure, based on their respective chemical 
environments. This is modelled by a probability function and trained using knowledge 
of H‐bonds in related crystal structures. The model parameters enable the method to 
be truly predictive from the starting point of a chemical diagram. The procedure 
involves data set curation, model derivation and predictive assessment. Whilst it can 
be practical to curate sets of CSD structures for model training manually using 
 substructure searches via ConQuest (Section 2.2), an automated chemical similarity 
search was implemented as part of a wizard in Mercury [18] using bit‐screens based 
on chemical fingerprints, giving the user ease of control over the size of data set and 
definition of chemical groups. Full details of the probability model function are 
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available elsewhere [24]. Four kinds of attributes have been identified to capture 
influences on intermolecular H‐bonding: (1) a competition function, accounting for 
the presence or absence of other donors and acceptors; (2) a steric density function 
for both D and A groups, assessing steric hindrance and related to accessible surface; 
(3) functional group categories for both D and A groups, capturing chemical and 
electronic influences; and (4) an aromaticity function, quantifying potential disrup
tions of H‐bonding by donor to π‐density interactions [25].

Intramolecular H‐bonds are treated differently [26], due to their more universal 
nature across the entire set of compounds in the CSD, thus transcending 
the bespoke data sets used in the intermolecular case. Hence, for intramolecular 
H‐bonds, we have been able to create excellent predictive models for large propor
tions of the entire database, eliminating the need for user intervention in their 
application. The form of the model function involves (i) the size of the potential 
intramolecular ring; (ii) a text description of π‐electron delocalisation, for example 
S–U–S denotes a potential motif consisting of saturated–unsaturated–saturated 
bonds; (iii) a binary flag representing the presence of any flexible σ bonds; (iv) D 
and A chemical function types defined using SYBYL atom types [27]; and (v) the 
number of H‐bond donors. In the case of the commonly used organic ligand 
 salicylaldoxime (Fig. 2.1), the propensity for an intramolecular H‐bond between 
the ─OH donor and ═N─ acceptor has the high value of π = 0.92. The model indi
cates that a potential six‐membered ring mediated by an aromatic bond is a major 
factor. However, there is a small (0.08) probability of the interaction failing to 
form, an unlikely outcome that only occurs in the metastable (high pressure) crystal 
structure of salicylaldoxime (SALOXM09 [28]).

The H‐bond propensity methodology has been extensively tested and validated 
[24, 26]. First, the statistical nature of the method was used to analyse thoroughly the 
predictive ability and transferability of the approach to ‘real’ target compounds 
outside of the original training set. Second, we prepared test sets by dividing the CSD 
according to the age of structures. We were then able to compare predictions using a 
model based on ‘historical’ data and the complete current database. This process 
resulted in a loss in predictive ability compared with the training set of just 2–3%.

2.3.2 Case Study 1: Ritonavir

The appearance of a second polymorph of ritonavir (Norvir®) during production of a 
formulation based on the existing form I was a significant blow for Abbott 
Laboratories [2]. A hydrogen‐bond propensity analysis was carried out [29] based on 

OH

OH

N

FIGURE 2.1 Chemical diagram of salicylaldoxime. The phenolic OH and oxime‐N are in a 
favourable geometric arrangement for intramolecular H‐bond formation.
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the CSD as of January 2008 to see if it could have helped to avert this crisis. Crystal 
structures were retrieved that contained at least one of the six unique chemical envi
ronments that have the ability to form H‐bonds (Fig. 2.2). We applied filters to obtain 
reliable CSD training data: all 3D coordinates determined, R‐factor < 0.10, no ionic 
structures, no X‐ray powder studies, no metal atoms present, no unresolved errors 
from CSD evaluation, no crystallographic disorder and no polymeric bonds. 
Redeterminations were also excluded to avoid structural bias. The treatment of intra
molecular H‐bonds was not available for this study, so structures with these bonds 
were also removed. The final training data set consisted of 836 CSD structures. The 
sulphur atom on the thiazoyl moiety and the alkoxy oxygen of the carbamate 
(Fig. 2.2) were excluded as potential acceptors since very few such instances occur 
in the CSD. In the training data, an ‘other’ variable was assigned to any potential 
donor or acceptor not identified as a specific modelled group. ‘Aromatic nitrogen’ 
and ‘ether’ acceptors proved to be common in the structures surveyed (639 and 2854 
instances, respectively) and were also included as model variables.

Table 2.1 shows the set of potential donor–acceptor pairs and their corresponding 
H‐bond propensities, with the known H‐bonds in forms I and II compared with our 
predictions as an assessment of relative stability. The assertion is that the structure 
with the most viable H‐bonds is likely to be the more stable. The striking feature 
concerning form I is that, of its four H‐bonds, two are most unusual: the hydroxyl–
thiazoyl interaction is very unlikely with π = 0.114, and the ureido–ureido interaction 
also has a low propensity of π =0.224. Nevertheless, form I is an observed crystal 
structure and the remaining two H‐bonds with π > 0.5 seem to provide the structural 
stability that is needed. Our contention given this analysis is that prior knowledge of 
the structure of form I, for example during experimental solid form screening, would 
have directed effort to further searches for other polymorphic forms.

Such a post‐rationalisation was also carried out by scientists at Abbott Laboratories 
who were able to find a stable formulation of the new form II (after it proved almost 
impossible to reproduce form I). They were also able to understand the physical 
 differences between the polymorphs in a manual assessment of the relative nature of 
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FIGURE 2.2 Designation of chemical group types in ritonavir [29].
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the H‐bonding and overall packing between the two forms [2, 30]. The ritonavir saga 
raised warning flags in the pharmaceutical industry about the crucial nature of the 
solid form landscape, and in the ensuing 15 years many other compounds have shown 
similar trends and thus carry the same potential impact.

2.4 HYDROGEN‐BOND LANDSCAPES: DEVELOPING 
THE PROPENSITY APPROACH

2.4.1 Methodology

Thus far we have demonstrated the relationship of H‐bond propensity, optimal inter
molecular bonding and the likelihood of polymorphism. Combining propensities 
with models of how many H‐bonds may be formed by a given atom in a functional 
group (i.e. the H‐bond coordination environment) allows the in silico generation of 
all chemically reasonable structures. Comparing a given solid form to other possible 
structures in the resultant H‐bond landscape provides a powerful analysis of whether 

TABLE 2.1 Predicted Hydrogen‐Bond Propensities (π) for the Potential  
Donor–Acceptor Pairs of Ritonavir

Donor Group Acceptor Group π +/−a Form I Form II

Amide Carbamate 0.618 0.094 ✗ ✗

Amide Hydroxyl 0.551 0.052 ✗ ✓

Carbamate Carbamate 0.538 0.090 ✓ ✗

Hydroxyl Carbamate 0.537 0.090 ✗ ✗

Amide Amide 0.501 0.055 ✓ ✗

Amide Ureido 0.499 0.072 ✗ ✗

Carbamate Hydroxyl 0.470 0.078 ✗ ✗

Hydroxyl Hydroxyl 0.469 0.037 ✗ ✗

Carbamate Amide 0.420 0.083 ✗ ✓
Hydroxyl Amide 0.419 0.045 ✗ ✗

Carbamate Ureido 0.418 0.088 ✗ ✗

Hydroxyl Ureido 0.417 0.058 ✗ ✓
Ureido Carbamate 0.319 0.086 ✗ ✓
Ureido Hydroxyl 0.263 0.041 ✗ ✗

Ureido Amide 0.225 0.040 ✗ ✗

Ureido Ureido 0.224 0.044 ✓ ✗

Amide Thiazoyl a 0.152 0.054 ✗ ✗

Amide Thiazoyl b 0.142 0.050 ✗ ✗

Carbamate Thiazoyl a 0.115 0.044 ✗ ✗

Hydroxyl Thiazoyl a 0.114 0.039 ✓ ✗

Carbamate Thiazoyl b 0.107 0.041 ✗ ✗

Hydroxyl Thiazoyl b 0.106 0.036 ✗ ✗

Ureido Thiazoyl a 0.049 0.020 ✗ ✗

Ureido Thiazoyl b 0.046 0.018 ✗ ✗

a The error bars represent a 95% confidence interval following a χ2 distribution.
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a more stable form is possible or whether other competitive polymorphs might exist. 
The tool can also provide knowledge‐based prediction of cocrystals, hydrates and 
solvates. H‐bonds that are possible in a pure form can easily be compared with those 
involving other components (homo‐molecular vs. hetero‐molecular interactions) to 
reveal whether or not there is a preference for recognition between an active ingre
dient and a solvent, an excipient or a coformer.

Here, we determine an H‐bond coordination number, n [31], as the expected 
number of discrete H‐bonds that a given donor or acceptor atom might form. We 
then model the likelihood of occurrence of different n‐values for a range of different 
D or A atom types. H‐bond coordination depends on physical, chemical and 
topological influences affecting both the donor and acceptor capacity of an atom, 
and we have developed around 120 statistical models to describe H‐bond coordination 
based on CSD data for common chemical environments. Our approach classifies D 
and A atoms according to unique SYBYL atom types [27], using a subset of organic 
structures in the CSD that have at least one H‐bond donor (24,502 structures con
taining O, N or S connected to 1 or more H atoms, R factor < 0.05, no errors, no 
disorder, all atomic 3D coordinates determined, no powder structures). As a result, 
we can now answer what is the likelihood, p

c
, of a given H‐bond D or A atom (e.g. 

the C ═ O acceptor of a carboxylic acid) forming two H‐bonds [p
c
(n = 2) = 0.87], or 

no H‐bonds [p
c
(n = 0) = 0.02]. A different atom, for example O‐methoxy, has 

p
c
(n = 2) = 0.08, but p

c
(n = 0) = 0.67. Information at this level gives further powerful 

insight into structural stability by comparing the co‐ordination achieved in known 
structures with the co‐ordination predicted for its donors and acceptors. This type of 
analysis adds to the H‐bond propensity predictions since we are now able to assess 
which H‐bond pairings may or may not be mutually exclusive, that is how often can 
each donor or acceptor be ‘used’?

For a given compound, H‐bond propensity and coordination number predictions 
can be combined by creating a set of ‘structural hypotheses’ – a shorthand for the 
number of unique ways we allow the D and A atoms to be paired. Hypotheses are 
enumerated by iterating over donors and acceptors and pairing potential H‐bonds 
when p

c
(n) > p

min
, a threshold below which participation of that atom is no longer fea

sible. Once the unique pairings are generated, we are free to score them based on the 
overall propensity values and coordination likelihoods. In practice this is done by 
taking the mean propensity for the observed bonds on the x‐axis, and taking a mean 
p

c
 for the donors and acceptors according to the observed number of H‐bonds formed 

at each atom site. This value is then inverted such that we have a maximum at 0 and 
minimum at −1 for the y‐axis. This was an aesthetic decision such that our most 
likely pairings feature in the bottom right of the landscapes, in a bid to resemble the 
energy density plots of CSP calculations.

2.4.2 Case Study 2: Metastable versus Stable Form of Piroxicam

This study examines the compound piroxicam (Fig.  2.3), a non‐steroidal anti‐
inflammatory drug. Although there are relatively few donors and acceptors (2 and 5, 
respectively), a rather surprising number of H‐bond hypotheses can be generated.
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Polymorphic form II (BIYSEH06 [32]) exhibits only an intramolecular H‐bond, 
which places the structure to the left of the distribution of possible structures (Fig. 2.4, 
white circle). The abundance of data points towards the lower right‐hand side of 
Figure 2.4 indicates more likely proposed usage of the donors and acceptors, any one 
of which could represent an undiscovered form. An analogous result for a newly dis
covered crystalline form would indicate a metastable phase, and further screening 
should be employed. The structure of form I (BIYSEH03 [33]) is observed to have a 
different packing and H‐bond arrangement. Placing form I in the same landscape 
gives a contrasting picture (Fig. 2.4, dark grey square): the H‐bonding observed in 
this structure represents the best outcome in both propensity and coordination scores. 
Experimentally it is found that form I is the most stable [34].
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FIGURE 2.3 Chemical diagram of piroxicam.
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2.4.3 Case Study 3: Exploring the Likely Hydrogen‐Bond Landscape 
of Axitinib (Inlyta®)

The extensive polymorphism of axitinib (a tyrosine kinase inhibitor for the treatment 
of various types of cancer) has been thoroughly investigated experimentally [35, 36] 
and understood through structural analysis and state‐of‐the‐art solid‐state computa
tional modelling approaches [37]. It was found that differing modes of H‐bonding 
were a key feature of the polymorphs and their thermodynamic stability. A CSD‐
based structural informatics approach also has been used to build a polymorphic risk 
assessment for axitinib [37]. In Figure  2.5, we show the polymorph landscape 
 calculated for axitinib using the methods described in Section 2.4.1. Here the arrange
ments have been filtered to include only those that use individual coordination 
 likelihoods greater than 0.1. This simplifies the chart considerably leaving only the 
highly likely arrangements. Inspection of the chart reveals that one arrangement 
 represents the actual D/A pairings observed for the metastable form I (VUSDIX06 
[36]). This point at 0.41/−0.72 (black triangle in Fig. 2.5) is found in the central part 
of the chart and a further arrangement represented by the point 0.52/−0.73 (black circle 
in Fig. 2.5) would appear to be more likely. This point does represent the H‐bonding 
arrangement observed in three further polymorphs of axitinib, including the thermo
dynamically stable form, denoted as form XLI (VUSDIX04 [36]), further validating 
this approach to polymorph risk assessment.

2.5 INFORMATICS‐BASED COCRYSTAL SCREENING

2.5.1 Methodology

In 1990, Etter [23a] published a seminal paper on H‐bonding which included the 
 proposal that all good proton donors and acceptors are used in H‐bonding. A few years 
later, in 1995, Desiraju [38] introduced another crucial concept – that of the supramo
lecular synthon, which is a structural unit (involving intermolecular interactions) 
shown to be robust enough to be exchanged from one structure to another. Using these two 
key ideas, subsequent researchers such as Aakeröy [39] and Zaworotko [14a, b, 40] 
have established successful knowledge‐based cocrystal design strategies.

Building upon these design concepts, we have now developed a transferable two‐
step method for cocrystal screening based on molecular complementarity descriptors 
and H‐bond propensities, which takes into account additional factors that influence 
cocrystal formation. In the first step, molecular descriptors for the active ingredient 
and coformers are calculated. The complementarity descriptors capture the shape of 
the molecule through ratios of its extent – long (L), medium (M) and short (S) along 
the axes of its principal components, the dipole moment and the number of nitrogen 
(N) or oxygen (O) atoms as a fraction of the non‐hydrogen atoms in the molecule. 
For novel targets, the molecular conformation can be determined by analysing 
the  range of torsion angles for similar molecules in the CSD Mogul library [20] 
(see Section 2.2). Mogul knowledge has been successfully employed in this manner 
in a recent blind test of computational CSP methods [41]. Coformers with a descriptor 
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value significantly different from those of the active ingredient are judged to fail and 
are removed from the list of potential cocrystals. The cut‐off values and details of the 
descriptors can be found elsewhere [42].

The second step of the in silico screen is to calculate H‐bond propensities. For a given 
active ingredient (A) and a coformer (B), three sets of H‐bond propensity  calculations 
are performed: for A on its own, for B on its own and for the two‐ component A : B 
system. A multi‐component (MC) score can be calculated by  subtracting the  propensity 
value of the most likely pure form interaction (AA or BB propensity) from the equivalent 
value for cocrystal interactions (AB or BA propensity). A H‐bonding‐based drive 
towards cocrystal formation is indicated if the MC score is positive.

 MCscore AB propensity AA propensity BBpropensitymax max ,  

In both steps of the cocrystal screening method described earlier, coformers are 
treated individually allowing the effects of differences in, for example, substitution 
patterns to be considered in the analysis.

2.5.2 Case Study 4: Paracetamol

Here we apply the earlier two‐step screening approach to paracetamol and a list of 
35 screened coformers obtained from the literature [43], including 14 of which are 
reported experimentally to interact in the solid state. Table 2.2 shows the results of 
the application of the molecular descriptor methodology. The differences between 
the descriptors calculated for the active ingredient and the coformers are given, along 
with the judgement as to whether the coformer passed or failed the screening. Of the 
35 coformers, 10 fail the molecular descriptor screen and are removed. No coformer 
fails the screen on the basis of the dipole moment. Of the 25 coformers which pass, 
9 are found to form cocrystals experimentally.

The 25 molecules that passed step one then proceed to the second step of the 
 computational screen, the multi‐component H‐bond propensity analysis. The 
 methodology for generating H‐bond propensity values is as outlined in Section 2.3: 
in the same way, relevant CSD structures are gathered, only here; data sets are 
 prepared for model training for each unique AA, BB and AB system = 1 + 25 + 25 
 iterations; and H‐bond propensities are calculated in each case. The MC score for 
each AB pair is then determined (Table 2.3). Of the 25 coformers that passed the 
molecular descriptor test 21 are found to have an MC score ≥ 0. We observe the range 
of positive scores is fairly evenly spread between 0.22 (caffeine) and 0.00 (resor
cinol, theophylline). The most negative MC score is found for 3‐isochromanone 
(−0.4) where the most likely H‐bond is A─A, indicating the two oxygen acceptors of 
the coformer are much less likely to form H‐bonds with paracetamol.

If the results were used to design a screening experiment, a range of MC score 
cut‐off values could be considered depending on the amount of time and resources 
for screening. A starting point would be to choose the coformers that returned an 
MC score ≥ 0, which would identify 20 experiments. From the relevant literature 
[43], 9 of those 20 experiments would result in a cocrystal. By performing the infor
matics‐based screening outlined here we have reduced the number of experiments 
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performed by 43% (from 35 to 20) and retained 64% of the cocrystal hits (9 out 
of 14). Moreover, a set of screening experiments prioritised in line with the MC 
scores would return a cocrystal by the second experiment and six cocrystals in the 
first eight experiments.

TABLE 2.2 Calculated Differences between Molecular Descriptors for 
35 Experimentally Tested Coformers and Paracetamol

Compound

Decision to 
Proceed with 

Coformer
ΔM/L 
Ratio ΔS

ΔS/L 
Ratio

ΔDipole 
Moment 
(Debye) ΔFNO

1,2‐Bis‐4‐pyridyl‐ethane Yes 0.05 0.11 0.02 3.73 0.13
1,4‐Dioxane No 0.30 0.85 0.42 3.74 0.06
1‐Naphthol Yes 0.24 0.75 0.00 1.60 0.18
2,5‐Dihydroxy‐benzoic acid Yes 0.21 0.76 0.00 2.71 0.09
3‐Isochromanone Yes 0.18 0.80 0.15 0.15 0.09
3S‐Cis‐3,6‐dimethyl‐1, 

4‐dioane‐2,5‐dione
No 0.33 1.46 0.33 3.25 0.13

4,4‐Bipyridine Yes 0.05 0.76 0.03 3.74 0.11
4,4‐Trimethylene‐dipyridine Yes 0.10 0.02 0.07 2.32 0.14
Adipic acid Yes 0.13 0.00 0.00 3.72 0.13
Ascorbic acid Yes 0.14 1.21 0.21 0.10 0.23
Benzoic acid Yes 0.12 0.76 0.01 2.74 0.05
Caffeine Yes 0.28 0.16 0.08 2.73 0.16
Citric acid Yes 0.07 2.11 0.26 1.95 0.27
Fumaric acid Yes 0.01 0.76 0.01 1.10 0.23
Imidazole No 0.32 0.76 0.17 2.42 0.13
Isonicotinamide Yes 0.18 0.71 0.04 2.46 0.06
Maleic acid Yes 0.08 0.73 0.03 0.47 0.23
Malic acid Yes 0.05 0.71 0.16 0.45 0.28
Malonic acid No 0.09 0.01 0.17 2.04 0.30
Melamine No 0.31 0.76 0.02 3.73 0.39
Morpholine No 0.38 0.82 0.40 1.88 0.06
N,N‐dimethyl‐piperazine Yes 0.12 0.79 0.19 3.74 0.02
Nicotinamide Yes 0.12 0.75 0.01 1.30 0.06
N‐methyl‐morpholine No 0.28 0.80 0.31 1.59 0.01
Oxalic acid No 0.14 0.76 0.09 3.74 0.40
Phenazine Yes 0.04 0.74 0.06 3.70 0.13
Piperazine No 0.32 0.82 0.34 3.74 0.06
Pyrazine Yes 0.30 0.75 0.17 3.74 0.06
Resorcinol Yes 0.24 0.76 0.03 0.23 0.02
Saccharin No 0.32 1.45 0.27 1.60 0.06
Succinic acid Yes 0.02 0.03 0.08 2.66 0.23
Theobromine Yes 0.20 0.02 0.07 2.39 0.19
Theophylline Yes 0.26 0.11 0.06 3.02 0.12
1,4‐Di‐4‐pyridyl‐ethylene Yes 0.05 0.72 0.09 3.73 0.13
1,4‐Diaminocyclohexane Yes 0.14 1.09 0.22 2.70 0.02

A calculated difference in molecular descriptor which indicates a cocrystal is unlikely (falls outside of the 
allowed pass mark) is highlighted in bold and italics.
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By using only the difference between the maximum propensities for AA, AB or 
BB H‐bonds we are ignoring the fact that cocrystal networks can be formed of both 
homo (AA or BB) and AB interactions. This situation is found in the observed 
paracetamol: theophylline cocrystal, for example. By considering more than one  
H‐bonded interaction and looking at possible combinations of donors with acceptors 
the predictability of this informatics‐based screening tool may be improved.

TABLE 2.3 Multi‐component HBP Screening Results Summary for Paracetamol with 
Potential Coformer Molecules Ranked in Order of Their MC Score

Rank Coformer
MC 

Score
Statistical 

Uncertainty
Most Likely 
Interaction

Cocrystal 
Observed 

Experimentally
CSD 

Refcode

1 Caffeine 0.22 0.10 A : B No —
2 4,4‐Trimethylene‐

dipyridine
0.21 0.07 A : B Uncleara N/A

3 Pyrazine 0.21 0.09 A : B No —
4 1,2‐Bis‐4‐ 

pyridyl‐ethane
0.20 0.07 A : B Yes KETZAM

5 4,4‐Bipyridine 0.19 0.07 A : B Yes MUPQAP
6 1,4‐Di‐4‐ 

pyridyl‐ethylene
0.19 0.07 A : B Yes KETYUF

7 Phenazine 0.19 0.15 A : B Yes LUJSOZ
8 Citric acid 0.15 0.05 B : A Yes AMUBAM
9 Malic acid 0.12 0.04 B : A No —
10 Adipic acid 0.11 0.06 B : A No —
11 2,5‐Dihydroxy‐

benzoic acid
0.11 0.07 B : A No —

12 Benzoic acid 0.11 0.07 B : A No —
13 1,4‐Diamino

cyclohexane
0.10 0.08 B : A Yes WIGCEW

14 Theobromine 0.10 0.12 A : B No —
15 Succinic acid 0.09 0.06 B : A No —
16 Fumaric acid 0.09 0.07 B : A No —
17 Maleic acid 0.09 0.07 B : A No —
18 N,N‐dimethyl‐

piperazine
0.05 0.07 A : B Yes MUPPIW

19 Resorcinol 0.00 0.09 A : A No —
20 Theophylline 0.00 0.11 B : B Yes KIGLUI
21 Ascorbic acid −0.03 0.06 B : B No —
22 1‐Naphthol −0.07 0.09 A : A No —
23 Nicotinamide −0.11 0.04 B : B No —
24 Isonicotinamide −0.12 0.04 B : B No —
25 3‐Isochromanone −0.40 0.08 A : A No —

Each computed MC score also has an associated estimated uncertainty based on χ2 statistics resulting from 
model fitting. The size of the uncertainty is related to the amount of contributory data from the CSD.
a The cocrystallisation experiment produced a sticky substance unsuitable for PXRD analysis, rather than 
starting materials or a verifiable cocrystal [43c].
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2.5.3 Case Study 5: AMG 517 – Sorbic Acid Cocrystal

AMG 517 is a potent and selective VR1 antagonist developed for the treatment of 
acute and chronic pain by Amgen, Inc. [44] The AMG 517 free base was found to be 
insoluble in water and in buffers at physiological pH, significantly limiting the 
exposure in animal studies. In contrast, however, a sorbic acid cocrystal of AMG 517 
was found to provide increased solubility which dramatically improved exposure. 
Evaluation of the cocrystal form in rats revealed that a 30 mg/kg dose had a 
comparable AMG 517 exposure to a 500 mg/kg dose of the free base. Whilst this is 
an important example of how a cocrystal can provide enhanced physiochemical 
properties for a new chemical entity, the discovery of the AMG 517: sorbic acid 
cocrystal owed a great deal to serendipity – it was first crystallised from a formulated 
suspension of the free base in which sorbic acid was present simply as a preservative. 
Here we demonstrate how the methodologies described in Section 2.5.1 could have 
been used to rationally select sorbic acid as a highly suitable coformer for AMG 517, 
providing further validation of our general approach.

The molecular structures of AMG 517 and sorbic acid are shown in Figure 2.6, 
whilst the crystal packing arrangement in the 1 : 1 cocrystal (TEGFOC [44]) is 
 represented in Figure  2.7. Close packing is achieved through a degree of shape 
 complementarity between the AMG 517 and sorbic acid molecules, whilst the 
arrangement is further stabilised through a heterocyclic H‐bonded motif. Using CSD 
knowledge, these key aspects of the crystal structure are predictable and therefore 
provide an indicator that sorbic acid is a suitable coformer for AMG 517.

To generate the molecular complementarity descriptors, the representative 
 conformation of AMG 517 was selected by using the CSD Mogul library [20]. 
A  sufficiently feasible conformation was obtained as can be seen in an overlay of the 
Mogul‐derived and actual AMG 517 conformations from the cocrystal structure 
(Figure 2.8). Sorbic acid is a relatively rigid molecule and so its conformation was 
selected from the crystal structure of free sorbic acid (LEZHUT [45]).

The results of the molecular descriptor analysis listed in Table 2.4 indicate that 
AMG517 and sorbic acid do indeed have a molecular complementarity that would 
promote cocrystal formation. H‐bond propensity values calculated for the AMG 517 
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FIGURE 2.6 Schematic representation of AMG 517 and sorbic acid.
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FIGURE 2.7 The packing arrangement for the 1 : 1 AMG 517: sorbic acid cocrystal (TEGFOC 
[44]) viewed down the crystallographic a‐axis (figure prepared using Mercury [18]).

(a)

(b) (c)

(d) (e)

FIGURE 2.8 Conformation and IsoStar Full Interaction Maps of AMG 517. (a) Overlay of 
the AMG 517 molecule from the sorbic acid cocrystal with a likely conformation suggested by 
Mogul analysis (dark). Overlay RMSD = 0.392Å. (b) Contour maps for hydrogen‐bond donor 
(cyan) and acceptor (orange) probes, (c) maximum hot spots in the donor (cyan) and acceptor 
(orange) maps, (d) overlay of a sorbic acid molecule onto the contour maps and (e) overlay of 
a sorbic acid molecule onto the hot spots (figures prepared using Mercury [18]). (see insert for 
color representation of the figure.)
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sorbic acid system are presented in Table  2.5. They indicate that the interaction 
involving the AMG517 hetero‐amide and the acid moiety of sorbic acid is the most 
likely donor–acceptor pairing, providing a strong indication that cocrystal formation 
would be likely. This donor–acceptor pairing is indeed observed in the AMG 517: 
sorbic acid crystal structure, as shown in Figure 2.7.

The likely geometry of intermolecular interactions and their combination into 
supramolecular synthons [37] can also be studied using a method built on IsoStar 
data called Full Interaction Map (FIM) analysis [46]. The FIM tool breaks down the 
molecule into a set of central groups, assembles a set of IsoStar interaction maps for 

TABLE 2.4 Molecular Complementarity Descriptors for AMG 517 and Sorbic Acid

ML Axis 
Ratio

S Axis 
(/Å)

SL Axis 
Ratio

Dipole 
Moment 
(Debye)

Fraction of 
Nitrogen 

and Oxygen

Sorbic acid 0.50 4.17 0.38 1.03 0.25
AMG 517 0.66 6.46 0.35 1.65 0.20
Abs(AMG 

517‐sorbic acid)
0.16 2.29 0.03 0.62 0.05

Pass criterion <0.31 <3.23 <0.275 <5.94 <0.294
Decision to proceed 

with coformer
Yes Yes Yes Yes Yes

TABLE 2.5 Hydrogen‐Bond Propensities for the AMG 
517 Sorbic Acid (SA) System

Donor Acceptor Propensity

N4 (AMG) O3 (SA) 0.69
N4 (AMG) N2 (AMG) 0.52
N4 (AMG) N1 (AMG) 0.50
O4 (SA) O3 (SA) 0.47
N4 (AMG) O2 (AMG) 0.41
N4 (AMG) N3 (AMG) 0.31
O4 (SA) N2 (AMG) 0.29
O4 (SA) N1 (AMG) 0.28
O4 (SA) O2 (AMG) 0.21
N4 (AMG) O4 (SA) 0.20
O4 (SA) N3 (AMG) 0.15
O4 (SA) O4 (SA) 0.09
N4 (AMG) O1 (AMG) 0.01
N4 (AMG) S1 (AMG) 0.01
O4 (SA) O1 (AMG) 0.00
O4 (SA) S1 (AMG) 0.00

The observed donor–acceptor pairings for hydrogen bonding are 
highlighted in bold (see Fig. 2.6 for atomic numbering scheme).
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selected donor/acceptor/hydrophobic probes around each central group and then 
combines these to give the likely full 3D interaction environment around the  molecule 
[46]. From such maps we can start to understand how a coformer may satisfy the 
requirements of the interaction map of an API and thus identify the supramolecular 
synthons that might drive cocrystal formation. Such maps are shown in Figure 2.8 
for AMG 517. Here we identify the ‘hot spots’ in the H‐bond donor and acceptor 
maps as the most likely positions for such functional groups and notice that a 
carboxylic acid group, as found in sorbic acid, is able to satisfy this geometry partic
ularly convincingly and is thus a good coformer candidate.

2.6 CONCLUSIONS AND OUTLOOK

Solid form development in the pharmaceutical industry, where candidates are taken 
from discovery and turned into drug products, is a process which takes many years 
[47a] and costs significant sums of money [47b]. Traditionally, the solid form that is 
chosen for scale‐up and commercialisation is established through experimental 
methods such as crystallisations at different conditions and competitive slurrying. 
Introducing new technologies to aid decision making around risk assessment and 
form selection is one approach to expedite the progress of drugs through the  discovery 
and development pipelines.

Informatics‐based software tools offer a unique strategy to complement the 
 currently available solid form development technologies, benefitting from the founda
tions of high‐quality, relevant structural data gathered by the community over more 
than 40 years. It has been illustrated here how solid form informatics can be applied 
to aid both polymorph risk assessment and multi‐component form design. The tools 
are designed to be straightforward to use and are based on chemico‐structural 
knowledge rather than high‐level computational/theoretical techniques. As such the 
tools are potentially much more amenable for routine use by ‘bench‐top’ solid form 
scientists on the short timescales most relevant to their working practices. Naturally 
this allows the feedback of complementary information from the informatics into 
decision‐making processes.

Continued scientific and technical focus in the areas of solid form control, risk 
assessment and design is the remit of CCDC’s Crystal Form Consortium (CFC), 
established in 2008, complementing CCDC’s successful membership in the Pfizer 
Institute for Pharmaceutical Materials Science (PIPMS), which began operations in 
2002. There is much scope for further development. Salts are ubiquitous in drug 
products but choosing the correct counter‐ion for an API is generally done through 
experimental screening with little design. Charged species have proven to be a greater 
challenge for computational methods, such as CSP, so building on knowledge of the 
CSD’s thousands of salt structures [48] is being investigated. Similarly, assessment 
of the stability of hydrates [49] and prediction of the likelihood of a hydrated form 
[49] are two areas well‐suited to knowledge‐based methods, and current work is to 
look into how the tools might be generalised for the assessment of common organic 
solvates [50]. An informatics‐led prediction of the geometric placement of solvents, 
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coformers or counter‐ions upon inclusion into the crystal lattice [51] is of relevance 
for salts, hydrates, solvates and cocrystals.

We have shown here that great progress has been made in the past decade towards 
harnessing crystallographic knowledge for solid form risk assessment and design. 
There is still, however, much that can further be done to form a holistic picture of 
solid form assessment. We anticipate, as has been proven, that relevant, accurate and 
accessible data will be a vital resource.
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3.1 INTRODUCTION

According to recent IUPAC recommendations [1] hydrogen bond (H‐bond) is defined 
as “an attractive interaction between a hydrogen atom from a molecule or a molec-
ular fragment X─H in which X is more electronegative than H and an atom or a 
group of atoms in the same or a different molecule, in which there is evidence of 
bond formation.” A typical H‐bond may be depicted as X─H⋯Y, where X─H 
 designates an H‐bond donor (HBD) group, while Y is an H‐bond acceptor (HBA) 
atom. This very general definition covers a wide diversity of H‐bonds from a very 
strong, having a partially covalent character, to a weak, having energies slightly 
exceeding van der Waals interactions [2, 3]. Overall H‐bonding is considered to be 
one of the strongest and most specific (directional) nonbonding attractive intermo-
lecular  interaction and is responsible for most recognition phenomena in biological 
systems [4]. An importance of the H‐bonding was early recognized by Pauling, who 
proposed that the secondary structure of proteins is determined by H‐bonding 
 between  backbone amino acid residues [5]. Pharmaceutical small molecules typi-
cally contain a certain number of donors and acceptors [6] and therefore readily 
form  H‐bonding interactions between themselves and with surrounding media. 
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Consequently, H‐bonding impacts a wide range of properties critical to drug design 
and development, including potency [7, 8], selectivity [7, 9, 10], solubility [6, 11], 
partitioning [12], solid form crystallization [13], and physical stability [14, 15]. 
Therefore, the proper quantification of H‐bond energies is of crucial importance for 
the understanding and prediction of properties of pharmaceutical systems.

H‐bonding analysis for assessment of physical stability of pharmaceutical solid 
forms is the central focus of this chapter. Among other reported cases [16], the impor-
tance of thermodynamically stable form selection in the pharmaceutical industry can 
be illustrated by well‐known examples of polymorph‐induced impacts on marketed 
drugs Norvir® (ritonavir) and Neupro® (rotigotine patches). In the former case, 
Abbott Laboratories had to stop sales of Norvir in 1998 due to a failure in a dissolu-
tion test, which was caused by the precipitation of a more stable and less soluble 
form II of ritonavir [17, 18]. In the latter example, undesirable crystallization of a 
previously unknown stable form of rotigotine was found in the patches that were 
used to administer the drug. This newly discovered more stable form of rotigotine 
caused UCB to suspend the marketing of this drug in the United States [19].

A simplified classification of polymorph stability based on selected dominant 
interaction analyses has become a common practice. As an example, a good poly-
morph stability ranking of the systems, which are dominated by nonspecific van der 
Waals interactions, can be provided by the crystal density rule [20]. According to this 
rule a polymorph with a higher density is assumed to be more stable at 0 K than 
the other polymorph(s) with a lower density. However, pharmaceutical small mole-
cules typically display H‐bonding interactions in the solid forms. Since these are one 
of the strongest and the most specific intermolecular interactions, it is H‐bonding, 
rather than van der Waals interactions, that plays a dominant role in both the 
crystallization kinetics [13] and thermodynamic stability of pharmaceutical solids 
[21]. As a result of the H‐bonding contribution, pharmaceutical systems are known 
to violate the density rule. This inconsistency was recognized by Cambridge 
Crystallographic Data Centre (CCDC) scientists who developed a statistical 
knowledge‐based approach for analyses of organic crystal stability [14, 15] based on 
statistical analysis of H‐bonds in the Cambridge Structural Database (CSD) [22, 23]. 
Based on this analysis, a structure that adopts the strongest (highest propensity) 
H‐bond(s) displays a low likelihood of the existence of a more stable form. In con-
trast, the presence of only weak(er) (low(er) propensity) H‐bonds indicates a high risk 
of existence of a more stable form and that an additional study is likely to be required.

The results of knowledge‐based calculations may depend on the availability of 
crystallographic observations for certain H‐bonding functional groups in the CSD 
database. That is why, in order to obtain better statistics for model fitting, some 
functional groups are often presented in a generalized form, resulting in a loss of a 
specific nature of the H‐bonding centers in the molecule of interest. This issue may 
be resolved by an independent theoretical approach, which would treat all H‐bonding 
features explicitly to allow a good ranking of H‐bonding propensities and would 
complement risk assessment of a likelihood of a missed stable form [24].

An outline of the chapter is as follows. A brief overview of available experimental 
scales of the H‐bonding strength ranking will be discussed in Section 3.2. This will 
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be followed by discussion of different theoretical approaches, which were developed 
to accurately reproduce experimental observations, as well as of results of high‐level 
theoretical calculations (Section 3.3). Finally, applications of theoretical H‐bonding 
analysis to pharmaceutical solid form selection will be presented in Section 3.4.

3.2 EXPERIMENTAL SCALES OF H‐BONDING  
BASICITY AND ACIDITY

3.2.1 In Solution Phase

From experimental and theoretical points of view, the quantification of H‐bonding 
energy strength is not straightforward since individual interaction between HBD 
and HBA groups defining H‐bond cannot be uniquely separated from all other con-
tributions to the total intermolecular interaction energy. Instead, it is a common 
 practice to describe the H‐bonding strength by the free energy GHB

0  and equilibrium 
constant K

HB
 of the following complexation reaction, which involves only nonbonding 

interactions:

 XH Y XH Y

 (3.1)

 G KHB HBRT0 ln  (3.2)

This approximation is more valid for simpler 1 : 1 donor–acceptor complexes with 
single H‐bonding centers per molecule, especially for the cases where H‐bonding 
interaction is more pronounced relative to contribution of all non‐H‐bonding groups 
of the interacting molecules.

Historically, Taft [25–27] and Arnett [28] pioneered application of thermody-
namic data for building hydrogen‐bond basicity and affinity scales. The work toward 
the same objective was later continued by groups of Abraham [29, 30], Laurence [31, 
32], and Raevsky [33]. In order to determine donor (acidity) and acceptor (basicity) 
strength scales, Abraham et al. used linear free‐energy relationships (LFERs)  between 
experimentally available equilibrium constants for 1 : 1 donor–acceptor complexes in 
an inert solvent system CCl

4
 [30, 34, 35]. The equilibrium constants for a set of 

89 acids against 45 given reference bases allowed Abraham et al. to construct H‐bond 
acidity scales, logKA

H and 2
H [34, 36]. In a similar way, logK constants for a set of 

215 bases against 34 reference acid probes led to the construction of H‐bond 
basicity scales, log KB

H and 2
H [30, 35]. The 2

H and 2
H scales conveniently range 

from 0  to 1 and are related to logKA
H and log KB

H scales, respectively, by a simple 
linear transformation:

 
2 2

1 1

4 636
H H A

H
B
Hlog log .

.

K K
 (3.3)

The overall solute H‐bond acidity and basicity scales, as properties of the whole 
molecule with multiple H‐bonding centers, were denoted as A = ∑ 2

H and B = ∑ 2
H, 

respectively [37, 38].
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More recently, Laurence et al. reported the development of the pK
BHX

 H‐bond 
basicity scale based on a set of 1338 experimental values related to 1164 HBAs [32]. 
This approach uses the H‐bonding free energies determined in CCl

4
 for a large 

number of chemically diverse H‐bond acceptor molecules using 4‐fluorophenol as 
the reference donor. The pK

BHX
 scale has a meaning similar to the log KB

H H‐bond 
basicity scale.

The aforementioned acidity (HBD strength) and basicity (HBA strength) 
 experimental scales were derived from the solution state, and their transferability to 
a scale of the H‐bonding interactions in organic crystals is typically assumed though 
should be proven. These experimental solution–based scales were useful for testing 
theoretical approaches for an accurate description and ranking of the H‐bonding 
interaction energies. Some examples of such predictions will be discussed in 
Section 3.3.

3.2.2 In Solid‐State Phase

A pharmaceutical molecule in a crystalline phase is necessarily involved in multiple 
simultaneous interactions with the surrounding molecules. As a result, the energy of 
H‐bonds in the solid state cannot be directly measured [39]. The most relevant 
information about the geometry and propensity of H‐bonding in pharmaceutical solids 
relies on experimentally observed (X‐ray or neutron diffraction) crystal structures, 
which involve organic molecules with both HBA and HBD functional groups. From a 
large number of structures in the CSD database (nearly 700,000), it is possible to per-
form statistical surveys of H‐bonded geometries and build H‐bonding propensity 
(ranking) models [40].

A probabilistic approach to analyses of organic crystal stability was recently 
developed [14] based on statistical analysis of H‐bonds in the CSD crystallographic 
database. This knowledge‐based method analyzes potential H‐bonding functional 
groups of a molecule to make predictions on statistically likely pairwise H‐bonding 
interactions in the stable crystalline form. Model construction is carried out via 
logistic regression with a linear description of variable parameters to best reproduce 
all true and false H‐bonding observations in the selected training set. The fitted  
H‐bonding propensity (LHP) model is applied to compute a probability measure 
(propensity) for the formation of H‐bond between a specified donor and acceptor 
atom of a molecule. The knowledge‐based H‐bond propensity models were used for 
testing theoretical approaches discussed in Sections 3.3 and 3.4.

3.3 THEORETICAL STUDY OF H‐BONDING STRENGTH IN 
SOLUTION AND IN SOLID STATE

The availability of the experimental H‐bonding scales enabled the optimization and 
selection of different theoretical approaches for an optimal H‐bond strength descrip-
tion. Here we briefly cover the most important approaches in the application to  
H‐bonding in gas phase or solution, as well as in solid state.
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3.3.1 Supermolecular Approach

For quantitative description of H‐bond interactions in solution or in gas phase, it is a 
common practice to define the H‐bond energy by intermolecular interaction energy. 
In the supermolecular approach, H‐bonding energies are described by the free 
energy ∆G

HB
 of the complexation reaction (3.1), which is estimated according to the 

 following equation:

 G G G GHB AD A D ZPE BSSE (3.4)

Here ΔG
HB

 is the total interaction free energy of two molecules in solution, ∆G
AD

 is 
the free energy of the geometry optimized H‐bonded dimer, and ∆G

A
 and ∆G

D
 

are  the  free energies of the geometry optimized individual H‐bond acceptor and 
donor  molecules, respectively. Zero‐point energy (ZPE) correction summarizes the 
electronic ground‐state energies of nucleus’ vibration at an absolute zero tempera-
ture. Basis set superposition error (BSSE) correction tends to remove an error intro-
duced by an effectively larger basis set of each molecule in the complex relative to 
that in the unbound state [41]. An entropic contribution to the ΔG

HB
 in Equation 3.4 

is typically introduced by the ZPE correction only, as well as by solvation energy 
terms in case the calculations are performed in a solution state.

Though in quantum chemical calculations unconstrained geometry relaxation of 
the individual HBD and HBA molecules, as well as ZPE and BSEE corrections, is 
thought to be needed, it was demonstrated that all or some of these contributions may 
be neglected providing a similar or even better correlation with the experimental 
results [42–45]. Overall, there are many reports of supermolecular calculations that 
were able to predict the experimental H‐bond strength in solution or gas phase with 
a reasonable accuracy. For example, in a recent study Rahaman et al. [44] demon-
strated that the regression analysis suggested by Abraham et al. for constructing the 
HBD ( 2

H) and HBA ( 2
H) strength scales from experimental data can be applied to 

derive analogous H‐bond donor and acceptor strength scales using gas phase 
energies  from supermolecular calculations at MP2/6‐31++G(d,p) level of theory. 
The  accuracy of the method in predicting Abraham’s 2

H and 2
H parameters was 

quite good, displaying root mean squared deviations (RMSDs) of only 0.0693 and 
0.0677, respectively.

In summary, the supermolecular approach provides a reasonable good accuracy of 
H‐bond strength prediction and could be used together with the experimental scales 
as a benchmark for descriptor‐based predictions discussed in the following section.

3.3.2 Descriptor‐Based Approaches

Despite of successes of the supermolecular approach in the H‐bond strength predic-
tion, it has the following limitations. The approach is quite expensive and for realistic 
pharmaceutical systems it would require sampling of different binding conformations 
of the supermolecular complex. Therefore, simplified cheaper approaches, which are 
based on a correlation of certain molecular descriptor or descriptors combination with 
the experimental (or supermolecular derived) H‐bonding strength, are attractive.
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Historically, multiple theoretical descriptor–based approaches to H‐bond strength 
ranking were proposed. That includes approaches based on group contribution 
method [46], electrostatic potentials [47], electrophilic superdelocalizability and 
self‐atom polarizability [48], Quantum Theory of Atoms In Molecules (QTAIM) 
descriptors [49–51], the two‐center shared electron number σ and the product of 
 ionization potential [45, 52], and local quantum mechanical molecular parameters, 
which quantify electrostatic, polarizability, and charge transfer contributions to  
H‐bonding [53, 54].

An alternative approach [24, 55, 56] of H‐bonding ranking is based on COSMO‐
RS fluid thermodynamics theory [57]. Abramov [24, 58] performed a study of the 
correlation of two independent schemes of atomic charge calculations (polarization 
σ H‐bonding (σ

HB
) charges and electrostatic potential (ESP) fitted charges, Q

esp
) with 

Abraham’s experimental H‐bonding scales 2
H and 2

H, and with some available 
results from theoretical supermolecular calculations [59]. The COSMO‐RS σ

HB
 

charges are based on the acceptor or donor atomic polarization charge density in the 
infinite dielectric above or below, respectively, a threshold value. These are surface 
charges that directly reflect both polarization and surface accessibility effects. Q

esp
 

are partial atomic point charges, which are fitted to better reproduce the molecular 
electrostatic potential at the molecular surface [60]. The ESP‐type charges are 
popular in force field development to better describe electrostatic intermolecular 
interactions [61].

It was demonstrated that a nice ranking of H‐bonding interaction energies may be 
performed by a product of the σ

HB
 charges of the interacting donor and acceptor 

atoms [24]. As an example, correlations of theoretical H‐bond interaction energies 
[59] between substituted phenols and neutral or ionic probes with phenolic hydroxyl 
donor and acceptor charges are presented in Figure 3.1. The best correlations were 
found between the σ

HB
 charges of the acceptor and donor and the interaction energies 

of substituted phenols with the ionic probes (Fig. 3.1c and d), for which H‐bonding 
contributions are expected to be the highest. At the same time the Q

esp
 atomic charges 

provided a relatively poor ranking of all considered intermolecular interactions 
(Fig. 3.1a and b). Klamt et al. reported a systematic study, which demonstrates a very 
good correlation of 2465 DFT/COSMO H‐bond energies derived from the supermo-
lecular calculations with a product of polarization σ charge densities of donor and 
acceptor atoms [55] (Fig. 3.2). The fitted relationship yielded a root mean square 
deviation (RMSD) of only 0.36 kcal/mol. These results provided an excellent 
 justification of the applicability of COSMO‐RS fluid thermodynamics theory for  
H‐bonding propensity ranking.

3.3.3 Solid‐State H‐bonding Strength

In general, both supermolecular and descriptor‐based approaches, discussed earlier, 
could be applied to the study of H‐bonding strength in a crystalline solid state. An 
advantage of the latter approaches is that they typically do not require actual crystal 
structure information to rank propensities of the H‐bonding interactions in the solid 
state. This consideration makes descriptor‐based approaches the most appropriate for 
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FIGURE  3.1 Correlations of theoretical H‐bonding interaction energies [59] between 
 substituted phenols and neutral or ionic probes with the charges of the H‐bonding centers on 
phenolic hydroxyl (O acceptor and (O)H donor). Energies are presented relative to the unsub-
stituted system. ESP charges are used to describe interactions of substituted phenols with 
protonated methylamine and acetate anion probes in (a) and (b), respectively. H‐bonding inter-
actions of substituted phenols with methanol (▴) and protonated methylamine (•) donor 
probes are ranked by σ

HB
 acceptor charges in (c). H‐bonding interactions of substituted  phenols 

with formaldehyde (▴) and acetate anion (•) acceptor probes are described by σ
HB

 donor 
charges in (d). ESP and σ

HB
 charges were calculated at PBE/DNP and PBE/DNP/COSMO 

levels of theory, respectively. Source: Adapted from Abramov [24]. Reproduced with permis-
sion of American Chemical Society.
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risk assessment of the existence of an unknown more stable form of a pharmaceutical 
compound. Two of the descriptor‐based approaches (COSMO‐RS σ

HB
 and QTAIM) 

will be considered in more detail in this section.
In order to validate the applicability of the COSMO‐RS approach to H‐bond strength 

ranking in molecular crystals, Abramov calculated σ
HB

 charges for 86 organic molecules 
from the CSD database. It is expected from general consideration as well as from the 
knowledge‐based approach findings [14, 15] that one should observe a high probability 
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of pairing of the strongest HBDs and HBAs, assuming that majority of these crystals 
correspond to the stable forms. H‐bonding energy between the strongest acceptor (the 
most positive σ

HB
 charge) and strongest donor (the most negative σ

HB
 charge of donating 

H) centers of interacting molecules in each crystal was represented by a product of the 
corresponding σ

HB
 charges. The lower the value of the product of these charges, 

the higher the H‐bonding energy. It was found that the overall probability of paring of 
the strongest donor and acceptor is quite high exceeding 70% (Fig. 3.3). Moreover, the 
probability of the strongest HBD and HBA paring dramatically increases with the 
increase of the strength of the H‐bonding interaction (Fig. 3.3). Therefore, it was dem-
onstrated that σ

HB
 charge analysis is a valid tool for H‐bonding propensity evaluation in 

molecular crystals, and it could be used for analysis of a likelihood of a missing stable 
form as a complementing approach to knowledge‐based analysis, crystal structure 
 prediction (CSP), and other computational techniques (Section 3.4) [24].

Perhaps, the most popular descriptor‐based approaches to estimate H‐bonding 
energies in crystals are based on QTAIM theory [62, 63]. Within this theory, a 
bonding interaction is defined by a maximum electron density path (bond path) 
connecting two interacting atoms. A saddle point in the charge density along the 
bond path is called a bond critical point (BCP). The existence of BCP between the 
acceptor atom and the donating hydrogen, as well as the charge density properties at 
this point, defines the major criteria of the H‐bond existence [64]. It was demon-
strated [49, 65] that H‐bonding energy is proportional to multiple properties at the 
BCP, including electronic potential energy density, V

b
 [65]; electronic kinetic energy 
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FIGURE 3.2 Scatter plot of the DFT/COSMO H‐bonding energy versus the predicted HB 
energy based on a product of donor and acceptor polarization charge densities. Source: 
Adapted from Klamt et al. [55]. Reproduced with permission of Royal Society of Chemistry. 
(see insert for color representation of the figure.)
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density, G
b
 [49]; and electron density, ρ

b
 [49, 51]. Espinosa et al. [65] suggested 

to estimate the energy of weak and moderate H‐bonding interactions in molecular 
crystals displaying A═H⋯O bonds (A═O,N,C) as follows (in a.u.):

 E VHB b0 5.  (3.5)

Here E
HB

 is a dissociation energy of the H‐bonded complex, defined as the 
enthalpy difference between the monomers and the complex.

Mata et al. [49] have recently proposed a relationship between H‐bonding 
energy and electronic kinetic energy density at the BCP based on gas phase studies 
of of FH…FR (R = H, Li, Al,Cl, CCH) complexes (in a.u.):

 E GHB b0 429.  (3.6)

In the same study, a relationship between E
HB

 and charge density at the BCP was 
defined as (in a.u.) [49]:

 EHB b0 163.  (3.7)

Verner et al. [66] performed periodic boundary conditions predictions at 
B3LYP/6‐311G** level of theory for 18 molecular crystals containing 28 intermo-
lecular O─H⋯O H‐bonds to test accuracy and applicability of the proposed linear 
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relationships between E
HB

 and V
b
 and G

b
. The authors concluded that relationship 

(3.5) is applicable only for weak and moderate H‐bonds (E
HB

 < 45 kJ/mol) overesti-
mating the energies by approximately 20%. At the same time an alternative relation-
ship (3.6) is applicable even for strong H‐bonds (E

HB
 < 85 kJ/mol) overestimating the 

E
HB

 values only by approximately 10%.
These two linear relationships between E

HB
 and V

b
 and G

b
 appear to be quite 

simple (BSSE‐free) and useful approximations, which enable the evaluation of the 
H‐bonding energy in solid state using theoretical [66] or experimental (derived from 
X‐ray or synchrotron diffraction experiment [67, 68]) energy densities. In the latter 
case the electronic kinetic energy density distribution, G

b
, is derived from the follow-

ing accurate approximation for closed‐shell interactions (like H‐bond is) in terms of 
experimental electron density, ρ, and its Laplacian 2  at the BCP (in a.u.) [69]:

 
Gb

3

10
3

1

6
2 2 3 5 3 2/ /  (3.8)

Using Equation 3.7 and the local form of the virial theorem [62] (in a.u.),

 
2

1

4
2G V ,  (3.9)

the electronic potential energy density (V
b
) can be also estimated at intermolecular 

BCPs as follows [62, 65] (in a.u.):

 
V Gb b

1

4
22  (3.10)

However, while QTAIM‐based approaches (3.5) and (3.6) allow H‐bonding 
strength ranking in molecular crystals, they require actual H‐bonding geometry 
information to perform the predictions. Therefore, the drawback of these descriptor‐
based methods is that they cannot be directly used for the assessment of the likelihood 
of an unknown missed stable form.

3.4 APPLICATION TO SOLID FORM SELECTION

The H‐bonding propensity analysis is one of the major computational approaches 
that are used to complement experimental polymorph screening by facilitating the 
assessment of the likelihood of a missed stable form [24]. The polymorphic stability 
classification by the model is based on the rationale of best donor/best acceptor 
 pairing and the corresponding hierarchy of observed and absent H‐bonds in a 
particular case. Based on this approach, a structure that adopts the highest propensity 
H‐bond(s) reflects a low likelihood of a missed stable form. In contrast, the lack of 
strongest donor and acceptor pairing indicates a high likelihood of a different stable 
form and an additional polymorph screening is likely to be required.
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While many of the earlier discussed computational methods could be potentially 
used for the H‐bonding propensity prediction, currently only the σ

HB
 charge analysis 

was systematically applied to support pharmaceutical solid form selection [24, 70]. 
Several examples of application of H‐bonding propensity analysis to support solid 
form selection are considered later, including three pharmaceutical cases—axitinib, 
crizotinib, and ritonavir. All σ

HB
 charges were calculated by COSMOtherm software 

(Eckert, F.; Klamt, A. COSMOtherm, version C3.0, release 01.12; COSMOlogic 
GmbH & Co. KG: Leverkusen, Germany, 2012) using polarization surface charge 
densities predicted at the PBE/DNP/COSMO level of theory [71, 72].

3.4.1 Examples of Theoretical H‐Bonding Analysis to Support  
Solid Form Selection

Axitinib. Axitinib (Inlyta®) is an oncology drug that inhibits vascular endothelial 
growth factor (VEGF). Axitinib has been observed to form five anhydrous conforma-
tional polymorphs and numerous solvates [70]. An application of H‐bonding 
 propensity analysis based on σ

HB
 charges to support the solid form selection of 

axitinib was reported by Chekal et al. [70a] and Campeta et al. [70b]. The resulting 
σ

HB
 charges are presented in Figure 3.4a. According to these results, the strongest 

donor–acceptor pair for this molecule should be the pyrazole amine–amide oxygen 
H‐bond. This result is in excellent agreement with the predictions based on the 
knowledge‐based model described earlier [24]. In fact, pyrazole amine–amide 
oxygen H‐bond was observed in all known axitinib crystal structures, including 
stable form XLI. Therefore, in case of axitinib the σ

HB
 charges analysis by itself does 

not allow the stability ranking of the five known anhydrous forms. This example 
 outlines a limitation of H‐bonding propensity analysis, which is addressed in more 
detail in Section 3.4.2.

Ritonavir. Ritonavir (Norvir®) is an antiretroviral drug from the protease inhibitor 
class used to treat HIV infection and AIDS. σ

HB
 charges of ritonavir, presented in 

Figure 3.4b, suggest that the strongest H‐bonding pairing should take place between 
the ureido acceptor and hydroxyl donor, followed by the amide acceptor and carba-
mate donor. These favorable H‐bonds are absent in the metastable form I, while they 
do take place in the stable form II. Therefore, a retrospective σ

HB
 analysis properly 

indicates the high risk of form I selection as a commercial solid form of ritonavir. 
It  should be noted that H‐bonding propensity ranking based on this analysis dis-
agrees with the results of the reported knowledge‐based model [15] though both 
approaches indicate a high likelihood of form I as a metastable form.

Crizotinib. Crizotinib (Xalcory®) is an ALK/C‐MET receptor mediator developed 
for the treatment of ALK‐positive non‐small‐cell lung cancer. The anhydrous free 
base form A is the only crystalline form found after extensive polymorph and 
hydrate screening. H‐bonding propensity analyses described later was performed to 
complement the experimental polymorph screening to ensure that no alternative 
stable anhydrous form was missed [24]. The σ

HB
 charges for crizotinib are presented 

in Figure 3.4c. The strongest donor is the primary amine and the strongest acceptors 
are piperidine and pyridine nitrogens. Strong H‐bonding interactions between these 

C:/wiki/HIV
C:/wiki/AIDS


FIGURE 3.4 Examples of theoretical H‐bonding propensity analysis for axitinib (a), ritonavir 
(b), crizotinib (c), and ROY (d). The σ

HB
 charges were calculated at the BP/TZVP/COSMO 

level of theory. Charges of only up to three pairs of the strongest donors and acceptors are 
presented for clarity. Source: Adapted from Abramov [24]. Reproduced with permission of 
American Chemical Society.
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acceptors and the primary amine were indeed observed in crystal structure of form A. 
In addition, weak H‐bonds are formed between the ether acceptor and primary and 
secondary amine donors. The pyrazole ring was not predicted to be a strong acceptor 
and is not involved in H‐bonding in form A. The top‐ranked H‐bonding interactions 
predicted by the σ

HB
 analysis are in a good overall agreement with the knowledge‐

based predictions [24]. In result, the H‐bonding propensity analysis demonstrates 
that the strongest H‐bonding interactions are satisfied in form A of crizotinib, sup-
porting a low likelihood of finding a more stable polymorph.

ROY. 5‐Methyl‐2‐[(2‐nitrophenyl)amino]‐3‐thiophenecarbonitrile (ROY) is per-
haps the most famous nonpharmaceutical example of multiple polymorphs, existing 
at ambient temperature [73, 74]. The σ

HB
 charge analysis (Fig. 3.4d) demonstrates 

that cyano nitrogen is the strongest acceptor in the molecule, which has a preference 
of intermolecular H‐bonding interaction with the amino donor in the stable form of 
ROY. This analysis is supported by experimental observation that the most stable 
yellow polymorph (Y) is indeed stabilized by such a H‐bond in contrast to metastable 
YN, ON, OP, and R forms [74].

3.4.2 Consideration of Limitations of Hydrogen‐Bonding 
Propensity Approach

There are several important limitations in stability ranking based on H‐bonding 
 propensity analysis, in addition to the fact that H‐bonding is not the only contribution 
to the stability of drug‐like crystals. Generally, the models based on the propensity of 
the H‐bonding interaction cannot account for the enantiotropic relationship between 
the polymorphic forms at ambient temperature [24]. In addition, an inherent  limitation 
of the H‐bonding propensity models is the inability to estimate the stability ranking 
of the polymorphs displaying similar H‐bonding patterns in the solid state. There are 
several known examples of the drug‐like molecules, which preserve at least the 
 strongest H‐bonds for two or more polymorphic forms. Among them are five anhy-
drous forms of axitinib [70], rotigotine forms I and II [75], paracetamol forms I and 
II [76, 77], nimodipine forms I and II [78, 79], and four anhydrous forms of carbam-
azepine [80].

One of the possible ways to address this issue is to combine a CSP study and H‐
bonding propensity analysis. For example, the final selection of three predicted struc-
tures of compound XX in the fifth blind test was performed based on both the lowest 
lattice energy and knowledge‐based approach considerations [81]. Alternatively, the 
results of the initial crystal packing generation, which do not allow the preferred 
strongest H‐bonding interactions, could be filtered out from a following higher level 
CSP analysis. In that case, the final polymorph ranking will be based on lattice energy 
minimization results while fully satisfying H‐bonding propensity expectations.

In an attempt to overcome the earlier limitation, it was also suggested to take an 
extra step beyond H‐bonding propensity analysis and focus on the estimation of the 
relative strength of crystallographically observed intermolecular H‐bonds in differ-
ent polymorphic forms of drug‐like molecules [82]. For that, a prediction of the most 
stable form may be performed based on the relative strength of the strongest  
H‐bonding interaction, as measured by QTAIM descriptors at the corresponding 
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BCP (Eqs. 3.5–3.7). For example, linear relationships between ΔH
fus

 data and V
b
, G

b
, 

and ρ
b
 properties of the H‐bond between the pyrazole amine and amide oxygen were 

found for four axitinib polymorphs (Fig.  3.5). The found relationships describe 
 reasonably well the actual rank order of the experimental stabilities of the anhydrous 

FIGURE  3.5 Correlation between heats of fusion of axitinib polymorphs and relative 
strength of the corresponding H‐bonding interactions between pyrazole amine and amide 
oxygen, as measured by the QTAIM descriptors V

b
 (a), G

b
 (b), and ρ

b
 (c). Source: Adapted 

from Abramov [82]. Reproduced with permission of American Chemical Society.
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forms at ambient temperature, XLI > XXV ≥ VI > IV > I [70b]. This observation 
reflects the dominant contribution of the strongest H‐bonds to relative stabilities of 
the related polymorphs. The proposed QTAIM descriptor‐based approach may help 
predicting the relative stabilities of drug polymorphs from experimentally observed 
or computationally generated crystal structures.

3.5 CONCLUSION

The selection of the commercial solid form is a key deliverable in the pharmaceutical 
industry. Changes in polymorphic form during pharmaceutical development can 
have a negative impact on a drug’s performance: solubility and bioavailability, 
chemical and physical stability, and mechanical properties. Therefore, it is generally 
desirable to identify the thermodynamically stable crystal form under normal manu-
facturing and storage conditions to ensure that the form does not change during the 
life cycle of the drug product. In practice, an experimental polymorph screening is 
performed to identify thermodynamically stable crystal form. In addition, different 
computational approaches are applied to complement and guide stable form screen-
ing in order to assess the likelihood of missing a stable form at early stages of drug 
development. These approaches cover H‐bonding propensity analysis, CSP, risk of 
conformational polymorphism, and rational solvent selection for stable form screen-
ing [24]. In order to mitigate limitations of each of these approaches, it is recom-
mended to perform a general computational support of solid form selection based on 
a combination of all of these tools [24].
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This chapter reviewed only H‐bond propensity analysis approaches to complement 
polymorph screening by facilitating the risk assessment of a missed more stable 
form. A focus was given to different theoretical approaches of H‐bonding ranking, 
which were developed to accurately reproduce experimental observations as well as 
high‐level theoretical calculations. Successful applications of COSMO‐RS and 
QTAIM‐based methods to support the pharmaceutical solid form selection were 
demonstrated.

Despite the great progress that has been made in the H‐bonding propensity 
 analysis field, there is still further development that can be undertaken to locate the 
best approaches and to better understand limitations of their applicability.
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4.1 INTRODUCTION

An important part of pharmaceutical development is predicting possible polymorphs 
that can arise when a compound or mixture of compounds are exposed to different 
conditions (time, temperature, humidity, solvents, etc.). The ability to formulate 
drugs in a solid crystal form is highly desirable in the pharmaceutical industry due to 
the ease of administering pills, the knowledgebase around small‐molecule crystal 
forms, and the associated infrastructure in the pharmaceutical industry. The crystal 
forms that can be adopted by a compound are intimately related to their energetically 
accessible three‐dimensional (3D) conformations. The crystal packing, even for a 
single conformation, can take on a single form or multiple forms based on the regular 
geometric arrangements of the molecules. When a single conformation of molecule 
exists in multiple crystal forms, it is referred to as packing polymorphism. When 
different conformations of a molecule take on different crystal forms, which is a 
commonly observed phenomenon for molecules with conformational flexibility, it 
is referred to as conformational polymorphism. As such, the ability to accurately 
predict 3D conformations of small molecules is critical to polymorph prediction and 
computational crystal structure prediction (CSP) in general.



58 IMPROVING FORCE FIELD PARAMETERS FOR SMALL‐MOLECULE

Polymorphism is ubiquitous across different sizes and atomic compositions of 
the chemical entities involved—compounds that exist in multiple crystal forms 
have been observed in all crystalline materials, including small molecules, proteins, 
polymers, minerals, and metals. Polymorphism is related to allotropy, which refers to 
different crystal forms of the same element, such as carbon having the ability to exist 
in multiple forms (diamond, graphite, graphene, and fullerenes). As such, allotropy 
is polymorphism of elements (atoms), whereas polymorphism more generally refers 
to any solid material existing in different crystalline forms. In this chapter, we primarily 
focus on conformations of small molecules of the size of typical drug‐like molecules 
(molecular weight < 500 Da) with the aim of accurately predicting conformations, 
which could then be used as inputs for polymorph prediction programs.

The study of polymorphism in some areas of materials science using computational 
techniques is commonplace [1]; however, the computational prediction of polymorphs 
is less common in the pharmaceutical industry, even though polymorphism of pharma-
ceutical compounds is a common phenomenon [2]. In fact, polymorphism can impact 
the performance of a drug in terms of solubility, bioavailability [3–5], stability [6, 7], 
and mechanical properties [8]. The limited application of CSP in drug discovery and 
development perhaps is a consequence of the difficulty of the problem. Indeed, CSP for 
a rigid molecule can be challenging; drug‐like molecules typically have six to eight 
rotatable bonds and many energetically accessible conformations, which adds 
significant complexity to the CSP search problem. While advances have been made, 
the accuracy of CSP programs is not at the level where broad‐scale application in the 
pharmaceutical industry would be expected. Nonetheless, significant progress in CSP 
has been made in recent years, especially when computational and experimental 
approaches are combined [9–11].

Experimental polymorph screening in the pharmaceutical field is typically per-
formed to identify the most thermodynamically stable crystal form under normal 
manufacturing and storage conditions to ensure that this form does not change during 
the life cycle of the drug product, as changes can affect the properties of the admin-
istered drug. However, in many cases polymorphs can be kinetically trapped, leading 
to metastable polymorphs that can transform over long time periods to more stable 
polymorphs. Computational approaches to CSP offer promise in this respect since an 
accurate method with sufficient sampling of barriers should be able to explore all 
thermodynamically stable states. While the need for accurate CSP methods is clearly 
present, the application of computational CSP methods in the pharmaceutical 
industry is still fairly uncommon. Perhaps one of the reasons that computational CSP 
is less common in pharmaceutical research is because drug molecules tend to be 
flexible, having many intramolecular degrees of freedom (six to eight rotatable bonds 
in typical drug‐like small molecules), as compared with the relatively more rigid 
molecules in some other materials science fields (dyes, semiconductors, light‐emitting 
materials, etc.). Indeed, there is a need for more accurate generation of small‐molecule 
conformations that can be used for CSP in pharmaceutical development.

The accurate generation of small‐molecule conformations is an important part of 
computational CSP. In order to predict a correct polymorph structure, one must be 
able to generate an accurate conformation of the small molecule, either prior to the 
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sampling of the crystalline packing environment or concurrently. Accurate CSP 
requires the correct conformation of the small molecule and the associated lattice 
packing of the molecules within the crystal. In addition to generating an accurate 
conformation, which could theoretically be done with exhaustive enumeration of all 
states, the energy must be assessed to determine the energetically accessible states at 
standard temperatures and pressures. While one could assess the energetics of a large 
number of conformational states using quantum mechanics (QM), treating all rea-
sonable conformations (typically in the thousands, or more, for drug‐like molecules) 
with QM is currently impractical with the computational resources available to most 
pharmaceutical labs.

Given the requirement for both speed and accuracy in conformation generation, 
physics‐based molecular mechanics force fields for small molecules [12–16], which 
are parameterized to reproduce the underlying QM at a fraction of the computational 
costs, tend to be employed. In addition, experimental data from the Cambridge 
Structural Database (CSD) [17, 18] offers an excellent data source to study small‐
molecule conformations and molecular interactions, both for force field parameter-
ization and method validation. In this chapter, we use physics‐based molecular 
mechanics force fields to generate low‐energy conformations, independent of the 
crystal packing environment, and compare the geometries to the conformation found 
in the CSD. We also use QM as a reference to assess the accuracy that one could hope 
to attain by studying molecules in the absence of the crystal packing. In this chapter 
we specifically study molecular interactions that are notoriously challenging for 
force fields (namely, close S⋯O and X⋯O interactions, where X is a halogen) and 
show that more accurate conformations can often be attained with improved force 
field parameterization.

There are many areas in the pharmaceutical industry where conformation 
generation is used, and in general, the required accuracy for a small‐molecule 
conformation depends on the area of application. For example, in molecular dock-
ing, a root mean squared deviation (RMSD) of 1.0–2.0 Å to the crystallographic 
conformation is typically considered to be “accurate” since such a conformation 
usually reproduces the important characteristics of the protein–ligand crystal struc-
ture (hydrogen bonds, nonpolar contacts, etc.). However, for small‐molecule CSP 
more accurate conformations are usually needed, due to the tight packing in the 
solid state and the need to predict the entire environment of the system (in protein–
ligand complexes the protein generally provides a semirigid constraint to limit the 
possible conformations and orientations of the small molecule). A conformation 
with an RMSD to the crystal structure of 0.50 Å might be good enough to generate 
an accurate polymorph in some cases, although a lower RMSD (perhaps even 
below 0.25 Å) is usually preferred. Figure 4.1 shows examples of RMSDs between 
crystal structures and computationally generated conformations. As can be seen, 
with conformations above 0.50 Å there can be significant differences in key rotameric 
states and atomic positions, which would make the accurate reproduction of a 
crystal structure unlikely.

There are several reasons that the high level of accuracy for CSP is not needed in 
docking. First, in docking the receptor provides a relatively rigid scaffold into which 



60 IMPROVING FORCE FIELD PARAMETERS FOR SMALL‐MOLECULE

the compound is docked. While some flexibility of the receptor may take place upon 
ligand binding [19–22], which could accommodate conformational variations in the 
small‐molecule binder, in many cases the receptor can in fact be treaded rigidly 
[23–25], thereby greatly reducing the conformational search space. Even when there 
are flexible residues in the receptor, many of the key binding motifs are more rigid, 
thereby constraining the system and simplifying the problem. In addition, many 
binding sites are at least partially solvent exposed, giving more space for a rigid con-
formation of the small molecule to adjust to the binding site even if the conformation 
is not perfect. The need to simultaneously search the molecule conformations and 
intermolecular packing of the molecule within the crystal cell makes CSP a challenging 
problem with significant room for further improvement.

0.25 Å

0.50 Å

1.00 Å

2.00 Å

3.00 Å

FIGURE 4.1 Example of different conformation accuracy levels, as measured by root mean 
squared deviation (RMSD). This example shows computationally generated conformations 
of axitinib (light gray) at various levels of dissimilarity to one particular crystallographic 
structure (dark gray).
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The importance of small‐molecule polymorphism in the pharmaceutical industry 
can be illustrated by two known examples of polymorph‐induced impacts on marketed 
drugs—Norvir (ritonavir) and Neuro (rotigotine patches). In the first case, Abbott 
Laboratories had to stop sales of Norvir in 1998 due to a failure in a dissolution test, 
which was caused by the precipitation of a more stable form II of the compound [26, 
27]. In the second example, undesirable crystalline material of rotigotine was found 
in the manufactured patches that were used to administer the drug. These crystals 
formed as a result of a previously unknown stable polymorph of the drug substance, 
thereby leading UCB to suspend the marketing of this drug in the United States [28]. 
The financial implications of compounds having problems with polymorphism late 
in the development phase can be enormous, further emphasizing the importance of 
accurately being able to predict polymorphs.

Computational CSP is beginning to show promise as a useful approach to 
complement experimental polymorph screening as well as being able to assess the 
risk of discovering a more stable form [29–33]. However, the currently available 
CSP methods rely heavily on accurate input conformations for the molecules of 
interest, which are typically held rigid during the initial crystal packing generation. 
As mentioned earlier, in drug discovery applications such as molecular docking or 
pharmacophore modeling, a conformation with heavy‐atom RMSD of 1.0–2.0 Å 
to the bioactive conformation is generally considered to be acceptable; for 
polymorph prediction the accuracy requirements tend to be much more sensitive 
to the input conformation, with good predictions typically requiring input confor-
mations within 0.25–0.50 Å of the crystallographic conformation. This highlights 
why proper selection of the starting molecular conformations for CSP is of great 
importance [30, 34–36].

Here, we study two specific interactions that are typically treated poorly with 
force fields and describe how the force field representation of these molecules can 
be improved, thereby leading to better prediction of the low‐energy conformations. 
First, we study close sulfur–oxygen (S⋯O) nonbonded contacts (distance less than 
the sum of their van der Waals (vdW) radii), and we develop modified parameters 
for the OPLS_2005 force field to treat this specific interaction better in order to 
generate conformations close to those found in CSD structures [37]. Next, we briefly 
study intramolecular halogen–oxygen (X⋯O) interactions, which are generally not 
treated well by force fields and show that improvements can be realized with a 
similar approach to that taken with the close S⋯O contacts, although the improve-
ments are not as pronounced. The general approach outlined in this chapter, which 
involves characterization of the interaction of interest and fitting to QM calcula-
tions, can be readily extended to other cases. We conclude with a brief description 
of the protocols employed in this work and highlight a new OPLS force field, 
OPLS2, which shows significant advantage over other small‐molecule force fields 
without the need for refitting. In summary, using physics‐based force fields rather 
than QM to assess the energetics of small‐molecule conformations can be sufficient 
to capture important conformational energetics, but customization may be required, 
especially in the case of more exotic interactions. Accurate treatment of small‐
molecule conformations and energetics is an important part of solid‐state chemistry 
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in the pharmaceutical sciences, and the approaches presented in this chapter should 
provide a basis for improvements in this area.

4.2 METHODS

In this chapter, we study small‐molecule conformations and energetics using different 
levels of theory (molecular mechanics force field, semiempirical, and QM) to repro-
duce conformations found in the CSD. While our eventual goal is to predict the 
actual crystal form, here we focus on the conformation of the small molecule, with 
only one example to show the use of an accurate conformation to be used in the 
prediction of the solid form. We study two particular interaction types that tend to be 
poorly reproduced with standard force fields: close intramolecular S⋯O interactions 
and halogen X⋯O interactions; however, the methods presented here are generalizable 
to other interactions. We study two heavily used small‐molecule force fields, the 
MMFFs variant of MMFF [38, 39] and the OPLS_2005 version of OPLS [16, 40], 
and demonstrate how modifications to the latter can improve the generation of struc-
tures with low RMSD relative to small‐molecule crystal structures.

The OPLS force field has a standard functional form, with bond and angle geometries 
treated using a harmonic potential and torsions treated with a sinusoidal potential. 
Nonbonded interactions are treated with a 6–12 Lennard‐Jones potential for the van 
der Waals (vdW) energy and Coulomb’s law for the electrostatics with fixed atomic 
point charges. There are no special terms for hydrogen bonds, as they can generally 
be modeled by the electrostatics. The functional form of the OPLS force field is sim-
ilar to that in other small‐molecule force fields, such as CHARMM [41] and Amber 
[42]. The MMFFs [43] force field was developed by Halgren at Merck and is based 
on the earlier MM3 [44] force field developed by Allinger. Bonds, angles, torsions, 
and electrostatics in MMFFs are treated similarly to OPLS. However, the vdW poten-
tial takes the form of a 6–9 potential, which has the effect of softening the repulsive 
interaction at short interatomic distances. We also study the semiempirical method 
PM3 [45, 46] and QM with the DFT [47, 48] level of theory and B3LYP‐MM hybrid 
functional, which has been shown to accurately account for dispersion interactions 
with minimal computational overhead compared with standard DFT functionals [49].

For the first part of the study (close S⋯O interactions), a total of 309 neutral 
organic molecules with the SCxC═O motif (where “x”’ is either nitrogen or carbon, 
and sulfur is divalent), and R‐factor below 0.1 were selected from the CSD database 
version 5.30 [17, 18]. From this set, 202 molecules displayed close S⋯O intramolec-
ular nonbonding contacts, defined as the S⋯O distance being shorter than the sum of 
S and O vdW radii (3.32 Å). Further filtering for a planar arrangement of S─C and 
C═O bonds (an absolute value of S─C─C─O pseudo‐torsion angle did not exceed 
20°), which was the motif of greatest interest to us in this study, resulted in a subset 
of 132 molecules. Finally, molecules with more than 30 heavy atoms (one case) or 
those containing two or more SCxC═O motifs (one case) were filtered out, resulting 
in a final count of 130 molecules. The Supporting Information of the original publi-
cation describing this work [37] contains a table with the 130 molecules and their 
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associated properties, such as S⋯O distance, SCxC═O angle, molecular weight, and 
formal charge.

To characterize the S⋯O interaction, we first performed gas phase minimiza-
tions of the crystal structure conformations using a single copy of each of the 130 
CSD molecules described earlier. For the halogen X⋯O data set, we identified 
molecules from the CSD database that contain a [F,Br,I,Cl]CxC═O motif with 
close 1–5 interaction between a halogen and oxygen atoms. A cutoff of 4 Å was used 
to define the contact, as it is slightly larger than the sum of the vdW for halogen–
oxygen atom types. This resulted in 223 molecules for the halogen X⋯O data set 
(58 F⋯O, 108 Cl⋯O, 27 Br⋯O, and 30 I⋯O).

For each data set, force field minimizations were performed with MacroModel 
[50, 51] using a maximum of 500 steps and the Polak‐Ribiere Conjugate Gradient 
(PRCG) method, which tends to perform well on small molecules and is the default 
in MacroModel for molecules with less than 500 atoms. Semiempirical minimiza-
tions were performed with the PM3 method [45, 46] available within Schrödinger 
Suite 2010. QM minimizations were performed using Jaguar (Schrödinger, Inc., 
Portland, OR) with the B3LYP‐MM/6‐31G** method and level of theory [49]. 
The B3LYP‐MM method has been parameterized on a large data set of CCSD(T) 
nonbonding interaction energies and has been shown to be an efficient and effective 
way to account for dispersion interactions.

A two‐step minimization scheme was used for both MM and QM geometry opti-
mizations. The first step allowed for minimization of hydrogen atoms with the heavy 
atoms restrained using a harmonic potential (50 kcal/(mol Å2)), which helps correct 
systematically shortened covalent bonds to hydrogens that have been observed in 
X‐ray diffraction analysis [52]. After the hydrogens are fully minimized to conver-
gence, a full all‐atom minimization was performed with all restraints removed. The 
initial step was found to be necessary in order to get reasonable initial hydrogen 
positions before the full molecule was allowed to relax and resulted in lower RMSD 
of the atomic coordinates to the initial crystal structure as compared to a full minimi-
zation without this step. The minimization process described earlier was performed 
to analyze the force field accuracy if a correct local minimum could be found.

Next, a conformational search was performed on each molecule using the force fields 
to determine the ability to predict accurate conformations. Conformational searches 
were performed with MacroModel using the Low‐Mode Conformational Search 
(LMCS) method in global search mode, and all conformations within 5.0 kcal/mol 
from lowest‐energy conformation were retained [53]. The LMCS method follows the 
low‐mode vector, but every 2 Å it applies a few steps of steepest descent minimization 
to relieve any strain due to distorted bond lengths and bond angles introduced by the 
move. LMCS is an efficient search method that has the advantage that ring structures 
and variable torsion angles do not have to be specified. LMCS works by exploring the 
low‐frequency eigenvectors of the system, which are expected to follow “soft” degrees 
of freedom, such as torsions.

To fit the torsional potential for the modified OPLS_2005 force field, we scanned 
the torsion of interest at 30° increments and used QM to compute the reference 
potential. QM geometry optimizations were run with the B3LYP/6‐31G** method 
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and basis set to obtain minimized geometries using the program Jaguar. Then, single‐
point energies were computed for each geometry at the localized MP2 (LMP2) level 
of theory with the cc‐pVTZ(‐f) basis set. Parameters for the torsion of interest were 
generated using internally developed nonlinear curve fitting code to minimize the 
energetic deviation from the quantum mechanical torsional potential. For the work 
here, a substructure of axitinib (without the ylethenyl‐indazol fragment) was used to 
parameterize the CA─CA─S─CA torsional potential, where “S” is a sulfur atom and 
“CA” is an SP2 aromatic carbon atom. The torsion parameter was fitted with a single 
Fourier coefficient (V2), which does not capture the local minima in each of the two 
peaks that appear on the QM potential energy surface. However, for this work our 
focus was on reproducing the location of the minima and the relative barrier heights 
as opposed to the subtleties around the peaks, since the relevant structures for confor-
mation generation in the context of CSPs will be relatively low in energy. The tor-
sional parameters added in this work are shown in Table 4.1.

To allow for closer S⋯O contact distances, we created a special pair potential for 
the vdW energy between a carbonyl oxygen and a divalent sulfur. Figure 4.2 shows 
the shape of multiple vdW curves with different sigma values, where sigma defines 
the point that the vdW potential becomes positive. Smaller sigma values that allow 
closer contacts are shifted to the left. We selected a value of r = 2.50 Å for the S⋯O 
vdW interaction because it is associated with a minimum interaction energy at an 
atomic separation of 2.72 Å, consistent with the median value of 2.72 ± 0.11 Å for the 
S⋯O distance of the molecules in this study. In order to not deteriorate the interac-
tion energy surface of sulfur or oxygen with other atoms (e.g., water molecules), the 
sigma value described earlier was only applied to S⋯O interactions that involved a 
carbonyl oxygen and a divalent sulfur. This ensures that parameters previously tuned 
to reproduce solvation free energies, condensed phase properties, and quantum 
mechanical potentials would be unaffected. The specific atom pair vdW potential 
was implemented within the MacroModel program using an approach similar to the 
NBFIX option available in CHARMM. This allows for explicit control over the vdW 
parameters for specific pairwise interactions without altering the form of the poten-
tial for these atoms interacting with other atoms. This is particularly important for 
the case of S⋯O interactions presented here, since these atoms are common in 
medicinally relevant molecules and we do not want to change the force field parameters 
for their interactions with anything else.

TABLE 4.1 CA─CA─S─CA Torsion Fitting Parameters for Axitinib

Force Field Torsion Definition V2 Term V4 Term

OPLS_2005 XX─CA─S─CA 0.5 0.5
OPLSS⋯O CA─CA─S─CA 1.84 0.0

The OPLS_2005 force field describes this torsion using a wildcard, denoted by 
“XX”. “CA” is an atom type for an SP2 aromatic carbon atom, originally described 
by Jorgensen and Severance [54]. “S” is for the sulfur. OPLS

S⋯O
 denotes the 

OPLS_2005 parameter set containing the new torsion type.
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To improve the Coulomb interactions, we attenuated the electrostatic energies 
using a distance‐dependent dielectric constant. Because sulfur and oxygen both have 
negative partial atomic charges in the fixed charge force field representations in 
MMFFs and OPLS_2005, there is a natural repulsion between them. While reversal 
of the charge sign on one atom would create an attractive force, it would be incon-
sistent with the quantum mechanical electrostatic potential profile for sulfur and 
oxygen. Therefore, attenuating the polar interactions using a distance‐dependent 
dielectric allowed for the sulfur and oxygen repulsion to be less unfavorable while 
maintaining their assigned partial atomic charges. Combining each of the aforemen-
tioned enhancements we produced a modified OPLS force field, termed OPLS

S⋯O
, 

which allows for more accurate conformations to be generated for small molecules 
with close S⋯O interactions without a priori knowledge of the crystal packing.
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FIGURE 4.2 Van der Waals (vdW) interaction energy profile between divalent sulfur and 
carbonyl oxygen atoms in kcal/mol. Using a Lennard‐Jones 6–12 potential, the vdW energy 
between atoms i and j in OPLS_2005 can be expressed in terms of the parameters σ

ij
 and ε

ij
. 

The total energy (Eab
vdW) is the sum over all pairwise nonbonded interactions. Shown here are 

curves for values of σ ranging from 2.3 to 3.25 Å, with the latter value (σ
ij
 = 3.25) being the 

default for OPLS_2005. To reproduce the most probable distance observed in the CSD 
between the sulfur and oxygen, a σ value of 2.5 Å was chosen for this work. The ε parameter 
was not altered from the default OPLS_2005 value of 0.273 kcal/mol. Source: Adapted from 
Lupyan et al. [37]. Reproduced with permission of Springer.
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Then, we used the Polymorph Predictor module in Materials Studio 6.5 (Accelrys 
Software Inc.) to predict crystal forms of axitinib in the corresponding space groups 
using the MacroModel conformations described earlier as input. “Fine” quality 
settings were selected for the Polymorph Predictor sampling and the COMPASS 
force field was used [55]. In the first step of predictions, a Monte Carlo simulated 
annealing packing algorithm generates starting structures, treating the molecule as a 
rigid unit. Next, a geometry minimization of each structure is performed, optimizing 
unit cell parameters and relaxing molecular geometries, while imposing the space 
group symmetry constraints. Finally, clustering is applied to all minimized structures 
based on interatomic distances to reduce the set to 500 diverse structures that are scored 
with the COMPASS force field and ranked by total energy. Since the COMPASS force 
field does not include the new S⋯O interaction parameters developed in this work, 
the results rely strongly on the starting molecular conformations. In addition, since 
the internal energies of the axitinib crystallographic conformations are not well 
described by the COMPASS force field, the calculated total energies reflect only a 
preliminary ranking of the polymorphic forms. A postprocessing of the generated 
crystal structures at a higher level of theory would be required for a reliable ranking 
of the axitinib polymorphs and will be the focus of future work.

4.3 RESULTS AND DISCUSSION

In this chapter, we examine close intramolecular contacts from the CSD to understand 
how well they are treated with molecular mechanics force fields. We then attempt to 
improve the force field, first by introducing specific modifications to more accurately 
reproduce the CSD and quantum mechanical geometries for close S⋯O and halogen 
X⋯O interactions. In both cases that force field modifications can lead to improved 
reproduction of the CSD geometries. We then present the protocol taken for these two 
classes of interactions and explain how it could be applied to other interaction types. 
Finally, we present a new force field, OPLS2, which has a greater coverage of small‐
molecule parameters and shows improved results for small‐molecule solvation free 
energies and reproduction of quantum mechanical energy profiles.

4.3.1 Close S⋯O Interactions

In this section, we focus on small molecules in the CSD that contain a close sulfur–
oxygen (S⋯O) contact. Specifically, each molecule in the data set of this study contains 
the chemical motif SCxC═O (i.e., a sulfur and oxygen connected by four bonds) and 
has a close contact between the S and O (the distance being less than the sum of vdW 
radii for these two atoms, 3.32 Å). In total, 130 CSD molecules satisfied these criteria 
and were further analyzed to study the relationship between the geometries and 
energetics. First, we minimized each molecule using the MMFFs and OPLS_2005 
force fields. In addition, minimizations were performed with the semiempirical method 
PM3 and using quantum mechanics with the B3LYP‐MM/6‐31G** method and 
basis set. Figure 4.3 shows the distribution of S⋯O distances for the 130 molecules 
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to the distribution from the CSD. Source: Adapted from Lupyan et al. [37]. Reproduced with permission of Springer.
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based on their crystallographic conformations in the CSD. The peak in the distribution 
is at 2.75 Å, which is considerably shorter than the optimal distance based on the vdW 
parameters for these two atom types in the OPLS force field (3.32 Å). This close dis-
tance would create a large energetic penalty, which would be reflected in altered 
geometries upon energy minimization.

Indeed, minimizing each of the 130 molecules produces the distribution shown in 
Figure 4.3, which shows a significant bias toward longer distances than observed in 
the CSD. While there are some molecules with an S─O distance less than 3.0 Å using 
the force fields, none of the molecules approach the 2.75‐Å maximum probability 
distance observed in the CSD conformations. Interestingly, the semiempirical method 
(PM3) performs equally poorly as the molecular mechanics force fields. On the other 
hand, the quantum mechanics method (B3LYP‐MM) produces S─O distances 
much more consistent with the observed geometries from the CSD. The agreement 
between the quantum mechanics and CSD geometries suggests that the close S⋯O 
distance is not a consequence of crystal packing, which could hold the two atoms 
closer together than they would prefer to be in the gas phase, but that does not appear 
to be the case here.

To assess the nature of the chemical motif of interest in greater detail, we also 
studied the planarity of the angle between the C─S and C═O bond vectors. The distri-
bution from the CSD is shown in Figure 4.4, along with statistics for the geometries of 
the molecules after minimization using MMFFs, OPLS_2005, PM3, and B3LYP‐MM. 
As was the case for the distances, a difference is observed in the distributions between 
the CSD conformations and the minimized force field conformations. The center in the 
distribution for the CSD conformations is close to planar (i.e., 0°) with a relatively 
narrow peak, while the distributions after minimization with OPLS_2005 and MMFFs 
distributions are much broader. In fact, many molecules have angles greater than 20° 
after the force field minimization. Specifically, 38.6% of the molecules have an angle 
greater than 20° for the OPLS_2005 minimized structures and 19.1% for MMFFs, 
whereas none of the CSD structures in this work have an angle greater than 20°. 
The PM3 semiempirical method shows 14.2% of the molecules greater than 20°. The 
quantum mechanics structures are closer to the crystal, with only 4.4% of the mole-
cules adopting planarity greater than 20° and most molecules being close to planar.

To improve the force field treatment of these molecules we modified the OPLS_2005 
force field by altering the torsional parameters, vdW treatment, and electrostatics 
(see Section 4.2) with an aim to more accurately reproduce the experimental CSD 
geometries. The parameter modifications included fitting of the torsional profile to a 
quantum mechanically derived energy surface, scaling the vdW potential to match 
the S⋯O distance profile observed in the CSD, and attenuating the electrostatic 
potential using a distance‐dependent dielectric. Figure 4.5 shows the substructure 
used for the CA─CA─S─CA torsion angle parameterization and the associated 
potential energy surface. Figure  4.5 shows the improved agreement between the 
modified OPLS force field (called OPLS

S⋯O
 here) and quantum mechanics relative to 

either OPLS_2005 or MMFFs. As seen in Figures 3.3 and 3.4, the distribution with 
the modified force field is closer to the CSD distribution than the OPLS_2005, 
MMFFs, or PM3 distributions, with an average S⋯O distance of 2.84 ± 0.37 Å and 
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only 11.5% of the angles being greater than 20°. While these statistics are slightly 
worse than the quantum mechanics results, as compared with the geometries from 
the CSD, they are much better than OPLS_2005 or MMFFs. Figure 4.6 shows box 
plots of the RMSD distribution for the 130 molecules with OPLS

S⋯O
 and the other 

methods studied here, which also shows an improvement using the OPLS
S⋯O

 param-
eters compared with OPLS_2005 and MMFFs.

Figure  4.7 shows an example structure from the CSD (refcode: FOKWEI; 
compound name: ethyl 3‐(benzoylamino)‐3‐(isopropylthio)acrylate) that illustrates the 
problem observed with OPLS_2005 and MMFFs for most of the molecules in this 
study. The experimental CSD structure exhibits an S⋯O distance of 2.77 Å and 
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used to fit the new torsion parameter (see Section 4.2 for details). (b) Potential energy surface 
for the CA─CA─S─CA torsion angle in the SCCC═O motif. The QM energy (dark gray circles), 
OPLS_2005 (medium gray squares), and refitted OPLS

S⋯O
 (light gray triangles). Source: 

Adapted from Lupyan et al. [37]. Reproduced with permission of Springer.
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planarity of 7.2°. The structures minimized with MMFFs and OPLS_2005 have S⋯O 
distances at 3.09 Å and 3.05 Å with the planarity of the motif at 12.9 and 32.2°, respec-
tively. The heavy‐atom RMSD with respect to CSD structure is 0.75 Å for the MMFFs‐
minimized structure and 0.61 Å for OPLS_2005‐minimized structure. The PM3 method 
performs better than the force fields in this case, with S⋯O distance of 2.93 Å, 
planarity of 8.8°, and RMSD of 0.37 Å from the CSD structure. The B3LYP‐MM/6‐31G** 
optimized geometry is much closer to the crystal, with S⋯O distance of 2.75 Å, 
planarity of 3.2°, and RMSD of 0.11 Å. Finally, the modified OPLS

S⋯O
 force field 

parameters developed in this work produces an S⋯O distance of 2.83 Å, a planarity of 
6.1°, and an RMSD of 0.24 Å. These results are better than the force fields (MMFFs 
and OPLS_2005) and between the PM3 and quantum mechanics calculations.

To test the applicability of the modified force field to generate accurate confor-
mations for CSP on a pharmaceutically relevant molecule, we studied axitinib, 
developed at Pfizer to treat cancer by targeting the vascular endothelial growth 
factor (VEGF). Axitinib is a particularly interesting compound from the perspec-
tive of studying small‐molecule crystal structures because it forms five anhydrous 
polymorphs [56, 57]. Figure 4.8 shows the conformations of axitinib in the five 
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for geometry minimization. The median RMSD is denoted as a horizontal line through each 
box. The bottom and the top of the box mark the lower and upper quartile, respectively. The 
whiskers extend to 1.5*IQR (interquartile range) and the molecules with RMSD larger than that 
are the outliers, shown with “×” marks. Source: Adapted from Lupyan et al. [37]. Reproduced 
with permission of Springer.
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polymorph structures, and Table  4.2 shows the crystallographic (CSD) S⋯O 
distance and SCxC═O planarity. In addition, Table 4.3 shows the RMSD matrix 
between all five structures, highlighting that they are all different conformations. 
Each of these has a close S⋯O distance, ranging from 2.8 to 3.4 Å and the planarity 
ranges from 23 to 58°, with the largest value of distance and angle corresponding 
to the lowest‐energy crystal form. This is a good test for the modified force field 
because the angle is outside the range we observed in the 130‐molecule CSD 
training set and, therefore, if the S⋯O distance parameter was overfit, it would 
become apparent here.

Table 4.2 also shows the ability of different force fields to generate low RMSD 
axitinib conformations compared with the crystal structures. We find that each of 
the five observed crystal conformations is reproduced using the new OPLS

S⋯O
 

force field. The average heavy‐atom RMSD for the closest structure to each of 
the five crystal conformations is 0.33 Å, and the maximum RMSD is 0.54 Å with 
OPLS

S⋯O
. This is in contrast to the results obtained using MMFFs and OPLS_2005, 

where the average RMSD is 0.94 and 0.80 Å, and the maximum is 1.38 and 
1.18 Å, respectively. We find that the OPLS

S⋯O
 conformational search geometries 

are almost as accurate as the quantum mechanics geometry minimizations of the 
CSD crystal structures, which have an average RMSD of 0.21 Å and a maximum 
of 0.37 Å.

Finally, the ultimate objective of this work is to generate conformations that 
can be repacked in the correct crystal form. To do this, a limited CSP study was 
performed on axitinib, as follows. First, we took the structures from the confor-
mational search using each force field with the lowest RMSD to the crystal 
forms I, VI, XXV, and XLI. These conformations were used as input for the 
Polymorph Predictor in an attempt to reproduce the crystal forms in the 
corresponding space groups. Form IV was not considered in this limited study 
because it has two molecules in the asymmetric unit cell (termed IVa and IVb), 
which makes the computational CSPs substantially more challenging and time 
consuming.

The OPLS
S⋯O

 conformations were correctly packed to reproduce three out of four 
forms: forms I, VI, and XLI. In fact, each of the predicted forms was ranked among 
the top few solutions from the 500 generated polymorphs as ranked by COMPASS 
force field. The predicted crystal forms displayed a good overlay with the experi-
mental crystal structures (see Fig. 4.9), with RMSDs of 0.66, 0.54, and 0.47 Å for the 
overlay of 10 molecules in the crystal. In contrast, the CSPs based on conformations 
generated by the MMFFs and OPLS_2005 force fields failed to reproduce the crystal 
structures of forms I and XLI within any of the top 500 solutions. Only form VI was 
reproduced starting from the MMFFs conformation, resulting in an RMSD of 0.54 Å 
for the overlay of 10 molecules.

Due to the high level of computational time required, a reranking of the generated 
crystal structures at a higher level of theory (e.g., DFT with the dispersion energy 
corrections [58, 59]) was not considered in the current limited study. For the same 
reason, a full CSP using the Polymorph Predictor program considering multiple 
space groups for each starting conformation was not preformed.
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4.3.2 Halogen X⋯O Interactions

Here, we extend our work to explore the nonbonded parameters of halogen atoms 
commonly used in medicinal biology. Halogen atoms play a particularly important 
role in medicinal chemistry, and a number of natural products, drugs on the market, 
and compounds in clinical studies contain halogen atoms [60–63]. Halogen substitu-
ents are often used in lead optimization stage to optimize lipophilicity of the mole-
cule [64], introduce specific steric contributions [65], or displace water molecules 
[65–68]. In addition, halogen variants are used in biomolecular systems to improve 
interactions, such as halogen bonding and multipolar interactions. Such properties have 
been exploited in several drugs classes, specifically for anesthetic halothane, inhibitors 
of HIV retrovirus, nonsteroidal anti‐inflammatory drugs, and others [60–62, 69]. 
However, halogen interactions are challenging to model accurately within the frame-
work of traditional molecular mechanics force fields [70, 71].

We first identified molecules from the CSD database that contain a [F,Br,I,Cl]
CxC═O signature motif with close 1–5 interaction between a halogen and oxygen 
atoms. A cutoff of 4 Å was used to define the contact, as it is slightly larger than the 
sum of the vdW for halogen–oxygen atom types. This resulted in 223 molecules for 

TABLE 4.3 Pairwise RMSD of Five Axitinib Crystal Conformations, 
in Angstrom (Å)a

XXV VI XLI IVb I, IVc

XXV 0
VI 2.90 0
XLI 3.06 4.12 0
IVb 2.75 0.86 3.99 0
I, IVc 2.63 1.13 3.71 0.62 0

Form IV has two molecules in the asymmetric unit cell.
a Source: Adapted from Lupyan et al. [37]. Reproduced with permission of Springer.
b Unique conformation.
c Conformation is very close to the conformation of form I and has similar values for 
the distance and angle reported.

(a) (c)(b)

FIGURE 4.9 Structural overlay of CSD and predicted crystal packing geometries of axitinib 
using conformations generated using the OPLS

S⋯O
 force field parameters developed in this 

work. Structures of axitinib forms XLI (a), VI (b), and I (c) are shown. Source: Adapted from 
Lupyan et al. [37]. Reproduced with permission of Springer.
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the halogen X⋯O data set (58 F⋯O, 108 Cl⋯O, 27 Br⋯O, and 30 I⋯O). Some 
molecules contained multiple halogen X⋯O interactions, in which case the shortest 
interaction pair was used for the analysis. The default OPLS_2005 parameters (σ for 
the distance in Å and ε for the well depth in kcal/mol) for each of the halogens inter-
acting with a carbonyl oxygen are as follows: F σ = 2.85 ε = 0.061, Cl σ = 3.40 ε = 0.30, 
Br σ = 3.47 ε = 0.47, and I σ = 3.75 ε = 0.60. The other force field terms (bond stretch, 
angle, and torsion) were not modified in this work.

For each of the halogens (F, Cl, Br, and I), we performed a similar analysis to 
the S⋯O work earlier. Tables 4.4–4.7 show the statistics for each halogen with the 
different force fields. While the deviation of the distances from the CSD values appears 

TABLE 4.4 Fluorine Distances (Å) and Correlation (R2) with CSD Structures

F⋯O Distances (Å) R2 w.r.t. CSD

CSD 3.03 ± 0.19 N/A
MMFFs 3.10 ± 0.23 0.72
OPLS_2005 (σ = 2.90) 3.14 ± 0.27 0.70
+NBFIX (σ = 2.73) 3.09 ± 0.29 0.72
+NBFIX (σ = 2.63) 3.06 ± 0.21 0.73
OPLS2.0 3.11 ± 0.24 0.80

TABLE 4.5 Chlorine Distances (Å) and Correlation (R2) with CSD Structures

Cl⋯O Distances (Å) R2 w.r.t. CSD

CSD 3.12 ± 0.15 N/A
MMFFs 3.21 ± 0.31 0.31
OPLS_2005 3.14 ± 0.31 0.59
OPLS2.0 3.17 ± 0.20 0.64

TABLE 4.6 Bromine Distances (Å) and Correlation (R2) with CSD Structures

Br⋯O Distances (Å) R2 w.r.t. CSD

CSD 3.08 ± 0.12 N/A
MMFFs 3.21 ± 0.12 0.13
OPLS_2005 3.05 ± 0.44 0.44
OPLS2.0 3.07 ± 0.10 0.79

TABLE 4.7 Iodine Distances (Å) and Correlation (R2) with CSD Structures

I⋯O Distances (Å) R2 w.r.t. CSD

CSD 3.24 ± 0.41 N/A
MMFFs 3.52 ± 0.43 0.80
OPLS_2005 3.29 ± 0.41 0.97
OPLS2.0 3.29 ± 0.42 0.96
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to be relatively small for all halogens, for all cases we see an improvement in the 
correlation (R2) between the CSD and calculated geometries. Most of the distances 
for the calculated geometries are within the variance of the CSD distances, even with 
the default MMFFS and OPLS_2005 force field parameters; however, a more detailed 
analysis shows that there are differences between the force fields. To more clearly 
emphasize the differences between the force fields for the halogen work here, we 
look at the correlation with experiment rather than the absolute deviation of the 
distances. By doing this, we see that the correlation for MMFFs is relatively poor for 
Cl and Br. In all cases, OPLS2.0 (described in more detail later) produces the highest 
correlation (with the exception of iodine, where OPLS_2005 produces a comparable 
correlation of R2 = 0.97, compared with 0.96 for OPLS2.0).

It is possible that these small differences are not significant, but for tight crystal 
packing (as in polymorphs) even tenths of an Angstrom can make a difference. In 
addition, errors can accumulate, so it is important to get an accurate representation 
for each atom and interaction type. We see that MMFFs consistently overpredicts the 
X⋯O distances by 2–9% compared with the CSD distances, which is significant, 
especially if it alters torsional angles connected to other parts of the molecule that 
have an amplifying impact due to the lever effect. It should be noted that in this 
chapter we did not take special consideration of the electronic properties of halogens, 
which are not well represented by the standard force field atom‐centered charges; 
this topic has been studied by others via the introduction of off‐site charges that 
better models the sigma hole [71].

Similar to the previous work on S⋯O interactions, we see that the default parameters 
for traditional force fields (MMFFs and OPLS_2005) do not adequately reproduce 
the distributions observed in the CSD in some cases (see Fig. 4.10). While the effect 
is less dramatic than for the close S⋯O contacts, there is still a clear lack of agreement 
between the CSD geometries and those obtained from field minimizations, and even 
small errors could result in an inaccurate CSP.

4.3.3 Generalization of the Approach to Other Interactions

While the earlier work on close S⋯O contacts and halogen X⋯O interactions 
provides specific parameters that can be used to improve force field treatment of 
certain interactions in small molecules, there are potentially many other interactions 
that could be amended with a special force field treatment. The approach presented 
earlier offers a straightforward way to improve specific aspects of a force field for the 
generation of accurate small‐molecule conformations. The approach can be broken 
down into the following three steps:

1. Identification of the problematic interaction

2. Improvement of the force field using QM and experimental data

3. Validation of the improved parameters

Identification of the problematic interaction: In many cases the deficiency in the 
force field will be clear. For example, in the case of the close S⋯O interactions it was 
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not possible to generate the crystallographic conformation of the small molecules 
with this motif, and minimization of the crystal structure conformation led to a 
significant change in the coordinates. In addition, the energy of the crystallographic 
conformation, as assessed by the force field, was significantly higher in energy than 
the minimized conformation to such an extent that the crystallographic conformation 
would not be energetically accessible. Finally, quantum mechanics corroborated the 
crystallographic data, thereby building confidence that there was indeed a force field 
problem that required attention.

In other cases the deficiency can be less obvious. For example, determining 
whether a specific hydrogen bond is stabilizing or destabilizing, and to what degree, 
involves a subtle balance between interaction energy, internal strain, desolvation 
penalty, and other energetic contributions. In addition, the experimental structures 
that we aim to reproduce are typically attained under conditions that are not identical 
to those used to generate the parameters (i.e., the fit is being done based on low‐
temperature data and therefore includes mostly potential energy, while the experiment 
may be done at room temperature with solvent, buffer, etc.), making it hard to deter-
mine if the force field treatment is inaccurate, and to what degree. Furthermore, it is 
possible to get the geometry of an interaction correct while still not predicting the 
energetics accurately, which could have implications in comparing energies between 
different states and computing kinetic properties. In such cases, it may be necessary 
to compare the results from more rigorous calculations, like free energy calculations 
[72–76], with experimental data.

Improvement of the force field: Once the problem has been identified, the force 
field reparameterization can begin. In general, the objective is to modify as few 
parameters as possible, thereby reducing the risk of adversely affecting the treatment 
of other molecules. For example, in the close S⋯O work we only modified the pair 
potential between sulfur and a carbonyl oxygen, thus preventing changes in the force 
field that would affect interactions of sulfur with water molecules, which would alter 
the previously optimized solvation properties of sulfur‐containing molecules. Force 
fields are generally fit to specific types of data, such as condensed phase properties 
or quantum mechanical data, which are important to maintain as new parameters are 
added to improve properties that were not included in the original force field 
parameterization.

Validation of the improved parameters: There are several ways in which one can 
test force field improvements. Direct comparison to quantum mechanical data offers 
one possibility, although the same data are often used to fit the force field parameters, 
so the validation work must be done carefully to ensure some level of independence 
in the testing. This can be done, for example, by fitting to one molecule with the 
missing parameter and testing on other molecules that have the same interaction type 
but with other differences in the molecules. Another approach is comparing with 
experimental data, although as with quantum mechanical data, it is important to 
compare with an independent test set. Independence does not only mean that the 
molecules are different, but that the actual parameter change is assessed as directly 
as possible without confounding variables. For example, for the close S⋯O interac-
tions, we optimized the force field to get the correct geometry of the S⋯O motif 
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in close interactions, but to validate the approach we also compared the predicted 
geometries of small‐molecule conformations containing the S⋯O motif that were not 
making close interactions. As such, if we overfit the force field to get the precise geom-
etry of the close S⋯O interactions right, then we would likely deteriorate the geometries 
of the molecules in which the S and O were not making close interactions.

4.3.4 An Improved OPLS Force Field (OPLS2)

The OPLS family of force fields adopts a functional form that represents the poten-
tial energy of the system as the sum of bond, angle, torsion, and nonbonded terms. 
Parameters for the bond and angle terms aim to reproduce molecular geometries and 
vibrational frequencies, while the torsion term aims to reproduce the energetics of 
conformational rearrangement. The nonbonded terms include electrostatic interac-
tions using atom‐centered partial charges and a Lennard‐Jones potential representing 
dispersion and electronic repulsion. Nonbonded parameters are developed against a 
combination of ab initio gas phase properties and experimental condensed phase 
properties that sensitively probe these intermolecular interactions.

The objective in developing the present iteration of OPLS (OPLS2.0) [77] is to 
improve the accuracy for drug‐like molecules, which should improve the general 
quality of physics‐based approaches including the prediction of binding free 
energies, docking poses, conformational preferences, and energy landscapes. To do 
so, the OPLS2.0 force field has substantially expanded the data sets used in its 
parameterization. The present set includes ab initio data on more than 11,000 
molecules including their optimized geometries, rotational profiles, and electrostatic 
potentials with the aim of more thoroughly covering the diversity of chemical func-
tionalities that comprise drug‐like molecules. In comparison, the data sets used to 
parameterize the torsional terms in MMFF and OPLS_2005 are based on 140 and 
631 rotational profiles, respectively.

In addition to the expanded parametrical coverage, OPLS2.0 uses semiempirical 
charges with bond charge corrections (CM1A‐BCC) to help account for changes in 
charge distributions that result from variations in functional group substitutions. The 
charges are obtained from a combination of the Cramer‐Truhlar CM1A charge model 
[78] and specifically fit bond charge correction terms (BCC) [79] that are parameter-
ized against the OPLS‐AA charges for a core set of 112 molecules and the 
electrostatic potential at the HF/6‐31G* level of theory for the OPLS2.0 training 
set. In a subsequent refinement step, the BCC terms are adapted to minimize the 
errors with regard to the absolute solvation free energy using a training set of 153 
molecules. All structures used to perform the CM1A calculations are prepared via a 
conformational search and subsequent minimization without the electrostatic term 
and only repulsive vdW parameters for interactions between atoms to prevent 
 collapse of the molecules from intramolecular interactions.

Validation of the OPLS2.0 force field includes comparison to quantum mechanical 
energy profiles and experimental solvation free energies. For the latter, we performed 
explicit solvent molecular dynamics free energy perturbation simulations on a set 
of 239 diverse small molecules [80]. Compared with other popular force fields 
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(OPLS_2005, AFF, and CHARMm‐MSI), OPLS2.0 produces the best correlation 
with experimental data (R2 = 0.95, slope = 0.96) and the lowest average unsigned 
errors (0.7 kcal/mol; see Fig. 4.11) [16]. Important classes of compounds that performed 
suboptimally with OPLS_2005 show significant improvements with OPLS2.0. These 
improvements should result in general improvements for small‐molecule conforma-
tional search, which should benefit the CSP.

4.4 CONCLUSION

The need for high‐quality force field parameters is critical to rapidly generate accu-
rate small‐molecule conformations, which are needed for reliable computational 
CSP. In this chapter, we presented specific force field improvements that lead to 
better small‐molecule conformations for close S⋯O and halogen X⋯O interactions. 
We customized the force field by fitting to quantum mechanical data and comparing 
with conformations from the CSD, which is a general approach that can be extended 
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FIGURE 4.11 Comparison of absolute solvation free energy errors for different force fields. 
The average unsigned error (AUE, kcal/mol) for the different functional classes of compounds 
compared with experiment is shown for CHARMm/ChelpG (squares; medium light gray), 
GAFF/AM1‐BCC (diamonds; medium dark gray), OPLS_2005 (triangles; lightest gray), and 
OPLS2.0 (circles; black). The number of compounds for each chemical class is shown in 
parentheses. Compound classes are sorted in order of increasing OPLS2.0 AUE.
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to other types of interactions. We also presented a new force field, OPLS2.0, which 
has a much greater coverage of torsional space than other popular force fields and 
also has an improved charge assignment method (CM1A‐BCC).

The approach presented here is straightforward and can be applied to other classes 
of molecules and other force fields. In short, the force field should reproduce the 
underlying quantum mechanical energy landscape as accurately as possible. This will 
ensure that most molecules and molecular interactions are handled well. However, in 
the cases where special interactions are not treated well, specific parameters can be 
developed based on quantum mechanics calculations and/or experimental data 
(i.e., CSD structures).

Computational CSP is an emerging area of research with great potential to impact 
drug development. Indeed, the ability to accurately predict crystal structures and 
polymorphs could accelerate the development process and minimize liabilities that 
may arise from unforeseen polymorphs. However, significant challenges still exist in 
the field of CSP. In addition to the need for accurate force fields, there is also a 
need for advanced search algorithms for small‐molecule conformations and crystal 
packing. Furthermore, many drug molecules are formulated as a mixture, which 
complicates the problem considerably. We have not attempted to investigate the 
actual crystal packing problem in this work. However, we presented evidence dem-
onstrating that with highly accurate conformations of a small molecule it is possible 
to predict the polymorph using existing tools. These encouraging results need to be 
further validated on a larger data set and will likely lead to the identification of other 
challenges in the field of CSP, which could trigger efforts to develop new or improved 
crystal packing algorithms.
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5
ADVANCES IN CRYSTAL STRUCTURE 
PREDICTION AND APPLICATIONS 
TO PHARMACEUTICAL MATERIALS

Graeme M. Day
School of Chemistry, University of Southampton, Southampton, UK

5.1 INTRODUCTION

Crystal structure prediction (CSP) is one of the greatest challenges for the  application 
of computational methods to the solid state. The goal of CSP is the prediction of the 
likely crystal structures of a molecule, given only chemical information regarding 
the molecule(s) being crystallized. Typically, the starting information that is required 
by CSP methods is the bonding between atoms, as expressed in a chemical sketch of 
the molecule. No three‐dimensional information about the molecular conformation, 
apart from stereochemistry, is generally required so that the methods are as general 
as possible and can be performed in advance of any structural characterization  having 
been performed, or even before synthesis has been completed successfully. As a goal, 
the predicted structures should agree with what would be obtained from a diffraction‐
based structural model to as high an accuracy as possible; typically, errors in lattice 
parameters of up to 3–4% are judged as acceptable and average errors in atomic 
 positions of up to about 0.3 Å [1]. Such a level of accuracy is required so that  predicted 
crystal structures can serve as a starting point for predicting the physicochemical 
properties of the crystal.

The prediction of how the chemical properties of a molecule determine its 
crystal packing is a broader goal in the area of crystal engineering, where most 
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research activity relates to the development and verification of empirical rules 
describing the close packing of molecules and the association of functional groups 
via reliable intermolecular interactions (e.g., hydrogen bonding, halogen bonding, 
and π–π stacking). Computational methods for CSP can contribute to providing a 
quantitative foundation to crystal engineering and have developed thanks to the 
development of realistic physical models of the interactions between atoms, their 
implementation in efficient software packages, and the availability of computa-
tional resources that have allowed this computationally demanding problem to 
be addressed.

The purpose of this chapter is to describe computational methods for CSP, recent 
progress that has been made in these methods, and to illustrate the use of CSP in 
 various applications, with a particular focus on applications that are relevant to 
 pharmaceutical materials.

5.1.1 Motivation

A large part of the motivation behind developments in CSP has been the perceived 
challenge of such a demanding problem. In 1988, Maddox asserted in his Nature 
editorial [2] that it is “One of the continuing scandals in the physical sciences” 
that “it remains in general impossible to predict the structure of even the simplest 
crystalline solids from a knowledge of their chemical composition.” While he was 
referring to inorganic solids in his statement, the general consensus in the fields 
across inorganic and organic materials research is that this situation had not pro-
gressed significantly over the next 10–15 years [3, 4]. Such a seemingly unmet 
challenge naturally attracts continued research. Even without considering the 
practical applications of CSP, the goal of structure prediction has merits: the pur-
suit of reliable methods has pushed the development of simulation methods that 
have impacted on other areas of computational chemistry. As an example, the use 
of elaborate, atomic multipole–based electrostatic models for intermolecular 
interactions has been shown to dramatically improve the reliability of predictions 
[5, 6]; the evidence from CSP studies has helped motivate more widespread use of 
multipolar electrostatics in molecular simulations [7]. Applications of CSP to 
organic molecular solids have also recently served as challenging tests of solid‐
state electronic structure calculations, such as periodic implementations of density 
functional theory (DFT) [8–11], and of global optimization methods designed for 
exploring high‐dimensional energy landscapes [12–15].

Several applications for CSP within an academic or industrial research setting can 
be envisioned. These applications range from providing structural models that might 
aid the determination of crystal structures in combination with experimental data, to 
the more ambitious aim of performing solid form screening in silico and assessing the 
likely solid forms of a molecule prior to synthesis. These applications are  discussed in 
more detail in a later section, before which an overview of methodologies is 
presented.
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5.2 CRYSTAL STRUCTURE PREDICTION METHODOLOGIES

The most general and successful method that has been developed for CSP is referred 
to as global lattice energy minimization [16]. This approach involves locating and 
assessing the relative stabilities of all low‐energy local minima on the lattice energy 
landscape. The global energy minimum refers to the lowest energy structure on the 
lattice energy landscape, and the usual assumption is that the structure corresponding 
to the global minimum is the most likely observable crystal structure [16, 17]. The 
description of the crystal structure prediction problem as global minimization is 
somewhat misleading; the global minimum is important, but we are always also 
interested in the other low‐energy structures, which represent potential polymorphs. 
It is the entire landscape of putative crystal structures, sometimes referred to as the 
crystal energy landscape [18], which is required.

The process of exploring the crystal energy landscape can conceptually be broken 
down into three steps (Fig. 5.1): (i) prediction of the molecular geometry, (ii) a search 
for physically reasonable crystal‐packing alternatives of the molecule being studied 
(trial structures), and (iii) an assessment of the relative stabilities of these computer‐
generated crystal structures. While most methodologies involve some overlap of 
these three general steps, we discuss them as three distinct steps here for simplicity.

5.2.1 Molecular Geometry

Many applications of CSP involve performing predictions before any crystal  structure 
of the molecule is known, or perhaps even before the compound has been synthesized. 
In this situation, the starting point for the prediction usually only involves the chemical 
diagram or connectivity between constituent atoms. Therefore, the construction of 
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FIGURE 5.1 Schematic representations of the steps of crystal structure prediction (CSP) by 
global lattice energy minimization.
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trial crystal structures requires that this chemical information is converted into a 
 realistic representation of the three‐dimensional geometry of the molecule.

The construction of the molecular geometry is now a fairly trivial step for small 
molecules with only one conformation; a starting model can be built from typical 
bond lengths and angles, and this starting geometry can be refined by geometry 
 optimization using electronic structure methods.

5.2.1.1 Rigid Molecule Assumption For small molecules, CSP is often simpli-
fied by making the rigid molecule assumption, at least in some stages of the predic-
tion process. This approximation assumes that the molecular geometry in the crystal 
remains undistorted from that of the isolated molecule. Molecules for which CSP is 
realistic are always small enough that the geometry of the isolated molecule can be 
calculated with good accuracy using quantum chemical methods, based on either 
wavefunction theory (e.g., Hartree–Fock, perturbation theory methods such as MP2) 
or DFT. If the rigid molecule approximation is realistic, the molecular structure 
obtained by geometry optimization of the isolated molecule can be kept fixed through 
all subsequent steps of generating and optimizing crystal structures.

The importance of this simplification should become clear in the discussions 
of crystal structure generation and energy minimization that follow. At the stage of 
 generating initial crystal structures, the rigid molecule approximation reduces the 
number of structural degrees of freedom. Including fewer degrees of freedom during 
structure searching reduces the computational difficulty and expense significantly. 
At the final stage of lattice energy minimization and the ranking of structures on cal-
culated stability, the rigid molecule lattice energy approach removes the requirement 
for an intramolecular energy model when comparing sets of predicted crystal struc-
tures. As a consequence, only differences in calculated intermolecular interactions 
must be considered, simplifying the assessment of relative stabilities and eliminating 
a source of error in the evaluation of differences in intramolecular energies between 
crystal structures. It is because of these simplifications that many early applications 
of CSP focused on small, rigid molecules.

While it is a computationally convenient approximation, the rigid molecule approach 
is only justified under certain conditions. For discussion, we partition the total lattice 
energy of a crystal structure into intermolecular and intramolecular components:

 E E Elattice intramolecular intermolecular (5.1)

Any structural change that lowers the lattice energy, E
lattice

, is energetically 
 favorable. Therefore, distortion of the molecular geometry away from the geometry 
of the isolated molecule can occur as long as this leads to a lower total lattice energy. 
Since the isolated molecule–optimized molecular structure is, by definition, at a 
minimum in intramolecular energy, any distortion away from this geometry must 
increase the intramolecular energy, E

intramolecular
. Therefore, such a distortion can only 

be energetically favorable in a crystal structure if E
intermolecular

 is lowered by more than 
the increase in E

intramolecular
; the intramolecular energy penalty must be balanced out by 

a resulting improvement in intermolecular interactions. Therefore, for a molecule to 
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be considered rigid in the context of its crystal packing, any intramolecular change 
must come at a higher energetic cost than the gain in intermolecular interactions that 
is associated with this distortion in any of its potential crystal structures.

Where molecular flexibility must be included in a calculation, it is necessary to 
consider what changes in molecular geometry can be caused by the intermolecular 
interactions in a crystal. The potential flexibility of a molecule can be considered in 
terms of the three types of intramolecular distortion: bond stretching or compression, 
angle bending, and changes in torsion angles describing the rotation about bonds 
(including changes in ring conformations and improper torsions describing the 
pyramidalization around atoms). The cost of each type of distortion can be estimated 
through force field or quantum mechanical calculation on simple molecules; for 
example, a 0.05 Å change in a C─C single bond costs approximately 5 kJ/mol, while 
a C─C─C bond angle can change by 5–10° at the same energetic cost [19, 20]. 
By comparison, changes in torsion angles are much softer: a 10° change in the central 
torsion angle of butane amounts to less than 1 kJ/mol increase in energy [20]. 
From these values, and the expected improvement in intermolecular interactions that 
can be achieved, we expect bond lengths to be minimally affected by crystal packing 
and angles to potentially be changed by a few degrees, while torsion angles can be 
expected to be significantly distorted by intermolecular interactions.

Two types of studies are useful for verifying these expectations: the comparison 
of molecular geometric parameters in different crystalline phases and investigations 
of the differences between gas phase and crystalline phase molecular geometries. 
The former type of investigation can be based on experimentally determined crystal 
structures by comparing geometrical parameters (i) of the same molecule in different 
solid forms (polymorphs, solvates or co‐crystals), (ii) between crystallographically 
independent molecules in the same crystal structure (i.e., crystal structures with more 
than one molecule in the asymmetric unit of the crystal), and (iii) comparing 
geometric parameters that would be symmetrically equivalent in the idealized molec-
ular geometry, but where the full point group symmetry of the molecule is not main-
tained in its crystal structure. From such studies, Kitaigorodskii concluded that 
covalent bond lengths are unaffected by crystal packing, while bond angles can be 
altered by up to a few degrees [19]. The comparison of gas phase and crystalline 
molecular geometries based on either experimental data or high‐level computational 
studies provides a similar picture  [21–23]. Therefore, it is usually a reasonable 
approximation to fix bond lengths in a molecule at gas phase values. The same is 
usually true for bond angles, apart from where the atoms are involved in strong, 
directional interactions such as hydrogen bonding, when the intramolecular cost of 
distorting an angle can be balanced by improving the geometry, and hence the energy 
of the intermolecular interaction.

In contrast to bond lengths and angles, crystal packing can have an important effect 
on the torsion angles in a molecule; the rotation about single bonds comes at a small 
energetic cost, but can lead to large changes in overall molecular shape. A  molecule 
can, therefore, adjust its shape to improve close packing and to optimize the relative 
arrangement of functional groups to improve intermolecular interactions. A simple 
example is biphenyl, where the angle between aromatic rings is near 40–45° in its gas 
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phase geometry [24, 25], but flattens to a planar conformation in its room temperature 
crystal structure to improve its intermolecular interactions in its crystal struc-
ture [26, 27]. A similar crystal packing effect has been shown for the ring conforma-
tions of cyclobutane rings, whose gas phase geometry is puckered, while flattening of 
the ring can improve intermolecular interactions to more than compensate for the 
increase in molecular energy [27]. Such changes in molecular geometry should 
 therefore be considered during the generation of crystal structures and during their 
lattice energy minimization.

One example of how this information is sometimes used is that flexible molecules 
can be treated as a set of linked, rigid fragments, where the fragment geometries are 
fixed at their gas phase geometries, while reorientation of fragments with respect to 
each other is allowed by rotation about linking bonds [28, 29]. Another example is 
the CrystalOptimizer [29–31] approach to lattice energy minimization of crystals 
structures of flexible molecules: the molecule is treated quantum mechanically, with 
its geometry optimized in isolated molecule calculations, subject to certain intramo-
lecular degrees of freedom being distorted by the intermolecular interactions in the 
crystal structure.

5.2.1.2 Conformational Analysis Apart from a few early exceptions [32–34], 
successful CSP studies have been limited to fairly small, rigid molecules until the 
past decade. This was partly due to the necessity of making the rigid molecule 
approximation. This limitation to rigid molecules has restricted the application of 
CSP methods, particularly in the field of pharmaceutical materials, where typical 
molecules are becoming larger and more flexible year on year.

In practice, completely rigid molecule CSP is becoming less and less common: 
some degree of molecular flexibility is now almost always included at some stage of 
the calculations, either in generating trial structures or in their lattice energy 
 minimization. However, the adaptation of methods to large, very flexible molecules 
has been slow.

Conformationally flexible molecules have been a particularly difficult challenge 
for CSP methods for two reasons. To understand these, we must consider two aspects 
of conformational flexibility. One of these is the possibility of low‐energy distortions 
of a molecule from its ideal isolated molecule geometry, the nature of which has been 
discussed earlier. The second aspect of flexibility that must be considered is the 
existence of multiple local minima (i.e., conformers) on the intramolecular energy 
surface. Either of these two aspects of conformational flexibility effectively increases 
the dimensionality and size of the search space that must be explored in locating all 
possible low‐energy crystal packing possibilities, thus increasing the difficulty of 
exploring all crystal packing possibilities during the generation of trial crystal 
 structures. Crystal structure generation methods and the dimensionality of search 
space are discussed in more detail later. The second impact on the CSP of flexible 
molecules is the added requirement to accurately model the balance between inter‐ 
and intramolecular energies in the computer‐generated crystal structures. We first 
address the impact of flexibility on the crystal structure search space. Advances 
relating to the second of these issues are dealt with in a later section.
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The presence of multiple conformers (distinct minima on the intramolecular 
energy surface) impacts on the crystal structure search space because there is no 
restriction that constrains a molecule to crystallize using the lowest energy  conformer 
that the molecule would adopt in isolation (the gas phase or an isolated molecule 
 calculation). This fact is evident from the occurrence of conformational polymor-
phism [35, 36], where a given molecule is observed to crystallize in alternative 
crystal structures using different conformers. One can imagine that any conformer 
that is populated under the thermodynamic conditions used in crystallization has the 
opportunity to form the basis of the molecule’s crystal structure. The particular set of 
conformers that are available to a molecule might depend strongly on crystallization 
conditions, such as temperature or solvent of crystallization.

Under the usual assumption used in CSP that the most likely crystal structures are 
those with lowest lattice energy, a conformer other than the global minimum 
 conformer is possible as long as it can make up the increase in intramolecular energy 
by improved intermolecular interactions, such that the total lattice energy (Eq. 5.1) is 
as low as possible. Since the intramolecular energies calculated using electronic 
structure methods provide the total energy involved in bringing electrons and 
nuclei together, while intermolecular energies include relatively weak interactions, 
the absolute magnitudes of E

intramolecular
 and E

intermolecular
 are very different. Therefore, it 

is usually convenient to work with relative intramolecular energies:

 E E Elattice intra Intermolecular (5.2)

where ΔE
intra

 is the molecular energy given relative to the lowest energy possible 
 conformer of the molecule being studied. This corresponds to the intramolecular 
energy change that would be involved in moving the molecule from its crystalline 
geometry to its most stable gas phase geometry.

To discuss ΔE
intra

 further, and the choice of molecular conformers in CSP, we 
refer to the schematic intramolecular energy surface in Figure 5.2. The conformers 
that are possible for the given molecule, corresponding to the local energy minima 
with respect to any intramolecular geometry change, are numbered in order of 
increasing E

Intramolecular
. The general intramolecular coordinate shown on the 

horizontal axis encompasses all possible geometrical distortions, such as angle 
bending,  torsional changes about rotatable bonds, and changes in ring conforma-
tions. ΔE

intra
 is defined with respect to the global minimum energy conformer, 

labeled 1. The molecular geometry, as found in the crystal structure, is labeled as 
point A in Figure  5.2. Since the molecule can be distorted by intermolecular 
packing forces in its crystal structure, the crystalline molecular geometry need not 
correspond to a local energy minimum on the intramolecular energy surface. 
Conceptually, we extract the molecular geometry from its crystal structure and 
 perform a local energy minimization of the resulting isolated molecule, that is, 
adjusting the atomic coordinates to reach the nearest local minimum on the intra-
molecular energy surface without crossing any energy barriers. The result of this 
process is the conformer that is related to the molecular conformation found in the 
crystal (point B, Fig. 5.2). In the example shown in the schematic, the conformer 



94 ADVANCES IN CRYSTAL STRUCTURE PREDICTION AND APPLICATIONS

that is related to the crystalline molecular geometry is not the global minimum 
 conformer, but the second lowest energy conformer available to the molecule.

We can now partition ΔE
intra

 into two contributions, which we refer to as ΔE
conf

 
and ΔE

strain
. These relate to the two types of conformational flexibility introduced 

earlier. ΔE
conf

 is the energy of the conformer associated with the crystalline molec-
ular geometry, relative to the conformational global energy minimum: the energy 
difference between two minima on the intramolecular energy surface. ΔE

strain
 is the 

increase in intramolecular energy (strain) associated with the distortion of the molec-
ular geometry away from its associated conformer due to intermolecular interactions 
in its crystal structure (Fig. 5.2).

For CSP, it is important to understand the range of these two quantities, ΔE
conf

 and 
ΔE

strain
, that are possible. Theoretically possible molecular conformers that lie above 

some limit in ΔE
conf

 must become irrelevant when it comes to crystallization. The 
maximum ΔE

conf
 that must be considered therefore dictates how many different 

 molecular conformers must be considered as possibly leading to low‐energy crystal 
structures. Most approaches to CSP require a separate series of calculations (molecular 
geometry optimization, trial crystal structure generation, and lattice energy 
 minimization) for each distinct conformer of a molecule. Hence, the time required for 
performing CSP scales approximately linearly with the number of relevant  conformers. 
Worryingly, the number of possible conformers tends to increase rapidly with molec-
ular size. The example data in Table 5.1, taken from Thompson and Day’s recent study 
of molecular conformations in the crystal structures of flexible molecules [37], 
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FIGURE 5.2 Schematic representation of a conformational energy surface. Numbered points 
represent conformers of the isolated molecule. Points A and B represent the crystalline molec-
ular geometry and its associated conformer. ΔE

strain
 and ΔE
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 are defined in the text. Source: 

Thompson and Day [37], http://pubs.rsc.org/en/content/articlehtml/2014/sc/c4sc01132e. Used 
under CC‐BY 3.0 http://creativecommons.org/licenses/by/3.0/.

http://pubs.rsc.org/en/content/articlehtml/2014/sc/c4sc01132e
http://creativecommons.org/licenses/by/3.0/


CRYSTAL STRUCTURE PREDICTION METHODOLOGIES 95

demonstrates how the number of possible conformers increases rapidly with increasing 
flexible degrees of freedom. N

conf
 is the number of conformers for each molecule that 

are located in a systematic conformational search on the isolated molecule. Increasing 
the number of rotatable (exocyclic) single bonds and conformationally flexible rings 
leads to a rapid explosion in the number of possible molecular conformers. These num-
bers demonstrate how conformational flexibility can quickly become the bottleneck 
that makes CSP unfeasible for very flexible molecules. The computing time required to 
generate and lattice energy minimize crystal structures for a single molecular con-
former is typically on the order of days using moderate computing resources. Molecules 
with hundreds or thousands of relevant molecular conformers therefore correspond to 
years of required computational effort and are therefore beyond the scope of current 

TABLE 5.1 Numbers of Computer‐Generated Isolated Molecule Conformers for 
a Selection of Flexible Molecules from Thompson and Day [37], Before and 
After Limiting Conformer Selection by ΔEconf

Molecule N
conf

N
conf

 (Within 26 kJ/mol 
in ΔE

conf
)

N NO2

N

Me

Me

2 2

O

O

NMe

O

Me

O

15 7

NO

N

O

NO

Me

F3C
Me

Me

126 124

N

O

NO

Me

O Me

Me

2418 623
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methods. Some of the most challenging molecules studied to date using CSP methods 
have required 40–80 conformers to be included in the calculations [29, 38].

A good understanding of what ΔE
conf

 is possible in crystal packing can focus 
 computational effort on the most relevant conformers and reduce the computational 
cost of tackling large, flexible molecules. A recent study, based on single molecule 
and solid‐state DFT calculations, aimed at addressing this question. As a part of this 
study, the full lists of gas phase conformers of 15 flexible molecules with known 
crystal structures (many of the molecules being polymorphic) were generated and 
geometry optimized. These lists of possible conformers were then compared to the 
conformer obtained by geometry optimizing the molecule starting from the geometry 
(or geometries, for polymorphic molecules) found in the known crystal struc-
tures [37]. The resulting conformer that is associated with the crystalline geometry 
was then located in the list of all possible conformers, allowing an assessment of 
ΔE

conf
 for each of the 29 crystal structures of the 15 molecules. The distribution of 

ΔE
conf

 from this study is shown in Figure 5.3. One important finding was that it is rare 
that flexible molecules crystallize using their lowest energy (global minimum) gas 
phase conformer: only 6 of the 15 molecules adopt their lowest energy conformer in 
one of their crystal structures. ΔE

conf
 is usually small: approximately two thirds of 

crystal structures adopt a molecular conformer that is within 5 kJ/mol of the gas 
phase global minimum. However, a number of molecules adopt high‐energy confor-
mations, with ΔE

conf
 ranging up to 25.6 kJ/mol.

This study helps define an energetic cutoff for molecular conformers that must 
be considered in CSP: conformers with Econf kJ mol26 /  are unlikely to result in 
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observed crystal structures, presumably because this is near the limit of what 
 intramolecular energy penalty can be compensated by improved intermolecular 
interactions. The effect of restricting conformers to within this limit is shown in 
Table 5.1; the savings resulting from exclusion of high‐energy conformers can be 
considerable for some molecules, but the largest molecules would still require hun-
dreds of conformers to be exhaustively studied.

One caveat to the earlier study is that the molecules studied had no capacity to 
form intramolecular hydrogen bonds. Where intramolecular hydrogen bonding is 
possible, all low‐energy conformers of the isolated molecule are expected to form the 
intramolecular hydrogen bond, while the crystalline conformer might break this 
interaction in favor of intermolecular hydrogen bonding; in these cases, ΔE

conf
 can be 

in an excess of 50–60 kJ/mol [39].
Another important observation regarding conformers of flexible molecules in 

their crystal structures is that molecules tend to adopt extended conformers in the 
solid state [37]. This can be explained by the increased accessible surface area that an 
extended conformer has available to form intermolecular interactions. Thompson 
suggests that the intermolecular stabilization available to a conformer can be esti-
mated prior to predicting its possible crystal structures, by calculating its accessible 
surface area. Therefore, the selection of relevant conformers for CSP can be adjusted 
by including this estimate of intermolecular stabilization, biasing the choice of con-
formers to those where ΔE

conf
 can be compensated by intermolecular interactions. 

The suggested form of this biased energy ranking was [37]:

 E E m Aconf,biased conf Connolly (5.3)

where ΔA
Connolly

 is the difference in Connolly surface area of the conformer relative to 
the global minimum energy conformer of the same molecule. The constant m has a 
suggested value of 0.75 kJ/(mol Å2), based on the variation in sublimation enthalpies 
with molecular surface area of a set of rigid hydrocarbons [37]. Re‐ranking 
 conformers based on ΔE

conf,biased
 found that all conformers seen in observed crystal 

structures are now located within 5 kJ/mol of the lowest energy conformer (compared 
to 26 kJ/mol based on ΔE

conf
), and that the resulting lists of conformers that must 

be considered are considerably shorter. This is an important step and, as we continue 
to increase our understanding of conformational preferences in crystal structures, the 
range of molecules to which CSP can be applied is expanding.

Thompson’s study of conformations in crystal structures also provides information 
on typical strain energies, ΔE

strain
, in molecular crystals, by reporting the change in 

intramolecular energy during optimization of the crystalline molecular geometry to 
its nearest local minimum. The amount of molecular strain was found to range up to 
about 20 kJ/mol (Fig. 5.3).

A complementary approach to energy‐based conformational search methods is 
the informatics approach, where likely conformations of a molecule are built up from 
the distributions of geometric parameters (bond lengths, angles, torsions, and ring 
conformations) in chemically similar molecules to the molecule under investigation. 
Databases of crystal structures form the richest source of information on molecular 
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geometric preferences, and powerful software tools exist to help interrogate the 
information held in databases, for example, the MOGUL software [40], which gives 
access to a library of geometric parameters from the Cambridge Structural Database 
(CSD) [41]. The assumption in using such data is that distributions of geometric 
parameters seen in observed crystal structures represent the underlying probability 
distributions of the values for these parameters in as‐yet undetermined crystal struc-
tures. Therefore, likely conformers of a molecule can be built up from distributions of 
observed geometric parameters and used to seed the generation of crystal structures.

A recent example of such an approach was in the successful prediction of the 
crystal structure of benzyl‐(4‐(4‐methyl‐5‐(p‐tolylsulfonyl)‐1,3‐thiazol‐2‐yl)phenyl)
carbamate, a large, flexible pharmaceutical‐like molecule in the fifth CSP blind test 
(Fig. 5.4) [1, 29], often referred to by its blind test reference number, molecule XX. 
These blind tests are organized every few years to evaluate the current state of CSP 
methods, by setting a series of molecules as targets, whose crystal structures are 
withheld until participants have submitted their predictions. Molecule XX was 
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FIGURE 5.4 Molecule XX (benzyl-(4-(4-methyl-5-(p-tolylsulfonyl)-1,3-thiazol-2-yl)phenyl)
carbamate) from the fifth blind test of crystal structure prediction. (a) Chemical diagram, 
(b) overlay of one of the 48 database generated conformations (red) with the conformation in the 
observed crystal structure, (c) overlay of the CSP global minimum in lattice energy (green) with 
the observed structure from X-ray diffraction. Source: Kazantsev et al. [29]. Reprinted with per-
mission of Elsevier. (see insert for color representation of the figure.)
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included in the latest, 2010 blind test as a flexible, pharmaceutical‐like target. In one 
of the two successful methodologies, database distributions around all flexible 
torsion angles were generated and 42 starting conformers of molecule XX were built 
from all combinations of maxima in these distributions. After crystal structure 
 generation with all 42 conformers and flexible‐molecule lattice energy minimization 
of the resulting crystal structures, the global minimum in lattice energy was found to 
 reproduce the observed structure extremely well (Fig.  5.4c). The success of this 
method led from the fact that one of the database‐derived conformers very closely 
reproduced the conformer in the true crystal structure (Fig. 5.4b).

In many cases, the energy‐based approach and informatics approach should be 
expected to lead to similar conformers: the maxima in distributions of geometric 
parameters drawn from crystallographic data typically lie near the minima in a cal-
culated energy profile for that parameter. Indeed, the only other success for molecule 
XX in the CSP blind test used an energy‐based conformational analysis [29]. The 
advantage of using crystallographic data is in speed, but relies on having the struc-
tures of enough sufficiently similar molecules from which a probability distribution 
can be built. Energy models, at least when based on nonempirical, quantum 
mechanical energy calculations, are more generally applicable when exploring new 
chemistry, and there are insufficient chemically similar molecules from which 
 reliable distributions of geometric parameters can be obtained.

The informatics approach to predicting molecular conformation has a clear 
advantage when the crystalline environment systematically biases molecular geome-
tries away from what would be calculated for an isolated “gas phase” molecule. One 
example is that of the amino acids, which invariably adopt a zwitterionic form in their 
crystal structures, whereas the zwitterion is unstable in the gas phase and does not 
even correspond to high energy, local minimum [42–44]; unconstrained optimization 
of α‐amino acids starting from a zwitterionic geometry revert to a non‐zwitterionic 
geometry with no energy barrier. In this situation, gas phase conformational prefer-
ences become irrelevant to predicting their crystal structures. However, sufficient 
crystal structures of amino acids are known so that their conformational preferences 
in these crystal structures can be used to guide the initial choice of conformers, leading 
to successful CSP [45–47], even under blind prediction conditions [48].

5.2.2 Crystal Structure Searching

Once a molecular geometry, or ensemble of conformers, has been produced, the 
central computational step involved in CSP is the generation of trial crystal structures 
(Fig. 5.1). The goal of crystal structure generation methods is to produce all possible, 
physically reasonable arrangements of molecules in a translationally repeating 
arrangement.

Observable crystal structures must correspond to local minima on the lattice 
energy surface. A local minimum corresponds to a point from which any change in 
structure results in an increase in lattice energy. Local lattice energy minima are 
located by generating trial crystal structures, which are each locally lattice energy 
minimized, that is, moved downhill on the energy surface to find the nearest energy 
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minimum, without crossing any energy barriers. The generation of trial crystal 
 structures involves exploring all structural parameters, which define the crystal 
packing of a molecule and to create enough starting points so that all relevant local 
minima are reached after local lattice energy minimization. In practice, it is rarely 
realistic to locate all local energy minima; their number can be very large, particularly 
in the high‐energy regions of the energy surface, typically corresponding to poorly 
packed structures. However, a useful method should aim to find those energy minima 
that are low enough in energy to correspond to observable crystal structures.

The degrees of freedom that must be sampled during structure generation include 
the six bulk parameters defining the crystallographic unit cell: three cell lengths (a, 
b, and c) and three angles (α, β, and γ), and the internal structure of the unit cell—the 
positions and orientations of molecules within the unit cell (6 degrees of freedom per 
molecule)—as well as any flexible intramolecular, conformational degrees of free-
dom. One can immediately see that this is a high‐dimensional problem. Excluding 
intramolecular degrees of freedom, a crystal structure containing G molecules in the 
unit cell (G is used in preference to Z [49], whose crystallographic meaning is the 
number of formula units in the unit cell, so differs from Z for co‐crystals, solvates, 
and salts) is defined by 6 + 6G − 3 degrees of freedom, 6 defining the unit cell param-
eters and 6G − 3 to position the molecules in the unit cell (3 of the total 6G degrees 
of freedom correspond to combinations of molecular translations that translate the 
entire unit cell in space, leaving the structure and energy unchanged).

The difficulty of sampling an energy landscape sufficiently well to locate all local 
minima is known to increase very quickly with the dimensionality of the phase space 
that must be searched. Generating a set of trial structures that leads to all local lattice 
energy minima being located in such a high‐dimensional space has been one of the big 
problems for CSP. The scaling of the difficulty of this problem with the dimension-
ality of the search can be illustrated most easily by considering a simple grid–based 
sampling: bounds are set for each degree of freedom, and trial structures are built at 
regular intervals for each parameter between these bounds. A grid taking N values for 
each structural parameter for a problem with D dimensions involves ND combinations 
of the values of each structural parameter, each corresponding to a trial structure that 
must be lattice energy minimized. Single component crystal structures of organic 
molecules commonly contain 2, 4, or 8 molecules in the unit cell, corresponding to 
15, 27, and 51 degrees of freedom, assuming no intramolecular degrees of freedom. 
Even for very coarse grids, sampling a few values for each degree of freedom, the 
number of trial structures required for a grid search is in excess of 109 for the simplest 
systems; energy minimizing this number of trial crystal structures is unmanageable, 
even using large‐scale high‐performance computing resources.

One simplification to the problem comes through the use of space group  symmetry; 
the common values mentioned earlier for numbers of molecules in the unit cell are 
dictated by space group preferences for organic molecules, which are clear from 
 surveys of the CSD [50]. This unequal distribution of observed crystal structures 
among the 230 possible space groups reflects favorable combinations of symmetry 
elements that enable close packing of molecules [19], and is often taken advantage of 
in structure searching strategies. Rather than perform the generation and lattice 
energy minimization with common values of G, it is usual to generate structures in a 
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set of the most commonly observed space groups. One advantage of using space 
group symmetry is that the generation of crystal structures can be restricted to the 
most commonly observed space groups, under the assumption that space group 
statistics from already known crystal structures reflect the probability that low‐
energy crystal structures can be found within that space group.

The second advantage of using space group symmetry is in the reduction in the 
dimensionality of the search space. Within a particular space group, the structure 
 generation problem is greatly simplified. First, space group symmetry usually places 
constraints on the unit cell parameters, fixing the values of some unit cell angles in all 
but triclinic crystal systems and sometimes reducing the number of independent unit 
cell lengths. In the extreme case of a cubic unit cell, the 6 degrees of freedom defining 
the unit cell are reduced to 1 independent cell length, with all cell angles fixed at 90°. 
In more commonly observed monoclinic and orthorhombic crystal systems for organic 
molecules, the number of unit cell degrees of freedom is reduced to 4 and 3, respec-
tively. The more important simplification afforded by space group symmetry comes 
from only having to consider the position and orientation of molecules in the crystal-
lographic asymmetric unit. Once the molecules in the asymmetric unit are positioned, 
all other molecules in the unit cell can be generated from the space group symmetry 
operations. Given that most single‐component crystal structures have only one mole-
cule in the asymmetric unit, there are only 6 degrees of freedom (3 describing the 
molecular position and 3 describing its orientation) required to define the molecular 
arrangement within the unit cell. The dimensionality of searches within common 
space groups is now typically reduced to between 9 and 12.

The choice of space group symmetries is clearly important. Early CSP studies 
 typically only considered 4–10 of the very commonly observed space groups [51–54]. 
It is now more common that 20–60 space groups are included in CSP studies [38, 
55–60], and some recent studies have considered all 230 space groups in their search 
[8, 9, 61]. It is worth noting that, even when all space groups are considered, the 
reduced dimensionality of generating crystal structures without a space group lowers 
the complexity of the search in comparison to searching without space group sym-
metry. A further consideration in space group selection is that approximately 10% of 
reported molecular crystal structures contain more than one independent molecule in 
the asymmetric unit (Z′ > 1) [62]. Z′ > 1 is naturally difficult to sample, given the extra 
degrees of freedom that must be considered in positioning two or more molecules 
independently. However, this situation should be included in predictions, and success-
ful predictions have been reported with Z′ up to 4 [28, 61, 63].

Having defined the structural degrees of freedom and dimensionality of the space 
to be searched, we now come to the methods used to generate trial crystal structures. 
Many methods have been developed for this step, an example of which is the grid 
search method described earlier. In practice, grid searches are rarely used. Early pio-
neering approaches, such as Williams’ “Ab initio molecular packing analysis” [64] 
and Dzyabchenko’s prediction of benzene’s packing modes [51], used the random 
generation of structures: trial structures are generated with randomly chosen 
values for all structural degrees of freedom, chosen within sensible physical bounds 
(e.g., to ensure a reasonable density). Many structures will be unphysical, perhaps 
because of overlapping molecules, but can be rapidly rejected; the rest are subjected 
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to lattice energy minimization. An advantage over grid-based searches is that the 
number of trial structures can be continuously increased, whereas a grid fixes 
the number of trial structures in advance. Therefore, the structure generation can be 
monitored, lattice energy minimizing as the search proceeds, with new structures 
added until no unique, low‐energy crystal structures are located.

The method might seem fairly brute force in nature, but the random sampling 
approach has endured and accounts for a large proportion of modern studies [29, 56, 
58, 65–67]. A reason for its success can be rationalized by an observation that low‐
energy structures are usually easily located, due to having wide basins of attraction 
(the volume in multidimensional structural space that lead to a particular local 
minimum) [68]. van Eijck tested the random structure generation method, using 
 between 5,000 and 50,000 trial structures per space group, and found the approach to 
be fairly effective on problems of up to 20 degrees of freedom [49]. This number of 
degrees of freedom covers structure generation for a rigid molecule with up to two 
independent molecules in any space group. Another attractive feature of the random 
search is that the generation of every structure is independent from the variables 
describing any other trial structure: this makes structure generation and energy 
 minimization an almost perfectly parallelizable problem that scales very well on 
large high‐performance computing resources or distributed computing. The main 
modification to the random structure generation method that has occurred over the 
years has been to replace (pseudo)random sequences by low discrepancy and quasi-
random sequences [55, 60, 68, 69]. The principal motivation behind this change is 
that these sequences are designed to provide the most evenly distributed set of struc-
tures at all points in the search. This ensures, as well as possible, that the full range 
of packing possibilities has been sampled.

Of course, CSP has also been a playground for the range of global optimization 
algorithms: genetic algorithms [15], particle swarm optimization [70], metadynam-
ics [14], and simulated annealing [71, 72]. Keeping in mind that the goal is to  produce 
the full set of energetically feasible crystal structures during a search, methods should 
not be judged using the popular criterion of which is fastest at finding the global 
minimum. Low‐energy crystal structures can often be structurally very different, in 
terms of molecular conformation, intermolecular interactions, unit cell dimensions, 
and space group symmetry, so a useful method should balance speed with the 
necessary breadth of sampling the structural degrees of freedom. As yet, there is no 
clear evidence that these more advanced global optimization methods offer a sub-
stantial advantage over random or quasirandom search methods. In fact, some of 
these might be too aggressive at hunting the global minimum, at the expense of a 
broad sampling of all low‐energy packing possibilities.

5.2.3 Structure Ranking

A principal assumption of CSP by lattice energy minimization is that the observed 
crystal structure (or structures, where polymorphism occurs) corresponds to the 
lowest energy possible crystal packings of the molecule in question. Thus, the quality 
of the model used to evaluate the energies of predicted crystal structures is key to the 
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success of CSP studies. The ranking of crystal structures is particularly challenging 
because the possible crystal structures of a given molecule are often found to be 
 separated by less than a kilojoule per mole.

The most commonly applied method is the atom–atom potential, or force field, 
method for calculating lattice energies. Initially considering intermolecular  interactions 
only, the total lattice energy is assessed as a sum over intermolecular interactions, 
U

MN
, which in turn are computed as a sum over atom–atom interactions, U

ik
:

 
U U U
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The functional form of atom–atom interactions must contain terms describing 
the exchange-repulsion, the attractive dispersion interaction between atoms, and the 
electrostatic interaction:

 U U Uik ik ik
rep disp electr (5.5)

Electrostatic interactions can be most simply modeled as the Coulomb interaction 
between partial atomic charges, while the repulsion–dispersion part is usually 
described by a Lennard‐Jones or, more accurately, an exp‐6 form, each of which 
 contains parameters that must be fixed. High‐quality empirically fitted parameter 
sets have been developed, where the atom–atom interactions are parameterized to 
reproduce the structures, sublimation enthalpies and, sometimes, further observable 
properties of organic molecular crystals [73, 74]. Their use has been very effective in 
CSP. Nonempirical approaches to fitting intermolecular force fields, where the 
parameters are derived from quantum mechanical calculations, have occasionally 
been applied for CSP [75–78], but these are currently limited to small molecules, so 
currently lack relevance for typical pharmaceutical molecules.

The most important development in force fields that has advanced the field of CSP 
has been the application of anisotropic atom–atom force fields [79], where the inter-
action between atoms depends on their mutual orientation as well as their separation. 
In terms of the physical contributions to intermolecular interactions, anisotropy is 
most important in the electrostatic component [80], which can be modeled using 
 distributed multipole methods, where each atomic site is assigned a dipole, quadru-
pole, and sometimes higher angular momentum functions, in addition to its partial 
charge [81]. These distributed multipole methods are necessary to capture details of 
the molecular charge distribution such as lone pairs and π‐electron density. As with 
atomic partial charge models, the charge distribution in a molecule is determined 
from a quantum mechanical calculation on the isolated molecule.

The failings of simpler models that lack directionality in the atom–atom interac-
tions can be very pronounced in CSP of hydrogen bonding molecules. A molecule 
can find many ways of filling space to give a crystal structure with reasonable density, 
and the subset of structures in which hydrogen bond acceptors and donors are in 
close proximity can still be large. A model that lacks directionality in the electrostatic 
model does not distinguish structures in which hydrogen bond donors approach a 
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lone pair from structures with any other acceptor orientation around the donor. Thus, 
their energies are not distinguished in such a simple energy model. With an aniso-
tropic electrostatic model, in which atomic dipoles and quadrupoles can adequately 
 represent lone pair density, structures with favorable hydrogen bond geometries are 
preferentially stabilized [6, 28]. It has been shown that, for hydrogen bonding mole-
cules, the proportion of observed crystal structures that are located at, or within 1 kJ/
mol of the lattice energy global minimum increases by about 15% when an atomic 
point charge model is replaced by atomic multipoles [6]. It is also noticeable in the 
results of CSP blind tests that the most consistently successful force field methods 
employ anisotropic electrostatic models [1, 82, 83].

The remaining limitation of the atom–atom method described earlier is that inter-
actions are assumed to be pairwise additive: the interaction between any pair of 
atoms or molecules does not depend on the positions of the other molecules in the 
crystal. The pairwise additive approximation is appealing because of the computa-
tional savings that result from ignoring many‐body interactions. However, the 
 cooperativity of interactions can be important and is ignored in these models. 
The most rigorous solution is to include a polarizability on each atom so that its mul-
tipole moments can adjust in response to the electric field generated by all other 
atoms in the crystal, giving the induction energy contribution to the lattice energy. 
This approach is currently rarely applied, due to the expense and technical difficulty 
of having to reevaluate the induction energy at every step of a lattice energy minimi-
zation. A much simpler approach that has started to become popular is to evaluate the 
charge distribution in a molecule from a calculation where the molecule is embedded 
in a polarizing continuum, with a dielectric constant that is typical of the organic 
solid state ( 3) [46].

The atom–atom force field method can be extended to include intramolecular inter-
actions, through bond stretch, angle bending, and torsional energy terms. However, 
another result that has emerged from numerous literature studies, as well as the blind 
tests, is that such intramolecular force fields are unable to model intramolecular 
energies with sufficient accuracy for CSP. In their place, hybrid approaches have been 
developed, coupling electronic structure methods (usually DFT) to describe the 
molecular geometry and intramolecular energy, with atom–atom force fields. 
The approach was first proposed by van Eijck in his studies of glycol, glycerol, and 
monosaccharides [33, 84] and has since been successfully applied to a range of some-
times quite flexible molecules [29, 58]. While the expense of the quantum mechanical 
calculations necessary for evaluating the intramolecular energy in tens of thousands of 
crystal structures would be prohibitive, the energies can be reused between crystal 
structures with the same, or very similar molecular geometries, by storing all quantum 
mechanical results in a database and building up approximate models for estimating 
the energies of molecular geometries that are close to a geometry, which has been 
sampled in a previously encountered crystal structure [31].

The main alternative approach to force field methods that has emerged in the past few 
years is the application of solid‐state (periodic) DFT calculations for the lattice energy 
minimization and energetic evaluation of predicted crystal structures. The main weak-
ness of DFT is its failure to account for the attractive dispersion interactions between 
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molecules. While this is a serious limitation for molecular crystals, where dispersion can 
account for most of the binding energy, DFT can be supplemented by a force field 
“ dispersion correction” [10]. These dispersion‐corrected DFT methods have shown 
remarkable success, particularly in the fourth CSP blind test, where their use led to the 
successful prediction of all four target molecules [9, 82]. The cost of lattice energy min-
imization with solid‐state DFT is many orders of magnitude more expensive than force 
field methods. Therefore, the approach developed by Neumann and co‐workers is to 
generate and energy minimize crystal structures with a force field that has been tailored 
to the molecule under investigation [85]. As long as the force field is sufficiently accu-
rate, only the lowest energy structures from the force field search must be refined using 
solid‐state DFT calculations.

A final remaining consideration in the thermodynamic ranking of crystal struc-
tures is that the stability of a crystal structure at a given temperature and pressure is 
governed by the free energy, not simply the lattice energy. Including pressure in the 
ranking of crystal structures is straightforward, through including a PV term to the 
calculated lattice energy, during lattice energy minimization and ranking of predicted 
structures. In this way, CSP can be used to predict polymorphs that emerge at high 
pressures [86, 87].

Including the effects of temperature is more challenging, as it requires an 
assessment of the heat capacity and entropy of each predicted crystal structure. 
Differences in these properties will arise either through differences in disorder 
( contributing to configurational entropy) or differences in frequencies of the lattice 
vibrations between structures. While disorder in crystal structures can sometimes be 
inferred from families of structurally related structures on the crystal energy 
landscape [88–90], predicted structures are usually assumed to be perfectly ordered. 
The influence of lattice vibrational contributions in CSP was assessed by van Eijck 
[32], who showed that vibrational entropy differences could be significant and lead 
to important re‐ranking of the stability of predicted crystal structures. Recently, 
Nyman and Day evaluated lattice energy and entropy differences between  polymorphs 
of over 500 organic molecules (Fig. 5.5), demonstrating that lattice vibrational con-
tributions to free energy differences can be as large as 3 kJ/mol at room temperature 
[91]. While this contribution is usually smaller than static lattice energy difference, 
which range up to about 10 kJ/mol, it causes a re‐ranking of polymorph stability in 
about 10% of cases. Lattice vibrational energy contributions are currently only rarely 
included in CSP studies [92, 93], but should see an increased usage as the methods 
for calculating the vibrational frequencies themselves [94] improve in accuracy 
and efficiency.

5.3 APPLICATIONS OF CRYSTAL STRUCTURE PREDICTION

Crystal structure prediction methods do not aim to replace experimental studies 
but are a complementary technique to experimental investigations. The roles that 
CSP can play in such investigations can fall into three categories: to characterize 
an  existing material, usually as an aid to crystal structure determination from 
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limited experimental data; to inform solid form (polymorph, salt or co‐crystal) 
screening; and to guide the discovery of new crystal forms with targeted 
properties.

5.3.1 Crystal Structure Determination

The first, and earliest, application of CSP was to aid in crystal structure determina-
tion of an uncharacterized material, combined with experimental observations that, 
on their own, are insufficient to provide a structure. The idea is that CSP calculations 
can provide a set of plausible, energetically feasible structures that could be used as 
starting models to refine against experimental data. Under the assumption that the set 
of predicted structures is complete, and sufficiently accurate that the experimental 
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observable can be predicted with confidence, the correct structure can be identified 
by comparing simulated properties of the predicted structures with the observed data.

This method has most commonly been applied where the experimental data 
 consists of a powder X‐ray diffraction pattern that is not of high enough quality to 
allow direct determination of the crystal structure. As just a few of many examples, 
Schmidt determined the structure of the pigment methylbenzimidazolonodioxazine 
from an unindexable powder pattern [95], Wu and co‐workers determined the crystal 
structure of the diastereomeric salt l‐ephedrine d‐tartrate by combining CSP with 
synchrotron powder X‐ray diffraction [96], Perrin, Neumann and co‐workers deter-
mined the structure of the unstable form III of paracetamol (acetaminophen) [61], 
and the second polymorph of scyllo‐inositol was determined from a mixed‐phase 
powder X‐ray diffraction pattern using CSP‐generated models [97]. The method has 
also been applied to solve the structure of an acetic acid:theobromine co‐crystal with 
unknown stoichiometry of its components using CSP calculations at various compo-
sitions to generate models from which diffraction patterns were simulated [98]. More 
recently, CSP has been combined with various other experimental methods for deter-
mining crystal structures, such as transmission electron microscopy [99], which can 
provide diffraction patterns from sub‐micron‐sized crystallites, leading to the struc-
ture of a new polymorph of theophylline from picogram quantities of material [59].

Developments in electronic structure methods have led to accurate methods for 
predicted NMR chemical shifts from a crystal structure [100]. This has contributed 
to the development of methods for determining structures from solid‐state NMR. The 
assigned 1H chemical shifts have been shown to provide enough information to select 
the observed crystal structure of many drug‐like molecules from sets of CSP‐ 
generated structures [101, 102], and this combination of CSP with solid‐state NMR 
was recently used to determine the structure of a polymorph of 4‐[4‐(2‐adamantyl-
carbamoyl)‐5‐tert‐butyl‐pyrazol‐1‐yl]benzoic acid, a pharmaceutical compound 
developed for the treatment of Type 2 diabetes [38].

The combination of experimental data with CSP partly relaxes the requirement for 
very accurate final energies of the predicted structures. As long as the correct crystal 
structure is located within a reasonably small subset of low‐energy predicted struc-
tures, it can be left to the experimental data to identify the structure. This was the case 
in the CSP‐NMR study of 4‐[4‐(2‐adamantylcarbamoyl)‐5‐tert‐butyl‐pyrazol‐1‐yl] 
benzoic acid, where a lower quality intramolecular model was used to speed up the 
prediction process. This model overestimated the energy differences between crystal 
structures containing different conformers, but a good structural model could still be 
identified by combining energetic assessment with comparison of simulated and 
measured NMR chemical shifts [38].

Another aspect of structural characterization where CSP can provide insight is the 
nature of disordered structures. CSP calculations generate an ensemble of perfectly 
ordered structures. Configurational disorder in molecular crystals can occur where 
a whole molecule occupies different orientations, or a fragment of a large, flexible 
molecule can take different orientations with little change in total lattice energy. 
In these cases, multiple structures can be identified on the crystal energy landscape 
with very similar overall packing and lattice dimensions, but different molecular 
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orientations [88, 89]. A similar situation can occur in layered crystal structures, 
where multiple related lattice energy minima differ by the relative arrangement of 
layers of molecules [57, 103]. The structures and calculated energies resulting from 
CSP studies can help interpret such disordered structures, the features of crystal 
packing that lead to disorder and sometimes help refine structural models against 
diffraction data.

5.3.2 Solid Form Screening

The second type of common application of CSP in a pharmaceutical materials  context 
is to use the calculations to anticipate the likely solid forms of a molecule. This is 
usually in the context of polymorphism; different crystal packings of a molecule can 
occur, sometimes concomitantly, but more commonly due to changes in crystallization 
conditions. Many important properties, such as solubility, dissolution rate, tabletabil-
ity, and crystal habit can depend strongly on polymorph. Therefore, an unanticipated 
change in polymorph can be disastrous for a pharmaceutical molecule. The conse-
quences can be particularly difficult to deal with if the new polymorph has a more 
stable structure, lowering solubility and sometimes leading to the disappearance of 
previously known polymorphs [104, 105]. In this context, CSP can be applied to 
assess the likelihood that other polymorphs could exist for a given molecule, and the 
risk that the thermodynamically most stable structure has yet to be identified.

The energy range of the crystal energy landscape in which relevant potential poly-
morphs of a molecule can be found can be limited by studies on known polymorph 
pairs, which show that 95% of polymorphs are separated by less than 7.2 kJ/mol and 
over 98% by less than 10 kJ/mol [91]. One major problem in the anticipation of poly-
morphism is that CSP studies almost always lead to many more putative crystal 
structures in such an energy range than there are observed polymorphs. The reasons 
why CSP tends to overpredict polymorphism have recently been discussed in detail 
by Price [106]. Two main considerations are that (i) limitations to the energy models 
that are currently used, including the fact that many local energy minima on the 
lattice energy surface might be unstable once thermal motion is considered [107] and 
that (ii) CSP currently takes no account of the kinetic route to the low‐energy crystal 
structures. Low‐energy crystal structures might exist on the energy landscape, but be 
particularly inaccessible under typical crystallization conditions. Related to this is 
the possibility that many CSP structures are potentially observable, but the right 
experimental conditions that lead to these structures have not yet been investigated. 
Despite these considerations, there have been several reports where polymorphs of 
pharmaceutical molecules have been predicted in advance of their eventual experi-
mental realization. As an example, Zaworotko and co‐workers discovered a second 
polymorph of aspirin during attempted co‐crystallization studies [108], the structure 
of which had been predicted a year earlier by CSP [109]. In a similar story, Lutker 
and Matzger reported on the polymorphism of the anticonvulsant oxcarbazepine 
[110], where the newly discovered form II was in excellent agreement with the 
 second lowest energy predicted polymorph of Cruz‐Cabeza and co‐workers [111]. 
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In neither of these examples were the experiments that led to the new polymorph 
prompted or guided by the CSP results. However, as confidence grows in the 
 reliability of CSP methods, experimental polymorph screening might be conducted 
as a result of interesting predicted polymorphs, as in the case of a predicted [111, 112] 
and subsequently discovered [112] polymorph of 10,11‐dihydrocarbamazepine. 
These interdisciplinary approaches, where CSP is applied early on in solid form 
screening to assess a molecule’s propensity for polymorphism and likely packing 
motifs, should become more widely adopted as a part of polymorph screening.

Beyond polymorphism, the solid form diversity of a drug molecule can be delib-
erately increased by forming different salts or, more recently, co‐crystals of the active 
pharmaceutical ingredient. Considering their widespread use as the solid form for 
pharmaceutical molecules, CSP studies on organic salts have been fairly limited. 
This can be explained by the added difficulty of structure generation with independent 
cation and anion species in the unit cell, as well as challenges in accurately modeling 
the strong electrostatic and polarization interactions between charged species. 
Nevertheless, some successful applications of CSP to salt systems have been reported 
[113–115], demonstrating that salt CSP is possible. Co‐crystal prediction presents 
similar challenges to salts, with the complication that the stoichiometry of a molecule 
and its co‐former is not fixed by charge balance, as in the case of salts. Therefore, the 
prediction of co‐crystal structures requires an assessment of different compositions 
during CSP. The resulting issue of comparing the stabilities of predicted structures 
with different compositions is resolved by assessing their stability relative to the 
same molar ratio of the pure crystal structures of the potential co‐crystal formers 
[98, 116]. Thus, such calculations can also help assess whether a co‐crystal is likely 
to form at all, in preference to separate crystallization of the pure components 
[98, 116–122]. Again, these calculations are most powerful when the CSP results are 
able to guide experiments to new solid forms. Recently, CSP was used to suggest a 
seeding approach to the realization of an elusive co‐crystal of caffeine with benzoic 
acid, using the predicted co‐crystal global minimum to select heteronuclear seeds 
that led to a co‐crystal that could not otherwise be produced [122].

The prediction of solvate formation, where solvent of crystallization is incorpo-
rated into the crystal lattice, can be addressed using similar methods to co‐crystals: 
two component CSP at a range of stoichiometries of the organic molecule and 
 solvent, followed by comparison to the energies of the pure phases [98, 116]. 
A  complication for solvates is the range of possible stoichiometries, as well as vari-
able stoichiometry solvates, where the solvate molecules fill a pocket or channel in 
the host crystal structure formed by the main molecule, in which the amount of 
 solvent present could vary, depending on crystallization and environmental condi-
tions. In such cases, an alternative approach to predicting solvate formation is 
required. It has been shown that the solvent‐free host structure of these inclusion 
solvates corresponds to local energy minima of the crystal energy landscape of the 
host molecule [123, 124]. Therefore, crystalline solvate prediction could be addressed 
through analysis of the higher energy predicted structures that result from CSP for 
structures with pockets or channels that could accommodate solvent molecules [124].
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5.4 SUMMARY

The purpose of this chapter has been to overview current methods in CSP by global 
lattice energy minimization, their current limitations, and the recent developments 
that are making these computational methods applicable to a range of molecular 
organic materials, including pharmaceuticals. Our understanding of the crystal 
packing of organic molecules continues to develop, as do the theoretical and 
 algorithmic ingredients to CSP. With these developments, our confidence in using 
these methods in an applied context increases. The applications of structure predic-
tion in structure  determination and solid form screening have been summarized. 
These methods are already at a stage where they can provide important insight into 
the solid forms of  pharmaceutical molecules, can be applied to molecules of 
 pharmaceutical relevance, and should continue to find more widespread use in the 
pharmaceutical industry.
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6.1 INTRODUCTION

Polymorphism of an active pharmaceutical ingredient (API) is an important area of 
focus in the development of life‐saving medicines. Over the past three decades, 
 multiple cases of clinical failures and drug product recalls have been related to a 
change in the API solid form, which raised concern for the overall safety and efficacy 
of the drug product. In an article by Lee et al. [1], such events were summarized in a 
timeline showing the impact that crystal form changes had on multiple solid oral 
 dosage forms that include Tegretol (1988), Norvir (1998), Coumadin (2010), and 
Avalide (2010), to name a few. A further investigation was conducted by Lynn [2] 
revealing that approximately one injectable product recall has occurred each year 
from 2003 to 2011 due to precipitation/crystallization of the API [2]. Based on this 
information, it becomes critical to reflect on our scientific designs in the effort to 
overall improve our understanding of solid‐state chemistry.



118 INTEGRATING COMPUTATIONAL MATERIALS SCIENCE TOOLS

Typically, polymorph screens have been designed to identify solid forms that 
would be present during the manufacturing of both API (crystallization, drying, 
milling, etc.) and drug product, as well as during long‐term stability. Collaborations 
throughout the solid‐state community have provided academic and industrial 
 scientists the ability to better screen for polymorphs [3], control crystallization 
processes [4], and select particle properties to ensure robust drug product manufac-
ture [5]. Utilizing scientific advancements in the understanding and control of 
 nucleation [6], supersaturation [7], and hydrate screening has improved the ability 
to determine the most  thermodynamically stable form for development. An addi-
tional approach, designated as high throughput screening (HTS), became popular 
over the past 15 years as it has the ability to test thousands of samples using multiple 
variables (temperature,  solvents, water activities, excipients, etc.) to define the solid 
form landscape. Some success was made in identifying new crystal forms that are 
relevant in drug development [8]. Unfortunately, such traditional approaches, 
manual and HTS, in solid form screening have not reduced the occurrences of 
recalls due to solid form changes and/or precipitation as noted earlier. It has been 
recognized that there is a need to move away from this brute‐force shotgun approach 
to a more proactive computer‐aided design of API to impart the appropriate solid 
form characteristics for drug product development.

While the goal of the solid‐state chemist is to select the thermodynamically stable 
form to be used in the development of a drug product that provides robust performance, 
stability, and manufacturability, it is important to consider the quote from Maria 
Kuhnert‐Brandstatter (1975) “Probably every substance is potentially polymorphic. 
The only question is whether it is possible to adjust the external conditions in such a 
way that polymorphism can be realized or not.” It is clear that the environmental con-
ditions of an API solid form, at normal manufacturing and storage condition, are very 
different from the conditions that the API solid form is exposed to in the drug product. 
The formulation can alter the environment in such a way that the thermodynamically 
stable form becomes metastable. This is a common occurrence when thermodynami-
cally stable anhydrous forms are formulated to prepare an aqueous‐based dosage 
form, in which a precipitation of a hydrate with lower solubility is observed [9].

Over the past few years, materials scientists have designed and conducted research 
to determine the stable form in the conditions of the formulated dosage form. Luthra 
et al. identified that the thermodynamically stable form, anhydrous crizotinib free 
base, converted to a quaternary complex (API, phosphate, water, sucralose) in the 
formulated oral solution in which precipitation was observed [9]. This spurred the 
design of new solid form/polymorph investigation designated as the Formulation 
Form Screen. In this case as well as research published by Arora et al. [10, 11] and 
Bak et al. [12], unintended cocrystal formation occurred between the stable form of 
the API and the formulation components. As the number of variables and conditions 
exponentially increase as the stable API form is exposed to a formulated environ-
ment, there becomes a need to develop new approaches to test the reactivity of the 
API with its formulation components.

Computational tools have been accepted and applied within the pharmaceutical 
industry, typically in the bulk powder processing arena, where tools such as compu-
tational fluid dynamics (CFD) and discrete element methods (DEMs) have been 
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utilized [13]. However, the field of computational materials science provides the 
 opportunity to gain a fundamental understanding at the molecular level, connectivity 
between molecular structure, crystal structure, surface chemistries, and their 
 relationship to bulk properties such as dissolution [14], particle shape [15, 16], and 
breakage [17, 18]. Although a more mature field within other industries, there has 
been increasing interest in this field from the pharmaceutical industry in an effort to 
seek better ways to optimize the bulk properties of the API for optimum performance, 
stability, and manufacturability. The intent of this chapter is to provide a brief sum-
mary of computational materials science approaches utilized to direct and guide 
experimental studies in assessing the risk of identifying a more stable API crystal 
form, while providing a rationale at the molecular level to justify the selection of the 
optimal form and particle for robust drug product development. In order to mitigate 
limitations of each of the methods described in this chapter, it is recommended that 
general computational support for solid form selection in the pharmaceutical industry 
should be based on a combination of these tools. Additionally, multiple  computational 
approaches are covered in detail within this book, that is, structural  informatics—
Chapter  2, σΗΒ‐charges analysis—Chapter  3, crystal structure prediction (CSP)—
Chapter 5, as well as in a recent review by Abramov [19].

6.2 FROM MOLECULE TO CRYSTAL STRUCTURE

Sulopenem was a broad‐spectrum antibacterial drug candidate in development at 
Pfizer. In order to support the development of clinical supplies for Phase II studies, a 
polymorph screen was needed to identify the thermodynamically stable form to 
 manufacture the drug substance. The experimental studies were challenging for this 
molecule due to its unique material properties. Chemical instability of the molecule 
in solution deterred the use of long‐term slurries based on solvent‐mediated phase 
transformations applying Ostwald’s rule of stages, typically done in a conventional 
polymorph screen [20]. Also, specific impurities resultant due to chemical degrada-
tion can either inhibit nucleation of the stable form or stabilize metastable forms on 
the time scale of the low‐energy polymorph screen experiment. Thus, there was the 
possibility that the polymorph screen could miss the thermodynamically stable form 
[21]. In addition to chemical reactivity, the compound was also known to be potent, 
which required special handling conditions resulting in more difficult and costly, safe 
experimental studies.

An abbreviated, nonconventional, polymorph screen was conducted on sulope-
nem free acid. A total of eight forms of sulopenem have been discovered and are 
consistent with three anhydrous forms (Forms A, B, and D), one hydrate (Form C), 
three solvates (Forms E, F, and G), and an amorphous form. Form B was confirmed 
as the most stable form in the short‐term slurries at room temperature (RT) and 5°C. 
This form also resulted from competitive slurries between Form B and pairings of 
Forms A, C, and D. Since the isothermal slurries at 5°C and RT were conducted 
for  limited time due to rapid chemical degradation, computational methods were 
investigated to complement the experimental results, that is, build more confidence 
to establish whether or not Form B is the most stable anhydrous form.
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6.2.1 Single Crystal Structure

The crystal structure of the sulopenem Form B with the absolute chirality of the drug 
molecule was determined at RT by single crystal x‐ray diffraction analysis. The unit 
cell for this crystal structure is shown in Figure 6.1. The molecular conformation 
confirmed attractive interactions between the oxygen and sulfur atoms [22].

6.2.2 Structural Analysis

Hydrogen bond (HB) propensity analysis was conducted for sulopenem, which con-
tains two potential HB donors and five possible HB acceptors, as shown in Figure 6.2. 
COSMOtherm and Logit HB propensity (LHP) analyses were used to assess the 
competing pair‐wise interactions, and confirm the ones that might be found in the 
most stable solid form.

6.2.2.1 HB Analysis: COSMOtherm Analysis of σ
HΒ Charges The COSMOtherm 

program [23] uses quantum mechanics to calculate screening (σ) HB charges for a 
molecule, hence giving a relative indication of the strengths and weaknesses of the HB 
donors and acceptors present. The best donor and acceptor pairings would be expected 
to be seen in the stable solid form [19]. The calculated sigma HB charges for the sulo-
penem are shown in Figure 6.2. The strongest acceptor and donor, that is, sulfonyl 
acceptor and carboxyl donor, respectively, are observed in the experimental crystal 
structure. While the sulfonyl acceptor is much stronger than all other acceptors, there 
is a noticeable competition between carboxyl, tertiary amide, and alcohol oxygens.

Y

X Z

C

A

B

FIGURE 6.1 The unit cell of sulopenem Form B.
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6.2.2.2 HB Analysis: LHP Analysis The LHP model developed by Pfizer Institute 
for Pharmaceutical Materials Science (PIPMS) analyzes potential hydrogen bonding 
functional groups in order to make predictions on statistically likely pair‐wise 
hydrogen bonding interactions [24]. These most likely interactions would be expected 
to be seen in the thermodynamically stable form.

The Cambridge Structural Database (CSD) was surveyed for crystal structures 
containing groups with similar functionality as is found in sulopenem, and the results 
were used to build and test a propensity model. The CSD search was performed within 
a subset of the crystal structures displaying the sulfonyl fragment (261 observations). 
In addition, these 32 observations of the combination of secondary alcohol and 
 carboxylate fragments in the database were used in building the model. No unspeci-
fied fragments (“other”) were included in the training set of the observed acceptor–
donor pairs in order to improve esd’s of the model parameters. The resulting model 
gives very high accuracy of predictions for the training set (831 acceptor–donor pairs) 
of 85.4%. The receiver operating characteristic (ROC) curve area under the curve 
(AUC) is 0.89. The hydrogen bonding probabilities predicted by the model for the 
sulopenem fragments are presented in the Table 6.1.

The Logit predictions are in a good agreement with the σΗΒ charges analysis. 
The  strongest donor–acceptor pair is the carboxyl–sulfonyl one, followed by the 
alcohol–sulfonyl pair. Probabilities of interactions between the fragments involving 
other than sulfonyl acceptor are much lower, displaying noticeable overlaps within a 
confidence interval of 80% (Table 6.1). Any of those fragments may form a HB in an 
actual crystal structure complementing the expected strongest interaction between 
the carbonyl and sulfonyl groups.

–0.0341
H

0.0291

N
O

0.0279

O

H
–0.0554

0.0360

0.113

O

O

S

S

S
O

FIGURE  6.2 σΗΒ‐charges of the hydrogen bond (HB) centers. The highest donor and 
acceptor values are presented in bold.



122 INTEGRATING COMPUTATIONAL MATERIALS SCIENCE TOOLS

Y

X Z

FIGURE 6.3 Hydrogen bonding and packing diagram in Form B sulopenem.

6.2.3 Molecular Packing and HB Geometry Analyses

The packing plot (Fig. 6.3) shows the two types of hydrogen bonds observed experi-
mentally: (i) between the carboxyl and sulfonyl groups and (ii) between the alcohol 
and tertiary amide. This observation is in agreement with the hydrogen propensity 

TABLE 6.1 HB Propensities Predicted by the Logit Model

Donor Acceptor
HB 

Propensity
Propensity 

Lower Bounda

Propensity 
Upper Bounda

Carboxyl Sulfonyl 0.784 0.706 0.846
Alcohol secondary Sulfonyl 0.686 0.620 0.746
Carboxyl Amide tertiary 0.233 0.113 0.422
Alcohol secondary Amide tertiary 0.155 0.076 0.290
Carboxyl Carboxyl 0.083 0.057 0.120
Carboxyl Alcohol secondary 0.074 0.048 0.112
Alcohol secondary Carboxyl 0.052 0.033 0.081
Alcohol secondary Alcohol secondary 0.046 0.032 0.066
Carboxyl Carboxyl 0.039 0.026 0.061
Alcohol secondary Carboxyl 0.024 0.014 0.041
Carboxyl Amide tertiary 0.007 0.002 0.022

a Propensity prediction range within confidence interval of 80%.
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assignment by both the σ
HB

 charges and Logit models. Moreover the strongest 
 interaction, between carboxyl and sulfonyl functional groups, forms an extended 
 network throughout the crystal, which is crucial for the polymorph stability.

6.2.4 Full Interaction Maps

The Full Interaction Map tool, developed at the Cambridge Crystallographic Data 
Centre (CCDC), allows for qualitative and quantitative analyses of the intermolec-
ular environment to be carried out [25]. To prepare a full interaction map, the crystal 
structure conformation of a known polymorph is analyzed and compared with 
 fragments exhibiting similar chemical features from the many published structures in 
the CSD. A map describing the environment around the molecule can then be pre-
pared, which comes from combining the data obtained from the environment around 
the individual fragments analyzed from the CSD. Changes in both the chemical 
nature of the fragment and the conformation of the molecule are reflected in the 
resulting full interaction map.

A full interaction map  [25] was prepared for sulopenem using data from 
 fragments found in the CSD (v5.34) [26]. The results are shown in Figure 6.4a. The 
clouds indicate regions where HB acceptors (grey) and donors (gray) are most 
likely to be found, based on interaction data mined from the CSD. The most 
intensely clouds indicate a greater likelihood that an interacting group will be 
found in that region. The carboxyl and hydroxyl groups on sulopenem are seen to 
have distinct regions of interaction density located near them. Conversely, the 
region around the sulfoxide group exhibits a less dense and more diffuse cloud, 
indicating more flexibility in HB directionality is commonly observed around sim-
ilar groups in the CSD.

A comparison of the fit of the calculated maps with the observed interactions 
allows the crystal structure to be assessed in terms of how well the intermolecular 
interactions are satisfied by the existing lattice. By overlaying the intermolecular 
interactions observed in the crystal structure of sulopenem, the carboxyl and 
hydroxyl donor groups are found to form hydrogen bonds in exactly the predicted 
locations, based on the full interaction map. The weaker groups fit the map less 
well. This analysis can be further quantified by creating hotspots, denoting the 
locations with the highest density for each cloud. The relative heights of these 
hotspots can be used to compare the interaction clouds. Figures 6.4a and b show 
these hotspots and their relative intensities for sulopenem, with observed hydrogen 
bonds overlaid.

It is clear that the regions with the strongest preference for acceptors to be located 
nearby are fully satisfied. Investigation around the strongest donor region, near the 
carboxyl group, shows that a long C─H⋯O interaction satisfies this acceptor group 
(Fig. 6.4a). The weaker directionality around the sulfoxide group is indicated by the 
lower density values on the hotspots in this area (Fig. 6.4b). This acceptor is satisfied 
by a hydrogen bonding interaction, but in a suboptimal geometry.

Overall the crystal structure of sulopenem matches the predicted interaction geometry 
as assessed by these full interaction maps. This supports the conclusion that the known 
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anhydrous form exhibits a satisfactory network of intermolecular interactions, and that a 
different packing scheme would not be likely to result in a more stable polymorphic form.

6.2.5 Crystal Structure Prediction

With five torsion angles (Fig. 6.5), sulopenem is a challenging compound for CSP 
calculations. Because of the flexibility, an initial exploration for likely conformations 
in the solid state needs to be conducted first before the computer generation of crystal 
structures.

6.2.5.1 Conformational Searches Rational selection of preferred conformations 
for the CSP study of sulopenem was performed according to a previously proposed 
approach [27]. For that, a combination of the OMEGA conformational search [28] 

56.04 32.02

17.20

94.92 14.22

12.79

14.02

(b)

(a)

FIGURE 6.4 (a) Full interaction map for sulopenem. The location of neighboring molecules 
satisfying the carboxylic acid donor and acceptor group with full interaction map overlaid is 
shown. (b) Hotspots for sulopenem full interaction map. Relative heights are reported for each. 
(see insert for color representation of the figure.)
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and TURBOMOLE [29] calculations were used to effectively select conformations 
of high importance in the solid state. The OMEGA‐generated conformations were 
reminimized at BP‐TZVP‐COSMO level of theory in an implicit solvation model for 
water [30]. This was followed by a COSMOtherm conformer population analysis in 
self‐media, mimicking an amorphous solid‐state environment [23]. Four conformers 
with the highest populations were selected for further study. Among those con-
formers the crystallographically observed one was the third top ranked.

This search method used for the selection of the conformers above did not  consider 
the rotation of the hydroxyl group. The orientation of such group, however, can be 
of extreme importance for forming stable hydrogen bonds in the crystal structure. 
For each of the four conformers generated earlier, therefore, staggered conformations 
around the hydroxyl group were generated with τ

OH
 = 180, +60 and −60 (Fig. 6.6). 

This procedure resulted in 12 different conformers, which were taken as starting 
point in our CSP calculations.

OH

O

N
OH

O

O

S S

S

H3C

FIGURE 6.5 Sketch and main torsion angles in sulopenem.
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H
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τOH = 180, +60 and –60

O
τOH

O

O

OH
H3C

FIGURE 6.6 Staggered configurations used for the treatment of the ─OH group flexibility.
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6.2.5.2 CSP Methods The CSP methodologies used for this study, which are 
described in Chapter 4, have been developed at the PIPMS, Cambridge University 
[31]. The methodology can be divided into four main steps described (Fig.  6.7) 
as follows:

1. The 12 molecular models taken from the conformational search in the earlier 
section were partially geometry optimized using the code DMol3 [32] (VWM‐
BP/DNP level of theory) implemented in the Material Studio software package 
[33]. For this, torsion angles were fixed and atomic point charges were derived 
to fit the molecular surface electrostatic potential (ESP) for these initial 
conformations.

2. Crystal structures were generated from the selected initial molecular confor-
mations in the seven most popular chiral space groups using the Polymorph 
Predictor (PP) software implemented in Cerius2 [34]. Molecular models were 
treated as rigid during the whole PP process. Lattice energies were evaluated 
(i) using the empirically fitted parameters for the van der Waals contributions 
(Williams 99 or W99 force field) [35] and (ii) using the previously derived 
atomic ESP charges for the evaluation of the electrostatic terms. The generated 
crystal structures were clustered using the COMPACK algorithm also devel-
oped at the PIPMS [36].

3. Molecular conformation adjustments: The 50 most stable crystal structures for 
each family of conformations were reminimized allowing the torsion angles to 
relax and readjust to the effect of crystal forces. For this, the molecules were 
treated as partial rigid bodies (everything was kept rigid except for the torsion 
angles). The force field DREIDING with ESP charges was used in this step [37].

4. Accurate lattice and conformational energies were calculated using GAUSSIAN 
[38] and DMAREL [39]. For each of the low‐energy structures, (i) the molec-
ular model was taken from the crystal structure and was geometry optimized 
again constraining the six torsion angles to the optimized values in the crystal 
structure using GAUSSIAN03 (B3LYP/6‐31G**), (ii) a single‐point energy 
calculation was carried out for the optimized molecular model using a 
 continuum polarization model with a dielectric constant of 2, (iii) atomic 
 multipoles were derived from the molecular electron density in (ii) using a 
 distributed multipole analysis (DMA) [40], and (iv) the crystal structures were 
lattice energy minimized with the GAUSSIAN optimized molecular models, 
the derived multipoles and the W99 intermolecular parameters and using the 
program DMAREL.

6.2.5.3 Choice of Force Field for the Molecular Conformation Adjustments The 
right selection of force fields is very important in CSP to ensure that the results of the 
model applied are meaningful. Rigid models tend to work well when using the W99 
force fields and ESP charges; however, flexible force fields are not as accurate and 
can introduce important errors. In order to choose a suitable force field, experimental 
crystal structures were minimized with various models. Treating the molecules as 
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FIGURE 6.7 Crystal structure prediction (CSP) workflow.
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fully flexible resulted in minimized structures, which were very far from the observed 
crystal structure. For example, using the DREIDING force field and a fully flexible 
molecular model with ESP charges, the minimization of the experimental crystal 
structure resulted in a completely different crystal structure. The RMS difference 
between structures was over 1.3 Å.

A partial rigid body approximation was more appropriate in this case. 
Minimization of the observed crystal structures with partial rigid bodies and three 
different model potentials afforded the results given in Table  6.2. Although 
using COMPASS [41], the crystal structure RMS difference (observed/minimized 
crystal) was smaller, at this step of the calculations the key point was to get the 
conformations right. Therefore, the DREIDING+ESP model was selected as most 
appropriate for this system and used it in for the treatment of flexibility during the 
CSP calculations.

6.2.5.4 CSP Results The results obtained from the CSP calculations are plotted 
in Figure  6.8 in an energy versus density plot. Each of the circles in the plot 
 corresponds to different hypothetical crystal structures generated computationally 
completely ab initio. The property “total energy” contains terms of conformational 
energy (intramolecular) and also lattice energy (intermolecular). The more negative 
the total energy, the more stable the crystal structures. The most stable predicted 
crystal structure (circled structure) corresponded to the crystal structure observed 
experimentally. The calculations also predict the observed structure to be the most 
stable form by almost 7 kJ/mol. This suggests that the potential of polymorphism for 
this system is unlikely, at least for other more stable polymorphs.

The experimental and hypothetical crystal structures are superimposed in 
Figure  6.9 using the COMPACK algorithm. The RMS deviation between these 
 structures is fairly small. The W99 potential with the multipole description of the 
electrostatics, after a minimization of the structures using a partial rigid body model 
and the DREIDING potential, is a potential good model for this system.

From the lattice energy versus relative conformational energy plot (Fig. 6.10), it 
was observed that the experimental structure is the structure with the second lowest 
lattice energy. The lowest lattice energy structure has a very high relative conforma-
tional energy (>12 kJ/mol). The total energy of the observed structure is overall more 
stable than any other hypothetical polymorph.

In summary, a completely in silico screening was used to complement the experi-
mental polymorphic screen of a challenging chemically reactive and potent compound. 
An effective molecular conformational sampling was successfully combined with 
CSP methodologies, which provided high‐quality and reliable prediction results. The 
known anhydrous form of sulopenem free acid was predicted to be the most stable 
crystal structure of all the hundreds of polymorphs generated computationally. These 
results confidently indicated that the likelihood of finding a more stable anhydrous 
form for sulopenem is very low. Overall, this example illustrates the benefits of 
implementing integrated computational approaches as active tools in the identification 
of the thermodynamically stable form.
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FIGURE 6.8 Crystal structure prediction (CSP) results for sulopenem. The circled structure 
matches the observed crystal structure.

FIGURE 6.9 Superposition of the experimental and predicted crystal structures using the 
COMPACK algorithm (tolerance = 15%, RMS = 0.460). (see insert for color representation of 
the figure.)
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6.3 FROM CRYSTALS TO PARTICLES

Crystal shape is an important property for pharmaceutical materials as it can influence 
the ease of API filtration, powder flow properties, stability, and quality. Therefore, 
the ability to control and engineer particle shape is a highly desirable goal. When 
crystals are obtained via crystallization from solution, the solvent choice is often 
considered as one of the primary parameters that can influence the crystal shape. 
The mechanism by which the solvent affects the crystal shape is typically considered 
to be via interaction of solvent molecules with growing crystal faces [42]. If solvent 
molecules interact strongly with a given crystal face, the growth of this face will be 
decreased resulting in crystal habit modification. An impurity formed during the 
synthetic route or a deliberately introduced additive will affect similarly the crystal 
growth and crystal habit. Although the effect of the crystal growing environment 
 significantly influences the resultant habit, the shape of the crystal is also defined 
by the intermolecular forces defining the packing of the solid state and their degree 
of anisotropy. Crystal growth models that predict the crystal shape in isolation of 
growth‐influencing factors, often referred to as vacuum morphology, and take into 
account only intermolecular interactions are very well understood and successfully 
applied [43]. These models rely on crystallographic structure data, which are very 
often available via Cambridge Structural Database. Therefore, clearly a combination 
approach taking into account the intermolecular interactions in the crystal bulk and 
surface interaction with solvent will help better understand crystal morphology and 
identify the potential for crystal shape alteration.

Methods for crystal morphology modeling from crystallographic data have 
become more common since Hartman and Perdok have proposed the periodic bond 
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FIGURE 6.10 Lattice energy versus conformational energy plot.
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chain model to define rate determining step that governs growth rate along the 
direction of a chain [44]. Advancements to this model were realized when crystal 
growth was viewed as attachment of layer of ordered structure to the existing 
crystal  face. Hartman and Bennema then stated that relative growth rates defining 
crystal morphology can be calculated through attachment energy as the difference 
between bulk crystal energy and slice (surface‐specific) energy [45]. The crystal 
and slice energy are calculated applying atom summation force field methods. The 
attachment energy is the energy released when a slice with thickness d

hkl
 is attaching 

to the crystal surface (Fig. 6.11). The algorithm for calculating attachment energies 
is  available in commercial software package such as Materials Studio [33] as well as 
internal software developed in collaboration with academia.

A number of modeling techniques have been exploited to understand and predict 
the growth modifying effect of solvent on crystal surfaces and hence the resultant 
habit [42]. These computational approaches include molecular dynamics and surface 
docking algorithms to study the most favorable intermolecular interactions between 
crystal habit surfaces and solvents in order to establish the overall modification to 
crystal shape in terms of relative growth rates of different crystal faces. Typically 
Molecular Dynamics models are considered to be the most precise model to mimic 
the actual crystal–solvent interface. However, these models are computationally 
expensive due to the high number of molecules involved and requirements for longer 
simulation time in order to achieve reasonable statistics. Molecular docking 
approaches provide a less precise but quicker calculation approach for single solvent 
molecular–crystal face interactions, and could be quite timely if various solvents and 
more crystal surfaces need to be exploited. The work described here employs this 
alternative option for predicting the interaction of solvent media with crystal surface 
and uses this information to model the effect of solvent on the crystal shape grown 
from solution. This method adopts a quantum approach for the calculation of a 
dielectric continuum solvation, in combination with statistical thermodynamics [46]. 
Two commercial software packages—Materials Studio [34] and COSMOtherm 
[23]—are coupled to carry out these calculations. Typically solvation models are 
exploited mainly for prediction of thermodynamic physical–chemical properties 
such as solubility, vapor–liquid equilibrium (VLE), liquid–liquid equilibrium (LLE), 
and pK

a
 in various solvents and solvent mixtures. This methodology is further 

FIGURE 6.11 A growth slice attaching to the surface of the growing crystal utilized for 
attachment energy calculations.
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extended in this work to the calculation of periodic systems, for example, crystal 
 surfaces [47, 48] and applied to study solvent effects on morphology for the model 
compound ibuprofen. Combining the standard morphology prediction tools with the 
COSMO model provides a fast approach to explore the effect of various solvents 
and solvent mixtures on crystal growth. The main advantage of this method is that 
once  the COSMO calculation has been carried out for all surfaces of interest, the 
effect of solvent can be quickly calculated due to the fast algorithms available in 
COSMOtherm software.

A crystal morphology simulation for ibuprofen was performed with Accelrys’s 
Materials Studio software suite, utilizing the morphology module. The crystal 
 structure was originally obtained from the CSD and then fully optimized using the 
COMPASS force field—a priori to morphological calculations. As shown in 
Figure 6.12, the unrelaxed vacuum slabs of crystal faces with thickness of 25 Ǻ were 
constructed from the optimized crystal structure.

Surface charge densities for the most dominant crystal surfaces were calculated, 
applying the solvation model implemented in DMol3 module in Materials Studio 
using PBE/DNP quantum level of theory. The calculated interaction energies using 
this approach were then used to modify the attachment energy (E

att
 
mod

) as predicted 
by the morphology simulations via using the following equation:

 
E E Eatt slice bulk

Ab

Asmod
 

where “E
slice

” is the energy of a growth slice of thickness d
hkl

 in the solvent and “E
bulk

” 
is the bulk crystal energy. The bulk energy was also calculated using DMol3 in 
Materials Studio, applying the same level of theory as previously utilized for the 
energy of the slice. “Ab” and “As” are the number of atoms in the bulk unit cell and 
crystal surface, respectively.

The predicted morphology of ibuprofen from attachment energy considerations 
highlights four dominant faces: (100), (110), (001), and (002), as shown in Figure 6.13. 
These main faces were considered when modeling the solvent effect. Energies of the 
slices in solvent and modified attachment energies for six solvent systems are 
 summarized in Table 6.3.

FIGURE 6.12 Crystal morphology of ibuprofen in isolation of solvent environment pre-
dicted using Materials Studio software.
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The modified attachment energies were used to replot the modified morphologies. 
The resultant modified morphologies are then compared with experimental data [49]. 
It can be seen that there is very good agreement between simulated crystal shapes 
and experimentally observed morphologies crystallized from different solvent 
 systems. The data highlight that nonpolar solvents such as hexane and toluene drive 
modification of the crystal morphology toward rod‐like higher aspect ratio crystal 
habits. Polar solvents such as methanol and ethanol drive the morphology toward a 
more equant crystal shape (Table 6.4).

This work suggests that solvation modeling can be successfully applied to study 
the effects of solvent on crystal habit. A novel methodology has been tested on 
 ibuprofen as a model compound. This compound has previously demonstrated a 
strong morphology dependence on solvent choice, with the simulated morphologies 
obtained demonstrating good agreement with experimental data. An obvious utility of 
this tool is to enhance crystal engineering workflows by simplifying the labor intensive 
and often time‐consuming effort of solvent selection to aid API isolation with favor-
able crystal properties for consequent drug product development.

6.4 FROM PARTICLES TO DOSAGE FORMS

Obtaining API with the right solid form and consistent particle properties is critical 
not only from a drug substance manufacture standpoint but also from a drug product 
processing, performance, and stability perspective [50]. The importance of particle 
properties and material characterization previously well established in the bulk 
chemical industry is also now very well recognized in the pharmaceutical industry 
[51]. Establishing the right particle target attributes allowing for a robust and safe 
performance of the dosage form has become a key aspect in drug product development 
processes. Various experimental particle engineering technologies such as high shear 
wet milling, and sonocrystallisation are becoming more routine to ensure the most 

(100) (002)

(110) (011)
X Z

Y

FIGURE  6.13 Predicted vacuum morphology of ibuprofen is dominated by four main 
crystal faces: (100), (110), (002), and (011).
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favorable particles will be introduced into pharmaceutical formulation and ultimately 
processed into a drug product [52]. Significant advances have already been made into 
defining the relationship between particle properties and formulation design and 
product performance. For example, the effect of particle size distribution on content 
uniformity, powder flow, and dissolution is well documented [53]. In addition, the 
challenges of processing needle and plate‐like particles are well recognized and 
reported [54].

A growing area of research has focused on the characterization of surface 
 properties of particles; however, this has typically being limited to the development 
of inhalation formulations [55]. Applications of surface techniques to study API/
excipient interactions to understand better the target attribute space for API particle 
properties are less routine. An area that is often overlooked when considering and 
nominating critical particle attributes for formulation and process design is the 
 surface structural characteristics of the crystallized particles. The surface properties 
of crystalline particles will be driven by the crystal structure and chemical surface 

TABLE 6.4 Modified Attachment Energies were Used to Generate  
Solvent‐Modified Crystal Shape

Solvent Experimental Morphology Predicted Morphology

Hexane

Toluene

Ethyl acetate

Acetonitrile

Ethanol

Methanol

Results are in good agreement with experimental observations reported in Bunyan et al. [49].
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topology that is allowed by particle morphology. Distinct particle morphology 
 provides a definition of surface chemistry via a particular surface facet distribution, 
alteration of which could result in a change of overall surface properties and  therefore 
the behavior of the powder in the formulation or process. Particle surface properties 
can also be subjected to change as a result of processing conditions, for example, 
particle size reduction and exposure to higher temperature induced by tableting. 
A structural investigation of possible surface structure changes can provide a clear 
advantage for understanding consequent drug product performance. This section will 
focus on drawing the attention to the wealth of information inherent in the structural 
features of the particles and highlight a potential utilization of such a molecular 
toolbox during drug product design.

6.4.1 Structural Investigation of Crystal Surfaces and  
Structure Dehydration

Since many pharmaceutical compounds can exist as hydrated forms, knowledge of 
the hydration and dehydration behavior of the drug substance is essential when 
developing a stable pharmaceutical formulation. Changes in the hydration state of 
the drug substance upon variation in processing conditions (temperature and 
humidity) could result in undesirable changes during drug product processing and 
affect the bioperformance of the dosage form. The importance of this has been well 
recognized by the pharmaceutical industry due to reported cases of failure of tablet 
formulations as a result of dehydration events [56]. However to date, few examples 
point to the potential of structural understanding of crystal surfaces related to 
 potential challenges with formulation performance. The example of erythromycin 
B  dihydrate is utilized here to demonstrate the potential advantage that could be 
gained by application of computational structural technologies. As detailed in the 
previous section, particle morphology may be derived from knowledge of the crystal 
structure. Modeling the particle morphology provides additional information about 
the surface chemistry and structure of the available particle facets. The structural 
position of the water and its environment within the exposed crystal surfaces can be 
examined through such modeling capabilities. The particle morphology of erythro-
mycin was simulated from available single crystal data retrieved from the CSD 
( refcode NAVTEJ). The predicted vacuum morphology highlights that the particle 
shape is dominated by the larger (002) face and smaller (011) end face, respectively, 
which is shown in Figure  6.14. All the other predicted faces are currently not 
 considered, but the approach could be extended to cover all potential crystal surfaces 
allowed by the predicted morphology.

An examination of the water position on the dominant (002) face (Fig.  6.15a) 
reveals that the water molecules are well protected by the molecule of erythromycin 
and are not exposed on the crystal surface of the particle. The crystal arrangement on 
this surface is very closely packed, binding the water molecule very tightly within the 
packing network. Due to this structural network, water molecules cannot be easily 
released from the structure through the surface. The (011) crystal face (Fig. 6.15b) 
reveals that the water molecules are very well exposed on this crystal surface. 
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FIGURE 6.14 Predicted vacuum crystal morphology for erythromycin reveals that particle 
is dominated by the main (002) surface and the end (011) surface.
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FIGURE  6.15 (a) Molecular structure of the dominant (002) surface of erythromycin. 
(b)  Molecular structure of the end (011) surface of erythromycin. (see insert for color 
 representation of the figure.)
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The molecular packing on the surface is generally looser and this potentially allows 
for opportunity for free water molecules’ movement and release from the structure 
through the surface as a result of change of conditions (e.g., increase in temperature 
or decrease in humidity). This analyses help build a hypothesis that if the relative 
exposure of the (011) face is increased with respect to (002) face via a thicker crystal 
habit, this could lead to more free and available water sites on the particle surface and 
thus change the typical dehydration behavior. A similar structural approach in 
combination with experimental techniques has been proven useful in exploring the 
dehydration mechanism of a pharmaceutical compound (7‐methoxy‐1‐methyl‐5‐(4‐
(trifluoromethyl) phenyl)‐[1,2,4] triazolo [4,3‐a] quinolin 4‐amine) as reported by 
Kang and co‐workers [57]. These researchers demonstrated that the dehydration 
behavior of the aforementioned compound is highly influenced by the particle size 
and shape due to different surface accessibility to the outside environment of drug 
particles. This example illustrates how research within companies is becoming more 
open to utilize structural and computational technologies in synergy with standard 
experimental practices to design target attribute profile or troubleshoot challenges 
associated with drug development or manufacture.

6.4.2 Structural Investigations of Crystal Surfaces and Chemical Stability

Chemical stability of pharmaceutical materials is a key aspect to ensure product 
safety. Although the chemical pathway of API degradation is typically studied and 
understood during the process of drug product development, there are cases where an 
unexpected increase in degradation rate has been attributed to a change of API 
 particles properties, formulation, or processing alterations.

Solid‐state reactions usually require higher‐activation energy compared to  solution‐ 
state reactions due to the constraints of the crystal lattice. What is very often under-
estimated is the negative effect of the bulk lattice on the crystal surface. It can be 
expected that the degradation‐sensitive reaction sites in the solid state will be more 
vulnerable on the crystal surface, where particles are in direct contact with the 
external environment. Clearly environmental factors such as temperature, humidity, 
and interactions with excipient particles may have a negative effect on the rate of 
chemical degradation occurring on a crystal surface. Structural information on the 
particle surfaces can potentially provide additional information about the exposure 
of reaction‐sensitive sites.

This effect has been demonstrated for the surface chemistry of aspirin. Hydrolysis 
is a well‐known degradation chemical reaction occurring for aspirin (Fig. 6.16).

The reaction‐sensitive atom is highlighted on the reaction scheme. These  reaction‐ 
sensitive atoms can be visualized on the surface of dominant crystal surfaces of 
aspirin particles. First, crystal morphology was predicted using single crystal struc-
ture data for aspirin retrieved from the CSD (refcode ACSALA11). The resultant 
predicted crystal morphology reveals a particle with main (100) and (002) faces as 
shown in Figure 6.17. Second, the molecular topology and structural features of 
these two main surfaces adopting the molecular termination of the most stable slice 
were studied.
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The reaction‐sensitive oxygen is highlighted on the crystal surfaces of both (100) 
and (002). It can be seen that the (100) face (Fig. 6.18a) exposes the carboxylic end 
of the aspirin molecule, and the reaction‐sensitive atom is buried below this functional 
group. The limited exposure of this oxygen atom on the crystal surface could poten-
tially restrict the contact of this reactive site to the external environment, which could 
result in a decrease in degradation rate. In contrast to the (100) face, the (002) face 
(Fig. 6.18b) reveals a larger availability of the reaction site on the crystal surface, 
increasing the likelihood of this site to be in direct contact with the external environ-
ment, which could result in an increased degradation rate.

Such analysis could potentially suggest that a crystal morphology that minimizes 
the relative importance of (002) crystal face and maximizes the exposure of (100) via 
a thinner crystal habit would potentially have a reduced rate of degradation. Although 
direct experimental validation is not available for this case system, such a structural 
approach toward looking at surface‐driven degradation process allows for a rapid and 
theoretically rationalized understanding of variation of product degradation rates 
often observed during product development.

Reaction-sensitive atom

HO
HO

O O

O
OH

OH

O

Aspirin–Acetyl salicylic acid Salicylic acid Acetic acid

+

O

FIGURE 6.16 Degradation reaction of acetyl salicylic acid due to hydrolysis.

(100)

(002)
X

Z
Y

FIGURE 6.17 Predicted vacuum morphology for aspirin.
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6.5 CONCLUSION

In this chapter, the utility and importance of computational tools has been demonstrated 
to enhance the understanding of developing stable and robust drug products. Through 
the integration of these tools during development, a fundamental understanding of the 
relationship between molecular interactions, surface chemistry, and bulk properties 
makes it possible to identify the stable solid form as well as engineer the optimal crystal 
morphology for drug product processing and stability irrespective of the dosage form. 
Future advancements of our current computational tools will provide the framework for 
virtual API solid form, particle engineering, and drug product design, leading to a new 
era of drug product development. This new paradigm will create the cutting‐edge 
knowledge needed to rapidly bring new drugs to patients with unmet medical needs.

uo

X

Y

Y

Z

X

Z

uv

(a)

(b)

o

FIGURE 6.18 (a) Molecular structure of the (100) surface of aspirin. (b) Molecular structure 
of the (002) surface of aspirin.
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7.1 INTRODUCTION

When a patient takes a tablet, it is probably likely that not many consider what the 
tablet really consists of. The active pharmaceutical ingredient (API) that is targeted 
for the disease is naturally the most important ingredient, but also excipients such as 
antioxidants, stabilizers, fillers, or sweeteners are components of the tablet that will 
give it the right properties related to, for example, dosage, dissolution rate, stability, 
and processability. The API itself may exist in different solid forms such as different 
polymorphs, salts, cocrystals, solvates, or amorphous material, and a particular 
form has therefore actively been chosen by the company for the tablet [1]. These 
different solid forms have different properties that can have a significant effect on a 
drug’s bioavailability and processability. For example, different solid forms may 
have very different melting points, solubilities, water uptake, physical, or chemical 
stability. Therefore, it is of vital importance to have a detailed understanding of the 
different solid forms of the API and their properties as early as possible to be able 
to select the most suitable form of the API before it is taken further into being 
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developed into a drug on the market. It is easy to imagine that the costs for drug 
project modifications increase as it emerges on the drug development time scale. 
Therefore, many pharmaceutical companies have made a significant investment into 
being able to predict solid state and material properties based on a computational 
approach and to use such information generated to support the solid form selection 
and minimize risks for late drug development surprises. This contribution highlights 
on how computational approaches currently are used at AstraZeneca for solid‐state 
and property predictions.

7.2 POLYMORPHISM

A pharmaceutical compound may exist as different polymorphs, and it has been 
shown to be a general phenomenon. In a summary from 2006, it was described that 
about 80% of the drugs on the market show polymorphism under “normal” conditions 
[2]. For a pharmaceutical company polymorphism may be a serious problem and is 
one of the challenging issues for regulatory decisions since different polymorphs are 
considered different entities. It should though not be forgotten that having access to 
different polymorphs is not only negative; if you are able to control it, it may give a 
significant impact on the performance of a drug and give opportunities for explora-
tions. The problem is that all systems are not controllable or at least not at the required 
level. Some examples with at first unknown more stable polymorphs that due to its 
impact have been given widespread attention in the community are ritonavir and 
rotigotine, resulting in withdrawal of products from the market with consequences 
not only in loss of sales and new nonexpected costs but also in scientific reputation. 
Traditionally, compounds are screened for finding polymorphs using experimental 
techniques under various conditions such as using different solvents, cooling and 
evaporation rates, temperature, and degree of supersaturation. Analysis is made by 
different techniques, for example, X‐ray powder diffraction (XRPD), infrared (IR) 
spectroscopy, Raman spectroscopy, or nuclear magnetic resonance (NMR) spectros-
copy, differential scanning calorimetry (DSC), and solubilities, and may also be done 
in a high‐throughput fashion [3].

With the general development of computational capability in terms of hardware, 
software, and scientific advances, the scientific community has been taking a big 
step toward using rational approaches and techniques in predicting polymorphs 
and crystal structures during the last decades. We have seen a notable progress in 
the field of crystal structure predictions (CSPs) since the first computational blind 
test of predicting stable crystal structures was released in 2000 [4]. The more recent 
blind tests have shown an increased complexity with a higher degree of flexibility 
and elevated number of molecules in the asymmetric unit (Z′ = 2) [5]. The field is 
constantly reviewed, and interested readers may look further into the details of 
these reviews [6, 7]. The approach that has shown the biggest success in CSP is 
probably the method developed by Neumann and co‐workers where a molecule‐
specific force field is generated to reproduce dispersion‐corrected density functional 
theory (DFT‐D)  structures and energies [8–10]. When the force field is fully 
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parameterized, it can be used for rapid screening of both molecular conformers and 
crystal packing of the different conformers using the GRACE program. However, 
the development time for such a force field is long, typically in the time scale of 
weeks to months depending on the nature of the molecule of interest and the com-
puter power available. Worth mentioning here is that incorporation of dispersion 
corrections in the description of both crystal structures and polymorph energies has 
been shown to be of utter importance to get reliable results. In this contribution, we 
do not wish to review or comment on the different ways of applying the dispersion 
correction, but rather remind the reader to incorporate it at any point. It should be 
remembered that differences in relative energies between polymorphs are very 
small, typically in the range 0–5 kJ/mol, and to calculate this energy difference 
correctly is very challenging in terms of computational accuracy although many 
sources of errors will cancel when  comparing different spatial arrangements of the 
same molecule. The computational techniques that currently are mainly employed 
in CSP compare calculated energies at 0 K without zero‐point energy correction, 
thus the vibrational or entropic contributions that would give a free energy are not 
encountered for. It is also often assumed that the thermodynamically most stable 
crystal is the one that is observed, although experimentally it may be just a kinetic 
phenomenon and the metastable form is formed more quickly and thus may be the 
subject of future transformations to a more stable polymorph. It should be noted 
though that it is possible to calculate free energies for crystal structures, although 
these require long calculation times.

As described earlier, the development time for generating a tailored force field 
used in CSPs is rather lengthy, and thus such an approach is not possible to use for 
each compound that a pharmaceutical company is interested in knowing the solid‐
state properties of [11–13]. Therefore, at AstraZeneca we have over the recent years 
developed a less time‐consuming approach, which is here briefly described [14]. 
Rather than creating a new force field for a specific molecule, we have relied on the 
OPLS2005 force field and based on that created an in‐house‐modified force field—
here called Solid State Prediction Tool (SSPT) for the treatment of the intermolecular 
interactions and for the creation of polymorph landscapes [15, 16]. Our calculations 
typically follow the procedures listed down:

1. Possible molecular conformers are searched via a mixed random torsional/
low‐mode sampling [17] and the OPLS2005 [18] or OPLS2.1 [19] force fields 
in a water continuum model as implemented in Macromodel (Schrödinger 
Inc.). The most stable conformers are then the subject of a refined geometry 
optimization using a DFT approach using either the B3LYP or M06 functionals. 
If we have access to an experimentally determined conformer from single‐
crystal XRD (SXRD) or high‐resolution XRPD, we also use such structures 
into our forthcoming CSP protocol.

2. Crystal packings are then generated for each conformer using the in‐house 
SSPT force field using the machinery of the GRACE program with struc-
ture solutions searched within the 13 most common space groups under 
the constraints of keeping the conformer rigid. This covers about 95% of all 
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structures found in the Cambridge Structural Database (CSD). If the compound 
of interest is chiral, the 12 most common chiral space groups are used in the 
search. Most searches are constrained to Z′ = 1 although Z′ = 2 investigations 
may also be performed. The polymorph space is searched via a Monte‐Carlo 
(MC) parallel tempering method, and to ascertain statistical confidence we 
repeat the MC search 10 times. Structural duplicates are then removed based 
on energy and packing index criteria. Typically, the total time frame for such a 
CSP investigation is 1–6 h in comparison to weeks/months using the full 
Neumann approach described earlier. If different conformers are investigated 
they will run in parallel, thus the real time for calculating 2 or 20 conformers 
does not differ much for the end user although the computer time obviously is 
different. The workflow for performing all these polymorph searches and also 
for collection of results has been fully automated at AZ thus allowing for a 
streamlined, efficient and more error‐free process. We can also allow the molec-
ular  conformation to be flexible in the polymorph search, thus without any 
other constraints except the quality of the underlying force field and space 
groups searched within. Such searches are more time consuming than the rigid 
conformer searches, and also require a good balance between the description of 
intra‐ and intermolecular interactions in the crystal structures.

3. The polymorph landscape is then analyzed, and a subset of solutions may 
be the subject of further DFT‐D calculations. On a selection of structures, 
typically in the range 10–100, total energies are calculated, and based on those 
results a further subset of structures are extracted on which refinements of the 
molecular structure and cell parameters are performed. Depending on the final 
aim of the investigation, we may also extract conformers from such DFT‐D 
optimizations. These conformers have been relaxed under the influence of the 
crystal packing forces and may therefore describe the “real” conformer differ-
ently than the conformer search performed in a water continuum or in gas 
phase. These conformers are then submitted into step 2, and the polymorph 
landscape investigation is reiterated with a slightly modified conformer, which 
could give bigger chances to find a crystal structure with more ideal intra‐ and 
intermolecular interactions.

As a test of the performance of the SSPT force field, we have done benchmark 
tests on its performance in describing crystal structures against some experimen-
tally determined structures from CSD and in addition against some compounds 
from our internal crystal structure database. The conformer used in the crystal 
 structure packing was taken as found in the databases, and the crystal packing was 
generated as described earlier in step. The analysis of the results of the investigation 
indicates that of the 63 small molecules taken from CSD the protocol was able to 
predict the observed crystal structure in about 75% of the cases. In about 20% of the 
cases, SSPT was able to directly rank the observed crystal structure as the most 
stable. In general, the polymorph landscapes for these fairly small molecules (mean 
MW = 110 g/mol) were very busy with an average of 350 unique solutions indicating 
that the interactions are weak, which allows for a multitude of possible packing 
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arrangements making the predictions more challenging. The picture looks quite 
 different when analyzing the 13 internal AZ‐compounds. Now, the protocol was 
able to predict the observed crystal structure in 92% of the cases and in 85% of the 
cases it was ranked as no. 1. We also found the polymorph landscapes to be much 
simpler for these compounds with an average of only 92 unique solutions. This 
 indicates the presence of stronger and more dominating intermolecular interac-
tions which restrict access to other structural solutions. These results may seem 
contradictory that smaller molecules are more difficult to predict reliable poly-
morph  landscapes of, but it is important to keep in mind that there is not only the 
 conformational flexibility of the molecule but also the interaction flexibility that 
gives the final  complexity of the system.

To illustrate this, we here provide an example of how a compound may be com-
putationally analyzed when it comes to polymorphism, structural aspects of the 
crystal structures, and also example of an interaction analysis. As the example we 
have chosen a simple molecule, benzamide (Fig. 7.1).

A typical calculated polymorph landscape may look as in Figure 7.2 as generated 
for benzamide, with calculated interaction energies plotted versus the Kitaigorodsky 
packing index [20]. As a reminder to the reader, the most stable polymorph is the 
calculated crystal structure with the most negative interaction energy. However, 

NH2

O

FIgURE 7.1 Schematic drawing of benzamide.
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FIgURE 7.2 Predicted polymorph landscape for benzamide. The two conformers investi-
gated are illustrated by diamonds and circles.
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also predicted crystal structures with a high packing index may also be interesting 
in the evaluation of possible polymorphs. Thus, the upper left corner in our plots is 
where the most interesting structures will appear. It should also be reminded that 
the interaction energy does not say anything about the energy of the molecular 
conformer used in the study. In fact, a high‐energy conformer may have a very 
beneficial packing interaction and thus low interaction energy. To include both 
the aspect of conformational penalty and interaction energy one therefore needs 
to compare total energies, as is calculated by DFT‐D described already in step 3. 
In the plot, two different molecular conformers were used in separate crystal 
packing predictions, and it is seen that one of the conformers generally give solu-
tions that have more favorable interaction energy and a higher packing index 
(diamonds vs. circles).

This is some of the information that this kind of polymorph landscape plots can 
provide. But what about the prediction of which polymorph of benzamide is the 
most stable? In the present case, the interaction energy shown was calculated based 
on the in‐house SSPT force field originating from OPLS2005 [14]. The two starting 
molecular conformers were in this case found via a conformer search using 
OPLS2005 in the gas phase, in this case a trivial task since there are only two pos-
sible conformers. The crystal packing was generated under the constraints of having 
a rigid conformer and with Z′ = 1. We then compared the 809 predicted crystal struc-
tures with the three known polymorphs I–III of benzamide available in the CSD 
database [21–23]. Polymorphs I and III both consist of one molecular conformer 
(Z′ = 1), while polymorph II has two different conformers in the crystal structure 
(Z′ = 2). Due to the restrictions used, we thus didn’t expect to find polymorph II 
among our predicted structures. Polymorph I is experimentally determined to be the 
most stable [23]. Among the top predicted candidates we focused on the four most 
stable (01–377, 01–127, 01–126, and 01–85) structures, all with the same molecular 
conformation. As a note, there were 13 predicted structures within only 4.1 kJ/mol. 
At the force field level of theory we predict 01–377 to be the most stable with 
the other three predicted to be within 1 kJ/mol. However, when comparing the 
structures between the predicted and experimentally determined crystal structures, 
we found that 01–126 is similar to polymorph I and 01–127 is similar to polymorph 
III. A standard approach for comparing similarities between different crystal struc-
tures is to compare the root‐mean‐square deviation RMSDx of interatomic distances 
based on a comparison of x interacting molecules in the crystal [24, 25]. Typically, 
such RMSD values are in the order 0.1–0.5 Å if there is a good match [13]. If x < 15, 
the predicted crystal structure is likely not a good enough candidate for representing 
the experimental structure and should therefore be regarded as another polymorph. 
Such a method is, for example, implemented in the program Mercury, which we 
have used at AZ. Further examples of tools from CCDC that we currently are using 
will be described in Section 7.6. Returning to the energy ranking of the different 
polymorphs, we then initially used CASTEP [26] to calculate DFT‐D energies 
based on the force field‐derived crystal structure. Now, structure 01–127 was found 
to be most stable, while 01–126 was ranked as no. 4. Clearly, this approach was 
not good enough in this case. By starting from the force field‐generated crystal 
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structure, but performing a reoptimizing with dispersion corrected DFT using 
Grimme’s D2‐correction [27], the relative energies of the different polymorphs 
could be more correctly determined. We now found candidate 01–126 (polymorph I) 
to be 0.67 kJ/mol more stable than 01–127 (polymorph III). As a comparison, we 
also calculated the relative energy of polymorph II starting from the experimental 
crystal structure and then reoptimizing using DFT‐D. We found II to be approxi-
mately 21 kJ/mol less stable than I, in line with the experimental observations [23]. 
Interestingly, two other candidates that we investigated (01–377 and 01–85) were 
both predicted to be more stable than polymorph II and thus may be the subject of 
future structural determination under the right conditions. The final RMSD

15
 value 

for DFT‐D optimized polymorph I was determined to be 0.236 Å (Fig. 7.3), while it 
was 0.409 Å at FF‐level, thus we see an improvement not only for the relative 
energies but also for the actual crystal structures (Table 7.1). It should be remembered 
though that  temperature effects on the crystal cell are not included in the optimiza-
tion, thus some structural deviation is expected.

A second way of comparing different structures is to compare their predicted 
XRPD patterns. The fingerprints of XRPD patterns are generally a very good way of 
quickly screening through a set of crystal structure candidates and thus allowing to 
focus on the most relevant structures. An example from the benzamide investigation 
is here shown in Figure 7.4.

FIgURE  7.3 Overlay of experimental polymorph I and DFT‐D optimized crystal struc-
ture 01–126 of benzamide. Fifteen molecules are overlaid to calculate the RMSD.
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As can be immediately visualized, the predicted powder pattern for 01–126 
(Fig. 7.4 middle) represents the predicted powder pattern of polymorph I (Fig. 7.4 top) 
better than what the predicted powder pattern of 01–127 (Fig. 7.4 bottom) does, 
especially noticeable at 2θ ~21°. In addition to comparing predicted powder pattern 
from an SXRD‐determined structure, it is also common and useful to directly com-
pare predicted powder patterns to experimentally determined powder patterns. This 
is a very valuable technique when there is no solution from single crystals available. 
Such an approach allows for rapid screening of several hundreds of predicted struc-
tural candidates to match an experimental powder pattern. Ideally the structure, both 
the molecular and crystal cell, from such a predicted structural crystal structure may 
be used as an input for further refinement of the powder pattern in a second iteration 
to completely match powder pattern intensities and peak positions.

A further and deeper analysis of crystal structures may be performed to under-
stand why a group of predicted polymorphs are more stable than others and then 
group these together to possibly see common interaction patterns and packing motifs 
[28]. The crystal packing similarity tool in Mercury allows us to do such an analysis, 
and we will here show the “interaction tree” for the 10 most stable predicted crystal 
structures of benzamide as discussed earlier. The analysis is done in several steps by 
analyzing what crystal structures/motifs may be grouped together when the number 
of neighbors increase, that is, the interaction pattern get more complex and diverse 
and where possibly different crystal structures start to show differences. This is 
 visualized by grouping crystal structures with the same intermolecular interactions 
together on a branch of a tree diagram (Fig. 7.5).

Here, it is shown that all 10 predicted crystal structures have the same dimer 
arrangement, being linked together by an amide hydrogen bond. For example, the 
four most stable predicted crystal structures have the same trimer arrangement by 
addition of another amide hydrogen bonds (Fig. 7.6). However, when tetramers and 

TABLE 7.1 Relative Energies, RMSD15, and XRPD Comparison, for Four 
Predicted Crystal Structures at Different Levels of Theory (FF, DFT‐D)

01–377 01–127 01–126 01–85

Rel. energy (kJ/mol)
FF 0 0.42 0.65 1.01
DFT‐D//FF 0.89 0 1.69 0.45
DFT‐D//DFT‐D 1.80 0.67 0 2.22

RMSD
15

 (Å)
FF 0.486a 0.409b

DFT‐D 0.308a 0.236b

XRPD comparison
FF 0.930a 0.950b

DFT‐D 0.950a 0.910b

a Compared to experimental polymorph III.
b Compared to experimental polymorph I.
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pentamers are formed, different branches are generated with 01–377 and 01–85 on 
one branch, and 01–126 and 01–127 on another branch, the latter together with two 
other predicted structures (Figs. 7.7 and 7.8). In this way it is easy to visualize differ-
ent interaction patterns, and such interaction pattern clusters are useful for building 
knowledge regarding possible cocrystal formation where specific interactions 
can be suppressed or enhanced. In the tree diagram in Figure 7.5, it is seen that 
polymorphs 01–377 and 01–85 share the same interaction pattern up to heptamers 

FIgURE 7.4 Top: Predicted XRPD pattern from experimental SXRD structure of Form I of 
benzamide Middle: Predicted XRPD pattern from predicted benzamide polymorph 01–126. 
Bottom: Predicted XRPD pattern from predicted benzamide polymorph 01–127.
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(seven molecules interacting). Adding one more molecule from the respective crystal 
structure makes them separate and makes 01–377 the most stable polymorph at 
FF‐level of theory. It is also seen that the two most stable DFT‐D polymorphs 01–127 
and 01–126 are closely related.

Similarly, in Figures 7.7 and 7.8 it is illustrated how tetramer cores of 01–126 and 
01–377 differ in interaction patterns.

For a more detailed understanding of the intermolecular interactions involved in the 
crystal structures, we are also frequently employing the noncovalent  interaction (NCI) 
plot analysis tool [29]. The tool allows visualizing NCIs such as hydrogen bonds, 
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FIgURE 7.5 Interaction tree diagram for different polymorphs of benzamide. Polymorph 
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aromatic ring stacking interactions, and CH‐π interactions [30]. Examples of such plots 
are given in Figure 7.9 for two benzamide interaction types found for the structural 
candidates 01–126 and 01–127. In Figure 7.9a, the hydrogen bonds between the amide 
functional groups are clearly visualized as surfaces and in addition the interaction 
 between the aromatic rings is visualized as an interaction surface. In the 01–127 
structure in Figure 7.9b, it can be seen that the aromatic rings interact differently.

One may now ask how polymorph landscape investigations are useful for risk 
assessments for drug projects. A valuable piece of information is the density of pre-
dicted polymorphs, as illustrated in Figure 7.10. In the top plot is shown a polymorph 
landscape with few solutions and the most stable polymorph clearly separated from 
the other. This is an ideal situation where the predictions indicate a low risk for other 
polymorphs to be formed. In the lower plot, on the other hand, we see many predicted 
polymorphs with similar energy, thus a high density in the most interesting area of 

FIgURE 7.9 (a) Structure 01–126. (b) Structure 01–127. Noncovalent interaction (NCI) 
plot of predicted crystal structure. Reduced density gradient isosurface (IS) cutoff set to 0.25. 
Isosurfaces represent either unfavorable, weak, or strong favorable interactions. (see insert for 
color representation of the figure.)

(a)

(b)
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the plot. In addition, the most stable polymorph is also not predicted to have the 
 highest packing index. This would constitute a high risk for the project that other 
stable polymorphs may be formed.

7.3 CONFORMER SEARCH

As shown in Section 7.2, if we use the “correct” conformer in our crystal structure 
packing, we observe a good performance in predicting crystal structures and predicting 
which polymorph is the most stable. But the key question, what is the best way of find-
ing the molecular conformer that is experimentally observed in crystal structures, is as 
yet unanswered in the scientific community [17, 31]. For some molecular systems, the 
global gas‐phase minimum is the conformer also observed in the crystal structure while 
in most cases the observed conformer is a higher energy local minimum. How can one 
computationally find such a local molecular structure? CCDC has recently released a 
knowledge‐based tool called Conformer Generator based on structural information 
from the CSD database to provide molecular geometries that are more likely to be 
observed. It is often observed that conformational searches in gas phase tend to give 
folded structures with several intramolecular interactions, while in experimental crystal 
structures elongated structures that rather use intermolecular interactions are more 
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often found. An internal benchmark study was recently performed using varying force 
field, solvent treatment, and parameter settings in the actual conformational space 
search. The systems studied were taken from crystal structures in the CSD. In the study 
we found that performing the molecular conformational search in a continuum model 
environment simulating water enhances the chance of finding the conformer observed 
in the crystal structure compared to performing pure gas‐phase calculations or in a 
continuum model of chloroform environment. Similarly, we could also manifest that 
the conformational space needs a thorough search and in general we generate up to 
10,000 structures. The energy window within which we keep conformers is normally 
set to 63 kJ/mol. Among the different force fields tested (MMFF94s, OPSL2005, 
OPLS2.1) we found the most recent OPLS2.1 to give the best results.

An interesting approach of favoring extended conformations over folded ones was 
recently presented by Thompson and Day [32] who introduced a simple surface 
area–based bias energy to be added to the conformer energy. The bias energy was 
derived by plotting experimental sublimation enthalpies against calculated surface 
areas for a set of hydrocarbons where a linear relationship was found with a good 
correlation. By using the biased conformer energy, a clear enrichment in the ranking 
of observed conformers into the low‐energy range of the conformational space was 
observed, thus giving us a higher probability in finding such conformers. We are 
 currently exploring the use of such an approach for finding good conformational 
candidates to be used in polymorph searches.

7.4 MOLECULAR PERTURBATIONS TO ACHIEVE 
SOLUBILITY FOR gPR119 LIgANDS

Structural information and interaction analysis as provided by solving crystal struc-
tures, either experimentally or computationally, may also be used to give ideas and 
rationalize modifications of a lead compound to achieve an altered solubility. As an 
example of this, we want to highlight a drug project in which such information 
extracted from crystal structure of the ligand could be used to improve solubility, as 
recently reported by Scott et al. [33]. Initially the lead series was deemed to be unat-
tractive due to the limited solubility of the first examples made in the series. During 
the lead generation phase, compounds with improved physicochemical properties 
were identified but it was challenging to combine good physicochemical properties 
with good potency. Consequently, the initial focus of our lead optimization campaign 
was rather to develop an alternate, more attractive series [34]. However, development 
of that series came to an end and the team rather picked up the series with solubility 
issues again and devised a strategy to address the shortcomings. It was hypothesized 
that strong interactions in the solid state as manifested by a rather high melting point 
(201–202°C) were limiting the intrinsic solubility. Ideas were generated from early 
structure property analysis and using the Solid‐State Perturbation methodology that 
has been developed at AstraZeneca as described in more detail later [15, 16]. A single 
crystal of the lead compound, gPR119‐2 (Fig. 7.11), was grown and its crystal 
structure was determined. The structure was analyzed for interaction patterns and 
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 suggestions to new molecules that could perturb crystal interactions were manually 
generated. 3D coordinates of the new compounds were generated using the experimen-
tally determined conformation of gPR119‐2. These new compounds were  subjected 
to CSPs using SSPT as described in Section 7.2. The final solutions were scored 
based on calculated lattice energy and density. Candidate molecules, with lower 
lattice energy, lower density, and similar logD

7.4
‐value than the reference molecule, 

were selected for synthesis consideration.
Eventually, the compound gPR119‐42 (Fig. 7.11) was made. gPR119‐42 had a 

significantly improved solubility as compared to gPR119‐2, and the crystal struc-
ture of gPR119‐42 confirmed the initial hypothesis that it was possible to perturb 
interactions in the solid state to improve solubility, in this case by introducing a 
methyl group in a key position in the piperazine ring. Furthermore, gPR119‐42 
showed a better potency than gPR119‐2 and was selected for further development. 
The process of generating molecular substitutions to the API and calculation of 
individual predicted polymorph landscape for each substitution has now been fully 
automated and also made available to nonexpert users through an in‐house web inter-
face. In this way, a CSP screening of a multitude of ligands can be performed 
 automatically just by providing the structure of the parent ligand candidate.

To further validate our modeling tool, SSPT and the modified force field, we set 
out to predict the crystal structure of gPR119‐2 without using any information from 
the observed crystal structure. Of course this is not a true blind test as we have access 
to the “correct answer” beforehand. Nevertheless, it is an illustrative example on the 
performance of our simplified process using predetermined conformations in a 
crystal packing prediction. First, we confirmed that we get the right crystal structure 
as the highest‐ranked solution if we use the 3D coordinates from the conformer of 
gPR119‐2 extracted from the crystal structure, see Figure 7.12. The highest ranked 
solution had an RMSD

15
 of 0.19 Å. Furthermore, only very few unique solutions were 

found in the MC packing prediction step, thus validating the approach.
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FIgURE 7.11 Schematic drawing of gPR119‐2 and gPR119‐42.
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Next, starting from a 2D sketch of gPR119‐2 we generated 3D coordinates using 
CORINA [35] and relaxing the coordinates using the SZYBKI program [36]. We 
then performed a conformer search according to step 1 as described in Section 7.2 to 
generate a conformation ensemble. We then followed the method suggested by 
Thompson and Day as described earlier, and added the energy bias based on total 
surface area to favor elongated conformations over folded conformations. The top 
four conformations were then selected for further geometry optimization using 
B3LYP/6‐31G** level of theory. At this stage we could compare the theoretical 
molecular conformations with the observed crystal structure rather than performing 
the crystal packing prediction. In Figures 7.13a–d, overlays of the geometry opti-
mized top four conformations on the observed conformation are displayed.

All the four top‐ranked conformations overlay fairly well with the observed struc-
ture, but there are small differences. The rank 3 conformation (Fig. 7.13c) is closest 
to the observed conformation; there are two small differences. The first difference is 
the torsion angle between the two aromatic ring systems. In the observed structure, 
the torsion angle is 0.1° and in the rank 3 structure the angle is 27.8°. The second 
difference is the conformation of the sulfone group. On the other hand, in the rank 
1 conformation (Fig. 7.13a), the two aromatic rings are in the same plane, but the 
piperidine–carbamate system is not in the correct conformation. It is possible to 
retrieve the observed conformation by rotating 180° around the pyrimidine– 
piperazine bond, hereafter called rank1‐rot. However, if this rotation is applied 
 followed by a B3LYP geometry optimization, we retrieve the rank 4 conformation 
(Fig. 7.13d) rather than the observed conformation. In Figure 7.14, the polymorph 
landscape obtained with SSPT using the rank 1 conformation of gPR119‐2 is shown. 
Clearly, a much busier plot with more unique solutions than when the observed 
 conformation was used is found.

Now, if the rank1‐rot conformation is used in a rigid CSP, the polymorph landscape 
is still busy, but a few solutions are clearly separated from the main group, see 

Pa
ck

in
g 

in
de

x 
(%

)

Interaction energy (kJ/mol)

GPR119-observed

66

67

68

69

70

–315 –310 –305 –300 –295 –290 –285 –280

FIgURE 7.12 Polymorph landscape of gPR119‐2 generated with the SSPT CSP method-
ology. Plotted is the interaction energy (EI in kJ/mol) versus packing index (ck in %). The 
crystal structure in the left‐hand upper corner is the energetically most favorable structure.



MOLECULAR PERTURBATIONS TO ACHIEVE SOLUBILITY FOR GPR119 LIGANDS 161

Figure 7.15. As our second‐ranked solution, the best fit to the observed structure is 
found. The crystal structure similarity tool gives an RMSD

8
 value of 0.66 Å.

At this point, we can conclude that the fully unbiased method fails as only 
small differences between the theoretical conformations and the observed will 
translate into a too complex polymorph landscape to allow for systematic rerank-
ing using DFT‐D calculations on the tentative crystal structures. However, in this 
case we know the answer, and from all the predicted crystal structures we can pick 

FIgURE  7.13 (a) Rank 1 conformation in gray overlaid on the observed conformation 
in black. (b) Rank 2 conformation in gray overlaid on the observed conformation in black. 
(c) Rank 3 conformation in gray overlaid on the observed conformation in black. (d) Rank 4 
conformation in gray overlaid on the observed conformation in black.

(a)

(b)

(c)

(d)
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out the crystal structure showing the best overlap with the experimental structure 
provided by the use of the “crystal packing similarity tool” in Mercury as described 
in Section 7.2. We then optimized the crystal structure of this match using the 
PBE functional with a Tkatchenko–Scheffler (TS) dispersion correction added 
[37], as implemented in the plane wave code CASTEP [26]. The fully optimized 
crystal structure was compared with the observed crystal structure and the final 
RMSD

15
 value was 0.576 Å, see Figure 7.16.

By this exercise we have demonstrated that it is possible to use an unbiased con-
formational search followed by a rigid‐body crystal packing prediction to reproduce 
the observed structure, but the reranking step becomes too expensive in terms of 
computational time as we need to screen through the full set of unique solutions 
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FIgURE 7.14 Polymorph landscape of gPR119‐2 rank 1 conformation generated with 
the SSPT CSP methodology. Plotted is interaction energy (EI in kJ/mol) versus packing 
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using DFT‐D geometry optimization. Further development is needed to get the 
“right” solid‐state conformation directly from the conformation search step. Research 
on this is ongoing in our lab and will be  communicated in due time.

7.5 SOLID‐STATE NUCLEAR MAgNETIC RESONANCE 
AND AZD8329 CASE STUDY

Solid‐state nuclear magnetic resonance (NMR) is nowadays an established technique 
in the pharmaceutical industry, used mainly as a tool to distinguish different poly-
morphs. Its advantages are high versatility and resolution, which allow for studies of 
all the materials in a formulation. Compared to, for example, powder XRPD and 
Raman scattering, spectral overlap is most often much less of a problem in NMR. 
Also, the primary parameter, the resonance frequency or the chemical shift, is very 
sensitive not only to the intramolecular structure but also to intermolecular  interactions 
and spatial arrangement, which is the basis for polymorph selectivity. A range of 
nuclei can be studied for complementary information, for example, 1H, 13C, 15N, and 19F. 
These occur at different natural abundances that, together with their nuclear prop-
erties, give different sensitivities at standard conditions.

More recently, solid‐state NMR has seen enormous progress in absolute structure 
determination of solids, and methods have been introduced that complement the more 
traditional powder diffraction methods based on X‐rays or neutrons. Many recent 
studies have also shown that plane wave DFT calculations can accurately reproduce 
measured NMR chemical shifts in solids. This complementary approach has been 
used to validate and refine a number of crystal structures [38–42]. The DFT structure 
validation requires a structural starting point for chemical shift calculations, so there-
fore it must be coupled with CSP methodology for generation of such candidates.

FIgURE 7.16 Overlay of the observed and the predicted crystal structure of gPR119‐2. 
The observed structure is rendered in light gray and the predicted structure is in dark gray.
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In a university collaboration we have recently applied a protocol developed by 
Emsley and Gray that combines CSP, measured 1H NMR chemical shifts, and DFT 
chemical shift calculations to determine de novo the crystal structure of a poly-
morph of a relatively large pharmaceutical compound (422 g/mol) with previously 
unknown structure, 4‐[4‐(2‐adamantylcarbamoyl)‐5‐ter‐butyl‐pyrazol‐1‐yl] benzoic 
acid (Fig. 7.17) (AstraZeneca‐ID: AZD8329) [43, 44]. AZD8329 is an active drug 
compound with potential for treatment of metabolic syndrome such as Type 
2 diabetes through inhibition of 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1), 
an NADPH dependent reductase that converts cortisone to cortisol [45], which in 
turn could reduce intracellular glucocorticoid concentrations [46–48]. Several poly-
morphs of the compound have been found to exist, at least seven ansolvate/solvate 
forms are known today. Of the anhydrous forms 1–4, the two polymorphs 1 and 4 
were the most interesting since they had been chosen for development due to their 
suitable material properties. The structure of Form 1 had been determined by 
single crystal diffraction; however, the structure of Form 4 was still unsolved and 
was therefore the target for the investigation described here. Starting from only 
the chemical formula of compound AZD8329 (Fig. 7.17), crystal structures were 
predicted in an unbiased way by exploring the polymorph landscape for the most 
stable local molecular conformers. The conformational variety of AZD8329 was 
searched by generating torsional energy profiles about all exocyclic single bonds 
and combining these to generate an ensemble of probable conformers. Cis–trans 
isomerization commonly occurs in organic molecules [49] although one of the two 
isomers usually has a much lower energy. For AZD8329, we calculated trans‐amide 
isomers to be 40–50 kJ/mol more stable than cis‐amide isomers. However, crystal 
structures were nevertheless generated for both cis‐ and trans‐isomers in case the 
crystallization conditions had “locked” the molecule in one or the other isomer 
or if strong intermolecular interactions could stabilize the less stable cis‐form, a 

N

N
N

O

O

O

FIgURE 7.17 Chemical structure of AZD8329.
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phenomenon observed frequently in crystal structures. Predicted crystal structures 
within 30 kJ/mol of the most stable one, in either the cis‐ or the trans sets, were then 
the subject for a computational NMR analysis and for more advanced DFT geometry 
optimizations.

For both Form 1 and 4, 13C chemical shifts were assigned with a natural abun-
dance 13C─13C INADEQUATE [50] NMR spectrum, which gives the connectivity 
between carbons that are bonded, see Figure  7.18. Proton chemical shifts were 
obtained from a 1H─13C HETCOR NMR spectrum by their connection to the carbon 
nuclei previously assigned (Fig. 7.18).

For each predicted structure, chemical shifts were generated with the GIPAW 
approach described in detail elsewhere [39]. For the set of cis‐isomers this included 
14 structures, and for the trans‐isomers this involved 20 structures. For each struc-
ture, measured and calculated shifts were then compared and the corresponding 
RMSD was obtained.

In Figure 7.19, the lowest RMSD values for 1H shifts determined in this way for 
Form 4 of AZD8329 are shown. Based on its low RMSD value we predicted struc-
ture 21 (Figs. 7.19 and 7.20), which is the crystal structure based on the cis‐isomer 
with the lowest predicted total energy, to be the correct crystal structure for this 
polymorph. This structural candidate was one that gave predicted calculated chemical 
shifts in best agreement with the experimental data, having an RMSD between 
calculated and experimental 1H chemical shifts of 0.48 ppm. This is within the 
expected errors for 1H chemical shift calculations. None of the other candidate struc-
tures were in satisfaction for the criteria for agreement.

Furthermore, we were also able to solve a structure from powder X‐ray diffraction 
for Form 4. The heavy atom positions of the two structures agree to an all‐atom 
RMSD of 0.284 Å, which confirms the framework of the structure. However, the 
XRPD data were not sufficient to determine the positions of the protons, in particular 
which oxygen in the carboxylic acid group that is protonated. Given that the structure 
is not symmetric, and that a carboxylic acid dimer is not formed, this is a significant 
point. In contrast, the NMR method is highly sensitive to such features. The hydrogen 
bonding network in Form 4, as determined from the combined CSP/NMR structure 
solution formed by the candidate 21, is shown in Figure 7.21. It is observed that the 
carboxylic acid group forms a double hydrogen bond to the amide group of a neigh-
boring molecule; the acid group carbonyl oxygen accepts a hydrogen bond from the 
NH group, while the OH proton donates a hydrogen bond to the amide carbonyl O 
atom forming hydrogen‐bonded chains running along the crystallographic c axis. As 
a second verification, we calculated chemical shifts for a structure where the acidic 
proton was switched on to the second oxygen of the carboxylic acid group, and 
gratifyingly we found a very poor agreement with the experimental observations. 
Thus, we conclude that the predicted CSP/NMR structure 21 has the correct position 
for the carboxylic acid proton.

To our knowledge, Form 4 is the first example of a de novo CSP/NMR structure 
determination of a molecular solid of previously unknown structure. Furthermore, 
with a molecular weight of 422 g/mol AZD8329 is the largest molecule so far tackled 
by such a protocol for NMR powder crystallography.
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FIgURE 7.18 13C CPMAS NMR spectrum (upper), expansions of the aliphatic regions of 
the 13C─13C INADEQUATE NMR spectrum (middle) and 1H─13C HETCOR spectrum (lower) 
of AZD8329 Form 4. Source: Baias et al. [43]. Reprinted with permission of American 
Chemical Society.



FIgURE 7.20 (a) The single‐molecule conformation of AZD8329 Form 4 determined by 
powder 1H NMR and computational modeling. (b) Molecular packing in the unit cell of 
AZD8329 Form 4 determined by powder 1H NMR and computational modeling.
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FIgURE 7.19 Comparison between experimental 1H chemical shifts recorded for powdered 
Form 4 of AZD8329 and calculated shifts for the predicted structures. Predicted structures are 
ordered by increasing calculated lattice energies (decreasing predicted stability). The first 20 
structures correspond to the predicted most stable trans‐isomers.
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7.6 CCDC TOOLS

In our work in form assessment, we employ some tools developed by CCDC. One of 
these tools is MOGUL [51], which allows for a rapid “control” of generated crystal 
structures. It analyzes structural parameters and compares with the data available in 
the CSD database. In this way it is possible to identify if the structure analyzed falls 
within a reasonable range of the parameter analyzed and helps to identify unusual or 
false structures. We also analyze structures in terms of hydrogen bonds and other 
noninteraction patterns if catemers are formed or if there are structural features such 
as dimers and sheets involved. A few years ago, CCDC released a new tool, hydrogen 
bond propensity (HBP), aimed at being used in solid‐state form design and as a 
complement in risk assessment of polymorphs [52, 53]. The theory of HBP is 
described elsewhere, and it has been shown to be a useful approach [54, 55]. We here 
very briefly describe the merits of the tool, but at the same time we wish to stress that 
it should be used as a diagnostic tool rather than in an absolute manner. HBP uses the 
information of known hydrogen bond interactions provided in the CSD database. For 
a given molecular structure it analyzes the functional groups and for donor and 
acceptor combinations it predicts by probabilities which hydrogen bonds are likely 
or less likely to be formed. In this way, a risk assessment of polymorphism is created. 
A crystal structure with high HBP indicates that the more likely hydrogen bond alter-
natives are satisfied, while a low HBP could be a warning that there possibly are 
other structures with a more favorable hydrogen bond interaction pattern and a higher 
thermodynamic stability. In this way, it gives a decision basis for if it is worth pur-
suing and investing in additional polymorph screening. It also helps to set focus on 
specific hydrogen bond patterns among predicted structures. The tool may also be 
used for matching hydrogen‐bond possibilities with coformers and solvents, thus it 
may be used for not only creating ideas for design of cocrystals and/or solvates to 
enhance physicochemical properties but also for IP reasons. With respect to solvates, 
it is also useful for evaluation of possible hydrate formation. Hydrates are generally 
not the preferred solid form in a project as they may be the subject of hydration/dehy-
dration and therefore considered less desired, and HBP is therefore a useful tool in 
understanding where such forms may be formed.

1.6741.674

1.769 1.769

FIgURE 7.21 Illustration of the intermolecular hydrogen bonding network in Form 4 deter-
mined from the NMR structure. Note that if the carboxylic acid proton is permuted to the other 
oxygen, then the H‐bond network cannot form.
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Based on an approach already used for identification of interactions in proteins, 
the CCDC team has developed the full interaction maps analysis tool [56]. It relies 
on a library consisting of information of interaction between pairs of functional 
groups. Around a central functional group is plotted the interaction “densities,” 
allowing for an identification of the directionality of interactions to be performed. 
Hydrogen bonds, hydrophobic interactions, as well as halogen bonds may be visual-
ized. The screening of a structure is done rapidly and this allows for investigation of 
series of conformers/molecules/solvents/coformers for easy identification whether 
the more likely interaction patterns are fulfilled or not.

7.7 TAUTOMERISM

As a final example, we also illustrate how a computational approach was used in a 
study on possible tautomerism. Molecule VI, studied in the second CCDC blind test 
[57] may form three different stable polymorphs, all observed as sulfonimides. 
However, in one of these forms, a slight shift in the proton positions within a dimer 
core of the crystal structure gives the sulfonamide tautomer. Therefore, we initiated 
a study to elucidate the energy difference between sulfonimide and sulfonamide tau-
tomers of VI (Fig. 7.22).

We studied monomers, dimers both in gas phase and in solvent environments, and 
also periodic solid state crystal structures [14]. It was found that monomers of mole-
cule VI prefer to exist as sulfonamide tautomers while the equilibrium is shifted 
towards sulfonimides for larger aggregates due to stronger hydrogen bonds and 
stronger polarization effects. Also, we could determine activation barriers for proton 
transfer between sulfonamide and sulfonamide aggregates indicating this to be a 
rapid process, which might indicate this to be a general phenomenon for sulfon-
amides. Similar investigations have, for example, been performed for other imine/
amine tautomerisms in the solid state [38].

H N
N

H H

H H

H

N1

N1

N8

N8

O

O

O

S

O

H
N N

H H

H H

H

N1

N1

N8

N8

O

O

O

S

O

S S

FIgURE 7.22 Sulfonimide (left) and sulfonamide (right) dimers of molecule VI.
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7.8 CONCLUSIONS

In this chapter, we have highlighted a few important areas within pharmaceutical 
development where predictive science can play an important role for making scien-
tifically informed project decisions. We have shown examples on the usefulness of 
predicting risks for polymorph formation and some of the underlying tools behind 
our current approaches in the field. Some discussed case studies illustrate where 
CSPs have been used in drug projects and on the direct impact of such studies, and 
how they can be used in connection to an early discovery phase (Section 7.4), or at a 
later phase for helping determining the right form of a drug candidate (Section 7.5). 
Stimulated by the scientific achievements and the application of predictive science in 
pharmaceutical solid‐state chemistry, we are also looking forward at applying 
 computational techniques for predicting materials science properties of interest for 
drug development.
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8.1 INTRODUCTION

Selection of the commercial solid‐form and the associated crystallisation process 
is one of the key milestones in the development of any new drug molecule. It is 
critical not only from a drug substance manufacturing standpoint but also from a 
drug product processing, performance and stability perspective. The regulatory 
landscape associated with the solid‐form and particle attributes of the active 
 pharmaceutical ingredient (API) and dosage form development has been described 
previously [1, 2]. The issues associated with the emergence of an unexpected 
solid‐form and the importance of intellectual property around crystallisation 
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process design and polymorphs have also been well documented [3]. The progress 
of automation and structural informatics technologies, which allow development 
scientists to search and identify the solid‐form with optimal properties, has also 
been reported [4–6].

In 1987, the Nobel Prize for chemistry was awarded to Cram, Lehn and 
Pedersen for their work on supra‐molecular chemistry. Since then publication(s), 
for example [7], have charted the evolution of pharmaceutical materials science. 
More recently the importance of the materials science tetrahedron in depicting 
the relationships  between internal structure, particle properties and the processing 
and performance of a drug product has been described [8]. The industrial per
spective on engineering pharmaceutical materials has also been highlighted [9]. 
Pharmaceutical materials science has emerged as a foundation of quality by 
design (QbD) [10] with solid‐form, crystallisation and particle engineering being 
core elements linking the drug product attributes to the final steps of the synthetic 
pathway of the API.

Whilst increasing interest in the crystallisation of pharmaceutical entities within 
academia has resulted in substantial progress over the past decade, the challenge for 
the pharmaceutical scientist in tackling the crystallisation of highly complex, new 
chemical entities remains a significant one. These complex organic structures are 
exacting because of the following reasons:

 • Increasing molecular complexity results in a complicated solid‐form space 
(salts, cocrystals, polymorphs, hydrates and solvates).

 • Different crystal faces exhibit different surface chemistry and interactions with 
solvents, inherent process impurities and excipients.

 • Different solid‐forms may have different chemical and physical stabilities, 
 biopharmaceutical properties and drug product processing behaviour.

Whilst traditionally, the solid‐form selection process has focused on achieving 
an appropriate degree of bioavailability, increasing emphasis is now being placed 
on selection of solid‐forms at the pre‐formulation stage which have optimal 
downstream properties such as chemical and physical stability, mechanical 
behaviour, surface properties and particle shape. Given such a perspective, this 
chapter outlines some recent progress on the application of emerging computa
tional technologies as foundation elements of the modern QbD strategy for the 
development and manufacture of advanced particulate products (Fig. 8.1). This 
chapter highlights the opportunity for computational tools to build the bridge 
across the chemical, analytical and formulation disciplines. These relationships, 
when combined with institutionalised corporate knowledge of formulation design 
practices [12], can provide a clear route map for a fully integrated, product design 
process. This holistic process is consistent with the emerging QbD philosophy 
[10] and can be realised through the use of increasingly sophisticated particle and 
surface chemistry design tools.
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8.2 THE CRYSTAL

8.2.1 Crystallography

Crystals may be considered simply as three‐dimensional (3D) repeating patterns of 
atoms or molecules. As with any other pattern, they can be described by defining the 
following:

1. The item to be repeated (the motif)

2. The way in which it is repeated (symmetry operations).

Extending this general concept to crystal structures, the motif is an atom, mole
cule or a collection of molecules and/or ions. The lattice describing the scheme of 
repetition is now a 3D array of points, and the unit cell is the smallest repeating unit 
within this 3D structure. The unit cell is fully described by six lattice parameters, 
comprising three lengths of the unit cell (a, b and c) with the three inter‐axial angles 
(α, β and γ). Consideration of the relative magnitude of these parameters gives rise to 
the definition of the seven crystal systems. Consideration of having extra lattice points 

Solid form
formation

Solvation/packing balance
for solubility relationships

Morphology for multi-
component system

Pr
ed

ic
tio

n 
of

 c
ry

st
al

 s
ha

pe
an

d 
su

rf
ac

e 
ch

em
is

tr
y

Su
rf

ac
e 

st
ep

s/
ki

nk
s 

an
d

in
te

rf
ac

ia
l p

ro
pe

rt
ie

s

C
ry

st
al

is
ab

ili
ty

 a
nd

 M
SZ

W
s

fr
om

 c
lu

st
er

 s
tr

uc
tu

re
s

Sa
lt,

 c
o-

cr
ys

ta
l a

nd
po

ly
m

or
ph

 s
el

ec
tio

n

Impact of solvent, impurities
and additives on morphology

Impact of additive/additive,
additive/solvent interaction

Morphology/PAT interface to
iGC, DVS and FBRM data

Defects and mechanical
deformation properties

Phase diagrams for complex
component mixtures

Ingredient property impact
downstream on drying

Pa
rt

ic
le

 a
gg

lo
m

er
at

io
n 

an
d 

in
gr

ed
ie

nt
 b

le
nd

in
g

Su
rf

ac
e 

ch
em

is
tr

y 
an

d
ch

em
ic

al
 s

ta
bi

lit
y

E
xc

ip
ie

nt
 s

ur
fa

ce
ch

em
is

tr
y 

an
d 

st
ab

ili
ty

Su
rf

ac
e 

ad
he

si
on

 o
f

pa
rt

ic
le

s 
to

 s
ub

st
ra

te
s

Crystal size dependence of
polymorphic stability

Relative dissolution rates for
clusters and nano-crystals

Dissolution modelling using
surface-specific chemistry

Dispersion stability and
sedimentation of crystals

Surface properties from
CSD data and morphology

Surface roughening,
α-factors and crystal purity

Product
performance

Formulation
design

Active ingredient
final step

FIGURE 8.1 The potential application of synthonic engineering tools at the active ingredient 
and drug product interface. Source: Adapted from Roberts et al. [11].
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in face‐ or body‐centred sites produces the fourteen unique Bravais lattice types 
spread over these seven systems. Examination of these seven crystal systems reveals 
that the unit cells become progressively less symmetrical upon moving from cubic 
through orthorhombic to triclinic crystal systems [13, 14].

So far we have considered the unit cells in terms of their basic shape and relative 
dimensions. It is also possible to refine the seven crystal systems in terms of the 
symmetry elements which they possess. These elements represent various combina
tions of rotation, translation and inversion and together with the Bravais lattice type 
define the full 3D arrangement of atoms or molecules within a given structure. 
The symmetry exhibited by a unit cell is thus reflected in both the arrangement of 
atoms in the internal crystal structure and in the physical and chemical properties of 
the resulting macroscopic crystal. Symmetry is evident in properties such as crystal 
growth rates and crystal shape, surface chemistry and mechanical properties. 
Exactly the same principles are involved in describing the structure of drug 
 molecules. However, the greater number of atoms typically involved can make 
 visualisation of the structure a little more difficult. Figure 8.2 (bottom left) shows 

(00-2)

(011)
(0-11)

(01-1)

(0-1-1)

(002)

(-10-1)

(-110)

(-101)

(10-1)

(101)

(110)

c

a

b

FIGURE 8.2 The molecule, the crystal chemistry and the crystal morphology of d‐mannitol 
(CSD refcode: DMANTL09) [15]. The molecular structure (top) is shown in ball and stick 
and space‐fill. The crystal packing of mannitol (bottom left) contains one unit cell in the a 
and c directions with two unit cells of d‐mannitol along the b‐direction of the unit cell. Each 
unit cell contains four d‐mannitol molecules. The crystal morphology (bottom right) shows 
the Miller indices.



THE CRYSTAL 179

two unit cells of d‐mannitol along the crystallographic b‐direction. Each unit cell 
 contains four mannitol molecules [15].

The crystallographic planes that define the external growth morphology of the ‘as 
grown’ crystal can be described by the law of rational indices [16, 17] as expressed 
through their Miller indices (hkl). The former enables the 3D nature of the crystal 
lattice to be expressed through integer variables where the indices normally have 
only small values (usually 0 or 1 but sometimes higher) of either parity. Crystal 
planes are thus defined through their Miller indices as the reciprocals of the fractional 
intercepts which the plane makes with the crystallographic axes. When the fractional 
intercept is negative, the resulting negative Miller index is indicated by placing a 
bar above the corresponding integer. The convention of brackets in crystallography is 
as follows:

 • Round brackets are used to denote a specific plane – (hkl).

 • Curly brackets are used for a set of planes related by symmetry – {hkl}.

 • Square brackets are used to denote a direction which is the vector – [uvw].

 • Pointed brackets are used for a set of directions related by symmetry – <uvw>.

Miller indices are important to the crystallisation scientist as they provide a link 
between the modern structural crystallography of X‐ray diffraction and classical 
morphological crystallography of shape and habit. This allows the process chemist or 
pharmaceutical scientist to link the internal molecular structure to the chemical 
 functionality of the external surface structure. Figure 8.2 (bottom right) shows the 
observed morphology for d‐mannitol with the Miller indices labelled.

Reticular area is the projection of the unit cell on to a surface plane and can  effectively 
be thought of as the 2D unit cell at the surface. Reticular area (S

hkl
) is calculated from 

the ratio of the unit cell volume (V
cell

) to the d‐spacing (d
hkl

) as shown in Equation 8.1. 
The concept will be utilised later when describing the surfaces of particles.

 
S

V

dhkl
hkl

cell  (8.1)

8.2.2 Crystal Chemistry and Crystal Packing of Drug Molecules

Molecules can essentially be regarded as impenetrable systems whose shape and 
volume characteristics are governed by the molecular conformation and the radii of 
the constituent atoms. The atomic radii are essentially exclusion zones in which no 
other atom may enter except under special circumstances, such as to form a covalent 
bond. Figure 8.2 (top) shows a comparison between a ball and stick and van der 
Waals (space‐fill) representation of d‐mannitol.

The structures and crystal chemistry of molecular materials are often classified 
into different categories according to the type of inter‐molecular forces present [18]. 
A number of factors are of particular importance in assessing the influence of 
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inter‐molecular bonding on the physico‐chemical properties of organic solids 
[19, 20]. These include the following:

 • The size and shape of the molecular entities that make up the structure

 • The strength of the interaction

 • The distance over which the interaction exerts an influence

 • The extent to which the interaction is directional or not

Organic molecules in general and drug molecules in particular are usually expressed as 
solids in only a limited number of low‐symmetry crystal systems. The lengths of the 
three principal axes describing the shape of a molecule are often very unequal which 
implies a non‐spherical shape. In turn, this is reflected in crystal structures in which the 
unit cell edge lengths are unequal. A further consequence of their non‐equant shape is 
that organic molecules prefer to adopt space groups which have translational symmetry 
elements, as this allows the most efficient spatial packing of the protrusions of one 
 molecule into the gaps left by the packing arrangements of its neighbours. These ten
dencies are reflected in an analysis of the Cambridge Crystallographic Database (CCD) 
[14, 21]. The vast majority of the organic structures reported prefer the triclinic, 
monoclinic and orthorhombic crystal systems [14, 22, 23]. Table 8.1 shows a list of the 
20 most populated space groups from the database.

TABLE 8.1 Space Groups with Highest Ranking for Population from 587,899 
Structures in the Cambridge Structural Database on 1 January 2011

Space Group Number Hermann–Mauguin Symbol Crystallographic System Ranking

14 P2
1
/c Monoclinic 1

2 P‐1 Triclinic 2
15 C2/c Monoclinic 3
19 P2

1
2

1
2

1
Orthorhombic 4

4 P2
1

*Monoclinic 5
61 Pbca Orthorhombic 6
33 Pna2

1
Orthorhombic 7

62 Pnma Orthorhombic 8
9 Cc Monoclinic 9
1 P1 *Triclinic 10
60 Pbcn Orthorhombic 11
5 C2 *Monoclinic 12
29 Pca2

1
Orthorhombic 13

148 R‐3 Trigonal 14
13 P2/c Monoclinic 15
11 P2

1
/m Monoclinic 16

12 C2/m Monoclinic 17
18 P2

1
2

1
2 *Orthorhombic 18

7 Pc Monoclinic 19
56 Pccn Orthorhombic 20

An asterisk (*) means that the group is a chiral space group, that is it is one of the 65 space groups in which 
a chiral molecule can crystallize.
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To understand the principles which govern the wide variety of solid‐state properties 
and structures of drug molecules, it is important to describe both the energy and 
direction of interactions between molecules. As a result of the pioneering work in the 
development of atom–atom inter‐molecular potentials [24–29], it is now possible to 
interpret inter‐molecular packing effects in organic crystals in terms of their interac
tion energies [23, 25, 27]. The basic assumption of the atom–atom method is that the 
interaction between two molecules can be considered to simply consist of the sum of 
the interactions between the constituent atoms considered in pairs. The lattice energy 
E

latt
 (often referred to as the crystal binding or cohesive energy) for molecular 

 materials can be calculated by summing up all the interactions between a designated, 
central molecule and all the surrounding molecules. Hence, if there are n atoms in the 
central molecule and n′ atoms in each of the N surrounding molecules, then the 
lattice energy can simply be calculated by the Equation 8.2 [30, 31]. The model is 
based on 0 K simulation.1

 
E V

k

N

i

n

j

n

kijlatt

1

2 1 1 1

 (8.2)

Each atom–atom interaction pair (V
kij

) consists of a short‐range repulsive and 
attractive dispersive interaction which can be described by Lennard‐Jones potential 
together with an electrostatic interaction describing monopole–monopole interac
tions, and in some cases (particularly for pharmaceuticals) a hydrogen‐bonding (H‐
bonding) potential [24, 28, 29]. The former two are, broadly speaking, undirected 
interactions, whilst the latter is not. On a per atom basis, the hydrogen bond (H‐bond) 
is much stronger than, say, a dispersive interaction but in an organic crystal the latter 
can involve many more pairs of atomic interactions and so, for molecules such as 
pharmaceuticals, where the molecular weight is relatively high, contributions from 
the undirected van der Waals interactions can tend to dominate the lattice energy. 
The  interactions that make up the main molecular coordination sphere in the case of 
d‐mannitol (CSD refcode: DMATL09) [15] calculated using the computer 
programme, HABIT [32], are listed in Table 8.2.

This table gives the interaction type, the multiplicity of the interaction, the energy 
value and the relative contributions to the overall lattice energy. It can be seen that 
there are eight key inter‐molecular interactions with a calculated interaction energy 
greater than 1 kcal/mol (neglecting the negative sign) which surround the central 
molecule, and these interactions contribute about 71% of the total lattice energy. This 
analysis shows that the top two contributions in d‐mannitol are stronger contributing 
more than 22% each to the lattice energy.

8.2.3 Deconstructing the Supra‐Molecular Interactions  
in Bulk – Intrinsic Synthons

The use of these atom–atom potentials has been validated extensively by comparing 
the theoretical values against the known crystal structures and experimentally 
 measured lattice energies derived from sublimation enthalpies [23]. A particular 

1 This depends on the potential used, which could be standard state.
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advantage of the lattice energy calculated in this way is that it can be broken down 
into constituent inter‐molecular interactions and related to particular crystallographic 
directions. It can also be further partitioned onto the constituent atom–atom and/or 
group contributions. An analysis of this type provides a complete description of 
the supra‐molecular synthons within solid‐state structures, and the lattice energy can 
effectively be de‐convoluted into the following:

 • Molecular coordination both in terms of number of interactions and total energy.

 • The lattice energy as a collection of inter‐molecular interactions – intrinsic 
 synthons aligned along specific crystallographic directions.

 • The lattice energy deconstructed onto molecular fragments and even individual 
atomic contributions.

 • The surface as a collection of unsaturated interactions due to the surface termi
nation of the bulk crystal structure –extrinsic synthons. This will be discussed 
further in Section 8.3.4.

8.2.3.1 Molecular Coordination: Number and Energy Table 8.3 summarises an 
examination of the crystal chemistry and key inter‐molecular interactions, high
lighting how they contribute to the lattice energy in a selection of aromatic  compounds 
(benzoic acid (BA), terephthalic acid, para‐amino benzoic acid (PABA) and ortho‐
amino benzoic acid (OABA)) all of which have at least one carboxylic acid group. 
The crystal structures were optimised within Materials Studio [38] using Dreiding 
potential [39] prior to the lattice energy calculation. The lattice energy was calculated 
using the empirical force‐field parameters of Momany et al. [29] and by assigning 
atomic point charges calculated using the semi‐empirical molecular orbital 
programme, MOPAC [40], for each form and compared to experimentally measured 
sublimation enthalpies. In the case of para‐amino benzoic acid [37], restrained 
electrostatic potential (RESP) charges based on the ab initio MP2/aug‐cc‐pVDZ 
method/basis set [41, 42] and derived from the Antechamber within Ambertools were 
used. The lattice energy is found to converge at a limiting radius of 12–15 Å in all the 

TABLE 8.2 Eight Strongest Inter‐Molecular Interactions from d‐mannitol (CSD 
refcode: DMANTL09 [15])

Bond
Type of 

Interaction Multiplicity Distance (Å)
Inter‐Molecular 

Energy (kcal/mol)
% Contribution 

to Lattice Energy

A O─H⋯O 
hydrogen bond

2 5.54 −3.80 12.68

B van der Waals 2 5.44 −3.75 12.51
C van der Waals 2 7.86 −1.90 6.34
D van der Waals 2 6.79 −1.30 4.34
Total 8 −21.50 71.74

Top eight interactions make up over 70% of the lattice energy therefore majority of important inter‐ 
molecular interactions.
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cases. It takes a 30‐molecule cluster for the α form, and a 35‐molecule cluster for 
the β form of PABA to obtain a fully converged lattice energy (not shown here). 
These larger clusters satisfy the OH⋯O interactions between carboxylic acid groups 
in the α‐form and also express the supporting NH⋯O H‐bonding interactions. The 
NH⋯O and OH⋯N H‐bond formation appears to be important for lattice energy 
convergence in the β‐form.

Contributions to the lattice energy of the two independent molecules in the asym
metric unit of the α‐form are broadly similar due to the similar environments, whereas 
the β‐form manifests a contribution from the amino hydrogen atoms and hydroxyl 
hydrogen, and a decrease in the contribution from the carbonyl oxygen. This reflects 
the formation of centrosymmetric, H‐bonded carboxylic acid dimers in the α‐form 
and NH

2
 donor and acceptor interactions in the β‐form [37]. Figure 8.3 shows the 

lattice energy deconstructed onto the molecular fragments and individual atoms for 
the β polymorph of PABA. This approach sort of allows the pharmaceutical scientist 
to look at the group contributions of various intrinsic synthons and understand the 
relative importance in defining the solid‐state stability and crystal chemistry.

8.2.3.2 The Lattice Energy Deconstructed onto Molecular Fragments Table 8.3 
demonstrates how the different inter‐molecular packing in each crystal structure 
affects the respective contribution of the functional groups to the overall lattice 
energy. When a hydrogen atom in the aromatic ring is replaced by a functional group 
with a H‐bonding donor or acceptor capability, there is a relative decrease in the 
 contribution of C

6
H

4
 ring structure to the overall lattice energy. Comparing the 

relative contributions of the moiety C
6
H

4
, it is 62% in BA; whereas, it ranges from 

25 to 40% in the other compounds which have two functional groups substituted at 
R1 and R2. The positions of substitution in the BA molecule, that is in OABA and 
PABA have an impact on the relative amount the C

6
H

4
 moiety contribution to the 

5.69%

14.86%

7.23%
1.20%

7.92% 2.72%

4.26% 3.16%

5.22%
–2.92%

15.95%

9.80%

2.51%

4.86%
2.34%

4.31%
10.89%

FIGURE  8.3 Molecular structure of para‐amino benzoic acid (PABA) highlighting the 
percentage contribution of each atom to the total lattice energy per molecule. The group con
tributions for C

6
H

4
, COOH and NH

2
 groups are listed in Table 8.3. Source: Adapted from 

Rosbottom et al. [37]. Reproduced with permission of Royal Society of Chemistry.
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lattice energy, which is 26% for the meta substituents compared to 40% for the para 
substituents. This could be due to the fact that stronger inter‐ and intra‐molecular 
H‐bonds form between OH⋯N in OABA. The contribution of the substituent groups 
to the lattice energy is proportional to their size and H‐bonding potential of the 
particular functional group, for example the contributions from the –COOH group 
versus –NH

2
 group are 48 and 12%, 34 and 24% and 48 and 27%, respectively, in 

α‐PABA, β‐PABA and OABA. For PABA, the NH
2
 group contributes significantly 

more to the lattice energy of the β form than the α‐form, as in the β structure the NH
2
 

acts as both a H‐bonding donor and acceptor, whilst in the α structure the NH
2
 

acts only as a donor. The strong H‐bonds formed between the COOH groups in the 
α‐structure result in a larger contribution from the COOH group in α‐PABA.

Interaction between molecules and their associated energy is the key link between 
the intrinsic molecular structure and the crystal packing, allowing a profile of 
the important interactions to be built up within families of compounds. This will be 
 highlighted in Section  8.4. This approach has recently been used to examine the 
relative importance of the solvation and crystal packing effects on low‐solubility phar
maceutical materials [37], thus facilitating discussions between medicinal  chemists 
and the pharmaceutical scientists about optimising the design of molecular features 
and, thereby, the physical properties for the intended dosage form.

8.3 MORPHOLOGY AND SURFACE STRUCTURE

8.3.1 Nucleation and the Crystal Growth Process

Solution crystallisation can be viewed as a two‐step process involving first the dissolu
tion of a material, and then changing some attribute of the crystallising system, such as 
temperature, solubility or solvent content to induce crystallisation. At a given tempera
ture and pressure there is a fixed amount of solute that can dissolve in a given amount 
of solvent to achieve chemical equilibrium. When this amount of solute is added, the 
solution is said to be saturated. The amount of solute required to make a saturated 
 solution at a specified temperature and pressure is equivalent to the solubility [43].

During crystallisation the supersaturation drives the solute molecules which 
 segregate from their solvated state and self‐assemble, aligning certain structural 
 elements such as conformation and inter‐molecular packing to produce, a stable 3D, 
ordered, crystallographic array of molecules. This highly time‐dependent process 
means that crystallisation is essentially kinetically driven. The time required for crys
tallisation to proceed depends on the supersaturation driving force. Supersaturation 
is the ratio of actual solute concentration (or strictly speaking activity) to the 
equilibrium solubility at a specified temperature and pressure. Supersaturated solu
tions are metastable, implying that crystallisation will ultimately occur, albeit after a 
certain amount of time has elapsed, but that the process is inhibited by a kinetic 
barrier. As the rate of supersaturation generation increases, say due to solution 
cooling, a given solution will manifest an upper limit in supersaturation before it 
becomes unstable and crystallisation occurs spontaneously [43, 44].
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In the nucleation stage, small clusters of solute molecules are formed; some of 
these clusters may grow sufficiently to form stable nuclei and subsequently form 
crystals. Others fail to reach adequate dimensions before they dissolve again. Within 
the metastable zone width (MSZW), the induction time to the onset of crystallisation 
has an inverse relationship with the supersaturation [44–47].

Following their nucleation, crystals grown from solution typically exhibit regular, 
planar facets characterised by their Miller indices. Although appearing flat to the 
naked eye, these crystalline surfaces are rarely so at the molecular level. The various 
features which make up the nanoscale surface topography of crystal faces are 
 intimately involved in the mechanisms by which crystals grow [48].

A molecule from solution which adsorbs onto a flat part of a crystal face is 
relatively weakly bound to the surface as the molecule is bound on only one side. 
There is, therefore, a high probability that the molecule will be desorbed again in a 
relatively short period of time. To remain on the flat surface, molecules must form 
stable clusters or nuclei. This consecutive birth of new nuclei and spread to a new 
layer (B and S) on the crystal face is the 2D analogue of the 3D nucleation process. 
The 2D nucleation is controlled by the competition between the free energy reduction 
produced by molecules moving from solution to the crystal and the increase in free 
energy due to the formation of a new surface [43, 49]. At low supersaturation, growth 
by the 2D nucleation is difficult since a large number of molecules are required to 
form a stable nucleus. Detailed analysis reveals that at low supersaturation, the rate 
of growth by 2D nucleation is negligibly small. Experimental studies, however, show 
that crystals do in fact grow at appreciable rates even at very low supersaturation. 
This apparent contradiction between theory and experiment was resolved by Burton, 
Cabrera and Frank (BCF) [50] with the proposition that imperfections in the crystal 
packing, due to the presence of lattice defects such as screw dislocations, provide the 
permanent surface steps needed to promote crystal growth. This step provides a site 
where a molecule can have multiple binding interactions with a surface, thereby 
removing the need for 2D nucleation as part of the growth process [48].

8.3.2 Particle Morphology and Surface Structure

The external shape of a crystal is referred to as the crystal morphology. Crystals are 
bounded by the slowest growing faces and the crystal habit is determined by the 
relative growth rates of the various faces. The crystal habit is traditionally described 
using a variety of qualitative terms such as plate‐like, prismatic and needle‐like. 
In the current vision we should be moving to more quantitative descriptions of the 
shape utilising Miller indices to allow a greater understanding of the different sur
face chemistry being exposed. Early crystallographers were fascinated by the flat and 
symmetry‐related external faces in both natural and synthetic crystallised solids. This 
led them to postulate that the ordered external arrangement was a result of an ordered 
internal arrangement [51, 52].

Morphological simulations based on crystal lattice geometry were initially pro
posed [52–55]. Subsequent work focused on quantifying the crystal morphology in 
terms of the interaction energies between crystallising units [31, 56]. Attachment and 
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slice energies can be calculated directly from the crystal structure by partitioning the 
lattice energy in certain crystallographic directions [31, 54]. The calculated attach
ment energies for crystal faces can be used as a measure of relative growth rates, and 
so a theoretical morphology may be computed by determining the smallest polyhe
dron that can be enclosed by these faces given their relative growth rates [31, 54].

The external shape of crystals not only has a considerable influence on the 
 properties of the solid but also has an impact on the handling of particulate materials 
and their interactions with the excipients used in product design. The shape of the 
growing crystals is influenced by a wide variety of factors as follows:

 • Supersaturation

 • Nature of the solvent

 • Impurities

 • Nature, number and distribution of crystallographic defects

Given the complex nature of crystal growth, it is not surprising that a variety of 
mechanisms exist through which impurities can influence the growth process. The 
dominant effect of impurities on the growth process is to interact with a crystal sur
face, thereby retarding the growth of that face. As we have seen, the structure and 
chemistry of crystal surfaces varies with crystallographic orientation. A given impu
rity will, therefore, interact differently with symmetrically non‐equivalent crystal 
faces and retard their growth to different relative extents. The action of a tailor‐made 
additive, benzoic acid, on the crystal growth of a structurally similar compound, 
benzamide, suggests a mechanism is which a benzoic acid molecule is readily incor
porated into the growing crystal face by virtue of its molecular similarity to the host 
molecule and its capacity for H‐bonding [48]. Once incorporated, the addition of 
further benzamide molecules is, however, strongly impacted by the termination of 
the infinite chain of H‐bonds in the host crystal lattice by the presence of the benzoic 
acid impurity. This leads to a repulsion between the lone pairs of electrons on the 
oxygen of the benzoic acid hydroxyl group and the carbonyl group of benzamide. 
Overall, this leads to a retardation of growth of the {0 1 1} form [31, 57].

The crystallisation solvent is also an impurity and is present at very high concen
trations around the crystal. Any of the mechanisms described for other impurities 
may also apply to the solvent and can produce similar changes in crystal habit. 
Finally, the interaction between solvent and crystal surface can change the surface 
energetics of the crystal faces due to the differential binding energies of solute and 
solvent on the different surfaces [58].

The modern process chemist has at their disposal tools that allow a link to be made 
between the bulk crystal chemistry, the surface chemistry of the crystal faces and their 
potential interactions with solvents and impurities. Examples of industrial application 
include aspirin [58], the agrochemical product paclobutrazol [59]. The subsequent sec
tions in this chapter provide the details of how such an understanding of the intrinsic 
and extrinsic synthons can be used in the design of pharmaceutical products in particular 
addressing the challenges in form selection, particle formation and formulation design.
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8.3.3 Crystal Morphology Prediction

Early crystallographers were fascinated by the flat, symmetry‐related external faces 
in both natural and synthetic‐crystallised solids. This led them to postulate that the 
ordered, external arrangement was a result of an ordered internal arrangement. Hauy 
[16] showed that classical polyhedral shapes could be made up by stacking cubes 
(basic building blocks, now referred to as unit cells) in a variety of 3D sequences. 
Morphological simulations based on crystal‐lattice geometry were proposed by 
Bravais Friedel [51], Donnay and Harker [52], and this work spans over seventy 
years but is often quoted collectively by modern workers as the BFDH law (see e.g. 
Ref. [55]). This law can be summarised

taking into account sub‐multiples of the interplanar spacing d(hkl) due to space group 
symmetry, the most important crystallographic forms will be those with the greatest 
interplanar spacings

Using the BFDH principle and given the unit cell dimensions and space group 
symmetry conditions, it is possible to identify the most important morphological 
forms. For molecular systems this approach shows good agreement with experiment 
and can be used with confidence as an initial prediction of the crystal shape before 
refinement by further, more sophisticated energy calculations.

Hartman and Perdok [53] were the first to extensively quantify the crystal mor
phology in terms of the interaction energies between crystallising units. They used 
the assumption that the surface energy is directly related to the inter‐molecular inter
action energies and identified by chains of ‘strong’ inter‐molecular interactions 
called periodic bond chains (PBCs). The strength of a PBC is determined by the 
weakest link in that chain. They also characterised flat, stepped and kinked faces 
according to the number of PBCs that are present in these faces. PBC analyses can 
be used to determine the slice (E

slice
) and attachment (E

att
) energies. The slice energy 

is defined as the energy released on the formation of a growth slice of a particular 
thickness [52, 55]. The attachment energy is defined as the energy released on the 
attachment of a particular growth slice onto the crystal. Faces with the lowest attach
ment energies will be the slowest growing and therefore will be the morphologically 
most important.

Attachment and slice energies can be calculated directly from the crystal structure 
by partitioning the inter‐molecular interactions contributing to the lattice energy as 
calculated from each symmetrically independent molecule in the unit cell into slice 
and attachment energies. Slice (intrinsic synthons) and attachment energies (extrinsic 
synthons) can be calculated by summing all the interactions between a central 
 molecule and all the molecules within a defined slice (E

slice
) and all the molecules 

outside the slice (E
att

). The thickness of the slab for the slice energy calculations 
is  defined by the interplanar spacing d

hkl
. This process is shown schematically in 

Figure 8.4 where C is the central molecule, P is a molecule outside the slice, S is a 
molecule inside the slice, N+ is the growth normal to the planes (hkl), N− is the 
growth normal to the planes (‐h‐k‐l) and θ is the angle between the growth normal 
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and the bonding vector CP. The slice boundaries are adjusted along the growth 
normal to maximise the absolute magnitude of E

slice
 and hence obtain the energeti

cally most stable slice. A polar Wulff plot having a radius proportional to E
att

 is con
structed to obtain the predicted morphology.

A computer program – HABIT – has been developed to allow such calculations to 
be carried out. The calculated attachment energies can be used as a measure of 
relative growth rates and so the theoretical morphology may be computed by deter
mining the smallest polyhedron that can be enclosed by the specified forms given 
their relative growth rates. The faces on which to carry out the energy calculations are 
usually those identified from a BFDH calculation. This approach has proved success
ful for a number of compounds and applied to a number of challenges during drug 
product design and these will be highlighted in the following sections. The attach
ment energy model assumes that the surface is a perfect termination of the bulk and 
little or no surface relaxation takes place. Surface relaxation has been shown to play 
an important role for inorganic systems such as alumina and haematite [60]. 
Calculations of this type for acids and amides [31, 61], non‐linear optical materials 
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FIGURE 8.4 Two dimensional representation of the inter‐molecular interactions using atom–
atom method in calculating attachment and slice energies within a sphere of limiting radius. C is 
the central molecule, P is a molecule outside the slice and S is a molecule inside the slice. Source: 
Adapted from Roberts et al. [48] with permission. © 1996 John Wiley & Sons, Inc.
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and agrochemicals [59] have shown, in general, for molecular materials that these 
surface relaxation effects can be neglected without introducing significant errors in 
the calculated crystal morphology.

8.3.4 Deconstructing the Supra‐Molecular Interactions at  
Surfaces – Extrinsic Synthons

The lattice energy can be partitioned into slice and attachment energy per surface as 
defined by specified Miller planes (hkl). The magnitude of the attachment energy 
per face can be taken to predict the relative growth rate and hence morphological 
importance and surface area of the surface. For stable crystal growth it is the slowest 
growing (lowest attachment energy) surfaces that dominate the external morphology 
of a material. Face‐specific information such as which of the bulk intrinsic synthons 
are unsaturated (broken) due to surface termination can be outputted for sub
sequent analysis. These unsaturated interactions are known as ‘extrinsic synthons’. 
The nature and strength of these interactions, combined with constructions of the 
 predicted surfaces using molecular visualisation software, can reveal detailed 
information on the surface chemistry of the important faces and how the solute mol
ecule binds and incorporates into the lattice. This information can then be directly 
related to the relative growth rate and size of the crystal face. The following case 
studies will highlight the application of these concepts to interparticle interactions, 
dissolution and solvent binding.

8.3.5 Grid Searching – Probing Inter‐molecular Interactions 
at Surfaces and Environments

Inter‐molecular grid search suite [58, 62] is a tool designed to characterise the nature 
and behaviour of the unsaturated supra‐molecular extrinsic synthons with the external 
environment. In this the inter‐molecular interactions between a crystal surface, with 
a well‐defined termination, are probed which represent/describe an external environ
ment. This approach calculates the interaction energies of a probe molecule with all 
the molecules at and near the crystal surface within a sphere of pre‐defined radius. 
Similar to lattice energy calculations, an atomistic approach is utilised to calculate 
the inter‐molecular interaction energy. A 3D virtual grid as shown in the schematic in 
Figure 8.5 is created above the crystal surface whose in‐plane dimensions are periodic 
(multiples of reticular area) whereas the plane normal to the crystal surface is non‐
periodic. The search area is further divided into grids whose sizes are defined by the 
step sizes which are expressed in fractional coordinates in the y‐ and z‐directions 
(in‐plane directions) and in Cartesian coordinates in the x‐direction. The probe mol
ecule visits every grid point and is subjected to sequential orientations. The technique 
has the advantage of being robust and easy to use; however, the approach is based on 
some of the following assumptions:

 • The probe molecule is treated as a rigid body which is optimised in the gas 
phase prior to the grid search.
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 • The surface is optimised prior to the grid search; however, it is not relaxed 
further during the grid search.

 • The molecular vibrations are not taken into account.

The technique has applications in understanding the effects of solvent or impurity 
binding on surfaces that will lead to changes in morphology, in cohesion/adhesion 
balance of API/excipient, or in surface adsorption studies. The grid search or 
systematic search is further described in the schematic shown in Figure 8.5.

8.4 THE CRYSTALLISATION PERSPECTIVE

8.4.1 Nucleation, Surface Energies and Directed Polymorphism

Understanding the early stages of the crystal growth process is important due to 
its role in directing the crystal form and hence physical properties. However, char
acterising the detailed structural nature of such nanosized crystals associated with 
the formation of a distinct polymorph post‐nucleation is experimentally challeng
ing due to the small particle sizes involved. Hence, molecular modelling tech
niques are now being used to provide an understanding of the inter‐relationship 
between crystal form and surfaces at the nanoscale size with those prevalent in the 
bulk material properties. However, at small particle size, for example the size of a 

Three-dimensional grid near surface under
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every grid point

For every set of X, Y, Z, θ, γ, δ, interaction
energy of probe molecule is calculated 

It is oriented in three degrees of rotation (θ,
γ, δ)

Typical number of steps in X, Y and Z
directions are 8 × 8 × 8

Surface embedded in a 3 × 3 × 2  matrix
to overcome edge effects on simulation
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FIGURE 8.5 Schematic representation highlighting the main computational methodology 
associated with the grid search; the probe molecule in the context of the surface and the virtual 
grids. Source: Adapted from Ramachandran et al. [63]. Reproduced with permission of 
American Chemical Society. (see insert for color representation of the figure.)
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crystal nucleus, the  predominating surface structure may differ from the bulk 
structure and therefore a significant change of the properties of such particles 
could be expected. Drawing upon Ostwald’s Rule of Stages [64], it has been stated 
that in the emergence of a solid phase from solution a metastable phase should be 
the first to appear and that this would subsequently transform to the most stable 
phase. Metastable forms have often been referred to as kinetic forms as they are 
created when non‐ideal crystallisation conditions prevail such as fast cooling rates 
associated with high levels of the supersaturation in the solution and hence a small 
size of the critical nucleation cluster. Therefore, by controlling the degree of 
supersaturation during crystallisation, a control of the critical cluster size and 
hence the relative stability of polymorphic forms might be expected. The hypo
thesis that polymorphic phase stability might be size‐dependent was suggested by 
Keller et al. [65]. They proposed that the development of a new phase from a 
nucleus to macroscopic size could be coupled with the  possibility that, during this 
process, the stability relationship between competing polymorphs could become 
inverted.

This concept of a size‐dependent phase stability in polymorphic materials is 
addressed here by confronting this model and testing it against the well‐characterised 
H‐bonded compound l‐glutamic acid (l‐GA) which is a material with two mono
tropically related polymorphic modifications: the metastable α‐form that transforms 
into the stable β‐form through a solvent‐mediated transformation [66].

The observed crystal structures (LGLUAC03 [67], LGLUAC11 [68]), taken from 
the CSD [21], were optimised allowing the hydrogen atoms to relax. The morphol
ogies were simulated using the technologies described in Section 8.3 with specific 
details of the calculations described elsewhere [66]. The slowest‐growing face in the 
α‐crystal was calculated to be the (002) with smaller (101), and (111), (−111) faces 
present in the morphology in excellent agreement with experimental observation. 
The simulated morphology for β‐form crystals revealed dominant (020) crystal faces 
and smaller (101); (021) smaller faces were also in good agreement with experi
mental results and previous observations from the literature. The ‘metastable’ α‐form 
crystals showed a prismatic shape whilst the stable β‐form was predicted to have 
elongated needle‐like shape [69].

Molecular clusters of different sizes were created by overlaying the predicted 
morphological shape and the optimised crystal structure. Figure  8.6 shows the 
 facetted molecular clusters for the α‐ and β‐forms.

The energies of the facetted molecular clusters of different sizes were plotted as a 
function of cluster size for both polymorphic forms of l‐GA (Fig. 8.6c). The results 
were fitted with a power law function which enabled calculation of cluster energy for 
any molecular cluster size. The results revealed that the metastable α‐form is a more 
thermodynamically stable form than the ‘stable’ β‐form at smaller cluster sizes with 
a crossover point of 240 molecules.

Therefore, it is concluded that the first nucleating form (when the cluster size is 
small), according to Ostwald rule, would be the ‘metastable’ α‐form which has 
become surface stabilised due to its small size hence making it more stable than the 
‘stable’ β‐form. In this respect ‘stable’ and ‘metastable’ as used here refer to the bulk 
crystallographic structures.
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This work [71] also examines the impact of facetted versus non‐facetted clusters 
as well as the variation in the conformation of the glutamic acid molecule as a 
function of distance from the centre of the nanoparticle. This shows the impact of 
relaxation and illustrates the possibility of mapping the molecular conformation 
from solution to surface and eventually bulk conformations.
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FIGURE 8.6 Facetted molecular clusters of α‐ (a) and β‐forms (b) and energy minimisation 
(c) of relaxed facetted clusters of l‐GA. Source: Adapted from Hammond et al. [70]. Reproduced 
from Elsevier.
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8.4.2 The Impact of Solvent on Morphology

The strong influence of the growth solvent on crystal morphology (and habit) has 
been well documented [72]. It is known that the underlying mechanism involves 
face‐specific, solvent–solute interactions resulting in different degrees of solvent 
binding which inhibits crystal growth on selective crystal habit planes. A number of 
researchers have studied the impact of solvent choice on the resultant crystal mor
phology by relating the mechanistic aspects associated with habit modification to the 
specificity of the inter‐molecular interactions between crystallographically ordered 
crystal habit surfaces and solvent and/or impurity molecules [73]. An excellent 
review covers the current and emerging modelling approaches in terms of practical 
applicability, from the standpoint of process engineering [74]. Recently a different 
approach has been suggested to study the growth of crystals from solution using 
kinetic Monte Carlo simulations whose parameters are derived from atomistic, 
molecular dynamics simulations [75]. This use of Monte Carlo techniques enabled 
the simulation of length scales up to 1 µm and of timescales up to a millisecond.

Recently, we have successfully demonstrated the application of a surface‐specific, 
grid‐based search method, as outlined schematically in Figure 8.7, to predict both the 
solute and solvent binding to crystal‐habit surfaces of aspirin [58] associated with 
crystallisation from aqueous ethanol solution. In this approach, the relevant crystal 

Crystal structure

Selection of crystal habit surfaces and
calculation of their attachment energy

Calculation of the most stable
configuration for solute/solvent

binding on crystal surface

Scaling the interaction energy with
respect to mole fraction of the
equilibrium solution solubility

Calculation of vacuum interfacial surface
energy from attachment energy

Calculation of solution interfacial tension
from the solution binding energy and

interfacial surface energy

Calculation of solvent-mediated
attachment energy from the solution

interfacial tension

Solution system

FIGURE  8.7 Schematic diagram summarising an overall approach used to calculate 
specific surface energies (interfacial tensions) of crystal surfaces in the presence of solution. 
Source: Adapted from Hammond et al. [58]. Reproduced with permission of American 
Chemical Society.
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surfaces were modelled individually to construct a molecular‐scale model with each 
surface having a particular crystallographic orientation (hkl), being cleaved. In the 
subsequent systematic grid‐based search calculations, the binding energetics of 
the crystal habit surfaces (see Fig. 8.7) for every configuration of the probe molecule 
were calculated. In addition, these configurations were subjected to energy minimi
sation, treating the probe molecule as a rigid body. The most favourable interaction 
energy identified in this way was used to adjust the specific (vacuum) surface energy 
for each form identified as being present in the experimentally observed crystal 
 morphology for aspirin.

Figure  8.8 summarises the results from these simulations with representative, 
experimentally observed crystal habits for aspirin crystals grown from ethanol and 
water. A comparison of Figures 8.8a and b reveals that the unadjusted attachment 
energy model provides a good general match to the experimental morphology but, 
that the crystal habit, as predicted, manifests a much thicker and more tabular shape 
when compared to the experimentally observed shape of the crystals grown from 
solution. The crystal habit prediction, as adjusted to allow for the effect of surface 
wetting by the contacting solution (Fig.  8.8b), reveals, in contrast, a much better 
match to the experimental data consistent with this model providing a more appro
priate method for predicting the crystal habit of solution‐grown crystals.
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FIGURE 8.8 Crystal habit for aspirin as predicted (a) via the attachment energy model 
and as derived (b) from solution surface energies (38% ethanol–water, soluble at 50°C). 
Source: Adapted from Hammond et al. [58]. Reproduced with permission of American 
Chemical Society.
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A

FIGURE  8.9 Illustration of the substitution of a host α‐glycine molecule by an additive  
l‐alanine molecule at lattice position [0003] so that the methyl group of the l‐alanine mole
cule is aligned with the pro‐chiral S hydrogen atom of the glycine molecule. The enlargement, 
top right, shows the comparative positions of the host and additive molecules occupying that 
specific lattice position. The enlargement bottom right shows the most significant inter‐ 
molecular ‘clash’ between the additive and a host molecule. Source: Adapted from Hammond 
et al. [77]. Reproduced with permission of American Chemical Society.

8.4.3 The Impact of Impurities on Morphology

Earlier in the chapter (Section 8.3.2) the case of incorporation of an impurity during 
growth was described in concept. Here molecular modelling has been applied to 
study the mechanism through which l‐alanine, acting as an impurity, disrupts the 
growth and modifies the morphology of α‐glycine crystals. l‐alanine was selected 
for this case study because of its structural similarity to glycine differing only by the 
substitution of a methyl group for a hydrogen atom.

An approach employing the atom–atom formalism has been extended to model 
the effects of the chiral molecule, l‐alanine, when it becomes incorporated as an 
impurity in α glycine (achiral) crystals [73]. In this, a quantitative measure of the 
changes in lattice‐site energy within the host α‐glycine (CSD refcode: GLYCIN02 
[76]) lattice accompanying incorporation of an l‐alanine molecule [77] is provided.

Slice and attachment energies were calculated for the significant growth forms 
including {020}, {011} and {110} in the presence of l‐alanine. A new approach was 
implemented which employs a weighted average of attachment energies calculated for the 
pure host, and host modified by additive, to predict crystal morphology and its dependence 
on the proportion of lattice sites at which host molecules are replaced by additive mole
cules. The results show that whereas l‐alanine is able to attach both at the growing (020) 
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(which has the pro‐chiral R hydrogen atom, bonded to the α carbon, orientated normal to 
the surface) and (020) crystal surface of α‐glycine (which has the pro‐chiral S hydrogen, 
atom bonded to the α carbon, orientated normal to the surface), the reduction in the rate of 
growth perpendicular to the (020) surface, ascribed from the reduction in the associated 
relative attachment energy, is greater. This is summarised in Figure 8.9.

8.5 THE DRUG PRODUCT PERSPECTIVE

8.5.1 Excipient Compatibility

A key challenge in product design is that during drug formulation one or more active 
pharmaceutical ingredients (APIs) are combined with non‐active excipients to pro
duce a marketable product. The excipients provide a range of features from bulking 
and flavouring to optimising the mechanical and processing properties of the active 
ingredient. Excipients can also have a major impact on the stability of the product 
and so appropriate selection is critical to the success of product design.

To achieve this, a thorough understanding of the components, their interactions 
with the API and proposed manufacturing process is required. Grid search methods 
allied to surface chemistry modelling have been utilised to define particle properties 
in terms of surface chemistry examining dissolution [78], mechanical properties 
[79], agglomeration [66, 70, 80] and sticking tendency. In this section we highlight 
recent work using computer simulation of API excipient interactions to predict 
adhesive strength at the API/excipient interface.

Ketoprofen and 17 commonly used excipients were chosen as the probe systems for 
this study [81]. The molecular modelling has two parts: prediction of crystal morphology 
followed by the prediction of binding energy of a probe molecule on the surfaces of the 
ketoprofen crystal. Three conformers for each of these excipients (probe molecules) 
were taken into consideration. For those excipient molecules which have more than one 
molecule in the asymmetric unit (e.g. sorbitol and α‐lactose monohydrate), both the 
complete asymmetric unit as well as three conformers of a single molecule were consid
ered as the probe conformations for the systematic search study. For those excipients that 
are polymers, a representative monomer unit was used as a probe molecule.

The systematic search results include the minimum interaction energy and 
the   distribution of interaction energies. The results are summarised in Table 8.4. 
The  minimum interaction energies on the two most morphologically important 
 surfaces increase with an increasing number of atoms of the probe (excipient) 
 molecule as expected gives an increased pairwise additive of the interatomic inter
actions. The  interaction energy distributions of the three conformers of each 
 excipient were compared with each other (Fig. 8.10). The peak position refers to the 
mean and mode of the interaction energy between an excipient as the probe mole
cule and a surface of the API. Similarly, the minimum interaction energy of every 
conformer was  compared one with another. The most stable conformer was chosen 
from the energy distribution and the minimum interaction energy, and its values 
were compared with those of the other excipients in order to assess the order of 
preference of these  excipients to bind with ketoprofen.
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It was found from this study that all the seventeen excipients gave a favourable inter
action. Compared with the base line value for ketoprofen itself, Table 8.4 shows that 
four excipients have a poorer binding energy on the (100) face and five excipients were 
found to have a poorer binding energy on the (110) face. It was observed that the excip
ients bound more favourably on (110) than (100) which could be due to the availability 
of H‐bonding donors and acceptors on the former surface. Generally, aerosil, glucose, 
PEG6000 and PVP have relatively poor binding energies on both faces. Mannitol 
exhibits good binding on the (100) face but poorer binding on (110). The opposite was 
found to be true for sorbitol. One of the interesting observations is the differences bet
ween glucose and lactose for both (100) and (110) faces: lactose has stronger binding 
than ketoprofen but for glucose the binding on (110) is significantly poorer.

TABLE 8.4 Minimum Interaction Energy (kcal/mol) of All the Excipients on 
the Ketoprofen (100) and (110) Surfacesa

Minimum Interaction  
Energy (kcal/mol)

Excipient Name (100) (110)

Ketoprofen molecule −6.3506 −9.1831
Aerosil −3.44 −2.50

Avicel −8.71 −11.56

Corn starch −14.28 −37.19

β‐d‐glucose (GLUCSE02) −5.84 −6.30

α‐Lactose −13.72 −15.15

α‐Lactose monohydrate (LACTOS11) −16.30 −20.92

β‐Lactose (BLACTO02) −13.74 −19.35

Magnesium stearate −21.70 −21.95

Magnesium stearate −20.14 −22.17

d‐mannitol (DMANTL09) −11.05 −7.01

Methocel (hydroxy methyl cellulose) −9.1082 −11.696

Natrosol (hydroxyl ethyl cellulose) −10.501 −11.24

Palmitic acid (YEFWEM01) −10.051 −10.67

PEG6000 −5.8839 −6.7986

PVPP −3.3135 −6.0176

Sorbitol −11.748 −10.59

Sorbitol ASU (GLUCIT03) −26.755 −36.531

Stearic acid (STARAC05) −10.978 −11.898

Stearyl alcohol −10.371 −11.867

Veegum −40.194 −20.395

a Source: Adapted from Ramachandran et al. [81].
Colour code: dark grey – interaction weaker than ketoprofen; clear – interaction stronger than ketopro
fen; and light grey – similar binding to ketoprofen (within 1 kcal/mol of the ketoprofen interaction).
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8.5.2 Inhaled Drug Delivery Design

A challenge in inhalation formulations is that they are comprised of micronised 
 particles of an active ingredient and excipient(s) which tend to form agglomerates. 
These agglomerates need to be dispersed effectively upon delivery for an effective 
drug deposition to the lungs. Therefore, for studying the deagglomeration and 
 aerosolisation behaviour, it is essential to have a complete understanding of the 
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(see insert for color representation of the figure.)
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inter‐particle interactions between the active ingredient and excipients or, in other 
words, the cohesive and adhesive forces between particles of homogeneous and het
erogeneous species, respectively. Grid search methods have been successfully 
applied to predict the cohesive behaviours of an excipient, α‐lactose monohydrate 
(LMH) and three APIs: salbutamol (SB), fluticasone propionate (FP) and budesonide 
(BUD) [63]. The prediction has been validated through independent experimental 
de‐agglomeration studies using laser diffraction techniques [82].

The interaction energies between a probe molecule (of LMH, SB, FP or BUD) and 
all the surfaces of their respective crystal morphology were calculated. The cohesive 
energies are the average of the minimum interaction energy of the probe molecule on 
every crystal surface of its respective morphology as shown in Table 8.5. The cohesive 
strength is stronger if the interaction energy is more negative. On that basis, it is pre
dicted that FP is the most cohesive followed by BUD and SB. One of the interesting 
features in Table 8.6 is the binding energy range for SB binding is very tight, across 
the different faces being within 1 kcal/mol, whilst for FP the range is over 3 kcal/mol 
thus reflecting a different range of binding modes and/or different surface chemistry.

Thus the prediction showed that FP (−11.5 kcal/mol) has the highest cohesive 
strength when compared to BUD (−9.9 kcal/mol) or SB (−7.8 kcal/mol) and this 
ranking correlated well to the laser diffraction measurements where the airflow 
pressure required for complete dispersion (CPP) was 3.5, 2.0 and 1.0 Bar for FP, 
BUD and SB, respectively. This case study demonstrates that the technologies also 
have the potential to be used as predictive tools for assessing the cohesive–adhesive 
strength balance for inhaled drug formulations.

TABLE 8.5 Predicted Cohesive Energy of Inhalation Formulation Components 
(LMH, FP, BUD, SB)a

FP BUD SB LMH

Forms

Strongest 
(Minimum) 
Interaction 

Energy 
(kcal/mol) Forms

Strongest 
(Minimum) 
Interaction 

Energy 
(kcal/mol) Forms

Strongest 
(Minimum) 
Interaction 

Energy 
(kcal/mol) Forms

Strongest 
(Minimum) 
Interaction 

Energy 
(kcal/mol)

{2 0 0} −12.96 {0 0 2} −8.69 {2 0 0} −7.75 {0 2 0} −17.32
{1 1 0} −9.26 {1 0 1} −10.75 {0 0 2} −7.62 {0 0 1} −15.64
{1 0 1} −13.22 {0 1 1} −9.27 {1 1 1} −7.73 {0 1 1} −14.24
{0 1 1} −10.61 {1 1 0} −11.11 {1 0 2} −8.34 {1 0 0} −16.81

{2 1 0} −7.44 {1 0 −1} −14.51
{1 1 0} −16.23
{0 −2 0} −14.66
{0 −1 1} −14.66

Average −11.5 −9.9 −7.8 −15.8
Range 3.7 2.42 0.72 3.08

a Source: Adapted from Ramachandran et al. [63]. Reproduced with permission of American Chemical 
Society.
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8.5.3 Mechanical Properties

Solid‐form selection is important in identifying a suitable route for tablet processing. 
Direct compression can be chosen over dry granulation or wet granulation only if the 
solid‐form has high compressibility and high flowability. The mechanical strength of 
the API, which is dominant in the formulation, is detrimental to the strength of the 
tablet. From the crystallographic structure, mechanical deformation properties of 
aspirin were predicted successfully [79].

Organic crystals in general and drug molecules in particular are soft materials due 
to the presence of weak inter‐molecular interactions. The mechanical deformation 
properties of these materials can often be highly anisotropic, reflecting the  anisotropy 
in a number of factors such as elastic constants, dislocation Burgers vector, b  [u v w] 
and available slip planes (hkl). Crystal deformation under mechanical stress 
takes place elastically and then plastically. Plastic deformation requires dislocation 
motion  along the low index slip planes subject to the requirement as given in 
Equation 8.3:

 hu kv lw 0 (8.3)

The relative lengths of the crystallographic unit cell edge parameters together 
with the inter‐molecular packing pattern of aspirin as projected down the three crys
tallographic axes are shown in Figure 8.11. Analyses suggest that the most likely slip 
plane is (100) followed by (001). Slip on the (010) plane would not seem to be very 
likely given that this would involve breaking the dimer H‐bonds. Slip on the lower 
index surfaces such as the (101) plane would appear to be feasible in terms of the 
inter‐molecular packing but would perhaps be unlikely given that this would require 
breaking of the dimer bond. This analysis is summarised in Table 8.6 together with 
the calculated values of the surface energies. The most likely Burgers vector for dis
location slip is parallel to the shortest unit cell axis [010], this being the shortest 
lattice translation, and given that the Bravais lattice is primitive there would be no 
halving of this distance. Given that the other two lattice constants are nearly twice the 
magnitude of 



b, it can be speculated that this lattice dislocation would be the most 

TABLE 8.6 Analysis of the Structural Factors Related to Likely Slip Due to 
Mechanical Deformationa

(hkl)

Surface 
Energy 
mJ/mm2

Slip 
Plane 

Rugosity

Interlocking 
of Slip 
Planes?

Slip 
System 

with 
b = [010]

Slip Involving 
Hydrogen 

Bond 
Breaking

Surface 
Cleavage 
Likely?

Plastic 
Deformation 

Likely?

(100) 0.0829 Very low N Y N Y Y
(001) 0.0904 Low N Y N Y Y
(011) 0.1550 High Y N Y N N
(110) 0.1430 High Y N Y N N

a Source: Adapted from Olusanmi et al. [79]. Reproduced with permission of Elsevier.
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likely and the only Burgers vector that needs to be considered. Consideration of the 
combination of slip plane and Burgers vector would suggest that the most likely 
active slip systems would be in the (100) plane along the 



b direction giving the slip 
system, (100)[010] and in the (001) plane along the 



b direction giving the slip system, 
(001)[010].

Observations of the damaged morphology of the product particles after impact tests 
are in agreement with the breakage mechanisms observed during nanoindentation 
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(A)

(A) (A)

(A)

(B)

(B) (C)
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(B)

(B)

[100]

[100]

(a)

(b)

C

C
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A

B

FIGURE 8.11 (a) (1 0 0) projection showing slip possibilities on (0 0 1) (A) planes. Note 
that slip on (0 1 0) (B) would require breaking the dimer hydrogen bonds. The black and grey 
parts of the molecule represent oxygen and hydrogen, respectively. (b) (0 1 0) projection show
ing comparatively easy slip possibilities on (1 0 0) (A) crystal planes and less so at (0 0 1) (B). 
Note that slip on (1 0 1) (C) would involve breaking dimer hydrogen bonds. Source: Adapted 
from Olusanmi et al. [79]. Reproduced with permission of Elsevier.
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studies with the deformation and fracture of aspirin occurring on the preferential slip 
planes as shown in Figure 8.12.

8.5.4 Dissolution

Selection of solid‐form and appropriate particle attributes is one of the foundation 
elements of drug product design. One challenge is to deliver consistent dissolution 
rates of API particles used in formulations. Additionally as the chemistry route is 
optimised and the final step isolation is refined, there is a need to be able to define 
the potential impact of changes of API particle size and shape on product efficacy. 
The model used to predict the dissolution kinetics of the monodisperse crystalline 
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FIGURE 8.12 (a) Load–displacement curves from indentation on faces (0 0 1) and (1 0 0) 
of aspirin carried out at loading rates of 5 mN/s and at similar depths. ‘Pop‐ins’ can be observed 
on both curves, indicated by the arrows. (b) Morphological sketch of aspirin drawn using 
SHAPE and scanning electron micrograph of a representative aspirin particle. (c) SEM image 
of an indent of aspirin (1 0 0) face. Source: Adapted from Olusanmi et al. [79]. Reproduced 
with permission of Elsevier.



TABLE 8.7 Shape Factors of the Three Different Celecoxib Crystals and the % 
Surface Area of the Formsa

% Surface Area of Particle

Shape Factor (Γ) {0 1 0} {1 1 0} {1 0 0} {0 0 1} {0 1 −1} {1 0 −1} {1 −1 0}

6.11 35.0 31.1 3.2 0.6 2.1 20.8 7.8
12.25 84.4 0 10.6 1.6 3.3 0 0
16.39 63.2 0 36.0 0 0.8 0 0

a Source: Adapted from Ramachandran [62].
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FIGURE 8.13 Shapes of celecoxib (form C) crystal for different shape factors (a) attach
ment energy, (b) plate‐like morphology, (c) needle‐like morphology and (d) the predicted dis
solution profiles of celecoxib crystals with different shapes (needle shape dissolves faster than 
the plate‐like crystal and the attachment energy model takes the longest to dissolve) with an 
inset showing the magnification of 0–40 min and from 40 to 100% dissolution. Source: 
Adapted from Ramachandran [62].
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particles is based on Noyes–Whitney equation (Eq. 8.4) [83]. In this, the surface area 
S of the particle is dependent on the morphology of the crystal which can be expressed 
in terms of the shape factor, Γ (Eq. 8.5) which can be predicted from morphological 
simulations.

 

dX

dt

DS

h
C

X

V
s

s
d  (8.4)

 

P

P
a

v
2 2/

 (8.5)

where, X
s
 is the mass of solid drug, t is time, D is the diffusion coefficient, S is the 

surface area at time t, h is the boundary layer (stagnant layer) thickness, C
s
 is 

the aqueous solubility, X
d
 is the mass of dissolved drug, V is the volume of the disso

lution medium, and P
a
 and P

v
 are the particle’s surface area and volume, respectively.

This approach has been applied to predict the morphology of celecoxib (CSD 
refcode: DIBBUL) [84], as described in Section 8.3.3 together with its associated 
shape factor. The shape factor was used subsequently in estimating the dissolution of 
API particles, celecoxib [62]. In order to see the effect of the dissolution rate on 
celecoxib crystals with varying morphology (i.e. a range of shape factors), the centre 
to face distance that is proportional to the attachment energies was manually adjusted 
to produce three different morphologies for the celecoxib crystal for which new 
shape factors were obtained [62, 85]. These morphologies are shown in Figure 8.13a–c 
with their respective shape factors shown in Table 8.7. The corresponding dissolution 
rates, as predicted by the dissolution model, are given in Figure 8.13d.

Although not yet taking into account the structural chemistry of the surfaces, this 
case study shows that the crystalline morphology can have an effect on the rate of 
dissolution, that is dissolution rate is faster when the shape factor which is greater. 
This model is robust and can be applied to compare the dissolution rates of different 
morphologies and extended to examine different polymorphs. The approach can also 
take into account the polydisperse nature of particles. Ultimately, this will allow the 
formulator and process chemist to examine the link between the evolving chemical 
route and API particles and the dissolution rate.

8.6 SUMMARY AND FUTURE OUTLOOK: SYNTHONIC 
ENGINEERING PARTICLE PASSPORT AND THE FUTURE 
OF THE DRUG PRODUCT DESIGN

Over the past decade, through embracing both academic advances and technology 
initiatives, significant progress has been made in defining relationships between the 
API properties of new and existing chemical entities and the formulation design 
aspects of new products. Examples of established progress include the following:

 • API particle size distributions and content uniformity [86]

 • API particle size distributions and flow [87]
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 • API particle size distributions, surface area and mechanical properties [88]

 • API particle size and dissolution [89]

 • Crystal brittleness and milling behaviour [90]

Whilst, traditionally, the solid‐form selection process has focused on two main 
factors, that is achieving an appropriate degree of product stability and bioavail
ability, increasing emphasis is also being focused on selection of solid‐forms at the 
pre‐formulation stage which have optimal physical properties such as mechanical 
behaviour, surface properties and particle shape. Given this perspective, this chapter 
has, briefly, outlined some recent research on the application of emerging computa
tional technologies as foundation elements of the modern paradigm:

 • Understanding inter‐particle interactions associated with polymorphic transfor
mation [66]

 • Predicting crystal surface/solvent interactions and on the solvent mediation of 
the crystal habit [58]

 • Understanding the effect of impurity on the crystal growth and therefore 
 modifying its morphology [77]

 • Screening and selection of excipients through understanding of their interac
tions with the API as a critical step in product design [81]

 • Predicting the deagglomeration and aerosolisation behaviour of inhaled formu
lation from the inter‐particle interactions between the API and excipients [63]

 • Visualising the impact of crystal packing motifs on the potential for mechanical 
deformation processes [91]

 • Predicting the dissolution of API particle as a function of its shape and size [62]

Models have been built that allow the pharmaceutical scientists to explore 
the  impact of particle variation on dissolution rate and bioavailability. The 
Biopharmaceutics Classification System (BCS) [89] is used do define classes of 
compounds based on the solubility and permeability of the compounds. Permeability 
is a molecular property, but solubility and dissolution rates are related to the internal 
structure (salt and polymorph) and particle size distribution/surface area. More 
recently this concept was built upon where the interplay between permeability and 
solubility and the impact of using simulated gastric fluids in measuring solubility 
have brought greater definition to the impact of API particle attributes on drug 
 efficacy [92]. Additionally, a recent cross‐industry attempt to develop a Manufacturing 
Classification System (MCS) [93] highlights the intense interest in this area from the 
manufacturing sector. It is envisaged that an MCS would aid product and process 
development facilitating the transition between clinical and commercial manufac
turing sites providing a common understanding of risk. A further goal of an MCS 
would be to provide regulatory relief for the development and manufacturing of 
 dosage forms with well‐controlled API and excipient properties targeted/suited to 
particular manufacturing process trains.
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These relationships, combined with institutionalised corporate knowledge of 
 formulation design practices [12, 94] plus computational methodologies of the 
sort highlighted in this chapter open up the potential of a fully integrated holistic 
product design process consistent with the emerging QbD philosophy [10, 94].
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9.1 INTRODUCTION

One of the major problems of modern drug development consists of the increasing 
prevalence of poorly water‐soluble drugs, which is most often accompanied by a low 
bioavailability [1]. Computational predictions can help address this issue either by 
solubility estimation of new compounds at the early stage of drug design or at a later 
stage by supporting the drug development process, for instance by screening of suit-
able solvents. Among the more commonly used solubility prediction schemes are the 
nonrandom two‐liquid segment activity coefficient (NRTL‐SAC) method [2], the 
Hansen solubility parameter approach [3], the perturbed‐chain statistical associating 
fluid theory (PC‐SAFT) equation of state [4], and the UNIQUAC functional‐group 
activity coefficient (UNIFAC) method [5]. All those conventional methods have in 
common that they are strongly parameterized and rely on a set of molecule or functional 
group–specific parameters, which are usually determined by fitting to experiments. 
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They usually perform well in their core region of parameterization, but extrapolation 
should always be done with care. This poses a problem if nonstandard or unusual 
chemistry is to be explored where those experiments are not yet available, which 
may well be the case for a newly synthesized drug. In contrast, the conductor‐like 
screening model for realistic solvation (COSMO‐RS) is based on first‐principles 
calculations. In order to predict the property of a new compound, it is sufficient to 
carry out a density functional theory (DFT) computation, followed by an efficient 
procedure routed in statistical thermodynamics to take into account intermolecular 
interactions. Only the molecular structure is necessary as an input and the first, some-
times costly, quantum chemical part can be abbreviated using databases containing 
precomputed results. Although COSMO‐RS also contains a non‐negligible number 
of parameters, they are element specific, that is, no specific interactions are parameter-
ized for each molecule and thus there is no need for any reparameterization for new 
drugs. Due to this unique predictive capability COSMO‐RS theory and its software 
implementation, COSMOtherm [6] are nowadays used by many groups in chemical 
and pharmaceutical research.

In the following paragraphs, some application examples will be presented, 
starting with a short introduction to COSMO‐RS (Section 9.2), followed by solu-
bility predictions in pure and mixed solvents (Section 9.3). A modification using 
several reference solubilities is shown in Section 9.4 whereas Section 9.5 is about 
quantitative structure–property relationship (QSPR) models of the melting point 
and the enthalpy of fusion. The final Sections 9.6 and 9.7 deal with COSMO‐RS‐
based coformer selection for cocrystal screening and the related issue of solvent 
selection to avoid solvate formation.

9.2 COSMO‐RS

COSMO‐RS is a fluid phase thermodynamics method for property prediction of the 
liquid phase that was first introduced in 1995 by A. Klamt [7]. A concise review of 
the methodology was published in 2011 [8], and a detailed introduction can be found 
in Ref. [9], thus only a short summary of the most important aspects of the approach 
will be given here.

COSMO‐RS was originally created as an improvement to the conductor‐like 
screening model COSMO [10]. COSMO is a quantum chemical solvation model that 
takes into account solvent effects implicitly and thus belongs to the group of dielectric 
continuum solvation models (DCMs). Within COSMO, the solute is placed inside a 
conductor (dielectric constant ε = ∞), which results in a perfect screening of the 
electric field of the molecule. The polarization of the conductor and the subsequent 
response of the molecular electrostatic field have to be computed iteratively by the 
quantum chemical method until self‐consistency is reached. For finite dielectrics the 
solute potential in the conductor is corrected by a simple dielectric screening function 
f(ε). This simplification gives a significant improvement in efficiency and numerical 
stability as compared to other DCMs based on a finite dielectric constant. Though 
COSMO is nowadays one of the most often applied solvation models, Klamt pointed 
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out the shortcomings of the underlying DCM approach [8, 9]: the continuum description 
of a DCM will be inadequate in particular for polar solvents, that is, for solvents that 
possess a non‐negligible dipole moment. In such solvents the largest part of the 
dielectric response originates from the dipole reorientation of the solvent molecules 
(for water with ε = 78.4 the contribution of the dipole reorientation amounts to 99% 
of the polarization) and implicit solvation cannot give the full picture.

This finding leads to the concept of COSMO‐RS, which combines the DCM 
approach with the statistical thermodynamic treatment of interacting surface segments. 
The interactions of the segments are derived from the screening charge density of the 
DCM calculation, whereas the 3‐dimensional information is projected into a histogram 
of equally binned charge densities—the so‐called σ‐profile. A σ‐profile represents the 
amount of surface area p(σ) as a function of the polarization charge density σ. It is now 
possible to formulate intermolecular interactions based just on those surface segments, 
which introduces the novel concept of an ensemble of interacting surface segments in 
solution. Compared to the usual approach of an ensemble of molecules like in molec-
ular dynamics, this leads to a dramatic increase in efficiency for the evaluation of the 
thermodynamic statistics. COSMO‐RS intermolecular interactions take into account 
van der Waals interactions, electrostatic interactions, and hydrogen bonding (HB). At 
the same time the solute or solvent embedded in the virtual conductor corresponds to a 
well‐defined energetic reference state.

The van der Waals energy for a solute X is given as a surface proportional term 
with element‐specific coefficients τ

el(α)
:

 
E AVdW

X
el

X (9.1)

The summation is over all atoms α, and AX is the COSMO surface area on atom α.
The so‐called electrostatic misfit term arises from the mismatch of the surface 

segments of two neighboring molecules if intermolecular interactions are introduced 
by leaving the grounded conductor reference state. The misfit term equals zero for 
two interacting surface segments of the same size and opposite charge but leads to an 
electrostatic energy penalty for unlike segment pairs proportional to the square of the 
net charge σ + σ′:

 E a cmisfit contact misfit

2
 (9.2)

c
misfit

 is a coefficient, which can be derived from basic electrostatics, and a
contact

 is the 
surface segment contact area. Finally, the intermolecular HB interaction is obtained 
via the following functional form:

 E a cHB contact HB HBmin ,0 2  (9.3)

Due to the threshold σ
HB

 only contributions from sufficiently polar surface segment 
pairs contribute to the HB term. The term σσ′ ensures that the hydrogen bond term 
increases with increasing polarity of the donor and the acceptor. Recently it could be 
demonstrated that this product of polarization charge densities indeed reflects the HB 
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energy of experimentally determined hydrogen bond strengths over a wide range of 
acceptor molecules to within an accuracy of 2 kJ/mol [11].

With the functional form of intermolecular interactions at hand, they have now to 
be evaluated for a liquid ensemble of interacting segments. A detailed derivation of 
the necessary statistical thermodynamics and a proof of thermodynamic consistency 
have been given by Klamt et al. [12]. This yields the chemical potential as a function 
of the polarization charge density μ

S
(σ) and one finally obtains the chemical potential 

of solute X in solvent S S
X by integrating the solvent chemical potential μ

S
(σ) over 

the binned solute surface weighted by the σ‐profile:

 S
X X

S comb S
Xd p RT xln .,  (9.4)

The logarithmic term contains the ideal entropic contribution depending on the molar 
fraction x of the solute X and a combinatorial contribution to the activity coefficient 
due to the relative sizes of solute and solvent. This approach is extended trivially 
from pure solvents to mixtures because the σ‐profile of the mixture can be additively 
composed out of the mixture ingredients:
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 (9.5)

By means of the previous two equations COSMO‐RS gives access to the chemical 
potential of any solute in arbitrary pure solvents or solvent mixtures as a function 
of temperature and concentration. This opens the field to nearly the entire fluid 
phase equilibrium thermodynamics, and allows for the computation of any kind of 
liquid phase properties, that is, all kinds of activity coefficients, partition coeffi-
cients, solubilities, excess quantities, solvation energies, and many more. If quantum 
chemical gas phase energies are incorporated, this also grants access to vapor–
liquid equilibria like vapor pressures and Henry’s law constants. Accordingly, in 
addition to solubility prediction [13] and solvent screening [14], COSMO‐RS theory 
has been applied successfully in numerous fields such as for pK

a
 predictions [15], 

ionic liquids [16], partitioning coefficients [17], cocrystal or solvate formation [18], 
and excipient ranking [19] to name just some important applications. In addition, a 
σ‐profile‐based algorithm for quantifying ligand–receptor interactions in proteins 
has been introduced [20].

The standard COSMO‐RS workflow starts with a conformer search at a low‐level 
method like AM1 or a molecular mechanics force‐field. High‐energy conformers are 
then subsequently filtered out by going to higher‐level density functional methods. 
Clustering according to the chemical potential in solvents with different polarity 
ensures that no relevant conformers are left out. The resulting σ‐profiles of the 
low‐energy conformers are stored, for example, in a database and can then be used as 
an input to the COSMOtherm program. Next COSMOtherm carries out the statistical 
thermodynamics computation including Boltzmann weighting of the conformers to 
quantify the intermolecular interactions. Most of the COSMOtherm functionality is 
accessible via the graphical user‐interface COSMOtherm X.
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At a somewhat reduced accuracy it is also possible to circumvent the sometimes 
costly quantum chemical calculations and to generate σ‐profiles on‐the‐fly from 
fragments of precomputed COSMO files stored in a database. This approach is 
implemented in the software COSMOquick and is particularly useful for solubility 
prediction using one or several reference solvents (see also Section 9.4).

If not stated otherwise the following results have been generated with recent 
COSMOtherm [6] and COSMOquick [21] releases and their respective COSMO‐RS 
parameterizations, BP_TZVP_C30_1301.ctd (TZVP level of theory) and BP_SVP_
AM1_C30_1301.ctd (SVP level of theory). QSPR calculations have been done using 
the R statistics package [22].

9.3 PREDICTION OF DRUG SOLUBILITY USING COSMO‐RS

Because the solubility prediction capabilities of COSMO‐RS have been reviewed 
before [14, 23], here we summarize just shortly the theoretical foundations and then 
focus on some recent results.

The mole fraction solubility of the compound X in solvent S is readily obtained 
from the condition of equal chemical potentials at the solid–liquid equilibrium:

 
log

ln10 10
x

G

RTS
X
X

S
X

fus
X

 (9.6)

The Gibbs free energy of fusion, ΔG
fus

, is the free energy that has to be expended to 
bring the solid into the supercooled liquid state at a given temperature and thus by 
convention ΔG

fus
 ≥ 0. This quantity can be expressed by the melting enthalpy ΔH

fus
, 

the melting point T
m
, and the heat capacity change at the solid–liquid phase transition 

ΔCp
fus

:

 
G H T S Cp T T T Cp

T

Tfus fus fus fus m fus
mln  (9.7)

Often the approximation ΔCp
fus

 = 0 is made and usually gives decent results as long 
as the temperature range under consideration (T

m
 − T) is not too large. From a com-

putational point of view, ΔH
fus

 and the melting point T
m
 require at least knowledge 

about the crystal structure of the solute and are difficult to predict. A typical procedure 
for solubility prediction is to compute the liquid chemical potentials only and to 
derive the missing free energy of fusion from experimentally determined melting 
point and fusion enthalpy. Figure 9.1 shows the chemical potential of paracetamol 
in CCl

4
 at different concentrations (in mole fractions) at 298 K as computed by 

COSMOtherm. The two intersections correspond to the equilibrium state, where the 
chemical potential of the pure liquid equals the potential of the solvated species and 
the equilibrium state, where the chemical potential of the solid equals the potential 
of  the solvated species. As paracetamol is solid at room temperature (ΔG

fus
 > 0), 

the  state belonging to the first intersection is not thermodynamically stable but 
 corresponds to the supercooled drug in equilibrium with its solution.
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For higher solubilities (e.g., concentration >10 volume%), Equation 9.6 should be 
solved iteratively, because the dependence of the chemical potential of the solute in 
the solvent, S

X, on the mole fraction x cannot be neglected anymore. Equation 9.6 is 
solved iteratively by default within COSMOtherm. If the ΔG

fus
 term is not known or 

cannot be derived from an experiment, COSMOtherm provides a QSPR estimate, 
however leading to an increase in the overall prediction error.

In Figure 9.2 COSMOtherm predictions for the solubility of some drugs in different 
solvents are presented. Experimental data for the hypolipidemic agent lovastatin 
[24–27], the nonsteroidal anti‐inflammatory drug meloxicam [28], the antimalarial 
artemisinin [29], and the sulfonamide antibiotic sulfamethoxypyridazine [30] have 
been taken from the literature. ΔG

fus
 values for the drugs have been derived from the 

melting point and the enthalpy of fusion where available, or computed by using 
Equation 9.6 with ethanol as a reference solvent. All of the drugs have a very low 
solubility in water and except for sulfamethoxypyridazine the aqueous solubility is 
even the lowest among all solvents, which is another manifestation of the low 
 bioavailability of current drugs.

Table 9.1 compares the overall deviation of the predictions from the experiment. 
The overall prediction accuracy for the five drugs amounts to an RMSE = 0.49 (root 
mean squared error of the decimal logarithm of the mole fraction solubility), which 
is about the typical error bar for COSMO‐RS solubility predictions. Due to our 
experience this is already close to the usually achieved experimental accuracy.
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FIGURE 9.1 The chemical potential of paracetamol in CCl
4
 at varying concentrations (in 

mole fractions x) at 298 K. The intersection with the solid‐state chemical potential defines the 
solid–liquid equilibrium (SLE) and corresponds to the solubility of the drug in this particular 
solvent. The difference between the pure liquid and the solid‐state chemical potential is the 
free energy of fusion ΔG

fus
. Also shown is the liquid–liquid equilibrium (LLE) where the 

virtually supercooled liquid is at equilibrium with the dissolved drug.
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Areas where COSMO‐RS‐based predictions are particularly useful are for instance 
the low solubility regime where it is difficult to measure accurately or for hazardous 
substances where a measurement is time consuming and costly.

Furthermore, COSMO‐RS is known to perform well for predictions of activity 
coefficients and solubilities in solvent mixtures [14, 23] and in most cases reproduces 
solubility maxima correctly. A challenging problem case, however, the solubility of 
paracetamol in a water–dioxane mixture, is shown in Figure 9.3. Experimental data 
for the system paracetamol/water–dioxane have been taken from three different 
sources [31–33] and compared with COSMOtherm computations at the TZVP and 
the newer FINE parameterization [6].

There is a tremendous difference between the different experimental measure-
ments, which amounts to more than 0.5 log units at intermediate mole fractions. Such 
large noise is not unusual but rather a typical problem that one has to deal with when 
experimental data is being reproduced. In spite of this scatter all of the experiments 
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FIGURE  9.2 COSMO‐RS predicted versus experimental solubilities for several drugs in 
logarithmic units (mole fraction based).

TABLE 9.1 Summary of COSMO‐RS Solubility Predictions of Some Drugs, Computed 
at the TZVP Level of Theory

Drug RSME Experimental Data Used References

Lovastatin 0.62 T
m
 = 446 K, ΔH

fus
 = 10.3 kcal/mol [24–27]

Meloxicam 0.49 T
m
 = 530 K, ΔH

fus
 = 17.1 kcal/mol [28]

Artemisinin 0.32 ΔG
fus

 = 2.7 kcal/mol [29]
Sulfamethoxypyridazine 0.53 log10(x),ethanol = −3.42 [30]
Mean (stdev) 0.49 (0.11)

RMSE, root mean squared error; stdev, standard deviation.
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exhibit a solubility maximum. Though the standard level (TZVP) gives decent results 
for the absolute solubility, it does not reproduce this solubility maximum qualita-
tively in this particular case. The COSMO‐RS FINE level is an enhancement that uses 
a finer grid for the COSMO cavity construction and an extended basis set (TZVPD) 
with an additional diffuse basis function for the DFT calculation. The FINE parame-
terization was introduced in 2012 into COSMOtherm and is still being improved 
continuously. Using the same reference solvent as the standard TZVP the new 
approach is able to reproduce the maximum in the solubility curve nicely.

In general, quantitative solubility prediction for solids relying on liquid phase 
thermodynamics is hampered by the fact that in addition to the activity coefficients also 
accurate solid‐state information like melting point and fusion data have to be available. 
In the preceding part this issue could be mitigated by the use of an experimental 
solubility as a point of reference. In the following sections two additional workarounds 
addressing this problem are presented. First, the use of several, instead of only one, 
experimental reference points is shown and second, a QSPR for melting point and 
enthalpy of fusion is introduced that can be used to determine the enthalpy of fusion.

9.4 SOLUBILITY PREDICTION WITH MULTIPLE 
REFERENCE SOLVENTS

Solubility predictions with COSMOtherm can be applied without the need for repa-
rameterization for most chemical systems. Once the quantum chemical computations 
to generate the σ‐surface are done, they are also quite fast and usually finished within a 
fraction of a second. Nevertheless, highly parameterized methods like NRTL‐SAC and 
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in a water–dioxane mixture. Three different experiments have been taken from the literature. 
Solubilities are predicted with COSMOtherm. The FINE and the standard COSMOtherm 
TZVP level are shown.
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PC‐SAFT sometimes perform better for interpolation, as long as one stays within the 
core region of their parameterization. A compromise between those two different 
procedures represents the solubility prediction scheme implemented recently in the 
software package COSMOquick (“COSMOquick approach”) [34]. The idea behind the 
COSMOquick approach is to correct the chemical potential in solution S

X (see Eq. 9.6) 
by using several reference solubilities in different solvents. Formally, different refer-
ences should yield the same ΔG

fus
. In practice, of course, this is not the case due to 

the approximations that come along with the theoretical model. The deviations from 
the mean ⟨ΔG

fus
⟩ are used to correct the chemical potential in solution based on the 

similarity of a specific solvent with the reference solvents. Usually solubilities from 
three different solvents are sufficient for accurate predictions. In addition, the 
COSMOquick approach does not need any costly quantum‐chemical computation. 
Rather it generates σ‐profiles on‐the‐fly from a simplified molecular input (e.g., 
SMILES notation) by carrying out a quick analysis of an extensive database containing 
precomputed COSMO files. Of course, that leads to somewhat less accurate σ‐profiles 
and thus to a reduced accuracy concerning property prediction. However, using 
multiple references one is able to compensate the partially reduced σ‐profile quality to 
some extent. The COSMOquick approach takes into account solubility in a noniterative 
fashion making it somewhat less reliable for solutes with high solubilities, in practice 
however this is not of relevance for most drugs, which typically have low solubility.

Table 9.2 shows some results of the COSMOquick approach in comparison with 
the popular solubility estimation tool NRTL‐SAC. NRTL‐SAC is a methodology that 

TABLE 9.2 Comparison of NRTL‐SAC and COSMOquick Solubility Prediction 
Results on Different Solutes

Solute Method No. Reference Solvents Total No. of Solvents RMSEa

Sulfadiazine NRTL‐SAC 7 19 1.24
COSMOquick 3 19 0.42

Paracetamol NRTL‐SAC 8 23 0.60
COSMOquick 4 23 0.48

Cimetidine NRTL‐SAC 6 11 0.82
COSMOquick 4 11 0.49

Fluorenone NRTL‐SAC 5 21 0.39
COSMOquick 3 21 0.34

Xanthene NRTL‐SAC 5 19 0.53
COSMOquick 3 19 0.27

Monuron NRTL‐SAC 5 24 0.25
COSMOquick 3 24 0.25

Cinchonidine NRTL‐SAC 5 23 0.94
COSMOquick 3 23 0.87

Saccharin NRTL‐SAC 5  9 0.95
COSMOquick 3  9 0.42

<mean> NRTL‐SAC 5.8 18.6 0.72
COSMOquick 3.3 18.6 0.44

aRoot mean squared error (RMSE) of logarithmic solubility log10(x), x in mole fractions. Table partially 
reproduced from Ref. [34].
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was introduced by Chen and coworkers in 2004 [2], which uses segment‐specific 
activity coefficients, whereas the segment contributions have to be determined by a 
fit to the experiment for each drug or solvent.

The drugs sulfadiazine, paracetamol, and cimetidine and their respective solvents 
in Table 9.2 have been chosen according to the original NRTL‐SAC publication [35], 
the other solute/solvent datasets have been taken from the available literature. NRTL‐
SAC results have been obtained with our own implementation of the method. Additional 
details on the parameters used and original literature references can be found in 
Ref. [34]. From Table 9.2 it becomes obvious that although a smaller number of 
reference solvents are used, the COSMOquick results are significantly more accu-
rate; on the set of eight molecules the average score for COSMOquick amounts to 
RMSE = 0.44, where NRTL‐SAC gives a RMSE = 0.72.

Moreover, in contrast to NRTL‐SAC and most other highly parameterized prediction 
models, relative solubilities for new drugs can be computed even if no experimental 
data is available. If just one reference is used, the approach reduces to the standard 
COSMOtherm approach for solubility prediction.

This is shown in Table 9.3, which illustrates the difference between relative solu-
bility predictions and predictions using one or more references.

Relative solubility prediction, that is, setting ΔG
fus

 to an arbitrary fixed value in 
Equation 9.6 will give already a good trend, as seen in the squared correlation coefficient 
R2. Including one experimental reference allows now for quantitative predictions main-
taining the same trend as it only shifts the results. Optimal results concerning R2 and 
RMSE are usually obtained using three to four reference solvents, going further gives 
only minor improvements. The reference solvents should be chosen to reflect different 
solvent characteristics. Ideally they contain a nonpolar solvent like hexane, a polar‐aprotic 
solvent as acetone, and a solvent like ethanol with mixed donor and acceptor features.

There exist a few restrictions for the instant generation of σ‐profiles as used by the 
COSMOquick approach: currently no conformational effects can be taken into 
account and the support of stereochemistry is only limited. The underlying COSMO 
database contains more than 100,000 compounds containing rare functional groups 
and ionic species and covers a very broad but of course limited chemical space. Thus, 
for very rare functional groups sometimes the generation of σ‐profiles may fail, 
which can be alleviated, however, by adding a suitable molecule to the database. 
Again, no refitting is necessary in such a case.

TABLE 9.3 Comparison of COSMOquick 
Solubility Predictions for the Paracetamol Dataset 
[36] Using Runs without Any Reference (Relative), 
with One to Six Experimental Solubilities

n, references R2 RMSE

0 (relative) 0.83 —
1 0.83 0.61
4 0.86 0.48
6 0.87 0.45
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In summary, this workflow constitutes an efficient and probably one of the most 
accurate ways to predict solubilities. Moreover, it is applicable also for nonexperts in 
the field of computational chemistry.

9.5 MELTING POINT AND FUSION ENTHALPY QSPR MODELS

COSMO‐RS itself is a liquid phase theory but, according to Equation 9.6, for a 
quantitative solubility prediction some sort of information about the solid state is 
indispensable. In many cases the problem of a missing free energy of fusion or 
equivalently of unknown melting point and fusion enthalpy can be circumvented 
by referring to an experimental solubility, as seen in the preceding section. But some-
times even this information may not be available. The full computational prediction 
of fusion data requires at least a crystal structure prediction of the solute, which is not 
yet practically feasible for most cases. QSPR methods offer a simple and efficient 
alternative, but have mostly the drawback of missing a sound physical model under-
neath, and are often not able to provide much insights, especially when a multitude 
of unthoughtful descriptors are used. Nevertheless, in order to predict the enthalpy of 
fusion and the melting point in a reasonable amount of time a QSPR approach seems 
to be without an alternative. Moreover, statistically robust models using sound 
descriptors will not only allow for readily available quantitative solubilities but may 
also take into account temperature dependency according to Equation 9.7. Therefore, 
two QSPR models will be presented in the following, concerning the enthalpy of 
fusion and the melting point, respectively.

First, we have created a model for the fusion enthalpy using the dataset of Chickos 
and coworkers [37, 38], which contains about 2300 organic molecules. A set of about 
30 descriptors were computed using COSMOquick, using only structural information 
by starting from SMILES strings and the subsequently generated σ‐profiles. To the 
latter belong the so‐called σ‐moments, which build the basis for a linear expansion of 
the σ‐potential of a compound and have been used successfully for instance for 
describing partition coefficients [39]. Then, a multivariate linear regression was fit-
ted and descriptors were selected by an iterative forward search taking into account 
the full set. Model stability was checked by fivefold cross‐validation yielding an 
accuracy of about 2.2 kcal/mol (root mean squared error, RMSE), no significant 
improvement could be obtained using a nonlinear model. Among the variables that 
were considered as significant are the chemical potential of the pure compound 
(mu_self), the number of intramolecular hydrogen bonds (h_int), the second  
σ‐moment and the hydrogen bond donor moment (M2 and Mdon2), the number of 
alkylatoms (alkylatoms), and the number of rotatable bonds of linear chains (nbr11).

In order to develop a melting point model a dataset was created from prior pub-
lished sources. Melting points from the PHYSPROP database [40] and from the work 
of Karthikeyan and coworkers [41] were combined. However, we had to find out that 
this combined dataset contains a significant amount of noise, plainly speaking basically 
questionable entries. Thus, suspect data points were removed or corrected resulting in 
a dataset containing the melting point and SMILES of more than 12,000 compounds. 
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As a test set 277 compounds were kept aside, corresponding to the data used by 
Karthikeyan and coworkers as a test set.

Probably due to the fact that the melting point is a highly nonlinear property, it was 
not possible to build a model using linear regression having an accuracy of less than 
55 K. Instead, a random forest regression was used to cope with the nonlinearity. 
Random forests consists of an ensemble of several hundred unpruned decision trees, 
where a subset of the training samples are held back in each iteration to obtain an 
accurate generalization error. To build each binary split a random subset of the vari-
ables is used. The finally predicted value is obtained by just averaging the prediction 
from each tree. Since their introduction in 2002 by Leo Breiman [42], random forests 
experienced strongly increasing popularity, which is mostly due to their statistically 
robustness (i.e., practically no overfitting, see Table 9.4), their high accuracy also with 
default parameter sets, and their simplicity of implementation and ease of code 
parallelization. As tree‐based algorithm, they are also invariant under monotone trans-
formation of the variables. Disadvantageous is their lack of direct interpretability; 
however, they allow for a straightforward determination of variable importances [43].

For this specific melting point model 14 variables have been selected by iterative 
forward selection (Fig.  9.4), yielding an overall accuracy (RMSE) after fivefold 
cross‐validation of 41.2 K (Table 9.4).
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FIGURE  9.4 Variable importances due to the change in mean squared error (MSE) by 
random permutation of variables in the random forest. Variable acronyms: alkylgroups, 
number of alkylgroups; area, molecular surface area; conjugated_bonds, number of conjugated 
bonds; h_int, internal enthalpy; M2, second σ‐moment; MDon2 and MDon3, 2nd and 3rd σ–
donor moment; N_total, number of nitrogen atoms; rbwring, ring flexibility parameter; ring-
bonds, number of ringbonds; rotatable_bonds, number of freely rotatable bonds in the 
molecule; rotbsdmod, a general flexibility parameter including rings; tmult, topological (2D) 
symmetry; zwitterion_in_water, binary variable, that is, 1 if compounds presumably forms a 
zwitterion in water, according to its σ‐profile, otherwise 0.
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The results of the model prediction are shown in Figure 9.5, which contains a 
comparison of experimental and predicted melting points.

Most of the strong deviations between predictions and experiment are due to less 
common functional groups like silanes or fluorocompounds or due to high symmetry 
like adamantane and related compounds, which is difficult to cope with via a non3D 

TABLE 9.4 Comparison of Train Set (Cross‐Validation) and Test Set Results of 
Different Melting Point QSPR Models

Model n, descriptors n,train RMSE,train n,test RMSE,test

NN (Karthikeyan et al. [41]) 203  4173 48.0 277 41.4
MLR 14 12096 59.8a 277 52.6
RF 14 12096 41.2a 277 39.9
GBM 14 12096 40.8a 277 40.6

GBM, gradient boosting models; MLR, multivariate linear regression; NN, artificial neural net; RF, random 
forest. n, descriptors, number of descriptors used; n, train, size of training set, n, test, size of test set.
a Fivefold cross‐validated results.
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approach. Furthermore, the dataset probably still contains experimental inaccuracies. 
Models exceeding a general accuracy of 40 K based only on the 2D structure are 
currently probably out of reach; see, for example, the overview of recent melting 
point models in Ref. [44].

Using other nonlinear regression techniques than random forests may give 
slightly better results but affords parameter tuning and thus opens the door for 
potential overfitting. Gradient tree boosting as introduced by Friedman [45] also is a 
decision tree–based technique that is fitting iteratively the residuals of the predictions 
from a so‐called weak learner, for instance a shallow decision tree. Moreover, it uses 
only a subset of the training instances for each tree (subsampling) and scales the 
contribution of each tree by a constant (shrinkage) parameter. The approach needs 
some parameter tweaking, but thoroughly tuned it does not overfit and is known for 
excellent prediction accuracy. Table 9.4 compares results obtained by using different 
regression techniques including random forests and gradient boosting using internal 
validation (cross‐validation) and the test set of Karthikeyan et al. [41]. Random 
forests and gradient boosting yield models with a similar accuracy, with an RMSE 
approximately 41 K. Concerning model storage the gradient boosting model is to be 
preferred as its decision trees are not as deep as for a random forest and thus afford 
less hard disc space. Please note the significant difference in the number of variables 
used for building the models, whereas the prediction accuracy is about the same. 
Although Karthikeyan and coworkers have carried out principal component analysis 
prior to model building, this only reduces the dimensionality of the feature space but 
does not reduces the number of variables effectively used. It is obvious, that descrip-
tors based on COSMOquick and COSMOtherm are highly informative in a chemical 
sense and allow for the generation of QSPR models using only small feature sets. 
This is important in order to avoid overfitting and additionally increases the efficiency 
of the models.

The combination of the melting point and the enthalpy of fusion model allows 
for a temperature‐dependent estimation of the free energy of fusion ΔG

fus
 from 

scratch. Thus, Equation 9.6 can be used for quantitative predictions even in the 
case of missing experimental data, some results using this procedure are compiled 
in Table 9.5.

Table  9.5 shows that using the just introduced QSPR models gives reasonable 
results that are comparable to NRTL‐SAC (see Table 9.2, though it should be noted, 

TABLE 9.5 Solubility Prediction Using QSPR Models in Comparison with Using 
Multiple Reference Solubilities

Drug RMSE, multiple ref. RMSE, QSPR R2, multiple ref. R2, QSPR

Sulfadiazine 0.42 1.15 0.93 0.86
Paracetamol 0.48 0.62 0.86 0.82
Cimetidine 0.49 0.89 0.86 0.94

Root mean squared error (RMSE) and squared correlation coefficient (R2) are shown for the COSMOquick 
approach using multiple reference solvents (multiple reference) and using a free energy of fusion estimate 
via the melting point and enthalpy of fusion quantitative structure–property relationship (QSPR) models.
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that in contrast to NRTL‐SAC no specific experimental input has been used now). 
Nevertheless, if possible, using (multiple) experimental solubilities is to be preferred 
when a high accuracy is desired.

9.6 COCRYSTAL SCREENING

Although cocrystals have been known for a long time, it was realized only very recently 
that they provide an additional leverage to modify physicochemical properties like the 
solubility and hence the bioavailability of traditional drugs. Consequently, nowadays 
the development of cocrystalline structures of a drug and an excipient, also called 
coformer, has become of high relevance to pharmaceutical industry. The rational 
design via computational approaches helps focussing on the relevant chemical space 
of potential coformers and thus may serve to speed up such a development. Several 
attempts have been made so far to assess possible cocrystal formation via computa-
tional methods.

Crystal structure prediction can give insights into molecular packing and the 
relevant solid‐state interactions of cocrystals [46, 47] but is yet too time consuming 
to be of practical use for flexible, multicomponent systems, or even for the screening 
over several coformers.

Fabian analyzed cocrystal structures stored within the Cambridge Structural 
Database, statistically establishing a QSPR‐like approach [48], which was reported 
to yield likely coformers in the case of artemisinin [49].

Musumeci and coworkers used the molecular electrostatic potential (MEP) of 
drug and coformer derived from a DFT calculation to identify potential cocrystals by 
a hierarchical mapping of complementary donor and acceptor sites [50].

A study by Seaton relates cocrystal formation with Hammett constants, which is 
limited to compounds where such constants are available or measurable [51].

Considering those attempts, a favorable cocrystal screening approach should 
satisfy several important aspects: it should be comparatively fast to be able to scan 
molecular libraries in a decent amount of time, accurate, broadly applicable, and 
ideally based on sound physicochemical principles.

Those criteria are met by a cocrystal screening based on COSMO‐RS theory, 
using the mixing enthalpy H

mix
 (or equivalently the excess enthalpy H

ex
) of a super-

cooled cocrystal mixture [18]. The main reason for the predictive capability of this 
theory concerning cocrystal formation is its accurate description of intermolecular 
interactions. The idea behind a COSMO‐RS‐based screening can be best understood 
by having a look at the thermodynamic cycle shown in Scheme 9.1.

COSMO‐RS, being a liquid phase theory, predicts readily ΔG
mix

, the free energy 
obtained by mixing the virtual subcooled components A and B into the subcooled 
cocrystal AB. In order to complete the thermodynamic cycle and to get the free 
energy of cocrystal formation Gcc

  the free energy of fusion for the reactants and 
the cocrystal is needed. Interestingly, by neglecting the lower part of the cycle, the 
strength of ΔG

mix
 and in particular ΔH

mix
 alone seems to be already an excellent 

quantity to predict for cocrystal formation [18]. The somewhat better performance of 
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the enthalpy in comparison to the Gibbs free energy may be explained by the fact 
that the entropy change along the thermodynamic cycle, that is, starting from solid 
reactants A and B and ending with solid cocrystal AB should be negligible. Additionally, 
the contributions by the fusion free energy of reactants and cocrystal seem to be to 
some extent contrary, leaving the mixing enthalpy as most influential quantity in the 
cycle of Scheme 9.1:

 G H T S G Hcc mix mix fus mix
  (9.8)

One has to conclude, that a large part of the decisive intermolecular interactions 
that make up the cocrystal are probably already dominating in solution and are well 
described by the ΔH

mix
 term as calculated by COSMO‐RS theory. Of course Equation 

9.8 is a considerable approximation and the total neglect of the ΔΔG
fus

 term will be 
the main source for deviations from experimental findings (see also Table 9.6). In 
practice, the mixing enthalpy or equivalently the excess enthalpy for mixing the drug 
A and coformer B is computed by COSMOtherm and ΔH

mix
 is used as a measure for 

the propensity of the system AB to form a cocrystal. Hence, sorting the list of potential 
coformers with respect to ΔH

mix
 yields an enrichment of the likely best coformers at 

the top. Statistically, such an ordered screening list can be evaluated most compre-
hensively with the area under curve (AUC) of a receiver operating characteristics 
(ROC) diagram. Such a curve plots the true‐positive rate (sensitivity) against the 
false‐positive rate (1‐specificity), an AUC value of 1.0 corresponds to perfect prediction, 
whereas an AUC value of 0.5 corresponds to a random result.

Unfortunately, as long as it is not possible to develop any predictive model for the 
free energy of fusion of cocrystals, a systematic improvement beyond simply using 
ΔG

mix
 or ΔH

mix
 is out of scope. However, we found an empirical, but significant 

improvement of the screening function by including the number of rotatable bonds in 
the form of the following screening function (f

screen
)

 f H a n nscreen mix drug coformer~ max( , ) max( , )1 1  (9.9)

–ΔGfus,cc(T)ΔGfus,A(T)

ΔGmix AmBn (liquid)

AmBn (solid)

ΔGfus,B(T)

mA(solid) + nB(solid)

mA(liquid) + nB(liquid)

ΔG°cc

SCHEME 9.1 Thermodynamic cycle for the standard Gibbs free energy of formation ( Gcc
 ) 

for a cocrystal A
m
B

n
 out of its solid components A and B. ΔG

fus
(T) is the free energy of fusion 

for bringing a subcooled liquid into the solid state at the temperature T. Please note the sign 
convention for the free energy of fusion adopted here, that is, solid systems below the melting 
point having a positive free energy of fusion. ΔG

mix
 is the Gibbs free energy for the hypothetical 

process of mixing the liquid components A and B into a cocrystal A
m
B

n
, in its (supercooled) 

liquid state.
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where a is a fit parameter to be determined on a set of experimental results, and n 
is the total number of rotatable bonds of drug and coformer. Effectively, a function is 
added to the mixing enthalpy that just penalizes floppy molecules, whereas mole-
cules with zero or one rotatable bonds are being treated equally. Thermodynamically, 
the number of rotatable bonds should not have a dramatic influence on cocrystal 
formation, as this should affect reactants and cocrystal equally. Most probably some 
of the crystallization kinetics has been captured empirically by Equation 9.9 as an 
increasing flexibility renders the crystallization of a cocrystal less probable. Table 9.6 
summarizes the statistics based on the AUC value for COSMO‐RS‐based cocrystal 
screening on a set of different experimental sets taken from the literature. Using 
Equation 9.9 an overall mean AUC = 0.85 is achieved over the 15 screenings. As an 
example, AUC = 0.85 corresponds to a hypothetical scenario of 25 potential coform-
ers including only three hits, and having those hits in position 2, 5, and 9 of the list.

Figure 9.6 contains two challenging cases, paracetamol [57] and indomethacin, 
based on the experimental data from reference [60], for which the original screening 
via ΔH

mix
 gave the worst results with AUC ~ 0.5. The figure demonstrates the obtained 

enrichment, that is, how many hits are found successively if one follows the ΔH
mix

 
ordered list of drug–conformer pairs.

Taking into account the number of rotatable bonds for both cases leads to a 
significant overall improvement with AUC = 0.81 and AUC > 0.7, respectively.

TABLE 9.6 Results of COSMO‐RS‐Based Virtual Cocrystal Screenings

API AUC, ΔH
mix

AUC, f
screen

AUC, COSMOquick n
cf

n
cc

References

Itraconazole 1.00 0.88 0.75  8 4 [52]
3‐Cyanophenol 0.98 0.93 0.93 18 3 [53]
4‐Cyanophenol 1.00 1.00 1.00 18 4 [53]
3‐Cyanopyridine 0.88 0.82 0.82 18 1 [53]
4‐Cyanopyridine 0.96 0.93 0.93 18 3 [53]
Bicalutamide 0.94 0.97 0.75 18 2 [53]
Nicotinamide 0.67 0.68 0.70 16 10 [54–56]
Paracetamol 0.53 0.81 0.75 13 4 [57]
Meloxicam 0.73 0.93 0.87 17 15 [58]
Benzamide 0.75 0.75 0.58 12 6 [59]
Indomethacin 0.49 0.79 0.81 21 4 [60]
Indomethacin 0.48 0.70 0.81 45 5 [61]
Diclofenac 0.61 0.57 0.49 18 11 [62]
Artemisinin 0.95 0.95 0.97 67 2 [49]
Praziquantel 0.88 1.00 1.00 11 8 [63]
Average 0.79 (±0.19) 0.85 (±0.13) 0.81 (±0.14)

Computed AUC scores as obtained by comparison with different experimental cocrystal screening sets as 
taken from the literature, number of coformers in the set (n

cf
), the number of observed cocrystals (n

cc
), and 

references to the experiments are presented. In the last row, the averaged AUC score and the standard 
deviation are given. Coformers were ranked according to their mixing enthalpy (AUC, ΔH

mix
) and 

Equation 9.9 (AUC, f
screen

). In addition results using σ‐profiles approximated by the COSMOquick 
approach in combination with approximation 9.9 are shown (AUC, COSMOquick).
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In addition to the results (AUC, ΔH
mix

 and AUC, f
screen

) from full COSMOtherm 
calculations, Table 9.6 also contains data obtained by using approximate σ‐profiles 
via the COSMOquick approach (AUC, COSMOquick) in combination with approxi-
mation (Eq. 9.9). At the sake of a somewhat reduced accuracy, COSMOquick‐based 
cocrystal screenings can easily handle large molecular libraries and identify within 
minutes the most promising compounds among thousands from possible candidates [18].
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9.7 SOLVATE FORMATION

During drug development it is often desirable to identify solvents, which do not 
form solvates with a specific drug. Thermodynamically, solvate formation and 
cocrystal formation are strongly related and differ only by the fact that for solvates 
one of the reactants is liquid at the temperature of the experiment and thus having 
by definition a free energy of fusion ΔG

fus
 = 0. Therefore, the just presented workflow 

for cocrystals can as well be applied to assess the potential or risk of solvents to 
form solvates.

COSMO‐RS‐based solvate screening has been applied successfully to the cases of 
the drugs axitinib, thiophanate‐methyl (TM), and thiophanate‐ethyl (TE) by Abramov 
et al. [18]. Axitinib is a small‐molecule tyrosine kinase inhibitor developed by Pfizer 
being a particular challenging polymorphic system with at least 5 anhydrous forms 
and more than 60 solvated forms [64, 65]. The fungicides TM and TE are each close 
analogues, however, showing different molecular arrangements in the solid state. 
They both possess several polymorphic forms, additionally 14 solvates have been 
reported for TM and 7 for TE, respectively [66, 67].

Figures 9.7 and 9.8 present the results of the COSMOtherm‐based solvate screen-
ing for those three drugs whereas drug‐solvent pairs with a more positive excess 
enthalpy are predicted to have a lower solvate formation tendency. For the case of 
axitinib (Fig. 9.7) heptane was found to have the highest H

ex
 value among all considered 

solvents and indeed is one of the few solvents, which does not form solvates with 
this drug. In the original dataset [18] positive H

ex
 values were predicted for 24 of 
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the 46 solvents under investigation [18]. That indicates that low miscibility of axitinib 
with these 23 solvents in the supercooled liquid phase is counterbalanced by lattice 
packing contributions in the solid state, which are ignored in current calculations.

Concerning TM and TE (Fig. 9.8a and b), a few solvents having low predicted 
excess enthalpy are not known to form solvates. This could be due to unfavorable 
packing in the crystal or just due to fact that they have been experimentally missed to 
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date. Nevertheless, for both drugs the workflow yields nonsolvate formers at the top 
of the set of screened solvents and thus allows to readily identify such solvents from 
a heap of possible candidates. Because one is usually not interested in finding all but 
only one or a few nonsolvate formers, this renders the COSMOtherm (non)solvate 
screening as a highly useful method from a practical point of view.

9.8 SUMMARY

COSMO‐RS’s unique combination of quantum chemistry and surface segment–based 
statistical thermodynamics allows for computing nearly any thermodynamic property 
in the liquid phase. For the prediction of a solid phase–related property like solubility 
either experimental data or QSPR models have to be incorporated. This enables a 
straightforward extension to the computation of solid–liquid equilibria. Usage of 
multiple reference solubilities as implemented in the COSMOquick approach allows 
for high prediction accuracy. Unlike most of the available solubility prediction 
methods, COSMO‐RS is not limited to certain functional groups and does not need 
any reparameterization prior to use. Due to its predictive character it has become a 
valuable tool in pharmaceutical research in various fields such as solubility and 
partitioning coefficient prediction, solvent screening, and more recently cocrystal 
and solvate screening.
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10.1 INTRODUCTION

The information of solid solubility and solid–liquid equilibrium (SLE) data of 
 chemicals is necessary in product and process design, for example, in the extraction, 
adsorption, and/or crystallization processes. These processes are important steps in 
recovery and purification of chemicals. Here the knowledge of solvents and solid 
saturation diagrams play an important role. For chemicals involved in the pharma-
ceutical and related industries, a common problem encountered is the low solubility 
of active ingredients (or active pharmaceutical ingredient, API) in water—this makes 
the solubility analysis an important issue for API efficacy [1]. The chemical systems 
encountered are usually complex, consisting of the API that is usually a large  complex 
molecule dissolved in single solvents or solvent mixtures together with additives 
such as lipids and surfactants [2]. Since the measurement of experimental data is 
often time‐consuming, expensive and may not be even feasible in some cases, a 
 predictive model‐based approach for solubility calculation procedure would be 
 desirable, at least in the early stages of product‐process evaluation. In this chapter, 
model‐based prediction methods for solid solubility using excess Gibbs energy 
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models (GE models) are highlighted together with analysis of data, model parameter 
estimation, and calculations of solid solubilities.

An important first step in any model‐based calculation procedure is the analysis 
and type of data used. Here, the accuracy and reliability of the measured data sets to 
be used in regression of model parameters is a very important issue. It is clear that 
reliable parameters for any model cannot be obtained from low‐quality or inconsis-
tent data. However, for many published experimentally measured solid solubility 
data, information on measurement uncertainties or quality estimates are unavailable. 
Also, pure component temperature limits and the excess GE models typically used 
for nonideality in vapor–liquid equilibrium (VLE) may not be reliable for SLE (or 
solid solubility). To address this situation, an alternative set of consistency tests [3] 
have been developed, including a new approach for modeling dilute solution SLE, 
which combines solute infinite dilution activity coefficients in the liquid phase with 
a theoretically based term to account for the nonideality for dilute solutions relative 
to infinite dilution. This model has been found to give noticeably better descriptions 
of experimental data than traditional thermodynamic models (nonrandom two liquid 
(NRTL) [4], UNIQUAC [5], and original UNIversal Functional group Activity 
Coefficient (UNIFAC) [6]) for the studied systems.

In this chapter, the solid solubility of chemicals in different organic solvents is 
reviewed and evaluated. In particular, the solubilities of API and lipid systems using 
different property (GE models) models such as NRTL [4], UNIQUAC [5], original 
UNIFAC [6], and NRTL‐SAC [7, 8] implemented in Computer‐Aided Process 
Engineering Center (CAPEC) software are evaluated. Also implemented in the 
CAPEC, the Perturbed‐Chain Statistical Associating Fluid Theory (PC‐SAFT) 
equation of state [9] with group contribution (GC) prediction of the pure component 
parameters [10] was selected to evaluate solid solubility predictions in this work. In 
the case of original UNIFAC [6] model, which is based on the concept of GC, the 
prediction of missing group interaction parameters to describe the complex systems 
(such as API solvents) is also considered. A computer‐aided model‐based framework 
for solid solubility calculations and for solvent selection and design, called 
SolventPro, is also presented. The framework integrates different methods and tools 
needed in the management of the complexity of such chemicals in an efficient, flex-
ible, and robust way. The application of SolventPro together with the NRTL segment 
activity coefficient (NRTL‐SAC) and the PC‐SAFT models for solubility predic-
tions, multilevel property estimation, and solution of pharmaceutical industry prob-
lems is highlighted.

10.2 FRAMEWORK

To predict the solid solubility, in addition to model‐based property models, databases 
and numerical solvers are necessary. To better illustrate each step of the solid solu-
bility calculation, the necessary workflow and dataflow are highlighted in Figure 10.1, 
starting with the necessary pure component properties and ending with the phase 
diagram generation. It is important to note that when the experimental values of the 
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needed properties are not available, they are obtained from regressed model 
 parameters by considering the model‐based option. These estimated values, such as 
pure‐component properties, regressed parameters (pure component and mixture), 
and the calculated activity coefficients from the GE‐models are stored in the lipids 
database.

10.2.1 Thermodynamic Basis

For binary mixtures, the solute is usually the substance that is dissolved in a certain 
quantity of another substance—the solvent. Assuming that the solid (solute) is pure, 
the solubility of the solid (i.e., solute) in a liquid solution is obtained from the 
 following relation [11]:
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where ΔH
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 is the enthalpy of fusion, T
m
 is the melting temperature, x

1
 is the molar 

fraction of component 1, γ
1
 is the activity coefficient of component 1 for the pure 

component (Lewis–Randall) standard state, R is the gas constant, and T is the system 
temperature. Rigorous additional terms on the right‐hand side of Equation 10.1 
involving the difference in heat capacities of the solid and sub‐cooled liquid (ΔC

p
) 

have been ignored since they generally are small [11]. Further, it is assumed that no 
pure solid structure transitions occur between T and T

m
.

10.2.2 The Necessary Property‐Related Information for Solid Solubility 
Prediction and the Developed Databases

To apply Equation 10.1 for solid solubility calculations in a generic way, it is 
necessary to (i) develop a database containing experimentally measured values of 
properties of pure components (melting temperature, enthalpy of fusion, and specific 
heats) as well as mixture properties (activities and solubilities); (ii) analyze and 
assess the quality of the experimental data using thermodynamic consistency tests; 
and (iii) establish a systematic approach for performing parameter regression 
(including, the selection of the most appropriate objective function for the parameter 
regression). Also, there are numerous ways to obtain the needed data, for example, 
(i) by retrieving the property information available in databases/open literature, (ii) 
by performing laboratory measurements for the needed properties, and/or (iii) by 
employing suitable property prediction methods. A key limitation associated with the 
use of databases is the limited number of chemicals (and sometimes limited number 
of properties) stored in the database. Chemical and process industries that use 
 computer‐aided tools (e.g., process simulators such as PRO/II®, and ASPEN®) rely 
on the availability of data and models for properties listed in their built‐in databases. 
Thus, lack of necessary physical and thermodynamic properties in the database 
restricts the use of computer‐aided tools for synthesis‐design, modeling‐simulation 
of chemical processes.
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For reliable regression of property model parameters, appropriately large data 
sets  of experimentally measured property data for a wide range of chemicals 
( hydrocarbons, oxygenated chemicals, nitrogenated chemicals, polyfunctional chemi-
cals, etc.) are necessary. The extended CAPEC database (Nielsen et al. [12]) provides 
data for melting temperatures (T

m
) and enthalpies of fusion (ΔH

fus
) for a wide range of 

chemicals (hydrocarbons, oxygenated components, nitrogenated  components, 
 polyfunctional components, etc.). In total, 5183 compounds provide the information 
for melting temperature and 761 for enthalpy of fusion. For lipids, a separate database 
(CAPEC_Lipids_Database) containing the most representative lipid compounds 
found in the lipid processing industry together with their physical property data has 
been developed. More than 13,500 data‐points for different pure component prop-
erties covering nearly 290 lipids have been collected. In this  database, the components 
with limited information are those commonly found in vegetable oils, more specifi-
cally acylglycerols and tocopherols. When experimental data is not available, property 
prediction models based on the Marrero and Gani (MG) method [13–15] are consid-
ered since this method is based exclusively on the molecular  structure of the pure 
component and exhibits a good accuracy over a wide range of chemical‐, biochemical‐, 
and environment‐related pure components. Joback and Reid [16] developed GC‐based 
models for the prediction of different pure component properties including melting 
point. Recently, more sophisticated GC methods based on the multi‐level property 
estimation approach have been developed by Constantinou and Gani [17], Marrero 
and Gani [13], and Hukkerikar et al. [14]. In many cases, the selected GC model may 
not have all the needed model parameters, that is, groups describing the molecular 
structure of a given pure component and/or their contributions. This issue is due to 
(i)  the lack of necessary measured data of properties of pure components in the 
parameter regression step and (ii) the lack of necessary group definitions required to 
describe the complete molecular structure of pure components. To address these 
issues, the atom connectivity index (CI) method has been employed together with the 
GC method to create missing groups and/or to predict their contributions. This 
combined approach has led to the development of group contribution+ (GC+) method 
of a wider application range than before since the missing groups and their contribu-
tions can now be easily predicted through the regressed contributions of connectivity 
indices [18]. The model performance statistics for the pure component property 
models based on the model parameter values given by Hukkerikar et al. [14] is sum-
marized in Cunico et al. [15]. One example for the Marrero and Gani [13] groups 
considered for a chosen API (paracetamol) including the multilevel property estimation 
approach is showed in Figure 10.2.

In the development of Capec_Lipids_Mixture_Database, a search of the literature 
was made to collect, within a limited time, as many data as possible. The criteria for 
data selection were details of measurement technique, measurement accuracy, different 
ranges of temperature, pressure, and molar fractions considered by the author, the use 
of a method of analysis or a model to describe the experimental data, and if the data 
source brought in results for different mixture systems for the class of components 
 considered. The collected data are unlikely to be all those in the literature. However, the 
database is fully adequate to develop and test physical property models for the classes 
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of lipids treated in this work. The database contains about 4500  measured data‐points 
for 332 different phase equilibrium data sets, including binary and multicomponent 
systems (92 VLE, 91 LLE, 70 SLE, and 79 solubility data). Uncertainties of experi-
mental measurements or quality estimates given by the authors of the experimental 
measured data were also considered. The published activity coefficients and parameter 
values from fitting different GE models (NRTL [4], UNIQUAC [5], and original 
UNIFAC [6]) for VLE and SLE binary systems are stored in the database. These models 
were used in parameter regressions for fine‐tuning existing model parameters, 
improving VLE and SLE prediction, and obtaining model parameters not available in 
the literature. A total of 358 data sets from the DECHEMA® database for solid solu-
bility systems, mainly for components important in the pharmaceutical industry were 
included in this work. More detailed description of the database (CAPEC_Lipids_
Mixture_Database) can be found in Cunico et al. [15]. These data in addition to 
DECHEMA Chemistry Series Data Collection of Solid Solubility [19, 20] give a total 
of 11,351 different SLE data sets available for model parameter regression. One data 
set from DECHEMA Solid Solubility database [19, 20] containing an API was chosen 
to illustrate a solid solubility system and is given in Table 10.1. Paracetamol is the 
solute and the solid solubility of this chemical in different solvents, such as ethanol, 
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FIGURE 10.2 Marrero and Gani [13] group description for the compound paracetamol.

TABLE 10.1 Solid Solubility of Paracetamol 
(2) in Ethanol (1) [21]

T (K) x2

268.15 3.49E−02
273.15 3.80E−02
278.15 4.14E−02
283.15 4.54E−02
288.15 4.96E−02
293.15 5.49E−02
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methanol, 1‐propanol, 1‐butanol, 1‐pentanol, acetronitrile, water, acetic acid, methyl 
ethyl ketone, and ethyl acetate, and can be found in the database [19, 20].

Lipids are often not tabulated in commonly used property databases, and their 
polyfunctional structure requires careful model analysis. Knowledge of the thermo-
dynamic data and property models that consider the structure of the solid phase and 
consequently the polymorphism that may be present has been studied for lipids by 
others [22–31]. For example, triacylglycerols (TAGs), representing around 95% of 
the vegetable oils of interest, have been reported to have three polymorphs [22]. 
A thermodynamic model for fats and oils that consider the polymorphism of TAGs 
has been reported by Won [26]. Eutectic points and peritectic points can be observed 
in an SLE of lipid systems due to the similarity of the components involved, differing 
only in chain length and not in functional group representation. A characterization of 
peritectic point can be found in Slaughter and Doherty [32]. Costa et al. [33] report 
other mixtures where peritectic points occur, such as, binary systems of capric acid–
myristic acid and lauric acid–myristic acid mixtures, mainly when the difference 
between the numbers of carbon atoms of the fatty acid chains in the mixture is less 
than 6. Costa et al. [33] demonstrated that the Slaughter and Doherty [32] approach 
for the prediction of the solid phases with an equilibrium constant for acid interac-
tions provided good fits of the phase diagrams of systems with peritectic points. 
While the Slaughter and Doherty method [32] does not follow the Gibbs–Duhem 
equation, it has been used by many authors with good results, as in the work of Rocha 
and Guirardello [34].

10.2.3 SLE Thermodynamic Consistency Tests

“SLE data sets” are characterized here as those covering the entire composition range 
from the limits of pure‐component melting points. The “solubility systems” are 
labeled as those data sets of limited composition range, where only one solid compo-
nent precipitates. SLE systems can have similar types of errors as those found in VLE 
data sets. However, consistency tests based on the Gibbs–Duhem equation cannot be 
applied for solubility systems because there are no states where both component 
activities can be obtained simultaneously. In addition, there is normally a strong 
 temperature dependence of the data, the pure component melting point limits are less 
well‐identified than pure component vapor pressures, and the models typically used 
for describing nonideality in VLE may not be reliable for solid solubilities. Test‐1 for 
SLE data is similar to the Qtest‐5 of the ThermoData Engine (TDE) program devel-
oped by NIST [35–41] for VLE data, and the quality assessment algorithm is similar 
of those proposed by Kang et al. [42]. This test evaluates whether the mixture data 
asymptote to the pure‐component melting points. The quality factor for Test‐1 studied 
by Cunico et al. [3] presented some limitations and a more accurate proposal for 
quality factor calculation and Test‐1 is proposed here:
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where
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In Equations 10.2–10.5, T im
0  is the measured or extrapolated melting point of the 

 mixture in the limit xi 1, x
i
 is the mole fraction of the component i, ti

0 is the pure 
melting point temperature of component i, and θ

i
 is the absolute uncertainty in ti

0. 
If the absolute uncertainty (θ

i
) for the experimental data (ti

0) is higher than the values 
found for the variable ( ti

0), then the quality factor can be considered equal to 1, once 
it is not possible to determine the quality of the mixture data end points.

Another method to analyze the consistency of the pure component data‐points has 
been proposed by Kang et al. [43]. It analyzes the quality of the data‐points close to 
the end points (molar fraction between x

1
 = 0 and x

1
 = 0.2, and between x

1
 = 0.8 and 

x
1
 = 1). In this methodology, the increase of the component 1 in the SLE can be 

 calculated by considering the following equation:

 

dT

dx

RT

H
x1 1

2

0

1SLE f,

 (10.6)

This requirement is based on the Gibbs energy and SLE condition:

 Gm,1
0 0 (10.7)

And its differential
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Here, Hm,1
0  is the enthalpy of transfer of component 1 from solid to liquid state 

(enthalpy of fusion if x
1
 = 0). The activity coefficient can be considered the unit for x

1
 

(x
1
 = 1), using the following approximation:

 

1

1
10 1

x
x

T const

at  (10.9)
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The quality factor is calculated using the following equation:

 
Q

i
SLE Test Slope2

0 2.
 (10.10)

Here,

 
Slope

model expt
i x x

dx

dT

dx

dT
lim lim
1 10

2

0

2  (10.11)

Another consistency test, Test‐3, is similar to that of Van Ness et al. [44] for VLE 
systems where the ability of a model to describe the data is assessed. The usefulness 
of this test depends on the reliability of the model for the described system. The ear-
lier works [3, 15] used well‐known GE model forms, such as the NRTL model. In 
order to evaluate whether any data might be assigned a lower Q

SLE
 because of model 

insufficiency instead of data error, an alternative activity coefficient model (Test‐4, 
see Section 10.2.3.1) has been developed [3]. Both Test‐3 and Test‐4 can have the 
quality factor calculated by using the following equation:

 
QSLE Test AAD3 4

1

1/ %
 (10.12)

Here average absolute deviation (AAD) in percent (%) is selected as the objective 
function for the regression:
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where Ti
exp is the measured temperature, x i1

exp is the measured mole fraction, 1i
exp is 

the  experimental activity coefficient, calculated by 1 1i ix H Rexp expexp ln ( / )fus

(( / ) ( / ))exp1 1T Tim , and Ti
calc, x i1

calc, and 1i
calc are the temperature, mole fraction, and 

activity coefficient values calculated from the model at each of the N data‐points, 
respectively. Note that values of AAD

% T
 are usually smaller than those of AADx1

 
since the former is a relative term while the latter is an absolute term; comparisons of 
the different AAD values should not be made. For consistency, calculated property 
values used only quantities from the correlations, not experimental values.
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The use of the four tests provides the overall quality factor for the SLE data:

 Q Q Q Q QSLE SLE Test SLE Test SLE Test SLE0 25 0 25 0 25 0 251 2 3. . . . Test SLE4 1, Q  

(10.16)

10.2.3.1 Fluctuation Solution Theory (FST) At infinite dilution the solubility 
expression contains no hypothetical chemical potential of the solute [4, 45]. For 
dilute solutions, the Henry’s law standard state can be more reliable than the pure 
component standard state since the unsymmetric convention activity coefficients, 
designated by i

*, are often very close to unity. i
* is related to γ

i
 by

 ln ln ln*
i i i  (10.17)

where the infinite dilution activity coefficient is ln limi x i
i 0

. This property is a 

function only of temperature or density and is often modeled with two parameters, a 
and b, simply as follows:

 
ln 1

a b

T
 (10.18)

Fluctuation solution theory (FST) [46] shows that an expansion of the unsymmet-
ric convention activity coefficient about infinite dilution has composition terms of 
the following form:
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where the coefficients f2
0 and f3

0 are related to integrals of infinite‐dilution molecular 
correlation functions and are functions only of temperature or density.

Combining Equations 10.1 and 10.19, and ignoring the ∆C
p
 term, yields an 

 expression for solubility:
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Sets of SLE data have been regressed with constant parameters, a and b, along 
with either constant f2

0 or with f c T2
0 / . The temperature dependent f c T2

0 /  was 
found to be more accurate for the studied cases. For more complex systems where it 
is necessary to increase the temperature dependence of the thermodynamic model, 
the third‐order term was also considered, with f3

0 as constant or f d T3
0 / . Thus the 

FST model is
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Here, the regression strategy was to choose a value of c and regress for a and b 
by modifying c and d until a minimum objective function value was found.

Once the parameter values are set, Equation 10.21 can be iteratively solved for 
temperature:

 
T

x
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T
c x x d x x aT b
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3

21
1 1

2
1
2

1
3

ln
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m

 (10.22)

10.2.3.2 Parameter Regression For the regression of parameters for models, 
such as NRTL and UNIQUAC, the method of least squares is employed. In this 
method, the minimization of sum of the squares of the errors between the experimen-
tally measured values and the calculated values using the selected model provides the 
estimated values of unknown model parameters and is given by

 
X

X X
i

i

i i
NC lit work

NC
for NC

2

1, ,  (10.23)

where Xi
lit is the measured value, Xi

work is the calculated value (using the model) for 
each compound i, and NC is the total number of the compounds used in the param-
eter regression. In this work, X represents the pressure, the temperature, or the vapor 
molar fraction, depending on the problem formulation.

10.2.3.3 Case Studies for SLE Thermodynamic Consistency Tests and Model 
Performance The SLE consistency test and data evaluation is performed in a 
 software containing options for data analysis, model analysis, and parameter regres-
sion. In this part of the chapter, data analysis for SLE data and the thermodynamic 
model performance (i.e., NRTL [4], UNIQUAC [5], and original UNIFAC [6]) are 
highlighted. Some examples of solid solubility and SLE data are selected to better 
exemplify the data evaluation. Figure 10.3 shows an example for the SLE thermody-
namic consistency tests for a binary mixture of benzene and naphthalene. For this 
system, NRTL [4] and FST [3] give similar results in the representation of the 
 experimental data, with final quality factor being 0.948. Pure component tests have 
also confirmed the quality of the end points (x

1
 = 0 and x

1
 = 1).

A solid solubility data set (salicylic acid and water) is selected to demonstrate the 
applicability of the thermodynamic consistency tests, and the results found for this 
system are highlighted in Figure 10.4. It is important to note that when the end points 
(x

1
 = 0 and x

1
 = 1) are not present in the data set, the quality factor for Test‐1 and 

Test‐2 is 0.5, that is, the quality of the data cannot be determined. The results shown 
in Figure 10.4 are quantified by the quality factors given in Table 10.2 (calculated 
using Eqs. 10.2, 10.10, 10.12, and 10.16).

The user has also the possibility to consider only the tests that are applicable. 
In the case of solid solubility data, for example, only Test‐3 and Test‐4, in the case 
that the end points are not given in many solid solubility data. Comparing regressions 
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from the NRTL and FST models point to some differences. For example, systems 
with noisy data are routinely better represented by the FST model [3].

A lipid data set containing peritectic point is also selected for analysis with the 
methodology for the SLE thermodynamic consistency tests, and the results are high-
lighted in Figure 10.5. The model performance observed here is confirmed by the 
results found in the uncertainty analysis of the parameter regression performed by 
Cunico et al. [3] for NRTL, UNIQUAC, UNIFAC, and FST models, where the 
regressed parameters play an important role in the intermediate points for NRTL, 
UNIQUAC, and original UNIFAC models, but for FST model, the parameters also 
influence the end points (x

1
 = 0 and x

1
 = 1), as stated in the examples shown by the 

authors [3]. It is possible to visualize in Figure 10.5 that the NRTL model tries to 
follow the tendency of the pure component data‐points, which affects the model rep-
resentation of experimental data.

Some examples of solid solubility and systems containing APIs were also selected 
to better illustrate the data analysis methodology for these kinds of compounds. 

FIGURE  10.3 Screen shot from the software developed for thermodynamic consistency 
tests analysis. Experimental data for the binary mixture of benzene (1) + naphthlene (2) . 
Experimental data: Kravchenko [47] at pressure equal to 101.325 kPa using . Test‐1 (Pure 
Test), — Test-2 (Slope), — Test‐3 (NRTL model capability) and — Test‐4 (FST).
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FIGURE 10.4 Binary mixture of salicylic acid (1) + water (2)  . (a) Apelblat and Mazurola 
[48] and (b) Shalmashi and Eliassi [49] at pressure equal to 101.325 kPa using — Test‐3 (NRTL 
model capability) and — Test‐4 (FST). 

TABLE 10.2 Quality Factors for the Binary Mixtures and the Proposed Methodology

`t Test‐1 Test‐2 Test‐3 Test‐4 Final Quality Factor

Salicylic acid + water (a) 0.500 0.500 0.601 0.633 0.558
(b) 0.500 0.500 0.739 0.850 0.648
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Figure 10.6 shows the solid solubility of acetylsalicyclic acid (CAS‐number 50‐78‐2) 
in two different solvents (water and ethanol). The application of the thermodynamic 
consistency tests showed high quality of the experimental data reported for this 
compound (acetylsalicylic, CAS‐number 50‐78‐2), with a quality factor of 0.89 for 
both cases. Test‐3 and Test‐4 were considered in this analysis once the experimental 
data does not report the information for the end points (x

1
 = 0 and x

1
 = 1). The same was 
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FIGURE 10.5 Binary mixture of myristic acid (1) + stearic acid (2) . Experimental data 
(a) Boros [50] and (b) Costa [51] at pressure equal to 101.325 kPa using . Data‐points not 
used in the calculation (between eutectic and peritectic data‐points)  Test‐1 (Pure Test), 
— Test‐2 (Slope), — Test‐3 (NRTL model capability), and — Test‐4 (FST).
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observed in the data sets containing anthracene + cyclohexane and paracetamol + n‐
propanol, showed in Figure 10.7. Here the quality factors calculated by the software 
are 0.918 and 0.887 for system (i) and system (ii), respectively.

10.2.3.4 UNIFAC Model Prediction It can be seen in Cunico et al. [3] that the 
well‐known GE‐models such as NRTL, UNIQUAC, and UNIFAC give only slightly 
different AAD values, with the FST model regression giving the lowest AAD and the 
original UNIFAC giving the highest, though the values are reasonably good. This is 
consistent with results shown in earlier work by the authors [15] on lipid VLE data. 
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FIGURE  10.6 Binary mixture of:  (a) acetylsalicylic acid (1) + water (2), Apelblat and 
Mazurola [52] and (b) acetylsalicylic acid (1) + ethanol (2), Maia and Giulietti [53] at pressure 
equal to 101.325 kPa using — Test‐3 (NRTL model capability) and — Test‐4 (FST).
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Similar observations have been also reported by Coelho et al. [55]. Some examples 
considering the NRTL model and the original UNIFAC model for lipid systems are 
selected and given in Table 10.3.

Since the original UNIFAC model parameters may not have been regressed with 
data from lipid systems, a possible way to improve the original UNIFAC performance 
is to fine‐tune group interaction parameters using the lipid SLE data sets with their 
quality factors. This was done by regressing the interaction parameters for the 
functional group with the chain group, such as COOH with the CH3/CH2 group for 
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FIGURE 10.7 Binary mixture of:   (a) anthracene (1) + cyclohexane (2), Coon et al. [54] 
and (b) paracetamol (1) + n‐propanol (2), Granberg and Rasmusson [21] at pressure equal to 
101.325 kPa using Test‐3 (NRTL model capability) and Test‐4 (FST).
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fatty acids. Note that groups used for original and modified UNIFAC parameter 
regression are presented in Cunico et al. [3] for lipid systems. This resulted in a 
 lowering of the AAD, which was independent of the form of the objective function.

For pharmaceutical compounds, original UNIFAC shows poor model prediction 
for systems with large and complex molecules, mainly because some of the UNIFAC 
functional groups are missing or the functional group additivity rule is invalid [7]. An 
option for this problem is to regress the missing parameters considering only SLE 
solubility data, that is, the same procedure that has been successfully applied for lipid 
systems. Some examples of efforts to improve the original UNIFAC model 
performance have been attempted by Hahnenkamp et al. [58], who used the modified 
UNIFAC model to improve model representation of solubility of some pharmaceu-
tical compounds, and, Abildskov and O’Connell [59], who have used minimal data 
and parameter fitting to obtain unknown UNIFAC parameters.

10.2.4 SolventPro

Although limited solubility data can be found in literature, the data task analysis can 
multiply rapidly when one considers the options of solvents and solvent–antisolvent 
mixtures, the effect of temperature dependence, the impacts of impurities, or the 
 possibilities of multiple polymorphs, for example. Solvents are important as reaction 
mediums, reactants, or carriers in the chemical industry in general. This part of the 
chapter presents SolventPro, which is a computer‐aided solvent selection and design 
framework, with a suite of models for solid solubility predictions and for solvent 
selection. The framework integrates different methods and tools needed to manage 
the complexity of pharmaceutical chemicals in an efficient, flexible, and robust way. 
In particular, the application of SolventPro with NRTL‐SAC [7, 8] model for the 
 solubility prediction, multilevel property estimation, and solution of some common 
problems encountered in the pharmaceutical industry are highlighted here. The 
NRTL‐SAC model has been implemented and the obtained solid solubility results are 
compared with the combination of this model with the UNISAC model (this model 
predicts the segment parameters of the NRTL‐SAC model) for some selected case 
studies. SolventPro provides also model regression features for the NRTL‐SAC 
model with user‐supplied experimental data. Alternatively, the UNISAC model may 
be used to predict the segment parameters, thereby avoiding the necessity of  supplying 
experimental data.

10.2.4.1 NRTL‐SAC The NRTL‐SAC [7, 8] model provides a simple and 
 practical thermodynamic framework for chemists and engineers to perform solu-
bility modeling in pharmaceutical process design. While the original UNIFAC [6] 
model decomposes the molecules into a large set of predefined functional groups 
based on the chemical structure, NRTL‐SAC [7, 8] maps molecules into a few 
 predefined conceptual segments, or molecular descriptors, based on known 
 characteristics of molecular interactions in solutions, what makes the use of this 
model more simple for the user. Specifically for each solute and solvent molecule, 
NRTL‐SAC describes their effective surface interactions in terms of three types of 
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conceptual segments: hydrophobic segment, polar segment, and hydrophilic 
 segment. Equivalent numbers of the conceptual segments for each molecule are 
measures of the effective surface areas of the molecule that exhibit surface interac-
tion characteristics of hydrophobicity (X), polarity (Y+ and Y−), and hydrophilicity 
(Z). According to Chen and Song [7] these conceptual segments are to be deter-
mined from experimental phase equilibrium data.

The NRTL‐SAC model suggests that the activity coefficient for component i in 
solution is the sum of a combinatorial term and a residual term:

 ln ln lni i i
C R (10.24)

where, the combinatorial term is calculated from the Flory–Huggins equation for the 
combinatorial entropy of mixing, and the residual term is calculated from the local 
composition (lc) interaction contribution.
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where the segment activity coefficient, Γ
m
 is calculated from the NRTL equation.

 

ln m
j

j jm jm

k
k km m

j
m mm

k
k km

j
j jmx G

x G

x G

x G

x G
lc

mm

jm

k
k kmx G

 (10.26)

 

ln ,
,

,

,

,
m

I j
j I jm jm

k
k I km m

j
m I mm

k
k I km

m

x G

x G

x G

x G
lc

mm
j

j I jm jm

k
k I km

x G

x G

,

,

 (10.27)

 

x

x r

x rj
J

J j J

I i
J i I

,

,

 (10.28)

 

x
r

rj I
j I

i
i I

,
,

,

 (10.29)

where i, j, k, m, and m′ are the segment‐based species indices, I and J are the compo-
nent indices, x

j
 is the segment‐based mole fraction of segment species j, x

J
 is the mole 

fraction of component J, r
m,I

 are the number of segment species m contained in 
 component I, m

lc is the activity coefficient of segment species m, and m
Ilc,  is the 

activity coefficient of segment species m contained only in component I.
The segment‐based parameters, that is, X, Y−, Y+, and Z are determined through 

regression of available experimental VLE or LLE data for binary systems of the 
 reference compounds.
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10.2.4.2 UNISAC The UNISAC model is based on a combination of the GC 
model [13], the CI model [18], and the NRTL‐SAC [7, 8] itself. In other words, a 
GC model has been set up and developed to predict the NRTL‐SAC [7, 8] segmental 
parameters that otherwise would require experimental data when group interaction 
parameters are missing. The CI method is used to supply the missing groups. GC 
together with CI is known as the GC+ approach. The result is a predictive model for 
estimation of NRTL‐SAC model parameters.

GC model: The Marrero and Gani [13] GC method describes the properties of a 
pure compound using groups at three different levels: an initial approximation given 
by the contribution of first‐order groups, an improvement provided by the second‐
order groups, that is further refined with the third‐order groups. The detailed 
information of this model can be found in Marrero and Gani [13].

 
F N C w M D z O E

i
i i

j
j j

k
k k (10.30)

CI model: The methodology proposed by Gani et al. [18] permits the creation of 
missing groups and the prediction of their contribution by using valence connectivity 
indices (vχ) as described by Kier and Hall [60]. The property model equation is given 
by the following equation:
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GC± model (GC ± CI): The combined GC+ model is given by the following 
equation:

 
F N C F w M D z O E

i
i i

j
j j

k
k k*  (10.32)

 
F n F d k K

k
k k

* , for 1  (10.33)

where F(θ*) is a function of the property θ for all missing groups/fragments and 
 calculated by Equation 10.33. F(θ)

k
 is a function of the property θ for missing group/

fragment k, which is calculated by Equation 10.30, n is the number of times a missing 
group/fragment appears in the molecule, and K is the total number of missing groups/
fragments in a molecule.

10.2.4.3 Case Studies for SolventPro Paracetamol, also known as acetamino-
phen (CAS‐number 103‐90‐32) is a widely used over‐the‐counter analgesic and 
 antipyretic. In this case study the solubility curve of acetaminophen in methanol 
and  acetone is generated through SolventPro using UNISAC model. NRTL‐SAC 
parameters for acetaminophen were predicted by the GC+ model UNISAC using 
SolventPro as shown in Figure 10.8. SolventPro uses a created database of all the 
necessary groups and their contribution values to calculate the segment parameters. 
The description of the groups present in the solute molecule is easily obtained from 
the smiles string (e.g., for acetaminophen is CC(═O)NC1═CC═C(C═C1)O) of each 
compound.
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There are other options available for the parameter regression in the program, as 
showed in Figure 10.9. The program gives the option to the user to fit the segmental 
parameters based in the compound type. This is required since molecular parameters 
represent certain pairwise surface interaction characteristics, and often one or two 

FIGURE 10.8 Screen shot from the SolventPro predicting SLE for the binary mixture of 
acetaminophen (1) + methanol (2) using UNISAC model.

General model

Regression parameters
are fitted to

X, Y–, Y+, Z

Advanced regression
options

No hydrophobic
segment

Regression parameters
are fitted to Y–, Y+, Z

Regression parameters
are fitted to Y–, Y+, X

Regression parameters
are fitted to X, Z

Regression parameters
are fitted to X, Y+, Z

Regression parameters
are fitted to X, Y+, Z

No polar repulsive
segment

No polar attractive
segment

No hydrophilic
segment

No polar segments

FIGURE 10.9 Screen shot of advanced regression options from the SolventPro software for 
fitting segmental parameters.
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molecular parameters are needed for most of the solvents. As examples, we have that 
alkanes are hydrophobic and well represented by only the hydrophobicity parameter, 
X. For compounds such as alcohols that are hybrids, hydrophobic and hydrophilic 
segments can be used and are primarily represented with X and Z, respectively. 
Figure 10.10 shows the SolventPro implemented regression analysis, which is based 
on the method proposed by Chen and Song [7], where solubility data of acetamino-
phen in eight different solvents are used to calculate the molecular parameters of 
acetaminophen.

The quality of NRTL‐SAC model predictions depends on the quality of the 
 experimental data used to identify the solute parameters, as observed previously in 
the SLE thermodynamic consistency tests subsection of this chapter. Figure 10.11 
shows the comparison with experimental data, the predictions made with the param-
eters obtained through UNISAC model and through regression considering only 
NRTL‐SAC. The prediction accuracy depends on the choice of the selected data. 
However, when the parameters or experimental data for the new compound is not 
available, UNISAC model becomes very useful.

Aspirin, also known as acetylsalicylic acid (CAS‐number 50‐78‐2) is a salicylate 
drug often used as an analgesic to relieve minor aches and pains, as an antipyretic to 
reduce fever, and as an antiaspirin, also known as acetylsalicylic acid is a salicylate 
drug often used as an analgesic to relieve minor aches and pains, as an antipyretic to 
reduce fever, and as an inflammatory medication. In this case study, the solubility 

FIGURE  10.10 Screen shot from the SolventPro predicting NRTL‐SAC parameters for 
acetaminophen using regression model.
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curve of acetylsalicylic acid in 2‐propanol and ethanol is generated through 
SolventPro using UNISAC model and regression model and the results are compared 
to available experimental data. NRTL‐SAC parameters for acetylsalicylic acid were 
predicted by the UNISAC model. The results obtained are shown in Figure 10.12, 
where the solubility of aspirin in seven pure solvents was predicted. It is evident that 
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FIGURE 10.11 (a) SLE for binary mixture of acetaminophen (1) + methanol (2). (b) SLE 
for binary mixture of acetaminophen (1) + acetone (2).  Experimental data [54].
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the regression model closely matches with the solid solubility experimental data for 
all the solvents selected.

SolventPro also has the option to use the original UNIFAC model as one of the 
GE‐model or the PC‐SAFT equation of state [9, 10] to estimate the solid solubility as 
shown in Figure  10.13. Note that the PC‐SAFT pure‐component parameters are 
 predicted through a GC method [9, 10].
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FIGURE  10.12 (a) SLE for binary mixture of aspirin (1) + 2‐proponal (2). (b) SLE for 
binary mixture of aspirin (1) + ethanol (2).  Experimental data [53].



CONCLUSION 259

10.3 CONCLUSION

The status of property and phase equilibria for solid solubility involving pharmaceu-
tical and lipid systems has been reviewed and advanced by a more thorough investiga-
tion of SLE and solubility data, as well as by using an activity coefficient formulation 
based on fluctuation solution theory (FST). Though no rigorous consistency tests exist 
for such systems, using a reliable activity coefficient model along with comparing 
limits with independent pure component data allows quality factors to be established 
for complete composition range and limited range solubility SLE. It was found that 
the FST model is normally more accurate than either the NRTL or UNIQUAC models. 
The same approach adopted here for SLE quality factors including the FST model 
might also be applicable to liquid–liquid equilibrium systems.

The application of SolventPro with NRTL‐SAC and the PC‐SAFT models for 
 solubility predictions, multi‐level property estimation and solution of some common 
solvent‐based calculations needed in pharmaceutical industry have been demon-
strated using selected case studies. The NRTL‐SAC model in combination with the 
UNISAC model and a GC version of the PC‐SAFT have shown great potential in the 
calculation of solid solubility data. A comprehensive database of pure component 
data (or their reliable predicted values), however, is necessary for predictions of solid 
solubility for a wide range of chemical systems needed by the pharmaceutical 
industry. The option available in SolventPro is a very good start.

FIGURE 10.13 SLE for binary mixture of aspirin (1) + 2‐proponal (2) using group contribu-
tion method for estimating PC‐SAFT pure component parameters.  Experimental data [53]  
Eutectic point.
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11.1 INTRODUCTION

Accurate computational methods to predict the solubility of crystalline organic 
 molecules in aqueous solutions are highly sought after in many fields of the biomo
lecular sciences and industry. For example, predictions of solubility are required in 
the pharmaceutical and agrochemical industries to assess the bioavailability of de 
novo designed drugs and the environmental fate of potential pollutants, respectively 
[1–4]. Due in part to the requirements of industry, interest in the prediction of solu
bility has risen dramatically in recent years, with hundreds of articles published in 
the last decade alone.

The most widely used methods to predict aqueous solubility from molecular 
structure are quantitative structure–property relationships (QSPRs) [4–6], which are 
empirical models that use experimental data to learn a statistical relationship  between 
the physical property of interest (i.e., solubility) and molecular descriptors calculable 
from a simple computational representation of the molecule (e.g., counts of atoms or 
functional groups, polar surface area, and molecular dipole moment) [1]. The current 
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state of the art allows the prediction of aqueous solubility with root mean square 
errors (RMSEs) of approximately 0.3–0.4 log units for simple organic molecules and 
0.7–1.0 log units for drug molecules [7–11]. Although QSPR models are widely used 
for high‐throughput in silico screening [12–14], they have some drawbacks. It is 
often observed, for example, that QSPR models are unreliable for molecules dissim
ilar to those in the training set. Furthermore, since QSPRs are not based on any 
fundamental physical/chemical theory, they provide little information about the 
underlying physical chemistry and are difficult to systematically improve. In all but 
a few cases [15–17], QSPR models predict solubility from molecular rather than 
crystal structure, which means they are not able to rationalize or predict different 
solubilities for different polymorphs of a molecule. New methods to predict solu
bility from molecular structure would have enormous scientific and economic value.

One promising approach to predicting aqueous solubility is to calculate it directly 
from theory and/or molecular simulation. In this chapter, we will discuss the  different 
molecular theory and simulation‐based approaches that have been used to calculate 
the intrinsic aqueous solubility of drug‐like molecules. We also devote some of this 
chapter to the computation of other thermodynamic parameters that are required for 
the prediction of solubility such as hydration and sublimation free energies. Moreover, 
since a lack of accurate experimental data is currently a limiting factor in developing 
and testing all classes of computational solvent models, we also discuss methods to 
measure solubility and the extent and reliability of available data.

11.2 DEFINITIONS OF SOLUBILITY

Experimental measurements of solubility are influenced by many different factors, 
including the purity of the solute and solvent, presence of cosolvents, presence of 
salts, temperature, physical form of the undissolved solute, ionization state, and solu
tion pH [18]. Consequently many different definitions of solubility are in common 
use in the published literature. Here we discuss the intrinsic aqueous solubility, S

0
, 

which is defined as the concentration of the neutral form of the molecule in saturated 
aqueous solution at thermodynamic equilibrium at a given temperature [18–20]. 
Intrinsic aqueous solubility is used to calculate dissolution rate and pH‐dependent 
solubility in models such as the Noyes–Whitney equation [21] and the Henderson–
Hasselbalch equation [22, 23], respectively. Prediction of the intrinsic aqueous solu
bility of bioactive molecules is of great importance in the biochemical sciences 
because it is a key determinant in the bioavailability of novel pharmaceuticals [1, 3, 
24–26] and the environmental fate of potential pollutants [27, 28].

11.3 SOLUBILITY AND THERMODYNAMICS

11.3.1 Solubility and Free Energy of Solution

The intrinsic aqueous solubility of a crystalline solute is measured at thermodynamic 
equilibrium between the undissolved crystalline form of the molecule and the 
neutral form of the molecule in solution, which can be written X

s
⇄X

aq
. If the activity 
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coefficient for the solute in solution is assumed to be unity, then the relationship 
 between intrinsic solubility (S

o
) and the overall change in Gibbs free energy is [29]:

 G RT S Vsol o m
* ln  (11.1)

where Gsol
*  is the Gibbs free energy for solution, R is the molar gas constant, T is 

the  temperature (298 K), V
m
 is the molar volume of the crystal, S

o
 is the intrinsic 

 solubility in moles per liter, and the superscript * denotes that we are using the  
Ben‐Naim terminology [30, 31], which refers to the Gibbs free energy for transfer of 
a molecule between two phases at a fixed center of mass in each phase.

The most tractable approach to calculating aqueous solubility from molecular 
simulation is via computation of the free energy of solution (ΔG

sol
), which is the 

free energy change associated with transfer of the molecule from the crystalline 
phase to aqueous solution under standardized conditions. Since the solution free 
energy cannot easily be calculated from a single simulation, it is often decomposed 
into terms that can be computed in separate simulations (Fig.  11.1), as will be 
 discussed later. The calculation of solubility by this approach is a significant 
challenge because it requires prediction of crystal structure and an accurate compu
tation of solution free energy (at 298K an error of RT ln10 ≈ 5.7 kJ/mol in ΔG

sol
 

equates to a 10‐fold error in solubility).

11.3.2 Computation of Solubility from the Thermodynamic Cycle of 
Solid to Supercooled Liquid to Aqueous Solution

The thermodynamic cycle of solid drug to supercooled liquid and then to aqueous 
solution has been the basis of several different methods to predict intrinsic aqueous 
solubility. A supercooled liquid is a hypothetical state in which a pure solute that 
would normally be solid at the experimental temperature is considered to behave as 
a liquid. Although the supercooled liquid state is not accessible by experiments, it is 

∆G(sub) ∆G(hyd)

∆G(sol)

∆G(fus) ∆G(scl → aq)

scl

aq

Gas

FIGURE 11.1 Illustration of two different thermodynamic cycles: (top) crystal to gas phase 
to solution phase and (bottom) crystal to supercooled liquid phase to solution phase.
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introduced into the thermodynamic cycle to allow the process of breaking down the 
crystal lattice (step 1: crystal to supercooled liquid) to be decoupled from the process 
of hydration (step 2: supercooled liquid to aqueous solution).

One of the popular methods for prediction of solubility from this thermodynamic 
cycle is the general solubility equation (GSE) [32, 33], which relates logS to melting 
point (T

m
) and the logarithm of the octanol–water partition coefficient (logP).

 log . log .S P T0 5 0 01 25m  (11.2)

Although it is not strictly a molecular simulation method, we mention the GSE 
here since it can be derived from the thermodynamic cycle of crystal to supercooled 
liquid to solution provided that some assumptions are made about the entropy of 
melting, ΔS

m
. The GSE provides useful estimates of solubility when experimental 

melting point and ΔS
m
 data are available [34]. However, the GSE is not usually appli

cable to unsynthesized molecules as the best empirical methods for predicting 
melting point give predictive errors of 40–50°C [35, 36]. The GSE has provided the 
basis of empirical methods to predict solubility such as the Solubility Forecast Index 
[37].

A thermodynamic cycle similar to that discussed in this paragraph has also been 
used as the basis of a systematic study of pure amorphous forms of drug‐like mole
cules by molecular simulation methods [38–41]. The authors use Monte Carlo simu
lations and the free energy perturbation method to compute the free energies 
associated with transferring a drug molecule from gas phase into water (ΔG

hyd
, 

hydration free energy) and from gas phase into pure amorphous drug phase (ΔG
ga

) 
[38–41] at 25°C. An estimate of the solubility of the pure amorphous form of the 
drug‐like molecule can then be obtained from the following equation [40]:

 
S

G RT

Va
aw

m a

exp /

,

 (11.3)

Here, S
a
 is the solubility of the amorphous form, ΔG

aw
 is the free energy for trans

fer  of the drug‐like molecule from amorphous phase to aqueous solution 
( G G Gaw ga hyd), and V

m,a
 is the molar volume of the drug‐like molecule in 

the amorphous phase. Since free energy perturbation simulations are too computa
tionally expensive for routine use in computing solubility in the pharmaceutical 
industry, the authors of Refs. [38–41] also develop and test an approximate theory 
to  generate the free energy differences required to determine solubility. In this 
“ simplified response” (SR) theory, it is assumed that both ΔG

hyd
 and ΔG

ga
 can be 

computed from the same ansatz:

 
G G G G E

E
G Eaw ga hyd cav a LJ a

C a
cav w LJ w, ,

,
, ,2

EEC w,

2
 

(11.4)
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Here, ΔG
cav

 is the free energy of cavity formation (obtained using a theory for hard 
oblate spheroids), E

LJ
 and E

C
 are the Lennard‐Jones and Coulomb interaction energies, 

respectively, between the chosen molecule and the others in the fluid, and the 
 subscripts a and w refer to amorphous and water phases, respectively. The SR theory 
assumes that the response of the system to electrostatic interactions can be described 
by linear response theory and that the response to dispersion or other induction and 
correlation interactions can be described by mean field theory [38–41].

Since there are relatively few measurements of amorphous solubility available in 
the published literature, the SR method was benchmarked on data obtained from 
experimental measurements of intrinsic aqueous solubility, entropy of melting (ΔS

m
), 

and melting point (T
m
), using the following relationship [40]:

 S S S R T Ta o m mexp / ln /  (11.5)

The results were found to be sensitive to the choice of force field and atomic 
partial charges used in the simulations, but for the best tested parameters a reasonable 
correlation between experimental and computed amorphous solubilities was observed 
[40, 41]. It was shown in Ref. [41] that after reparameterization of the model and 
introducing an empirical relationship through linear regression analysis of experi
mental and calculated data ( G Gaw,calc aw2 04. ,exp), amorphous solubility could be 
predicted with a correlation of r2 0 65.  and a root meansquare deviation (RMSD) 
of approximately 1 logS unit [41]. At the current time, experimental ΔS

m
 and T

m
 data 

are required in order for this approach to be used to compute intrinsic aqueous solu
bility, but this may change in the future.

11.3.3 Computation of Solubility from the Thermodynamic Cycle of 
Solid to Gas Phase to Aqueous Solution

The thermodynamic cycle for transfer from crystal to vapor to solution (Fig. 11.2) 
provides a convenient method to compute solubility since both of the related thermo
dynamic parameters (sublimation and hydration free energy) are accessible by both 
experiment and computation. Perlovich et al. have published a series of papers that 
investigate the thermodynamic properties of a wide variety of structurally diverse 
drugs, by both experiment and computation, but they have not provided any molec
ular simulation methods for the prediction of solubility from structure alone without 
empirical parameterization [42, 43].

One of the successful computational methods to be based on the thermodynamic 
cycle of pure compound to gas phase to solution was the prediction of the solubility 
of liquids (and a small number of low‐molecular‐weight solids) from both 
 experimental and calculated vaporization and hydration free energies by Thompson 
et al. [29]. The free energies were computed using the SM5.42R implicit continuum 
solvation model combined with density functional theory (DFT) (B3LYP functional 
and MIDI! basis set), where vaporization free energy was computed as a self‐ 
solvation free energy (i.e., where solute and solvent molecules are identical). 
Predictive mean unsigned errors in the range of 0.4–0.6 in logS units were reported 
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for a dataset comprising simple (non‐drug‐like) low‐molecular‐weight organic 
 compounds (Fig. 11.3). The problem with this approach is that it does not provide a 
theoretically rigorous method to model molecular crystals.

Schnieders et al. have recently proposed a method to predict the solubility of 
organic crystals from molecular dynamics simulations, using the polarizable force 
field AMOEBA (atomic multipole optimized energetics for biomolecular simulation) 
with an orthogonal space–based free energy algorithm [44]. For a small dataset 
 comprising four low‐molecular‐weight n‐alkylamides (acetamide, butanamide, pen
tanamide and hexanamide), solubility was predicted with a RMSE of 0.83 logS units 
(calculated from data presented in Table  8 of the original manuscript [44]). The 
molecular simulation results were used to rationalize the experimentally observed 
decrease in solubility as a function of n‐alkylamide chain length, which for these 
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FIGURE 11.2 Thermodynamic cycle for transfer from crystal to gas and then to aqueous 
solution. Source: Palmer et al. [15]. Reprinted with permission of American Chemical Society.
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FIGURE 11.3 Plot of experimental versus calculated solubility data, where the latter were 
computed using the SM5.42R solvent model at the B3LYP level of theory combined with the 
MIDI! basis set. The dataset comprises low‐molecular‐weight organic molecules, most of 
which are liquids at the experimental temperature. This figure was prepared from the data in 
the supporting information provided in the original article by Thompson et al. [29].
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molecules occurs due to an increasing stability of the crystalline state and to a lesser 
degree due to decreasing favorability of solvation (i.e., the hydrophobic effect). 
Reinwald et al. predicted the aqueous solubility of a more diverse selection of drugs 
from experimental enthalpies of sublimation, ΔH

sub
, and calculated hydration 

energies [45]. Unfortunately, this method was only accurate to within 1 logS unit for 
one molecule from a dataset of 12, and no computational procedure was suggested 
for the calculation of ΔH

sub
. Palmer et al. have published two articles on predicting 

solubility from calculation of sublimation and hydration free energies [15, 46]. In the 
first work, where ΔG

hyd
 was calculated using an implicit solvent model based upon 

the Poisson–Boltzmann equation, ab initio results were not found to deliver 
the  required accuracy, but after the introduction of a small number of empirical 
 corrections, accurate predictions of a drug‐like test set were obtained. The resulting 
linear regression model is for all intents and purposes a QSPR model, but one that 
includes a computed lattice energy as a molecular descriptor to account for the 
influence of crystal lattice interactions on solubility. The use of sublimation and free 
energies as molecular descriptors in machine learning QSPR models has also been 
investigated [10]. While direct theoretical calculation did not give accurate results in 
this approach, machine learning models gave predictions with a root mean square 
error (RMSE) of 1.1 logS units for a dataset of 100 drug‐like molecules. The hydration 
free energies used in that work were computed using implicit continuum solvation 
models. In the second article by Palmer et al., the intrinsic aqueous solubilities of 25 
crystalline drug‐like molecules were computed without direct empirical parameteri
zation against experimental solubility data by combining sublimation free energies 
calculated using crystal lattice simulations with hydration free energies computed 
using the three‐dimensional (3D) reference interaction site model (3D‐RISM) of the 
integral equation theory (IET) of molecular liquids. The solubilities of 25 crystalline 
drug‐like molecules taken from different chemical classes were computed with a 
correlation coefficient of R = 0.85 and a RMSE equal to 1.45 logS units. Although 
these results are not as accurate as those reported by purely empirical approaches, 
they are encouraging because there is great scope for systematic improvement. We 
note that this is the first “bottom‐up” method in the area (i.e., the method is not 
directly parameterized against experimental solubility data), and it offers a full com
putational characterization of the thermodynamics of transfer of the drug molecule 
from crystal phase to gas phase to dilute aqueous solution.

11.4 CALCULATION OF ΔGhyd

Generally, methods for calculating ΔG
hyd

 can be represented by two main categories: 
implicit or explicit solvent models [38, 47–58]. The main difference between these 
two categories is the representation of the solvent structure around the solute. Implicit 
Continuum Solvent Models (ICSMs) treat the solvent around the solvated molecule 
as a structureless polarizable medium characterized by a dielectric constant, ε [49, 
59, 60]. In turn, in explicit solvent models (ESMs) both solute and solvent molecules 
in the solute–solvent systems are described at the atomistic level. There are two 
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major classes of ESMs—(1) explicit solvent simulations methods based on direct 
simulation of a solute–solvent system using molecular mechanics (MM), quantum 
mechanics (QM), or combined QM/MM techniques [7, 38, 47, 48, 51, 61–66] and (2) 
Molecular Theories of Liquids (MTLs) that use an atomistic/molecular scale theory 
like, for example, molecular integral equations theory (MIET) [67, 68] or molecular 
DFT (MDFT) [69, 70] for describing the solute–solvent interactions. We will discuss 
advantages and disadvantages of all these methods later focusing on MTL‐based 
methods because they provide a good compromise between accuracy and computa
tional costs [67, 68, 71, 72].

11.4.1 Implicit Continuum Solvent Models

Typically, in ICSMs, ΔG
hyd

 is represented as a sum of several contributions:

 G G G Ghyd elec repdisp cav , (11.6)

where ΔG
elec

 is the contribution due to polarization of the solute by the solvent envi
ronment, ΔG

rep‐disp
 represents the repulsion–dispersion interactions between the 

solute and the solvent, and ΔG
cav

 is the contribution due to formation of a cavity in 
the solvent where the solute is embedded. For a given molecular geometry, the first 
term, ΔG

elec
, can be calculated by solving either the generalized‐Born or Poisson–

Boltzmann equations; these equations can be solved for pure solvents as well as 
mixtures and electrolyte solutions [52]. The molecular 3D structure can be calculated 
by MM or QM calculations or in some cases extracted from crystallographic data.

A wide variety of methods have been proposed to calculate ΔG
cav

 and ΔG
rep‐disp

. 
A common approach is to combine these terms and represent them by an equation 
of the form

 G G bcav repdisp SASA , (11.7)

where SASA is the solvent accessible surface area of the solute and γ and b are 
constants obtained by empirical fitting against experimental data for nonpolar mole
cules. The linear relationship between G Gcav rep disp and SASA only holds for 
simple organic molecules, which has led to the development of several more sophis
ticated models for ΔG

cav
 and ΔG

rep‐disp
. However, despite significant progress during 

the last decade, low computational costs, and, as a consequence, their high popu
larity, implicit continuum models have one principal drawback—they ignore the 
microscopic solvent structure and, therefore, neglect many important effects such as 
solvent reorientation in the molecule solvation shell and specific solute–solvent 
interactions (e.g., hydrogen bonds).

11.4.2 Explicit Solvent Models: Atomistic Simulations

Within the scope of available ESMs, the explicit solvent simulations method is the 
most theoretically rigorous and most detailed approach to calculate ΔG

hyd
 [7, 38, 47, 

48, 51, 61–66]. The method is based on explicit simulation of a solute–solvent system 
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where both solute and solvent molecules are described at the atomistic level. In most 
of the studies to date, the inter‐ and intramolecular interactions are described at the 
MM level (i.e., classical mechanics); however, ab initio molecular dynamics (AIMD) 
and hybrid QM/MM methods are becoming increasingly popular in this area (we note 
though that these methods are more computationally expensive than the MM‐based 
explicit solvent methods) [73–77].

Regardless of the level of theory used (MM, QM, or QM/MM), within the scope 
of the explicit solvent simulations approach the hydration (solvation) free energy can 
be calculated by four main groups of methods: [52] (1) thermodynamic integration, 
(2) free energy perturbation, (3) probability densities, and (4) nonequilibrium work 
methods.

Since the free energy (of solvation) is a state function, it is (formally) independent 
of the path that is used to calculate it. However, the numerical convergence of the 
calculations (and, consequently, the accuracy of the calculations) depends on the 
method as well as the roughness of the energy landscape of the system and the dimen
sionality of the system phase space. Overall, the explicit simulations methods are 
computationally much more expensive than ICSMs and MTL‐based methods. 
Calculating ΔG

hyd
 for a drug‐like molecule by direct simulations may take as long 

as several days on a modern desktop computer, which means that these methods are 
still too computationally expensive for routine use in computational screening of 
large databases of molecules. We refer the readers to the following references 
for more details of the methods and comparative analysis of their advantages and 
 disadvantages [38, 47–58].

11.4.3 Explicit Solvent Models: Molecular Theories of Liquids

MTLs offer an alternative to expensive direct simulation methods; these methods use 
a statistical‐mechanical molecular theory of solvation, for example, MIET‐based 
RISM [78–82], molecular Ornstein–Zernike equation (MOZ) [82, 83], or MDFT 
[69, 70]. Similar to direct simulation methods, the MTLs also operate with an explicit 
description of the solute–solvent interactions via an all‐atom force field. However, 
instead of operating with individual molecular trajectories they describe the solute–
solvent system through correlation functions of solute and solvent species. This 
approach significantly reduces computational cost and allows one to efficiently 
 compute the solvation structure and thermodynamics of molecular solvation from 
statistical mechanics [68–70]. Although several MTL‐based methods have been 
developed to calculate ΔG

hyd
, in the rest of this section we will focus only on RISM‐

based methods because these methods are the only ones (to the best of our knowledge) 
that have been implemented in popular molecular‐modeling software like AMBER 
and Amber Tools [84], molecular operating environment (MOE) [85], CHARMM 
[86], and Amsterdam Density Functional (ADF) [87].

11.4.3.1 1D Reference Interaction Site Model The 1D RISM approach [78] 
and its extension to dipolar liquids (XRISM [79]) require a solution of a system of 
site–site Ornstein–Zernike (SSOZ) 1D integral equations that operate with the 
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intermolecular spherically symmetric site–site correlation functions. To make the 
system of the integral equations solvable, it has to be combined with a closure  relation 
[82, 83, 88–91]. More details on the theory and the algorithms for solving the 
equations can be found in Refs. [82, 92].

The main benefits of this approach are that (i) this is a molecular theory, and that 
(ii) due to the spherical symmetry of the correlation functions in the 1D RISM 
approach, the computational costs are significantly reduced compared to explicit 
 solvent methods and high‐dimensional molecular theories like 3D RISM [80–82, 
93], MOZ [82, 83], and MDFT [69, 70]. For an average drug‐like molecule a 1D 
RISM calculation of solvation free energy takes less than a minute on a desktop PC 
[67, 71, 72, 92]. This time scale is already comparable with the computational time 
scale for continuum methods (seconds). We note that an explicit solvent calculation 
for the same kind of molecules would take between hours and days [38, 47–58].

Due to the oversimplified representation of the solute–solute and solute–solvent 
correlations in the 1D RISM theory, it is generally less accurate than the more 
 sophisticated 3D RISM [71].

11.4.3.2 3D Reference Interaction Site Model The 3D RISM [80–82, 93] is a 
theoretical method for modeling solution phase systems based on classical statistical 
mechanics. The 3D RISM equations relate 3D intermolecular solvent site—solute 
total correlation functions (hα(r)), and direct correlation functions (cα(r)) (index α 
corresponds to the solvent sites) [80, 82]:

 
h c d

N

R

solvent

r r
1 3

r r r ,
 

(11.8)

where χξα(r) is the bulk solvent susceptibility function and N
solvent

 is the number of 
sites in a solvent molecule (Fig.  11.4). The solvent susceptibility function χξα(r) 
describes the mutual correlations of sites ξ and α in solvent molecules in the bulk 
solvent. It can be obtained from the solvent intramolecular correlation function 

solv r , site–site radial total correlation functions h rsolv , and the solvent site 

number density (ρα): r r h rsolv solv  (from here onward, we imply that 

each site is unique in the molecule so that  for all α) [82]. These solvent– 
solvent correlation functions can be obtained by solution of the 1D RISM equations 
of the pure solvent [82, 84].

In order to calculate hα(r) and cα(r), N
solvent

 closure relations are introduced:

 

h u h c B

N

r r r r rexp

, ,

1

1 solvent

 (11.9)

Here, uα(r) is the 3D interaction potential between the solute molecule and α solvent 
site, Bα(r) are bridge functionals, 1 / k TB , k

B
 is the Boltzmann constant, and T is 

the temperature.
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In general, the exact bridge functions Bα(r) are represented as an infinite series of 
integrals over high‐order correlation functions and are therefore practically incom
putable, which makes it necessary to incorporate some approximations [82, 83, 89]. 
The most commonly used closure relationship is the KH closure proposed by 
Kovalenko and Hirata [91], which was designed to improve convergence rates and to 
prevent possible divergence of the numerical solution of the RISM equations [91]:

 

h r
r r

r r

exp 1 0

0

when

when
 (11.10)

Here, ( ) ( ) ( ) ( )r r r ru h c . The 3D interaction potential between the 
solute molecule and α site of solvent (uα(r)) is estimated as a superposition of the 
site–site interaction potentials between solute sites and the particular solvent site, 
which depend only on the absolute distance between the two sites. The site–site inter
action potential is commonly represented by a long‐range electrostatic interaction 
term and a short‐range term (Lennard‐Jones potential) [95].

Within the framework of the RISM theory, there exist several approximate 
 functionals that allow one to analytically obtain values of the hydration free energy 
(HFE) from the total hα(r) and direct cα(r) correlation functions [96–98]. Although 
these functionals have been extensively used to qualitatively model thermodynamics 
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FIGURE 11.4 Correlation functions in the 3D RISM approach. (a) Site–site intramolecular 
( solv ( )r ) and intermolecular (hsolv ( )r ) correlation functions between sites of solvent  molecules. 
The graph shows the radial projections of water solvent site–site density correlation functions: 
oxygen–oxygen (O–O, solid line), oxygen–hydrogen (O–H, dashed line), and hydrogen–hydrogen 
(H–H, dashed‐dotted line). (b) Three‐dimensional intermolecular solute–solvent  correlation 
function hα(r) around a model solute (diclofenac). Source: Palmer et al. [94]. Reprinted with 
 permission of American Chemical Society. (see insert for color representation of the figure.)
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of different chemical systems [97, 99, 100], they generally give HFE values that are 
strongly biased from experimental data with a large standard deviation error [95–98, 
101, 102].
The Kovalenko–Hirata free energy functional for 3D RISM is given by

 
G k T h h h c

N

R

hyd
KH

B

solvent
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2
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2

1

2
r r r r c dr r,

 
(11.11)

where ρα is the number density of solvent sites α, and Θ is the Heaviside step function:

 
x

x

x

1 0

0 0

for

for
 (11.12)

The Gaussian fluctuation (GF) HFE functional was initially developed by 
Chandler, Singh, and Richardson, for 1D RISM and was adopted by Kovalenko and 
Hirata for the 3D RISM case [82, 103]:

 
G k T c c h d
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hyd
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1 3
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r r r r.

 
(11.13)

Here, ρα is the number density of solvent sites α. Unfortunately, HFEs calculated 
using the GF free energy functional have only a qualitative agreement with 
experiment. The error in hydration free energies calculated by the GF functional in 
3D RISM is strongly correlated with the partial molar volume calculated by 3D 
RISM [67, 94, 104]. The 3D RISM/UC free energy functional developed from this 
observation is a linear combination of the Ghyd

GF , the dimensionless partial molar 
 contribution, ρV, and a bias correction, b (intercept) [104]:

 G G a V bhyd
D RISM UC

hyd
GF3 / , (11.14)

where the values of the scaling coefficient a and intercept b are obtained by 
linear  regression against experimental data for simple organic molecules. For the 
AMBER‐GAFF forcefield and SPC/E water model, the coefficients have the values 
a 3 2217.  kcal/mol and b 0 5783.  kcal/mol.

The solute partial molar volume V can be estimated via solute–solvent site 
 correlation functions using the following 3D RISM theory expression [105, 106]:

 
V k T c d

N

R

B

solvent

1
1 3

r r .
 

(11.15)

Here, η is the pure solvent isothermal compressibility, and ρα is the number density 
of solute sites α.

The 3D RISM/UC method has been shown to give accurate hydration free energies 
for both simple organic molecules and bioactive (drug‐like) molecules [67, 94, 104].
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11.5 CALCULATION OF ΔGsub

11.5.1 Crystal Polymorphism

The intrinsic aqueous solubility of a solute depends on the polymorphic form of the 
crystalline precipitate that is present at thermodynamic equilibrium during the 
 solubility experiment. The repeated dissolution and re‐precipitation of the solute that 
occurs during a single solubility measurement often promotes changes in crystal 
polymorph, from less to more thermodynamically stable forms in accordance with 
Ostwald’s law of stages [107–109], which means that simply characterizing the 
 precipitate at the beginning of a solubility experiment is not satisfactory. Since the 
majority of experimental data in the published literature are reported without charac
terization of the crystalline form of the precipitate, it is difficult to compile an 
 accurate database of polymorph solubility. Nevertheless, the average difference in 
molar solubilities between polymorphs has been estimated to be approximately two
fold [110] (or even lower, 1.5‐fold, according to the data on 153 polymorphic pairs 
published in Ref. [17]). As this value is smaller than the average error in models to 
predict solubility (5‐ to 10‐fold molar solubility) [4–6, 111], it has previously been 
suggested that a simulated low‐energy crystal structure may be still a good starting 
point from which to predict solubility, even if small errors exist in the calculated 
polymorphic landscape [15, 16].

11.5.2 Crystal Structure Prediction

The aim of crystal structure prediction is to predict stable polymorphic forms from 
molecular structure. Although a large number of different methods have been 
 proposed for crystal structure prediction, most of them are based on the same 
approach, whereby stable polymorphs are identified by minimizing the lattice energy 
(U

latt
) of a large number of candidate structures [112]. The use of lattice energy rather 

than free energy to assess polymorph stability is based on the assumption that the 
difference in entropy of organic polymorphs is negligible [113]. While this is a 
 reasonable assumption, it is not always sufficiently accurate; significant entropy dif
ferences have been measured for model organic molecules (e.g., paracetamol) [42, 
43, 114]. Where necessary, the ranking of polymorphs can sometimes be  usefully 
refined by calculating lattice vibration entropies [115]. Without knowledge of the 
entropic difference, it is not possible to account for enantiotropic relationships 
 between polymorphs [116].

The key challenges faced in crystal structure prediction are in sampling all pos
sible configurational and conformational degrees of freedom in the crystal (as given 
by space group, unit cell dimension and position of atoms in the unit cell) and in 
computing the lattice energy accurately for each hypothetical crystal structure [117]. 
For small organic molecules with few degrees of conformational freedom, it is often 
sufficient to keep the conformational degrees of freedom of each molecule fixed 
(e.g., at a gas phase geometry) and optimize only the configurational degrees of free
dom in the crystal phase. The size of the search space can be reduced by considering 
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candidates from the most common space groups only [112]. Since crystal structure 
prediction can be viewed as a global optimization problem, stochastic search 
 algorithms have also been used to improve sampling, for example, particle swarm 
algorithms, genetic algorithms, Monte Carlo parallel tempering algorithms, and 
simulated annealing [118, 119]. The success of crystal structure prediction depends 
to a large extent on the accuracy of the method for computing lattice energy [113, 
120]. Crystal geometry optimization is normally performed using model potentials, 
but the use of QM to refine the calculated lattice energy for the energy minimized 
structure is becoming more common [114]. Methods to compute lattice energy will 
be discussed further in Section 11.5.4.

Over the past 15 years, the Cambridge Crystallographic Data Centre (CCDC) has 
hosted six blind challenges (one of which is still ongoing at the time of writing), in 
which the scientific community have been provided with molecular structures and 
invited to make predictions of the structures of previously unpublished organic crys
tals [121–126]. The current state of the art allows the polymorphic landscape of rigid 
and semiflexible organic molecules to be calculated with reasonable confidence, 
with some recent successes also reported for crystal structure prediction of molecules 
with multiple rotatable bonds [127].

11.5.3 Calculation of ΔGsub

The existing methods to compute ΔG
sub

 fall in one of two categories: (1) those that 
compute ΔG

sub
 from separate estimates of ΔH

sub
 and ΔS

sub
 by G H T Ssub sub sub; 

and (2) those that compute ΔG
sub

 directly from molecular simulation.
The sublimation free energy data that is reported in the published literature for 

organic crystals is often given relative to a 1 atm standard state in the gas phase ( Go
sub), 

while hydration free energies are more commonly given relative to a molar standard 
state in the gas phase ( Ghyd

* ). Sublimation free energy data reported as Go
sub can be 

converted to Gsub
*  using the following equation, which may be derived considering 

the work for isothermal expansion of an ideal gas [15, 128]:

 
G G RT

V p

RT
o o

sub sub
m* ln

 
(11.16)

Here, V
m
 is the molar volume of the crystal, and p

o
 is the standard atmospheric 

pressure (1 atm = 101.325 kPa).

11.5.4 Calculation of ΔHsub

The enthalpy of sublimation ΔH
sub

 can be approximated from the crystal lattice 
energy, U

latt
, by H U RTo

sub latt 2 . The −2RT term arises because the lattice energy 
does not include lattice vibrational energies (which can be approximated by 6RT for 
crystals of rigid molecules oscillating in a harmonic potential), the energy of the 
vapor is 3RT, and a PV = RT correction is necessary to change energies into enthalpies, 
thus yielding −6RT + 3RT + RT = −2RT [129].



The lattice energy of a molecular crystal is defined as the energy for formation 
of the crystal lattice from molecules that are infinitely separated in the gas phase. 
U

latt
 can be decomposed into two components:

 U U Elatt inter intra (11.17)

Here, U
inter

 is the intermolecular interactions between molecules in the crystal, and 
ΔE

intra
 is the change in the molecular energy between the crystal and gas. Since 

 molecules generally adopt low‐energy conformations within their observed crystal 
structures, ΔE

intra
is often a small contribution to the overall lattice energy (and is 

 negligible for rigid molecules). However, for large conformationally flexible mole
cules it is important to assess the influence of ΔE

intra
 on U

latt
. This is especially true 

when molecules with an intramolecular hydrogen bond change their conformation on 
crystallization to adopt a more stable intermolecular hydrogen bond.

U
inter

 may be understood through the theory of intermolecular interactions. As a 
rough approximation, directional interactions (e.g., hydrogen bonding, pi–pi interac
tions, and halogen bonding) are important in determining the relative orientations of 
molecules in the crystal lattice, while repulsion interactions are critical in  determining 
close contact distances, and dispersion interactions provide the universal attractive 
contributions that favor denser structures. U

inter
 can be computed using either QM or 

model potentials. While QM provides a theoretically rigorous method for computing 
lattice energies, it is computationally expensive, especially for use in lattice energy 
minimization of pharmaceutical crystal structures. Nevertheless, there have been 
some recent successes in modeling organic crystals using ab initio or density 
functional–based methods, typically including some form of dispersion correction. 
Alternatively, U

inter
 may be computed using either isotropic or anisotropic model 

potentials. It has been shown that representing the molecular electron distribution 
using distributed multipoles (anisotropic) rather than atomic partial charges 
( isotropic) leads to more accurate crystal structure modeling. A key concern in devel
oping model potentials is that the contributions to U

inter
 (including dispersion and 

polarization terms) are both accurate and well balanced with the calculated intramo
lecular forces. The evaluation of lattice energies of small organic molecules is cur
rently a very active research area for computational chemistry. As shown in a series 
of blind tests of crystal structure prediction algorithms [122–125], there is currently 
no method of evaluating the lattice energy of organic molecules that is ideal for all 
molecular systems.

11.5.5 Calculation of ΔSsub

ΔS
sub

 can be computed as the difference between the entropy of an ideal gas and the 
entropy of the crystal at a given temperature and pressure. If the intra‐ and intermo
lecular contributions to the entropy of the crystal are considered to be decoupled, 
such that the change in intramolecular vibrational entropy for transfer from crystal to 
gas can be taken to be zero, then the sublimation entropy of rigid molecules can be 
approximated by S S S So

sub rot,gas trans,gas ext cryst, , where S
rot,gas

 and S
trans,gas

 are the 
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rotational and translational contributions to the entropy of the gas at temperature T, 
respectively, and S

ext,cryst
 is the intermolecular vibrational contribution to the entropy 

of the crystal at T. Here it is assumed that the crystalline phase is infinite and perfect, 
that translation and rotational entropies of the crystal are negligible and that the mol
ecule is in its electronic ground state in both crystal and gas phase. S

rot
 and S

trans
 can 

be calculated from statistical thermodynamics as described in physical chemistry 
textbooks (see e.g., Refs. [128, 129]) and as implemented in many popular molecular 
modeling programs (e.g., Gaussian09 [130]). S

ext,cryst
 is determined by the intermolec

ular vibrational (phonon) modes of the crystal, which may be computed by rigid‐
molecule lattice dynamics employing the same model potential used in lattice energy 
minimization. Only the 6N–3 (where N is the number of molecules in the unit cell) 
optical zone‐center (k 0) phonons need to be calculated; the remaining three 
acoustic modes have zero frequency at k 0. The density of states can be calculated 
using a hybrid Debye–Einstein approximation for k 0, where the frequencies of the 
optical phonons are assumed to be independent of k and the acoustic contribution is 
modeled by the Debye approximation, with the Debye cutoff frequency estimated by 
extrapolating the acoustic modes to the zone boundary, using sound velocities calcu
lated from the elastic stiffness tensor. The resulting free energy expression is given in 
Anghel et al. [131]. In this approach, it is assumed that vibrations are harmonic, and 
coupling between inter and intramolecular vibrations is ignored.

11.5.6 Other Methods to Compute ΔGsub

Over the previous 50 years a large number of methods have been developed to 
 compute HFE using molecular dynamics or Monte Carlo simulations coupled with 
statistical mechanics, whereas relatively few such methods have been developed 
and applied to computing of the sublimation free energy of drug‐like molecules. One 
such approach is the GAUCHE methodology [132], which computes the sublimation 
free energy as follows:

 
G k T ln

V

V
G Gsub B

c

g
AU AU UC.

 
(11.18)

Here, V
g
 is the volume of a gas at 1 molar concentration, V

c
 is the molar volume 

of the crystal, ΔG
AU

 is the deposition free energy for a system composed of only N
AU

 
asymmetric unit molecule(s), and GAU UC is the change in free energy to expand the 
asymmetric unit into a unit cell composed of N

UC
 independent molecules. The first 

term corresponds to the change of standard state discussed in Section 11.5.3, the 
 latter two terms are computed from separate simulation steps. The current implemen
tations of the GAUCHE method require knowledge of the crystal space group and 
unit cell parameters from experiment, but not a priori knowledge of crystalline 
atomic coordinates. Using the GAUCHE methodology and the polarizable AMOEBA 
force field, a RMSE of 1.7 kcal/mol was reported for a dataset of five organic 
 molecules, which is encouraging, but probably not yet accurate for routine use in 
solubility prediction [132].
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11.6 EXPERIMENTAL DATA

A critical understanding of the availability and accuracy of experimental data in the 
published literature is an important step in developing or testing computational 
methods. This is especially true since there is currently a lack of accurate and well‐
documented experimental data for polyfunctional organic molecules [53, 133].

The traditional “gold‐standard” method for measuring intrinsic aqueous (and pH‐
dependent) solubility is the shake‐flask method [134]. The sample drug is added to a 
buffered solution until precipitation occurs. The solution is then agitated until ther
modynamic equilibrium has been established, at which point the excess precipitate is 
removed, by filtration or centrifugation, and the concentration of drug in solution is 
measured often by HPLC with UV detection. The main problem with the shake‐flask 
method is that the solution must be left to equilibrate for long periods of time, typi
cally between 24 and 72 h. Additional errors may also be incurred by the filtration or 
centrifugation step and the use of buffers [134]. Care must be taken in characterizing 
the physical form of the undissolved precipitate as different crystal forms will have 
different apparent solubilities [135]. Recently, potentiometric methods such as the 
dissolution template titration (DTT) method [136] and the CheqSol method [137] 
have found more widespread use. The potentiometric methods use accurate acid–
base titrations to control the precipitation of the solute by altering the concentration 
of the nonionized (and ionized) form of the solute in solution. Such experiments are 
commonly visualized by a Bjerrum plot, which is a graph of the average number of 
bound protons as a function of pH [138]. Often precipitation can be identified as a 
deviation between the theoretical and observed titration curves at a specific pH, 
which occurs as the nonionized solute precipitates, thus affecting the equilibrium 
hydronium ion concentration. The principal benefit of the potentiometric methods is 
that they increase the rate at which thermodynamic equilibrium is obtained, but they 
can typically only be used for solutes with a pK

a
 in the range 2–12 (we note that the 

majority of drugs do have such a pK
a
).

Solubility data for small organic molecules and several hundred pharmaceuticals 
are available in either the primary literature or from sources such as the AquaSol 
[139] and PhysProp [140] databases or the Merck Index [141]. However, data from 
these sources typically contain large uncertainties. A good example of this problem 
is provided by caffeine, for which the solubility is reported by different authors to be 
as low as 2.132 g/l [142] and as high as 896.2 g/l [143]. To address this problem, sev
eral groups have recently reported new experimental measurements of solubilities for 
drug‐like molecules. For example, Llinas et al. published a dataset of 132 drug‐like 
molecules for which intrinsic aqueous solubilities (and pK

a
’s) were measured by 

standard methods [6, 144]. Since accurate melting points and octanol–water partition 
coefficients are also available for these molecules, the dataset provides a useful 
starting point to study the physical chemistry of drug‐like molecules and their solva
tion behavior. Unfortunately, pure compound vapor pressures have not been reported 
for the majority of these molecules, which makes it impossible to evaluate their 
hydration free energies. We note that measurement of these data for these molecules 
would significantly benefit the development of new computational solvent models.
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11.7 CONCLUSION AND FUTURE OUTLOOK

One of the benefits of the methods discussed in this chapter is that they provide a 
complete characterization of the thermodynamics of transfer of solute from crystal to 
aqueous solution. Since the solubility of a crystalline solute depends upon the 
 properties of the undissolved crystalline precipitate as well as the properties of the 
solution, the thermodynamic data provides valuable information in understanding 
not only which of the two molecules is more soluble but also why the selected mol
ecule is more soluble. By contrast, QSPR models, which are statistical rather than 
first‐principles approaches, provide only limited statistical information about the 
underlying physicochemical processes. Moreover, since most QSPR models predict 
solubility from molecular rather than crystal structure, they are not able to rationalize 
or predict different solubilities for different polymorphs of a molecule. Therefore, we 
believe that the bottom‐up methods that utilize efficiently molecular‐scale information 
about the solute and solvent structure will attract more attention in the future in 
terms of both practical applications and fundamental studies of solubility of drug‐
like molecules.
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12.1 SSNMR SPECTROSCOPY: A SHORT INTRODUCTION

Pharmaceutical solids exhibit a range of specific mechanical, thermodynamic and 
 pharmacokinetic properties that impact their therapeutic performance. Insight into the 
structure and dynamics of these solids over a range of length‐ and time scales is key for 
rationalizing, engineering and improving these properties. Solid‐state nuclear magnetic 
resonance (SSNMR) spectroscopy is a well‐established method for  studying inter‐ and 
intramolecular interactions based on the magnetic and electric properties of the mole-
cule with extreme sensitivity and nuclear specificity, and it is also commonly used to 
study molecular dynamics over a wide range of time scales. Atomic‐scale information 
such as nuclear proximities, torsion angles, coordination numbers, and molecular 
 packings may also be obtained via local nuclear interactions that may be probed by a 
variety of SSNMR methodologies. Small molecules such as drugs are the building 
blocks of supramolecular entities arranged in space through non‐covalent interactions 
that  ultimately determine their physicochemical properties. Although SSNMR is capable 
to sense even very weak molecular packing interactions, ab initio calculations are very 
often required to support NMR studies in complex crystal structures.
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Many reviews are available on the SSNMR technique and its application to study 
materials and polymers [1–3]; however, in this chapter, we focus on the use of 
SSNMR for studying small pharmaceutical molecules in synergy with theoretical 
calculations of NMR parameters. This chapter emphasizes computer modeling of 
chemical shift tensors (CSTs) to overcome the difficulty in using experimental chemical 
shifts (CSs) alone to determine specific structural features. The number of experi-
mental NMR techniques available greatly outnumbers the existent theoretical 
approaches. However, over the past decade several scientific advancements have lead 
to faster computers, more efficient codes/algorithms and new levels of theory used to 
compute NMR parameters. Calculations then became more accurate and capable 
to  model NMR chemical shieldings of large systems (hundreds of atoms). 
Consequently, this allowed the use of NMR modeling to support experimental 
 evidence on a more routine basis.

The remainder of this chapter is organized in five sections. Sections 12.2–12.4 
provide a brief review of the most relevant computational methods employed to 
 calculate NMR chemical shieldings, and Section  12.5 reports a number of case 
studies where computer modeling is used in tandem with SSNMR spectroscopy and 
X‐ray diffraction (XRD) to provide structure details in solid active pharmaceutical 
ingredients (APIs). Section 12.5 focuses, essentially, in correlating calculated NMR 
parameters with relevant structure features and is further divided in four subsections: 
NMR assignment of drug polymorphs (Sections 12.5.1 and 12.5.2), crystal packing 
interactions (Section  12.5.3), and the use of CSs and crystal structure prediction 
(CSP) methods for crystal structure elucidation/determination (Section 12.5.4).

12.2 THE CHEMICAL SHIELDING TENSORS: FUNDAMENTALS

The application of a magnetic field to a medium induces in it an electronic current as 
the result of the modification of the electronic ground state, which itself induces back 
an additional inhomogenous magnetic field. The “effective” local magnetic field 
B

local
 sensed by a probe nucleus at position r is then the sum of the strong external 

homogeneous magnetic field B
ext

 and the magnetic field B
ind

 induced by internal 
 currents in the system [4]:

 B r B B rlocal ext ind
 (12.1)

The induced field is determined by the total electronic current density j(r) by 
means of the Biot–Savart law as follows:

 

B r
r r

r r
j r rind d0

34
 (12.2)

where μ
0
 is the permeability of the vacuum (SI units).
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In a crystalline solid, in which the Born–von Karman periodic boundary conditions 
are applicable, the current density j(r) will be periodic, and B

ind
 can be conveniently 

calculated in reciprocal space using the Fourier transform of Equation 12.2 [5]:

 
B G jind 0 0i

G

G
G  (12.3)

where G is a vector in the reciprocal space. The proportionality factor between 
the induced and the externally applied magnetic fields is a tensorial quantity called 
the chemical shielding tensor (



):

 
B r r B r

B r

Bind ext
ind

ext
s s s

s

, ,

,

 (12.4)

where the subscript s indicates that the corresponding quantity is to be taken at the 
position of nucleus s (i.e., r

s
). It is common to report the isotropic chemical shift (ICS) 

δ
iso,s

 rather than the chemical shielding tensor, which is conventionally defined as

 iso s iso ref iso s, , ,
 (12.5)

where σ
iso,ref

 is the isotropic chemical shielding ( iso ( / ) ( )1 3 Tr


) of a reference 
compound. From Equations 12.2 to 12.4, it is quite clear that the question of calcu-
lating the chemical shielding essentially resorts to the calculation of the induced 
current. However, this is, by no means, a trivial task.

In the framework of quantum mechanics, the all‐electron Hamiltonian Ĥ is, in 
atomic units,

 

2
ˆ

2
H V

p
r  (12.6)

where V(r) is the Hartree/Kohn–Sham potential and p the linear momentum operator. 
In a crystalline solid, that is, an extended system with translational symmetry, the 
potential V(r) has the same periodicity as the underlying Bravais lattice:

 V Vr r R  (12.7)

for all R belonging to the appropriate Bravais lattice vector.
According to Bloch’s theorem [6], the solutions to Schrödinger’s equation must 

take the form:

 nk
i

nke uk r r  (12.8)

where u
nk

(r) is a function with the same periodicity as the lattice itself:

 u unk nkr r R  (12.9)
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k is a vector within the reciprocal unit cell (first Brillouin zone) and n and k label 
the eigenstates and reciprocal vectors, respectively [7].

The explicit periodicity of the Bloch wave function poses a major challenge for 
the calculation of aforementioned chemical shielding tensor in the solid state. Under 
these circumstances, the calculation of NMR parameters requires the inclusion of 
a  macroscopic magnetic field (B

ext
), described by a nonperiodic vector potential, 

 yielding a new Hamiltonian:

 
0 2

ext ext
ˆ

2
ˆ 1

H H A p A  (12.10)

where A
ext

 is the vector potential describing the external magnetic field. Unfortunately, 
there are multiple choices for A

ext
 for a given magnetic field such as, for instance,

 
A B r Rext ext

1

2
 (12.11)

where R is an arbitrary vector. The arbitrariness of R leads to the so‐called gauge 
origin problem, in that the inclusion of the vector potential into the Hamiltonian is 
simply not compatible with the aforementioned Bloch symmetry. This drawback has 
rendered the calculation of NMR parameters in extended crystalline systems impos-
sible until 1996, when Mauri and co‐workers [8] developed a linear‐response 
approach for the calculation of such parameters. Until then, calculation of NMR 
parameters was limited to the cluster approach, with various approximations devel-
oped to circumvent the gauge origin problem. The particularities of both the cluster 
and periodic approaches will be addressed in the following sections.

12.3 COMPUTATIONAL APPROACHES TO THE CALCULATION 
OF CHEMICAL SHIFT TENSORS IN SOLIDS

12.3.1 Cluster Approach

The cluster approach was, for a long time, the only available mechanism for 
 calculating NMR parameters. A crystalline system can be, up to some extent, approx-
imated as a cluster of units (molecules/ions/atoms) whose configuration resembles 
the crystal. The local environment in the center of this cluster is then an approxima-
tion to the bulk solid. The resemblance of the cluster with the true crystal tends to 
increase as the size of the cluster grows. Therefore, the size of the cluster is critical 
for the accurate calculation of the desired parameters, as small clusters do not really 
mimic the crystal environment, whereas big clusters imply heavy computational 
 burdens. When using this approach, the optimal choice resides in a tradeoff between 
accurate crystal description and acceptable computational cost.

Generally speaking, the calculation of the induced current density, required for 
the determination of the NMR CSs (Eqs.12.2–12.4 above), is performed based on the 
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static linear‐response theory (perturbation theory) of the one‐particle Hamiltonian 
and Hartree–Fock (or Kohn–Sham) orbitals [4]:

 

0 1 2
ext

0 1 2
ext

ˆ ˆ ˆ

k k

h h ih O

i O

B

B
 (12.12)

where ψ
k

(0) are the Hartree–Fock (or Kohn–Sham) orbitals in the absence of the 
external magnetic field and iψ

k
(1) the first‐order response of those orbitals to 

the  magnetic field; ĥ(0) and ĥ(1) are the zeroth and first ‐order expansions of the  

one‐particle (Hamiltonian O Bext
2  are higher order expansion terms). In the absence 

of B
ext

, the current density vanishes leading to

 j j B1 2O ext
 (12.13)

where j(1) is the sum of two terms: the paramagnetic (j
para

(1)) and the diamagnetic 
(j

dia
(1)) part of the current density; j

para
(1) involves the linear response of the orbitals, 

while j
dia

(1) can be evaluated without knowing the perturbed orbitals. However, under 
a gauge transformation (i.e., a change in R in Eq. 12.11), the paramagnetic and 
 diamagnetic parts of the first‐order current density transform accordingly, leaving 
the sum of the two unchanged. When the orbitals are expanded in a finite basis set, 
the representation of the perturbed orbitals ψ

k
(1) largely depends on the choice of the 

gauge origin R, thus leading to the well‐known gauge origin problem [5]. To address 
this problem, several strategies have been developed that, somehow, distribute the 
gauge origin over the system. The two most successful and widely employed are the 
individual gauge for localized orbital (IGLO) [9, 10]) and gauge including atomic 
orbital (GIAO)[11, 12]) approaches. In IGLO, individual gauge origins are assigned 
to the charge centers; whereas in GIAO, they are directly incorporated into the basis 
functions. The main requirement of GIAO is that it needs the use of atom‐centered 
basis functions, although it can be used with wave functions of any type such as 
multi‐configuration Hartree–Fock wave functions. Other methods for computing j(1) 
have been devised such as the continuous set of gauge transformations (CSGTs) 
[13–15], in which the gauge depends on the position where the induced current is to 
be calculated, and the individual gauge for atoms in molecules (IGAIMs) [13, 14]. 
Although the results obtained using these methods are satisfactory, they generally do 
not outperform those obtained with GIAO and IGLO.

12.3.2 Periodic Approach

The strategy of approximating a crystal as a subset of the crystal components, as is 
done in the cluster approach, can introduce severe limitations in the accuracy of the 
description of the crystal itself. From a practical point of view, it is impossible to 
make a cluster big enough such that it properly describes the quantum mechanical 
and electrostatic effects governing the crystal. In order to eliminate these limitations 
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in calculating NMR parameters in truly solid‐state systems, some methodologies 
were developed based on density functional theory (DFT) under periodic boundary 
conditions.

In 1996, Mauri and co‐workers [8] developed a framework for the first‐principles 
calculation of NMR parameters in the solid state, by developing a way for eliminating 
the need for explicitly calculating the expectation values of the position  operator over 
an extended system (the position operator cannot be defined under periodic boundary 
conditions or PBC). They circumvented the problem by obtaining the magnetic 
response to a uniform magnetic field as the long wavelength of a  periodically modu-
lated field. In addition, Pickard and Mauri introduced the gauge‐including projector‐
augmented‐wave (GIPAW) formalism [16], as an extension of Blöchl’s projector 
augmented wave (PAW) method [17], leading to the possibility of calculating NMR 
chemical shielding using plane waves and pseudopotentials with an all‐electron 
 accuracy. In fact, similar to GIAO in the cluster approach, GIPAW has become the 
standard method in the calculation of these parameters in solids. An alternative to 
the GIPAW method has been developed by Sebastiani and Parrinelo [5], also within 
the density functional perturbation theory approach, in which the magnetic perturba-
tions are evaluated in terms of localized Wannier orbitals, thus taking advantage of 
their exponentially decaying nature, coupled to a jig‐saw representation of the  position 
operator. Compared to GIPAW, this formulation has lower computational require-
ments and for very small unit cells, but requires the use of the supercell technique to 
enable the determination of the localized Wannier orbitals. In such case, the GIPAW 
method of Mauri et al. is generally more efficient.

Recently, an alternative to the aforementioned direct formalisms has been devised 
by Thonhauser et al. [18] and adequately coined the converse approach, which 
 eliminates the need for a linear‐response framework; instead of determining the 
induced current response to an external magnetic field, the chemical shielding tensor 
of a probe nuclei is determined as the derivative of the orbital magnetization with 
respect to a magnetic point dipole placed at the site of the probe. Rather than applying 
a constant magnetic field to an infinite periodic system and calculating the induced 
current, an infinite array of magnetic dipoles is applied to all equivalent sites and the 
change in the orbital magnetization is calculated. This change in magnetization is 
calculated through finite differences of ground‐state calculations, thus allowing the 
use of more complex exchange‐correlation functionals such as DFT + U and hybrid 
functionals or even implementation within the framework of quantum Monte Carlo 
or any wave function–based method.

12.3.3 Pitfalls and Practical Considerations

When performing calculation of CSs, several factors may directly influence the accu-
racy of the final results. When using the cluster approach, its size is often the main 
source of inaccuracy. Also, the level of theory and size/quality of the basis set plays 
an important role in the quality of the obtained results. In contrast, although the use 
of a fully periodic approach eliminates the problems associated with the cluster size, 
the type of exchange‐correlation functionals and the nature of the pseudopotentials 
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employed have an impact on the final results. In addition, the size (controlled through 
the cutoff energy) of the plane wave basis set deeply influences the results. To miti-
gate the influence of the finite basis set size in both cases, in the final results, it is 
required that the variation of the calculated properties systematically converge with 
respect to the number of basis functions. In the periodic case, the k‐point grid used to 
average properties over the Brillouin zone should be dense enough such that it is ade-
quately sampled, and, hence, convergence tests should also be performed. In DFT, 
the better the functional, the closer the result will be to the exact solution of 
Schrödinger’s equation. From the practical point of view, the gradient‐corrected 
approximation yields better results than the local density approximation.

Other situations exist that may potentially lead to discrepancies between calcu-
lated and measured quantities. For example, a typical NMR calculation first starts 
with a structure relaxation, in which atomic positions and, eventually, cell size and 
shape (in the periodic case) are adjusted as to minimize the forces acting on them, 
yielding an energy‐minimized configuration, over which the NMR parameters are 
then calculated. This is equivalent to a single calculation over an equilibrium struc-
ture at 0 K. In real systems, thermal motion drives configurations away from the 
equilibrium ones, such that the measured quantities reflect the motional averaging of 
all spanned configurations. This limitation can be overcome by averaging NMR 
parameters over snapshots taken from molecular dynamics simulations, or by 
averaging over vibrational modes [18–20]. When using crystal structures obtained 
from diffraction‐based techniques as input geometries for the calculation of NMR 
parameters, special attention should be paid to the quality of the structure and, in 
particular, to the positioning of lighter nuclei such as hydrogens. Most of X‐ray 
diffraction‐derived structures have hydrogens placed according to empirical criteria 
and/or differences in electron density maps and are, thus, mispositioned. It is, there-
fore, critical to perform a geometry optimization of the hydrogen and/or all atom 
positions prior to the calculation of the NMR parameters to ensure reliable results. 
If full structure relaxation is required, especially when using the cluster approach, 
one should ensure that the overall crystal configuration is not lost.

Another important topic is the calibration of the calculated chemical shieldings. 
From Equation 12.5, the ICS is calibrated relatively to the isotropic shielding of a 
reference compound. It is, therefore, desirable that the shielding tensor(s) of the 
 reference compound are calculated under the same conditions (basis set, level of 
theory/functional, k‐points grid (when applicable)) as those of the sample under 
study to ensure consistency between the two sets of results. An alternative way of 
calibrating chemical shieldings is to directly compare them to the measured CSs by 
means of a linear regression. In such case, the calculated chemical shieldings are 
plotted against the measured CSs such that the y‐intercept value corresponds to σ

iso,ref
. 

This way, errors in the calibration of the experimental spectra are absorbed into the 
intercept while simultaneously eliminating the need for additional calculations of the 
reference shieldings. In an ideal situation, the obtained slope should be equal to –1. 
This is generally, however, not the case. Deviation from unity encapsulates some of 
the approximations used in the calculation, the most important of which is the 
absence of temperature/dynamics effects that lead to a distribution of measured CSs 
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rather than a single value per site. This can, however, be tackled experimentally by 
measuring two sets of CSs at two very distinct temperatures and then extrapolating 
them to 0 K prior to the calibration of the calculated chemical shieldings (assuming a 
linear dependency on temperature, which might need checking). Some authors have 
taken the correlation approach a step further by partitioning the CSs into functional 
groups and performing the linear fit for each set individually [21, 22], while others 
have calibrated the computed shieldings by equating the averaged computed shift to 
the average observed one [23].

12.4 NICS

In NMR experiments one can only measure the CSs in a limited set of points in space 
(the nuclei positions r

s
). However, the induced field and, consequently, the nuclear 

shielding tensor, are defined and can be computed for all points in space such that 
one can drop the index s from Equation 12.4 and calculate the shielding tensor at any 
arbitrary position r, yielding the so‐called nucleus‐independent chemical shifts 
(NICS) [24]. NICS values are, thus, not referenced with respect to any nucleus and 
that is why they are nucleus independent. Also, and similarly to site‐specific shield-
ings, rather than dealing with the shielding itself, one frequently reports the isotropic 
NICS shift (δ

NICS
) defined as follows:

 
NICS Trr r

1

3



 

This generalization of the CS into a scalar field was first proposed by Johnson 
and Bovey [25], while the implementation and application was pioneered by 
Schleyer et al. [26]. The applications of NICS values and maps are quite diverse and 
spread across multiple areas of research. These are predominantly used in the 
 characterization of molecular aromaticity and the quantification of induced ring 
currents, sometimes focusing on their topological particularities. NICS have also 
been used for decomposing the magnetic‐response properties into contributions of 
individual orbitals and/or functional groups. More recently, NICS maps have been 
used for studying the packing contributions to the solid‐state CSs of organic molec-
ular crystals [20, 27].

12.5 CASE STUDIES COMBINING EXPERIMENTAL AND 
COMPUTATIONAL NMR METHODS

This section will briefly describe selected examples encompassing the importance of 
a multidisciplinary approach involving experimental and computational NMR 
methods as well as the correlation with information taken from single‐crystal and 
powder XRD (PXRD), to better understand the supramolecular structure and function 
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of small‐molecule pharmaceuticals. The use of ab initio calculations of NMR param-
eters plays a key role in topics such as using calculated NMR tensors for resonance 
assignment in drugs and polymorphism studies (see Sections 12.5.1 and 12.5.2), 
NMR sensitivity to crystal packing interactions (Section 12.5.3), and crystal struc-
ture determination (Section 12.5.4).

12.5.1 NMR Assignment of Polymorphs Aided by Computing 
NMR Parameters

SSNMR spectroscopy contributes significantly to polymorph detection and charac-
terization since it is complementary to diffraction techniques, providing information 
on molecular symmetry, intermolecular interactions, molecular mobility, disorder, 
and interatomic distances. SSNMR presents unique capabilities in distinguishing 
between the different polymorphic forms, anhydrate, hydrate, and other solvate 
forms of APIs, monitoring transitions as well as detecting tautomeric forms [28–31]. 
Although NMR spectroscopy is sensitive to the local structural environment, the 
interpretation of the obtained high‐resolution spectra is very often not straightfor-
ward, presenting a considerable challenge in organic systems with a variety of  similar 
functional groups. In addition, complications arise when more than one molecule 
is part of the crystallographic asymmetric unit (Z′ > 1) that is, when multiple mole-
cules are not crystallographically equivalent. This subsection shows the use of both 
ICSs and NMR techniques to exploit the J‐coupling (Section 12.5.1.1) and quadru-
polar (Section 12.5.1.2) interactions to provide structural information.

12.5.1.1 Combining Calculated Chemical Shifts and J‐mediated NMR Experiments  
In the calculation of NMR parameters for solids, the ICS has been the most assessed 
parameter as it is directly obtained from the simplest NMR experiments. This prop-
erty is highly sensitive to the chemical surroundings and a vast number of theoretical 
approaches to describe ICSs attained a level of accuracy comparable to those obtained 
experimentally. This is mainly true for 1H and 13C, the main nuclei present in 
 pharmaceuticals, where Harris et al. have shown a number of pioneering work on 
 calculated CS applied to pharmaceutical systems [30, 32]. The through‐bond dipolar 
coupling, so‐called J‐coupling interaction, provides an additional sensitive probe 
of  chemical bonding and molecular geometry. The experimental determination of  
J‐couplings in solids cannot, in most cases, be obtained directly from ordinary 1D 
NMR spectra as J‐couplings have small magnitudes of 1–100 Hz. The magic angle 
spinning (MAS) line widths of resonances in rigid organic molecules are typically 
dominated by anisotropic interactions (e.g., through‐space dipolar couplings and 
chemical shift anisotropy or CSA) and other broadening mechanisms having magni-
tudes in the kilohertz range thus masking the direct observation of J‐coupling 
 splittings. However, a simple Hahn echo can be incorporated in 2D MAS experi-
ments (e.g., J‐resolved, J‐INEPT (insensitive nuclei enhanced by polarization), and 
J‐HMQC (heteronuclear multiple quantum coherence)) to refocus anisotropies and 
provide transverse dephasing times (T2), which are typically much longer than the 
non‐refocused NMR signal decay rate (T2

*) that govern the free induction decay. 
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In  such conditions, a refocused line width is achieved and subsequently J‐coupling 
splittings may be assessed. Over the past decade, methodological developments, related 
to more efficient 1H–1H decoupling schemes, have enabled the experimental determi-
nation of the small J‐couplings (e.g., 1J

CH
 < 10 Hz) common for small organic mole-

cules including drugs [33]. Very recently, methods for the calculation of J tensors for 
solids have been developed and applied to various systems showing good agreement 
with experiment [34]. However, we are not aware of such calculations in organic phar-
maceuticals, and therefore this section is restricted to the use of J‐coupling‐based NMR 
experiments for spectral editing combined with the calculation of ICSs.

Mifsud et al. [35] presented one of the earliest examples showing correlation 
 between 13C and 1H CS predictions from X‐ray crystal structures, using the GIPAW‐
DFT approach, with experimental values, using K salt of penicillin G as a model 
compound (Fig. 12.1). A vital step toward the identification of different crystalline 
forms of a drug is the unambiguous assignment of both 13C and 1H resonances in the 
NMR spectra. The authors used a 2D 1H–1H double quantum (DQ) combined rota-
tion and multiple pulse spectroscopy (CRAMPS) in combination with through‐bond 
2D 1H–13C heteronuclear single‐quantum correlation (HSQC) (Fig.  12.1) experi-
ments for a tentative full assignment. The INEPT‐HSQC experiment had the 
advantage of showing only correlations between bonded C–H pairs and enabled 
the unambiguous assignment of the non‐protonated quaternary carbons C

2
 and C1 as 

they vanish from the spectrum. The remaining unresolved 13C peaks, aromatics and 
three carbonyls, were assigned based on the calculated ICS values determined from 
the geometry optimized crystal structure.
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This work presents the first comparison between calculated and experimental 1H 
CS in a drug molecule because at that time only recently had the 1H NMR spectra of 
solids reached the required resolution to separate proton resonances with the help of 
CRAMPS decoupling techniques. The 1H–1H DQ CRAMPS spectrum was able to 
separate 16 1H CSs, and a very good correlation between calculated and experimental 
CSs was reported for both 1H and 13C showing an average pairwise root‐mean‐square 
deviation (RMSD) between both of 2.5 and 0.3 ppm, respectively. The calculated 1H 
CSs were particularly useful to unambiguously assign the two diastereotopic protons 
(H

a
 and H

b
) of the CH

2
 group (Fig. 12.1). A previous contribution from our group has 

also compared calculated versus experimental 1H and 13C CS on glutathione tripeptide 
showing an average RMSD of 1.32/1.50 and 0.04/0.04 for 13C and 1H resonances, 
respectively, using the two most popular codes (CASTEP/Quantum ESPRESSO) 
 having the GIPAW approach implemented (Fig. 12.2) [36]. Very good correlations 
were also obtained.
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In another example reported by Harris and co‐workers [23], SSNMR was used, 
together with single‐crystal and PXRD, to study the hydrogen bonding (H‐bonding) 
network differences of several crystal forms of terbutaline sulfate (TBS), a drug used 
for asthma therapy. Full assignment of the 13C spectrum of the most stable TBS 
modification—anhydrate B (two terbutaline cations and one sulfate anion present in 
the asymmetric unit), was achieved by comparison with solution-state NMR spectra. 
In addition, dipolar dephasing experiments and the observation of the resonance 
broadening at low magnetic fields of 200 and 300 MHz caused by 14N second-order 
quadrupolar interaction in adjacent carbons forming C–N bonds were also per-
formed. The ICSs for TBS anhydrate B form were calculated using the GIPAW‐DFT 
method and the PBE functional. A moderately good agreement between the observed 
and calculated 13C CSs values was obtained. The data obtained from GIPAW CS 
 calculations were  relevant to assign the two lowest‐frequency peaks in the range 
100–110 ppm to  aromatic carbons.

12.5.1.2 Computing Electric Field Gradient Tensors to Study 35Cl, 14N and 17O 
Quadrupolar Spins Recent advances in theory and computing power have made the 
computation of the electric field gradient (EFG) tensor parameters possible by first‐
principles methods and made quadrupolar spins a more valuable source of chemical 
information in solids. This section focuses on recent advances on the computational 
and experimental studies of APIs exploiting 35Cl, 17O and 14N quadrupolar nuclei.

Approximately 50% of all pharmaceutical salts are crystallized in the HCl form, 
and chlorine is present in final formulations of approximately 25% of drugs. So 35Cl 
NMR seems to be a good choice to probe the chlorine ion‐binding environment in 
HCl amino acids (good sensitivity demonstrated by the wide range of chlorine C

Q
 

values) [37] and was used to distinguish between pseudopolymorphs in chlorine‐
containing coordination compounds [38]. Hamaed et al. [39] presented the first 
application of 35Cl for the identification and structural characterization of hydrochlo-
ride (HCl) anesthetics, namely Procaine HCl (PH), Tetracaine HCl (TH), Lidocaine 
HCl Monohydrate (LH), and Bupivacaine HCl Monohydrate (BH). The authors 
showed that the sensitivity of the 35Cl EFG and CST parameters to the chlorine 
chemical environment allows for the prediction of the number of short H‐bonds 
involving the chlorine ion [39]. For this purpose, ab initio calculations of the 35Cl 
EFG and CST (using the Restricted Hartree–Fock and B3LYP method, respectively) 
parameters were conducted and compared with the experimental ones taken from 
simulations of the MAS spectra of the 35Cl central transition recorded at 21.1 T. The 
calculated EFG tensor principal values, V

11
, V

22
, and V

33
, allowed to obtain the quad-

rupolar coupling constants—C
Q
 and the quadrupolar asymmetry parameters—η

Q
, 

while the calculated principal values of the CST, δ
11

, δ
22

, and δ
33

, allowed the deter-
mination of certain anisotropic CS parameters such as the span, Ω and the skew, κ 
(following the Maryland notation) [40, 41].

Static 35Cl NMR spectra allowed to disentangle the line shape contribution due to 
the EFG and CSTs and to extract the CSA parameters. As an example, 35Cl static and 
MAS NMR spectra for two of the four pharmaceuticals are shown in Figure 12.3. 
The principal components and tensor orientations with respect to the molecular 
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coordinates of the four HCl pharmaceuticals were carefully examined. Short Cl⋯HN 
contacts have their bond axis oriented close to V

33
 (e.g., for PH in Figure 12.3a and 

for TH—figure not shown). Furthermore, V
11

 and V
22

 are almost similar in the 
two compounds because there are no other short contacts apart from Cl⋯HN. Also 
η

Q
 is closer to 0 than to 1. V

11
 and V

22
 are only differentiated in the presence of an 

additional short Cl⋯HO contact with H
2
O molecules ((LH: not shown and BH: 

Figure 12.3b)). The Cl⋯HN contact in BH is the longest of the four pharmaceuticals, 
and the Cl⋯HO contact is the shortest. As a result, the 35Cl quadrupolar parameters 
for BH are very different from those of the other complexes discussed in the 
paper, with the V

33
 principal value of the EFG tensor, no longer dominated by a 

short Cl⋯HN H‐bond distance. Also, V
22

 is now nearly oriented along the 
Cl⋯HN bond and the V

33
 component has opposite sign compared to the other 

four compounds.
NMR spectroscopy of nitrogen is relevant for pharmaceutical studies since 

nitrogen often directly participates in H‐bonding interactions. The NMR observation 
of the spin‐1/2 15N isotope is difficult due to its very low natural abundance (0.364%), 
thus its observation is usually performed in 15N‐labeled systems. 2D 14N‐based NMR 
methods, on the other hand, offer a more sensitive alternative to explore nitrogen 
nuclides thus resulting in much faster experiments due to its much higher natural 
abundance (99.6%). 14N is a quadrupolar nucleus with integer spin (I = 1), and despite 
of the recent advances to observe 14N spins [42, 43], it is still a challenge to excite 14N 
spins and obtain reliable structural information (due to spectral distortions related 
with the absence of a central transition). 14N nuclei may provide access to additional 
structural information through the 14N quadrupolar‐induced shift—QIS (or isotropic 
second‐order quadrupolar shift), which depends on the magnitude of the quadrupolar 
interaction and on the magnetic field strength. Analysis of the QIS complements the 
15N ICSs that can be obtained in 1D experiments regarding their sensitivity to changes 
in H‐bonding configurations.

2D 14N–1H HMQC experiments recorded at a 60 kHz MAS rate were recently 
 performed, in drugs (acetaminophen), polymer (PVP), and polymer–drug dispersions, 
to assess proximities between nitrogen and proton nuclei involved in H‐bonds [44]. 
This 2D 14N–1H HETCOR NMR experiment considerably shortens the acquisition 
time required compared to a 15N–1H HETCOR spectrum (6 h vs 48 h) [45]. The GIPAW‐
DFT approach was employed to calculate 15N ICSs and 14N EFG parameters (C

Q
 and 

η
Q
) in order to assist in the resonance assignment process. The observed changes in the 

isotropic shifts for both 14N and 15N were evaluated because while 15N shifts are only 
affected by the ICS, 14N shifts combine the effect of the ICS (the same for both nitrogen 
isotopes) and the additional QIS contribution. The 14N shift of the acetaminophen 
amide resonance changes downfield by 65 ppm when incorporated in a solid amor-
phous dispersion. Extraction of 15N ICS values from 15N CP MAS experiments showed 
that there is no significant change between the 15N isotropic CS values observed for the 
amide nitrogen in acetaminophen and the dispersion; therefore, the change observed in 
the 14N isotropic shift was attributed to different contributions from the QIS owing to 
different H‐bonding environment in the amorphous dispersion.

In another contribution, a 2D 14N–1H HMQC experiment and 1J
15N–1H

 spectral edit-
ing techniques were used in combination to identify proton transfer and H‐bonding of 
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nitrogens in two drugs at natural isotopic abundance [45]. Protons directly attached to 
a nitrogen produce a signal modulation induced by the 1J

15N–1H
 coupling in the 

corresponding 15N resonance, which does not happen in non‐protonated nitrogens. This 
strategy was used to assign N–H nitrogen environments. The 1H and 15N/14N resonance 
assignment of the experimental spectra was also aided by GIPAW‐DFT calculations.

Applying 17O NMR techniques to drug molecules can be challenging due to its 
extremely low natural abundance (0.037%) and strong broadening effects associated 
to the quadrupolar coupling typical of quadrupolar nuclei such as the 17O isotope. 
However, such problem can be overcome using 17O labeling and high field magnets. 
In a recent contribution [46], static, MAS, and variable temperature 17O SSNMR 
spectra have been recorded for salicylic acid enriched in positions [1,2‐17O

2
] and 

[3‐17O] and aspirin enriched in positions [1,2‐17O
2
], [3‐17O], and [4‐17O]. The 17O EFG 

and CST parameters for O
1
 (carboxylic acid), O

2
 (carboxylic acid), O

3
 (ester), and O

4
 

(ester) were determined experimentally and by means of GIPAW‐DFT calculations, 
and a comparison between their 17O CST values was made in light of the structural 
features. 17O EFG tensor parameters (C

Q
, η

Q
) and ICSs for all oxygen sites in both 

compounds were obtained by simulation of the 17O MAS NMR spectra recorded at 
two different magnetic fields. The parameters were then used to simulate the 17O 
static NMR spectra that allowed to measure the CST parameters and relative orienta-
tion between EFG and CSTs. Interestingly, it was noticed that despite the aspirin and 
salicylic acid drugs being involved in a very similar cyclic carboxylic dimer, their 17O 
EFG and CST parameters are significantly different (δ

iso
 (O

1
) = 168 ppm and δ

iso
 

(O
2
) = 284 ppm for salicylic acid; δ

iso
 (O

1
) = 215 and δ

iso
 (O

2
) = 273 ppm for aspirin). 

An interesting observation was related with the averaging effect due to concerted 
double proton transfer in carboxylic acid dimers involving O

1
 and O

2
 hydroxyls in 

both (1,2‐17O
2
) labeled compounds (Fig. 12.4). One has to take this dynamic effect 

into account in order to compare experimental and computed 17O CS and EFG 
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tensors for carboxylic acid functional groups. Salicylic acid and aspirin form cyclic 
H‐bonded dimers in the crystal lattice, adopting configurations A and B (Fig. 12.4a). 
This means that all experimental NMR tensors in a carboxylic acid dimer are 
 averaged between the corresponding “rigid” tensors found in configurations A and B. 
The observed 17O CS and EFG tensors for O

1
 and O

2
 ( 1

obs and 2
obs for CST) were 

thus considered as a weighted average between the two “rigid” tensors, that is, 

1
obs

A
A

B
BP PC O C OH  and 2

obs
A

A
C OH B

B
C OP P  for the case of 

CSTs. It is clear that both computed 17O EFG and CSTs change their orientations 
(Fig. 12.4b and 12.4c) as a result of this double proton transfer. The populations of 

conformers A / // 1E RT E RT
AP e e  could be assessed by fitting P

A
 employing 

the equations 1
obs and 2

obs (for the EFG and CS tensor components). The mean value 
of P

A
 obtained for aspirin and salicylic acid was 0.78 ± 0.04 and 0.98 ± 0.02, respec-

tively (Fig. 12.5a and b). To complement this theoretical analysis, variable tempera-
ture 17O experiments were recorded, and the energy asymmetry (ΔE) was found to be 
ΔE = 3.0 ± 0.5 kJ/mol and ΔE > 10 kJ/mol for aspirin and salicylic acid, respectively. 
These results show that the potential curves for the concerted double proton transfer 
are significantly different, being nearly symmetrical for aspirin and highly asymmet-
rical in salicylic acid. These asymmetrical features in potential energy curves were 
confirmed by plane‐wave DFT computations.

With the description of a proper averaging model for data analysis, correlation 
coefficients of ~0.99 were found between measured and computed 17O NMR tensors 
in salicylic acid and aspirin (Fig. 12.5c and d).

Other studies are also worth mentioning in this section due to their potential 
 application using distinct quadrupolar nuclei. A recent work by Bonhomme et al. 
[47] uses 87Sr NMR techniques to provide information on the local structure around 
the Sr atom and obtain insight into the structure of antiosteoporotic pharmaceuticals 
and bioactive glasses. The authors calculated CS and EFG tensor parameters and 
found that GIPAW‐DFT calculations can accurately compute 87Sr NMR parameters. 
Additionally, Facey et al. [48] performed 2H static NMR experiments at variable 
 temperature to study the molecular dynamics of pyridine as a guest molecule in a 
clathrate. Despite not being a drug, this study is of great value to pharmaceuticals 
since hydrates and solvates are very common pharmaceutical solids.

12.5.2 Calculated vs Experimental Chemical Shift Tensors  
Using Different NMR Methods

The vast majority of applications of GIPAW so far have focused on the ICS and the 
quadrupolar coupling (for nuclei with spin quantum number I > 1/2), and there have 
been far fewer studies that have exploited interactions such as the CSA. This is 
mainly a result related to the difficulty in accurately measuring such interactions for 
all but the simplest systems, although developments in experimental methodologies 
will enable the determination of parameters across a wider range of increasingly 
complex systems.
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The 2D phase‐adjusted spinning sideband (PASS) experiment, together with 
DFT‐based calculations of the local fields, has been used by Smith and co‐workers 
[49] to analyze the structural information available in the SSNMR spectra of  
5‐methyl‐2‐((2‐nitrophenyl)amino)‐3‐thiophenecarbonitrile, producing red, orange, 
and yellow (ROY) polymorphs. It was shown that CS and dipolar coupling information 
obtained with such experiments are different for the distinct polymorphic forms and 
were thus used to quantitatively determine aspects of the molecular structure, 
including the coplanar angle between the phenyl and thiophene rings. 13C–14N 
residual dipolar couplings have been exploited to measure C13–N14–C16 (atom 
numbering shown in Figure 12.6a) bond angles in the three ROY compounds, and a 
good agreement was obtained with respect to the X‐ray angle values.
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Results from DFT chemical shielding calculations for each carbon site were used 
to solve assignment ambiguities. In some situations, the agreement between theory 
and experiment was sufficient to allow for the unambiguous assignment of the spec-
trum. However, closely spaced or overlapping resonances between the distinct ROY 
polymorphs are difficult to assign reliably using only the ICS. To overcome this, the 
authors performed molecular modeling of the ROY compounds and an extensive 
comparison between calculated and experimental principal values of the 13C, 15N 
CST. The three ROY forms have a structural relationship that depends on the phenyl‐
thiophene coplanar angle (Fig.  12.6a). A particularly interesting result was the 
attempt to correlate this coplanar angle with the CST values. For this purpose, DFT 
calculations were performed to partially optimize each ROY conformer geometry 
after rotating the C11‐C13‐C16‐S17 dihedral angle (through rotation of the thio-
phene ring) by steps of 5° until completing 360°. The CST principal values were then 
computed for every conformer and evaluated. Figure  12.6a shows the potential 
energy surface due to the different coplanar angles showing a total of four wells. The 
ROY conformer energies are also indicated. The dependence of the calculated CST 
values of selected carbons (nitrogens were also used but are not shown here) for each 
phenyl‐thiophene coplanar angles was also studied. For example, only the C13 
(phenyl ring) showed a significant change in its principal tensor values compared to 
other phenyl carbons (e.g., C7) as it is involved in the coplanar angle (Figure 12.7a 
and b). Despite of the constant values of δ

11
, δ

22
, and δ

33
 for C7, its ICS and  asymmetry 

parameter changed significantly. On the other hand, carbons from the thiophene ring 
such as C18 and C25 were the most sensitive to the change of coplanar angles, with 
net changes in the breadth of the CSA as large as 50 ppm.

Coplanar angle (°)

–180
0

1

2

3

4

5

6

–135 135 180 –150

10

11

12χ2
(p

pm
) 13

14

15

–100 –50 50 100 1500–90 90–45 450

23
252627

N S

H

O2N

N

19

18

16
14
13

5 7

11

942

CH3

R

ROY
(a) (b)

Red

O

Yellow

Y

Orange

∆
E

 (
kc

al
/m

ol
)

Dihedral angle (°)

C11–C13–C16–S17

FIGURE 12.6 (a) Potential energy surface for thiophene ring rotation in ROY. The angles 
corresponding to X‐ray values are labeled by form. (b) Least‐squares comparison of all 13C 
and 15N tensor values between experiment and molecular modeling. The X‐ray values of the 
C11–C13–C16–S17 dihedral are marked with vertical lines. Adapted with permission from 
Ref. [49]. Copyright 2006, American Chemical Society.



CASE STUDIES COMBINING EXPERIMENTAL AND COMPUTATIONAL NMR METHODS 305

In addition, the CST values were used as molecular constraints in determining the 
model structure that provides the best correspondence between theory and experiment 
using a least‐squares minimization function for all three ROY polymorphs:
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where A n
exp and A n

model are the experimental and calculated tensors for the n sites in 
ROY molecules. exp

n  is the error associated with the experimental tensor values. 
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A plot of the χ2 values derived from the different models versus the coplanar angle 
gave their minima at angles very close to the ones obtained by XRD (i.e., 41.0° 
(modeling) versus 43.6° (X‐ray) for ROY‐R; 58.0° versus 50.1° for ROY‐O and 
91.9° versus 91.8° for ROY‐Y); see Figure 12.6b.

With better computing power and speed, these methods might be important for 
structural elucidation of other pharmaceutical systems.

The 3D structure of the anhydrous polymorph of anticancer drug paclitaxel was 
established by SSNMR 13C and 15N CST analysis and 1H–13C HETCOR correlation 
data by Heider et al. without previous X‐ray data. This is the first SSNMR‐based 
characterization of a drug with Z′ > 1 (Z′ = 2; two molecules in the asymmetric unit) 
[50]. All the experimental data are correlated with structure through a total of 650 
computational models that extensively sample all possible conformations. For each 
model, the CST values are calculated (at the B3PW91/D95** level of theory) to 
allow comparison with the experiment and the model is either retained or eliminated 
at a statistical probability. Only 13 models were found to match experiment. These 
models required only fragments of the paclitaxel structure, since CS principal values 
are dominated by the local environment. In addition, the rigidity of paclitaxel’s 
 baccatin moiety minimizes the global search of conformation. This approach is com-
putationally demanding; however, the comparison of CS principal values reduces the 
chance of becoming trapped in a local minima and provides structures that are diffi-
cult to determine by other methods. For the success of this approach, the spectra have 
to be correctly assigned and the principal values need to be measured. The structure 
models were compared with CS principal values (obtained experimentally using the 
FIREMAT method [51]) for the relevant nuclei using an F‐test [52]. Torsion angles 
were examined by individually rotating each flexible dihedral in 30.0° increments 
over the 360° range. At each point, the chosen angle was fixed and the remaining 
structure allowed to relax (via partial geometry optimization) before chemical shield-
ing values were computed. The best‐fit dihedral angle was retained and the process 
continued for the next flexible bond. This modeling was continued until all confor-
mational combinations had been explored and the overall best fit determined.

The structural information contained in the isotropic and anisotropic CSs was 
explored to model structure conformations of three flavonoids [53]. The principal 
values of the 13C CST were determined under slow sample spinning (2 kHz) using the 
2D‐PASS NMR technique, and verified by DFT‐GIAO calculations of 13C CSs. 
Analysis of the 13C CST components and comparison with shielding parameters cal-
culated for different conformers of the three compounds enabled the selection of the 
most reliable geometry in the solid phase. Conformational analysis was performed 
by modeling the structures using the semiempirical PM3 method and the results 
obtained for baicalein were in agreement with XRD data.

SSNMR methods have been used to investigate several molecular cocrystals and 
complexes, even in the presence of impurities. A protocol for the application of 
methods based on dipolar connectivity, CS information, and relaxation measurements 
using several cocrystals was presented [54]. A plethora of NMR techniques were 
explored in order to study H‐bonding and other intermolecular contacts. In addition, 
chemical shielding calculations were performed to assign 1H and 13C resonances. 



CASE STUDIES COMBINING EXPERIMENTAL AND COMPUTATIONAL NMR METHODS 307

CS calculations were performed in gas‐phase clusters extracted from the optimized 
solid‐state structure and the embedded ion method (EIM) was used to help replicate 
the electrostatic potential of the crystal structure. The authors also found that the 1H 
and 13C CS calculated values were slightly more accurate using the EIM. As an 
example, experimental and calculated 13C CST principal values were explored for the 
zwitterionic piroxicam saccharin cocrystal (Fig.  12.8) using the EIM, to provide 
information about the ionization state and assist with spectral assignment. For that 
purpose, the CP‐FIREMAT technique was employed to extract the experimental 13C 
CST principal values (Fig.  12.9a). This experiment helped assign overlapped 13C 
 positions. For instance, the sideband pattern for the signal at 167.82 ppm was fitted to 
a two‐site model, allowing for a reliable fit and enabling the assignment of this posi-
tion to carbons C2 and C10.

In Figure 12.9b, the experimental CST principal values, extracted from the CP‐
FIREMAT experiment (Fig. 12.9a), and the ICS values are compared for selected 
carbon sites in piroxicam saccharin and β‐piroxicam. These data help uncover some 
useful CS trends; for example, the cancelation of the δ

11
 and δ

22
 components for C11 

leads to little change in the ICS between piroxicam saccharin and β‐piroxicam, but 
large (~25 ppm) differences in the δ

11
 and δ

22
 principal values are easily observed, 

which may be related to specific structural features.
For cocrystal systems containing phosphorous (triphenylphosphine oxide 6‐

chloro‐2‐pyridone), 31P MAS NMR at slow MAS rates offers a more rapid way to 
confirm H‐bonding and cocrystal formation fitting the CSA profile of the 31P spec-
trum. The anisotropy of the CST of a phosphine oxide group is strongly related to the 
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number and length of H‐bonds that the P═O group accepts. 31P CSA tensor values of 
pure TPPO (triphenylphosphine), used as a cocrystal former in this study, were 
 calculated using B3LYP/6‐311+G(3df,3pd) level of theory and compared to the 
 calculated values from the cocystal showing interesting differences.

In a recent contribution, Wang et al. [55] performed structural modeling of a 
hydrate salt verified by SSNMR correlation and 13C CST calculations. Atorvastatin 
calcium Form I (ATC‐I) is the most stable crystalline form known for this drug and no 
single‐crystal X‐ray structure was solved for this form. A complete 13C, 19F, and 15N 
NMR spectral assignment of ATC‐I, containing two molecules in the asymmetric unit, 
was achieved. In addition, a possible local structure for ATC‐I based on the simulta-
neous interpretation of the experimental SSNMR data and DFT calculations of 13C 
CSs (B3LYP/6‐31G(d)) was proposed. 13C CST principal values of all resolvable 
carbon resonances were measured through a 2D 13C separation of undistorted power 
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11
 ( ), δ

22
 ( ), δ

33
 ( ), and δ

iso
 ( ) values for III are at 

the top of each pair while the values for β‐piroxicam are the bottom. Reprinted with permis-
sion from Ref. [54]. Copyright 2008, American Chemical Society.
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patterns by effortless recoupling (SUPER) experiment [56], another variant to recover 
the CSA profile under MAS rotation. Figure 12.10 compares the 13C ICSs of each 
carbon site between the two independent molecules “a” and “b” in the asymmetric 
unit (Z′ = 2), defined as Δδ = δ

a
 – δ

b
. The variation in Δδ with carbon positions served 

as a benchmark in evaluating structural models based on predicted CSs from the DFT 
calculations. The benchmark used 66 13C resonances (33 carbons for “a” and “b” 
 molecules), which is statistically significant. More importantly, the comparison of 
ICS differences helps eliminate inaccuracies that might arise from offsets in the DFT 
calculations or the choice of basis sets. Differences observed between the crystal 
model (dashed line) and the experimental (solid line) values in Figure  12.10 are 
 similar; however, the π⋯π ring currents might be the explanation for some discrep-
ancies as the calculation method used (DFT) does not account for ring current effects.

A new approach to interpret the relationships between intermolecular H‐bonding, 
redistribution of electron density, and NMR CSTs has been presented by Marek and 
co‐workers [57]. In this work, the authors analyze how the cluster model can be used 
for identification of intermolecular contacts that govern the packing motifs in  crystals. 
The clusters were based on the XRD data and were carefully chosen to study the 
“ isolated” effect of a particular intermolecular interaction (H‐bond and π⋯π stack-
ing). Differences in the electron density distribution between the isolated molecule 
and selected clusters were calculated and visualized as electron deformation density 
(EDD) patterns. The EDD patterns can be correlated with the changes in the CSTs of 
the nuclei involved in the intermolecular contact. For a better understanding of this 
relationship, the changes in the isotropic magnetic shielding (shielding deformation 
density, SDD) in the proximity of the nucleus in question can also be calculated and 
visualized in the real space. Quantum chemical calculation of EDD, SDD, and CSTs 
employed the B3LYP functional and the 6‐311G** basis set. EDD (Δρ) is calculated 
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and visualized as the difference between the electron density of a molecule placed in 
its crystal environment (ρ

1
) and the sum of the electron densities of the isolated mole-

cule (ρ
2
) and its crystal environment (ρ

3
): Δρ = ρ

1
 − (ρ

2
 + ρ

3
). SDD is defined similarly 

to EDD, but instead it accounts with the changes in the isotropic values of the magnetic 
shielding (Δσ) in real space: Δσ = σ

1
 − (σ

2
 + σ

3
). An interesting feature in this work is 

that not only the presence but also the strength of an H‐bond is encoded in the EDD 
pattern.

This approach has been applied to theobromine clusters [58], based on the crystal 
structure available at the CSD database, to identify and classify the intermolecular 
contacts that govern the packing motifs and understand how the crystal packing 
effect translates into the 13C NMR CST changes. Comparison of the calculated 13C 
CSTs involving a total of six supramolecular clusters and for an isolated molecule 
were performed and related to the experimental CST values. An example of four 
 different types of in‐plane clusters (HB2, HB3, HB4, and HB7) are shown in 
Figure  12.11, where the intermolecular contacts involving the two H‐bonded 
 theobromine molecules 1 and 2 in the asymmetric unit (Z′ = 2) are emphasized in the 
form of EDD patterns [58].

Figure 12.12 is a zoom in of the C
2
═O⋯H–NH‐bond involved in the formation of 

the theobromine dimer observed in Figure 12.11 in order to better visualize the EDD 
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FIGURE 12.11 Scheme illustrating the composition of clusters HB2, HB3, HB4, and HB7 
of theobromine emphasizing the EDD for the H‐bonded cluster HB7. Atom labeling is shown 
in molecule 7. Adapted with permission from Ref. [58]. Copyright 2013, American Chemical 
Society.
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and SDD maps determined based on four distinct clusters as described in the caption. 
The polarization of the C═OH‐bond acceptor is clearly observed as the electron 
density is accumulated at the oxygen atom (blue area, Fig. 12.12, left column a–d) 
and decreases at the C

2
 atom (red area). A decrease in electron density around C

2
 

results in an increase in CS; if the calculated δ
iso

(C
2
) is compared between an isolated 

molecule and the HB
2
 cluster, it increases from 148.5 ppm to 150.2 ppm as expected. 

According to Figure 12.12, right column e–h, the magnetic shielding decreases at C
2
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FIGURE  12.12 Visualization of the in‐plane (δ
11

|δ
22

) slices of the EDD (left) and SDD 
(right) for atom C2 in theobromine. (a and e) HB2; (b and f) cluster composed of molecules 1 
and 6 (weak H‐bonding, see Fig. 12.11); (c and g) S7; and (d and h) HBS13. The arrows sche-
matically represent the calculated relative orientations of the in‐plane principal components of 
the 13C CST, and the numbers denote the calculated changes in the magnitude of these compo-
nents upon formation of the clusters. Adapted with permission from Ref. [58]. Copyright 
2013, American Chemical Society. (see insert for color representation of the figure.)
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in the δ
22

 direction parallel to the C═O bond (red area) and increases along the approx-
imately perpendicular δ

11
 direction (blue area). This is in good agreement with the 

calculated NMR CST for the HB2 cluster. From Figure 12.11, molecules 6 and 3 are 
also involved in intermolecular contacts with the central molecule 1 and are involved 
in weak H‐bonds of the type C2═O⋯H–CH3 and C6═O⋯H–C8, respectively.

To take into account stacking interactions, another cluster, S7 cluster (not shown) 
consisting of seven molecules, was considered where three molecules below and 
another three above the central molecule 1 were assembled. The total effect of the 
packing interactions in the 13C CST can be obtained considering the largest cluster 
used, that is, HBS13 which is a sum of clusters HB7 (Fig.  12.11) and S7. The 
 differences in chemical shieldings (Δδ

ii
) calculated for HB13 for δ

22
 and δ

11
 are 

illustrated in Figure 12.12 and agree with the sum of the ones obtained for each 
 subcluster HB7 and S7.

The analysis of the EDD and SDD maps for the identification of the multiple 
packing effects based on the quantification of CST components in each cluster was 
important as sometimes effects of intermolecular interactions compensate; such effects 
are invisible by just considering the largest cluster (HBS13) or a single molecule. This 
study uses a similar philosophy as done by Uldry et al. [59] and Mafra et al. [20] (see 
next section) by evaluating the CS parameters in the isolated molecule and for the 
molecule embedded in the crystal packing. This is an interesting approach that attempts 
to rationalize how the effect of crystal packing is encoded in the CSTs in terms of 
the  redistribution of the ground‐state electron density induced by intermolecular 
interactions.

12.5.3 Studying Crystal Packing Interactions

Changes in a drug’s crystal packing interactions will impact its solubility, stability, 
manufacturing ease, and bioavailability. These changes can be due to polymorph 
transformations or salt/cocrystal formation. Comparison between SSNMR experi-
mental and calculated CST have been used to prove molecular association, identify 
H‐bond donors and acceptors, show aromatic ring‐currents, and report on the strength 
of these interactions.

12.5.3.1 Characterization of H‐Bondings in Cocrystal Systems Using 1H and 15N 
Chemical Shifts In a recent U. S. Food and Drug Administration guidance, salts 
and cocrystals are given different regulatory classifications. This has put further 
pressure on the industry to identify a complex as a salt or cocrystal [60], adding 
further value to NMR characterization of H‐bonding in cocrystal complexes. One of 
the earliest studies involving CST calculations on cocrystals provides guidance for 
using 15N NMR tensors to classify a complex as a salt or cocrystal, and to rank bond 
strength. In Li et al., the salt–cocrystal continuum was examined for a drug with two 
weakly basic heterocyclic nitrogens [61]. The drug was crystallized with three 
 dicarboxylic acids of increasing strength. The 15N isotropic shifts for these complexes 
differed up to –120 ppm from the crystalline free base, demonstrating the high sensi-
tivity of 15N to intermolecular interactions.
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Each drug complexes examined, contained five nitrogens thus complicated CS 
assignments. A combination of solution NMR and short contact time CPMAS exper-
iments were used to assign the CSs. Despite these experiments, there were still 
ambiguous assignments and NMR tensor calculations were necessary. These calcu-
lations were completed using a cluster approach and GIAO methods using a 
B3LYP/6‐31G* basis set. Clusters were built from the single‐crystal structures, 
 comprising of a single API molecule and any ionic or H‐bonded acid partners. This 
approach reduced the computational demands, while capturing the key interaction 
with the basic nitrogens. Of course, ring stacking and other weak contacts would not 
be accounted for by this method, which can increase error. For complexes with 
proton transfer the 15N ICSs moved upfield by 80–120 ppm from the crystalline free 
base. The cocrystal complexes produced upfield shifts of 20–40 ppm due to strong 
H‐bonding between the nitrogen acceptor and the carboxylic acid donor. The 
observed ICS differences (Δppm) correlate well with the ΔpK

a
 between the drug’s 

two basic nitrogens and the acids and with the rank ordering of the bond strengths 
based on donor acceptor (D⋯A) bond distances extracted from the single crystal 
structures. Based on these trends, guidance for discerning between salts and cocrys-
tals, and rank ordering bond strength based on 15N Δppm of heterocyclic aromatic 
nitrogen was provided.

Similar methods were applied by Kahn et al. to the quinidine methyl paraben 
cocrystal and quinidine 4‐hydroxybenzate salt [62, 63]. Again DFT tensor calcula-
tions using a GIAO cluster approach was performed to assign the 15N resonances and 
confirm bonding interactions. The 15N Δppm values for the cocrystal and salt from 
the free quinidine were much smaller than seen in the previous study. These differ-
ences can be explained by the formation of moderate to weaker bonds in these 
 complexes compared to the free quinidine. Overall the 15N ICS still follow the rank-
ing of the bond strengths, but identifying proton transfer from experimental values 
alone may be more challenging. In this case, CSTs were necessary to identify the 
protonation state of these complexes.

Improvements in high‐resolution 1H SSNMR techniques derived from probe 
 technology and pulse sequence developments allowed to take advantage of the high 
sensitivity of 1H nuclei. More recent studies have focused on using 1H ICS and 1H 
homo and heteronuclear correlation experiments to examine cocrystals [54, 62]. In 
these studies, commercially available fast MAS probes and CRAMPS were used to 
resolve 1H ICSs. For complexes with moderate to strong H‐bonding (where the D⋯A 
distance is less than the sum of their van der Waals radii), the 1H ICSs are greatly 
deshielded and clearly resolved using MAS rates ≥35 kHz. For the methyl paraben 
quinidine cocrystal a moderate H‐bond (H48) is resolved at 9.39 ppm using 50 kHz 
spinning in the 1H MAS, 1H–1H DQ BABA and 1H‐13C CP‐HETCOR spectra 
(Fig. 12.13) [62].

Once 1H CSs are resolved, correlation experiments and CST calculation can be 
used to prove cocrystal formation and examine the bond properties. The crystallization 
of methyl paraben and quinidine produced two new peaks at 9.39 and 13.45 ppm, sug-
gesting cocrystal formation [62]. These two new peaks were assigned using 2H 
labeling to the hydroxyl protons of quinidine (H48) and methyl paraben (H67), 



314 CALCULATION OF NMR TENSORS

respectively. Correlations were observed in 1H‐1H DQ and 1H‐13C HETCOR 
 experiments showing the formation of H‐bonds between H67 and quinuclidinic ring 
nitrogen (N24), and H48 and quinoline ring nitrogen (N23) (highlighted in Fig. 12.13). 
This demonstrates the successful formation of O–H⋯N heterosynthon. DFT CST cal-
culations using a GIAO cluster approach (B3LYP functional and the 6‐311G** basis 
set) verified this interaction, predicting a 1H CS within 0.3 ppm of the observed value.

Other reports show that SSNMR methods were explored to prove cocrystal 
formation of the solids produced during solid form screening activities [54]. 1H ICS 
and 1H correlation experiments were found to be the fastest and most definite methods 
to prove molecular association. The authors first recommend screening solids by 13C 
and 1H spectra to assess phase purity, confirm the presence of new crystalline species, 
and identify strong H‐bonding between conformers from the downfield 1H ICS. 1H–13C 
CP‐HETCOR and 1H–1H DQ recoupling experiments can then provide dipolar connec-
tivity to demonstrate molecular association between components. CST calculations can 
further confirm molecular association. This protocol was vetted with nine cocrystal 
systems to prove complexation.

12.5.3.2 Characterization of Weak H‐Bondings in Hydrates Using NICS Much 
of the SSNMR literature has focused on strong intermolecular interactions, such as 
ionic and H‐bonding. Weak interactions are much more difficult to examine both 
experimentally and computationally. The true impact of weak H‐bonds or van der 
Waals contacts may be obscured by other packing constraints. Although these interac-
tions have lower energies, –1 to –5 kcal/mol for CH⋯π contacts versus –5 to –40 kcal/mol 
for moderate/strong H‐bonds, they can drive polymorph transformations. In work by 
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Uldry et al. on uracil and 4‐cyano‐4′‐ethynylbiphenyl, and Mafra et al. on  ciprofloxacin 
polymorphs, GIPAW CST and NICS calculations on the piece‐wise deconstructed 
crystalline lattice are used to deconvolute these effects [20, 59].

For the antibiotic ciprofloxacin, the packing interactions (CH⋯π, CH⋯O(–), π⋯π 
and (+)NH⋯O(–)) and the impact of hydration on the 1H and 13C ICSs are examined for 
the anhydrate, Form I, and channel hydrate, Form II. NMR tensor calculations were 
completed using the GIPAW approach. To evaluate hydration effects, the water 
 molecules were removed in silico from the optimized Form II structure and the CST 
recalculated. To examine packing effects GIPAW CST calculations were performed 
on a 1D chain of zwitterionic ciprofloxacin molecules connected through (+)NH⋯O(–) 
H‐bonds. The supercell dimension was expanded to minimize interactions between 
neighboring chains. For neutral molecules, calculations could be performed on a 
single molecule in an enlarged supercell instead of a 1D chain.

The crystal packing and hydration effects on the calculated 1H ICS of forms I and 
II are plotted as blue and red stems in Figure 12.14. For instance, the CS difference 
(Δδhydration) values (red stems) were determined from the GIPAW calculated values for 
‘dehydrated’ Form II subtracted from the water occupied crystal. The presence of 
water in Form II results in a maximum Δδhydration = 2 ppm and 5 ppm for 1H and 13C, 
respectively. Hydration has the greatest impact on the atoms in cyclopropane and 
piperazine rings that interface with the water channel, as the polarizing effect of the 
water oxygens considerably deshields these protons.

The GIPAW calculated 1H CS differences (Δδpacking) between the complete crystal 
and 1D chains (blue) stems in Fig. 12.14) show the packing contributions of both 
forms. It is not surprising to see the largest Δδpacking is for the HN proton involved in 
the zwitterionic (+)NH⋯O(–) H‐bond. Large packing effects were observed for CH⋯π 
interactions, shielding 1H CS values by up to 3.6 ppm (H3′ in Fig. 12.14). These and 
π⋯π interactions are also impacted by intermolecular ring currents, which influence 
the 1H and 13C shieldings. NICS were determined to estimate the contribution from 
aromatic ring currents alone. The Δδpacking values were corrected by NICS for selected 
crystal packing interactions. These corrected values show that weak H‐bonds, such 
as the CH⋯π intermolecular interactions in ciprofloxacin, can contribute up to 
–4 ppm to the 1H ICS. Smaller packing contributions, up to 2.3 ppm, were calculated 
for the weak CH⋯O(–) H‐bonds. Similar values were obtained for the weak CH⋯X 
H‐bonding in maltose [64], uracil and 4‐cyano‐4′‐ethynylbiphenyl [59] by comparable 
CST calculation methods.

12.5.4 Employing Chemical Shifts for Crystal Structure  
Elucidation/Determination

12.5.4.1 Combining XRD, DFT, and NMR for Structure Validation The most 
relevant point in combining PXRD, NMR, and DFT calculations is that the quality of 
the structure is assessed against both the experimental PXRD data and the experi-
mental SSNMR data, validated by NMR CST calculations, providing a very robust 
confirmation of the reliability of the structure. A few key examples of crystal structure 
determination are given later where such interdisciplinary approach is exploited.
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Dudenko et al. have very recently applied this combined XRD, DFT, and NMR 
approach to the structure validation of the 1:1 cocrystal of indomethacin and 
nicotinamide (IND‐NIC) [65]. Subsequent to the structure solution process by 
PXRD, first‐principles DFT‐based techniques within the GIPAW approach were 
exploited to calculate the SSNMR data for the structure. The calculated 13C and 1H 
CSs were found to be in excellent agreement with the corresponding measured CSs. 
In particular, the mean and highest differences between experimental and calculated 
CSs were for 1H, 0.4 ppm (mean), 2.2 ppm (highest) and for 13C, 1.6 ppm (mean), 
4.3 ppm (highest). This approach was found to provide a robust assessment of the 
validity and quality of a refined crystal structure.

PXRD methods, lattice energy calculations, 13C and 15N SSNMR, and a systematic 
search algorithm have been applied to anhydrous theophylline [66]. The trial crystal 
structure generation unraveled two different H‐bonding motifs involving N–H⋯N 
and N–H⋯O intermolecular interactions in a fixed unit cell. These structures were 
“indistinguishable” in terms of calculated lattice energy and XRD profile fitting to 
experimental data. SSNMR spectroscopy was applied successfully in this example to 
distinguish subtle conformational and packing differences by comparison of experi-
mental and calculated isotropic 15N and 13C CSs. BPW91/TZVP level of theory and 
the LORG47 method were used to calculate the NMR CSs. ICSs were calculated 
for  trimer arrangements, optimized in vacuo, representative of the N–H⋯N and  
N–H⋯O trial crystal structures as performing high‐level DFT calculations on full 
crystal structures was not feasible. Good agreement between the experimental and 
theoretical ICSs revealed that the structure showing the N–H⋯N networks is indeed 
the correct one. Four trial crystal structures were progressed for Rietveld refinement. 
Two were representative of the N–H⋯N motif and other two of the N–H⋯O motif, 
that is, the two highest ranked trial structures from the systematic searches in terms 
of lattice energy and powder X‐ray profile fit, respectively. Structural differences 
between the profile difference plots obtained after refinement of the four structures 
were imperceptible. Although the resulting structural model was found to be 
extremely similar to the one refined from the best N–H⋯N trial structure, the results 
of the Rietveld refinements were not sufficiently convincing to justify disregarding 
the N–H⋯O motif as the true crystal structure. However, analysis of the NMR data 
showed that the N–H⋯N model accounts for the experimental 15N CSs more ade-
quately than does the N–H⋯O structural model.

A high‐value approach for the structure determination of an enantiotropically‐
related dimorphic system having low solid–solid conversion temperatures has been 
presented [67]. The crystal structure of the thermodynamically more stable form at 
room temperature was determined by single‐crystal XRD (polymorph 1, Z′ = 4, 
Z = 16). The crystal structure of the other form (polymorph 2, Z′ = 1, Z = 4) was deter-
mined using iterative PXRD structure solution methods, assisted by SSNMR exper-
iments (dipolar connectivity and CS measurements). DFT geometry optimizations 
were used in tandem with Rietveld refinement and NMR CS calculations to improve 
and verify the structure for polymorph 2.

Gas‐phase DFT NMR calculations using the GIAO cluster approach for 
 determining NMR shielding tensors, the hybrid B3LYP DFT functional and the 
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6‐311+G(2d,p) basis set were applied [68, 69]. Several experimental techniques were 
applied to the characterization of both polymorphs, namely 1H–19F–13C double‐CP 
and 1H‐13C CP‐HETCOR with frequency switched Lee‐Goldburg (FSLG) decou-
pling, 1H–1H DQ‐SQ spectroscopy, and relaxation measurements. Furthermore, the 
13C CST values were calculated and experimentally determined using a 2D 13C CP‐
PASS NMR experiment.

The comparison between experimental and calculated 13C CSs highlighted some 
discrepancies, primarily for two carbons in the thiazole ring and the directly bonded 
benzenyl carbon. Although the calculated shifts for all the carbon sites improved 
 significantly throughout the refinement stages, the errors remained for three of the 
mentioned carbons in the final structure. Such errors were claimed to be caused by 
several sources, including a minor structural deficiency in the thiazole ring, the accu-
racy of the DFT calculations themselves, or experimental error in the CP‐PASS data.

NMR was also combined with PXRD for the structural characterization of micro-
crystalline powder anhydrous quercetin, previously unknown [70]. PXRD, 13C/1H 
NMR, and molecular modeling by both ab initio and molecular mechanics (MM) 
methods were used and three distinct structure solutions were obtained depending on 
the accuracy level with which the input molecular structures were generated. From 
the analysis of the PXRD data, multiple structure solutions emerged. In order to 
reduce ambiguities and to further refine the PXRD structure solution, 13C/1H SSNMR 
data and molecular modeling (by ab initio and MM methods) were incorporated in 
the process. Three distinct models were discussed in this work: model 1 was drawn 
from scratch and its geometry roughly optimized at the MM level of theory; model 2 
was built using an input molecular structure resulted from a systematic grid search 
over flexible torsion angles θ

1
–θ

5
 (Fig. 12.15) with all of the generated approximately 

250,000 molecular conformations being optimized to the closest local minimum in 
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the total energy surface; finally model 3 was obtained using an isolated molecule 
taken from the reported X‐ray single‐crystal structure of quercetin dihydrate, which 
help assess the robustness of the other two models. Each model underwent first‐ 
principle geometry optimization followed by 1H and 13C CS calculations using 
GIPAW‐DFT approach for routine structure validation.

The analysis of calculated CSs through the RMSDs confirmed that model 1 was 
the worst since it presented the highest RMSD, that is, a particularly poor agreement 
between the computed and experimental C5 and C8 CSs, related with the particular 
conformation of the O7–H hydroxyl, preventing the formation of the O7–H⋯O5 H‐
bonds observed in models 2 and 3. Furthermore, the authors compared the calculated 
CSs from models 2 and 3 with previously calculated values for an isolated molecule 
and reported the differences in 13C CSs, arising from the fact that the full crystal 
incorporated H‐bonding effects.

The supramolecular architectures and consequent H‐bonding network identified 
in model 2 were in perfect agreement with the observed and predicted 13C/1H CSs and 
the peak correlations present in the 2D 1H–1H DQ‐SQ spectrum. This work is a rather 
interesting case study for improving NMR crystallography methods since it shows 
examples (model 1) where small errors in the position of hydrogen atoms lead to 
wrong structure solutions that are impossible to be further adjusted, most likely 
because structures are trapped around a local energy minimum.

A complete NMR crystallography protocol for the structure determination of 
molecular crystals has also been presented by Salager and co‐workers [71, 72]. The 
protocol combines proton spin‐diffusion (PSD) restraints with molecular modeling to 
determine the crystalline structure of thymol. The best structures then undergo struc-
ture refinement using DFT geometry optimization and are selected based on their 
agreement with experimental 1H and 13C CS.

The build‐up curves extracted from the PSD spectra are used as constraints (with 
input from PXRD determined cell parameters) to evaluate the several trial structures 
generated by molecular modeling using the Xplor‐NIH package. This molecular 
modeling approach includes a standard force field to ensure reasonable geometries 
are generated, which is added by a PSD force field term (E

PSD
), defined as the 

weighted goodness of fit ( PSD
2

) between calculated and experimental PSD build‐up 
curves. The weight ensures that the agreement with the PSD experimental data will 
be the dominant term in the modified initial force field.

The build‐up curves do not provide a direct measure of distance information, as 
each individual cross‐peak (Fig. 12.16a) contains contribution from tens of equivalent 
pairs of exchanging protons. To overcome this problem, the authors have proposed 
using a phenomenological rate matrix description of the build‐up curves (P

ij
(τ

SD
)), 

inspired in previous contributions [73]. With this approach intra‐ and intermolecular 
distances r

ij
 between protons i and j in the generated candidate structures are 

computed to simulate P
ij
(τ

SD
) defined as follows:

 
Pij SD SD ij z

jK Mexp ,0

 

Mz
j ,0 accounts for the volume of the diagonal peaks at τ

SD
 = 0 s and the elements of 

the K matrix (K ∝ 1/r
ij
) may be found in Ref. [71]. Each cross‐peak build‐up curve 
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shown in Figure  12.16b represents in fact a sum of different curves arising from 
dipolar interaction with many different equivalent molecules [73]. Each experimental 
and calculated cross‐peak volume obtained from the PSD spectra is used to calculate 

PSD
2

. Globally, the reported molecular modeling approach discussed earlier encom-
passes three main steps, starting from an initial population of 3000 trial structures 
and ending in the 42 lowest energy PSD‐optimized structures (E

PSD
 < 2925 kJ/mol–1) 

[71]. To further optimize the agreement with the XRD structure from the CSD data-
base, a subset of nine structures (labeled a–i) were chosen as representative of the 
ensemble and geometry optimized using planewave DFT. The comparison of the 
nine PSD optimized structures before and after DFT geometry optimization is shown 
in Figure 12.17(i) and 12.17(ii), respectively; geometry optimization considerably 
improves the agreement toward the XRD reference structure. One notable feature 
resides in the OH(14) bond length, which can be oriented in two ways: (i) one where 
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periodic DFT optimization represented in ii, where the orange structure is the reference struc-
ture). Squares and triangles indicate structures where the orientation of the hydroxyl proton 
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structure (represented by green circles), respectively. Adapted with permission from Ref. [71]. 
Copyright 2009, RSC Publishing. (see insert for color representation of the figure.)



322 CALCULATION OF NMR TENSORS

the O–H bond is parallel to the aromatic ring (structures a–f), similar to the XRD 
structure, and (ii) another where the O–H bond is approximately perpendicular to the 
ring plane (structures g–i) (see Fig. 12.17(ii)). Indeed, structures in the situation of (i) 
showed a lower RMSD. The difference between calculated and experimental CSs of 
the nine PSD‐optimized structures for each proton (Fig. 12.17) before and after DFT 
geometry optimization is illustrated. The green circles represent the CS difference 
for the reference structure for comparison.

12.5.4.2 Ab Initio Crystal Structure Determination The method described 
 earlier was successfully applied to a small and rigid molecule (thymol). However, 
application of this protocol to larger drugs with several degrees of freedom may 
prove  difficult, due to limitations in proton resolution and computing power. To over-
come this problem, a protocol for ab initio crystal structure determination of natural 
abundance powdered solids has been introduced [72] combining CSP computational 
approaches and involving measured and calculated 1H ICSs. This method was also 
applied to thymol, and the obtained structure was also identical to the reference 
structure with an improved RMSD compared to the previous PSD‐optimization 
 protocol. The same protocol has been also applied more recently to four small drug 
molecules with higher flexibility: cocaine, flutamide, flufenamic acid, and theophyl-
line [74]. The correct structure of these four compounds was successfully determined 
based on the RMSD values resulting from the comparison of experimental and DFT 
calculated 1H ICSs.

One of the main conclusions from this study is related to the 1H ICSs being much 
more sensitive to structural changes than 13C ICSs. This may be explained by the 
higher errors associated to the calculation of 13C ICSs. For cocaine, flutamide, and 
flufenamic acid, the 1H ICSs lead to a clear structure determination by comparison 
with the ensemble of structure predictions, whereas in all these cases the 13C CSs 
were not sufficiently sensitive to lead to structure determination. Figure  12.18 
 presents the 1H RMSD values between experimental and calculated ICSs for the 30 
lowest energy predicted crystal structures for cocaine. Structure 1 (Fig. 12.18a) was 
considered to be the correct crystal structure based on the agreement between 
 calculated and experimental 1H CSs as well as on the comparison between calculated 
ICSs for the previously known single‐crystal X‐ray structure and the experimental 
ICSs (Fig. 12.18a, gray stem).

The all‐atom RMSD between the molecular geometry of the structure determined 
in this work and the previously known structure of cocaine was found to be 0.069 Å, 
and Figure 12.18b shows the two structures superimposed. The unit cell dimensions 
all agree to within 2.3% and the volume difference between the two structures is 
0.8% (3.29 Å per molecule).

12.5.4.3 Chemical Shift–Driven Crystal Structure Determination Our group has 
recently proposed a new strategy for NMR crystallography of multiple‐component 
molecular crystals in which 1H NMR CSs enter directly in the structure generation 
step, governed by a genetic algorithm [75]. The methodology developed in this work 
avoids the use of time‐consuming high‐level DFT calculations and uses CSs in the 
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structure‐refinement step as pseudoforces acting on the models, leading to the lowest 
energy structure. The protocol was applied to powdered amoxicillin trihydrate, a 
widely used β‐lactamic antibiotic. It should be noted that until quite recently, NMR 
crystallography essentially followed a two‐step strategy: (i) structure proposal and 
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FIGURE 12.18 (a) Comparison between experimental and calculated 1H CSs for cocaine. 
The comparison is made using assigned experimental CSs. Predicted structures are ordered by 
increasing calculated lattice energies (decreasing predicted stability). The comparison with the 
crystal structure determined from single crystal XRD is shown on the far right. The dotted 
horizontal black line shows the mean RMSD error as described in the main text and the 
horizontal grey shaded zone indicates the expected limits of the RMSD in CS. (b) Comparison 
between the structure of cocaine determined by powder 1H NMR and computational modeling 
and the single crystal XRD structure. Adapted with permission from Ref. [74]. Copyright 
2013, RSC Publishing.
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(ii) structure validation: once the set of possible structures is available, they are ranked 
and validated against experimental SSNMR data. In this way, the available NMR data 
plays a passive role in the sense that is solely used as a static validation criteria, rather 
than being actively used as driving force in the construction of the structure model. 
The proposed protocol takes the unit cell parameters, space group information (both 
taken from PXRD experiments) and solid‐state 1H ICSs as input information and 
processes the data in three steps: (i) generation of an ensemble of structures, (ii) 
refinement of the generated structures, (iii) high‐level energy minimization of the 
refined structures. Step (i) employs a genetic algorithm where the fitness (E

total
) of 

each structure is defined as the sum of the lattice energy (E
lattice

) of the system with a 
term accounting for the deviation between the experimental (δ

exp
) and the on‐the‐fly 

calculated (δ
calc

) 1H CSs (Eδ):
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E
lattice

 is described by the classical biomolecular force field (GAFF), which 
 comprises intramolecular (bonds, angles, and dihedrals) and intermolecular 
(Coulomb and van der Waals) components, the latter having contributions from all 
unit cells. In Eδ, the sum runs over all the protons h for which experimental CSs (δ

exp
) 

are available. The parameter εδ controls the width of the flat‐well potential and 
defines a threshold for the accepted error in the δ

calc
 values. The on‐the‐fly calcula-

tion of δ
calc

 requires a fast methodology, amenable to integration within a classical 
MM/dynamics code. The calculation of δ

calc
 is inspired by previous protein solution 

NMR work [76–78] and is parametrically calculated according to

 calc local ef m rc  

where δ
local

 is a constant particular to each proton (assumed proportional to its atomic 
partial charge), and δ

ef
, δ

m
, and δ

rc
 are contributions due to electric field effects [79], 

group magnetic anisotropy [80, 81] and aromatic ring currents [78, 82]. The genetic 
algorithm yields, in step (i), a set of generated structures, which moderately obey the 
input data. In step (ii), these are refined by means of molecular dynamics simulated 
annealing. Finally, in step (iii) the set of refined structures is energy minimized using 
tight‐binding DFT. In the whole process, E

lattice
 is responsible for the physical and 

chemical validity of the generated structures, whereas Eδ is responsible for imposing 
the experimental constraints derived from SSNMR experiments.

Figure 12.19 shows the evolution of the fitness (E
total

) of the fittest individual dur-
ing generations over five distinct runs, with and without inclusion in the fitness 
function of the Eδ term, selected such that the final structures are comparable to 
the reference X‐ray structure and the final fitnesses (E

total
) are similar for all runs. 



SUMMARY 325

The inclusion of experimental data (Eδ) accelerates genetic algorithm convergence 
toward the minimum energy, so that much fewer (hundreds) generations are required 
to obtain a reasonable set of molecular packings. In the shown data set, the runs with 
NMR restraints converge to the global energy minimum basin in approximately 200 
generations, whereas runs without NMR restraints require significantly more gener-
ations and yield a higher E

total
. The procedure yielded a structure that closely matches 

the single‐crystal X‐ray structure (RMSD ~ 0.608 Å).

12.6 SUMMARY

Solid‐state NMR spectroscopy is a well‐established method for studying interactions 
based on the magnetic and electric properties of the molecules, and is currently an 
important tool in the pharmaceutical industry, largely owing to its unique capabilities 
in distinguishing between polymorphic, anhydrate, hydrate, and other solvate forms 
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FIGURE 12.19 Evolution of E
total

 of the fittest individual during the course of the genetic 
algorithm over five distinct runs, with and without inclusion of CS restraints (grey and black 
curves, respectively). Apart from the inclusion of the CS restraints, all running parameters are 
the same in the two sets; (top) and predicted best‐crystal packing of amoxicillin trihydrate 
(bottom): (a) entire unit cell and (b) asymmetric unit. The reference X‐ray structure is shown 
as solid gray. RMSD between both structures is 0.608 Å (or 0.576 Å if only the asymmetric unit 
is considered). Reprinted with permission from Ref. [75]. Copyright 2013, American Chemical 
Society.
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of APIs. Solid‐state NMR is also highly sensitive to strong and weak crystal packing 
interactions and is a powerful partner of X‐ray diffraction in crystal structure deter-
mination. In this chapter, we have highlighted the main applications of the  technique 
combined with theoretical calculations of NMR parameters, emphasizing the compu-
tation of chemical shifts, providing structural insight into a broad family of small 
pharmaceutical molecules.

The case studies presented (published in the past decade) were carefully selected 
taking into consideration the most interesting applications at an academic and 
industrial perspective.
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MOLECULAR DYNAMICS 
SIMULATIONS OF AMORPHOUS 
SYSTEMS

Bradley D. Anderson and Tian‐Xiang Xiang
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 
Lexington, KY, USA

13.1 INTRODUCTION

Molecular dynamics (MD) simulations may have utility in predicting various 
 properties of amorphous excipients, amorphous drugs, and amorphous drug formula-
tions. Both thermodynamic and kinetic properties can be explored, and in many 
instances the results compare favorably to experimental observations. Among the 
thermodynamic properties of particular interest that lend themselves to exploration 
by MD simulations are the underlying structural features of the excipients them-
selves, drug–excipient interactions, moisture uptake under  various storage condi-
tions, crystalline drug solubility and amorphous drug phase  miscibility with 
amorphous excipients, and solubility or dissolution rate enhancement potentially 
attainable through the use of amorphous systems and its impact on oral bioavail-
ability. Dynamic properties of greatest interest based on the literature are the T

g
 and 

its relevance to pharmaceutical product performance, molecular mobility as charac-
terized by various relaxation parameters (e.g., α‐ and β‐relaxations), the nature of 
molecular motions underlying relaxation processes that may also be probed by 
 various experiments, and the relationship between molecular mobility and the 
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physical and chemical stability of amorphous drug–excipient mixtures. In addition to 
their predictive potential, MD simulations can provide molecular insights relating to 
such questions as heterogeneity of drug–excipient distributions, water distribution, 
molecular interactions that lead to favorable or unfavorable mixing, and molecular 
events coupled to various relaxation processes.

While there are many possible types of computer simulations, this chapter 
emphasizes fully atomistic MD simulations of pharmaceutically relevant, amor-
phous glasses consisting either of small drug molecules, small molecule or poly-
meric excipients, or drug–excipient mixtures with or without small percentages of 
water. These are among the systems that have been generally explored by the 
authors, which also include simulations of lipid bilayers in order to better under-
stand drug binding to membranes and membrane permeability [1] and simulations 
of lipid vehicles including triglycerides and triglyceride/monoglyceride mixtures 
found in lipid‐based formulations of poorly water‐soluble drugs [2]. With the 
exception of one example illustrating water clustering and diffusivity in lipids, these 
studies are not part of this chapter.

Full‐atom simulations have been of particular interest because of their  relevance 
to real pharmaceutical systems in that the molecular structures are constructed in 
full atomic detail. In this chapter, simulations of amorphous systems at tempera-
tures below and in some cases above the glass transition temperature (T

g
) will be 

explored. While amorphous pharmaceutical systems are generally at temperatures 
below T

g
, validation of simulations may be more readily done by comparisons at 

temperatures near or above the T
g
 where molecular mobility may be sufficiently 

high that both the simulated and experimental systems may be closer to equilibrium. 
Above the T

g
 certain dynamic processes are sufficiently rapid that they can be 

studied both experimentally and in the time frames accessible by current MD sim-
ulations ( typically <1 µs).

13.2 MD SIMULATION METHODOLOGY

Since the first simulation of a liquid argon in 1964 [3], MD simulations have grown 
in popularity and complexity, as described in several comprehensive reviews over 
the past several decades [4]. The simulations involve numerically integrating 
Newton’s equations of motion for each of the N particles or atoms in an assembly 
to obtain information on the position, velocity, and acceleration of each atom and 
their variation over time. The system to be simulated requires initial construction 
of the molecules of interest. Structures may be constructed by hand using 
commercial software (e.g., xLeap within AMBER [5]) or found by searching data-
bases crystal or NMR structures. The assembled molecules are then packed into a 
periodic cell. Interactions between the atoms are defined by the “force field”—an 
equation for potential energy, U, that includes terms for intermolecular interactions 
involving covalently bonded atoms (i.e., bond length, bond angle, and torsional 
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contributions) and non‐bonded interactions (e.g., van der Waals, electrostatic 
 interactions) shown as follows:
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The force constants for the covalent bonds, bond angles, and dihedrals, respectively, 
in the given equation are kb, kθ, and kϕ where r

ij
 represents the distance between two 

atoms i and j; θ
ijk

 is the i, j, k bond angle; and ϕ represents a dihedral angle. A
ij
 and B

ij
 

are the Lennard–Jones parameters for non‐covalent interactions and q is a partial 
charge. A variety of different force fields are available for MD simulation including 
AMBER and GAFF [5, 6], COMPASS [7], CHARMM [8], DREIDING [9], CVFF 
[1a, b], GROMOS [10], and OPLS‐AA [11]. Generally, the parameterization of these 
force fields is based on quantum mechanical calculations and fits to experimental 
data (e.g., spectroscopic data) with adjustments for specific applications based on 
comparisons of experimental data to simulation predictions.

Once the molecular assembly is constructed, energy minimization is necessary to 
reduce steric contacts and the system is heated to a desired temperature (corresponding 
to velocities in the Maxwell–Boltzmann distribution) to generate initial positions and 
velocities of the atoms. During dynamic runs, changes in position and velocity in 
response to the force field according to Newton’s laws of motion are determined with 
the calculations repeated every 1 or 2 fs.

An important limitation of current fully atomistic MD simulations is the simula-
tion time needed to explore various relaxation processes. Some of the dynamic 
processes of greatest interest in real amorphous pharmaceutical systems include 
changes in composition and properties due to moisture uptake at varying relative 
humidity or during dissolution of amorphous dispersions after ingestion, physical 
instability during manufacturing and storage (e.g., lyophile collapse, phase separa-
tion of amorphous drug–excipient mixtures, nucleation, and crystal growth), and 
chemical instability (e.g., inter‐ and intramolecular chemical reactions often involving 
water or oxygen and disproportionation of pharmaceutical salts in systems contain-
ing acidic or basic excipients). Because many of the aforementioned stability‐related 
phenomena are accelerated by moisture, the influence of water on these kinetic 
processes has been a focal point of many investigations.

For the most part, the timescales for the aforementioned kinetic processes are well 
beyond the accessible timescale for fully atomistic MD simulations. Local dynamics 
such as rotation of a methyl group or a polymer side chain can certainly be explored. 
For example, in a polymer melt at a temperature of 100K above the T

g
, the timescale 

for methyl‐group rotations is about 1 ps and approximately 1–10 ns for segmental  
α‐relaxation in a polymer [4b]. Diffusion for even a small molecule such as water in 
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a polymer below T
g
 may exhibit anomalous non‐Einsteinian diffusion behavior up 

to  and beyond 100 ns [12], while random long‐range diffusion of relatively low‐
molecular‐weight drug molecules may not be accessible by MD simulation without 
coarse‐graining [13]. For the purpose of validating dynamic processes explored in 
MD simulations, experimental methods that probe local dynamics are therefore most 
applicable.

If the amorphous structures are reliable, then thermodynamic information 
 generated from MD simulations may have utility in terms of predicting such 
 properties as the tendency for amorphous phase separation in mixtures, drug solu-
bility in amorphous solids and solubility enhancement upon dissolution, equilibrium 
moisture content as a function of relative humidity, and the like. Generally, amor-
phous assemblies are prepared from their melts at temperatures several hundred 
degrees above T

g
 to ensure equilibrium. (One should bear in mind, however, that the 

required timescales to achieve equilibrium structures for well‐entangled dense poly-
mers may be beyond current computational capabilities [14].) Rapid cooling of these 
assemblies to a temperature below T

g
 approximates experimental preparation 

methods such as melt quenching, but the rates of cooling in MD simulations are 
much faster. Experimental verification of structural details observed by simulation is 
therefore of considerable interest and is the topic of the section that follows.

13.3 POLYMER PROPERTIES—MD SIMULATION VERSUS 
EXPERIMENT

13.3.1 Glass Transition Temperature (Tg)

Validation of the structural and dynamic features of amorphous excipients and drug–
excipient mixtures from MD simulations may be complicated by the fact that amor-
phous solids are not in their equilibrium state. Upon cooling a molten glass‐forming 
material from a high temperature, the translational motion of the excipient molecules 
slows and the system undergoes thermal contraction accompanied by decreases in 
enthalpy and increases in density. Above the glass transition temperature (T

g
), molec-

ular motion is sufficient to maintain equilibrium as temperature is decreased, but near 
T

g
 the translational and orientational motions that enable the system to continue 

further compaction are slowed to the point that the system falls out of equilibrium 
and below T

g
 solidifies to form a glass [15]. Experimentally, T

g
 is usually determined 

calorimetrically or by dilatometry. In MD simulations, the usual approach is to deter-
mine T

g
 dilatometrically by the intersection of linear fits of plots of volume versus 

temperature in the melt and glass regions of the curve.
Because of the perceived importance of the T

g
 in relation to physical or chemical 

stability of amorphous pharmaceutical formulations [16], experimental data are 
available for a large number of excipients and drug–excipient combinations including 
most systems chosen for MD simulation. Therefore, published MD simulations of 
glasses often include comparisons of T

g
 values from MD simulation and experiment. 

As the T
g
 does not reflect a first‐order phase transition such as the melting point for 
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a crystalline compound, the value of the reported T
g
 depends on the rate of cooling 

(i.e., the timescale of the experiment or simulation). (It should be noted, however, 
that the apparent melting point can also vary with the rate of heating.)

The values of T
g
 typically reported from MD simulations are in reasonable 

agreement with experimental values, though often higher due to the more rapid 
cooling rates in simulations. Examples of linear correlations between simulated and 
experimental T

g
 values have been published for representative polymers [17] and also 

glasses of low‐molecular‐weight organic compounds [18]. Barrat et al. [19] noted 
that cooling rates are typically 1012 K/min in simulations, whereas experiments to 
determine T

g
 such as DSC typically employ heating rates of approximately 10 K/min, 

a difference of 12 orders of magnitude. They suggested a change in T
g
 of 3 K for a 

10‐fold change in cooling rate to estimate the shift in T
g
 resulting from more rapid 

cooling in MD simulations, or approximately 35–40 K for the aforementioned rate 
differences.

Systematic studies of the effect of cooling rate on T
g
 for a number of low‐molecular‐

weight and polymer glasses using either MD simulation [14, 17, 20] or experiments 
have established that T

g
 varies nonlinearly with the logarithm of the cooling rate [21]. 

The standard procedure is to fit T
g
 data as a function of cooling rate to the following 

equation:

 
T

T B

Ag
0

log
 (13.1)

where γ is the cooling rate and T
0
, A, and B are fitting parameters. The equation is 

based on the assumption that the dependence of the structural relaxation time of a 
system follows the Vogel–Fulcher–Tammann relationship [22]. The value of T

0
 has 

been interpreted as the value of T
g
 at the limit of infinitely slow cooling [16, 21, 23].

Given the shifts in T
g
 with cooling rate, MD simulated glasses cooled to a given 

temperature below T
g
 are expected to be at a higher energy than experimental glasses 

of the same material and consequently at a somewhat lower density. This is generally 
consistent with the results for densities of polymer and small‐molecule glasses 
simulated by the authors, which have been observed to gradually increase with 
 simulation time over the time frame of simulations (typically 100 ns) as energies 
 gradually decreased [12b, 24], indicating that aging (volume and enthalpy relaxation) 
continues well below T

g
 in simulations as it does in real systems. In amorphous poly-

mers, α‐relaxation is generally attributed to cooperative segmental relaxations that 
dramatically increase with an increase in temperature near T

g
, while β‐relaxations are 

prominent well below T
g
 and reflect local mobility due to polymer side group rota-

tions, side group conformational changes, or localized motions in the polymer chain. 
The increases in density observed in MD simulations below T

g
 likely reflect local 

relaxation (β‐relaxation) as timescales for structural relaxation near T
g
 are on the order 

of 102 s or greater. Current explicit all‐atom simulation methods cannot adequately 
probe cooperative structural (α‐) relaxations at temperatures at or below T

g
. 

Experimental time frames allow much larger changes to be monitored [16, 25].
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At temperatures below the T
g
, physical or chemical degradation may be coupled 

to the molecular mobility associated with structural relaxation to varying degrees 
depending on the nature of the reaction and its mobility requirements [26]. Therefore, 
the difference between the storage temperature of a formulation and T

g
 is often 

 considered in estimating stability, with a general rule of thumb being that the temper-
ature of a pharmaceutical product should be 50 K below T

g
 in order to slow molecular 

motions to the point that their impact on shelf life is negligible [16]. Consequently, 
the extent to which certain formulation components such as moisture or the 
 amorphous drug itself lower the T

g
 may be very useful to predict. Similarly, small‐

molecule or polymeric excipients that can increase T
g
 may be sought to improve 

stability of amorphous formulations containing a drug having a low T
g
 when present 

in amorphous form. MD simulations have potential utility in screening drug– 
excipient mixtures with T

g
’s that are likely to provide more stable formulations [27].

The effects of plasticizers such as water on T
g
 have been examined in numerous 

experimental studies [26a, 28] and a few MD simulations. Such comparisons provide 
a means of assessing the reliability of MD simulations for predicting possible effects 
of moisture on stability as influenced by molecular mobility associated with structural 
relaxation.

Typically, the effect of water sorption on the T
g
 for an amorphous solid is  estimated 

using the Gordon–Taylor equation [28a]:

 
T

f T K f T

f K fg
g g1 1 2 2

1 2

 (13.2)

where f
1
 and f

2
 are the weight fractions of each component and T

g2
 (for water) = 135 K. 

The value of K is determined by the ratios of the component densities (ρ) and their 
thermal expansivities (Δα):
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For water uptake, the Simha–Boyer rule (i.e., Δα·T
g
 ~ constant) is often applied to 

estimate the value of K because Δα is difficult to measure at the low T
g
 of water. Then 

K becomes
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 (13.4)

Alternatively, the value of K can be estimated from the ratio of change in heat 
capacities of the two components at the T

g
 as derived by Couchman and Karasz [29].

Several simulation studies have now examined the effects of water content on T
g
. 

Xiang andAnderson simulated HPMCAS polymers at three different water contents 
between 0.7 and 13.2% w/w water [12c] over which range they observed a reduction 
in T

g
 of ~80°—similar to experimental results for HPMCAS‐LG and HPMCAS–MG 

[30]. A change in water content in polyvinylpyrrolidone (PVP) from 0.5 to 10% 
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reduced T
g
 by approximately 90 K in simulations reported by Xiang and Anderson 

[24a], corresponding closely to the reduction in T
g
 reported experimentally by 

Hancock and Zografi over the same range of water contents, a range within which 
the changes in T

g
 were well described by the Gordon–Taylor equation (13.2) [28a]. 

The effects of plasticization by water in simulations resembled those observed 
 experimentally even though the T

g
 values themselves were generally higher in the 

MD simulations due to the rapid cooling. Gupta et al. recently compared T
g
 values 

obtained in MD simulations for sucrose at water contents of 0–5% to those obtained 
experimentally as well as to estimates of T

g
 using either the Gordon–Taylor or the 

Fox equation in which the densities of the two components are assumed to be unity 
[27]. A reasonable agreement was reported between the simulated T

g
 values and 

those obtained from the other approaches, though again the absolute T
g
 values were 

systematically greater than experimental T
g
 values.

The antiplasticization effect afforded by the addition of high‐T
g
 excipients to 

 formulations of amorphous drugs having a lower T
g
 has been illustrated in several 

experimental studies, but there are thus far few MD simulation studies that have sys-
tematically probed this effect. Binary mixtures of amorphous indomethacin (IMC) 
and PVP serve as one set of results examined in both experimental and MD simula-
tion studies, as compared in the following text. Matsumoto and Zografi [31] explored 
the effects of PVP90, PVP30, PVP17, and PVP12 on the T

g
 of binary mixtures with 

indomethacin. They reported an onset T
g
 for indomethacin of 315 K and T

g
 values for 

PVP90, PVP30, PVP17, and PVP12 of 445, 429, 409, and 372 K. Thus, all of the 
PVP polymers evaluated would be expected to function as antiplasticizers for 
 indomethacin. The results for T

g
 observed experimentally for PVP90 and PVP12 are 

shown in Figure 13.1 versus predictions based on the Couchman–Karasz approach. 
Also shown are the MD simulated T

g
 values for indomethacin–PVP reported by 

Xiang and Anderson [32] versus the Couchman–Karasz prediction based on heat 
capacity values from Crowley and Zografi [33]. Though limited, the MD simulations 
seem to provide reasonable predictions of the antiplasticizing effect of PVP on amor-
phous indomethacin.

13.3.2 Amorphous Structure and Dynamics

MD simulations can be exploited to generate detailed molecular information relating 
to local structure including polymer configurations, main‐chain conformations and 
side group orientations, the nature and probabilities of various intermolecular 
 interactions, nanosegregation of side groups or added solutes (e.g., water), as well 
as  information on the dynamics of certain relaxation and diffusional processes. 
The availability of experimental results from X‐ray diffraction (XRD), quasielastic 
neutron scattering, solid‐state NMR, or various spectroscopic measurements that can 
be compared to those from simulations can serve to validate the simulations, while 
the simulations can provide molecular‐level insights to aid in interpreting the 
 experiments. Dynamic processes of interest, particularly structural relaxation events 
that contribute to local and global mobility and small‐molecule diffusion may also 
be probed.
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In the polymer field, XRD and neutron scattering are the two most widely used 
techniques for validating results from MD simulations. Whereas XRD experiments 
can provide structural features over the relevant length scales, neutron scattering can 
reveal both structural and dynamic properties. Studies that combine MD simulations 
with one or both of these experimental tools have been relatively few in number, but 
interest in this approach is growing because of obvious synergies.

13.3.2.1 X‐Ray Diffraction Conversion of a crystalline material to an amorphous 
solid is accompanied by a change from the distinct X‐ray powder diffraction (XRPD) 
pattern characteristic of long‐range order in crystalline solids to broad “halo”  patterns 
indicating an X‐ray amorphous material [34]. X‐ray scattering intensity is generally 
measured either as a function of the scattering angle 2θ or the magnitude of the 
scattering vector Q in units of Å−1 (Q = 4πsin(θ)/λ). A recent study of amorphous PVP 
by Busselez et al. illustrates the approach and its utility in validating results from 
MD simulations [35].

PVP (Fig. 13.2) is widely used in pharmaceutical formulations, including amorphous 
dispersions, and often selected as a model system for studies of amorphous excipients 
and drug–excipient mixtures [36]. The amide functional group in the  pyrrolidone side 
group lacks a donatable hydrogen but serves as a good hydrogen acceptor to facilitate 
hydrogen bond (HB) formation with drugs having hydrogen‐donating functional groups, 
thus promoting miscibility. PVP and PVP–drug combinations will be referred to repeat-
edly in this chapter.

Shown in Figure 13.2 is the wide‐angle XRD pattern for PVP measured at 550 K. 
The PVP in this example had an average molecular weight of 160,000 Da and a T

g
 

of 445 K by DSC. The short‐range order can be characterized by the experimentally 
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FIGURE 13.1  Experimental T
g
 values resulting from the antiplasticization effect of PVP90 ( ), 

PVP12 ( ), or MD simulated values for PVP ( ) in amorphous mixtures with indomethacin. 
T

g
 predicted is based on the Gordon–Taylor equation with the value of K estimated using the 

Couchman and Karasz relationship.
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observable total static structure factor S(Q)exp which is derived from the coherent 
elastically scattered intensity, Icoh(Q), where Q is the scattering vector and c

i
 and f

i
 are 

the atom concentration and scattering factor for atoms of type i [37]:
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The pair distribution function (G(r)), which is proportional to the probability of 
finding an atom at a position r relative to a reference atom chosen to be at the origin, 
can be determined from the Fourier transform of the experimental structure factor, 
S(Q)exp, over a sufficiently wide range of reciprocal space (Q

min
 → Q

max
) within which 

the X‐ray measurements are obtained:
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where r is the radial distance and ρ
0
 is the average atomic number density in Å3. 

The pair distribution function (PDF) or radial distribution function (g(r) = 4πr2G(r)) 
can also be generated by MD simulation and converted to the structure function S(Q), 
therefore establishing a link between MD simulations and XRD measurements to 
provide a rigorous test of structures obtained by simulation.

Two peaks were observed in the XRD pattern in Figure 13.2 at Q values of approx-
imately 0.7 and 1.2 Å−1. As shown in the figure, structure factors generated from 
MD simulations agreed reasonably well with the X‐ray pattern and exhibited similar 
temperature dependence, leading the authors to conclude that their simulations 
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obtained from MD simulation (‐ ‐). Source: Adapted from Busselez et al. [35]. Reproduced 
with permission of AIP Publishing LLC.
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adequately reproduced the local structure of PVP. To obtain a molecular interpretation 
of the two peaks in the X‐ray pattern, Busselez et al. [35] generated partial structure 
factors from the MD simulations by grouping the atoms in PVP as either main chain 
or side group atoms. This enabled them to conclude that the “prepeak” reflects  spacing 
between polymer backbones, which was estimated to be 10.5 Å in PVP due to the 
bulky pyrrolidone side groups, while the peak at Q = 1.2 Å−1 was attributed to side 
group correlations consistent with a characteristic spacing of side group centers of 
mass of approximately 5 Å. Overall, the structural analyses (which also included 
neutron diffraction results) indicated nanosegregation of the backbone and ring 
domains within PVP glasses above and below T

g
.

13.3.2.2 Neutron Scattering Increasingly, neutron scattering techniques are 
being exploited to validate the results of MD simulations as recently reviewed [4b]. 
Neutron scattering detects the positions and motions of atoms, and therefore has 
advantages over XRD where energies involved are too high to explore relaxation 
processes. Moreover, neutron diffraction probes length and timescales that overlap 
with those accessible in MD simulations.

The scattering cross‐sections obtained as neutrons pass through a sample and 
interact with atomic nuclei contain both coherent (dependent on the direction of the 
momentum transfer or scattering vector (Q)) and incoherent (uniform in all directions) 
contributions. The coherent elastic scattering contribution can provide information 
regarding the static structure factor S(Q) which can be Fourier transformed to produce 
radial distribution functions for the relative positions of different nuclei. Tracing the 
coherent scattering function over time relates the scattering to changes in all atom 
configurations.

Thus, quantities such as pair distribution functions and mean squared displacement 
versus time profiles frequently reported in MD simulations may be compared to results 
from neutron scattering experiments. For polymer and small‐molecule amorphous 
glass formers of greatest interest for pharmaceutical applications consisting largely of 
C, H, N, and O atoms, incoherent scattering by hydrogen atoms tends to dominate the 
neutron diffraction pattern [38]. In fully deuterated samples, the scattering is mainly 
coherent and all‐pair correlations are nearly equally weighted. Coherent dynamic 
structure factors generated from quasielastic neutron scattering techniques such as 
neutron spin echo experiments are particularly useful in analyzing structural 
relaxation.

Narros et al. recently compared results of a fully atomistic MD simulation with 
neutron scattering data for real samples of deuterated 1,4‐polybudadiene [39]. They 
compared results from neutron spin echo experiments and MD simulations at 
 temperatures near and above the T

g
 (~180 K) in order to explore the molecular 

motions taking place in the temperature region where the β‐ and α‐relaxation 
processes merge. Though 1,4‐polybutadiene is not a pharmaceutical excipient, the 
structural features and dynamic processes observed are relevant. The normalized 
dynamic structure factor profiles determined by MD simulation and neutron 
scattering versus time were compared as a function of temperature as illustrated in 
Figure 13.3.
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At the lowest temperature (220 K, but above T
g
) where the α‐ and β‐relaxation 

processes merge, extremely long simulation times (1 µs) were necessary to include 
even a portion of the time needed for structural (α) relaxation. Both the simulated and 
experiment results versus time (t) after 2 ps could be fitted to the well‐known 
Kohlrausch–Williams–Watts (KWW) stretched exponential equation:
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 (13.7)

where the Debye–Waller factor (DWF) accounts for the fraction of elastic 
scattering, τ

s
 is the structural relaxation time, and β is the stretching exponent. 

The simulation data revealed slightly faster decay in structure factors obtained by 
MD simulation than those obtained by neutron spin echo experiments. Assuming 
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Vogel–Fulcher–Tammann behavior they found that the temperature dependence of 
the relaxation for both could be described by the following relationship [40]:

 
s

A

T

B

T T
exp
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 (13.8)

when A and B were fixed and a difference of 15 K in the T
0
 values was assumed. 

The data indicated that the α‐relaxation dynamics from the MD simulations and spin 
echo experiments were superimposable when the timescales for the experiments 
were shifted to faster values corresponding to a difference of 15 K in T

0
.

A second relaxation process that at the lower temperatures (particularly at 200 and 
240 K) was nearly complete was attributed to β‐relaxation reflecting local segmental 
motions within the polymer often described as local jumps within a confined space. 
The local motions within this region were characterized as local jumps between 
two  positions separated by approximately 2.5 Å. Narros et al. [39] exploited a 
 powerful capability of simulations that would only be possible experimentally by 
selective deuteration—the ability to distinguish between the types of hydrogen 
within 1,4‐polybutadiene. Specifically, they distinguished cis and trans methyne 
hydrogens, cis and trans methylene hydrogens as well as vinyl hydrogens. The rapid 
hopping between positions separated by approximately 2.5 Å could be attributed to 
the trans‐hydrogens which relocated by reorientation of double bonds via  cooperative 
counter‐rotation of their two flanking ─CH─CH

2
 bonds. At 200 K, the relaxation 

times for trans‐hydrogen hopping and structural relaxation were well separated 
(2 ns vs. 300 ns). The relaxation time for cis‐hydrogens (70 ns) was much longer and 
appeared to be coupled to structural relaxation.

13.4 HYDROGEN BONDING PATTERNS, WATER UPTAKE, AND 
DISTRIBUTION IN AMORPHOUS SOLIDS

Moisture uptake and the effect of water on amorphous system properties have now 
been explored both experimentally and by MD simulations for several pharmaceuti-
cally useful amorphous polymer and small‐molecule excipients as well as drug–
excipient mixtures. Thus, it is becoming possible to evaluate the reliability of the 
simulations in some cases and to begin exploration of the molecular basis for many 
of the important water‐related property changes in amorphous solids. In contrast to 
the nature of water uptake in crystalline solids, which is often characterized in terms 
of surface adsorption, it is possible for water to dissolve in disordered amorphous 
solids [41], leading to profound changes such as alterations in the dynamics that 
affect properties such as the glass transition temperature and molecular mobility and 
changes in thermodynamic properties such as the Flory–Huggins interaction 
 parameter ( χ) [42].

Water present in amorphous solid formulations can influence both physical and 
chemical stability in a variety of ways [43]. The most direct influence of sorbed water 
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is when it acts as a nucleophile in hydrolysis reactions occurring in amorphous solids 
[44], but it may also promote degradation by solubilizing reactants, altering the local 
pH of the microenvironment, or stabilizing transition states through hydrogen 
bonding. Water also functions as a plasticizer resulting in increases in local or global 
molecular mobility in amorphous solids. Solid‐state drug degradation may be  coupled 
to water induced increases in molecular mobility to varying degrees depending on 
the type of reaction. In particular cases, bimolecular reactions may be increasingly 
favored with increases in translational mobility of reactants, resulting in changes in 
degradation product profiles with increasing moisture content [26c, 44c, e, 45]. 
Physical changes induced by water may include lyophile collapse due to a reduction 
in T

g
, phase separation resulting from mobility increases or alteration in drug– 

excipient miscibility in the presence of water, drug crystallization, and disproportion-
ation of pharmaceutical salts due to water’s activation of counterion exchange 
processes. As a result of the above myriad possibilities, the extent of water uptake 
and its influence on solid‐state product stability are recurring themes in the pharma-
ceutical literature.

MD simulations appear to be potentially useful in providing molecular‐level 
insights to aid in understanding the properties of amorphous excipients and 
 amorphous drug formulations such as the following: (i) What molecular factors 
govern the equilibrium water content in amorphous formulations as a function of 
relative humidity? (ii) How is water distributed in the amorphous matrix, and how 
does its distribution affect other properties? (iii) What properties of the amorphous 
solid determine water’s diffusion, and how does water affect mobility of the drug and 
excipients? (iv) To what extent does water uptake influence amorphous or crystalline 
drug solubility in the solid? (v) How does matrix relaxation (e.g., annealing) influence 
the aforementioned properties?

Shown in Figure  13.4 are moisture uptake profiles as a function of relative 
humidity for a number of amorphous systems including polymers, an amorphous 
drug, and drug–polymer mixtures that have also been examined in MD simulations 
[12b, 42d, 46]. The changes in water content vary considerably with relative humidity 
depending on the polymer and with the drug–excipient ratio within mixtures. In 
the examples shown, PVP exhibits the highest propensity for moisture uptake, while 
poly(d,l)lactide (PLA) has the lowest.

13.4.1 Poly(d,l)lactide

Xiang and Anderson [12b] recently developed an explicit all‐atom computational 
model for amorphous PLA (see monomer unit structure in Fig. 13.4) and conducted 
MD simulations to predict certain properties, including the water sorption isotherm 
for PLA at 25°C. Water sorption was determined using the particle insertion method 
of Widom [47], which has been successfully employed to predict distributions of 
water and other solutes in lipid bilayers [1f, 48] and solubility of gasses and water in 
other polymers [48, 49]. The method involves calculating the ensemble average for 
the change in potential energy resulting from the random insertion of water mole-
cules from the vapor phase into the simulated PLA assembly. The quantity of interest 
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is the excess chemical potential for water in PLA, μexc(w|PLA), which is the 
Gibbs free energy change due to interaction between inserted water molecules and 
the  surrounding PLA polymer molecules. At a sufficiently low moisture content, the 
sorbed water content (ϕ

w
) is a linear function of relative humidity (RH = P/P

s
):
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 (13.9)

where K is the Henry’s constant. The Henry’s constant can be approximated from 
the difference in the excess chemical potentials of water in PLA and in pure water 
(μexc(w|l) = −5.74 kcal/mol) [50], where d

l
 (=1.0 g/cm3) is the density of pure liquid 

water and d
PLA

 (=1.23 g/cm3) was determined from the MD simulation:
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The water content (% w/w) in PLA versus relative humidity based on the value of 
K determined in MD simulations is presented in Figure 13.4 along with experimental 
results reported previously [46] for comparison. The agreement was within the error 
limits of the computational results. Previous studies have shown that for PLA, the 
L/D ratio and degree of crystallinity had little influence on the water sorption [51], 
which is generally less than 2% w/w within the 0–100% relative humidity range. 
This can be attributed to significantly weaker interactions between water and PLA 
compared to the water–water interactions in pure liquid water.
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FIGURE  13.4 Moisture uptake profiles as a function of relative humidity for a number 
of  amorphous systems including polymers (PVP, ; HPMCAS, ; PLA, X), amorphous 
 indomethacin (IMC, ) and a 50% IMC–PVP amorphous mixture ( ) [42d, 46]. MD simula-
tions for similar systems at selected water compositions are discussed in this chapter. The solid 
line represents the predicted moisture uptake profile for PLA from a recent MD simulation 
[12b]. The structure shown adjacent to the solid line is the monomer unit within PLA.
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Snapshots of water molecules taken either in newly formed PLA simulated glasses 
containing 0.6% w/w water content at 298 K or after 100 ns aging indicated that most 
water molecules were not associated with each other. Radial distribution functions, 
g(r), between the hydrogen atoms in water molecules and the oxygen atoms in the 
ester groups on PLA revealed a strong peak at 1.85 Å indicating hydrogen bonding 
between water molecules and polar ester groups in the PLA polymers, while the 
absence of a peak for g(r) at a distance of less than 3 Å between the water hydrogen 
atoms and nonpolar methyl/methylene hydrogen atoms in PLA indicated that water 
molecules are not localized near the PLA backbone hydrogen atoms. The average 
interaction energy for water in the PLA glass (−12.3 kcal/mol) was much smaller 
than that in bulk water at 298 K (−22.3 kcal/mol). Both H‐bonded (83%) and free 
(17%) water molecules were found in the simulated PLA glass. Most were bound to 
the carbonyl oxygen atoms in PLA forming either one (33%) or two (50%) H‐bonds 
by forming a bridge between neighboring lactate units. The presence of the two types 
of H‐bonding were also proposed in a recent study of water uptake into PLA films by 
time‐resolved ATR‐FTIR [52], although the authors also suggested the existence of 
water clusters.

13.4.2 Polyvinylpyrrolidone

The substantial water uptake observed in PVP contrasts markedly with the results in 
PLA, as shown in the water sorption profiles in Figure 13.4. The PVP sorption profile 
is also distinctly nonlinear, which may be the result of plasticization at high water 
contents or water self‐association or clustering [53]. At water concentrations above 
approximately 25% the T

g
 of PVP falls below 25°C [28a], so an upturn at RH > 60% 

could certainly be a consequence of polymer swelling accompanying plasticization, 
but concave upward curvature is present at much lower concentrations, suggesting 
water self‐association. Xiang and Anderson [12a, 24a] conducted MD simulations of 
a PVP polymer having a molecular weight close to that in Kollidon K12, a commer-
cially available PVP polymer, to explore such properties as the distribution of water, 
water diffusion, and plasticization effects of water in assemblies containing either 
0.5 or 10% w/w water.

Snapshots of the distribution of water molecules in the simulated PVP assembly 
containing 0.5 and 10% w/w water at 298 K are shown in Figure 13.5. Whereas most 
of the water molecules were monomeric and distributed uniformly throughout the 
simulation cell at 0.5% w/w water, clusters of self‐associated water molecules were 
prevalent at 10% w/w water. In PVP containing 10% w/w water, an average of two 
water molecules were located within 3.4 Å of any given water molecule with a broad 
standard deviation (see combined figure 5 from Xiang and Anderson [24a]) while an 
average of 0.86 water molecules were within the same distance of a PVP carbonyl 
oxygen atom. Nearly 2/3 of the PVP carbonyl oxygens were found to be within a 
distance of 3.4 Å from a neighboring water molecule. These averages would be con-
sistent with the formation of linear hydrogen‐bonded chains of water molecules with 
each water molecule also hydrogen bonded to a PVP carbonyl oxygen. There was no 
evidence of the presence of any bulk water in this simulation. Radial distribution 
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functions, g(r), also shown in Figure 13.5 indicated a higher probability for water 
molecules to form HBs with the PVP carbonyl oxygen atom at a water content of 
0.5% (relative to methylenes in PVP shown for comparison) and to other water mol-
ecules in addition to PVP carbonyl oxygen atoms at a water content of 10% w/w.

Several lines of experimental evidence lend support to the aforementioned model 
for water clustering in PVP. Lebedeva et al. [54] noted in the FTIR spectra of PVP 
samples containing sorbed water at low water contents that the band for unbound─OH 
groups was absent, leading them to conclude that the water molecules present were 
hydrogen bonded to oxygen atoms in PVP carbonyls. Taylor et al. examined peak 
shifts in the Raman spectra for PVP samples equilibrated at various relative humidities 
[28b]. At low water concentrations they suggested that the first one or two water 
 molecules hydrogen bonded directly to the PVP side chain, but with increasing water 
content the additional water molecules increasingly hydrogen bonded to each other. 
Teng et al. [55] explored the effect of water content on local structure of PVP K90 
and K12 as monitored by XRPD at ambient temperature. Recall that two broad halos 
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FIGURE 13.5 (Upper panel) Radial distribution functions, g(r), for water molecules indi-
cating hydrogen bonding to other water molecules or PVP carbonyl oxygen atoms (indicated 
by the arrows) at water contents of 0.5% (left) and 10% w/w (right). Lower curves (open 
squares) represent g(r) between the oxygen atoms of water molecules and PVP methylene 
groups. (Lower panel) Snapshots of the distribution of water molecules in a simulated PVP 
assembly containing 0.5 and 10% w/w/ water at 298 K. Source: Xiang and Anderson [12a]. 
Reproduced with permission of John Wiley & Sons. Xiang and Anderson [24a]. Reproduced 
with permission of Springer Science+Business Media.
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were observed by Busselez et al. [35] at a temperature above T
g
 as shown in 

Figure 13.2, where the low angle halo was attributed to a spacing of 10.5 Å between 
polymer backbones in PVP. Teng et al. monitored the characteristic scattering 
 distance as a means of detecting changes in structure as a function of water content. 
They found that the low angle halo decreased with a decrease in temperature, indi-
cating a characteristic scattering distance of approximately 7–8 Å in both PVP K12 
and K90 glasses at 0% water. This spacing remained relatively constant up to less 
than 12.5% w/w water, which Teng et al. interpreted as suggesting no apparent 
increase in free volume of the polymer within this range of water contents, thus 
 consistent with the observation in MD simulations by Xiang and Anderson [24a] that 
changing from a water content of 0.5–10% w/w had only a minor effect on overall 
polymer free volume. Above T

g
, this characteristic spacing increased more dramati-

cally. The characteristic distance corresponding to the high angle halo of approxi-
mately 4.5 Å at 0% water content (which Busselez et al. attributed to pyrrolidone 
side group spacing [35]) was found to transition smoothly to the spacing found for 
the primary halo in bulk water at high water contents well above T

g
.

More recently, Busselez et al. [56] generated neutron scattering cross‐sections 
for hydrated PVP containing either 44% w/w H

2
O, 22% w/w D

2
O, or 44% w/w/ 

D
2
O. From the results in 44% w/w H

2
O, they inferred that water swells the polymer 

chains and induces disorder in the nanosegregated ring domains. Deuteration 
enhanced the visibility of water–water correlations from which they found evidence 
for water strands or clusters in support of the MD simulations by Xiang and 
Anderson [24a]. One cross correlation peak at approximately 1.1 Å−1 was attributed 
to the correlation between atoms of one PVP side group and a water molecule 
hydrogen bonded to the carbonyl of a neighboring ring. Thus, the experimental 
 evidence available from  several types of studies appears to be consistent with the 
results of MD simulations.

13.4.3 Hydroxypropylmethylcellulose Acetate Succinate (HPMCAS)

Hydroxypropylmethylcellulose acetate succinate (HPMCAS) has recently become 
quite popular in the pharmaceutical industry due to its frequently demonstrated 
ability to produce stable amorphous drug dispersions [30, 57]. Its high T

g
 in its un‐

ionized state [30] tends to reduce molecular mobility and improve physical stability 
of amorphous drug dispersions. The hydrophobic regions within HPMCAS aid in 
solubilization of poorly water‐soluble, lipophilic drugs, while its amphiphilic nature 
promotes dissolution and inhibits drug crystallization. In some comparison studies, 
drug/HPMCAS solid dispersions have been shown to be more effective than other 
polymers investigated [57, 58] at maintaining drug supersaturation in simulated 
intestinal fluid and to provide greater enhancement in bioavailability in vivo [30, 59].

As illustrated in Figure 13.4, HPMCAS exhibits a tendency to absorb a significant 
quantity of water (e.g., 0–12% w/w water between 0 and 95% RH) in comparison to 
the relatively simple PLA polymer, although it is much less hygroscopic than PVP. 
Because water plays such a critical role in determining the stability and drug release 
from drug/HPMCAS solid dispersions, Xiang and Anderson recently conducted a 
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full atomistic simulation of an HPMCAS polymer at different water contents to 
explore both the distribution of water molecules and the influence of water on molec-
ular mobility [12c].

Construction of a molecular model for HPMCAS is complicated by the complex 
and varied substitution patterns possible as evident in the representative substructure 
shown along with the variety of R‐substituents that may be found at each of the 
 indicated oxygens (Fig. 13.6). As recently observed by Porter III et al. [60], a limited 
variety of HPMCAS products are available, and they cover a relatively small sub-
space of the entire allowed compendial space. In particular, they observed that the 
ratio of acetyl to succinyl substitution may have a dramatic impact on the ability of 
HPMCAS to form supersaturated solutions as measured by areas under the solution 
concentration versus time profiles (AUCs). Supersaturation profiles are highly 
dependent on the HPMCAS composition and also very drug specific. MD simula-
tions may ultimately contribute to understanding of the molecular basis for the 
 relationship between HPMCAS molecular structure and dispersion performance. 
Clearly, HPMCAS polymer assembly in terms of composition and substitution 
pattern requires careful attention.

Prior to the simulation by Xiang and Anderson, no previous MD simulations of 
HPMCAS had been reported in the literature. Therefore, the molecular model devel-
oped in terms of substituent distribution was one that resembled the typical values 
in a commercial product (HPMCAS‐MF, Shin Etsu Chemical Co.)—23% methoxy, 
7% hydroxypropoxy, 9% acetyl, and 11% succinyl [57]. The percentages in the 
simulated HPMCAS polymer were 25% methoxy, 4% hydroxypropoxy, 11% acetyl, 
and 13% succinyl by weight. In each simulation cell, there were six HPMCAS 
polymer chains within which a total of 50 residue patterns were present. The 
polymer molecular weight was 5213 Da. The densities obtained for the simulated 
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amorphous HPMCAS at 298 K were 1.295, 1.287, and 1.276 g/cc at 0.7, 5.7, and 
13.2% w/w water, which compared favorably with the reported density of 1.285 g/cc 
for the AQOAT® AS‐MF commercial HPMCAS. The reduced densities with 
increased water content were consistent with polymer swelling upon increasing 
water content.

The synthetic route for producing HPMCAS from HPMC results in blocking of a 
significant fraction of the hydrogen‐bond‐donating sites in HPMC by acetyl groups. 
Thus, in the HPMCAS polymer assembly constructed for MD simulations, only 0.47 
of a hydrogen donor group was present in each glucose unit, on average. Of these 
H‐donors, at a water content of 0.7% w/w, approximately 2/3 were involved in an 
HB. Of these HBs, nearly 90% were formed between individual glucose units either 
within a chain or between chains. The remaining HPMCAS hydrogen donors (5) 
formed HBs with water molecules. There were 12 water molecules present in the 
simulation at 0.7% water content having 24 hydrogen donor sites. Of these, 14 
formed HBs with acceptor atoms in HPMCAS and none of them were involved in 
HBs with other water molecules, although there is a small probability for dimer 
formation even at 0.7% w/w water content as evident in the probability distributions 
shown in Figure 13.7.

At a higher water content of 5.7%, most of the water molecules were involved in 
dimers or water clusters with less than 20% isolated. This appears to contrast with 
the water distribution in the more hydrophilic polymer poly(vinyl)alcohol where at 
5.2% w/w water the water distribution was homogeneous although the temperature 
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) within a distance 
of 3.4 Å of a given water molecule in simulated HPMCAS glasses at 298 K and different water 
contents. Inset shows a snapshot of water clustering at a water content of 13.2% w/w. Source: 
Xiang and Anderson [12c]. Reprinted with permission of American Chemical Society.
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in that study (502 K) was much higher [61]. At 13.2% w/w water in the present study, 
less than 5% of water molecules were isolated. A representative snapshot in 
Figure 13.7 shows the extensive water clustering at 13.2% water. The degree of self‐
association of water molecules can be assessed by the probability distribution 
reflecting the number of water molecules (n

water
) within the solvation shell (3.4 Å in 

the present study) of a given water molecule as shown in Figure 13.7. The averages 
for the number of water neighbors at a distance of 3.4 Å from a given water molecule 
in HPMCAS at water contents of 0.7, 5.7, and 13.2% w/w were 0.17, 1.8, and 3.5, 
respectively. These are significantly below the average in bulk water of 8.9 deter-
mined in the same manner, indicating that there is no evidence for complete phase 
separation up to 13.2% w/w water.

13.4.4 Amorphous Indomethacin

Indomethacin (1‐(p‐chlorobenzoyl)‐5‐methoxy‐2‐methylindole‐3‐acetic acid, IMC), 
can exist in several crystalline forms (e.g., α‐, γ‐, and δ‐polymorphs and others) 
[34, 62]. Due to the poor water solubility of the most stable γ‐form [63], IMC has 
been a popular choice as a model compound to explore the benefits of amorphous 
solid dispersions for enhancing solubility [64], thereby improving dissolution 
rates and oral bioavailability [65].

The structure of IMC, shown in Figure 13.8, suggests possible reasons for the 
existence of multiple polymorphic forms based on the variety of potential packing 
motifs. IMC contains hydrophobic indole and chlorobenzyl groups as well as  multiple 
polar substituents that provide HB donating and/or accepting capacity. In γ‐crystals, 
hydrogen‐bonded dimers form between carboxylic acid groups of adjacent IMC 
molecules while in metastable α‐crystals two IMC molecules form a carboxylic acid 
dimer, while the ─COOH from a third molecule forms an HB to the amide  carbonyl 
of one member of the dimer [66]. This polymorphism may stem from the conforma-
tional diversity [66, 67], arising from hindered rotation of the partial double bond 
between the indole N1 nitrogen and C9 carbonyl carbon of the amide linkage (ϕ

1
) in 

IMC (Fig. 13.8), which leads to the prevalence of different conformations in different 
crystalline forms. IMC exists exclusively as the Z‐isomer at ϕ

1
 ∼ −32° in γ‐crystals, 

while in the metastable α‐crystals three different conformations coexist [66]. The 
distribution of conformations depends on the environment as the Z‐isomer is favored 
in solution while the E‐isomer is the form preferred in inclusion complexes with 
β‐cyclodextrin [68].

MD simulation may be ideally suited for unraveling molecular structures in amor-
phous solids that may lead to instability or favor crystallization of one polymorphic 
form over another. Xiang and Anderson [24b] recently conducted an MD simulation 
study of amorphous IMC assemblies containing 0.6% w/w water content to explore 
both structural properties (e.g., IMC hydrogen bonding patterns, distribution of var-
ious IMC conformations, and the nature of water–IMC interactions) as well as 
dynamic processes (e.g., relaxation processes within the IMC molecule, and water 
diffusion). To explore the entire ϕ

1
/ϕ

2
 conformational space by MD simulation, it 

was necessary to reduce the torsional barrier for ϕ
2
 from 29.0 to 8.0 kcal/mol in order 
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to achieve sufficiently rapid interconversions for equilibration between the different 
ϕ

1
 states within a reasonable time frame. As shown in Figure 13.8 (right panel), the 

sampling points in an amorphous solid simulation included all diastereomeric 
 structures and were concentrated around the optimized structures obtained from ab 
initio calculations [67a] (indicated by large open circles).

Curiously, the properties of amorphous IMC dispersions often depend on the 
method of preparation (e.g., melt‐cooling, milling, spray drying, and vapor deposi-
tion) [62a, 69]. Of particular interest are the underlying structural and dynamic 
 properties that lead to IMC crystallization. Crystallization near or below T

g
 may lead 

to either the γ‐form or the α‐form depending on such factors as the rate of cooling 
[70], water content [71], or the method of preparation (e.g., ball milling, cryo‐milling, 
melt quenching, or spray drying) [69e].

Shown in Figure 13.9 are snapshots taken from the simulated amorphous IMC 
assemblies that illustrate the diversity of hydrogen bonded structures present. Two 
structures of particular interest, shown in the upper panels, are the hydrogen‐bonded 
carboxylic acid dimer in which a third molecule forms an HB to the amide of one 
of the IMC molecules involved in the dimer as found in the asymmetric unit of the 
α‐crystalline form (I) and the hydrogen‐bonded carboxylic acid dimer as found in 
the  γ‐polymorph (II) [66]. More prevalent were various larger hydrogen‐bonded 
cyclic aggregates (III) or chains (IV) linked through their carboxyl residues as 
 illustrated in  the lower panels of Figure  13.9. Such nanoaggregates may lead to 
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FIGURE 13.8 Molecular structure of indomethacin (IMC, left) and a plot of the dihedral 
angle pairs (ϕ

1
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2
) represented in simulated amorphous IMC ( ) and the preferred conforma-

tions ( ) obtained by ab initio quantum mechanical calculations [67a]. Source: Xiang and 
Anderson [24b]. Reprinted with permission of American Chemical Society.
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spatial heterogeneity in terms of the distribution of polar and nonpolar residues that 
could influence the distribution of other molecules such as water.

Probability distributions were generated for the number of HBs in which each 
IMC molecule participated. Most (79 ± 3%) were found to participate in at least one 
HB, while approximately 21 ± 3% of the molecules were not involved in an HB in the 
simulated IMC glass. Considering the IMC–COOH as a hydrogen donor, approxi-
mately 73 ± 6% of the HBs that were formed were with the carboxylic acid carbonyl 
group on another IMC molecule while 17 ± 6% were formed with a benzamide car-
bonyl and 9 ± 2% with water molecules. These quantitative results can be compared 
to experimental data obtained by various methods, including XRPD, infrared and 
Raman spectroscopy, and solid‐state NMR. Generally, the experimental results do 
not provide the necessary detail to enable quantitative comparisons. For example, 
Yuan et al. could only conclude from x‐ray amorphous powder diffraction that the 
most favorable packing pattern was one that preserved the cyclic dimer [34]. Taylor 
and Zografi suggested based on infrared and Raman spectra that amorphous IMC 
consists largely of cyclic dimers with a “small proportion” of molecules hydrogen 
bonded to form a chain [64d]. The latter conclusion was based on the presence of a 
shoulder that was attributed to non‐hydrogen‐bonded carbonyls at the end of chains 
of varying length. Thus far, vibrational spectroscopic methods have not distinguished 

I II

III
IV

FIGURE 13.9 Representative H‐bonding patterns in a simulated IMC glass: (I), H‐bonded 
trimer similar to that in the unit cell of the α‐crystalline polymorph; (II) H‐bonded dimer 
 similar to that in the unit cell of the γ‐polymorph; (III) H‐bonded cyclic trimer; and (IV)  
H‐bonded tetramer. Source: Xiang and Anderson [24b]. Reprinted with permission of 
American Chemical Society. (see insert for color representation of the figure.)
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between cyclic dimers and larger cyclic aggregates such as the cyclic trimer (III) 
depicted in the snapshot in Figure 13.9. Solid‐state NMR offers the potential to pro-
vide more quantitative estimates of the various species present. Munson et al. [72] 
examined the distribution of species in melt quenched amorphous indomethacin by 
solid‐state NMR using indomethacin labeled with 13C at the ─COOH group. This 
enabled them to subtract partially overlapping peaks from the amide carbonyl. They 
found that 92.5% of the ─COOH residues were hydrogen bonded in their sample of 
amorphous IMC and 7.5% were free (water content was not reported), in reasonable 
agreement with the aforementioned results from MD simulation. Of those carboxyl 
groups participating in HBs, 74% were formed with another carboxyl group on 
another IMC molecule, while 18.9% were formed with benzamide carbonyls.

Snapshots of the distribution of the 12 water molecules present in the simulated 
IMC assembly, representing a concentration of 0.6% w/w, indicated that most, but 
not all, of the water molecules were monomeric with occasional dimer formation 
also detected. More than 90% of the water molecules were hydrogen bonded. Of 
these, 36 ± 13% were involved in a single HB, while 28 ± 7% and 29 ± 10% partici-
pated in two or three HBs, respectively. When water was the hydrogen donor, 39 ± 8% 
of its HBs were formed with the benzamide carbonyl, 37 ± 12% were with an IMC 
carboxylic acid carbonyl, 12 ± 6% were with the ─OCH

3
 group, and 12 ± 9% were 

with other water molecules.
Glasses produced by MD simulation as well as most of those generated experimen-

tally are metastable systems that continue to undergo structural relaxation with aging 
as they gradually drift toward equilibrium [25a, b]. Over the 100 ns dynamics simula-
tion of the IMC glass described herein, density increased by 0.073% and the overall 
potential energy decreased by 0.092%, indicating that further relaxation could be 
observed even over this short time frame. The strong tendency for IMC carboxyl 
groups to form cyclic dimers or other self‐associated aggregates combined with the 
presence of approximately 20% non‐hydrogen‐bonded ─COOH residues in the 
simulated IMC assembly (but only 7.5% in the sample probed in solid‐state NMR 
studies [72]) leads one to speculate that additional hydrogen bonding or strengthening 
of existing HBs may occur over time after glass formation. Indeed, the greater extent 
of hydrogen bonding found by solid‐state NMR in the earlier example  comparing a 
simulation and an experimentally prepared (melt quenched) sample suggests that 
dramatic differences in rates of cooling may produce significant structural differences. 
Further supporting this contention is evidence that highly stable amorphous indo-
methacin glasses prepared by vapor phase deposition appear to differ significantly in 
certain properties [69c]. Most striking, perhaps, is the substantially reduced moisture 
uptake of the more stable indomethacin glass. Dawson et al. [69c] suggested and the 
earlier simulations seem to confirm that water sorption in IMC occurs because of 
hydrogen bonding with IMC. They speculated that their more stable glass formed 
more HBs between IMC molecules resulting in fewer available sites for water mole-
cules. They also observed higher water diffusivity in the more stable glass which they 
attributed to less stable water binding. Similarly, aging of trehalose for 120 h at a tem-
perature of 373 K reduced its tendency to absorb moisture from 1.4 to 0.8% at 10% 
relative humidity, indicating that water uptake in amorphous solids may not depend 
solely on the functional groups present but also their availability for interaction and 
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competition between various HB donors and acceptors [73]. Amorphous dispersions 
at a higher energy appear to have increased water uptake relative to the same disper-
sions after annealing [74]. These are findings that highlight the complexity and 
dynamic nature of amorphous systems that will hopefully continue to stimulate further 
interest in MD simulations and experiments that can provide detailed molecular inter-
pretations for these phenomena.

13.5 AMORPHOUS DRUG–POLYMER BLENDS

13.5.1 Molecular Interactions Probed by MD Simulation

Amorphous drug formulations have attracted increasing interest for improving oral 
bioavailability of poorly soluble compounds because the amorphous form is the high-
est energy solid form of a compound and, therefore, should have the greatest advantage 
in terms of solubility and dissolution rate [64a, 65]. Using indomethacin as an example 
of a poorly soluble, hydrophobic API, Hancock and Parks estimated the solubility 
enhancement of amorphous indomethacin relative to its most stable γ‐crystalline form 
to range from 25‐ to 104‐fold depending on the value selected for the heat capacity 
difference (ΔC

p
) of the two forms [65]. Murdande et al. [75] combined consideration 

of the effects of water sorption into the amorphous solid and drug  ionization with a 
more accurate value for ΔC

p
, to obtain an improved estimate of the solubility enhance-

ment of amorphous IMC of sevenfold. This value was much closer to the apparent 
solubility enhancement of 4.9‐fold obtained from dissolution experiments.

Thermodynamically, amorphous systems are supersaturated relative to the 
crystalline state so the tendency over time is for crystallization to occur, particularly 
at elevated storage temperatures or at high relative humidity [76]. This is perceived 
to be a major drawback of such systems. Moreover, while higher energy amorphous 
forms often do provide improved bioavailability, this is not always the case [77]. 
An additional significant challenge is inhibiting the crystallization that may occur 
during dissolution, which negates the solubility and potential bioavailability 
advantage of amorphization [36a, 78].

Physical stability (i.e., inhibition of crystal growth) during storage and mainte-
nance of supersaturation during dissolution in vivo may be greatly improved by 
 mixing amorphous APIs with other excipients such as certain polymers, including 
PVP or PVP/PVA (polyvinylacetate) copolymers, hydroxypropylmethyl cellulose 
(HPMC) or acetate/succinate esterified HPMC (HPMCAS), cyclodextrins, etc. 
Intimate mixing of a low T

g
 amorphous drug such as indomethacin (T

g
 = 320 K [16]) 

with polymer excipients that have a high T
g
 can greatly improve physical stability of 

the amorphous dispersion due to the antiplasticizing effect of the polymer. The sta-
bility enhancement in such a case may be at least partially attributable to the limited 
molecular mobility of the system, but thermodynamic factors that govern the driving 
force for drug crystallization are also important.

Typically such amorphous dispersions are prepared by melt extrusion (i.e., cooling 
from a melt) [79], spray drying [80], or lyophilization [81]. Although the reliable 
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determination of drug solubility in amorphous excipients can be challenging [82], 
it  is generally the case stemming from practical reasons (e.g., dose) that the 
concentration of API in amorphous pharmaceutical dispersions exceeds the satura-
tion solubility of the most stable crystalline form. Thus, crystallization is likely from 
a thermodynamic viewpoint. Several recent examples have supported the notion that 
the tendency for crystallization cannot be reliably predicted solely from mobility 
considerations [31, 42e, 82e, 83]. Specific polymer–drug interactions such as 
hydrogen bonding that favor miscibility can contribute to physical stability of amor-
phous dispersions by preventing or reducing the tendency for phase separation, 
thereby reducing the driving force for crystal nucleation and growth, as crystallization 
from an amorphous solid dispersion requires a critical concentration of drug 
 molecules with the proper orientation to form crystallites [42e]. On the other hand, 
as amorphous drug–polymer interactions become more favorable, reductions in the 
aqueous solubility enhancement that may be achievable must also be considered. 
To  further complicate the situation, the degree of miscibility for a given drug–
polymer has been shown to depend on temperature, composition, and water content 
[42e, 82e, 83]. Particularly intriguing in this regard are observations of moisture‐
induced phase separation that ultimately lead to drug crystallization.

The solubility of crystalline API, miscibility of the amorphous form, and the 
aqueous solubility enhancement that may be achieved for a given amorphous disper-
sion and the detailed atomic‐level structural information that can enable a molecular 
understanding are often difficult to determine experimentally but potentially acces-
sible by MD simulations. Most recent examples have focused primarily on solubility/
miscibility properties [84]. The example highlighted in this section explores the 
underlying molecular interactions contributing to drug miscibility/solubility and the 
aqueous solubility enhancement predicted as a function of composition by combining 
MD simulations with Flory–Huggins theory. The model API chosen for this study 
was indomethacin and PVP was the model polymer excipient. Both components have 
been discussed previously in this chapter and their combinations have been the sub-
ject of numerous experimental investigations probing the molecular interactions, 
miscibility, solubility enhancement, molecular mobility, and many other properties 
[16, 31, 36a, 42d, 64d, 82c, d, 83b, c, 85].

As shown previously in Figure 13.8, IMC possesses several polar groups (i.e., 
─COOH, ─CONH─, and CH

3
O─) that can act either as HB donors and/or acceptors. 

As a result and as discussed previously, numerous hydrogen‐bonded species including 
H‐bonded chains and cyclic aggregates coexist in amorphous IMC. PVP is relatively 
hydrophilic due to the presence of the pyrrolidone side group amide, but it lacks an 
HB donor group, and therefore can only participate in hydrogen bonding as an HB 
acceptor. The increasing HB acceptor concentration accompanying increases in the 
concentration of PVP in amorphous IMC–PVP dispersions would be expected to 
result in some exchange of IMC‐IMC HBs for IMC–PVP hydrogen bonding. 
The extent of this migration and its influence on the enthalpy of mixing are critical 
factors in determining the solubility of crystalline IMC in PVP, the miscibility of 
amorphous IMC in PVP, and the potential reduction in aqueous solubility enhance-
ment in IMC–PVP amorphous dispersions relative to pure amorphous IMC.
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In addition to aforementioned MD simulations in amorphous IMC and PVP, 
Xiang and Anderson recently reported additional simulations in amorphous IMC–
PVP dispersions at PVP percentages of 13, 41, and 74% w/w [32]. All of the simulated 
assemblies contained a small percentage of water ranging from 0.6 to 0.8%. After 
energy minimization, the assemblies were equilibrated at 600 K then cooled to 200 K 
over 12 ns. Microstructures obtained after cooling were then used as starting config-
urations for 100 ns aging dynamic runs at 298 K in order to explore the hydrogen 
bonding patterns as a function of percentage PVP and to determine relative solu-
bility/miscibility of IMC and the aqueous solubility enhancement likely as a function 
of IMC dilution in PVP.

Shown in Figure 13.10 is a comparison of the probability distributions for the 
carboxylic acid (─COOH) HB donor in IMC to form HBs at different HB acceptor 
sites in amorphous IMC (white bars) and in an amorphous IMC‐PVP (58 : 41) disper-
sion (black bars) obtained in the MD simulations at 298 K [32]. A representative 
structure of an IMC‐PVP HB is also shown (only a portion of a PVP chain is 
included). Previously it has been suggested that the inhibition of cyclic dimer 
formation that is necessary for nucleation of the most stable γ‐crystalline form in the 
presence of PVP is a major factor in the inhibition of IMC crystallization in IMC–
PVP amorphous dispersions [31]. The results of MD simulations appear to support 
this argument. The probability that the HB from a given IMC carboxylic acid is to 
another IMC molecule was found to shift from greater than 90% in amorphous IMC 
to less than 20% in the presence of 41% w/w PVP. Nearly 80% of the ─COOH HBs 
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FIGURE 13.10 Probabilities for various types of hydrogen bonds (HBs) between an IMC–
COOH donor and various functional groups in simulated IMC (white) and IMC–PVP 
(58%:41%, w/w) (black) glasses at 298 K. A simulated structure of the IMC–PVP HB is also 
shown. Source: Xiang and Anderson [32]. Reproduced with permission of John Wiley & Sons.
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in 58 : 41 IMC–PVP were with PVP. HBs to water accounted for approximately 9% 
of the HBs in both formulations and approximately 1/3 of the carboxylic acid 
groups appeared to be non‐hydrogen bonded in both amorphous IMC and the 58 : 41 
IMC‐PVP simulations. The latter result was somewhat unexpected because with 
increasing PVP content (and more hydrogen acceptor groups) an increase in the 
fraction of IMC participating in HBs would also be expected. However, this may 
have been a result of the rapid cooling employed to form amorphous glasses in the 
MD simulations. In cooling the IMC melt from 600 to 200 K over a longer time 
frame of 12 ns the percentage of non‐hydrogen‐bonded IMC gradually declined 
(unpublished results) suggesting that with further aging the fraction of non‐hydrogen‐
bonded IMC would decrease. Establishing complete equilibrium with respect to 
hydrogen‐bonded structures may require longer simulation times in the presence of 
PVP because of its longer chain length and higher T

g
.

Qualitatively, the hydrogen bonding patterns observed in amorphous IMC–PVP 
dispersions mimic those reported experimentally. Taylor and Zografi [64d] reported 
that the infrared peak at 1710 cm−1 assigned to the cyclic dimer was replaced by a 
new peak at 1726 cm−1 assigned to the non‐hydrogen‐bonded carbonyl stretch of the 
─COOH group of IMC that is hydrogen bonded to a PVP molecule. A new peak at 
1636 cm−1 emerged, which was assigned to the hydrogen‐bonded PVP carbonyl. 
Newman et al. [85b] generated the pair distribution function from X‐ray scattering 
data for a 50 wt% IMC‐PVP dispersion sample and compared it to the best fit for a 
linear combination of the PDFs of the individual amorphous IMC and PVP compo-
nents. Clear differences were seen in a plot of residuals, which the authors inter-
preted as evidence for a miscible dispersion, as was also indicated by the finding of 
a single T

g
 for the amorphous mixture. Pham et al. [86] examined a 30% w/w disper-

sion of IMC in PVP by proton solid‐state NMR (1H SSNMR), contending that this 
technique offers a more direct approach for demonstrating the absence of the 
cyclic  dimer. 2D rotor‐synchronized 1H double‐quantum broadband back‐to‐back 
(DQ‐BABA) magic‐angle spinning (MAS) experiments were performed to generate 
2D spectra for the 30% IMC‐PVP dispersion and the γ‐crystalline form of IMC. The 
absence of an autocorrelation peak indicative of the cyclic dimer in the amorphous 
dispersion that could be clearly observed in the γ‐polymorph suggested the absence 
of dimeric carboxylate hydrogen bonding at 30% w/w IMC/PVP. Munson et al. [72] 
employed 13C SSNMR using IMC that was 13C enriched at the carboxylic acid carbon 
in order to eliminate interfering peaks from PVP. Difference spectra obtained for a 
50% w/w IMC–PVP melt‐quenched dispersion demonstrated the predominance of a 
peak corresponding to the IMC carboxylic acid hydrogen bonded to PVP.

13.5.2 Solubility and Miscibility Prediction

Ascertaining whether or not any given drug would be miscible with a given excipient 
at a particular concentration using computational or theoretical approaches to predict 
miscibility as a function of amorphous dispersion composition would be quite useful. 
One popular (though not universally reliable) method for doing so is the solubility 
parameter method based on Hildebrand’s regular solution theory [87]. The solubility 
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parameter for a given material is the square root of the cohesive energy density 
(CED = ΔE

v
/V ) where ΔE

v
 and V are the energy of vaporization at a given tempera-

ture and V is the volume of the material (or assembly of interest in a simulation). 
Accordingly,

 
CED vE

V
 (13.11)

The total solubility parameter is often expressed in terms of separate contributions 
including nonpolar dispersive interactions (δ

d
) and electrostatic components (δ

e
) 

including both polar and hydrogen bonding interactions as developed by Hansen [88]:
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Regular solution theory assumes that specific interactions such as hydrogen 
bonding are absent, and therefore Hildebrand solubility parameters are generally 
applicable only to systems containing relatively nonpolar constituents. It is important 
to remember that neither of these approaches are theoretically justified for mixtures 
in which specific solvation interactions are important.

Gupta et al. [84a] generated solubility parameters for indomethacin (IMC), poly-
ethylene oxide (PEO), sucrose (SUC), and glucose (GLU) using MD simulations 
with the goal of predicting whether or not blends of indomethacin with each of these 
excipients would be miscible or immiscible. The solubility parameter values obtained 
(in MPa0.5) were 23.9 ± 0.3, 22.2 ± 0.2, 29.9 ± 0.5, and 34.8 ± 0.2 for IMC, PEO, SUC, 
and GLU, respectively. The solubilities were then predicted from the differences in 
solubility parameters:

 
ln lnX X

V

RTs

IMC excipient IMC excipient

0

2 2

 (13.13)

where X
s
 and X

0
 are the mole fraction solubility of IMC in a selected excipient and its 

ideal mole fraction solubility, respectively, Φ
excipient

 is the volume fraction of excip-
ient, and V is the molar volume of indomethacin.

Forster et al. [89] found that drug–excipient pairs (including IMC‐PVP mixtures) 
having a Δδ < 2.0 MPa1/2 were miscible, while combinations with a Δδ > 10.0 MPa1/2 
were generally immiscible. Following the same guideline, Gupta et al. predicted that 
IMC/PEO mixtures should be miscible, while IMC/GLU dispersions would be 
immiscible. Since Δδ for IMC/SUC was 6.0 MPa1/2, they predicted borderline misci-
bility for this combination. Differential scanning calorimetry indicated that the 
melting point of polyethylene oxide was progressively depressed and broadened with 
increasing concentrations of indomethacin, confirming miscibility, while blends of 
IMC with either glucose or sucrose were incompletely miscible.

Xiang and Anderson [32] generated solubility parameters for amorphous indo-
methacin and PVP (each containing <1% water), obtaining values of 25.5 and 19.0 
for IMC and PVP, respectively, suggesting a small positive free energy of mixing 
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(Δδ = 6.5 MPa1/2) and borderline miscibility. More importantly, however, they found 
that predictions using solubility parameters were opposite to those from Flory–
Huggins lattice theory. This and other recent reports indicate that more reliable pre-
dictions are likely to result from the use of Flory–Huggins theory as now described.

The Flory–Huggins theory takes into account the intermolecular interactions bet-
ween the components in a mixture in evaluating the free energy of mixing, ΔG

mix
 

[90]. For a binary mixture such as IMC–PVP, the relationship between ΔG
mix

 and the 
interaction parameter, χ

IMC
–

PVP
, can be expressed by

 

G

RT

H T S

RT
n n nmix mix mix

IMC IMC PVP PVP IMC PVP IMCln ln PPVP 

(13.14)

where Φ indicates a volume fraction and n refers to the number of moles of the 
 indicated component. The first two terms in equation 13.4 constitute the entropy con-
tribution, ΔS

mix
, and are always favorable (i.e., −TΔS

mix
 is negative), while the third 

term is related to the enthalpy of mixing, ΔH
mix

. In MD simulations, the interaction 
parameter χ

IMC–PVP
 was determined from the following equation:

 IMC PVP
site mix

–

V H

RT
 (13.15)

where V
site

 was assumed to equal the size of a PVP monomer, R is the gas constant, 
and T is temperature (K). Because the component of ΔH

mix
 attributable to volume 

changes was less than 1%, ΔH
mix

 could be determined from cohesive energy densities 
where again the Φ values are volume fractions.
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The value of ΔH
mix

 averaged over the entire 100 ns simulation was −2.3 ± 0.9 cal/
mol indicating favorable interaction between IMC and PVP. From this value, an 
interaction parameter of χ

IMC–PVP
 = −0.61 ± 0.25 was obtained at 298 K. The predicted 

free energies of mixing obtained from this χ
IMC–PVP

 are plotted in Figure 13.11 as a 
function of the volume fraction of PVP and compared to the results predicted from 
solubility parameters. Figure  13.11 illustrates various thermodynamic transfer 
 quantities of interest. The free energy of transfer of IMC from amorphous IMC to an 
IMC–PVP mixture is indicated to be favorable by the relative levels of IMC and 
IMC–PVP in the figure. The use of χ interaction parameters is likely to be more 
 reliable than the solubility parameter approach as it accounts for the favorable 
hydrogen bonding interactions between IMC and PVP. The prediction of complete 
miscibility over the entire composition range is consistent with experimental findings 
of a single T

g
 for IMC–PVP dispersions over the entire range of PVP concentrations 

[85d, 91]. The value of χ
IMC–PVP

 is expected to vary with composition and tempera-
ture, therefore the predictions in Figure 13.11 that are based on a value of χ

IMC–PVP
 

determined at a single composition may need further refinement.
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Returning to Figure 13.11 illustrating the thermodynamic quantities of interest in 
the design of an amorphous dispersion, it was possible to estimate the enhancement 
in aqueous solubility of IMC likely as a function of composition as well as the solu-
bility of crystalline IMC in PVP [32]. These calculations incorporated a previously 
reported experimental estimate for the difference in free energy between amorphous 
IMC and the pure crystalline γ‐form, Gcrystal amorphousIMC

  = 1.99 kcal/mol [75]. The free 
energy difference between the γ‐crystalline form of IMC and amorphously dispersed 
IMC at a given PVP composition is as follows:

 
G G

G
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∂ΔG
mix

/∂n
IMC

 is the change in chemical potential for mixing pure amorphous 
IMC and PVP obtained by taking the derivative of ΔG

mix
 from Flory–Huggins theory 

with respect to n
IMC

 where V
IMC

 and V
PVP

 are the IMC and PVP molar volumes, 
respectively:
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FIGURE 13.11 Left: Transfer energies (μ
IMC

) of interest for amorphous IMC–PVP formula-
tions. Right (Upper): Theoretical IMC aqueous solubility enhancement in simulated IMC–PVP 
relative to γ‐crystalline IMC at 298 K. (Lower): Free energy of mixing of PVP with amorphous 
IMC (per mole of lattice sites) according to Flory–Huggins theory using χ

IMC–PVP
 obtained 

directly from MD simulations of the interaction energies (•) or from solubility parameters (°). 
Source: Xiang and Anderson [32]. Reproduced with permission of John Wiley & Sons.
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The overall IMC solubility enhancement from an amorphous PVP dispersion 
compared to that for the γ‐crystalline form of IMC is then:
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The calculated solubility enhancement values are plotted as a function of compo-
sition in Figure  13.11. The solubility enhancement of pure amorphous IMC in 
comparison to the γ‐crystalline form of 29‐fold does not take into account the 
 sorption of water and partial ionization of IMC that would also need to be included 
to match experimental conditions. Both of these factors would reduce the solubility 
enhancement, although the latter quantity would not be necessary to consider at the 
low pH found in the stomach. The plot illustrates that the solubility enhancement 
estimated from MD simulations remains relatively high at volume fractions of PVP 
less than about 0.5, declining only approximately 30% at equal volume fractions 
(Φ

IMC
 = Φ

PVP
) from the value obtained for pure amorphous IMC but then dropping 

more precipitously at higher PVP volume fractions.
The solubility of crystalline IMC in PVP can also be estimated once a value of 

the χ interaction parameter is found. The key assumption is that at equilibrium the 
standard chemical potential for crystalline IMC equals that of IMC in an amorphous 
IMC–PVP dispersion ( IMC

crystal
IMC
PVP). The chemical potential of IMC in the amor-

phous dispersion can also be expressed as follows:
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This leads to the following:
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Solving this equation using the value for Gcrystal amorphousIMC = 1.99 from Murdande 
et al. [75] gave a solubility from crystalline γ‐form of IMC of 27 mg/g. This illus-
trates that even for a dispersion in which amorphous IMC and PVP appear to be 
completely miscible, the system would be supersaturated with respect to the most 
stable crystalline form except at very low IMC concentrations.

13.5.3 Molecular Mobility and Small‐Molecule Diffusion in 
Amorphous Dispersions

The translational and orientational mobility of small molecule APIs as well as other 
solutes such as water, oxygen, hydrogen peroxide, or low‐molecular‐weight acids or 
bases may influence both physical and chemical stability in pharmaceutical glasses. 
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For example, water diffusion may facilitate chemical degradation by acting as a 
nucleophile in hydrolytic processes [44a–c], oxygen and hydrogen peroxide diffu-
sion may influence the rates of oxidative processes as well as the products formed 
[45b, 92], and the diffusion of small‐molecule acids and bases may be involved in 
physical instability such as salt disproportionation [93]. Through MD simulations, it 
is possible to monitor displacement trajectories of individual  molecules over time 

(|r(t) − r(0)|) from which mean squared displacements MSD orr t r r( ) ( )0
2 2  

can be generated for the entire ensemble.
The main limitation of fully atomistic simulations currently is the timescale that 

is feasible to explore in MD simulations, usually in the 10–100 ns range, in relation 
to the timescales for most relaxation and diffusion processes that are of interest in 
pharmaceutical systems. A representative example of the timescale problem is 
provided in Figure 13.12 where log–log plots of the mean squared displacements 
versus time for water and indomethacin diffusion in amorphous IMC containing 
0.6% w/w water are shown at temperatures above T

g
 (i.e., at 400 K compared to the 

simulated T
g
 of 384 K) and well below T

g
 (i.e., 298 K).
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FIGURE 13.12 Log–log plots of mean squared displacements, ⟨r2⟩, versus time for water 
and IMC in simulated amorphous IMC at 298 and 400 K. Source: Xiang and Anderson [24b]. 
Reprinted with permission of American Chemical Society.
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According to the Einstein diffusion equation, the MSD for a randomly diffusing 
molecule in a given material should be proportional to time over a sufficiently long 
period of time, allowing an estimate of the molecule’s diffusivity:
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Log–log plots of MSD versus time should approach linearity with a slope of 1 for 
truly Fickian diffusion. Clearly, none of the plots in Figure 13.12 are linear over the 
entire time frame of these simulations although the diffusion of water in amorphous 
IMC at 400 K is nearly linear at later time points (simulations at 400 K were carried 
out for 350 ns) and the terminal slope is quite close to one. In the amorphous IMC 
glass at 298 K, neither MSD plot approaches a slope of one although both exhibit an 
increase in slope at later times. The mean displacement of water over the 230 ns 
 simulation at 298 K was only approximately 5 Å, while all of the IMC molecules 
were virtually confined in a very small volume over the entire time. Even at 400 K, 
the MSD for IMC (=7.8 Å2) corresponds to negligible displacement. Thus, extracting 
reliable diffusivities for drug molecules in amorphous glasses or even their melts 
may be beyond the capabilities of current fully atomistic simulations whereas such 
information does appear to be obtainable for small molecules such as water, at least 
under certain conditions.

To obtain estimates of diffusivity from the simulations, Xiang and Anderson [24b] 
adapted the Kohlrausch–Williams–Watts (KWW) stretched exponential function 
[94] to fit the D

t
 decay profiles using the following equation:

 
D D C

t
t exp

 
(13.23)

The value of the diffusion coefficient for water in amorphous IMC at 298 K as 
determined from a fit of the simulated D

t
 versus time data to the above equation 

was 2.7 × 10−9 cm2/s, close to published experimental values of 0.9 − 2.0 × 10−9 cm2/s 
obtained in melt‐quenched IMC at the same temperature.

A similar approach has been employed to estimate diffusion coefficients of water 
at 298 K in simulated amorphous PLA solids [12b]. The value obtained in PLA from 
fitting simulation data to equation 13.23 adapted from the KWW stretched exponential 
function was 1.3 × 10−8 cm2/s, closer to reported experimental values than previous 
estimates from simulations [95]. In the PLA simulation study, a KWW stretched 
exponential function also provided a good fit of the average correlation functions for 
the rotational relaxation of PLA carbonyl groups. Remarkably, the KWW parameters 
generated from fits of the PLA carbonyl rotations (τ = 0.21 ns and β = 0.23) could also 
describe the diffusivity profile for water over the 100 ns time frame of the simulation, 
suggesting that the non‐Einstenian diffusion behavior of water was coupled to the 
local β‐relaxation of the polymer.
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A more comprehensive exploration of the molecular factors influencing the 
mobility of water was carried out by MD simulations conducted in PVP containing 
0.5% water at 298 K by Xiang and Anderson [12a]. In this study, MD simulations of 
water’s self‐diffusion in bulk water were also conducted at the same temperature. 
The self‐diffusion of water in bulk water at 298 K was Einsteinian over the 20 ns sim-
ulation resulting in a self‐diffusion coefficient of 3.4 × 10−5 cm2/s which compared 
favorably to the value of 2.6 × 10−5 cm2/s reported in another simulation at 300 K [96] 
and reported experimental values (2.2 × 10−5 and 2.3 × 10−5 cm2/s) [97]. In PVP at 
0.5% water, the diffusion of water was non‐Einsteinian over the entire 100 ns time 
frame with a slope in the terminal portion of the log (MSD) versus log(t) plot of 0.89. 
While the diffusion of single water molecules in bulk water appeared to reflect con-
tinuous random Brownian motion, water’s displacement in PVP was characterized 
by small back‐and‐forth “rattling” within confined spaces over relatively long periods 
with occasional large dislocations or “hopping” events to new locations. These 
hopping events are likely to reflect the jumping of water molecules from one free 
volume pocket to another (and sometimes back) within microdomains surrounded 
by the rigid polymer matrix. Such hopping events have been shown in some cases to 
be highly coordinated with changes in polymer configuration [98]. The diffusion 
coefficient for water in PVP at 0.5% water was estimated in MD simulations to be 
approximately 1 × 10−7 cm2/s, significantly higher than values reported experimen-
tally [53, 99]. Oksanen et al., for example, reported a value of 6.5 × 10−9 cm2/s in PVP 
K90 at 25°C at 1.5% w/w water [99b]. This disparity may be attributable to the lower 
density (i.e., higher free volume) of the polymer glass in simulations due to the more 
rapid cooling. It may also reflect the fact that the simulation time (100 ns) was 
 insufficient for water’s diffusion to reach Einsteinian behavior and thus the apparent 
diffusion coefficient obtained was amplified by the localized “hopping” of water 
molecules between interconnected microdomains.

Given the earlier discussion of the importance of hydrogen bonding interactions 
between water and PVP carbonyl oxygen atoms, an interesting “experiment” 
 performed in an MD simulation involved setting the partial charges on the hydrogen 
and oxygen atoms in water molecules to zero to explore the possible influence of 
hydrogen bonding of water to PVP carbonyl groups on diffusion [12a]. The apparent 
diffusivity of water molecules without partial charges increased by approximately 
sixfold in comparison to TIP3P water molecules with partial charges intact. Most of 
the jumps observed for either case were coupled with a jump back to the original 
position, suggesting that such dislocations involved rattling within a cage consisting 
of interconnected microdomains within the surrounding frozen polymer glass. 
While the frequency of jumps did not change, the length of jumps increased from 
3.8 Å for water molecules with partial charges to 6.9 Å for water molecules with 
partial charges removed. A likely explanation for these results is that water mole-
cules with partial charges are hydrogen bonded to carbonyl oxygen atoms of PVP 
side groups and the hopping events consist of jumps from one PVP carbonyl oxygen 
atom to an adjacent one. The hopping distance appears to be consistent with the 
observation by Busselez [35] from XRD patterns that the pyrrolidone side group 
centers of mass in PVP are approximately 5 Å apart. With partial charges removed, 
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water molecules appear to have greater freedom of movement, although most jumps 
still reflect confinement within a relatively small “cage.”

The critical importance of molecular size was clearly revealed in the PVP simula-
tions by comparing the mobility of water (MW = 18) to that of a single tripeptide 
molecule (Phe‐Asn‐Gly, MW = 336) in the PVP glass [12a]. While water molecules 
exhibited a mean displacement of nearly 20 Å over the 100 ns time course of the 
 simulation the larger tripeptide remained virtually frozen in place. Thus, while 
 typical drug molecules are likely to be nearly immobilized within pharmaceutical 
glasses, smaller molecules such as water appear to be largely confined within small 
free volume cavities only over very short time frames but able to move more freely 
within glasses over longer timescales. Consistent with this generalization, Oksanen 
and Zografi noted based on absorption/desorption measurements that only 0.76 s 
would be required for a water molecule to diffuse 1 mm in PVP at 298 K [99b].

13.5.4 Plasticization by Water Clusters

Numerous studies have shown that water acts as a plasticizer when it is absorbed into 
amorphous solids, resulting in reductions in T

g
 [42a], decreases in NMR relaxation 

times [99b, 100], and increases in translational diffusion of water [99b] and other 
solutes [100b]. Plasticization of amorphous solids by water has also been a subject of 
several MD simulations where increasing water content has been associated with 
increases in polymer mobility and increases in diffusivities of water or other low‐
molecular‐weight solutes [56, 61, 96, 101].

In PVP containing 10% w/w water, as shown previously in MD simulations 
(Fig. 13.5), water molecules tend to self‐associate to form clusters or chains [24a]. 
This tendency for water to self‐associate as its concentration increases has been 
reported in several other polymer glasses, including HPMCAS, polyimide [102], 
polyethylene [103], as well as in sugars above their T

g
 [96] and in monoglyceride/

triglyceride lipid vehicles [2b].
In MD simulations, the apparent diffusion coefficient of water in PVP increased 

approximately fivefold at a water content of 10% w/w [24a], comparable to increases 
observed experimentally [99b]. A plot of water diffusivity in PVP at a water content 
of 10% w/w versus n

w
, the average number of neighboring water molecules within 

3.4 Å of a given water molecule, was found to be linear with a slope indicating an 
increase of 2.6 × 10−7 cm2/s per neighboring water molecule. Mechanistically, these 
results suggest that the enhancement in water’s diffusivity with increasing water 
content may be closely related to the formation of water clusters that expand the 
cavity size and mutually facilitate hopping events through hydrogen bonding and 
coordinated movements. Shown in Figure  13.13 are snapshots taken over an 
 approximately 100 ps time span of a water hopping event in an MD simulation in 
PVP containing 10% w/w. During this period a water molecule (tagged in yellow) 
underwent a rapid displacement from one free volume pocket (on the right) to another 
located approximately 20 Å to the left. (The displacement of the tagged water 
 molecule (|r(t) − r(0)| Å) versus time is also shown in the accompanying panel where 
the starting time for the snapshots is marked with an arrow.) Within these two 
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interconnected microdomains were two water molecules, the yellow tagged water 
molecule, and a second water molecule shown in red and highlighted with a red arrow 
in each panel. Note that these two molecules tended to co‐localize and appeared to 
remain hydrogen‐bonded to each other or in close proximity much of the time. While 
this snapshot represents a single event, it may shed light on the observed increases in 
diffusivity in water as the number of water neighbors increases. The likelihood that 
breaking an HB between a water molecule and PVP carbonyl oxygen is necessary for 
a hopping event implies a significant energetic barrier that could be minimized by a 
coordinated translocation of two or more water molecules. This tandem migration 
could preserve hydrogen bonding in the transition state as passage from one carbonyl 
oxygen atom to the next occurs and may account for the increases in water diffusivity 
observed as a function of the number of neighboring water molecules.

Busselez et al. [56] used neutron scattering with H/D substitution labeling to 
examine the structure and dynamics of glassy PVP and water in hydrated PVP 
 systems, from which they identified two types of water motion. Consistent with the 
earlier simulations, they obtained structural evidence for the existence of water clus-
ters, nanosegregation of PVP side‐groups, and swelling and disorder within ring 
nanodomains in the presence of water. The Q‐dependence observed for the relaxation 
time of water molecules indicated that water relaxation was a diffusive‐like process 
in water‐rich domains while between water clusters subdiffusive motions prevailed.
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FIGURE 13.13 (Left): Snapshots of a water hopping event in simulated PVP containing 
10% water over a approximately 100 ps time span. The yellow‐tagged water molecule under-
went a rapid displacement from one free volume pocket to another approximately 20 Å to the 
left. The red arrow tracks a second water molecule that co‐migrated with the first water 
 molecule. Right: The displacement of the yellow‐tagged water molecule versus time is marked 
with an arrow. (see insert for color representation of the figure.)
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A visual depiction of the organization and translation of water molecules within water 
clusters is shown in Figure 13.14 for an MD simulation of a 60% tricaprylin/40% mono-
caprylin lipid mixture containing an amount of water corresponding to that present at 
saturation (~6.5% wt/wt) [2b]. The water at this concentration was mostly found in clus-
ters that were heterogeneously distributed and partially interconnected through water 
channels. A single drug‐like solute molecule (benzamide) was also included in the simu-
lation, as shown in each panel. A sequence of snapshots taken during an MD –simulation 
at 298 K illustrates the heterogeneous nature of water diffusion and its high relative 
mobility in comparison to the  benzamide molecule which is virtually stationary. Water 
molecules tended to move relatively freely within water clusters as indicated by com-
paring the relative positions of those water molecules that are color‐coded in the three 
panels while jumps of water molecules from one cluster to another were infrequent.

13.6 SUMMARY

With continuing advances in technology, the variety of amorphous system properties 
and processes being probed by MD simulations also continues to expand. In this 
chapter, we have hopefully demonstrated that MD simulations can provide useful 
insights relating to pure amorphous excipients, amorphous drugs, and drug–excipient 
mixtures that may complement experimental findings. While both thermodynamic 
and kinetic properties are of interest, the timescale accessible in full‐atom simula-
tions limits the types of mobility and diffusive‐related processes that can be 
 characterized. On the other hand, structural features and intermolecular interactions 
that underlie various thermodynamic properties of interest (e.g., drug solubility, 
amorphous miscibility, and water sorption isotherms) as revealed in simulations may 
have greater applicability, although one should always be cognizant of the fact that 

FIGURE 13.14 Three snapshots of water clusters at different times in a simulation of a 
water saturated 60% tricaprylin/40% monocaprylin lipid mixture. A few water molecules are 
color coded to allow tracking of their facile movement within water clusters. A single 
 molecule of benzamide remains nearly stationary throughout this time frame. (see insert for 
color representation of the figure.)
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the simulated amorphous systems formed by cooling from a melt are always likely to 
be at higher energy than their experimental counterparts due to the rapid cooling rates 
in simulations. A great advantage that MD simulations of amorphous systems appear 
to have over experiments is that while experiments on such systems are often compli-
cated by their metastable nature and limited to measurements of averages reflecting 
macroscopic or microscopic domains, simulations enable one to monitor single mol-
ecules, characterize distributions of intermolecular interaction types, accumulate 
information on conformational ensembles, etc., and relate this information to overall 
system energies. We are optimistic that advances in both computational and analytical 
techniques will further increase the relevance of MD simulations to real systems.
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14.1 INTRODUCTION

Solid dose manufacturing is a critical step in procuring safe medications as it 
comprises sequence of complicated operations before the drug product is marketed. 
However, each unit operation is expected to modify the material characteristics 
resulting in the desired properties of the final product. Moreover, minimizing the 
production cost without compromising the product quality is another challenge in 
manufacturing. An improved understanding of these unit operations with the aid of 
first‐principle models would help in circumventing some of the process development 
concerns (discarded batches and delayed development). Process modeling approaches 
are particularly beneficial for such intricate processes since predictions can readily 
be made from simulations that would be difficult to obtain experimentally. In addition 
to parametric studies, the effect of equipment design on a given process can also be 
examined. The focus of this chapter is limited to three unit operations: contact drying 
[1, 2], film coating [3, 4], and milling [5–8]. Hence, the objective of this study was to 
elucidate and address the effect of process variables and materials properties using 
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experimentally validated discrete element model (DEM) for all the unit operations. 
As DEM explicitly considers interparticle and particle–boundary interactions along 
with kinematics of primary and secondary particles it provides an effective tool to model 
pharmaceutical unit operations such as drying, coating, and fragmentation processes.

14.2 NUMERICAL METHOD

The DEM, a popular tool to simulate particle dynamics, was originally developed 
by Cundall and Strack [9]. The granular material is considered as a collection of 
frictional inelastic spherical particles. The contact model used in this work is based 
on the work of Walton and Braun [10, 11] where each particle may interact with its 
neighbors or with the boundary only at the contact points through normal and tangen-
tial forces. Details of DEM algorithm can be found in the earlier publication of the 
authors [12, 13]. The forces and torques acting on each of the particles are calculated 
in the following way:

 F m g F Fi i ij ij
N T (14.1)

 T R X Fi i ij
T (14.2)

The normal forces (F
ij

N) and the tangential forces Fij
T  in inter‐particle or particle–wall 

collision are calculated using the “latching spring model” and “incrementally slipping 
model,” respectively, developed by Walton and Braun [10, 11]. The force on each 
particle is given by the sum of gravitational and interparticle (normal and tangential), 
as indicated in Equation 14.1. The corresponding torque on each particle is the sum of 
the moment of the tangential forces arising from interparticle contacts (Eq. 14.2).

14.2.1 Contact Drying in an Agitated Filter Dryer

14.2.1.1 Model Assumptions Numerical model developed is based on the following 
assumptions:

1. Interstitial gas is neglected.

2. Solvent is initially equally distributed within the particles of the granular bed.

3. Boundary wall and impeller temperature remains constant.

4. Physical properties such as heat capacity, thermal conductivity and Young’s 
modulus are constant.

5. During each simulation time step the temperature is uniform in each particle 
(Biot’s number well below unity).

14.2.1.2 Incorporation of Liquid Bridge Force Model This force model for simu-
lating the forces due to the formation of liquid bridge within particles in a wet granular 
bed was taken from previous publication of the authors as shown in Figure 14.1 [12]. 
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The forces due to the liquid bridge comprise attractive capillary force and repulsive 
viscous force. The algorithms for the calculation of these forces were implemented 
in the DEM model along with the collisional forces that arise during interparticle 
contact.

14.2.1.3 Modeling Heat Transfer Thermal particle dynamics (TPD) primarily 
introduced by Vargas and McCarthy [14] incorporated both the contact mechanics 
and contact conductance theories to model the flow dynamics and heat conduction 
through dry granular materials. The details of the model can be found in Sahni et al. 
[12]. Heat transport is simulated accounting for the initial material temperature, wall 
temperature, heat capacity, heat transfer coefficient, and flow properties using a 
linear model. The flux of heat transported across the mutual boundary between two 
particles i and j in contact is described as follows:

 Q H T Tij c j i  (14.3)

Here, T
i
 and T

j
 are the temperatures of two particles and the inter‐particle conduc-

tance H
c
 [14] is given by

 
H k

F r
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 (14.4)

where k
s
 is the thermal conductivity of the solid material, E* is effective young‘s 

modulus for the two particles, and r* is the geometric mean of the particle radii. The 
evolution of temperature of particle i from its neighbor j is
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FIGURE 14.1 Toroidal approximation of a liquid bridge formed between two spherical par-
ticles. Adapted from Ref. [12] with permission. Copyright 2013, Elsevier.
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Here Q
i
 is the sum of all heat fluxes involving particle i and ρ

i
C

i
V

i
 is the thermal 

capacity of particle i. The change in mass of the solvent is computed from the 
coupled heat and mass transfer equation as

 Q dt m H m c Tv s  (14.6)

where Q is the total heat, m is the mass of the solvent, ΔH
v
 is the heat of vaporization, 

m
S
 is the mass of the sample, c is the specific heat capacity, and ΔΤ is the change in 

temperature. At the boiling point, ΔΤ goes to zero making the second term zero and 
the remaining equation will then be used to calculate the change in the mass of the 
solvent. Hence, there is no contribution from the second term at the boiling point in 
the model.

14.2.2 Coating in a Conventional Pan Coater

14.2.2.1 Model Assumptions The numerical model for coating was developed 
based on the following assumptions:

1. Presence of coating fluid was not considered.

2. Physical properties such as Young’s modulus and density were kept constant 
during the simulation.

As very small amount of coating solution was introduced into the bed that dried 
immediately, the DEM model developed simply deals with a dry granular bed. 
Instead, the particles were color‐coded based on their residence time under the spray 
zone for visual purposes.

DEM simulations provide the temporal variation of velocity, orientation, and 
position of each particle within the coater, allowing true measurements of the time 
that each particle spends in the spray zone. The particles were assigned random 
initial nonoverlapping positions and then allowed to settle inside the coater under the 
force of gravity. This initial configuration was equilibrated for a period of 5 s and 
then the coater boundary begins to rotate at a fixed revolution per minute (rpm) value. 
In DEM as the 3D position of every particle was known, it was easy to perform sam-
pling of particles from specified locations and then counting the number of each 
species. A circular spray zone on the surface of the granular bed was assumed. The 
three‐dimensional coordinate of the center of the spray and the radius of the spray 
zone on the granular bed ascertained from the experiments was used to determine the 
residence time distribution of all the particles in the bed from the particle trajectory 
produced by the simulation. The coating variability was therefore dependent on the 
residence time spent by the nonpareils under the spray zone. Any variation in 
residence time was reflected as variation in the coating distribution of a coated batch 
of particles. Simulation of coating process was achieved by postprocessing the 
particle dynamics data.

DEM simulations were performed using 40,000 particles (corresponding to 21% 
fill fraction) where the spray duration was 1 s and the time difference between the 
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initial and the next spray was 3 s. The residence time for each particle was subse-
quently estimated. The particles were color coded based on the residence time in the 
spray zone for the interpretation of coating in the simulation. Quantities estimated in 
each run of the parametric study include the total number of particles passed through 
the spray zone and frequency distribution of the residence time of the coated parti-
cles. The following parameters were investigated:

1. Vessel tilt: 0°, 16°, and 32°

2. Vessel speed: 10 rpm, 20 rpm, and 30 rpm

14.2.3 Modeling of milling in a Wiley Mill

A more fundamental approach toward modeling comminution was by the application 
of fracture mechanics to particle size reduction. In essence, an energy balance is 
applied to the process of crack extension within a particle by equating the loss of 
energy from the strain field within the particle to the increase in surface energy when 
the crack propagates. From the concepts of fundamentals of crack propagation, 
Grady derived a model of dynamic fragmentation [15–17]. Based on Grady’s model, 
the particle size of fragment following fracture is given by Equation 14.7:

 
D

K

V S

4 472. lc

p r

 (14.7)

D is the diameter of the resultant progeny particle, K
lc
 is fracture toughness of 

material, (Pa⋅m0.5), V
p
 is propagation velocity (m/s) of longitudinal elastic waves in 

the material, S
r
 is the induced strain rate. The strain rate in the sample is defined as 

the difference in particle velocity at the point of impact and at the opposite end of the 
sample.

The strain rate is calculated from the rotational velocity of the impeller and the 
radial distance between the center of the rotation and the impact point [18].

 
S

V V

Lr
pp pp1 2  (14.8)

where V
pp1

 and V
pp2

 are particle peak velocities at the impact point and at the free end 
of the particle, respectively, and L is the radius of the particle sample (m). The peak 
velocity V

pp1
 at the interface of the impeller and particle is equal to the impeller 

velocity V
i
, and that V

pp2
 at the free end of the particle sample is of the opposite sign 

of V
pp1

, thus the strain rate can be represented as follows:

 
S

V

L
i
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2

 

Using DEM, the breakage algorithm was modified such that the particle breaks only 
when the contact forces between granule/hammer and granule/wall exceed the break-
age force obtained from DMA studies [18].
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14.3 EXPERIMENTAL METHOD FOR MILLING

Single‐particle breakage studies were performed in Dynamic Mechanical Analyzer 
(DMA) from TA instruments to determine the breakage forces to be used in DEM 
simulation of the milling process. From the DMA studies the breakage force 
(Fig. 14.2) was found to be 6.5 ± 0.5 N. Additional studies for creep and high strain 
effects revealed no damage accumulation for the material under investigation.

To facilitate model verification, experiments have been performed under similar 
conditions. The milling equipment (Thomas Wiley Mill, Thomas Scientific, 
Swedesboro, NJ) used in this study is a variable speed, digitally controlled, direct 
drive mill that provides continuous variation of cutting speeds from 600 to 1140 rpm 
with constant torque maintained throughout the speed range. Parametric studies were 
conducted with lactose granules to study the effect of impeller wall tolerance and 
feed rate on particle size reduction.

14.4 RESULTS AND DISCUSSION

14.4.1 Simulation of Contact Drying

To elucidate the effect of various parameters, TPD simulations were performed under 
similar operative conditions as that of the experiments [12] with variation of one 
single parameter while keeping the others unchanged. In order to maintain the 
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FIGURE 14.2 Breakage of lactose granules under static compression. Adapted from Ref. 
[18] with permission. Copyright 2013, Elsevier.
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constant condition of 0.2 bar pressure, the boiling point of ethanol was set to 45°C. 
Color‐coding as specified before was done in order to visually track the evolution of 
particle temperature in simulations. Particles with temperature equal to 293 K were 
colored dark blue; between, 293  and 295 K dyed sky blue; 295  and 297 K colored 
cyan; 297 and 299 K as bottle green, 299–301 K as bright green, 301–303 K as light 
green, 303–305 K as yellow, and 305–307 K mustard orange. Particles with and 
above 307 K were colored red.

14.4.1.1 Influence of Wall Temperature To study the effect of different wall tempera-
ture, the simulations were implemented at 5 rpm impeller speed for 45% fill load. 
Simulations were operated under similar conditions as that of experiments in order to 
establish a correlation by checking the trends. Simulating the flow and heat transfer of 
67,200 particles accommodated the percentage fill for lactose–ethanol system similar to 
the experimental study [12]. The thermo‐physical properties of lactose monohydrate and 
ethanol used in the model are stated in Tables 14.1 and 14.2, respectively. Figure 14.3a–c 
depicts the matrix of axial snapshots to compare the temperature distribution for 318 K, 
328 K, and 338 K (45°C, 55°C, and 65°C), respectively at T = 0, 10, and 20 s from left to 
right. The temperature of the bed increases with time, and this increase is much faster for 
a higher jacket temperature. The cold blue (T = 0 s) color changes to warmer versions of 
blue. Further, for 318 K a green layer can be seen propagating which exhibits a higher 
 temperature than the blue zones. It can be noticed that this green zone increases for higher 

TAbLE 14.1 Thermo‐Physical Properties of the Model Compounds

Property Glassbeads Lactose

Number of particles 9,000–25,000 40,000–100,000
Density 2,500 kg/m3 1985.7 kg/m3

Poisson’s ratio 0.12 0.2
Coefficient of restitution PP: 0.7 PP: 0.5

PW: 0.5 PW: 0.4
Coefficient of friction PP: 0.4 PP: 0.7

PW: 0.2 PW: 0.5
Spring’s constant 6,000 N/m 6,000 N/m
Young’s modulus 2.6 * 106 Pa 1.7 * 107 Pa
Thermal conductivity 1.1 W/mK 0.9 W/mK
Thermal diffusivity 5.1 * 10–7 m2/s 1.25 * 10–7 m2/s
Time step 1.25 * 10–6 1.25 * 10–6

TAbLE 14.2 Input Properties for Ethanol

Property Glassbeads

Heat of vaporization 855 kJ/kg
Viscosity 0.0012 Pa⋅s
Surface tension 0.022 N/m
Thermal conductivity 0.2 W/mK
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wall temperatures of 328 and 338 K. For 338 K, as the bed temperature will be much 
higher at the same time point due to higher driving force (T

w
 – T

b
), red zones also start to 

appear at T = 10 s with temperature greater than or equal to 307 K. Moreover as the green, 
yellow, and red colored particles start to appear, the blue zones seem to decrease with time.

Figure 14.4a and 14.4b depicts the average bed temperature and normalized sol-
vent content plots, respectively, for the same conditions till time, T = 30 s. As the 
temperature of the bed increases with wall temperature (Fig. 14.4a), solvent content 
decreases correspondingly to a higher drying rate (Fig. 14.4b).

14.4.1.2 Influence of Dryer Load The effect of dryer load was studied for three dif-
ferent fills: 25%, 45%, and 65% which were simulated under fixed operating conditions 
with 42,600; 67,200, and 91,800 particles, respectively. Input factors include 5 rpm 
impeller speed with the jacket heated at 338 K. Figure 14.5a and b shows the temporal 
variation of average bed temperature and normalized solvent concentration respectively 
for the lactose–ethanol system for the abovementioned simulation  conditions. The bed 

T = 0 s

T = 10 s

T = 20 s

293 295 297 301 303 305 307

(a) (b) (c)

FIGURE 14.3 Shows the snapshots comparing the temperature profile for the effect of 
wall temperature (a) 318 K, (b) 328 K, and (c) 338 K, for T = 0, 10, and 20 s; ω = 5 rpm and 
f = 45%. Adapted from Ref. [12] with permission. Copyright 2013, Elsevier. (see insert for 
color representation of the figure.)
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temperature rises quicker for lower fill. Correspondingly the decrease in the solvent 
is much faster as for lower fill volume as temperature distribution becomes uniform 
with time.

14.4.1.3 Influence of Impeller Speed Agitation is known to improve the heat and 
mass transfer rates by enhancing mixing of particles and the particle renewal rates at the 
heat transfer surface. Moreover, most solids are thermolabile, which further limits the 
drying temperature at which they can be operated. Hence, the role of agitation becomes 
even more important in such situations. This effect of agitation speed was studied at 
353 K wall temperature and 45% fill. Figure 14.6a and b shows the average bed temper-
ature and normalized solvent content plots, respectively, for the same conditions till 
T = 30 s. Figure 14.6a illustrates that the temperature of the bed increases with increase in 
speed and subsequently the solvent content dries out faster for a higher impeller speed of 
25 rpm. As expected, the solvent drying is faster for 25 rpm. Increasing the speed resulted 
in an increase in the drying rate and therefore reduction in the overall drying time.
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FIGURE 14.4 Shows the effect of temperature with (a) bed temperature profile and (b) loss of solvent 
content with time; ω = 5 rpm and f = 45%. Adapted from Ref. [12] with permission. Copyright 2013, Elsevier.
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14.4.1.4 Experimental Verification of Simulation Results Figures 14.7 and 14.8 
compare the experimental results with simulation respectively for the effect of wall 
temperature (318 K, 338 K, and 353 K). The simulation data (Figure 14.8a and b) for 
an earlier time period displays a trend similar to the experimental data (Figure 14.7a 
and b) for increase in the bed temperature (Figures 14.7a and 14.8a) and decrease in 
the solvent content (Figures 14.7b and 14.8b), although simulations somewhat over-
predicted the effect of wall temperature. These deviations were mainly attributed to 
the nature of soft particle algorithm and particle size distribution in the bed.

14.4.2 Simulation of Tablet Coating

14.4.2.1 Effect of Pan Tilt on Coating Variability From the previous studies [13] 
on mixing, we have learned that the pan tilt enhances axial mixing of the bed resulting 
in better coating. The DEM simulations of the pan coating process were performed 
using 40,000 frictional spherical particles (of properties as listed in Table 14.3) with 
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the spray duration and interval of 1 and 3 s, respectively. Figure 14.9a shows the simula-
tion results of the temporal variation of percentage of coated particles for different 
orientations of the coater vessel. The percentage of coated particles is higher for the 
case of 32° tilt as compared to the other tilts, and Figure 14.9b shows the corresponding 
frequency distribution for the same. As the tilt increases, the distribution becomes 
more compact approaching toward the Gaussian distribution suggesting better uni-
formity. Therefore, the frequency distribution plot cons the decrease in variability 
with increase in tilt up to 32° as compared to 0° and 16° tilt, where the distribution is 
broad due to wide variation in the particle diameter.

14.4.2.2 Effect of Rotational Speed on Coating Variability Rotational speed has an 
impact on the movement of the particles affecting the time spent under the spray zone. 
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TAbLE 14.3 List of Parameters Used in DEM Simulations

Parameters Values

Total number of particles 40,000–90,000 (drying), 10,000 (milling)
Radius of the particles 1.7 mm (drying), 0.25–1 mm (milling)
Density of the particles 1.6 g/cm3

Frictional coefficients
Particle/particle 0.7
Particle/wall 0.4

Coefficient of restitution
Particle/particle 0.5
Particle/wall 0.4

Normal stiffness coefficient
Particle/particle 6000 N/m
Particle/wall 6000 N/m
Fracture toughness 0.5–0.8 MPa⋅m0.5

Time step (Δt) 2.0 * 10–6 s
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Too low speeds may cause localized over wetting of the particle mass leading to agglom-
eration, whereas higher vessel speed may result breakage of the particles and also lack 
of enough drying time of the particles before their re‐introduction in the spray area.

From previous results on mixing, high optimum vessel speed resulted in good 
mixing of the granular bed thereby improving the coating performance [13]. 
Figure 14.10a shows the relation of percentage of coated particles with time for dif-
ferent vessel speeds. The percentage coated was observed to be greater at higher 
speeds. Figure 14.10b shows the corresponding frequency distribution plot. As the 
vessel speed increased, the histogram approached the bell‐shaped Gaussian distribu-
tion signifying better uniformity of coating as the standard deviation decreased with 
time. Frequency distribution plots in Figure 14.10b further corroborated the decrease 
in variability with increase in speed. A wider distribution was observed for 10 rpm; 
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however, the diameter distribution became tighter as the speed increased. Therefore, 
high pan speeds resulted in better coating uniformity.

14.4.3 Simulation of Size Fragmentation (Milling)

14.4.3.1 Effect of Feed Rate Initially 10,000 spherical, inelastic, frictional particles 
with material properties described in Table 14.3 were deposited in the hopper with a 
closed outlet. After deposition, particles were discharged from the hopper into the mill. 
The blades/impellers were then set into motion at prescribed rotational velocity of 600 or 
1140 rpm.

In the snapshots illustrated in Figure 14.11, color‐coding is based on the particle 
size to visually track its evolution trajectory in simulations. Similar to experimental 
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the effect of speed at 32° tilt. Adapted from Ref. [13] with permission. Copyright 2011, Elsevier.
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results, the size distribution was found to become coarse as the feed rate was increased. 
The size distribution was found to increase from (580–620 µm) at 60 g/min to around 
(750–900 µm) at 200 g/min. There was also build of some smaller particles (<600 µm) 
observed at feed rate of 200 g/min.

This perhaps could be as a result of flood feed conditions due to which the 
movement of powder bed gets impeded. As a result, the same particles might 
come in contact with the hammer that could result in attrition type conditions. From 
the simulation data the particle size obtained at 5, 10, 15, and 20 s was compared to 
experimental results for the three different feed rates at 600 rpm. As the parent 
particle size in simulation (2 mm) differs from experimental (1.1 mm), a dimension-
less size was computed and plotted against time. The simulation illustrated a similar 
trend (Fig. 14.12) to the experimental observations.

To further explore the effect of feed rate, the velocity of the particles was 
compared at different time points (Fig. 14.13). In these snapshots, the particles have 
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FIGURE 14.11 Temporal distribution of particle size under the impeller speed of 600 rpm 
at feed rates of (a) 60 g/min, (b) 120 g/min, and (c) 200 g/min. Adapted from Ref. [18] with 
permission. Copyright 2013, Elsevier. (see insert for color representation of the figure.)
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rates (a) 60 and (b) 200 g/min. Adapted from Ref. [18] with permission. Copyright 2013, 
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been color coded for velocity where VE in contour chart represents velocity of parti-
cles. From the snapshots, one can observe that as the feed rate was increased the 
velocity of the particle decreased gradually with time. As a result there was a decline 
in strain rate. Moreover, higher feed rates at 600 rpm perhaps also decrease the mean 
free path length and thus reduce the overall comminution rate.

At 1140 rpm lower feed rates generated a much narrower size distribution 
(400–580 µm). As the feed rate was increased there was some decrease in breakage 
rate; however, no flood feed conditions were observed (as shown in Fig. 14.14). This 
suggests that due to greater centrifugal forces movement of powder bed is not 
obstructed, and hence there is no much accumulation of particles.
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FIGURE 14.14 Temporal distribution of particle size under impeller speed of 1140 rpm at 
feed rates of (a) 60, (b) 120, and (c) 200 g/min. Adapted from Ref. [18] with permission. 
Copyright 2013, Elsevier. (see insert for color representation of the figure.)
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14.4.3.2 Effect of Impeller Wall Clearance The effect of impeller wall tolerance 
was approximated by creating long hammers (1800 glued particles) and short ham-
mers (3200 glued particles), thereby providing a tolerance of 2 and 3 mm, respec-
tively. The operational speed during the simulation is 600 and 1140 rpm. As the 
impeller tolerance was increased, the comminution rate slowed down. The snapshots 
illustrate (Fig. 14.15) that there is accumulation of large particles near the base of 
mill. This is because as length of blade is reduced the particles do not strike the sur-
rounding chamber/blade easily especially at lower speeds as the centrifugal forces go 
down. Thus the powder bed tends to collapse easily. This effect was more significant 
at 600 than 1140 rpm.

14.5 SUMMARY AND CONCLUSIONS

Numerical simulations of granular flow and heat transfer in an agitated filter dryer 
are presented using TPD. The effects of operating parameters (wall temperature and 
impeller speed) and batch size on drying behavior have been systematically studied 
and compared with experimental data. Detailed analysis of temporal profiles of 
temperature and solvent content in the bed was performed. Under constant fill, both 
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FIGURE 14.15 Temporal distribution of particle size for impeller wall tolerance 3.9 mm at 
different impeller speeds of (a) 600 rpm and (b) 1140 rpm. Adapted from Ref. [18] with per-
mission. Copyright 2013, Elsevier. (see insert for color representation of the figure.)
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the wall temperature and the impeller speed have a remarkable influence on the 
drying rates in the examined range. The variation of the operating parameters revealed 
that increasing the drying temperature enhances the drying rate and hence the drying 
time is reduced. Particle temperature and solvent content profiles obtained from the 
simulations are in good agreement with those obtained experimentally.

A mechanistic first principle‐based model to study the coating variability in a pan 
coater is being developed. The maximum coating efficiency with minimal variability 
was accomplished at the optimal coating condition of 32° vessel tilt and rotational 
speed of 30 rpm, in both experiments and simulations. The coating variability 
decreased with time under all conditions.

Finally, the experimental and computational methods were developed to study 
comminution of granular bed in a Wiley mill. Granular flow and mechanical prop-
erties of lactose are taken into account in order to develop a fundamental under-
standing of their effect on milling performance. DEM simulations were used to 
examine the breakage rate in the granular materials processed in a lab scale Wiley 
mill. It was found that the speed and mass flow rate play an important role in commi-
nution of powder bed. Very high mass flow rates resulted in flood feed conditions at 
lower speeds that caused the mode of breakage to change from fragmentation to attri-
tion. Increasing the impeller wall clearance reduced particle size reduction at both 
speeds. However, the effect was more significant at lower speeds. The low velocity 
of particles attained at lower speeds caused them to settle at the base of mill than 
impact the wall thereby reducing fragmentation. In these simulations, the breakage 
algorithm does not depict the effect of attrition on particle size distribution as it does 
not account for mechanism of surface removal. Nevertheless, the simulations could 
still capture the difference in breakage behavior upon changing the experimental 
conditions. This suggests that simulations can be used to direct future experimental 
design hence providing a better understanding of the process.
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ciprofloxacin, 315–316
cocaine, 322–323
cocrystal former, conformer, 3–4, 6, 8–9, 

17, 22, 25–29, 31–33, 168–169, 
212, 225–227, 308

cocrystal, cocrystallization, 3–4, 6, 17, 145, 
176 see also cocrystal (coformer) 
in silico screening

cocrystal (coformer) in silico screening
COSMO‐RS based, 212, 225, 227–228
informatics‐based, 17, 25–26

cohesive energy density, 358
computational chemistry, 2, 88, 221, 277
computational fluid dynamics (CFd), 118
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crizotinib (xalcory®), 48–50, 118
crystal chemistry, 178–9, 182, 184, 187
crystal growth, 5, 131–3, 178, 185–187, 

190–191, 194, 206, 333, 354
crystal morphology (shape)
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crystal packing interactions, 288, 295, 312, 
315, 326

crystal structure prediction (CSP)
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moisture uptake, 331, 333, 342–344, 353
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molecular diffusion, 361–365, 367
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349–350, 365–367
comparison with experiment, 338–342
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solubility prediction, 268

molecular mobility, 6, 295, 331–332, 336, 
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multi‐component (MC) score, 26
multiscale modeling, 8–9
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236, 254

group contribution+ (GC+) method, 
239, 254

QTAIM (Quantum Theory of Atoms In 
Molecules), 42, 44–45, 47, 50–53
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HABIT, 181, 189
IsoStar, 18, 31
Jaguar, 63–64
MacroModel, 63–64, 66, 147
Material Studio, 126
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Quantum ESPRESSO, 297
SZYBKI, 160
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intrinsic, 158, 263–265, 267, 269, 275, 279
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coefficient

COSMO‐RS, 215–218
excess Gibbs Energy (GE) models, 236

NRTL‐SAC, 211, 218–220, 236, 
252–254, 259

UNIFAC, 211, 236–237, 252
UNIQUAC, 211, 236
UNISAC, 237, 252, 254, 257–258

fluctuation solution theory (FST), 244
general solubility equation (GSE), 266
Hansen solubility parameter, 211, 358
Hildebrand solubility parameter, 358
PC‐SAFT, 211, 236, 258–259
reference solvents, 215, 218–220, 224
thermodynamic basis, 238
thermodynamic cycle, 265–268

solvate (solid), 3, 4, 6–8, 18, 22, 32–33, 
119, 145, 164, 168, 176, 295, 
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solvate formation in silico screening
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informatics, 22, 32–33

solvation model
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reference interaction site model (RISM), 
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stable form screening, 4, 52, 58
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334, 342, 361
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size‐dependent, 192
relative humidity, 9
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entahlpy, 97, 103, 158, 181–182, 269, 276
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free energy, 6, 264, 267, 269, 276, 278

GAUCHE methodology, 278
sulfadiazine, 219–220, 224
sulfamethoxypyridazine, 216–217
sulfonamide, 169, 216
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supercooled liquid, 215–216, 230, 265–266
supersaturation, 118, 146, 185–187, 192, 
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thiophanate‐methyl, 229
total correlation functions, 272
triacylglycerols (TAGS), 241

unit operations, 8, 9, 375

Vapor–liquid equilibrium (VLE), 132, 236, 
240–241, 243, 249, 253

vibrational entropy, 105–106, 277
virial theorem (local form), 47
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crystal structure prediction

Vogel–Fulcher–Tammann relationship, 
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water
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distribution, 332, 349
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see also moisture uptake
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(a)

(b) (c)

(d) (e)

Figure  2.8 Conformation and Full Interaction Maps of AMG 517. (a) Overlay of the 
AMG 517 molecule from the sorbic acid cocrystal with a likely conformation suggested by 
Mogul analysis (dark). Overlay RMSD = 0.392Å. (b) Contour maps for hydrogen‐bond donor 
(cyan) and acceptor (orange) probes, (c) maximum hot spots in the donor (cyan) and acceptor 
(orange) maps, (d) overlay of a sorbic acid molecule onto the contour maps and (e) overlay of 
a sorbic acid molecule onto the hot spots (figures prepared using Mercury [18]).
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Figure 3.2 Scatter plot of the DFT/COSMO H‐bonding energy versus the predicted HB 
energy based on a product of donor and acceptor polarization charge densities. Source: 
Adapted from Klamt et al. [55]. Reproduced with permission of Royal Society of Chemistry.
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Figure 4.8 Five experimentally observed crystallographic conformations of axitinib. The 
CSD refcodes for forms I, IV, VI, XXV, and XLI are VUSDIX06, VUSDIX05, VUSDIX03, 
VUSDIX, and VUSDIX04, respectively. Form IV has two molecules in the asymmetric unit 
cell. Form IV conformation “b” (IVb) is nearly identical to the conformation of form I. S⋯O 
distance and SCCC═O motif planarity are shown for each conformation. Source: Adapted 
from Lupyan et al. [37]. Reproduced with permission of Springer.
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Figure  5.4 Molecule XX (benzyl-(4-(4-methyl-5-(p-tolylsulfonyl)-1,3-thiazol-2-yl)
phenyl)carbamate) from the fifth blind test of crystal structure prediction. (a) Chemical  diagram, 
(b) overlay of one of the 48 database generated conformations (red) with the conformation in 
the observed crystal structure, (c) overlay of the CSP global minimum in lattice energy (green) 
with the observed structure from X-ray diffraction. Source: Kazantsev et al. [29]. Reprinted 
with permission of Elsevier.
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Figure 6.4 (a) Full interaction map for sulopenem. The location of neighboring molecules 
satisfying the carboxylic acid donor and acceptor group with full interaction map overlaid is 
shown. (b) Hotspots for sulopenem full interaction map. Relative heights are reported for each.
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Figure 6.9 Superposition of the experimental and predicted crystal structures using the 
COMPACK algorithm (tolerance = 15%, RMS = 0.460).

Figure  6.15 (a) Molecular structure of the dominant (002) surface of erythromycin. 
(b) Molecular structure of the end (011) surface of erythromycin.



Figure 7.9 (a) Structure 01–126. (b) Structure 01–127. Noncovalent interaction (NCI) 
plot of predicted crystal structure. Reduced density gradient isosurface (IS) cutoff set to 0.25. 
Isosurfaces represent either unfavorable, weak, or strong favorable interactions.

(a)

(b)

Three-dimensional grid near surface under
study 

Probe molecule (shown as red star) visits
every grid point

For every set of X, Y, Z, θ, γ, δ, interaction
energy of probe molecule is calculated 

It is oriented in three degrees of rotation (θ,
γ, δ)

Typical number of steps in X, Y and Z
directions are 8 × 8 × 8

Surface embedded in a 3 × 3 × 2  matrix
to overcome edge effects on simulation

One probe molecule explores every grid
point on a reticular area

Volume of crystal (shown in brown)
considered for simulation is defined in
input
Slice thickness (n) is multiple of dhkl

Crystal

surface

Y

X

Grid
Probe molecule

Z
n

Figure 8.5 Schematic representation highlighting the main computational methodology 
associated with the grid search; the probe molecule in the context of the surface and the virtual 
grids. Source: Adapted from Ramachandran et al. [63]. Reproduced with permission of 
American Chemical Society.
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Figure 8.10 Comparisons of interaction energy distributions of 17 excipients with keto-
profen on (100) surface (left‐hand side) and on (110) surface (right‐hand side). The plots are 
split into six separate plots for clarity. Source: Adapted from Ramachandran et al. [81].
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Figure 11.4 Correlation functions in the 3D RISM approach. (a) Site–site intramolecular 
( solv ( )r ) and intermolecular (hsolv ( )r ) correlation functions between sites of solvent mole-
cules. The graph shows the radial projections of water solvent site–site density correlation 
functions: oxygen–oxygen (O–O, solid line), oxygen–hydrogen (O–H, dashed line), and 
hydrogen–hydrogen (H–H, dashed‐dotted line). (b) Three‐dimensional intermolecular solute–
solvent correlation function hα(r) around a model solute (diclofenac). Source: Palmer et al. 
[94]. Reprinted with permission of American Chemical Society.
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Figure  9.5 Random forest–based QSPR model for the prediction of melting points. 
Additionally, the number of ring bonds and second σ‐moment (M2) are shown via point size 
and color gradient, respectively.
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Figure 12.3 35Cl EFG tensor orientations and 35Cl SSNMR spectra at 21.1 T for (a) Procaine HCl and (b) Bupivacaine 
HCl Monohydrate.Simulations for the static and MAS spectra are shown on top (red line) of the experimental lines (in 
blue). The yellow‐shaded region represented on the tensor orientation diagrams highlights the N–H⋯Cl interactions. 
Experimental and calculated C
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 values are also shown for each compound. Adapted with permission from Ref. 

[39]. Copyright 2008, American Chemical Society.
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Figure  12.12 Visualization of the in‐plane (δ
11

|δ
22

) slices of the EDD (left) and SDD 
(right) for atom C2 in theobromine. (a and e) HB2; (b and f) cluster composed of molecules 1 
and 6 (weak H‐bonding, see Fig. 12.11); (c and g) S7; and (d and h) HBS13. The arrows sche-
matically represent the calculated relative orientations of the in‐plane principal components of 
the 13C CST, and the numbers denote the calculated changes in the magnitude of these compo-
nents upon formation of the clusters. Adapted with permission from Ref. [58]. Copyright 
2013, American Chemical Society.
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Figure 12.14 (Left) Δδ(ppm) plot showing crystal packing contributions (blue stems) and hydration  contributions 
(red stems) to the GIPAW calculated 1H ICS of ciprofloxacin Form I and Form II. In II, each of the three stems per 
proton corresponds to a crystallographic unique molecule (Z′ = 3). Right: Detailed view of intermolecular  interactions 
in the ciprofloxacin Forms I and II structures. Reprinted with permission from Ref. [20]. Copyright 2012, American 
Chemical Society.



a-f PSD structures a-f DFT structures
g-i PSD structures g-i DFT structures

Reference structure

(i)

(ii)

H(5–7)

H(11–13)

H(3)

H(4)

H(14)

H(1)

H(8–10)

C(8)
C(6)

C(5)
C(4)

C(3)

C(2)
C(1)

C(9)
C(7)

H(2)

2

0

–2

–4

–6

–8

–10
H(14) H(3) H(2) H(1) H(4) H(11–13)H(5–7)H(8–10)

Atom number

δ c
al

c–
δ e

xp
(p

pm
)

Figure 12.17 Comparison between calculated and experimental 1H CSs for each reso-
nance of thymol. Red (left) corresponds to the structures before the DFT‐optimization (the 
nine structures are displayed in i) and blue (right) after optimization (same nine structures after 
periodic DFT optimization represented in ii, where the orange structure is the reference struc-
ture). Squares and triangles indicate structures where the orientation of the hydroxyl proton 
H(14) is respectively similar to (structures a–f) or different from (structures g–i) the reference 
structure (represented by green circles), respectively. Adapted with permission from Ref. [71]. 
Copyright 2009, RSC Publishing.
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Figure 13.9 Representative H‐bonding patterns in a simulated IMC glass: (I), H‐bonded 
trimer similar to that in the unit cell of the α‐crystalline polymorph; (II) H‐bonded dimer 
similar to that in the unit cell of the γ‐polymorph; (III) H‐bonded cyclic trimer; and (IV) 
H‐bonded tetramer. Source: Xiang and Anderson [24b]. Reprinted with permission of 
American Chemical Society.
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Figure 13.13 (Left): Snapshots of a water hopping event in simulated PVP containing 
10% water over a approximately 100 ps time span. The yellow‐tagged water molecule under-
went a rapid displacement from one free volume pocket to another approximately 20 Å to the 
left. The red arrow tracks a second water molecule that co‐migrated with the first water 
molecule. Right: The displacement of the yellow‐tagged water molecule versus time is marked 
with an arrow.



Figure 13.14 Three snapshots of water clusters at different times in a simulation of a 
water saturated 60% tricaprylin/40% monocaprylin lipid mixture. A few water molecules are 
color coded to allow tracking of their facile movement within water clusters. A single mole-
cule of benzamide remains nearly stationary throughout this time frame.
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Figure 14.3 Shows the snapshots comparing the temperature profile for the effect of wall 
temperature (a) 318 K, (b) 328 K, and (c) 338 K, for T = 0, 10, and 20 s; ω = 5 rpm and  f  = 45%. 
Adapted from Ref. [12] with permission. Copyright 2013, Elsevier.
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Figure 14.11 Temporal distribution of particle size under the impeller speed of 600 rpm 
at feed rates of (a) 60 g/min, (b) 120 g/min, and (c) 200 g/min. Adapted from Ref. [18] with 
permission. Copyright 2013, Elsevier.
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Figure 14.13 Temporal distribution of velocity under impeller speed of 600 rpm at feed 
rates (a) 60 and (b) 200 g/min. Adapted from Ref. [18] with permission. Copyright 2013, 
Elsevier.
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Figure 14.14 Temporal distribution of particle size under impeller speed of 1140 rpm at 
feed rates of (a) 60, (b) 120, and (c) 200 g/min. Adapted from Ref. [18] with permission. 
Copyright 2013, Elsevier.
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Figure 14.15 Temporal distribution of particle size for impeller wall tolerance 3.9 mm at 
different impeller speeds of (a) 600 rpm and (b) 1140 rpm. Adapted from Ref. [18] with per-
mission. Copyright 2013, Elsevier.
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