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Preface

This book is intended to give the reader an opportunity to master solving PDE prob-

lems. Our main goal was to have a concise text that would cover the classical tools

of PDE theory that are used in today’s science and engineering, such as charac-

teristics, the wave propagation, the Fourier method, distributions, Sobolev spaces,

fundamental solutions, and Green’s functions. While introductory Fourier method

– based PDE books do not give an adequate description of these areas, the more

advanced PDE books are quite theoretical and require a high level of mathematical

background from a reader. This book was written specifically to fill this gap, satis-

fying the demand of the wide range of end users who need the knowledge of how

to solve the PDE problems and at the same time are not going to specialize in this

area of mathematics. Arguably, this is the shortest PDE course, which stretches far

beyond common, Fourier method – based PDE texts. For example, [Hab03], which

is a common thorough textbook on partial differential equations, teaches a similar

set of tools while being about five times longer.

The book is problem-oriented. The theoretical part is rigorous yet short. Some-

times we refer the reader to textbooks that give wider coverage of the theory. Yet, im-

portant theoretical details are presented with care, while the hints give the reader an

opportunity to restore the arguments to the full rigor. Many examples from physics

are intended to keep the book intuitive for the reader and to illustrate the applied

nature of the subject.

The book will be useful for any higher-level undergraduate course and for self-

study for both graduate and higher-level undergraduate students, and for any spe-

cialty in sciences. Its Russian version has been a standard problem-solving manual

at Moscow State University since 1988, and is also used by students of St. Peters-

burg University and Novosibirsk Universities. Its Spanish version is used at Morelia

University in Mexico, while the English draft has already been used in Vienna Uni-

versity and at Texas A&M University.

For further reading we recommend [Str92], [Eva98], and [EKS99].

München, Alexander Komech

August 2007 Andrew Komech
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Chapter 1

Hyperbolic equations. Method of characteristics

1 Derivation of the d’Alembert equation

The d’Alembert equation, also called the one-dimensional wave equation,

∂ 2u

∂ t2
(x,t) = a2 ∂ 2u

∂x2
+ f (x,t), x ∈ [0, l], t > 0, (1.1)

where a > 0 is a constant, describes small transversal oscillations of a stretched

string or longitudinal oscillations of an elastic rod.

Let us give a brief derivation of this equation. For a more rigorous argument, see

[Vla84, SD64, TS90].

Transversal oscillations of a string

We assume that a string of length l is

Fig. 1.1

0 x l x

u(x,t)

u stretched with the force T . We choose the

direction of the axis Ox along the string

in its equilibrium configuration. Let x = 0

correspond to the left end of the string.

Then the right end of the string is given

by x = l. See Fig. 1.1. We choose the axis

Ou normal to Ox, and only consider the

transversal oscillations of the string, such

that each point x moves only in the direc-

tion of the axis Ou. We denote by u(x,t)
the displacement of the point x of the string at a moment t.

1
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2 1 Hyperbolic equations. Method of characteristics

We assume that the angles between the string and the axis Ox are small (see

Fig. 1.2):

|α|, |β | ≪ 1.

Fig. 1.2

0 x x+∆x

u

β
Fl

α

x

Fr

Let us prove that u(x,t) satisfies equation (1.1). To do so, we write Newton’s

Second Law for a piece of the string from x to x + ∆x, and take its projection onto

the axis 0u:

aum = Fu. (1.2)

Here au ≈ ∂ 2u
∂ t2 (x,t); m = µ ·∆x, where µ is the linear density of the string, that is,

the mass of its unit length (we assume that the string is uniform), and

Fu ≈ (Fl)u +(Fr)u + f̃ (x,t)∆x. (1.3)

By Fl and Fr we denoted the force which acts on the region [x,x + ∆x] from the left

and the right part of the string, and (Fl)u, (Fr)u stand for their projections onto the

axis Ou. f̃ (x,t) is the density of the transversal external forces. For example, in the

gravitational field of the Earth, if the string is horizontal and the axis 0u is directed

upward, then f̃ (x,t) = −gµ , where g ≈ 9.8m/s2.

Substituting au,m and Fu into (1.2), we obtain

∂ 2u

∂ t2
µ∆x ≈ (Fl)u +(Fr)u + f̃ (x,t)∆x. (1.4)

Further, for an elastic string the force of tension T at each point is tangent to the

string and has the same magnitude (see [Vla84]). Then

(Fl)u = −T sinβ , (Fr)u = T sinα (1.5)

and (1.4) takes the form

∂ 2u

∂ t2
µ∆x ≈−T sinβ + T sinα + f̃ (x,t)∆x. (1.6)

Since we consider the “small” oscillations, such that |α| and |β | ≪ 1, with the

precision up to higher powers of α and β ,
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sinβ ≈ tanβ =
∂u

∂x
(x,t), sinα ≈ tanα =

∂u

∂x
(x + ∆x,t). (1.7)

Substituting these expressions into (1.6), we have with the same precision

∂ 2u

∂ t2
µ∆x ≈ T

(∂u

∂x
(x + ∆x,t)− ∂u

∂x
(x,t)

)

+ f̃ (x,t)∆x.

Dividing this expression by ∆x and sending ∆x → 0 we obtain equation (1.1), where

a =

√

T

µ
, f (x,t) =

f̃ (x,t)

µ
.

Remark 1.1. From our assumption about the tension we deduce that the projec-

tions of the forces Fl and Fr onto the axis 0x are equal to −T cosβ and T cosα ,

respectively. Therefore their sum (T cosα − T cosβ ) is the quantity of magnitude

O(α2 + β 2). The projection of the resulting force which acts on the piece of the

string from x to x + ∆x is of the magnitude which is small in the approximation

we use. Thus, under this assumption about the tension, the small oscillations of the

string are transversal in the precision we use.

Remark 1.2. From (1.5) and (1.7) it follows that

T
∂u

∂x
(x,t) (1.8)

is the vertical part of the tension of the string at a point x at a moment t.

Let us consider the boundary conditions for the string.

A. If the left end of the string, x = 0, is fixed, then its displacement is equal to zero:

u(0,t) = 0, t > 0. (1.9)

B. Assume that the left end of the string is attached to a tiny ring of negligible mass,

which can move without friction along a vertical rod (such an end of the string

is called a free end). Then the vertical component of the force with which the

rod acts on the left end of the string is equal to zero. Therefore, according to

Newton’s Third Law, the vertical component (1.8) of the force of tension of the

string at x = 0 is also equal to zero:

∂u

∂x
(0,t) = 0, t > 0. (1.10)

C. In a more general case, when we attach a mass m to the left end of the string,

there is the boundary condition

m
∂ 2u

∂ t2
(0,t) = T

∂u

∂x
(0,t), t > 0. (1.11)
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Fig. 1.3

If, besides, the mass m is attached to the spring (as on Fig. 1.3) with the spring

constant k, then we need to add the elasticity force−ku(0,t) to the right-hand side

of (1.11). If the mass m experiences an additional friction force proportional to

the velocity (viscous friction), then one needs to add a friction force −η ∂u
∂ t

(0,t)
to the right-hand side of (1.11). In this way one obtains a physically reasonable

linear boundary condition of the form

m
∂ 2u

∂ t2
(0,t) = T

∂u

∂x
(0,t)− ku(0,t)−η

∂u

∂ t
(0,t)+ f (t). (1.12)

Here f (t) is an additional external force parallel to the axis Ou which is applied

to the left end of the string.

Longitudinal oscillations of an elastic rod

Assume we have a uniform unstretched rod of length l. Choose the axis Ox along

the rod, so that its left end is located at the point x = 0. Then x = l is its right

end. We will consider only longitudinal oscillations of the rod. Denote by u(x,t)
the displacement of the point x of the rod along the axis Ox, at the moment t. See

Fig. 1.4.

Fig. 1.4
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Let us prove that u(x,t) satisfies equation (1.1). For this, we write down the

projection onto the axis Ox of Newton’s Second Law for the piece of the rod from x

to x + ∆x:

axm = Fx, ax ≈
∂ 2u

∂ t2
(x,t), m = µ∆x. (1.13)

The force Fx has the form

Fx = Fl + Fr + f̃ (x,t)∆x,

where Fl (respectively, Fr) is the force along the axis Ox, acting at the piece

[x,x + ∆x] from the left (respectively, right) piece of the rod, and f̃ (x,t) is the den-

sity of the external forces directed along the axis Ox. For example, if the rod is

hanging vertically in the field of gravity of the Earth so that the axis Ox is directed

downwards, then f̃ (x,t) = gµ .

Substituting Fx into (1.13), we get

∂ 2u

∂ t2
(x,t)µ∆x ≈ Fl + Fr + f̃ (x,t)∆x. (1.14)

To find Fl and Fr, we use Hook’s Law

σ(x,t) = Eε(x,t). (1.15)

Here σ(x,t) is a tension of the rod at the point x, that is, σ(x,t) = T (x,t)/S, where

T (x,t) is the tension force at the point x and S is the section area; E is Young’s

module of the material of the rod, and ε(x,t) is the relative deformation at the point

x. For the piece of the rod [x,x + h], its initial length (when no force is applied) is

equal to h, while under tension it is h + u(x + h,t)− u(x,t). Therefore the absolute

length increase is equal to u(x + h,t)−u(x,t), while the relative length increase is

u(x + h,t)−u(x,t)

h
−−−→

h→0

∂u

∂x
(x,t).

Thus,

ε(x,t) =
∂u

∂x
(x,t).

From here, by Hook’s Law (1.15),

T (x,t) = Sσ(x,t) = SEε(x,t) = SE
∂u

∂x
(x,t). (1.16)

Let us point out that Hook’s Law (1.15) is a linear approximation for the depen-

dence of σ(x,t) of ε(x,t), and is only applicable for small deformations, that is,

small values of ε(x,t).
Taking into account the direction of the forces Fl and Fr, we obtain:
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{

Fl = −T (x,t) = −SE ∂u
∂x

(x,t),

Fr = −T (x + ∆x,t) = −SE ∂u
∂x

(x + ∆x,t).
(1.17)

Indeed, if, for example, u(x,t) is monotonically increasing in x, then the rod is

stretched out, hence Fl ≤ 0, while Fr ≥ 0. At the same time ∂u
∂x

≥ 0. This means

that the signs in (1.17) are correct.

Substituting (1.17) into (1.14), we get

∂ 2u

∂ t2
(x,t)µ∆x ≈ SE

∂u

∂x
(x + ∆x,t)−SE

∂u

∂x
(x,t)+ f̃ (x,t)∆x.

From here, dividing by ∆x, at the limit ∆x → 0 we get (1.1) with

a =

√

SE

µ
=

√

E

ρ
, f (x,t) =

f̃ (x,t)

µ
,

where ρ = µ/S is the density of the material of the rod.

Let us consider boundary conditions for the rod.

a. For the fixed end of the rod at x = 0 there is the boundary condition (1.9).

b.

(1.10) holds.

Fig. 1.5

c.

f r

condition

m
∂ 2u

∂ t2
(0,t) = −ku(0,t)+ SE

∂u

∂x
(0,t)−η

∂u

∂ t
(0,t)+ f (t), (1.18)

where f (t) is the external force, acting at the left end of the rod along the axis

Ox.

For the free end of the rod at x = 0, the tension (1.16) is equal to zero. Therefore

In a more general case, assume that there is a mass m at the left end x = 0 of the

rod, attached to the spring with spring constant k > 0, and that the equilibrium

=−ηv,

position of the spring corresponds to zero displacement of the left end of the rod.

See Fig. 1.5. Assume that the mass moves with the viscous friction: F

where v is the speed of the mass and η > 0. Then at x = 0 there is the boundary
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2 The d’Alembert method for infinite string

The Cauchy problem for the d’Alembert equation

We consider the d’Alembert equation (1.1) in the real line:

∂ 2u

∂ t2
= a2 ∂ 2u

∂x2
, −∞ < x < ∞, t > 0. (2.1)

This corresponds to the physical problem about a string of relatively large size. For

simplicity we assume that f (x,t) ≡ 0, that is, that there are no external forces.

As we will see below, there are infinitely many solutions of (2.1). To be able

to determine the movement of the string it suffices to prescribe initial position and

velocity of all points of the string (as usually in mechanics):

u(x,0) = ϕ(x),
∂u

∂ t
(x,0) = ψ(x), x ∈ R. (2.2)

These are initial conditions for equation (2.1). Here ϕ and ψ are prescribed func-

tions, ϕ(x) is initial displacement, and ψ(x) is the initial velocity of a point x of the

string.

The problem (2.1)–(2.2) is called the Cauchy problem (or initial value problem)

for the d’Alembert equation (2.1). The relations (2.2) are called the boundary con-

ditions, and the functions ϕ(x), ψ(x) are called initial data.

The d’Alembert method

The d’Alembert method is based on the fact that the general solution to (2.1) has the

form

u(x,t) = f (x−at)+ g(x + at), (2.3)

where f and g are arbitrary functions of one variable.

Remark 2.1. If f and g belong to C2(R), then u(x,t) also has two continuous

derivatives. It turns out, though, that one can take f and g non-smooth and even

discontinuous. Then u(x,t) is also non-smooth or discontinuous, respectively. This

is done rigorously in Appendix 27, where we show that such a discontinuous func-

tion satisfies equation (2.1) in the sense of distributions.

To prove (2.3), let us rewrite the differential equation (2.1) in the variables

r = x−at, s = x + at. (2.4)
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Change of variables in a differential equation

Let us express the function u(x,t) in the new coordinates r, s:

u(x,t) = v(r,s),

where r, s are related to x, t by (2.4). For example,

u(x,t) = x ⇒ v(r,s) =
1

2
(r + s).

To make a change of variables in the differential equation (2.1) means to find a

differential equation on the function v(r,s), which would be equivalent to (2.1). For

this we need to express ∂ 2u
∂ t2 and ∂ 2u

∂x2 via the derivatives of v(r,s) with respect to r, s

and to substitute the resulting expressions into (2.1). The necessary expressions are

obtained with the aid of the chain rule applied to the identity

u(x,t) = v
(

r(x,t), s(x,t)
)

. (2.5)

Namely, differentiating (2.5) with respect to t and x, we obtain















∂u

∂ t
=

∂v

∂ r

∂ r

∂ t
+

∂v

∂ s

∂ s

∂ t
,

∂u

∂x
=

∂v

∂ r

∂ r

∂x
+

∂v

∂ s

∂ s

∂x
.

(2.6)

In the same way one can express all other derivatives. Differentiating the first rela-

tion (2.6) with respect to t, we obtain:

∂ 2u

∂ t2
=
( ∂

∂ t

∂v

∂ r

) ∂ r

∂ t
+

∂v

∂ r

∂ 2r

∂ t2
+
( ∂

∂ t

∂v

∂ s

) ∂ s

∂ t
+

∂v

∂ s

∂ 2s

∂ t2
. (2.7)

We express the operator ∂
∂ t

from the same relation (2.6):

∂

∂ t
=

∂ r

∂ t

∂

∂ r
+

∂ s

∂ t

∂

∂ s
.

Substituting this expression in (2.7), we get

∂ 2u

∂ t2
=
(∂ r

∂ t

∂ 2v

∂ r2
+

∂ s

∂ t

∂ 2v

∂ s∂ r

)∂ r

∂ t
+

∂v

∂ r

∂ 2r

∂ t2

+
(∂ r

∂ t

∂ 2v

∂ r ∂ s
+

∂ s

∂ t

∂ 2v

∂ s2

)∂ s

∂ t
+

∂v

∂ s

∂ 2s

∂ t2
(2.8)

=
(∂ r

∂ t

)2 ∂ 2v

∂ r2
+ 2

∂ r

∂ t

∂ s

∂ t

∂ 2v

∂ r ∂ s
+
(∂ s

∂ t

)2 ∂ 2v

∂ s2
+

∂v

∂ r

∂ 2r

∂ t2
+

∂v

∂ s

∂ 2s

∂ t2
.

Here we used the identity
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∂ 2v

∂ s∂ r
=

∂ 2v

∂ r ∂ s
.

In the same fashion (substituting in (2.8) t by x) one can obtain the formula

∂ 2u

∂x2
=
(∂ r

∂x

)2 ∂ 2v

∂ r2
+ 2

∂ r

∂x

∂ s

∂x

∂ 2v

∂ r ∂ s
+
(∂ s

∂x

)2 ∂ 2v

∂ s2
+

∂v

∂ r

∂ 2r

∂x2
+

∂v

∂ s

∂ 2s

∂x2
.

Problem 2.2. Derive the relation

∂ 2u

∂ t∂x
=

∂ r

∂ t

∂ r

∂x

∂ 2v

∂ r2
+
(∂ r

∂ t

∂ s

∂x
+

∂ s

∂ t

∂ r

∂x

) ∂ 2v

∂ r ∂ s

+
∂ s

∂ t

∂ s

∂x

∂ 2v

∂ s2
+

∂ 2r

∂ t∂x

∂v

∂ r
+

∂ 2s

∂ t∂x

∂v

∂ s
. (2.9)

Remark 2.3. Usually the formulae (2.6) and (2.8)–(2.9) are written with u instead

of v. For example, (2.6) is written as















∂u

∂ t
=

∂u

∂ r

∂ r

∂ t
+

∂u

∂ s

∂ s

∂ t
,

∂u

∂x
=

∂u

∂ r

∂ r

∂x
+

∂u

∂ s

∂ s

∂x
.

(2.10)

If so, the symbol ∂u
∂ r

(respectively, ∂u
∂ s

) in the right-hand side is to be understood as

the derivative along the line s = const (or r = const):

∂u

∂ r
≡ d

dr
u
∣

∣

s=const
, (2.11)

which is actually ∂v
∂ r

(respectively, ∂v
∂ s

), not as “partial derivative of u(x,t) with re-

spect to r (or s)”; the latter does not make sense until the other variable, s (or r), is

chosen. Indeed, from (2.11) one can see that ∂u
∂ r

depends not only on the choice of

the variable r, but also on the variable s, although this is not reflected in the notation
∂u
∂ r

. Thus, the usage of the notation u instead of v in the right hand side of (2.6) (as

this was done in (2.10)) could lead to a confusion.

Problem 2.4. Find ∂u
∂ r

for u(x,t) = t, r = x, and s = t + x.

Solution. t = s− x = s− r, hence ∂u
∂ r

= −1.

Problem 2.5. Find ∂u
∂ r

for u(x,t) = t, r = x, and s = t − x.

Solution. t = s+ x = s+ r, hence ∂u
∂ r

= 1.

Nevertheless, in the applied problems, the formulae like (2.10) are often used to

avoid the introduction of new notations. For example, the pressure is usually denoted

by p, the current is denoted by j, the density is denoted by ρ , etc. We will also use

formulae like (2.10) everywhere below.
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Proof of the d’Alembert representation (2.3)

From the generic formulae (2.10) for the change of variables (2.4) we derive

∂

∂ t
= −a

∂

∂ r
+ a

∂

∂ s
,

∂

∂x
=

∂

∂ r
+

∂

∂ s
. (2.12)

From this we obtain:


















∂ 2

∂ t2
= a2 ∂ 2

∂ r2
−2a2 ∂ 2

∂ r ∂ s
+ a2 ∂ 2

∂ s2
,

∂ 2

∂x2
=

∂ 2

∂ r2
+ 2

∂ 2

∂ r ∂ s
+

∂ 2

∂ s2
.

(2.13)

Substituting (2.13) into (2.1), we get

(

a2 ∂ 2

∂ r2
−2a2 ∂ 2

∂ r ∂ s
+ a2 ∂ 2

∂ s2

)

u = a2

(

∂ 2

∂ r2
+ 2

∂ 2

∂ r ∂ s
+

∂ 2

∂ s2

)

u.

After mutual cancellations we obtain

∂ 2u

∂ r ∂ s
= 0. (2.14)

This is the canonical form of the d’Alembert equation (2.1).

The d’Alembert equation in the canonical form (2.14) is easily solved. Denote

∂u

∂ s
(r,s) = v(r,s). (2.15)

Then (2.14) can be written as

∂v

∂ r
≡ d

dr
v
∣

∣

s=const
= 0.

It then follows that v
∣

∣

s=const
does not depend on r, that is,

v(r,s) ≡ c(s),

or, taking into account (2.15),

d

ds
u
∣

∣

r=const
= c(s).

Integrating this ordinary differential equation, we obtain
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u
∣

∣

r=const
=

∫

c(s)ds+ c1(r).

Thus,

u = f (r)+ g(s), (2.16)

where f and g are some functions of one variable. On the other hand, a function

of the form (2.16) satisfies equation (2.14) for any f and g. At last, changing the

variables in (2.16) according to (2.4), we obtain the d’Alembert representation (2.3).

Remark 2.6. The graph of a function f (x− at) in (2.4) is a wave moving along

the direction of the axis Ox to the right with the speed a, while g(x + at) repre-

sents a wave moving with the same speed to the left. This means that the graph

of the function f (x− at) (respectively, g(x + at)) for any t > 0 as a function of x

is obtained from the graph of the function f (x) (respectively, g(x)) with the aid of

a parallel transform to the right (respectively, to the left) along the axis Ox by the

distance at. Therefore, the form of the graph of the function f (x− at) considered

as a function of x with fixed t is the same. In physics, such functions are called

traveling waves. Thus, the d’Alembert decomposition (2.3) means that any solution

of the d’Alembert equation is the sum (physicists also use words superposition and

interference) of two traveling waves.

The Cauchy problem. The d’Alembert formula

We apply the d’Alembert method to the problem (2.1)–(2.2). To do so, we substitute

equation (2.1) with its equivalent (2.3). Thus, we are left to take into account the ini-

tial conditions (2.2). It is from these conditions that we will determine the unknown

functions f and g from the given ϕ and ψ .

Namely, substitute (2.3) into (2.2):

{

f (x)+ g(x) = ϕ(x),

f ′(x)(−a)+ g′(x)a = ψ(x), x ∈ R.
(2.17)

Remark 2.7. In the second equation (2.17) we have used the chain rule:

( ∂

∂ t
f (x−at)

)

∣

∣

∣

∣

t=0

=
(

f ′(x−at)
∂

∂ t
(x−at)

)

∣

∣

∣

∣

t=0

= f ′(x)(−a).

Here f ′(x) is an ordinary derivative (not a partial one). This is an important feature

of the d’Alembert method: it allows us to reduce the equations (2.1)–(2.2) with

partial derivatives to the equations (2.17) with ordinary derivatives.

Integrating the second equation in (2.17) and dividing it by a, we obtain:
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− f (x)+ g(x) =
1

a

x
∫

0

ψ(y)dy +
c

a
.

Taking the sum of this equation with the first equation from (2.17) and dividing by

two, we obtain

g(x) =
1

2
ϕ(x)+

1

2a

x
∫

0

ψ(y)dy +
c

2a
. (2.18)

Instead, taking the difference of these two equations, we arrive at

f (x) =
1

2
ϕ(x)− 1

2a

x
∫

0

ψ(y)dy− c

2a
=

1

2
ϕ(x)+

1

2a

∫ 0

x
ψ(y)dy− c

2a
. (2.19)

Substituting these expressions into the d’Alembert decomposition (2.3), we obtain

the d’Alembert formula:

u(x,t) =
ϕ(x−at)+ ϕ(x + at)

2
+

1

2a

x+at
∫

x−at

ψ(y)dy. (2.20)

Remark 2.8. One can see from (2.18)–(2.19) that the waves f (x−at) and g(x+at)
are determined by the initial data ϕ and ψ not uniquely, but only up to an additive

constant. At the same time, the solution u(x,t) to the Cauchy problem is uniquely

defined.

3 Analysis of the d’Alembert formula

Propagation of waves

Problem 3.1. Let the string be described by (2.1) with a = 1. In (2.2), take the

initial data as on Fig. 3.1 (see Remark 2.1). Draw the string at t = 1, 2, 3, 4, 5.

Fig. 3.1

1

0 1 2 x

ϕ(x) ψ(x) ≡ 0
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Remark 3.2. We may assume that ϕ(x) is a piecewise-linear function. Then the so-

lution is also going to be a piecewise-linear function, which is a solution of equation

(2.1) in the sense of distributions (see Remark 2.1).

Or instead one can think that the graph ϕ is slightly smoothed out at the corner

points, so that ϕ(x) ∈ C2(R). Then the solution is also going to be of class C2, and

one should think that all the corners are slightly smoothed out at all the drawings

below.

Solution. According to the d’Alembert formula (2.20),

u(x,t) =
ϕ(x− t)+ ϕ(x + t)

2
.

This means that the graph ϕ(x) should be compressed to the axis Ox by the factor

of 2, shifted to the right by t, to the left by t, and the results added up (see Fig. 3.2).

Thereafter these humps of hight 1
2

and width 2 propagate to the left and to the right,

each with the speed 1.

Fig. 3.2

t = 1

t = 2

x

x

Problem 3.3. In the settings of Problem 3.1, draw the string at t = 1
4

and t = 1
2
.

Problem 3.4 (Hitting the string with a hammer). Let the string be described by (2.1)

with a = 1. In (2.2), take the initial data as on Fig. 3.3. Draw the shape of the string

at t = 1, 2, 3, 4, 5.

Solution. According to the d’Alembert formula (2.20),

u(x,t) =
1

2

x+t
∫

x−t

ψ(y)dy = φ(x + t)−φ(x− t),

where φ(x) = 1
2

∫ x
0 ψ(y)dy. See Fig. 3.4. This formula means that the graph of the
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Fig. 3.3

1

0 1 2 x

ϕ(x) ≡ 0 ψ(x)

Fig. 3.4

1

0 1 2 x

φ(x)

function φ(x) should be shifted to the left and to the right by t, and the results

subtracted (see Fig. 3.5). Thereafter this trapezoid spreads out to the left and to the

right with the speed 1.

Fig. 3.5

t = 1

t = 2

x

x

Problem 3.5. In the settings of Problem 3.4, draw the string at t = 1
4

and t = 1
2
.

Characteristics

When solving two previous problems, we have seen that the lines x± t = const play

a special role. For example, the corner points of the graphs of the solutions u(x,t)
lie on the lines x± t = 0 and x± t = 2.
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For equation (1.1) with the coefficient a the similar role is played by the lines x±
at = const. They are called the characteristic curves (or simply characteristics) of

equation (1.1). Thus, the characteristics of the d’Alembert equation are two families

of lines (see Fig. 3.6). We will call the lines x−at = const the characteristics moving

to the right (with the speed a). Obviously, they are the level curves of the wave

f (x−at). Similarly, the lines x+at = const are called characteristics moving to the

left. They are the level curves of the wave g(x + at). The greater the speed a, the

smaller is the angle between the characteristics and the axis Ox (if the scale on the

axes Ox and Ot is the same, then tanα = 1/a).

Fig. 3.6

x+at = const x−at = constt

α
0

α α
x

Discontinuities of the solution

Consider a discontinuous function f (x) =

{

0, x < 2

1, x ≥ 2
as shown on Fig. 3.7.

Fig. 3.7

1

0 1 2 x

Then the function

u(x,t) = f (x−at) (3.1)

is discontinuous along the characteristic curve x− at = 2. See Fig. 3.8. The func-
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Fig. 3.8 Profiles of the function u(x,t) at t = 1, 3, 5.

t

5

3

1

0 1 2 x

x−at = 2

tion (3.1) satisfies the d’Alembert equation (2.1) in the sense of distributions (see

Remark 2.1).

Thus:
∥

∥

∥

∥

Solutions of the d’Alembert equation can have discontinuities.
Discontinuities propagate along characteristics.

Remark 3.6. One can take a smooth function fε (x), which changes from 0 to 1 on a

small interval from x = 2 to x = 2+ ε , where ε > 0. See Fig. 3.9. Then the function

Fig. 3.9

1

0 1 2 2+ ε

fε(x)

x

fε (x−at) will be a classical (smooth) solution of the d’Alembert equation, rapidly

changing from 0 to 1 near the points of the characteristic curve x− at = 2. In the

limit ε → 0+ the solutions fε (x−at) converge to a discontinuous function f (x−at).
This is the meaning behind treating such a discontinuous function as a solution of

d’Alembert equation in the sense of distributions (see also Remark 2.1).

Remark 3.7. Discontinuous solutions u(x,t) to the d’Alembert equation for the

string and for the rod do not make a physical sense. Still, the d’Alembert equation

also describes the gas pressure p(x,t) in a long narrow pipe (such as a flute or an

organ; see Fig. 3.10). The function p(x,t) can be discontinuous.

Discontinuous solutions in the dynamics of gas are called the shock waves. When

the plane travels with the supersonic speed, there is such a shock wave coming from
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Fig. 3.10

x

the front edge of the wings, with the pressure being higher behind the front of this

wave than ahead of it. We hear a bang when the wave front passes our ears; see

Fig. 8.6 in Section 8 below.

Domain of dependence and its graphical representation

Question 3.8. What do we need to know to be able to compute the solution u of the

problem (2.1)–(2.2) at the point (x0,t0)?

Answer. From the d’Alembert formula (2.20) we see that one needs the initial dis-

placements ϕ(x) at two points: x = x0 + at0 and x = x0 − at0, and also the initial

velocities ψ(x) on the interval [x0 − at0,x0 + at0] between these points. Knowing

ϕ(x) and ψ(x) beyond the interval [x0 −at0,x0 + at0] is not needed.

The interval [x0−at0,x0 +at0] is called the domain of dependence for the solution

to the Cauchy problem (2.1)–(2.2) at the point (x0,t0).

Remark 3.9. Now we can explain precisely when we can treat the string as infinite:

When the point under consideration x0 is located at a distance larger than at0 from

the endpoints of the string, where t0 is the moment of time that we are interested in.

Fig. 3.11

t

t0

0 x0 −at0 x0 x0 +at0 x
α α

(x0,t0)

For the graphical representation of the domain of dependence for a solution at

(x0,t0) we draw two characteristics from this point, as on Fig. 3.11. The intersection

of these characteristics with the axis Ox are the points x0 −at0 and x0 + at0. Let us
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check this. The equations of the characteristics are

x−at = c1, x + at = c2. (3.2)

Since the point (x0,t0) lies on these characteristics, x0 −at0 = c1 and x0 + at0 = c2.

To find the intersection of the characteristics with the axis Ox, we need to set t = 0

in (3.2), getting

x = c1 = x0 −at0 and x = c2 = x0 + at0.

The interval of the axis Ox between x0−at0 and x0+at0 is the domain of dependence

for the solution u at the point (x0,t0).

Propagation of waves

Problem 3.10. Let ϕ(x) = ψ(x) = 0 for x 6∈ [2, 5]. Find the region where the solu-

tion u(x,t) to the problem (2.1)–(2.2) is equal to zero for t > 0.

Solution. From the points 2 and 5 of the Ox axis we draw the characteristics to the

left and to the right, respectively. See Fig. 3.12. In the region below these charac-

teristics the solution is equal to zero. Indeed, for the point (x0,t0) below these cha-

racteristics the domain of dependence does not intersect the interval [2, 5], hence

ϕ(x) ≡ ψ(x) ≡ 0 in this domain of dependence. Consequently, u(x0,t0) = 0.

Fig. 3.12

t

0 1
α

2 3 4 5 6 x0 −at0 x0 +at0 x

(x0,t0)

The region above these characteristics is called domain of influence for the initial

data on the interval [2, 5].
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4 Second-order hyperbolic equations in the plane

Factorization of the d’Alembert operator

Let us bring the d’Alembert equation to the canonical form (2.14) using a new

method. For this, we rewrite the equation as

�u ≡
( ∂ 2

∂ t2
−a2 ∂ 2

∂x2

)

u = 0. (4.1)

The operator � is called the d’Alembert operator, or d’Alembertian. We decompose

this operator into factors:

�u ≡
( ∂

∂ t
−a

∂

∂x

)( ∂

∂ t
+ a

∂

∂x

)

u = 0. (4.2)

The operators

L(−a,1) ≡
∂

∂ t
−a

∂

∂x
, L(a,1) ≡

∂

∂ t
+ a

∂

∂x
(4.3)

are differentiations along the vectors (−a,1) and (a,1), respectively. These vectors

are directed along the characteristics

x + at = const and x−at = const. (4.4)

If we take the characteristic lines as new coordinate axes, setting

r = x−at, s = x + at, (4.5)

then due to (2.12) the d’Alembert operator takes the form

� =
∂ 2

∂ t2
−a2 ∂ 2

∂x2
= L(−a,1) ·L(a,1) = −2a

∂

∂ r
2a

∂

∂ s
= −4a2 ∂ 2

∂ r ∂ s
.

Conclusion. The characteristics of equation (4.1) are the lines such that the operators

of differentiating along them, L(∓a,1), are the factors of the d’Alembert operator.

Remark 4.1. Since the operators of differentiating along the characteristics are the

factors of the d’Alembert operator, this operator sends to zero any function which

is constant along characteristics of one of the families (in particular, any such func-

tion that is discontinuous; see Remark 2.1). This explains why the solutions to the

d’Alembert equation can have discontinuities along characteristics.
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Hyperbolic equations with constant coefficients

We consider the equation of the form

a
∂ 2u

∂ t2
+ 2b

∂ 2u

∂ t∂x
+ c

∂ 2u

∂x2
= 0, x ∈ R, t > 0. (4.6)

In this section we assume that the coefficients a, b, and c are constants.

Let us try to apply the method of Section 1 to equation (4.6) instead of (4.1). To

obtain factorization like (4.2), we need to decompose into linear factors the “char-

acteristic” quadratic form

A(ξ ,τ) ≡ aτ2 + 2bτξ + cξ 2 = ξ 2
(

a

( τ

ξ

)2

+ 2b
τ

ξ
+ c

)

.

To achieve this, we solve the characteristic equation

aλ 2 + 2bλ + c = 0. (4.7)

Its roots

λ1,2 =
b±

√
b2 −ac

a

are real and different if the discriminant is positive:

D ≡ b2 −ac > 0. (4.8)

We assume that in this section (4.8) is satisfied. This is the strict hyperbolicity con-

dition for equation (4.6). According to the Viet theorem,

aλ 2 + 2bλ + c = a(λ −λ1)(λ −λ2).

Therefore, the quadratic form turns into

A(ξ ,τ) = ξ 2a
( τ

ξ
−λ1

)( τ

ξ
−λ1

)

= a(τ −λ1ξ )(τ −λ2ξ ).

Accordingly, the differential equation (4.6) takes the form

( ∂

∂ t
−λ1

∂

∂x

)( ∂

∂ t
−λ2

∂

∂x

)

u = 0. (4.9)

Denote

L(−λ1,1) =
∂

∂ t
−λ1

∂

∂x
and L(−λ2,1) =

∂

∂ t
−λ2

∂

∂x
.

Analogously to (4.5), we set

r = x + λ1t, s = x + λ2t. (4.10)
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Then

L(−λ1,1)r ≡ 0, L(−λ2,1)s ≡ 0.

Here L(−λ1,1) is the operator of differentiation along the lines r = const, while

L(−λ2,1) differentiates along the lines s = const. Hence,

L(−λ1,1) = c1

∂

∂ s

∣

∣

∣

∣

r=const

, L(−λ2,1) = c2

∂

∂ r

∣

∣

∣

∣

s=const

.

It follows that (4.9) is equivalent to the equation

∂

∂ s

∂

∂ r
u = 0. (4.11)

Similarly to (2.16), the general solution to equation (4.6) is given by

u = f (r)+ g(s) = f (x + λ1t)+ g(x + λ2t). (4.12)

The wave f (x + λ1t) propagates along the axis x with the speed λ1, while the wave

g(x+λ2t) propagates with the velocity λ2 (both waves propagate to the left if λ1 > 0,

λ2 > 0).

In particular, for the d’Alembert equation (4.1), the characteristic equation (4.7)

takes the form

λ 2 −a2 = 0,

so that λ1 = −a, λ2 = a, and (4.10) turns into (2.4), while (4.12) turns into (2.16).

With the aid of the representation (4.12), all the conclusions of Section 3 about

discontinuities of the solution, propagation of waves, and the regions of dependence

are easily generalized for equation (4.6) (see Remark 2.1).

The characteristics of equation (4.6) are defined by relations

r ≡ x + λ1t = const, s ≡ x + λ2t = const. (4.13)

Solutions of equation (4.6) may have singularities along these characteristics. This

is seen from (4.12) in the case when f or g are not smooth (see also Remark 4.1).

The Cauchy problem (4.6) with initial data (2.2) has a solution

u(x,t) =
λ2ϕ(x + λ1t)−λ1ϕ(x + λ2t)

λ2 −λ1

+
1

λ2 −λ1

x+λ2t
∫

x+λ1t

ψ(y)dy. (4.14)

Problem 4.2. Derive the formula (4.14).

Let us point out that for the d’Alembert equation one has λ1 = −a, λ2 = a, so

that (4.14) turns into the d’Alembert formula (2.20).

As seen from (4.14), the domain of dependence for the solution u at a point

(x0,t0) is the interval [x0 + λ1t0,x0 + λ2t0]) of the axis Ox. Its ends are the intersec-
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tion points of the axis Ox with characteristics (4.13) sent back in time from the point

(x0,t0); see Fig. 4.1.

Fig. 4.1

t

t0

0

x+λ1t = constx+λ2t = const

x0 +λ1t0

x0

x0 +λ2t0

(x0,t0)

x

Let us point out that the roots λ1 and λ2 could be of the same sign; then the waves

f (x + λ1t) and g(x + λ2t) run into the same direction.

Example 4.3. For the equation

( ∂ 2

∂ t2
+ 5

∂ 2

∂ t∂x
+ 6

∂ 2

∂x2

)

u = 0

the characteristic equation

λ 2 + 5λ + 6 = 0

has the roots λ1 = −2, λ2 = −3, and the general solution

u = f (x−2t)+ g(x−3t)

consists of two waves propagating to the right.

Let us find the differential equation of the characteristics of equation (4.6).

We note that, according to (4.13), the (co)tangent vectors (dx, dt) to characteris-

tic curves satisfy the equation

dx + λ1 dt = 0 or dx + λ2 dt = 0.

Therefore, either dx
dt

=−λ1, or dx
dt

=−λ2; that is, λ ≡− dx
dt

satisfies the characteristic

equation (4.7):

a
(dx

dt

)2

−2b
dx

dt
+ c = 0.

This is the differential equation of the characteristics. It can be written in the fol-

lowing symmetric form:

adx2 −2bdxdt + cdt2 = 0. (4.15)
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Equations with variable coefficients

Now let the coefficients a, b, and c in (4.6) be variable, that is, functions of x and t:

a(x,t)
∂ 2u

∂ t2
+ 2b(x,t)

∂ 2u

∂ t∂x
+ c(x,t)

∂ 2u

∂x2
= 0; x ∈ R, t > 0. (4.16)

We will try to generalize the method of Section 2 in order to bring (4.16) to the

canonical form (4.11) or at least to a form close to it.

In a small neighborhood of each point (x,t), we substitute equation (4.16) by

equation (4.6) with constant coefficients, equal to the values of the coefficients of

equation (4.16) at this particular point (x,t). This procedure is called “the freezing

of the coefficients.”

If we do so, the characteristics of the equation “frozen” at the point (x,t) will

have directions which depend on (x,t). The vectors (dx, dt) tangent to these charac-

teristics will satisfy equation (4.15). See Fig. 4.2.

Fig. 4.2

t

0 x

gradr (dx,dt)

r(x,t) = const

Integral curves of equation (4.15) are called the characteristic curves (or simply

characteristics) of equation (4.16). Thus, due to (4.15), the differential equation of

the characteristics of equation (4.16) is given by

a(x,t)dx2 −2b(x,t)dxdt + c(x,t)dt2 = 0. (4.17)

The characteristic equation (4.17) is obtained by a formal substitution

∂

∂ t
7→ dx,

∂

∂x
7→ −dt. (4.18)

Assume that in the region of the (x,t)-plane where we are to solve equation (4.16)

the strict hyperbolicity condition (4.8) is satisfied:
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b2(x,t)−a(x,t)c(x,t) > 0. (4.19)

Then, dividing equation (4.17) by dt2 and solving the resulting quadratic equation,

we obtain two different differential equations:

dx

dt
=

b±
√

b2 −ac

a
. (4.20)

If the functions a, b, and c are smooth, equation (4.20) has two corresponding

families of the integral curves. We will denote the corresponding families of cha-

racteristics by the signs “+” “−,” respectively. In the (x,t)-plane, we introduce new

coordinates r and s so that r = const on the characteristics of the family “+” while

s = const on the characteristics of the family “−.” This means that the characteristics

are the new coordinate curves, and r, s are the first integrals of equations (4.20).

Let us mention that the change of variables (x,t) 7→ (r,s) is nondegenerate at

each point where the condition (4.19) is satisfied. Indeed, one can see from (4.20)

that at each point the characteristics have different directions, and since gradr and

grads are orthogonal to the corresponding characteristics, they also have different

directions. Incidentally, this means that the coordinates r, s may be defined in a

sufficiently small open neighborhood of every point. These coordinates may not

exist in the whole region under consideration.

Let us check that in the coordinates r, s equation (4.16) could be brought to the

canonical form (4.11) up to the terms that only contain derivatives of the first order.

We first need to derive the differential equation for the functions r(x,t),s(x,t), called

the characteristic equation.

Since r(x,t) = const on any characteristic curve from the family “+,” that is, a

characteristic curve is the level curve of the function r, the vector gradr is orthogonal

to this characteristic line (see Fig. 4.2):

gradr ⊥ (dx, dt).

Therefore, gradr‖(dt,−dx), so that
∂ r
∂ x
∂ r
∂ t

= − dt
dx

, or

dt = −k dx, where k =
∂ r
∂x

∂ r
∂ t

. (4.21)

Substituting (4.21) into (4.17), we obtain the desired differential equation:

a(x,t)
(∂ r

∂ t

)2

+ 2b(x,t)
∂ r

∂ t

∂ r

∂x
+ c(x,t)

(∂ r

∂x

)2

= 0. (4.22)

In the same fashion one derives the differential equation for s(x,t), and it coincides

with (4.22):

a(x,t)
(∂ s

∂ t

)2

+ 2b(x,t)
∂ s

∂ t

∂ s

∂x
+ c(x,t)

(∂ s

∂x

)2

= 0. (4.23)
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This is of no surprise, since (4.17) contains both equations from (4.20).

Now let us recall formulas (2.8)–(2.9) for the change of variables in a differential

equation. Substituting expressions (2.8)–(2.9) into (4.16), we obtain the following

differential equation for the function v(r,s) = u(x,t):

α(r,s)
∂ 2v

∂ r2
+ 2β (r,s)

∂ 2v

∂ r ∂ s
+ γ(r,s)

∂ 2v

∂ s2
+ . . . = 0,

where “. . .” stands for the terms containing first order derivatives of v. The expres-

sions for the coefficients α , β are γ are as follows:

α = a
(∂ r

∂ t

)2

+ 2b
∂ r

∂ t

∂ r

∂x
+ c
(∂ r

∂x

)2

, (4.24)

γ = a
(∂ s

∂ t

)2

+ 2b
∂ s

∂ t

∂ s

∂x
+ c
(∂ s

∂x

)2

, (4.25)

β = a
∂ r

∂ t

∂ s

∂ t
+ 2b

(∂ r

∂ t

∂ s

∂x
+

∂ s

∂ t

∂ r

∂x

)

+ c
∂ r

∂x

∂ s

∂x
. (4.26)

Denote by A the characteristic polynomial of equation (4.16) at the point (x,t):

A(x,t;ξ ,τ) ≡ a(x,t)τ2 + 2b(x,t)τξ + c(x,t)ξ 2. (4.27)

Then (4.22) and (4.23) are equivalent to

α = A(gradr(x,t)) = 0, γ = A(grads(x,t)) = 0. (4.28)

Finally, (4.16) takes the form similar to (4.11):

2β (r,s)
∂ 2v

∂ r ∂ s
+ . . . = 0. (4.29)

Problem 4.4. Prove that β (r,s) 6= 0 at r = r(x,t), s = s(x,t) if the condition (4.19)

holds at the point (x,t).

Hint. Use (4.24)–(4.28).

Equation (4.29) could be solved approximately. In a number of cases, when equa-

tion (4.29) is sufficiently simple, it is possible to find its general solution and thus

to find the general solution to equation (4.16).

Problem 4.5. Find the general solution to the equation

∂ 2u

∂x2
−2sinx

∂ 2u

∂x∂y
− cos2 x

∂ 2u

∂y2
− cosx

∂u

∂y
= 0. (4.30)

Solution. The characteristic equation (4.17) is obtained from (4.30) by substituting
∂
∂x

7→ dy; ∂
∂y

7→ −dx (see (4.18)):

dy2 + 2sinxdydx− cos2 xdx2 = 0
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or
(dy

dx

)2

+ 2sinx
dy

dx
− cos2 x = 0.

From here,
dy

dx
= −sinx±

√

sin2 x + cos2 x = −sinx±1. (4.31)

Integrating, we get

y = cosx± x = c.

Hence the functions

c(x,y) = y− cosx∓ x

are constant along the integral curves, that is, represent the first integrals of equation

(4.31). Therefore,
{

r = y− cosx− x,
s = y− cosx + x.

(4.32)

We already know that equation (4.30) in the variables r, s has the form (4.29). But

we also need to know the form of the terms containing ∂v
∂ r

, ∂v
∂ s

, which are not written

explicitly in (4.29). We could use the known formulas (2.8), (2.9), but let us make

the change of variables (4.32) in (4.30) directly. Writing u instead of v, we have:







∂u
∂x

= ∂u
∂ r

∂ r
∂x

+ ∂u
∂ s

∂ s
∂x

= ∂u
∂ r

(sinx−1)+ ∂u
∂ s

(sinx + 1),

∂u
∂y

= ∂u
∂ r

+ ∂u
∂ s

.
(4.33)

We then have

∂ 2u

∂x2
= . . .+ 2

∂ 2u

∂ r ∂ s
(sin2 x−1)+ . . .+

∂u

∂ r
cosx +

∂u

∂ s
cosx.

Dots denote the terms containing ∂ 2u
∂ r2 and ∂ 2u

∂ s2 , which, as we already know (see

(4.29)), cancel out in (4.30). Therefore, we do not have to write them out!

Analogously,

∂ 2u

∂x∂y
= . . .+

∂ 2u

∂ r ∂ s
(sin x−1)+

∂ 2u

∂ s∂ r
(sinx + 1)+ . . . .

Finally,

∂ 2u

∂y2
= . . .+ 2

∂ 2u

∂ r ∂ s
+ . . . . (4.34)

Substituting (4.33)–(4.34) into (4.30), we get

∂ 2u

∂ r ∂ s

(

2(sin2 x−1)−2sinx ·2sinx−2cos2 x
)

+
(∂u

∂ r
+

∂u

∂ s

)

cosx−
(∂u

∂ r
+

∂u

∂ s

)

cosx = 0.
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After cancellations and collecting the terms, we obtain

∂ 2u

∂ r ∂ s
= 0, hence u = f (r)+ g(s).

Answer.

u(x,y) = f (y− cosx− x)+ g(y− cosx + x).

For better understanding of the material we recommend to solve the following

problems:

Problem 4.6. Find the general solution for the following equations:

a. ∂ 2u
∂x2 + 2 ∂ 2u

∂x∂y
−3 ∂ 2u

∂y2 + 2 ∂u
∂x

+ 6 ∂u
∂y

= 0.

b. x ∂ 2u
∂x2 − y ∂ 2u

∂y2 + 1
2

(

∂u
∂x

− ∂u
∂y

)

= 0, x > 0, y > 0.

c. x2 ∂ 2u
∂x2 − y2 ∂ 2u

∂y2 −2y ∂u
∂y

= 0.

d. ∂
∂x

(

x2 ∂u
∂x

)

= x2 ∂ 2u
∂y2 .

e. (x− y) ∂ 2u
∂x∂y

− ∂u
∂x

+ ∂u
∂y

= 0.

f. ∂ 2u
∂x∂y

+ y ∂u
∂x

+ x ∂u
∂y

+ xyu = 0.

Problem 4.7. Solve the following Cauchy problems:

a. ∂ 2u
∂x2 + 2 ∂ 2u

∂x∂y
−3 ∂ 2u

∂y2 = 0, u
∣

∣

y=0
= 3x2, ∂u

∂y

∣

∣

y=0
= 0.

b. 4y2 ∂ 2u
∂x2 + 2(1− y2) ∂ 2u

∂x∂y
− ∂ 2u

∂y2 − 2y

1+y2

(

2 ∂u
∂x

− ∂u
∂y

)

= 0,

u
∣

∣

y=0
= ϕ0(x),

∂u
∂y

∣

∣

y=0
= ϕ1(x).

c. (1+x2) ∂ 2u
∂x2 − (1+y2) ∂ 2u

∂y2 +x ∂u
∂x

−y ∂u
∂y

= 0, u
∣

∣

y=0
= ϕ0(x),

∂u
∂y

∣

∣

y=0
= ϕ1(x).

d. ∂ 2u
∂x2 +2cosx ∂ 2u

∂x∂y
− sin2 x ∂ 2u

∂y2 − sinx ∂u
∂y

= 0, u
∣

∣

y=sinx
= ϕ0(x),

∂u
∂y

∣

∣

y=sinx
= ϕ1(x).

e. ∂ 2u
∂x2 + 4 ∂ 2u

∂x∂y
−5 ∂ 2u

∂y2 + ∂u
∂x

− ∂u
∂y

= 0, u
∣

∣

y=0
= f (x), ∂u

∂y

∣

∣

y=0
= F(x).

f. x2 ∂ 2u
∂x2 −2xy ∂ 2u

∂x∂y
−3y2 ∂ 2u

∂y2 = 0, u
∣

∣

y=1
= ϕ0(x),

∂u
∂y

∣

∣

y=1
= ϕ1(x).
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Nonhyperbolic equations

Let us consider the case, when instead of the strict hyperbolicity condition (4.19)

the opposite inequality holds:

b2(x,t)−a(x,t)c(x,t) < 0.

In this case, equation (4.16) is called elliptic at the point (x,t). The right-hand side

of equations (4.20) are complex conjugates, and the integration yields the “first in-

tegrals” r and s = r̄ which are also complex conjugates. It turns out that if one takes

z1 = Rer = r+s
2

and z2 = Imr = r−s
2i

as the new coordinates, then equation (4.16)

takes the form
∂ 2u

∂ z2
1

+
∂ 2u

∂ z2
2

+ . . . = 0, (4.35)

that is, its principal part coincides with the Laplace operator. This allows us to solve

such equations exactly or approximately.

Problem 4.8. Bring the following equation to the canonical form:

y
∂ 2u

∂x2
+ x

∂ 2u

∂y2
= 0, y > 0, x > 0. (4.36)

Solution. The equation of the characteristics ydy2 + xdx2 = 0 takes the form√
ydy = ±i

√
xdx, that is, equation (4.36) is elliptic. Integrating, we get y3/2 ∓

ix3/2 = c. Take the new coordinates z1 = Rec = y3/2, z2 = Imc = x3/2. Then

∂u

∂x
=

∂u

∂ z2

3

2
x1/2,

∂u

∂y
=

∂u

∂ z1

3

2
y1/2.

Differentiating the above relations in x and y, respectively, we get (in accordance

with (4.35), we do not write the terms with ∂ 2u
∂ z1 ∂ z2

):

∂ 2u

∂x2
=

∂ 2u

∂ z2
2

9

4
x +

∂u

∂ z2

3

4
x−1/2 + . . . ,

∂ 2u

∂y2
=

∂ 2u

∂ z2
1

9

4
y +

∂u

∂ z1

3

4
y−1/2 + . . . .

Substituting this into (4.36), we find

(∂ 2u

∂ z2
1

+
∂ 2u

∂ z2
2

)9

4
xy +

3

4

∂u

∂ z1

xy−1/2 +
3

4

∂u

∂ z2

yx−1/2 = 0.

From here we get the canonical form:

∂ 2u

∂ z2
1

+
∂ 2u

∂ z2
2

+
1

3z1

∂u

∂ z1

+
1

3z2

∂u

∂ z2

= 0.
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Now let us consider the case, when in (4.19) instead of “>” one has “=.” Then

equation (4.16) is called degenerate at the point (x,t). If (4.16) is degenerate in a

certain region, then equations (4.20) coincide and consequently there is only one

independent first integral r(x,t). In this case, for bringing (4.16) to the canonical

form, one could choose as a second variable any function so that the change of

variables (x,t) 7→ (r,s) were non-degenerate. It turns out that (4.16) takes the form

∂ 2u

∂ s2
+ . . . = 0. (4.37)

Problem 4.9. Bring to the canonical form the equation

sin2x
∂ 2u

∂x2
−2ysinx

∂ 2u

∂x∂y
+ y2 ∂ 2u

∂y2
= 0, 0 < x < π , y > 0. (4.38)

Solution. The equation of the characteristics, sin2 xdy2 + 2ysinxdydx + y2 dx2 = 0

takes the form (sinxdy+ydx)2 = 0, that is, equation (4.38) is degenerate. Separating

the variables, we get dx/sinx = −dy/y, hence lntan x
2

= − lny + c, or y tan x
2

= c1.

We take r = y tan x
2
. Then, setting s = y, we find

∂u

∂x
=

∂u

∂ r
y

1

2cos2 x
2

,
∂u

∂y
=

∂u

∂ r
tan

x

2
+

∂u

∂ s
. (4.39)

Differentiating, we get (omitting the terms with ∂ 2u
∂ r ∂ s

and ∂ 2u
∂ r2 , in accordance with

(4.37)):

∂ 2u

∂x2
=

∂u

∂ r
y

sin x
2

2cos3 x
2

+ . . . ,
∂ 2u

∂y2
=

∂ 2u

∂ s2
+ . . . ,

∂ 2u

∂x∂y
=

∂u

∂ r

1

2cos2 x
2

+ . . . .

Substituting into (4.38), we find

sin2 x

(∂u

∂ r
y

sin x
2

2cos3 x
2

)

−2ysinx
∂u

∂ r

1

2cos2 x
2

+ y2 ∂ 2u

∂ s2
= 0,

from where we obtain the canonical form:

∂ 2u

∂ s2
+

∂u

∂ r

( r sin2 x

y22cos2 x
2

− sinx

ycos2 x
2

)

=
∂ 2u

∂ s2
+

∂u

∂ r

(

− 2r

s2 + r2

)

= 0.

Problem 4.10. Bring to the canonical form the following equations:

a. ∂ 2u
∂x2 −2 ∂ 2u

∂x∂y
+ ∂ 2u

∂y2 + α ∂u
∂x

+ β ∂u
∂y

+ cu = 0.

b. tan2 x ∂ 2u
∂x2 −2y tanx ∂ 2u

∂x∂y
+ y2 ∂ 2u

∂y2 + tan3 x ∂u
∂x

= 0.

c. coth2 x ∂ 2u
∂x2 −2ycothx ∂ 2u

∂x∂y
+ y2 ∂ 2u

∂y2 + 2y ∂u
∂y

= 0.
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5 Semi-infinite string

Mixed problem for the d’Alembert equation

Let us consider the d’Alembert equation (2.1) in the region x > 0. Physically, this

corresponds to the string with one (left) end located at the origin and the other

located far away from the origin (at a distance ≫ at):

∂ 2u

∂ t2
= a2 ∂ 2u

∂x2
, x > 0, t > 0. (5.1)

The initial conditions (2.2) are also required here:

u(x,0) = ϕ(x),
∂u

∂ t
(x,0) = ψ(x), x > 0. (5.2)

Besides, it is physically obvious that one needs the boundary condition at the left

end of the string (at x = 0). For example, if this end is fixed, then its displacement is

equal to zero:

u(0,t) = 0, t > 0. (5.3)

Other physically sensible boundary conditions are also possible; see, for example,

(1.12) and (1.18).

The problem (5.1)–(5.3) is called a mixed problem, since it contains both the

initial data (5.2) and the boundary conditions (5.3).

Solution of the mixed problem. Incident and reflected waves

Let us use the d’Alembert method, that is, let us search for a solution in the form

u(x,t) = f (x−at)+ g(x + at). (5.4)

Substituting this decomposition into the initial data (5.2), we get, as in Section 2,

equations (2.17)–(2.20), that is, the d’Alembert formula for u(x,t).

Question 5.1. Why do we need the boundary condition (5.3), if we seem to have

found the solution using only the initial data?

Answer. Equations (2.17)–(2.19) only make sense for x > 0, since the initial data

(5.2), as opposed to (2.2), are only given for x > 0. Correspondingly, the d’Alembert

formula (2.20) only holds for x−at > 0, and not for all x > 0, t > 0.

Conclusion. The solution to the mixed problem (5.1)–(5.3) is given by the d’Alem-

bert formula (2.20) for x−at > 0.

This is the region below the principal characteristic curve x−at = 0 (Fig. 5.1).
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t

0 x

x−at < 0

x−at = 0

x−at > 0

Fig. 5.1

The characteristic curve x− at = 0 is called principal since it comes out of a

special point (corner point) of the region x > 0, t > 0 where equation (5.1) is con-

sidered. Now let us find the solution above the principal characteristic curve (in the

region x−at < 0). Decomposition (5.4) holds everywhere in the region x > 0, t > 0.

The wave g(x + at) is found from (2.18) for all x > 0, t > 0. On the other hand, the

wave f (x−at) is found from (2.19) only in the region x−at > 0, that is, below the

principal characteristic curve. Thus, it remains to find f (x−at) above the principal

characteristic curve, for x−at < 0.

Let us find f (x−at) for x−at < 0. We use the boundary condition (5.3):

f (−at)+ g(at) = 0, t > 0. (5.5)

It is this formula that relates the unknown values of the function f for the negative

values of its argument with the values of the function g for the positive values of its

argument, which are already known from (2.18).

Let us make the change of variables: We set −at = z. Then (5.5) takes the form

f (z) = −g(−z), z < 0.

Due to (2.18), the above relation shows that for x−at < 0

f (x−at) = −g(at − x) = −ϕ(at − x)

2
− 1

2a

at−x
∫

0

ψ(y)dy− c

2a

= −ϕ(at − x)

2
+

1

2a

0
∫

at−x

ψ(y)dy− c

2a
. (5.6)

Substituting (5.6) and (2.18) into (5.4), we find out the following: for x > at, the

solution is given by the d’Alembert formula (2.20); for 0 < x < at, the solution is

given by

u(x,t) =
−ϕ(at − x)+ ϕ(x + at)

2
+

1

2a

x+at
∫

at−x

ψ(y)dy. (5.7)
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Thus, the solution of the mixed problem (5.1)–(5.3) is given by two different for-

mulas: The d’Alembert formula (2.20) for x > at (below the principal characteristic

curve) and (5.7) for 0 < x < at (above the principal characteristic curve).

Definition 5.2. The wave g(x + at) is called the incident wave, while f (x− at) is

called the reflected wave.

Let us give the graphical interpretation of constructing a solution to the problem

(5.1)–(5.3). Solution of this problem consists of two steps:

A. We substitute the d’Alembert decomposition (5.4) into the initial data (5.2),

which are specified at t = 0 at the points x > 0 of the Ox axis.

Solving the system (2.17) for x > 0,

Fig. 5.2

we find the waves f (x−at) and g(x+
at) at these same points x > 0, t = 0.

Now f (x−at) is known on all charac-

teristics going to the right from these

points (Fig. 5.2) since f (x − at) is

constant on all such characteristics.

These characteristics fill the entire re-

gion x−at > 0. On the other hand, the

wave g(x + at) is known everywhere.

Indeed, it is constant on the characte-

ristics going to the left, while such characteristics, sent out of the points (x,t) with

x > 0 and t = 0, fill the entire region x > 0, t > 0. Thus, the initial data allow to de-

termine the solution in the region on Fig. 5.2 containing the characteristics of both

families, that is, below the principal characteristic curves.

One can see on Fig. 5.2 that above the principal characteristic curve the wave

f (x−at) (the reflected wave) is not known yet, while the incident wave g(x+at) is

already known.

B. We substitute the d’Alembert decom-

Fig. 5.3

position (5.4) into the boundary condition

(5.3), which is specified at the points of

the time axis Ot (t > 0, x = 0). At these

points the wave g(x + at) is already deter-

mined from the initial data. Therefore the

boundary condition (5.5) relates the values

of the wave f (x − at) (unknown at these

points) with the already known values of

g(x + at). This allows us to determine the

wave f (x − at). But then f (x − at) (and

hence u(x,t)) is known on the characteristics going to the right from all these points

(the dashed line on Fig. 5.3), that is, in the entire region x < at above the principal

characteristic curve.
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Other boundary conditions

Instead of the boundary condition (5.3), one may consider the boundary condition

(1.10):
∂u

∂x
(0,t) = 0, t > 0. (5.8)

Problem 5.3. Solve the mixed problem (5.1)–(5.2), (5.8).

Solution.

a.

mula (2.20) is valid, and formulas (2.18)–(2.19) hold for x > 0;

b.

into the boundary condition (5.8), obtaining

f ′(−at)+ g′(at) = 0, t > 0. (5.9)

After the substitution −at = z, we have:

f ′(z)+ g′(−z) = 0, z < 0.

Integrating, we get

f (z)−g(−z) = c1 = const, z < 0.

In view of (2.18), we obtain the solution for x < at:

f (x−at) = g(at − x)+ c1 =
1

2
ϕ(at − x)+

1

2a

at−x
∫

0

ψ(y)dy +
c

2a
+ c1. (5.10)

Taking g(x + at) from the formula (2.18), we also obtain the solution for x < at:

u(x,t) =
ϕ(at − x)+ ϕ(x + at)

2
+

1

2a

at−x
∫

0

ψ(y)dy+
1

2a

x+at
∫

0

ψ(y)dy+c2. (5.11)

The constant c2, as we will now show, could be determined from the condition

that the solution u(x,t) is continuous at the characteristic curve x = at. The con-

tinuity is necessary when the problem (5.1)–(5.2), (5.8) describes a string or a

rod.

Below the principal characteristic curve, that is, for x > at, the d’Alembert for-

Above the principal characteristic curves, that is, for x < at, we substitute (5.4)
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Discontinuities of a solution along a principal characteristic curve.

Continuity conditions

It follows that the solution to the problem (5.1)–(5.2) is given by different expres-

sions for x−at > 0 and x−at < 0, therefore it could be discontinuous along the line

x− at = 0. It turns out that the discontinuity of any solution to (5.1) along the line

x−at = 0 does not depend on time.

Indeed, this could be seen from (5.4):

a.

b.

equal to f (0
above is equal to f (0−). Thus,

u
∣

∣

x−at=0−−u
∣

∣

x−at=0+
= f (0−)− f (0+).

Therefore, the condition that the solution u(x,t) is continuous on the principal char-

acteristic curve has the form

f (0−) = f (0+). (5.12)

Remark 5.4. We use the notations

f (a±) := lim
x→a±0

f (x).

Problem 5.5. Find the condition for the solution to the problem (5.1)–(5.3) to be

continuous at the principal characteristic curve.

Solution. As it follows from (2.19),

f (0+) =
ϕ(0)

2
− c

2a
, (5.13)

while from (5.6) we have

f (0−) = −g(0) = −ϕ(0)

2
− c

2a
. (5.14)

Therefore, the condition (5.12) gives

−ϕ(0)

2
=

ϕ(0)

2
, hence ϕ(0) = 0. (5.15)

Remark 5.6. Let us consider the region x > 0, t > 0 (see Fig. 5.4) where the problem

(5.1)–(5.3) is being solved. On the part of its boundary represented by the axis Ot,

the solution is equal to zero due to (5.3), while at the axis Ox the solution is equal

to ϕ(x). Therefore the condition (5.15) is merely the condition for the boundary

istic curve, since its level curves x + at = const intersect the line x = at.

The wave g(x +at) is continuous when passing through the principal character-

The wave f (x−at) below the principal characteristic curve x−at = 0 has a limit

+), since in that region one has x−at > 0; analogously, its limit from
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Fig. 5.4

values of u(x,t) to be continuous at the point (0,0). As we have seen, this condition

is necessary and sufficient for the continuity of the solution at all the points of the

principal characteristic curve.

Problem 5.7. Find the condition for the solution to the problem (5.1)–(5.2), (5.8)

to be continuous at the principal characteristic curve.

Solution. The formula (5.13) for f (0+) from the previous problem is valid here. The

expression

f (0−) =
ϕ(0)

2
+

c

2a
+ c1

follows from (5.10). Therefore, (5.11) and (5.12) imply that

ϕ(0)

2
+

c

2a
+ c1 =

ϕ(0)

2
− c

2a
, hence c1 +

c

a
= c2 = 0. (5.16)

Remark 5.8. A discontinuous solution to the problem (5.1)–(5.2), (5.8) (when c2 6=
0) does not make a physical sense for a string or a rod, since it implies their breaking.

Yet, in acoustics and gas dynamics a discontinuous solution makes physical sense

and is called a shock wave. In this case, the value of discontinuity, represented by

c2, could not be found from equations (5.1), (5.2), and (5.8).

This value can be determined from additional physical or chemical information,

allowing us to pinpoint a unique solution to the problem. For example, in the process

of propagation of the detonation wave in the gasoline vapor the value of the pressure

jump at the front of the shock wave depends on the type of the gasoline, pressure,

temperature, presence of additional substances, and so on.

The mixed problem (5.1)–(5.2) with more general boundary conditions (1.12)

or (1.18) is solved similarly as in the case of the boundary condition (5.8), but the

equation of type (5.9) for the boundary condition for the reflected wave will be the

second order differential equation, and its solution will contain two arbitrary con-

stants. These constants are determined in each particular problem from the auxiliary

conditions. For example, the condition (5.21) below means that the mass at t = 0 is

attached to the left end of the rod and its (horizontal) speed is equal to 7.
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Problem 5.9. Find a continuous solution to the problem











∂ 2u

∂ t2
= 9

∂ 2u

∂x2
, x > 0, t > 0;

u(x,0) = e−x,
∂u

∂ t
(x,0) = cos5x;

∂u

∂x
(0,t) = u(0,t)+ t.

Solution. The d’Alembert formula holds in the region x > 3t:

u(x,t) =
e−(x−3t) + e−(x+3t)

2
+

1

6

sin
(

5(x + 3t)
)

− sin
(

5(x−3t)
)

5
. (5.17)

Therefore, for 0 < x < 3t, one needs to look for a solution in the form

u(x,t) = f (x−3t)+
e−(x+3t)

2
+

sin
(

5(x + 3t)
)

30
.

Substituting this expression into the boundary condition, we find:

f ′(−3t)− e3t

2
+

1

6
cos15t = f (−3t)+

e−3t

2
+

sin15t

30
+ t, t > 0.

Substituting y = −3t, we obtain:

f ′(y)− ey

2
+

1

6
cos5y = f (y)+

ey

2
− sin5y

30
− y

3
, y < 0,

or

f ′(y)− f (y) = ey − 1

6
cos5y− sin5y

30
− y

3
, y < 0. (5.18)

It follows that

f (y) = Cey + yey + Acos5y+ Bsin5y+
y

3
+

1

3
, y < 0.

We find the values of constants A and B substituting f (y) into (5.18):

−5Asin5y−Acos5y+ 5Bcos5y−Bsin5y = −cos5y

6
− sin5y

30
.

Therefore −5A−B = 1
30

; −A + 5B = − 1
6
, and thus −26A = − 1

3
, leading to A =

1
78

and B = −5A + 1
30

= − 5
78

+ 1
30

. Finally, C could be found from the continuity

condition (5.12): C + A + 1
3

= 1
2
, hence C = 1

6
−A = 1

6
− 1

78
= 2

13
.

Answer. For x > 3t, u(x,t) is given by (5.17). For 0 < x < 3t,

u(x,t) = 2
13

ex−3t +(x−3t)ex−3t + 1
78

cos5(x−3t)

+
(

1
30
− 5

78

)

sin 5(x−3t)+ 1
3
(x−3t)+ 1

3
+ 1

2
e−(x+3t) + 1

30
sin 5(x + 3t).
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Propagation of waves

Problem 5.10. A stretched semi-infinite rope described by (5.1) with a = 1 is ini-

tially at rest. Starting at t = 0, its left end x = 0 is moved up and down, with the

displacement being equal to sinπt. Draw the shape of the rope at t = 1, 2, 3, . . ..

Solution. We need to solve the mixed problem (5.1)–(5.2) with ϕ(x)≡ψ(x)≡ 0 and

with the boundary condition

u(0,t) = sinπt, t > 0. (5.19)

(i) x > t: in this case, since ϕ(x) ≡ ψ(x) ≡ 0 by the condition of the problem,

u(x,t) = 0. In particular, g(x + t)≡ 0 for all x > 0, t > 0.

(ii) x < t: since g(x + t) ≡ 0, u(x,t) ≡ f (x− t). Substituting u(x,t) = f (x− t) into

(5.19), we get f (−t) = sinπt, t > 0.

Answer. u(x,t) = f (x− t) = sinπ(t − x) = −sinπ(x− t), x < t. See Fig. 5.5.

Fig. 5.5

Problem 5.11. A stretched rope described by (5.1) with a = 1 is initially at rest.

Starting at t = 0 its left end x = 0 is moved up and down by the external force

f (t) = sinπt (see the boundary condition (1.12), where we take T = 1, m = k =
η = 0). Draw the shape of the string at t = 1, 2, 3, . . ..

Solution. We need to find a continuous solution to the mixed problem (5.1)–(5.2)

with ϕ(x) ≡ ψ(x) ≡ 0 and with the boundary condition

∂u

∂x
(0,t) = −sinπt, t > 0. (5.20)

a. x > t: in this case, u(x,t) ≡ 0. In particular, g(x + t)≡ 0.

b. x < t: in this case, u(x,t) = f (x− t).

Substituting u(x,t) = f (x− t) into (5.20), we get f ′(−t) = −sinπt for t > 0. Sub-

stituting −t = z, we can write f ′(z) = sinπz for z < 0, hence f (z) = − cosπz
π + c,

z < 0. Therefore,

u(x,t) = f (x− t) = −cosπ(x− t)

π
+ c, x < t.



38 1 Hyperbolic equations. Method of characteristics

The continuity condition at x = t requires that u(t,t) = 0 = − 1
π + c, hence c = 1

π .

Answer. u(x,t) =
(

1− cosπ(x− t)
)

/π for x < t and zero otherwise. See Fig. 5.6.

Fig. 5.6

Problem 5.12. The mass m = 2 moving with the speed v = 7 sticks to the end of

the semi-infinite rod that was initially at rest. Find the displacement of the rod for

t > 0, assuming that a = 3 in (5.1) and S ·E = 5 in (1.18).

Solution. The mathematical setup of the problem looks as follows:

∂ 2u

∂ t2
= 9

∂ 2u

∂x2
, u(x,0) =

∂u

∂ t
(x,0) = 0, 2

∂ 2u

∂ t2
(0,t) = 5

∂u

∂x
(0,t).

The last relation is due to the fact that the mass at the end of the rod is due to the

newly acquired mass m. The sticking of the mass to the end of the rod leads to the

following conditions:

u(0,0+) = 0,
∂u

∂ t
(0,0+) = 7. (5.21)

For x > 3t the d’Alembert formula holds, so that u(x,t) = 0, since the initial data

are equal to zero. For x < 3t, since g(x + 3t)≡ 0, the solution has the form

u(x,t) = f (x−3t).

Substituting u(x,t) in this form into the boundary conditions, we find:

2 ·9 f ′′(−3t) = 5 f ′(−3t), t > 0; f (0−) = 0; −3 f ′(0−) = 7.

Hence 18 f ′′(y)−5 f ′(y) = 0 for y < 0, giving f (y) = c1 +c2e
5
18 y; c1 +c2 = 0. Eval-

uating f ′(0−), we find that −3c2
5
18

= 7, c2 = − 42
5

.

Answer. u = 0 for x > 3t and u = 42
5

(

1− e
5

18 (x−3t)
)

for x < 3t.
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Reflection of waves. Method of even and odd extension

Besides the general method described above, the problem (5.1), (5.2) with the

boundary conditions (5.3) or (5.8) could be approached using the method of odd

and even extension.

Let us first consider the method of odd extension. The following problem de-

scribes oscillations of a plucked string.

Problem 5.13. Solve the mixed problem (5.1)–(5.3) with a = 1 and the initial data

from Fig. 5.7. Draw the shape of the string at t = 1, 2, 3, 3.5, 4, 5.

Fig. 5.7

ϕ(x) ψ(x) ≡ 0
1

0 1 2 3 4 5 x

Solution. Let us consider the solution û(x,t) to the Cauchy problem (2.1)–(2.2) on

the entire axis, with ∂
∂ t

û(x,0) = ψ̂(x) ≡ 0 and with ϕ̂ being the odd extension of

ϕ(x) onto R (see Fig. 5.8):

û(0,x) = ϕ̂(x) ≡
{

ϕ(x), x ≥ 0;

−ϕ(x), x < 0.

Fig. 5.8

ϕ̂(x)1

−1

−5 −4 −3

0 3 4 5 x

Set u(x,t) ≡ û(x,t)
∣

∣

x≥0
. Obviously, u satisfies equation (5.1) and the initial data

(5.2). Below, we will see that the boundary condition (5.3) is also satisfied, since

û(x,t) is odd in x. The region x < 0 is virtual, or nonphysical.

Construction of û(x,t). According to the d’Alembert formula (2.20),

û(x,t) =
ϕ̂(x− t)

2
+

ϕ̂(x + t)

2
,

that is, we need to divide ϕ̂(x) by two, shift by t to the right and to the left, and to

add up the results. See Fig. 5.9.
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The string at t = 1.

t = 2. Arrows indicate the direction of the motion of the humps.

t = 3. The left hump in the physical region x > 0 approaches the nail at x = 0.

t = 3.5. The nail pulls the hump over.

t = 4. The deviation for −1 ≤ x ≤ 1 is zero. Arrows indicate the velocities of the
points of the string.

t = 5. The humps have parted (the arrows indicate the directions of motion of
humps).

Fig. 5.9

And so on: in the physical region x > 0 the two humps move to the right (while

in the virtual region x < 0 the two humps move to the left).

Remark 5.14. The boundary condition (5.3) at x = 0 holds for all t > 0 since û(x,t)
is odd in x.
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Let us consider oscillations of a piano string after having been hit with a hammer.

Problem 5.15. Solve the problem (5.1)–(5.3) with a = 1 and the initial data as on

Fig. 5.10. Plot the string at t = 1, 2, 3, 4, 5, and 6.

Fig. 5.10

ϕ(x) ≡ 0 ψ(x)
1

0 3 5 x

Solution. Let us set ϕ̂(x) ≡ 0, x ∈ R, and let us extend ψ(x) onto R so that it is odd:

ψ̂(x) =

{

ψ(x), x ≥ 0;

−ψ(−x), x < 0.

This function is plotted on Fig. 5.11.

Fig. 5.11

ψ̂(x)
1

−1

−5 −3

0 3 5 x

Consider the solution û to the Cauchy problem (2.1)–(2.2) with the initial data ϕ̂
and ψ̂ . By the d’Alembert formula (2.20),

û(x,t) = φ̂ (x + t)− φ̂(x− t), (5.22)

where the function φ̂ (x) ≡ 1
2

∫ x
−∞ ψ̂(y)dy is plotted on Fig. 5.12.

Fig. 5.12

φ̂ (x)

−1

−5 −3 0 3 5

x
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We set u(x,t) ≡ û(x,t)
∣

∣

x>0
. Obviously, u(x,t) satisfies (5.1) and (5.2). As will

be seen below, the boundary condition (5.3) is also satisfied. Construction of û(x,t)
according to formulas (5.22) is on Fig. 5.13.

t = 1 −φ̂ (x−1)

φ̂(x+1)

t = 2

t = 3

t = 4

t = 5

t = 6

Fig. 5.13

And so on: In the physical region x > 0 the trapezoid keeps moving to the right

(while the trapezoid in the unphysical region keeps moving to the left).

The boundary condition (5.3) is obviously satisfied since the solution is an odd

function of x.

Problem 5.16. Draw the shape of the string at t = 3.5 and t = 4.5.

Let us now consider the method of even extension.



5 Semi-infinite string 43

Problem 5.17. Solve the mixed problem (5.1), (5.2), (5.8) with a = 1 and the initial

data as on Fig. 5.10. Draw the shape of the string at t = 1, 2, 3, 3.5, 4, 4.5, 6.

Hint. Use the even extension for ϕ(x) and ψ(x). Then û(x,t) will be even in x, hence

the boundary condition (5.8) will be satisfied.

Problem 5.18. For t < 0, there is a wave of deformation propagating to the left

along an elastic semi-infinite rod:

u(x,t) =

{

sin(x + 3t), x > −3t;

0, 0 < x < −3t, t < 0.
(5.23)

The left end of the rod at x = 0 is elastically attached (see (1.18)):

0 = −2u(0,t)+ 3
∂u

∂x
(0,t), t > 0. (5.24)

Find u(x,t) for t > 0.

Solution. As it follows from the condition of the problem,

∂ 2u

∂ t2
= 9

∂ 2u

∂x2
, x > 0, t > 0; u(x,0) = sinx,

∂u

∂ t
(x,0) = 3cosx, x > 0.

From here, for x > 3t, the d’Alembert formula yields

u(x,t) = sin(x + 3t), x > 3t, (5.25)

as in (5.23). In the region x < 3t we are looking for a solution in the form u(x,t) =
f (x−3t)+ sin(x + 3t). Substituting this into the boundary condition (5.24), we get

0 = −2 f (−3t)−2sin3t + 3 f ′(−3t)+ 3cos3t.

The substitution y = −3t gives

3 f ′(y)−2 f (y) = −2siny−3cosy, y < 0. (5.26)

Therefore, for y < 0, f (y) = Ce2y/3 + Acosy + Bsiny. The constants A and B are

found by substituting f (y) into (5.26):

−3Asiny + 3Bcosy−2Acosy−2Bsiny = −2siny−3cosy.

Thus, −3A−2B = −2, 3B−2A = −3, leading to A = 12/13 and B = −5/13. The

value of C is found from the continuity condition (5.12) at the characteristic y =
x−3t = 0:

C + A = f (0−) = f (0+) = 0, C = −12/13.

Answer. u(x,t) =

{

sin(x + 3t), x > 3t;

−12e
2
3

(x−3t)
+12cos(x−3t)−5sin(x−3t)

13
+ sin(x + 3t), x < 3t.
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6 Finite string

The d’Alembert method

Transversal oscillations of a finite string in the absence of external forces are de-

scribed by the equation

∂ 2u(x,t)

∂ t2
= a2 ∂ 2u

∂x2
, 0 < x < l, t > 0. (6.1)

For the determination of the motion of the string we need the initial data

u(x,0) = ϕ(x), u̇(x,0) = ψ(x), 0 < x < l (6.2)

and the boundary conditions at the ends. For example, if the ends are fixed, then

u(0,t) = 0 and u(l,t) = 0, t > 0. (6.3)

Solution of the mixed problem (6.1)–(6.3) could be found by the d’Alembert

method along the lines of Section 5, as follows.

A. Substituting (5.4) into the ini-

Fig. 6.1

t

x+at = l x−at = 0

0 < at < l

0 l x

tial data (6.2) at t = 0, 0 < x < l,

we find by formulas (2.18), (2.19)

the waves f (x−at) and g(x+at) at

these points. This gives the solution

u(x,t) in region I (the triangle OAB)

on Fig. 6.1.

B. Substituting the ansatz (5.4) into

the boundary condition (6.3) at x =
0, we find the reflected wave f (x−
at) from knowing the incident wave

g(x+at) at the points of the interval

OC. This gives the solution u(x,t)
in region II (the triangle OBC) on Fig. 6.1.

C. Substituting (5.4) into (6.3) for x = l, we find the reflected wave g(x + at) from

knowing the incident wave f (x−at) at the points of the interval AE .

And so on. This allows us to find the solution u(x,t) in the entire semi-strip 0 <
x < l, t > 0, successively decomposing it into regions, bounded by characteristics

similar to characteristics OD, AC, and CE. In the same fashion one can solve the

mixed problem (6.1)–(6.2) with boundary conditions other than (6.3).

Remark 6.1. The asymptotic properties of solutions to the problem (6.1)–(6.3) as

t → ∞, and, in particular, the frequencies of oscillations, are easier to investigate

using the Fourier method, which is described in Chapter 2.
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Method of even and odd extension

Problem 6.2. Solve the problem (6.1)–(6.3) for

a = 1, l = 6 and the initial data u(x,0)= ϕ(x) from

Fig. 6.2, u̇(x,0) = ψ(x) = 0. Plot the shape of the

string for t = 1, 2, . . . and find the period T of the

oscillations.
Fig. 6.2 u(x,0) = ϕ(x).

Solution. See Fig. 6.3.

t = 1 t = 2

We send a virtual hump from the right.

t = 3
t = 4

We send a virtual hump from the left.

t = 5 t = 6

t = 7 t = 8

We send a virtual hump from the left.

t = 9
t = 10

We send a virtual hump from the right.

t = 11 t = 12

We see that the process is periodic, with the period T = 12 = 2l
a

.

Fig. 6.3
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Problem 6.3 (The piano string). Solve the problem (6.1)–(6.3) for the string of

length l = 6, with a = 1, and the initial data from Fig. 5.10. Plot the shape of the

string at t = 1, 2, . . . and find the period of oscillations.

Problem 6.4. Solve the problem (6.1)–(6.2) for the string of length l = 6, with

a = 1, the initial data from Fig. 5.10, and with the boundary conditions

∂u

∂x
(0,t) = 0 and

∂u

∂x
(l,t) = 0, t > 0.

Plot the shape of the string at t = 1, 2, . . . and find the period of oscillations.

Hint. One should apply the method of even reflections, that is, send reflected virtual

humps (see Fig. 6.3) with the same “polarization” as the incident ones (not with the

opposite).

7 Wave equation with many independent variables

Plane waves, characteristics, discontinuities

Denote by

△3 ≡
∂ 2

∂x2
1

+
∂ 2

∂x2
2

+
∂ 2

∂x2
3

the Laplace operator in three dimensions.

A multidimensional analog of the d’Alembert equation (1.1) is the wave equation

∂ 2u

∂ t2
= a2 △3 u(x,t), t > 0, x = (x1,x2,x3) ∈ R

3, (7.1)

where a > 0. This equation describes the air pressure p(x,t) (the sound wave in

acoustics), the potentials ϕ(x,t) and A(x,t) of the electromagnetic field in electro-

dynamics, and so on.

Let us try to find solutions to equation (7.1) in the form

u(x,t) = f (τt + ξ1x1 + ξ2x2 + ξ3x3) = f
(

τt + 〈ξ ,x〉
)

, (7.2)

where

〈ξ ,x〉 ≡ ξ1x1 + ξ2x2 + ξ3x3.

We are interested in solutions with ξ = (ξ1,ξ2,ξ3) 6= 0.

Such functions are called plane waves. Here is the reason for this name:

a. At fixed t = t0, the level surfaces u(x,t0) = const are represented by the planes

τt + 〈ξ ,x〉 = c
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orthogonal to the vector η = (τ,ξ );
b. For t = t0 and t = t1, with t0 6= t1, the function u(x,t1) differs from u(x,t0) by the

shift represented by the vector

− ξ

|ξ |2 τ(t1 − t0).

Indeed,

u
(

x +
ξ

|ξ |2 τ(t1 − t0),t0

)

= f
(

τt0 +
〈

ξ ,x +
ξ

|ξ |2 τ(t1 − t0)
〉)

= f

(

τt0 + 〈ξ ,x〉+ 〈ξ ,ξ 〉
|ξ |2 τ(t1 − t0)

)

= f (τt1 + 〈ξ ,x〉) = u(x,t1).

Thus, (7.2) is a wave moving along the direction of the vector −ξ with the speed

v =
τ

|ξ | .

We denote the unit vector in the direction −ξ by

ω = − ξ

|ξ | .

Then τ = v|ξ |, ξ = −ω|ξ |, and, therefore, (7.2) can be written as

u(x,t) = f
(

v|ξ |t −〈ω,x〉|ξ |
)

= f
(

(vt −〈ω ,x〉)|ξ |
)

= g
(

vt −〈ω,x〉
)

,

where

|ω | = 1, g(λ ) ≡ f
(

λ |ξ |
)

, λ ∈ R.

After these preliminary remarks let us proceed to finding the solution to equation

(7.1) in the form (7.2). We substitute (7.2) into (7.1), and, using the chain rule, we

get:

f ′′(τt + 〈ξ ,x〉)τ2 = a2 f ′′(τt + 〈ξ ,x〉)(ξ 2
1 + ξ 2

2 + ξ 2
3 ). (7.3)

Assuming that f ′′(z) 6≡ 0, we get from (7.3) the characteristic equation

τ2 = a2|ξ |2. (7.4)

Solutions of this equation are vectors η = (τ,ξ ) ∈ R4, lying on the (three-dimensi-

onal) cone Q in R4, whose base is a two-dimensional sphere

τ = 1, |ξ | = 1

a
.

See Fig. 7.1.

Conversely, for any η = (τ,ξ ) ∈ R4 satisfying (7.4), the plane wave (7.2) with

any function f (z) is a solution to equation (7.1).
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Fig. 7.1

τ

1

0

ξ1

ξ2

ξ3

In particular, f (z) could be taken discontinuous (or rapidly changing) at some

point, for example, at z = 2 (see Fig. 3.9). Then the solution (7.2) will have the

same discontinuity (or rapid change) along the entire hyperplane in R4
x,t (if η =

(τ,ξ ) 6= 0):

τt + 〈ξ ,x〉 = 2. (7.5)

For fixed t this discontinuity is located on the plane in R3
x described by equa-

tion (7.5). As the time increases, this plane moves in the direction of its normal,

represented by −ξ , with the speed v = |τ|
|ξ | = a (see (7.4)).

Definition 7.1 (Characteristic conormals, hyperplanes, and hypersurfaces).

a. A vector

η = (τ,ξ1,ξ2,ξ3) ∈ R
4, η 6= 0

satisfying (7.4) is called a characteristic conormal of the wave equation (7.1).

b. A hyperplane

η⊥ =
{

(t,x) ∈ R
4 : τt + 〈ξ ,x〉 = const

}

,

orthogonal to a particular characteristic conormal η=(τ,ξ ), is called a char-

acteristic hyperplane of the wave equation (7.1).

c. A hypersurface in R4

hyperplane at each point is characteristic.

Remark 7.2. Due to the characteristic equation (7.4), the speed of propagation of

all the plane waves which satisfy the wave equation (7.1) is equal to a:

v2 =
τ2

|ξ |2 = a2. (7.6)

Conclusion. Any characteristic hyperplane could be a surface of discontinuity of

solutions to equation (7.1). See Remark 2.1.

is called a characteristic hypersurface if the tangent
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All the plane waves satisfying equation (7.1) propagate with the speed a.

It is the formula (7.6) that the discovery of the electromagnetic nature of light

and the special theory of relativity is connected with. From the equations of electro-

dynamics, Maxwell derived that the potentials of the electromagnetic field satisfy

the wave equation (7.1) with the coefficient

a2 =
1

ε0µ0
. (7.7)

Here ε0 and µ0 are the electric and magnetic permeability of vacuum, respectively,

which are found experimentally from purely electromagnetic measurements. When

Maxwell computed the speed of propagation of the electromagnetic waves, it turned

out that this speed with the great accuracy coincided with the speed of light:

a =
1√

ε0µ0

≈ 299792
km

s
.

This led Maxwell to the conclusion that the light also has an electromagnetic nature!

The special theory of relativity was another great discovery related to formulas

(7.6) and (7.7). The question naturally arises: In what reference frame is the value of

the speed of light actually equal to 1√
ε0µ0

? It is known that all the laws of mechanics

are the same in any inertial reference frame. Thus, it is natural to assume that the

laws of electrodynamics also hold in any inertial reference frame. But, according to

(7.7), the speed of light should also be the same in all such systems! Such a property

of the velocity, though, contradicts Newton’s mechanics. It follows that either the

Maxwell equations are only valid in a particular reference frame, related to the sta-

tionary “ether,” or the Newton laws of mechanics are not exact. It is for settling this

question that Michelson and Morley built their famous experiment to justify that the

speed of light is the same in different inertial reference frames, and, consequently, to

prove the absence of the stationary “ether” and inexactness of Newton’s mechanics

(at high speeds). The necessary refinement of the laws of mechanics was later given

by Einstein.

The domain of dependence. The Kirchhoff formula

Let us try to find the domain of dependence for equation (7.1) with the aid of cha-

racteristics, as in Section 4 (Fig. 4.1). That is, let us consider the Cauchy problem

for equation (7.1) with initial conditions at t = 0:

u
∣

∣

t=0
= ϕ(x),

∂u

∂ t

∣

∣

∣

t=0
= ψ(x), x ∈ R

3. (7.8)

Let us draw all the characteristics (the characteristic hyperplanes) of equation

(7.1) through a particular point (x0,t0)∈R4, t0 > 0. On Fig. 7.2, η is a characteristic
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Fig. 7.2

η

η⊥

P

P′

α

Q

β

x0

Bat0(x0)

x3

x2

x1

t0

0

K(x0,t0)

conormal, η⊥ is the characteristic hyperplane orthogonal to η and passing through

(x0,t0). This characteristic hyperplane intersects the “initial” hyperplane t = 0 along

the plane P (represented by a line on Fig. 7.2).

Conjecture 7.3. The domain of dependence for a solution at (x0,t0) is the part of

the hyperplane t = 0 bounded by the planes P, P′, . . .. (it is analogous to Fig. 4.1).

This region is a ball of radius at0 centered at x0, denoted by Bat0(x0). To see this,

one should notice the following: The normal η belongs to the characteristic cone Q

described by equation (7.4), while the hyperplane η⊥ is tangent to the cone K(x0,t0)

which is dual to the characteristic cone Q (see Fig. 7.2). Therefore the planes P, P′,
. . . are tangent to the base of the cone K(x0,t0), which is represented by the sphere

Sat0(x0) = {x ∈ R3 : |x− x0| = at0}.

Remark 7.4. The cone K(x0,t0) = {(x,t) ∈ R4 : |x− x0| = a|t − t0|} is called the

light cone of equation (7.1) at the point (x0,t0). Its dual cone Q = {(τ,ξ )∈R×R3 :

|τ| = a|ξ |} is called the characteristic cone of equation (7.1) at the point (x0,t0).
The cones K(x0,t0) and Q are orthogonal, that is, α + β = π

2
. See Fig. 7.2.

The intersection of the cone K(x0,t0) with the hyperplane t = 0 is a sphere given

by

Sat0(x0) =
{

x ∈ R
3 : |x− x0| = at0

}

.

Thus, Conjecture 7.3 means that the domain of dependence for u at the point (x0,t0)
is a ball of radius at0 centered at x0, Bat0(x0) = {x ∈ R3 : |x− x0| = at0}. This
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conjecture is equivalent to saying that all the solutions of equation (7.1) propagate

with the speed a. Let us point out that we already proved this for the plane waves.

Our conjecture is correct indeed. Moreover, it turns out that the domain of depen-

dence is smaller than a ball: It only consists of the sphere Sat0(x0). In particular, this

follows from the Kirchhoff formula for the solution to the Cauchy problem (7.1),

(7.8):

u(x,t) =
1

4πa2t

∫

|y−x|=at

ψ(y)dSy +
∂

∂ t

( 1

4πa2t

∫

|y−x|=at

ϕ(y)dSy

)

. (7.9)

For the derivation of this formula, see [Pet91].

Propagation of waves. The Huygens principle

Problem 7.5. The function u(x,t) solves (7.1) with a = 1 and with the initial data

such that

ϕ(x) ≡ ψ(x) ≡ 0 for |x| > 1.

Find where (for certain) u(x,t) ≡ 0 at t = 1, 2, 3, 4.

Solution. First, assume that a is arbitrary. Then u(x,t) = 0 if the region of integration

in (7.9), that is, the sphere |y− x| = at, does not intersect the region |y| ≤ 1 where

ϕ(y) and ψ(y) are supported. See Fig. 7.3. Clearly, this condition is equivalent to

Fig. 7.3

one of the following two conditions: either, as on Fig. 7.3, the ball |y| ≤ 1 is outside

the sphere |x− y|= at,

1 + at < |x|, (7.10)

or, as on Fig. 7.4, the sphere |y− x|= at contains the ball |y| ≤ 1 strictly inside:

at > 1 + |x|. (7.11)
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Fig. 7.4

The condition (7.10) with a = 1 yields the identity u(x,t) ≡ 0 in the following re-

gions:














t = 1 ⇒ |x| > 2;

t = 2 ⇒ |x| > 3;

t = 3 ⇒ |x| > 4;

t = 4 ⇒ |x| > 5.

The condition (7.11) with a = 1 yields the identity u(x,t) ≡ 0 in the following re-

gions:














t = 1 ⇒ x ∈ /0;

t = 2 ⇒ |x| < 1;

t = 3 ⇒ |x| < 2;

t = 4 ⇒ |x| < 3.

Therefore, u(x,t) has the form of the spherical wave contained in the spherical layer

of thickness 2:














t = 1 ⇒ |x| ≤ 2;

t = 2 ⇒ 1 ≤ |x| ≤ 3;

t = 3 ⇒ 2 ≤ |x| ≤ 4;

t = 4 ⇒ 3 ≤ |x| < 5.

(7.12)

Fig. 7.5

t = 1
t = 2

t = 3
t = 4
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Answer. u(x,t) is for certain equal to zero outside the spherical layers (7.12) (al-

though it could also be equal to zero somewhere inside these layers). See Fig. 7.5.

Conclusion. As seen from (7.12), the front of the spherical wave propagates with

the speed 1. In the case of an arbitrary a, it is seen from (7.10) and (7.11) that the

solution u(x,t) could only be different from zero in a spherical layer

at −1 ≤ |x| ≤ at + 1

of thickness 2. This wave has two fronts: the forward front |x| = at + 1 and the rear

front |x| = at −1, both propagating with the speed a.

Problem 7.6. Given: a = 1, ϕ(x) ≡ ψ(x) ≡ 0 at |x| < 2 or |x| > 4 (as on Fig. 7.5

for t = 3). Where is u(x,t) identically equal to zero for t = 1, 2, 3, 4, 5?

Solution. There are three possibilities, I, II, and III (see Fig. 7.6), of the location of

the sphere |y− x| = t so that we would have u(x,t) ≡ 0. For location I, analogously

Fig. 7.6

to (7.10), in the case of a general value of a, 4+at < |x|. For location II, analogously

to (7.11), at > 4 + |x|. Finally, for location III, |x|+ at < 2.

Since we are given a = 1, we get the following:

a.

b.

ball |x| ≤ 6.

c.

radius 3), therefore the solution is supported inside the ball |x| ≤ 7.

d.

ball |x| ≤ 8.

At t = 1 the sphere |y− x| = t is of radius 1 and locations I and III are possible,

while II is not. As a result, we see that u(x,1) is supported somewhere inside the

layer 1 ≤ |x| ≤ 5. See Fig. 7.7. This result seriously differs from Fig. 7.5 at t = 4.

At t = 2 the radius of the sphere of integration is equal to 2, therefore, only

location I is possible. Therefore, the solution is supported somewhere inside the

At t = 3 it is also only location I which is possible (the sphere of integration is of

The same happens for t = 4: u(x,4) may be different from zero only inside the
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e. Finally, at t = 5, in addition to location I, location II also becomes possible (the

sphere of integration is of radius 5), etc. See Fig. 7.7.

We now see that u(x,t) for t > 4 is supported inside an expanding spherical wave

of thickness 8.

t = 1
t = 2

t = 3
t = 4

t = 5

1 5 6 7 8 1 9

Fig. 7.7

The Huygens principle is the rule which allows us to build the forward front Ft

of the wave at the moment t if it is known at t = 0. This rule follows from the

Kirchhoff formula (7.9) and consists of the following: Let u
∣

∣

t=0
and u̇

∣

∣

t=0
be equal

to zero outside of the dashed region on Fig. 7.8, with the smooth boundary F0. Then

u(x,t) ≡ 0 outside the region bounded by the surface Ft .

The front Ft is constructed as follows: For each point x0 ∈ F0, we consider the

sphere Sat(x0) of radius at centered at x0; the surface Ft is the envelope of all such

spheres.

Fig. 7.8

xt

Sat(x0)
x0

Ft

F0

Let us assume that there is a unique point where the front Ft touches the sphere

Sat(x0), and denote this point by xt . It is easy to see that the interval [x0,xt ] is or-

thogonal to Ft if Ft is a smooth surface. One can also check that [x0,xt ] ⊥ F0 (check

this!). Consequently, the front Ft could also be constructed in the following way:

From each point x0 ∈ F0 we draw an interval [x0,xt ] ⊥ F0 of length at. The front

Ft is then the set of all such points xt . The intervals [x0,xt ] are called the light rays.

Therefore, the Huygens principle implies that

∥

∥The waves propagate along the light rays.
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Diffusion of waves in two dimensions. The Poisson formula

The wave equation in the plane,

∂ 2u

∂ t2
(x,t) = a2 △2 u ≡ a2

(∂ 2u

∂x2
1

+
∂ 2u

∂x2
1

)

, x ∈ R
2, t > 0, (7.13)

is obtained from (7.1) when u(x1,x2,x3,t) does not depend on x3. This is the case

when neither the initial data nor the external sources (such as the current or charges

in electrodynamics or the sound sources in acoustics) depend on x3. For example, the

potentials of the magnetic field generated by the current in a straight wire and acous-

tic field of a long straight highway satisfy equation (7.13). The waves u(x1,x2,t),
which do not depend on x3, are called cylindrical.

In this case, the initial data ϕ and ψ also do not depend on x3:

u
∣

∣

t=0
= ϕ(x), u̇

∣

∣

t=0
= ψ(x), x ∈ R

2. (7.14)

Solution to the problem (7.13)–(7.14) is given by the Poisson formula

u(x,t) =
1

2πa

∫

|y−x|<at

ψ(y)dy
√

(at)2 −|y− x|2
+

1

2πa

∂

∂ t

∫

|y−x|<at

ϕ(y)dy
√

(at)2 −|y− x|2
.

(7.15)

These integrals are evaluated over the disc |y− x| < at and not over its boundary;

this is different from the Kirchhoff formula (7.9). Consequently, the propagation

of the cylindrical waves (or simply “the plane waves”) is different from that of the

spherical waves.

Problem 7.7. The solution u(x,t) to (7.13) with a = 1 satisfies the initial data (7.14)

with ϕ(x) ≡ ψ(x) ≡ 0 at |x| > 1, x ∈ R2. Where does one have u(x,t) ≡ 0 for t =
1, 2, 3, 4, 5 ?

Answer. |x| > 2 for t = 1; |x| > 3 for t = 2; |x| > 4 for t = 3; |x| > 5 for t = 4.

Remark 7.8. In this problem the cylindrical wave has the forward front but does

not have the rear front, contrary to the spherical waves in two previous problems.

This phenomenon is called the diffusion of waves. It turns out that for all odd n ≥ 3

the wave equation with n spatial variables x1, . . . , xn has both the forward and rear

fronts, while for all even n ≥ 2 (and for n = 1 as well!) there is the forward front but

no rear front.

Remark 7.9. If in the last problem the functions ϕ and ψ which enter (7.14) are

bounded, then the solution converges to zero: u(x,t) → 0 for t → ∞, ∀x ∈ R2. This

is seen from (7.15). (Prove this!)

Remark 7.10 (“The method of descent” from n = 3 to n = 2). One can obtain the

Poisson formula (7.15) from the Kirchhoff formula (7.9) using the independence of

ϕ and ψ on x3 (see [Pet91]).
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8 General hyperbolic equations

General hyperbolic equations with constant coefficients

Let us first consider the equation Au = 0 where A is a homogeneous differential

operator, such that all the terms are the partial derivatives of the same total order m:

Au(y) ≡ ∑
|α |=m

aα∂ α
y u(y) = 0, y = (y1, . . . , yn) ∈ R

n. (8.1)

Above, α = (α1, . . . , αn), αk = 0, 1, 2, . . . ; |α| ≡ α1 + · · ·+ αn; ∂ α
y ≡ ∂ |α|

∂y
α1
1 ...∂y

αn
n

.

Let us look for the solutions of the type of the plane waves:

u(y) = f (〈η ,y〉) = f (η1y1 + . . .+ ηnyn), y ∈ R
n, (8.2)

where f is a function of one variable. Substituting (8.2) into (8.1) we get:

∑
|α |=m

aαηα f (m)(〈η ,y〉) = 0, where ηα ≡ ηα1
1 . . . ηαn

n . (8.3)

From here, assuming that f (m)(z) 6≡ 0, we get, analogously to (7.4), the algebraic

equation of the characteristics (compare with (4.28)):

Ã(η) ≡ ∑
|α |=m

aα ηα = 0. (8.4)

This equation defines the cone Q in Rn, that is, if η ∈ Q, then also λ η ∈ Q for all

λ ∈ R. Q is called the characteristic cone.

We see from (8.3) that the plane wave (8.2) with an arbitrary function f satisfies

the differential equation (8.1) if and only if η satisfies (8.4).

Definition 8.1 (Characteristic conormals, hyperplanes, and hypersurfaces).

a. A vector η∈Rn, η 6= 0 satisfying (8.4) is called a characteristic conormal of the

differential equation (8.1);

b. A hyperplanes η⊥ ≡ {y ∈ Rn : 〈η ,y〉= const} orthogonal to a characteristic

conormal η is a characteristic hyperplane of the differential equation (8.1);

c. n

the tangent hyperplanes at all its points are characteristic.

Definition 8.2. Equation (8.1) is called (strictly) hyperbolic in the direction of the

axis Oy1 if equation (8.4) on η1 for any fixed η ′ ≡ (η2, . . . , ηn) ∈ Rn−1 \ 0 has

exactly m different real roots η
(k)
1 = λk(η

′), k = 1, . . . , m:

λ1(η
′) < .. . < λm(η ′). (8.5)

Geometrically, (8.5) means that the cone Q consists of exactly m different sheets.

is called a characteristic hypersurface of equation (8.1) ifA hypersurface in R
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Example 8.3. For the wave equation (7.1) its order is m = 2 and dimension is n = 4.

Equation (8.4) with the variables (η1,η2,η3,η4) can be written in the form (7.4)

with the variables (τ,ξ1,ξ2,ξ3). Equation (7.4) has two roots τ = ±a|ξ |; hence,

λ1 = −a|ξ |, λ2 = a|ξ |; ξ ∈ R
3 \0.

The cone Q consists of two sheets; see Fig. 8.1. Thus, the wave equation is hyper-

bolic in the variable t.

Fig. 8.1

τ

Q

λ2

ξ

λ1

Fig. 8.2

τ

Q
λ4

λ3

λ2

λ1

ξ

Example 8.4. Let us consider the equation of order m = 4:

( ∂ 2

∂ t2
−∆

)( ∂ 2

∂ t2
−9∆

)

u(x,t) = 0, x ∈ R
3, t > 0.

The characteristic equation (8.4) takes the form

(τ2 −|ξ |2)(τ2 −9|ξ |2) = 0.

It has 4 roots: τ = ±|ξ | and τ = ±3|ξ |, and hence

λ1 = −3|ξ |, λ2 = −|ξ |, λ3 = |ξ |, λ4 = 3|ξ |; ξ ∈ R
3 \0.

Therefore, the cone Q consists of four sheets (see Fig. 8.2).

Question 8.5. Is the strict hyperbolicity condition related to the condition (4.8)?

Answer. For the second order equations with two independent variables they are

equivalent. Indeed, for the equation (4.6), the characteristic equation (8.4) has the

form

A(τ,ξ ) ≡ aτ2 + 2bτξ + cξ 2 = 0.

Under the condition (4.8), its roots τ = b±
√

D
a

ξ are real and different.
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Taking in (8.2) a discontinuous function f (z), we see that the solution to equa-

tion (8.1) can have a discontinuity along any given characteristic hyperplane (see

Remark 2.1).

Remark 8.6. Let us take the direction of the characteristic conormal η as a new

coordinate axis, so that the plane y1 = 0 coincides with η⊥, while other coordinate

axes y2, . . . , yn are chosen arbitrarily, as long as they correspond to a linear non-

degenerate change of variables. Then, as turns out (prove this!), equation (8.1) in

the new coordinates contains the term b(m,0, ...,0)
∂ mu
∂ym

1
with the following coefficient

(compare with (4.24)–(4.27)):

b(m,0, ...,0) = Ã(grady1) = CÃ(η).

But in view of (8.4) this coefficient is equal to zero. Therefore, equation (8.1) takes

the form

∑
|α |=m,α1≤m−1

bα ∂ α
y u(y) = 0. (8.6)

This property of the vector η is usually taken as the definition of the characteristic

conormal (see [Pet91, TS90, Vla84]). It is transparent from (8.6) why solutions

to equation (8.1) can have discontinuities along the hyperplane η⊥. This is because

each term in equation (8.6) contains at least one derivative with respect to y2, . . . , yn.

Consequently, any function of y1 satisfies equations (8.6) and (8.1); in particular, it

could be a discontinuous function of y1 (compare with Remark 4.1).

Now let us consider the equation Au = 0 where A is a general nonhomogeneous

operator:

∑
|α |≤m

aα∂ α
y u(y) = 0, y ∈ R

n. (8.7)

We no longer know the solutions to this equation in the form of the plane waves.

But, by the definition, it is accepted that the characteristic equation for (8.7) is (8.4),

that is, we omit the lower order terms.

We know that solutions to equation (8.1) could have discontinuities along any

given characteristic hyperplane. It turns out that this is also the case for equation

(8.7) if it is strictly hyperbolic. Example 8.8 below shows that if the hyperbolicity

condition is not satisfied, this may no longer be the case!

Examples of nonhyperbolic equations

The heat equation reads:

∂u

∂ t
= a2 △u(x,t), x ∈ R

3, t > 0. (8.8)

For this equation the characteristic equation (8.4) has the form
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0 = a2|ξ |2 ⇐⇒ ξ = 0. (8.9)

It does not have the roots τ(ξ ) for ξ 6= 0, hence, the heat equation is not hyperbolic

in t (it is called parabolic instead; see Appendix A). The cone Q consists of vectors

parallel to the axis Ot:

Q = {(τ,0,0,0)} ,

where τ ∈ R is arbitrary. The characteristic planes are given by equations t = const

and are orthogonal to the axis Ot (Fig. 8.3).

Fig. 8.3

(1,0,0,0)
t

0 x1,x2,x3

Question 8.7. Is it true that equation (8.8) has solutions with discontinuities along

the planes t = const?

Answer. No, it is not true. This is because equation (8.8) is not hyperbolic and be-

cause we neglected the term ∂u
∂ t

when writing the characteristic equation (8.9).

As the matter of fact, all solutions to the heat equation are smooth. On the other

hand, it has solutions which are smooth on the characteristic planes t = const but

not analytic.

Example 8.8. The function E(x,t) =

{

1

(2πt)3/2 e−
|x|2
2t , t > 0

0, t ≤ 0
where x ∈ R3

a. satisfies the heat equation (8.8) everywhere in R4, except at (x,t) = (0,0);
b. For t 6= 0 or x 6= 0, it is smooth;

c. For each x 6= 0, this function is not analytic in t at t = 0.

Problem 8.9. Prove the three statements in Example 8.8.

Let us point out that if we remove the term ∂u
∂ t

from equation (8.8), the result-

ing equation 0 = △u, obviously, has solutions discontinuous on any given char-

acteristic hyperplane t = const; for example, we could take functions of the form

u(x,t) ≡ f (t), where f (t) is piecewise continuous. Therefore, contrary to the case

of nondegenerate equations, properties of solutions to degenerate equations strongly

depend on lower order terms.
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Question 8.10. Is it possible to find the domain of dependence for a general equa-

tion (8.7) with the aid of characteristics, as in Section 4? In other words, does Con-

jecture 7.3 from Section 7 hold for this equation?

Answer. This conjecture is true indeed for a strictly hyperbolic equation (just as for

the wave equation from Section 7). See [BJS79].

Remark 8.11. In a certain sense, Conjecture 7.3 is also true for the heat equation

(8.8). Let us consider the Cauchy problem for equation (8.8) with the initial data

u
∣

∣

t=0
= ϕ(x). (8.10)

For any point (x0,t0), x0 ∈ R3, t0 > 0 the characteristic hyperplane passing through

it as unique and given by t = t0. It does not intersect the hyperplane t = 0 at all, or

instead one can think that they intersect at infinity. The region contained “inside” the

intersections of the characteristics with plane t = 0 is the entire hyperplane t = 0.

Indeed, this is precisely the domain of dependence for the heat equation. This can be

seen from the Poisson formula for the solution to the Cauchy problem (8.8), (8.10)

(see [Pet91, TS90, Vla84]):

u(x,t) =
1

(2πat)3/2

∫

R3
e−

|x−y|2
2at ϕ(y)dy.

Thus,

∥

∥The speed of propagation for the heat equation is infinite!

Example 8.12. The Laplace equation is an example of the elliptic equation (see

Appendix A):

△u(x) ≡ ∂ 2u

∂x2
1

+
∂ 2u

∂x2
2

+
∂ 2u

∂x2
3

= 0, x ∈ R
3. (8.11)

This equation can be obtained from the wave equation (7.1) and from the heat equa-

tion (8.8) when u does not depend on t. These are stationary solutions. Physically,

they describe the stationary states of (7.1) or the limiting temperature distributions

t → +∞ for solutions of equation (8.8) and are of particular interest in applications.

Let us find the plane wave solutions for (8.11):

u(x) = f (〈ξ ,x〉) = f (ξ1x1 + ξ2x2 + ξ3x3), x ∈ R
3. (8.12)

Substituting into (8.11), we obtain, as above,

f ′′(〈ξ ,x〉)ξ 2
1 + f ′′(〈ξ ,x〉)ξ 2

2 + f ′′(〈ξ ,x〉)ξ 2
3 = 0, (8.13)

getting the characteristic equation

ξ 2
1 + ξ 2

2 + ξ 2
3 = 0. (8.14)
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It follows that ξ1 = ξ2 = ξ3 = 0.

Conclusion. Equation (8.11) is not hyperbolic (in either variable).

Question 8.13. Does this mean that the Laplace equation has no solutions similar

to the plane waves?

Answer. No, it does not. Let us take a complex solution to (8.14); for example,

ξ1 = i

√

ξ 2
2 + ξ 2

3 , (ξ2,ξ3) ∈ R
2.

The function f (z) in (8.12) should then be defined for complex values of z. More-

over, in the first term in (8.13), f ′′(〈ξ ,x〉) is the derivative of f in the direction of

the imaginary axis, while in the second and the third it is the derivative in the di-

rection of the real axis! Therefore, to cancel f ′′ out of (8.13) and to get (8.14), we

need f (z) to have the same values of the derivatives in the directions of the real and

imaginary axes at each point. But, as known from the theory of functions of com-

plex variable, this means that f (z) should be analytic in the entire complex plane

(the entire function)! Consequently, u(x) = f (〈ξ ,x〉) is a real analytic function of

real variables x1, x2, x3 and can not be discontinuous. For example,

u(x) = 〈ξ ,x〉3 = (x1i

√

ξ 2
2 + ξ 2

3 + ξ2x2 + ξ3x3)
3.

Corollary 8.14. All the plane wave solutions to the Laplace equation (8.11) are real

analytic and, consequently, smooth.

Remark 8.15. It turns out that all the solutions to the Laplace equation are real-

analytic [Pet91].

The shock waves and the Cherenkov radiation

Let us consider the electromagnetic field of a charge which moves steadily in a

certain medium. If its velocity is equal to v and it moves in the positive direction of

the axis Ox1, then its electromagnetic field is described by four potentials, each of

them having the form

ϕ(x,t) = u(x1 − vt,x2,x3) (8.15)

and satisfies the wave equation (7.1) everywhere away from the point (x1−vt,0,0)≡
0 where the charge is located. The value of a in (7.1) is given by a = cb, where cb is

the speed of light in the medium. Let us point out that cb < c, where c is the speed

of light in the vacuum, while v could be greater or smaller than cb (but less than c).

Substituting (8.15) into (7.1), we get the equation
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v2 ∂ 2u

∂x2
1

(x1 − vt,x2,x3) = c2
b

(∂ 2u

∂x2
1

+
∂ 2u

∂x2
2

+
∂ 2u

∂x2
3

)

, x 6= x(t),

from where, denoting x1 − vt = y1, we get the following equation on u(y1,x2,x3):

(c2
b − v2)

∂ 2u

∂y2
1

+ c2
b

(∂ 2u

∂x2
2

+
∂ 2u

∂x2
3

)

= 0, (y1,x2,x3) 6= 0. (8.16)

The characteristic equation (8.4) which corresponds to (8.16) is given by

(c2
b − v2

b)η
2
1 + c2

b(η
2
2 + η2

3 ) = 0. (8.17)

From here, we see that (i) when v < cb, equation (8.16) does not have (real) cha-

racteristics (the same is true for the Laplace equation). It is of the elliptic type (see

Appendix A). It turns out that all its solutions are smooth, that is, the electromag-

netic field does not have singularities for x 6= x(t); (ii) when v > cb, equation (8.16) is

hyperbolic in y1, and, consequently, has discontinuous solutions similar to the plane

waves. For the characteristic cone Q represented by equation (8.17), as we know

from Section 7, there is a corresponding dual light cone K (see Fig. 8.4) described

by the equation

c2
by2

1 +(c2
b − v2)(x2

2 + x2
3) = 0. (8.18)

It turns out that the solution u is infinite in the part of the cone (8.18) where y1 < 0.

Fig. 8.4

η1

K

Q

η2

η3

From (8.18) we get the following equation of the surface of singularities of the

potential (8.15):

c2
b(x1 − vt)2 = (v2 − c2

b)(x
2
2 + x2

3), x1 − vt < 0. (8.19)

For each fixed t this surface in R3 is a cone with a vertex at the point x(t) where the

charge is located (see Fig. 8.5). Along this surface the potentials and the field inten-

sity are infinite, and the molecules of the medium at the points of the cone become
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excited and emit the light. This is a physical phenomenon known as Cherenkov ra-

diation (also known as Cherenkov – Vavilov radiation).

Fig. 8.5

x1

x(t)

0 x2

x3

The same situation arises when one is to find the sound generated by the body

moving through the air: there are no pressure jumps if v < csound, but the jumps

appear when v > csound. This is why behind the supersonic plane there is the shock

wave located on the cone (8.19), that is, the pressure is discontinuous at the points

of the cone (Fig. 8.6). We hear a bang when the pressure front passes our ear. The

conic front of this shock wave is called the Mach cone.

Fig. 8.6

p = 1,0001atm p = 1atm



Chapter 2

The Fourier method

9 Derivation of the heat equation

We consider a straight homogeneous metal rod of length l, cross-section S, and

density ρ . We choose the axis x along the rod, and let x = 0 be the left end of the

rod, so that x = l is its right end. Denote by u(x,t) the temperature of the rod at a

point x at the moment t > 0. We assume that the cross-section is small, so that u

depends only on x. It turns out that u(x,t) satisfies the differential equation called

the heat equation,

∂u

∂ t
= a2 ∂ 2u

∂x2
(x,t)+ b f (x,t), (9.1)

where f (x,t) is the density of the external heat source at the point x at the moment t.

This means that the piece [x,x + ∆x] of the rod during the time interval from t until

t + ∆ t receives from the outside the amount of heat equal to

Qexternal = f (x,t)∆x∆ t. (9.2)

Let us derive (9.1). To do this, we write the equation of the heat balance for the

piece of the rod [x,x + ∆x] as the time changes from t to t + ∆ t:

cm∆T = Q. (9.3)

Here c is the specific heat capacity of the material, m = ρS∆x is the mass of the

piece, and ∆T is the temperature increase:

∆T ≈ u(x,t + ∆ t)−u(x,t). (9.4)

Q is the total amount of heat received by the piece:

Q = Qexternal + Ql + Qr, (9.5)
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where Qexternal is the heat received from the external sources, Ql is the amount of

heat received from the left (that is, through the section of the rod at the point x),

while Qr is the amount of heat received from the right (that is, through the section

of the rod at the point x + ∆x). See Fig. 9.1.

Fig. 9.1

u
u(x,t)

Ql

Qexternal

Qr

0 x x+∆x l x

According to the Fourier law of heating,

Ql = −λ S
∂u

∂x
(x,t)∆ t, Qr = λ S

∂u

∂x
(x + ∆x,t)∆ t, (9.6)

where λ is the heat transfer coefficient and S is the cross-section area of the rod.

The relation (9.6) means that the rate of the heat transfer through the cross-section

of the rod at the point x is proportional to the rate of change of the temperature,
∂u
∂x

(x,t). Signs in (9.6) are chosen so that the heat is transferred from warmer bodies

to cooler ones (the second law of thermodynamics). For example, for u(x,t) on

Fig. 9.1, Ql < 0, Qr > 0, while ∂u
∂x

> 0 everywhere, hence the signs in the left- and

right-hand sides of (9.6) coincide.

Substituting (9.6) and (9.2) into (9.5), and then (9.5) and (9.4) into (9.3), we get

cρS∆x

(

u(x,t + ∆ t)−u(x,t)
)

≈ f (x,t)∆x∆ t + λ S

(∂u

∂x
(x + ∆x,t)− ∂u

∂x
(x,t)

)

∆ t.

From here, dividing by ∆x∆ t and considering the limit ∆x → 0 and ∆ t → 0, we get

cρS
∂u

∂ t
= λ S

∂ 2u

∂x2
+ f (x,t). (9.7)

Then (9.1) follows, with the values of the constants being a2 = λ
cρ and b = 1

cρS
.
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10 Mixed problem for the heat equation

Here we will describe the basic idea of the Fourier method.

To determine the temperature of the rod, besides equation (9.1), one needs to

specify the initial temperature

u(x,0) = ϕ(x), 0 < x < l (10.1)

and the boundary conditions. For example, if the ends of the rod are submerged into

the melting ice, then their temperature will be equal to zero (0◦C):

u(0,t) = 0, u(l,t) = 0, t > 0. (10.2)

The problem (9.1), (10.1), (10.2) is called the mixed problem for the heat equation.

For simplicity, we first assume that f (x,t) ≡ 0. The general case with the nonho-

mogeneity f (x,t) 6= 0 is considered in Section 15 below. Let us write the problem

(9.1), (10.1), (10.2) (with f ≡ 0) in the operator form:

{

d
dt

û = a2Aû(t), t > 0;

û(0) = ϕ̂ .
(10.3)

Here A = d2

dx2 , û(t) ≡ u(x,t), and ϕ̂ ≡ ϕ(x). As it follows from the boundary condi-

tions (10.2), û(t) ∈C2
0 [0, l] for all t > 0, where

C2
0 [0, l] ≡ {u(x) ∈C2[0, l] : u(0) = u(l) = 0}.

Thus, we consider the operator A = d2

dx2 on the domain D(A) = C2
0 [0, l].

The idea of the Fourier method is to try to find a solution to the problem (10.3)

in the form of the sum of particular solutions of the form T (t)X(x). Let us illustrate

this idea on an example of the system of n ordinary differential equations with n

unknown functions, also written in the vector form (10.3):

{

d
dt

û(t) = Aû(t), û(t) =
(

û1(t), . . . , ûn(t)
)

∈ Rn, t > 0;

û(0) = ϕ̂ = (ϕ̂1, . . . , ϕ̂n) ∈ Rn,
(10.4)

where A is a matrix of size n× n. Assume that there is a basis of the eigenvectors

eee1, . . . , eeen of the matrix A, with the eigenvalues λk:

Aeeek = λkeeek, k = 1, . . . , n. (10.5)

Then the solution û(t) we are looking for, as well as the initial vector ϕ̂ , can be

represented as

û(t) =
n

∑
k=1

Tk(t)eeek, ϕ̂ = ∑ϕkeeek.
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Substituting into (10.4) we get

n

∑
k=1

dTk(t)

dt
eeek =

n

∑
k=1

λkTk(t)eeek,
n

∑
k=1

Tk(0)eeek =
n

∑
k=1

ϕkeeek,

hence
dTk(t)

dt
= λkTk(t), t > 0; Tk(0) = ϕk.

We see that Tk(t) = ϕkeλkt , and, therefore,

û(t) =
n

∑
k=1

ϕkeλkt eeek. (10.6)

In what follows we will obtain the analogs of formulas (10.5)–(10.6) for the

operator A = d2

dx2 .

11 The Sturm – Liouville problem

Let us find in D(A) = C2
0 [0, l] the eigenfunctions X1(x), X2(x), . . . of the operator A:

{

AXk = λkXk, k ∈ N;

Xk ∈ D(A), Xk 6= 0.
(11.1)

The relation (11.1) means that

{

X ′′
k (x) = λkXk(x), 0 < x < l;

Xk(0) = Xk(l) = 0, Xk(x) 6≡ 0.
(11.2)

Remark 11.1. We will show below in Section 13 that the solution to the problem

(10.3) in the basis X1, . . . , Xk, . . . of the eigenfunctions of the operator A has the

form analogous to (10.6):

u(x,t) =
∞

∑
k=1

ea2λktϕkXk(x), (11.3)

where ϕk are the components of ϕ̂ in the basis {Xk : k ∈ N}. Let us point out that

in view of (11.1) each term in the series (11.3) satisfies the operator equation (10.3).

Therefore any finite (partial) sum of this series also satisfies (10.3). The entire series

(11.3) satisfies equation (10.3) if it allows termwise differentiation: once in t and

twice in x. This is the case when the series converges sufficiently fast.

We introduce the notation

〈u, v〉 =

∫ l

0
u(x)v(x)dx for ∀u, v ∈ L2[0, l].
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Lemma 11.1. The operator A = d2

dx2 with the domain D(A) = C2
0 [0, l] is symmetric

and negative:

〈

d2u

dx2
,v

〉

=

〈

u,
d2v

dx2

〉

, ∀u, v ∈ D(A), (11.4)

〈

d2u

dx2
,u

〉

< 0, ∀u ∈ D(A), u(x) 6≡ 0. (11.5)

Proof. (i) The equality (11.4) means that

∫ l

0
u′′(x)v(x)dx =

∫ l

0
u(x)v′′(x)dx. (11.6)

To prove it, we integrate both sides of (11.6) by parts:

∫ l

0
u′′(x)v(x)dx = u′ v

∣

∣

∣

l

0
−
∫ l

0
u′(x)v′(x)dx, (11.7)

∫ l

0
u(x)v′′(x)dx = uv′

∣

∣

∣

l

0
−
∫ l

0
u′(x)v′(x)dx. (11.8)

The boundary terms in the right-hand sides of (11.7) and (11.8) vanish since v(0) =
v(l) = 0 and u(0) = u(l) = 0. Thus, the relation (11.6) is proved.

(ii) When u = v, it follows from (11.7) that

〈

d2u

dx2
,u

〉

=

∫ l

0
u′′(x)u(x)dx = −

∫ l

0

(

u′(x)
)2

dx ≤ 0.

This proves (11.5). Indeed, if
∫ l

0

(

u′(x)
)2

dx = 0, then u′(x) ≡ 0, u(x) ≡ const. But

because of the boundary conditions u(0) = u(l) = 0 one concludes that u(x) ≡ 0,

contradicting the condition u(x) 6≡ 0 in (11.5).

Corollary 11.2. All the eigenvalues of the operator A = d2/dx2 are negative. In-

deed, as it follows from (11.5),

0 >

〈

d2Xk

dx2
,Xk

〉

= λk〈Xk,Xk〉.

The eigenfunctions Xk,Xn with different eigenvalues λk 6= λn are orthogonal:

∫ l

0
Xk(x)Xn(x)dx = 0.

Indeed, it follows from (11.4) that

λk〈Xk,Xn〉 = 〈AXk,Xn〉 = 〈Xk,AXn〉 = λn〈Xk,Xn〉,

implying that 〈Xk,Xn〉 = 0.
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Solution of the Sturm – Liouville problem

From equation (11.2) we get

Xk(x) = Ak e
√

λkx + Bke−
√

λkx. (11.9)

Substituting this into the boundary conditions (11.2), we get

{

Ak + Bk = 0,

Ak e
√

λkl + Bke−
√

λkl = 0.
(11.10)

The matrix of this system should be degenerate, or else Ak = Bk = 0 and Xk(x) ≡ 0,

contradicting (11.2). Thus, λk satisfy the characteristic equation

det

[

1 1

e
√

λkl e−
√

λkl

]

= e−
√

λkl − e
√

λkl = 0.

It then follows that e−
√

λkl = e
√

λkl , hence e2
√

λkl = 1. Therefore, 2
√

λkl = 2kπ i,

k ∈ Z, leading to
√

λk =
kπ i

l
⇒ λk = −

(kπ

l

)2

. (11.11)

Here we may assume that k ≥ 0. As one might have expected, λk ≤ 0. Thus, the

eigenvalues λk are found. Now let us find the eigenfunctions Xk(x). For this, we take

into account that the system (11.10) is degenerate. Therefore, these two equations

are linearly dependent, and it suffices to consider only the first one: Bk = −Ak. In

view of (11.11), we get:

Xk(x) = Ak

(

e
kπi

l
x − e−

kπi
l

x
)

= Ak2isin
kπx

l
.

Here we applied the Euler formula

eiϕ − e−iϕ = (cosϕ + isinϕ)− (cosϕ − isinϕ) = 2isinϕ .

Since the eigenfunctions Xk are defined up to a factor, we can finally set

Xk(x) = sin
kπx

l
, k = 1, 2, . . . .

Here we can assume that k > 0, since for k = 0 we have X0(x) ≡ 0.

Answer.

λk = −
(kπ

l

)2

, Xk(x) = sin
kπx

l
, k = 1, 2, . . . .
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Properties of solutions to the Sturm – Liouville problem

Property 11.3. Completeness: Xk(x) form a complete orthogonal set in L2(0, l) (this

property is known from the theory of the Fourier series).

Property 11.4. Orthogonality:

〈Xk,Xn〉 =

l
∫

0

Xk(x)Xn(x)dx = 0 for k 6= n. (11.12)

Property 11.5. Asymptotics: λk ∼−k2 for k → ∞. That is, there exists a limit

lim
k→∞

λk

−k2
> 0.

Problem 11.6. Check directly the orthogonality property (11.12) for Xk.

Solution. Since k 6= n,

∫ l

0
sin

kπx

l
sin

nπx

l
dx =

1

2

∫ l

0

(

cos
(k−n)πx

l
− cos

(k + n)πx

l

)

dx = 0.

Problem 11.7. Find the norm of Xk in L2(0, l).

Solution.

||Xk||2 ≡
∫ l

0
X2

k (x)dx =

∫ l

0
sin2 kπx

l
dx =

∫ l

0

1− cos 2kπx
l

2
dx =

l

2
. (11.13)

Problem 11.8. Plot the graph of Xk(x).

Solution. See Fig. 11.1.

Fig. 11.1
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Problem 11.9. Solve the Sturm – Liouville problem, that is, find the eigenfunctions

of the operator A ≡ d2

dx2 on the interval [0, l] for each of the boundary conditions:

Xk(0) = X ′
k(l) = 0, (11.14)

X ′
k(0) = Xk(l) = 0, (11.15)

X ′
k(0) = X ′

k(l) = 0. (11.16)

Answer.

For (11.14), λk =−
( (k+ 1

2 )π
l

)2
, Xk(x) = sin

(k+ 1
2 )πx

l
, k = 0, 1, 2, . . . . See Fig. 11.2.

Fig. 11.2

For (11.15), λk = −
( (k+ 1

2 )π
l

)2
, Xk(x) = cos

(k+ 1
2 )πx

l
, k = 0, 1, 2, . . . . See

Fig. 11.3.

Fig. 11.3

For (11.16), λk = −( kπ
l
)2, Xk(x) = cos kπx

l
, k = 0, 1, 2, . . . . See Fig. 11.4.

Fig. 11.4
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One can also consider arbitrary boundary conditions of the form

α0X ′
k(0)+ β0Xk(0) = 0, α1X ′

k(l)+ β1Xk(l) = 0, (11.17)

where α0,1 and β0,1 are real numbers such that

α2
0 + β 2

0 6= 0, α2
1 + β 2

1 6= 0.

Problem 11.10. Prove that the operator d2

dx2 with the boundary conditions (11.17)

is symmetric.

Remark 11.11. The eigenfunctions and the eigenvalues corresponding to each of

the boundary conditions (11.14), (11.15), and (11.16) possess all the properties 11.3,

11.4, and 11.5 (completeness, orthogonality, the asymptotics of the eigenvalues) of

solutions to the Sturm – Liouville problem (11.1). See [Pet91, SD64, TS90, Vla84].

Multidimensional eigenvalue problem

Let us consider an arbitrary bounded region Ω ⊂ R with a smooth boundary ∂Ω
and the problem of finding the eigenfunctions of the Laplace operator in Ω with the

Dirichlet boundary conditions:

△Xk(x) = λkXk(x), x ∈ Ω ,

Xk

∣

∣

∣

∣

∂Ω

= 0. (11.18)

It turns out that its eigenfunctions corresponding to different λk are also orthog-

onal in L2(Ω), while its eigenvalues λk are negative.

Problem 11.12. Prove that the Laplace operator with the boundary conditions

(11.18) is symmetric and negative.

Problem 11.13. Prove that if instead of (11.18) one takes the Neumann boundary

conditions,
∂Xk

∂nnn

∣

∣

∣

∂Ω
= 0,

where
∂

∂nnn
stands for the derivative normal to ∂Ω , then the Laplace operator is

symmetric and non-positive, with λ = 0 the eigenvalue corresponding to the eigen-

function X0(x) ≡ 1.
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12 Eigenfunction expansions

As we already pointed out, the eigenfunctions sin kπx
l

, k = 1, 2, . . . form a complete

orthogonal set in L2(0, l). Therefore they make up an orthogonal basis in L2(0, l)
and, consequently, any function ϕ(x) ∈ L2(0, l) could be decomposed over this ba-

sis:

ϕ(x) =
∞

∑
k=1

ϕkXk(x). (12.1)

Let us find the formula for the coefficients ϕk. This is accomplished with the aid

of the orthogonality conditions (11.12): we multiply (12.1) by Xk(x) and integrate

from 0 to l. Then we get

l
∫

0

ϕ(x)Xn(x)dx =
∞

∑
k=1

ϕk

l
∫

0

Xk(x)Xn(x)dx = ϕn

l
∫

0

X2
n (x)dx, (12.2)

since all the terms in the summation in (12.2) with numbers k 6= n are equal to zero!

Termwise integration of the series in (12.2) is justified since the series in (12.1)

converges in L2(0, l), while the scalar product in L2(0, l) is continuous in each of

the two arguments.

Then from (12.2) we get the desired expression for the coefficients:

ϕn =

l
∫

0

ϕ(x)Xn(x)dx

l
∫

0

X2
n (x)dx

=
2

l

l
∫

0

ϕ(x)Xn(x)dx, (12.3)

where we took into account that ‖Xn‖2 = l/2 by (11.13).

Problem 12.1. Find the conditions on the function ϕ(x) so that the following is

true:

(i) The series (12.1) converges uniformly on the interval [0, l];
(ii) The series (12.1) is termwise differentiable two times.

Solution. (i) It is sufficient (but not necessary) that

∞

∑
k=1

|ϕk| < ∞. (12.4)

For this inequality to hold, it suffices to require that

ϕ(x) ∈C1[0, l], ϕ(0) = ϕ(l) = 0. (12.5)

Let us derive (12.4) from (12.5). Integrating by parts, we get:
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ϕk =
2

l

∫ l

0
ϕ(x)sin

kπx

l
dx =

2

l

∫ l

0
ϕ(x)

(−cos kπx
l

)′

kπ
l

dx

=
2

kπ

(

−ϕ(x)cos
kπx

l

∣

∣

∣

l

0
+

∫ l

0
ϕ ′(x)cos

kπx

l
dx

)

. (12.6)

Above, the boundary terms are equal to zero due to the boundary conditions in

(12.5). Therefore ϕk = 2
kπ ϕ ′

k, where ϕ ′
k =

∫ l
0 ϕ ′(x)cos kπx

l
dx. But {cos kπx

l
: k ∈ N}

is the orthogonal system in L2(0, l), with
∫ l

0 cos2 kπx
l

dx = l
2
, hence, due to the Bessel

inequality,
∞

∑
k=1

|ϕ ′
k|

2 ≤ 2

l

∫ l

0
|ϕ ′(x)|2 dx < ∞. (12.7)

Therefore, applying the Cauchy – Bunyakovsky inequality, we get:

∞

∑
k=1

|ϕk| =
∞

∑
k=1

∣

∣

∣

2

kπ
ϕ ′

k

∣

∣

∣≤
( ∞

∑
k=1

∣

∣

∣

2

kπ

∣

∣

∣

2) 1
2
( ∞

∑
k=1

|ϕ ′
k|

2
) 1

2
< ∞. (12.8)

(ii) For the series (12.1) to be twice differentiable, it suffices to have the series for

ϕ ′′(x) converge uniformly in x. The latter takes place if

∞

∑
k=1

k2|ϕk| < ∞. (12.9)

For this, we require that in addition to (12.5) we also have

ϕ(x) ∈C3[0, l] and ϕ ′′(0) = ϕ ′′(l) = 0. (12.10)

Let us derive (12.9) from (12.10) and (12.5). For this, we remark that, due to

(12.5) and (12.6),

ϕk =
2

kπ

l
∫

0

ϕ ′(x)cos
kπx

l
dx =

2l

(kπ)2

(

ϕ ′(x)sin
kπx

l

∣

∣

∣

∣

l

0

−
l
∫

0

ϕ ′′(x)sin
kπx

l
dx

)

=
2l2

(kπ)3

(

ϕ ′′(x)cos
kπx

l

∣

∣

∣

∣

l

0

−
l
∫

0

ϕ ′′′(x)cos
kπx

l
dx

)

.

The boundary terms vanished due to the boundary conditions (12.10) and due

to sin kπx
l

equal zero at x = 0 and x = l. Therefore, ϕk = −2l2

(kπ)3 ϕ ′′′
k , where ϕ ′′′

k =
∫ l

0 ϕ ′′′(x)cos kπx
l

dx. But ϕ ′′′ ∈ L2(0, l); thus, by (12.7),

∞

∑
k=1

|ϕ ′′′
k |2 ≤ 2

l

l
∫

0

|ϕ ′′′(x)|2 dx < ∞,
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and, similarly to (12.8),

∞

∑
k=1

k2|ϕk| =
∞

∑
k=1

k2

∣

∣

∣

∣

−2l

(kπ)3
ϕ ′′′

k

∣

∣

∣

∣

≤ 2l2

π3

∞

∑
k=1

1

|k| |ϕ
′′′
k | < ∞.

Problem 12.2. Show that for a function ϕ(x) ∈C(N)[0, l] the estimates

|ϕk| ≤
C

|k|N
, k = 1, 2, . . . (12.11)

are satisfied if and only if

ϕ(0) = ϕ(l) = 0, ϕ ′′(0) = ϕ ′′(l) = 0, . . . , ϕ2n(0) = ϕ2n(l) = 0 (12.12)

for all 2n ≤ N −2, n = 0, 1, 2, . . ..

Let us point out that the boundary conditions (12.12) are satisfied, in particular,

for all the eigenfunctions sin kπx
l

. On the other hand, under the condition (12.11), the

series (12.1) is convergent on the interval [0, l] uniformly together with its deriva-

tives up to the order N −2. Therefore, since the homogeneous boundary conditions

(12.12) are satisfied for the eigenfunctions sin kπx
l

, it follows that the same bound-

ary conditions are also satisfied for the sum of the series (12.1). This proves the

necessity of conditions (12.12) for (12.11).

Remark 12.3. Similarly, let us consider the decomposition of the function ϕ(x)
over a system of eigenfunctions Xk(x) which corresponds to each of the boundary

conditions (11.14), (11.15), and (11.16). For estimate (12.11) for the Fourier coeffi-

cients ϕk of this decomposition to be true, it is necessary that ϕ(x) satisfy the same

homogeneous boundary conditions as the eigenfunctions Xk(x) and their derivatives

up to the order N −2. When ϕ ∈ C(N)[0, l], it is easy to check that these conditions

are not only necessary but also sufficient for (12.11).

Problem 12.4. Solve Problem 12.2 for the decomposition over the eigenfunctions

of the Sturm – Liouville problem with each of the boundary conditions (11.14),

(11.15), and (11.16).

Problem 12.5. Decompose over the set {sin kπx
l

: k ∈ N}, the following functions:

a. ϕ(x) ≡ 1, 0 < x < l. See Fig. 12.1.

Fig. 12.1

ϕ(x)
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Solution. ϕk =
2

l

l
∫

0

sin
kπx

l
dx = −2

l

cos kπx
l

kπ
l

∣

∣

∣

∣

l

0

=
2

kπ

[

1− (−1)k
]

.

Let us point out that now the condition (12.4) is not satisfied. This is because

ϕ(x) ≡ 1 is not equal to zero at the ends of the interval.

b. ϕ(x) ≡ x, 0 < x < l. See Fig. 12.2.

Fig. 12.2

ϕ(x)

Solution.

ϕk =
2

l

l
∫

0

xsin
kπx

l
dx =

2

l

l
∫

0

x
(−cos kπx

l
)
′

kπ
l

dx = . . . = − 2

kπ
l(−1)k.

Here |ϕk| ∼ 1
k

because ϕ(l) 6= 0 (see (12.11) and (12.12)).

c. ϕ(x) = x(l − x). See Fig. 12.3.

Fig. 12.3

ϕ(x)

Is it true that ϕk = O( 1
k
), or O( 1

k2 ), or O( 1
k3 ), . . .?

Problem 12.6. Decompose the functions ϕ(x) = 1, x, x2, x(l − x) over the eigen-

functions of the Sturm – Liouville problem with each of the boundary conditions

(11.14), (11.15), and (11.16). In each of these cases, find the asymptotics:

ϕk = O
(1

k

)

, O
( 1

k2

)

, . . . .

Hint. Use Remark 12.3.
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13 The Fourier method for the heat equation

So, let us solve the problem (10.3):











∂u

∂ t
= a2 ∂ 2u

∂x2
, u(0,t) = u(l,t) = 0, t > 0,

u(x,0) = ϕ(x), 0 < x < l.

(13.1)

Let us look for a solution to the problem (13.1) in the form of the series

u(x,t) =
∞

∑
k=1

Tk(t)Xk(x), Xk(x) = sin
kπx

l
. (13.2)

Due to the completeness of the set of eigenfunctions

{

sin
kπx

l
: k ∈ N

}

(13.3)

in L2(0, l), one can write in the form (13.2) any function u(x,t) as long as u(x,t) ∈
L2(0, l) for each fixed t. The choice of the basis (13.3) is dictated by the boundary

conditions which appear in (13.1). Namely, each term of the series (13.2) satisfies

these boundary conditions since sin kπx
l

, k ∈ N, satisfy the boundary conditions in

(11.2).

To find the solution u(x,t), it remains to determine temporal functions Tk(t) (the

functions Xk(x) are called the spatial functions). Tk(t) are found substituting the

series (13.2) into the equation and the initial condition in (13.1).

Determining the temporal functions

A. We substitute the series (13.2) into equation (13.1): For t > 0,

∞

∑
k=1

T ′
k (t)sin

kπx

l
= −a2

∞

∑
k=1

Tk(t)
(kπ

l

)2

sin
kπx

l
, 0 < x < l. (13.4)

Here we interchanged the operators of differentiation, ∂
∂ t

and ∂ 2

∂x2 , with the summa-

tion of the series. Below we will discuss why this interchange is allowed. The jus-

tification of the Fourier method is based on proving the validity of this interchange.

In (13.4) we also used the identity

∂ 2

∂x2
sin

kπx

l
= −

(kπ

l

)2

sin
kπx

l
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satisfied by the eigenfunctions of the Sturm – Liouville problem (11.1)–(11.2). Let

us point out that the boundary conditions for the Sturm – Liouville problem have

already been used.

Further, if the series in (13.4) converge in L2(0, l), then, due to the orthogonality

of the basis {sin kπx
l

: k ∈ N}, we get the following equations on the temporal

functions Tk(t):

T ′
k (t) = −a2

(kπ

l

)2

Tk(t) = −
(akπ

l

)2

Tk(t), t > 0, k = 1, 2, . . . . (13.5)

For each k ∈ N, (13.5) is a homogeneous linear differential equation with constant

coefficients. Let us write its characteristic equation:

λ = −
(akπ

l

)2

.

Then the general solution of (13.5) is given by

Tk(t) = Cke−( akπ
l )2t . (13.6)

Substituting this expression into (13.2), we get

u(x,t) =
∞

∑
k=1

Cke−( akπ
l

)2t sin
kπx

l
. (13.7)

B. The unknown constants Ck in (13.7) are found from the initial conditions.

Namely, substituting the series (13.2) into the initial conditions in (13.1), we find:

∞

∑
k=1

Tk(0)sin
kπx

l
= ϕ(x), 0 < x < l. (13.8)

Hence, Tk(0) coincide with the Fourier coefficients of the decomposition of the func-

tion ϕ(x) over the set {sin kπx
l

: k ∈ N} (see (12.3)):

Tk(0) = ϕk ≡
2

l

l
∫

0

ϕ(x)sin
kπx

l
dx. (13.9)

Comparing with (13.6), we find

Ck = ϕk.

Thus, (13.7) takes the form

u(x,t) =
∞

∑
k=1

ϕke−( akπ
l )2t sin

kπx

l
. (13.10)
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Justification of the Fourier method for the heat equation

Does the series (13.10) indeed represent the solution to the problem (13.1)?

A. For t > 0, the series (13.10) converge for each x ∈ [0, l]. For example, let

ϕ(x) ∈ L2(0, l). (13.11)

Then the series (13.8) converge in the same space L2(0, l). Indeed, from the Cauchy

– Bunyakovsky inequality,

|ϕk| ≤
2

l

l
∫

0

|ϕ(x)|dx ≤ 2

l

(

l
∫

0

dx

) 1
2
(

l
∫

0

ϕ2(x)dx

) 1
2 ≤ const.

Therefore, the series (13.10) for each fixed t > 0 is dominated by the series

const
∞

∑
k=1

e−( akπ
l )2t = const

∞

∑
k=1

e−εk2

,

where ε = ( aπ
l
)2t > 0, which in turn is dominated by the convergent geometric

series. Hence, according to the Weierstrass Theorem, the functional series (13.10)

converges uniformly on [0, l] for ∀t > 0 to a function which is continuous in x.

Corollary 13.1. The series (13.10) satisfies the boundary conditions (10.2).

B. The series (13.10) is a differentiable function in x ∈ [0, l] for any t > 0. Indeed,

according to the theorem about the termwise differentiation of a series,

∂u

∂x
(x,t) =

∞

∑
k=1

ϕke−( akπ
l

)2t
(

−cos
kπx

l

)kπ

l
, (13.12)

as long as the series in the right-hand side converges uniformly in x on [0, l]. The

last condition is satisfied for any t > 0 since the series (13.12) is dominated by the

convergent series

const
π

l

∞

∑
k=1

ke−εk2

< ∞.

C. The series (13.10) has derivatives in x and in t of all orders for t > 0. This is

proved similarly to B.

Corollary 13.2. All termwise differentiations of series in (13.4) are justified, hence

the series (13.10) satisfies the heat equation (9.1).

Finally, for t = 0 the series (13.10) satisfies the initial condition (10.1) in view of

(13.8) and (13.9) in the following sense (prove this!):

||u(x,t)−ϕ(x)||L2(0,l) → 0 for t → 0+.
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Remark 13.3. The condition (13.11) allows the function ϕ(x) to have disconti-

nuities: For example, let ϕ(x) ≡ 0 for x < l
2
, u(x) ≡ 1 for x < l

2
. Then the func-

tion u(x,0) = ϕ(x) will be discontinuous. At the same time, the solution u(x,t) for

any t > 0 will be a smooth function on [0, l]! One says that the heat equation (9.1)

“smoothens” the initial data.

Problem 13.4. Find the solution to the mixed problem







∂u
∂ t

= 9 ∂ 2u
∂x2 (x,t), 0 < x < 5, t > 0;

u(0,t) = u(5,t) = 0;

u(x,0) = 1.

Solution. According to (13.10),

u(x,t) =
∞

∑
k=1

ϕke−( 3kπ
5 )2t sin

kπx

5
, (13.13)

where ϕk are found using (13.9):

ϕk =
2

5

5
∫

0

sin
kπx

5
dx =

2

kπ

[

1− (−1)k
]

.

Problem 13.5. Find the limit of the solution (13.13) for t → ∞.

Solution.

lim
t→+∞

u(x,t) = lim
t→+∞

∞

∑
k=1

ϕke−( 3kπ
5

)2t sin
kπx

5

=
∞

∑
k=1

ϕk lim
t→+∞

e−( 3kπ
5 )2t sin

kπx

5
=

∞

∑
k=1

0 = 0. (13.14)

Problem 13.6. Justify the interchange of taking the limit and the summation in

(13.14).

Problem 13.7. Find the solution to the mixed problem







ut(x,t) = 4uxx(x,t), 0 < x < 3, t > 0;

u(0,t) = 0, ux(3,t) = 0;

u(x,0) = x.
(13.15)

Solution. Here the solution should be decomposed over the eigenfunctions of the

Sturm – Liouville problem (11.14) (see Fig. 11.2):

u(x,t) =
∞

∑
k=0

Tk(t)sin
(k + 1

2
)πx

3
. (13.16)
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Substituting this series into (13.15), we obtain

∞

∑
k=0

T ′
k (t)sin

(k + 1
2
)πx

3
= 4

∞

∑
k=0

−
((k + 1

2
)π

3

)2

Tk(t)sin
(k + 1

2
)πx

3
.

From this relation, for any k = 0, 1, 2, . . .,

T ′
k (t) = −

(2(k + 1
2
)π

3

)2

Tk(t) ⇒ Tk(t) = Cke
−
(

2(k+ 1
2

)π

3

)2

t
. (13.17)

Substituting (13.16) into the initial condition of the problem (13.15), we get

∞

∑
k=0

Tk(0)sin
(k + 1

2
)πx

3
= x =⇒

Tk(0) =
2

3

3
∫

0

xsin
(k + 1

2
)πx

3
dx

=
2

3
x
−cos

(k+ 1
2 )πx

3

(k+ 1
2 )π

3

∣

∣

∣

∣

∣

3

0

+
2

3

3
∫

0

cos
(k+ 1

2 )πx

3

(k+ 1
2 )π

3

dx = 0 +
2

3

sin
(k+ 1

2 )πx

3
(

(k+ 1
2 )π

3

)2

∣

∣

∣

∣

∣

3

0

=
2
3

sin(k + 1
2
)π

(

(k+ 1
2 )π

3

)2
=

2

3

(−1)k
9

(k + 1
2
)

2
π2

=
6(−1)k

(k + 1
2
)

2
π2

.

Since Ck = Tk(0), we may now substitute Tk(t) given by (13.17) into (13.16), getting

u(x,t) =
∞

∑
k=0

6(−1)k

(k + 1
2
)2π2

e−
4π2(k+ 1

2
)2t

9 sin
(k + 1

2
)πx

3
.

Problem 13.8. Find the solution to the mixed problem







ut(x,t) = 16uxx(x,t), 0 < x < 3, t > 0;

ux(0,t) = ux(3,t) = 0;

u(x,0) = x.

Problem 13.9. Find the limit t → ∞ of the solution of the previous problem.

Answer.

lim
t→∞

u = ϕ0 ≡
1

3

3
∫

0

xdx =
1

3
· 9

2
=

3

2
.
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14 Mixed problem for the d’Alembert equation

Let us solve the mixed problem







utt(x,t) = a2uxx(x,t), 0 < x < l, t > 0;

u(0,t) = 0, u(l,t) = 0;

u(x,0) = ϕ(x), ut(x,0) = ψ(x).
(14.1)

Similarly to (10.3), it is written in the operator form as

{

∂ 2û
∂ t2 (t) = a2Aû(t), t > 0;

û(0) = ϕ , ∂ û
∂ t

(0) = ψ .

Solution of the problem (14.1)

We will look for the solution in the form of the series (13.2):

u(x,t) =
∞

∑
k=1

Tk(t)sin
kπx

l
. (14.2)

A. Substituting (14.2) into (14.1), we formally get

∞

∑
k=1

T ′′
k (t)sin

kπx

l
= a2

∞

∑
k=1

−
(kπ

l

)2

Tk(t)sin
kπx

l
.

From here, as long as these series converge in L2(0, l), we find the equations on the

temporal functions (compare with (13.5)):

T ′′
k (t) = −

(akπ

l

)2

Tk(t), ∀k = 1, 2, . . . . (14.3)

The general solution is (compare with (13.6)):

Tk(t) = Ak cos
akπ

l
t + Bk sin

akπ

l
t. (14.4)

B. The unknown constants Ak and Bk are found from the initial conditions in (14.1):















u(x,0) = ∑∞
k=1 Tk(0)sin kπx

l
= ϕ(x) ⇒ Tk(0) = ϕk (see (13.9)),

ut(x,0) =
∞

∑
k=1

T ′
k (0)sin

kπx

l
= ψ(x) ⇒ T ′

k (0) = ψk ≡
2

l

l
∫

0

ψk(x)sin
kπx

l
dx.

Substituting (14.4) in the above relation, we find:
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Tk(0) = Ak = ϕk,

T ′
k (0) = Bk

akπ

l
= ψk ⇒ Bk =

ψk

( akπ
l

)
. (14.5)

Therefore, according to (14.4),

Tk(t) = ϕk cos
akπ

l
t +

ψk

( akπ
l

)
sin

akπ

l
t.

Finally, substituting (14.5) into (14.2), we obtain:

u(x,t) =
∞

∑
k=1

(

ϕk cos
akπ

l
t +

ψk

( akπ
l

)
sin

akπ

l
t

)

sin
kπx

l
t. (14.6)

Question 14.1. While deriving (14.3), we again interchanged differentiation in x

and t with the summation. Is this justified?

Justification of the Fourier method for the d’Alembert equation

A. Does the series (14.6) converge? It is dominated by the series

const
∞

∑
k=1

(

|ϕk|+
|ψk|

k

)

.

For the convergence of this series, it suffices that

{

ϕ(x) ∈C1[0, l], ϕ(0) = ϕ(l) = 0;

ψ(x) ∈C[0, l].

This is proved similarly to the derivation of (12.4) from (12.5).

B. We need to be able to differentiate the series (14.6) twice in x and in t. For this,

the convergence of the following series suffices:

∞

∑
k=1

(

k2|ϕk|+ k|ψk|
)

< ∞. (14.7)

For the convergence of this series, it is sufficient to have

{

ϕ(x) ∈C3[0, l], ϕ(0) = ϕ(l) = 0, ϕ ′′(0) = ϕ ′′(l) = 0;

ψ(x) ∈C2[0, l], ψ(0) = ψ(l) = 0.
(14.8)

This is proved analogously to the derivation of (12.9) from (12.10).

Conclusion. The series (14.6) is a solution to the problem (14.1) if the functions ϕ
and ψ satisfy the conditions (14.8).
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Remark 14.2. More precise (less restrictive) conditions on ϕ , ψ are given in terms

of the Sobolev spaces (see Section 26 below).

Problem 14.3. Find the solution of the mixed problem







ut = 9uxx(x,t), 0 < x < 4, t > 0;

ux(0,t) = 0, u(4,t) = 0;

u(x,0) = 0, ut(x,0) = 16− x2.
(14.9)

Solution. One needs to decompose the solution over the eigenfunctions of the Sturm

– Liouville problem (11.15) (see Fig. 11.3):

u(x,t) =
∞

∑
k=0

Tk(t)cos
(k + 1

2
)πx

4
.

Substitution into (14.9) gives, similarly to (14.3),

T ′′
k (t) = −9

((k + 1
2
)π

4

)2

Tk(t). (14.10)

The initial conditions in (14.9) give







Tk(0) = ϕk = 0,

T ′
k (0) = ψk ≡

2

4

∫ 4

0
(16− x2)cos

(k + 1
2
)πx

4
dx =

43(−1)k

(k + 1
2
)3π3

.
(14.11)

Let us point out that here ϕk ≡ 0, while ψ(x) satisfies conditions similar to (14.8):

ψ(x) ≡ 16− x2 ∈ C2[0, 4]; ψ ′(0) = ψ(4) = 0, that is, ψ(x) satisfies the same ho-

mogeneous boundary conditions as the eigenfunctions Xk(x) = cos
(k+ 1

2 )πx

4
do, and

|ψk| ≤C/k3 due to Remark 12.3. Therefore, the estimate (14.7) takes place.

From (14.10) and (14.11) we find, similarly to (14.4) and (14.5):

Tk(t) =
ψk sin

3(k+ 1
2 )πt

4

3(k+ 1
2 )π

4

.

Answer.

u(x,t) =
∞

∑
k=1

256(−1)k

3
(

(k + 1
2
)π
)4

sin
3(k + 1

2
)πt

4
cos

(k + 1
2
)πx

4
.
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15 The Fourier method for nonhomogeneous equations

The heat equation

A. Let us consider the mixed problem for the nonhomogeneous heat equation with

the homogeneous boundary conditions (nonhomogeneous boundary conditions in

Section 16 below will be the next step in developing the Fourier method):







∂u
∂ t

= a2 ∂ 2u
∂x2 + f (x,t), 0 < x < l;

u(0,t) = 0, u(l,t) = 0;

u(x,0) = ϕ(x).

(15.1)

Again, we look a solution of this problem in the form (13.2):

u(x,t) =
∞

∑
k=1

Tk(t)sin
kπx

l
. (15.2)

The new step will be the decomposition of f (x,t) over the eigenfunctions of the

Sturm – Liouville problem:

f (x,t) =
∞

∑
k=1

fk(t)sin
kπx

l
; fk(t) =

2

l

l
∫

0

f (x,t)sin
kπx

l
dx. (15.3)

This decomposition is possible due to the completeness of the family of eigenfunc-

tions sin kπx
l

, k ∈ N, in the space L2(0, l) as long as f (x,t) ∈ L2(0, l) for each fixed

t > 0.

B. For finding the temporal functions Tk(t), we substitute decompositions (15.2),

(15.3) into (15.1):

∞

∑
k=1

T ′
k (t)sin

kπx

l
= −a2

∞

∑
k=1

(kπ

l

)2

Tk(t)sin
kπx

l
+

∞

∑
k=1

fk(t)sin
kπx

l
. (15.4)

From here, due to the orthogonality of the family of eigenfunctions, we get

T ′
k (t) = −

(akπ

l

)2

Tk(t)+ fk(t), t > 0, k = 1, 2, . . . . (15.5)

Thus, the differential equation on the temporal functions is obtained. For the unique

determination of these functions, one needs to take into account the initial condition

from (15.1):

∞

∑
k=1

Tk(0)sin
kπx

l
= ϕ(x) ⇒ Tk(0) =

2

l

l
∫

0

ϕ(x)sin
kπx

l
dx.
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Let us point out that the boundary conditions in (15.1) are automatically satisfied

due to decomposition (15.2) (since they are satisfied for the eigenfunctions sin kπx
l

)

as long as Tk(t) = O
(

1
k2

)

.

C. Let us apply this scheme to particular problems.

Problem 15.1. Solve the mixed problem







ut = 16uxx + 2, 0 < x < 7, t > 0;

ux(0,t) = u(7,t) = 0;

u(x,0) = 0.
(15.6)

Solution. As it follows from the boundary conditions, the solution should be de-

composed over the eigenfunctions of the Sturm – Liouville problem (11.15) (see

Fig. 11.3):

u(x,t) =
∞

∑
k=0

Tk(t)cos
(k + 1

2
)πx

7
. (15.7)

Substituting this series into (15.6), we get the equation similar to (15.5):

T ′
k (t) = −

(4(k + 1
2
)π

7

)

2

Tk + fk, t > 0, k = 1, 2, . . . , (15.8)

where

fk ≡
2

7

7
∫

0

2cos
(k + 1

2
)πx

7
dx =

4

7

sin
(k+ 1

2 )πx

7

(k+ 1
2 )π

7

∣

∣

∣

∣

∣

7

0

= 4
(−1)k

(k + 1
2
)π

. (15.9)

As it follows from the initial condition of the problem,

Tk(0) = 0. (15.10)

Let us solve the problem (15.8), (15.10). The general solution to (15.8) has the form

Tk(t) = T 0
k (t)+ T

p
k (t), (15.11)

where T 0
k (t) is the general solution to the homogeneous equation,

T 0
k (t) = Cke

−
(

4(k+ 1
2

)π

7

)2
t , (15.12)

and a particular solution T
p

k (t) to the nonhomogeneous equation (15.8) is a constant.

Substituting T
p

k (t) = Ak. into (15.8), we get

0 = −
(4(k + 1

2
)π

7

)2

Ak + fk,
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Ak =
49 fk

16
(

(k + 1
2
)π
)2

=
49(−1)k

4
(

(k + 1
2
)π
)3

. (15.13)

Substituting (15.12) and (15.13) into (15.11), we get

Tk(t) = Cke
−
(

4(k+ 1
2

)π

7

)2
t +

49(−1)k

4
(

(k + 1
2
)π
)3

. (15.14)

Now we need to take into account the initial condition (15.10):

0 = Ck +
49(−1)k

4
(

(k + 1
2
)π
)3

⇒ Ck = − 49(−1)k

4
(

(k + 1
2
)π
)3

.

Finally, substituting (15.14) into (15.7), we get

u(x,t) =
∞

∑
k=0

(−1)k 49

4
(

(k + 1
2
)π
)3

(

−e−(
4(k+ 1

2
π

7 )2t + 1
)

cos
(k + 1

2
)πx

7
. (15.15)

Problem 15.2. Find the limit of the solution to the problem (15.6) as t → +∞.

Solution. Taking the limit t → ∞ in each term in the series (15.15), we get (justify!)

u∞(x) ≡ lim
t→+∞

u(x,t) =
∞

∑
k=0

49(−1)k

4
(

(k + 1
2
)π
)3

cos
(k + 1

2
)πx

7
. (15.16)

Let us compute the sum of this series. For this, we notice that

u′∞(x) = −
∞

∑
k=0

7

4

(−1)k

(

(k + 1
2
)π
)2

sin
(k + 1

2
)πx

7
, (15.17)

u′′∞(x) = −
∞

∑
k=0

(−1)k

4(k + 1
2
)π

cos
(k + 1

2
)πx

7
= −1

8
(15.18)

where the last equality follows from decomposition (see (15.9))

2 =
∞

∑
k=0

4(−1)k

(k + 1
2
)π

cos
(k + 1

2
)πx

7
.

Integrating twice the identity (15.18), we get

u∞(x) =
1

16
(−x2 +C1x +C2). (15.19)

To find C1 and C2, we notice that due to (15.16) and (15.17)

u∞(7) = 0, u′∞(0) = 0.
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Substituting the expression (15.19) into the above relations, we find C1 = 0, C2 =
49; hence, u∞(x) = 1

16
(49− x2).

Remark 15.3. We could obtain u∞ directly from (15.6), without using the non-

stationary solution (15.15). To do so, we substitute ut by 0 and solve the problem

{

0 = 16u′′∞(x)+ 2, 0 < x < 7;

u′∞(0) = 0, u∞(7) = 0.
(15.20)

Remark 15.4. The important property of the heat equation is that under stationary

external conditions (that is, when the nonhomogeneous terms of the equation and

the boundary conditions do not depend explicitly on t) the solution u(x,t) stabilizes

as t → +∞:

u(x,t) → u∞(x), t → +∞. (15.21)

The limit function u∞(x) is the solution to the corresponding stationary problem. The

only exception is the case of perfect insulation at both ends ( ∂u
∂x

= 0 at x = 0 and x =
l) and the nonhomogeneity is nonzero. In this case, there is no limit stationary state

u∞(x). If, for example, the nonhomogeneity in the equation is a positive constant

(permanent heat influx), then the temperature growth is unbounded.

Problem 15.5. Find the limit as t → +∞ of the solution to the mixed problem







ut = 25uxx(x,t)+ 3x2, 0 < x < 6;

u(0,t) = 0, u′(6,t) = 1;

u(x,0) = sinx.
(15.22)

Solution. As we said above, we get from (15.22) and (15.21) the following boundary

value problem for u∞(x) = limt→∞ u(x,t) :

{

0 = 25u′′∞(x)+ 3x2, 0 < x < 6;

u∞(0) = 0, u′∞(6) = 1.

Integrating this equation, we get u∞(x) =− x4

100
+C1x+C2. From the boundary con-

ditions we get C2 = 0, − 63

25
+C1 = 1.

Answer. u∞(x) = − x4

100
+ 241

25
x.

The wave equation

Let us consider the nonhomogeneous wave equation.

Problem 15.6. Solve the following mixed problem (where ω > 0):







utt (x,t) = 25uxx + x(3− x)sinωt, 0 < x < 3, t > 0;

u(0,t) = u(3,t) = 0;

u(x,0) = 0, ut(x,0) = 0.
(15.23)
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Solution. A. In view of the boundary conditions in (15.23), we are looking for the

solution u in form of the decomposition over the eigenfunctions of the Sturm –

Liouville problem (11.1):

u(x,t) =
∞

∑
k=1

Tk(t)sin
kπx

3
. (15.24)

For this, the function x(3−x)sin ωt in equation (15.23) is also decomposed into the

series over the system sin kπx
3

:

x(3− x)sinωt =
∞

∑
k=1

gk sin
kπx

3
sinωt, (15.25)

where gk = 2
3

3
∫

0

x(3− x)sin kπx
3

dx = 36

(kπ)3

(

1− (−1)k
)

.

B. Finding the temporal functions Tk(t). Substituting decomposition (15.24) and

(15.25) into equation (15.23) and using the orthogonality of the family sin kπx
3

, we

get, similarly to (14.3),

T ′′
k (t) = −

(5kπ

3

)2

Tk(t)+ gk sinωt. (15.26)

Substitution of the series (15.24) into the initial conditions (15.23) gives

Tk(0) = 0, T ′
k (0) = 0. (15.27)

The Cauchy problem (15.26)–(15.27) uniquely determines the temporal functions

Tk(t).
It is known that the general solution to equation (15.26) has the form

Tk(t) = T 0
k (t)+ T

p
k (t), (15.28)

where T 0
k (t) is the general solution of the corresponding homogeneous equation

T 0
k (t) = Ak cos

5kπ

3
t + Bk sin

5kπ

3
t,

while T
p

k (t) is a particular solution to the nonhomogeneous equation (15.26).

When finding a particular solution, one needs to distinguish two cases: the reso-

nant case and the non-resonant case.

1. Non-resonant case: For all k ∈ N,

ω 6= 5kπ

3
. (15.29)

Then T
p

k (t) are to be looked for in the form

T
p

k (t) = Ck sinωt.
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Substitution into (15.26) gives

−ω2Ck sinωt = −
(5kπ

3

)2

Ck sinωt + gk sinωt,

from where, in view of (15.29),

Ck =
gk

(

5kπ
3

)2 −ω2
.

Then (15.28) takes the form

Tk(t) = Ak cos
5kπ

3
t + Bk sin

5kπ

3
t +

gk sinωt
(

5kπ
3

)2 −ω2
.

Finally, the initial conditions (15.27) yield

Ak = 0, Bk

5kπ

3
+

gkω

( 5kπ
3

)2 −ω2
= 0 ⇒ Bk = − gkω

5kπ
3

(

( 5kπ
3

)2 −ω2
) .

Thus, in the case when (15.29) is satisfied for all k = 1, 2, . . ., we have

u(x,t) =
∞

∑
k=1

gk
(

5kπ
3

2)−ω2

(

− ω

( 5kπ
3

)
sin
(5kπ

3
t
)

+ sinωt
)

sin
kπx

3
. (15.30)

2. Resonant case: For some m ∈ N,

ω =
5mπ

3
. (15.31)

In this case,

T p
m (t) = t(Cm cosωt + Dm sinωt).

Taking k = m and substituting into (15.26), we get

2
(

−Cmω sinωt + Dmω cosωt
)

+ t
(

−Cmω2 cosωt −Dmω2 sinωt
)

= −
(5mπ

3

)2
t
(

Cm cosωt + Dm sinωt
)

+ gm sin ωt. (15.32)

Here in the left-hand side we used the Leibniz formula for computing

d2

dt2

[

t
(

Cm cosωt + Dm sinωt
)

]

.

Taking into account (15.31) and collecting the terms in (15.32), we get

2
(

−Cmω sinωt + Dmω cosωt
)

= gm sinωt.

We compare the coefficients at cosωt and sinωt on the left and on the right:
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2Dmω = 0, −2Cmω = gm.

Since ω > 0,

Dm = 0, Cm = − gm

2ω
.

Thus,

T p
m (t) = −t

gm

2ω
cosωt.

Therefore

Tm(t) = Am cos
5kπ

3
t + Bm sin

5kπ

3
t − t

gm

2ω
cosωt.

Substituting into the initial conditions (15.27), we get

Am = 0; Bm

5mπ

3
− gm

2ω
= 0 =⇒ Bm =

3gm

10mπω
.

Therefore,

T p
m (t) =

3gm

10mπω
sin
(5kπ

3
t
)

− t
gm

3
cosωt.

Thus, if for some m ∈ N the condition (15.31) is satisfied, we get (compare with

(15.30)):

u(x,t) = ∑
k∈N,k 6=m

gk

( 5kπ
3

)2 −ω2

(

− ω

( 5kπ
3

)
sin

5kπ

3
t + sinωt

)

sin
kπx

3

+
( 3gm

10mπω
sin

5mπ

3
t − t

gm

2ω
cosωt

)

sin
mπx

3
. (15.33)

Remark 15.7. In the non-resonant case, all the terms in the series (15.30) are

bounded functions of x, t, while in the resonant case (15.31) one of the terms in

(15.33) is unbounded when t → +∞. Therefore, for large t, the solution will be

represented mainly by the last term in (15.33). As t grows, the solution becomes

unboundedly large. If it were the amplitude of a string, the string would break. As

the matter of fact, when the solution becomes large, it is no longer described by the

linear wave equation, and the formula (15.33) is no longer valid.

Problem 15.8. Find the solution to the mixed problem







utt(x,t) = 16uxx + sin 7πx
10

, 0 < x < 5, t > 0;

u(0,t) = 0, ux(5,t) = 0;

u(0,x) = 0, ut(0,x) = 0.
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16 The Fourier method for nonhomogeneous boundary

conditions

Up to now, we were using the Fourier method only for problems with homogeneous

boundary conditions. It turns out that the problem with nonhomogeneous boundary

conditions is easily reduced to a problem with homogeneous boundary conditions.

The heat equation

Problem 16.1. Find the solution to the mixed problem







ut = 9uxx, 0 < x < 4, t > 0;

u(0,t) = f (t), u(4,t) = g(t);
u(x,0) = 0.

(16.1)

Solution. Let us find an auxiliary function v(x,t) which satisfies the given boundary

conditions:

v(0,t) = f (t), v(4,t) = g(t), t > 0.

Such a function can easily be found, for example, using a linear interpolation

v(x,t) =
x

4
g(t)+

4− x

4
f (t).

Denote w = u− v. Then w satisfies the homogeneous boundary conditions

w(0,t) = 0, w(4,t) = 0, t > 0. (16.2)

Question 16.2. What equation and boundary conditions does the function w satisfy?

Answer. We substitute u = w+ v into (16.1); then

{

wt + vt = 9(wxx + vxx),
w(x,0)+ v(x,0) = 0,

leading to
{

wt = 9wxx + 9(vxx − vt),
w(x,0) = −v(x,0).

Thus, unlike u, the function w satisfies the nonhomogeneous heat equation! But the

boundary conditions (16.2) are now homogeneous, hence w could be found using the

method of Section 15; then u = w+v is the solution to the problem (16.1). Thus, we

sent the nonhomogeneity from the boundary conditions into the differential equation

(16.1) and into the initial condition.
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The wave equation

Problem 16.3. Solve the mixed problem







utt = 16uxx, 0 < x < 5, t > 0;

u(0,t) = 0, ux(5,t) = sinωt;

u(x,0) = 0, ut(x,0) = 0.
(16.3)

Solution. A. The auxiliary function

v(x,t) = xsinωt

satisfies the specified boundary conditions. For w ≡ u− v, we have:







wtt = 16wxx + ω2xsinωt, 0 < x < 5, t > 0;

w(0,t) = 0, wx(5,t) = 0;

w(x,0) = −v(x,0) = 0, wt (x,0) = −vt(x,0) = −xω .
(16.4)

B. Following the method of Section 15, we are looking for w in the form

w(x,t) =
∞

∑
k=0

Tk(t)sin
(k + 1

2
)πx

5
. (16.5)

For this, we expand the right-hand side of equation (16.4):

ω2xsin ωt = ω2 sinωt
∞

∑
k=0

xk sin
(k + 1

2
)πx

5
,

where

xk =
2

5

∫ 5

0
xsin

(k + 1
2
)πx

5
dx = −2

5

5

(k + 1
2
)π

∫ 5

0
xd cos

(k + 1
2
)πx

5

= − 5

(k + 1
2
)π

[

xcos
(k + 1

2
)πx

5

∣

∣

∣

5

0
−
∫ 5

0
cos

(k + 1
2
)πx

5
dx
]

=
2 ·5

(k + 1
2
)2π2

sin
(k + 1

2
)πx

5

∣

∣

∣

5

0
=

10

(k + 1
2
)2π2

· (−1)k. (16.6)

C. Substituting (16.5)–(16.6) into equation (16.4), we find the equations on the tem-

poral functions Tk(t):

T ′′
k (t) = −16

((k + 1
2
)π

5

)2

Tk(t)+ ω2xk sinωt, k = 0, 1, 2, . . . . (16.7)

From the initial conditions (16.4) we find Tk(0) = 0 and
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T ′
k (0) =

2

5

∫ 5

0
(−ωx)sin

(k + 1
2
)πx

5
dx = −ω

10 · (−1)k

(k + 1
2
)2π2

. (16.8)

In the last equality, we took into account (16.6). The problem (16.7)–(16.8) could

be solved in the same way as in Section 15. Again, two cases are possible: resonant

and non-resonant.

Complete the solution of the problem (16.1).

Remark 16.4. For problems like (16.4) a condition analogous to (14.8) is not sat-

isfied. Still, the new function w(x,t) satisfies the initial and boundary conditions in

the usual sense. It is only the first equation in (16.4) that is satisfied in the sense of

distributions (see Section 26 below).

Problem 16.5. Find the resonance condition in the problem (16.3).

Answer. ω =
4(m+ 1

2 )πx

5
for some m = 0, 1, 2, . . ..

17 The Fourier method for the Laplace equation

Boundary value problems in a rectangle

A. Let us consider the boundary value problem in the rectangle Ω = [0,a]× [0,b]:











△u(x,y) ≡ ∂ 2u
∂x2 + ∂ 2u

∂y2 = 0, 0 < x < a, 0 < y < b;

u(0,y) = 0, u(a,y) = 0;

u(x,0) = f (x), u(x,b) = g(x).

(17.1)

This is the boundary value problem, or the Dirichlet problem: the function u is given

at the boundary of the considered region. See Fig. 17.1.

Fig. 17.1
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Solution. The problem (17.1) can be solved by the method of Section 15, where the

role of the variable t is now played by the variable y, as could be seen from com-

paring problems (17.1) and (15.1). We are looking for the solution in the following

form:

u(x,y) =
∞

∑
k=1

Yk(y)sin
kπx

a
. (17.2)

Then the boundary conditions at x = 0 and x = a in (17.1) are automatically satisfied.

We substitute (17.2) into equation (17.1). This gives equations on Yk(y):

−
(kπ

a

)2

Yk(y)+Y ′′
k (y) = 0, 0 < y < b. (17.3)

Substitution into the boundary conditions (17.1) at y = 0 and y = b yields















Yk(0) = fk ≡
2

a

∫ a

0
f (x)sin

kπx

a
dx,

Yk(b) = gk ≡
2

a

∫ a

0
g(x)sin

kπx

a
dx.

(17.4)

The general solution to equation (17.3) has the form

Yk(y) = Ake
kπ
a y + Bke−

kπ
a y. (17.5)

The constants Ak and Bk are found from the boundary conditions (17.4):

Ak + Bk = fk, Ake
kπ
a b + Bke−

kπ
a b = gk.

Solving this system, we find:







Ak = 1

e
kπ
a b−e−

kπ
a b

(gk − fke−
kπ
a b),

Bk = 1

e
kπ
a b−e−

kπ
a b

( fke
kπ
a b −gk).

(17.6)

Thus, the solution of the problem (17.1) is given by (17.2), (17.5), and (17.6).

Let us check the validity of the solution (17.2). We need to justify the possibility

of the termwise differentiation of the series (17.2). If f (x) and g(x) are integrable

functions, then f (x) and g(x) are bounded:

| fk| ≤
2

a

∫ a

0
| f (x)|dx, |gk| ≤

2

a

∫ a

0
|g(x)|dx.

But then from (17.6) we see that |Ak| ≤ c

e
kπ
a b

, |Bk| ≤ const. Therefore, it follows from

(17.5) that |Yk(y)| ≤ ce−
kπ
a (b−y) +ce−

kπ
a y. As a consequence, for ε < y < b−ε , with

ε > 0 small, one has |Yk(y)| ≤ ce−
kπ
a ε , and the series (17.2) for these values of y is

dominated by the convergent geometric series ∑∞
k=1 ce−

kπ
a ε . It is easy to see that the
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derivatives of the second order in x and in y of the series (17.2) are dominated by

the series ∑∞
k=1 ck2e−

kπ
a ε , which is also convergent. In the same way one proceeds

with the derivatives of any order in x and y.

Conclusion. Solution of the Dirichlet problem (17.1) is a smooth function inside

the rectangle Ω . Let us assume that, as in (12.5), f (x), g(x) ∈ C2
0 [0,a]. Then, anal-

ogously to (12.4), fk, gk = O( 1
k2 ) and, consequently, |Yk(y)| ≤ c

k2 , y ∈ [0,b]. There-

fore, the series (17.2) converges uniformly in the rectangle Ω = [0,a]× [0,b], and

its sum is a function which is continuous in this rectangle and satisfies boundary

conditions in (17.1).

B. More general boundary value problem of the Dirichlet type in the rectangle,







△u(x,y) = 0, 0 < x < a, 0 < y < b;

u(0,y) = ϕ(y), u(a,y) = ψ(y);
u(x,0) = f (x), u(x,b) = g(x),

(17.7)

could be solved by decomposing the solution u into two terms:

u = u1 + u2. (17.8)

Here u1 solves the problem (17.1), while u2 solves the problem







△u2 = 0, 0 < x < a, 0 < y < b;

u2(0,y) = ϕ(y), u2(a,y) = ψ(y);
u2(x,0) = 0, u2(x,b) = 0.

This problem takes the same form as (17.1) if one interchanges x and y. Therefore

u2 should be tried in the form (compare with (17.2)):

u2(x,y) =
∞

∑
k=1

Xk(x)sin
kπy

b
. (17.9)

If f , g ∈C2
0 [0,a], while ϕ , ψ ∈C2

0 [0,b], then, according to what we said above,

u1 and u2, and, consequently, u = u1 + u2 are continuous functions in Ω which

satisfy the required boundary conditions.

In the general case, for the continuity of u(x,y) in Ω , the following compatibility

conditions are obviously required:

f (0) = ϕ(0), ϕ(b) = g(0), g(a) = ψ(b), ψ(0) = f (a). (17.10)

Problem 17.1. Prove that the problem (17.7) has a solution continuous in Ω if

f , g ∈C2[0,a], ϕ , ψ ∈C2[0,b], and the compatibility condition (17.10) is satisfied.

Hint. Try to find the solution to equation △v = 0 in Ω which coincides with the

boundary values given by functions f , g, ϕ , and ψ at the boundary of the region

Ω . Then the difference u− v could be found using decomposition (17.8) described

above.
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C. Now we consider the nonhomogeneous Laplace equation (the Poisson equation).

Problem 17.2. Solve the boundary value problem







△u(x,y) = x2y, 0 < x < a, 0 < y < b;

u(0,y) = 0, u(a,y) = 0;

u(x,0) = 0, ∂u
∂y

(x,b) = 0.
(17.11)

Let us point out that here at x = 0, x = a, and y = 0 one has the boundary value of

the Dirichlet type, while at y = b one has the boundary value of the Neumann type

(that is, the derivative of the solution in the normal direction is specified).

Solution. Homogeneous boundary conditions at x = 0, and x = a allow to write the

solution in the form of the series over the eigenfunctions of the corresponding Sturm

– Liouville problem:

u(x,y) =
∞

∑
k=1

Yk(x)sin
kπy

a
. (17.12)

We also decompose over these functions the right-hand side:

x2y = y
∞

∑
k=1

gk sin
kπy

a
, gk =

2

a

∫ a

0
x2 sin

kπy

a
dx.

Substituting these decompositions into (17.11), we get for ∀k = 1, 2, . . .

−
(kπ

a

)2

Yk(y)+Y ′′
k (y) = ygk, 0 < y < b; Yk(0) = 0, Y ′

k(b) = 0. (17.13)

Then

Yk(y) = Ake
kπx

a + Bke−
kπx

a +
ygk

−( kπ
a

)
2
. (17.14)

The constants Ak and Bk can be found after substituting this solution into the bound-

ary conditions in (17.13):

Ak + Bk = 0,
kπ

a
Ake

kπ
a b +

(

−kπ

a

)

Bke−
kπ
a b +

gk

−( kπ
a

)2
= 0.

Answer. The solution is given by the formulas (17.12), (17.14).

Boundary value problems in annulus and in disc

A. Let us solve the boundary value problem of the Dirichlet type in the annulus

between the circles of radii r1 and r2:
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{△u(x,y) = 0, r2
1 < x2 + y2 < r2

2;

u|x2+y2=r2
1
= f1(ϕ), u|x2+y2=r2

2
= f2(ϕ); 0 ≤ ϕ ≤ 2π .

(17.15)

Here f1 and f2 are given continuous functions of the angular variable ϕ .

Solution. Let us convert to polar coordinates r =
√

x2 + y2, ϕ = arctan
y
x
.

Problem 17.3. Prove that in these coordinates the problem (17.15) takes the form











△u =
∂ 2u

∂ r2
+

1

r

∂u

∂ r
+

1

r2

∂ 2u

∂ϕ2
= 0, r1 < r < r2;

u|r=r1
= f1(ϕ), u|r=r2

= f2(ϕ); 0 ≤ ϕ ≤ 2π .

(17.16)

This is a problem in a rectangle [0,2π ]× [r1,r2] (Fig. 17.2). The boundary con-

ditions are given at the lower and at the upper sides of the rectangle.

Fig. 17.2

Question 17.4. Are there boundary conditions at the left and right sides of the

rectangle?

Answer. Yes, it is the periodicity condition in the variable ϕ :

u(0,r) = u(2π ,r),
∂u

∂ϕ
(0,r) =

∂u

∂ϕ
(2π ,r). (17.17)

This follows from the fact that the points with the polar coordinates (0,r) and (2π ,r)
are identical. Analogous periodicity conditions in ϕ also hold for all partial deriva-

tives of u in r and ϕ .

Problem 17.5. Show that the conditions (17.17) together with equation (17.16)

guarantee the periodicity in ϕ of all the derivatives of u in r and ϕ if u(ϕ ,r) is a

smooth function in the rectangle [0,2π ]× [r1,r2].

The Sturm – Liouville problem which corresponds to the homogeneous boundary

conditions (17.17) has the form
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∂ 2

∂ϕ2
Φ(ϕ) = λ Φ(ϕ), 0 < ϕ < 2π ;

Φ(0) = Φ(2π), Φ ′(0) = Φ ′(2π).
(17.18)

Solving this problem, we find:

λk = −k2, Φk(ϕ) = Ak coskϕ + Bk sinkϕ , k = 0, 1, 2, . . . .

Therefore, for each k 6= 0 there are two linearly independent eigenfunctions: coskϕ
and sinkϕ , while for k = 0 there is only one eigenfunction: Φ0(ϕ) ≡ 1. As it is

known from the Fourier series theory, these eigenfunctions form a complete orthog-

onal set in L2(0,2π) and are mutually orthogonal. The squares of their L2-norms are

given by











∫ 2π

0
Φ2

0 (ϕ)dϕ =

∫ 2π

0
dϕ = 2π ;

∫ 2π

0
cos2(kϕ)dϕ =

∫ 2π

0
sin2(kϕ)dϕ = π , k = 1, 2, 3, . . . .

(17.19)

The Fourier method for the problem (17.16) in the annulus consists of finding

the solution in the form of a series over the eigenfunctions of the problem (17.18):

u(ϕ ,r) =
∞

∑
k=0

Rk(r)coskϕ +
∞

∑
k=1

Sk(r)sin kϕ . (17.20)

Substituting this series into equation (17.16), we get the following equations on the

“radial” functions Rk(r):

R′′
k +

1

r
R′

k +
1

r2
Rk(−k2) = 0, r1 < r < r2, k = 0, 1, 2, . . . (17.21)

and the same equations on Sk:

S′′k +
1

r
S′k +

1

r2
Sk(−k2) = 0, r1 < r < r2, k = 0, 1, 2, . . . . (17.22)

Let us solve the radial equations (17.21), (17.22). These are the Euler equations.

Substituting Rk = rλ into (17.21), we get

λ (λ −1)rλ−2 + λ rλ−2− k2rλ−2 = 0,

and we get the characteristic equation λ 2 −k2 = 0, hence λ = ±k. If k 6= 0, then the

roots are simple, and the general solutions to (17.21) and (17.22) have the following

form:

Rk(r) = Akrk + Bkr−k, k = 1, 2, 3, . . . ; (17.23)

Sk(r) = Ckrk + Dkr−k, k = 1, 2, 3, . . . . (17.24)

For k = 0, the root of the equation λ = 0 has multiplicity 2, hence
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R0(r) = A0 + B0 lnr. (17.25)

Substituting (17.23)–(17.25) into (17.20), we get the general solution of a homoge-

neous Laplace equation in the annulus:

u(ϕ ,r) = A0 + B0 lnr +
∞

∑
k=1

(Akrk +
Bk

rk
)coskϕ +

∞

∑
k=1

(Ckrk +
Dk

rk
)sin kϕ . (17.26)

Remark 17.6. This is a general form of a harmonic function in the annulus.

The values of the constants in (17.26) are obtained from the boundary conditions

(17.16):











A0 + B0 lnr1 +
∞

∑
k=1

(Akrk
1 + Bkr−k

1 )coskϕ +
∞

∑
k=1

(Ckrk
1 + Dkr−k

1 )sin kϕ = f1(ϕ),

A0 + B0 lnr2 +
∞

∑
k=1

(Akrk
2 + Bkr−k

2 )coskϕ +
∞

∑
k=1

(Ckrk
2 + Dkr−k

2 )sin kϕ = f2(ϕ),

(17.27)

where 0 ≤ ϕ ≤ 2π . Taking into account the orthogonality of the eigenfunctions of

the Sturm – Liouville problem (17.18) and the relations (17.19), we get











A0 + B0 lnr1 =
1

2π

∫ 2π

0
f1(ϕ)dϕ ,

A0 + B0 lnr2 =
1

2π

∫ 2π

0
f2(ϕ)dϕ ,

(17.28)

and, similarly, for k = 1, 2, 3, . . .,











Akrk
1 + Bkr−k

1 =
1

π

∫ 2π

0
f1(ϕ)coskϕ dϕ ,

Akrk
2 + Bkr−k

2 =
1

π

∫ 2π

0
f2(ϕ)coskϕ dϕ ;

(17.29)











Ckrk
1 + Dkr−k

1 =
1

π

∫ 2π

0
f1(ϕ)sin kϕ dϕ ,

Ckrk
2 + Dkr−k

2 =
1

π

∫ 2π

0
f2(ϕ)sin kϕ dϕ .

(17.30)

We find A0 and B0 from the system (17.28) and Ak, Bk from (17.29). Ck and Dk are

found from (17.30). The problem (17.15) is solved.

Problem 17.7. Prove that the solution (17.26) of the problem (17.15) is infinitely

differentiable in the interior of the annulus.

Problem 17.8. Solve the Dirichlet problem in the annulus:

{

△u(x,y) = 0, 4 < x2 + y2 < 9;

u|x2+y2=4 = x, u|x2+y2=9 = y.

Solution. Here r1 = 2, r2 = 3, so that
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f1(ϕ) = 2cosϕ , f2(ϕ) = 3sinϕ . (17.31)

Therefore, the right-hand sides in (17.28) are equal to zero and A0 = B0 = 0. Analo-

gously, the right-hand sides of the systems (17.29) and (17.30) are equal to zero for

all k 6= 1, thus

Ak = Bk = 0, Ck = Dk = 0 for k 6= 1.

Hence, the series (17.26) contains only two terms:

u(ϕ ,r) = (A1r + B1r−1)cosϕ +(C1r + D1r−1)sin ϕ . (17.32)

The remaining coefficients are obtained from the systems of equations

{

A12 + B1
1
2

= 2,

A13 + B1
1
3

= 0,

{

C12 + D1
1
2

= 0,

C13 + D1
1
3

= 3,
(17.33)

which are derived directly from (17.31). Namely, (17.33) is obtained by substitut-

ing (17.31) into (17.27) and comparing the Fourier coefficients in both sides of the

relations, instead of evaluating integrals in (17.29)–(17.30). From (17.33) we find

A1 = −4

5
, B1 =

36

5
, C1 =

9

5
, D1 = −36

5
. (17.34)

Answer. u(ϕ ,r) =
(

− 4
5
r + 36

5
r−1
)

cosϕ +
(

9
5
r− 36

5
r−1
)

sinϕ .

B. Now let us consider the Dirichlet problem in the disc of radius R:

{

△u(x,y) = 0, x2 + y2 < R2;

u|x2+y2=R2 = f (ϕ), 0 < ϕ < 2π .
(17.35)

A solution of this problem also has the form (17.26), since the disc x2 + y2 < R2

contains the (degenerate) annulus 0 < x2 + y2 < R2. But the disc also contains the

point (0,0), where the solution has to be finite:

|u(0,0)|< ∞. (17.36)

It can be shown [TS90] that (17.36) holds if and only if all the terms which have

the singularity at (0,0) of the form lnr and r−k are absent from (17.26). This means

that B0 = Bk = Dk = 0, k = 1, 2, 3, . . .. Thus, (17.26) takes the form

u(x,y) = A0 +
∞

∑
k=1

rk(Ak coskϕ +Ck sin kϕ). (17.37)

This is the analog of the Taylor series for a harmonic function in a disc. The coef-

ficients of the series (17.37) are found from the boundary condition of the problem

(17.35).

Problem 17.9. Solve the Dirichlet problem in the disc:
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{

△u(x,y) = 0, x2 + y2 < 4;

u|x2+y2=4 = x2.

Solution. We are looking for the solution u in the form (17.37). The substitution of

this series into the boundary condition gives:

A0 +
∞

∑
k=1

2k(Ak coskϕ +Ck sinkϕ) = 2 + 2cos2ϕ , (17.38)

since x2|r=2 = (2cosϕ)2 = 4cos2 ϕ = 2 + 2cos2ϕ . Comparing the Fourier coeffi-

cients in the left- and right-hand sides of (17.38), we see that all Ak and Ck with

k 6= 0 and k 6= 2 are equal to zero, and and the formula (17.37) yields the answer:

A0 = 2, A2 = 1/2, C2 = 0. The formula (17.37) takes the form

u = 2 + r2 1

2
cos2ϕ = 2 +

r2

2
(cos2 ϕ − sin2 ϕ) = 2 +

x2 − y2

2
.

Problem 17.10. Solve the Dirichlet problem in the annulus:

{

△u(x,y) = x2, 9 < x2 + y2 < 16;

u|x2+y2=9 = 0, u|x2+y2=16 = 0.

Hint. Both the solution that we are looking for and the right-hand side of the equa-

tion are to be decomposed into the series of the form (17.20). Equations on the radial

functions Rk and Sk will be the nonhomogeneous Euler equations.

Problem 17.11. Solve the Neumann problem in the disc:

{△u(x,y) = 0, x2 + y2 < 9;
∂u
∂nnn
|x2+y2=9 = y,

where ∂
∂nnn

is the derivative normal to the boundary of the disc.

Hint. Solution is to be looked for in the form of the series (17.37); moreover, in the

polar coordinates one has ∂u
∂nnn

= ∂u
∂ r

.

Conclusion. The heat equation, the wave equation, and the Laplace equation possess

different properties. As it follows from the results of Chapter 2, solutions of the

homogeneous Laplace equation and the heat equation are smooth inside the regions

where they are considered, even if the boundary values are discontinuous. At the

same time, solutions of the homogeneous wave equation could be discontinuous if,

for example, the initial data are discontinuous functions.



Chapter 3

Distributions and Green’s functions

Laurent Schwartz introduced distributions in late 1940s. See [Sch66a, Sch66b].

“Weak derivatives” were introduced by S.L. Sobolev in 1935.

18 Motivation

Continuous functions u(x) ∈C(R) can be defined using the following three ways.

1. A continuous function can be uniquely specified by its values

{u(x) : x ∈ R}. (18.1)

2. It can be defined using its Fourier coefficients (if it is 2π-periodic):

u(x) = ∑
k∈Z

ukeikx. (18.2)

Here

uk =
1

2π

2π
∫

0

e−ikx u(x)dx.

The sequence

{uk : k ∈ Z}
uniquely defines a continuous (periodic) function by the formula (18.2).

3. Let us introduce the space of the test functions. Let C∞
0 (R) be the space of smooth

functions with the compact support; that is,

a. ϕ(x) ∈C∞(R);
b. ϕ(x) ≡ 0 for |x| ≥ A, where A ≥ 0 depends on ϕ (Fig. 18.1).

For any continuous function u(x) define the scalar product with ϕ ∈C∞
0 (R):

© Springer Science + Business Media, LLC 2009

Alexander Komech and Andrew Komech, Principles of Partial Differential Equations, 105
 Problem Books in Mathematics, DOI 10.2007/978-1-4419-1096-7_3,



106 3 Distributions and Green’s functions

Fig. 18.1

ϕ(x)

−A 0 A x

〈u,ϕ〉 ≡
∞
∫

−∞

u(x)ϕ(x)dx. (18.3)

This integral converges, since ϕ(x) ≡ 0 for |x| ≥ A:

〈u,ϕ〉 =

A
∫

−A

u(x)ϕ(x)dx.

For a particular continuous function u(x), consider the set of values

{〈u,ϕ〉 : ϕ ∈C∞
0 (R)}. (18.4)

Question 18.1. Is the function u(x) uniquely defined by this set of values?

Answer. Yes. (Prove this!)

Question 18.2. Can the formula be written for restoring the continuous function

u(x) from the set of values (18.4)?

Answer. Yes:

u(x) = lim
ε→0

1

ε

∞
∫

−∞

ϕ(
x− y

ε
)u(y)dy = lim

ε→0
〈ϕx

ε (y),u(y)〉. (18.5)

Here ϕx
ε (y) = 1

ε ϕ( x−y
ε ) ∈ C∞

0 (R). The function ϕ ∈ C∞
0 (R) satisfies the following

conditions (see Fig. 18.2):

ϕ(y) ≡ 0 for |y| ≥ 1;

1
∫

−1

ϕ(y)dy = 1.
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Fig. 18.2

ϕ(x)

−1 0 1 x

Let us prove (18.5). We change the variable of integration to z = x−y
ε . Then (18.5)

takes the form

u(x) = lim
ε→0

1
∫

−1

ϕ(z)u(x− εz)dz.

This formula follows from the continuity of u at the point x:

lim
ε→0

1
∫

−1

ϕ(z)u(x− εz)dz =

1
∫

−1

ϕ(z) lim
ε→0

u(x− εz)dz =

1
∫

−1

ϕ(z)u(x)dz = u(x).

Question 18.3. What is the essential difference of the three ways of defining a

function u(x) which we described above?

Answer.

1. The set of numbers {u(x) : x ∈ R} can be more or less arbitrary: at any finite set

of points xk ∈ R the values u(xk) can be arbitrary.

2. The set of numbers {uk : k ∈Z} can be arbitrary, as long as |uk| decay for |k|→ ∞
fast enough so that, for example,

∞

∑
k=−∞

|uk| < ∞.

3. The values {〈u,ϕ〉 : ϕ ∈C∞
0 (R)} are not arbitrary: As could be seen from (18.3),

if lϕ = 〈u,ϕ〉, then the numbers lϕ are connected by the algebraic relations

lϕ1+ϕ2
= 〈u,ϕ1 + ϕ2〉 = 〈u,ϕ1〉+ 〈u,ϕ2〉 = lϕ1

+ lϕ2
, (18.6)

for all ϕ1,ϕ2 ∈C∞
0 (R).

Conclusion. For the abstract set of numbers {lϕ : ϕ ∈ C∞
0 (R)} to correspond to

some function u(x) ∈C(R) such that
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lϕ = 〈u,ϕ〉, ∀ϕ ∈C∞
0 (R), (18.7)

it is necessary that this set satisfies the compatibility conditions (18.6):

lϕ1+ϕ2
= lϕ1

+ lϕ2
, ∀ϕ1, ϕ2 ∈C∞

0 (R). (18.8)

Definition 18.4. The convergence ϕn

C∞
0−−−→

n→∞
ϕ means the following:

a. n

of any order: ∀k = 0, 1, 2, . . .

ϕ
(k)
n (x)−→−→ ϕ(k)(x), x ∈ R, as n → ∞. (18.9)

b. All ϕn are supported inside [−A,A]: there is A > 0 such that for any n ∈ N

ϕn(x) ≡ 0 for |x| ≥ A. (18.10)

Question 18.5. Are the compatibility conditions (18.8) sufficient for the existence

of a function u(x) ∈ C(R) corresponding to the set {lϕ : ϕ ∈ C∞
0 (R)} in the sense

of the identity (18.7)?

Answer. No, they are not. One also needs the continuity conditions:

lϕn −−−→
n→∞

lϕ if ϕn

C∞
0−−−→ ϕ for n → ∞. (18.11)

Indeed, under the conditions (18.9) and (18.10), given u(x) ∈C1(R), then the con-

vergence of 〈u,ϕn〉 to 〈u,ϕ〉 follows from interchanging the integration and taking

the limit for uniformly convergent functions supported on a bounded interval:

〈u,ϕn〉 ≡
A
∫

−A

u(x)ϕn(x)dx −−−→
n→∞

A
∫

−A

u(x)ϕ(x)dx = 〈u,ϕ〉,

since u(x)ϕn(x) −→−→ u(x)ϕ(x) as x ∈ [−A,A], n → ∞.

Thus, for the existence of a function u(x) ∈ C(R) which corresponds to the set

{lϕ : ϕ ∈C∞
0 (R)} in the sense of (18.7), besides (18.8), the following condition is

necessary:

lϕn → lϕ if ϕn

C∞
0−−−→ ϕ . (18.12)

Question 18.6. Do the conditions (18.8) and (18.12) suffice for the existence of

u(x) ∈C(R) corresponding to the representation (18.7)?

Answer. No.

ϕ (x) converges to ϕ(x) uniformly in x∈ R, and the same is true for derivatives
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Problem 18.7. Give the example of a set {lϕ : ϕ ∈ C∞
0 (R)} which satisfies the

conditions (18.8) and (18.12), but such that there is no corresponding function

u(x) ∈C(R) (see [Vla84]).

Answer.

lϕ = ϕ(0), ∀ϕ ∈C∞
0 (R). (18.13)

Conclusion. The set of values {lϕ : ϕ ∈ C∞
0 (R)} defines a function u(x) ∈ C(R)

satisfying the identity (18.7) uniquely only if such function u(x) exists, although it

may not exist for a particular {lϕ : ϕ ∈C∞
0 (R)}. The conditions (18.8), (18.12) are

necessary for the existence of a continuous function u(x), but not sufficient.

19 Distributions

Definition 19.1. A distribution is a set l = {lϕ : ϕ ∈ C∞
0 (R)} that satisfies the

conditions (18.8) and (18.12).

For brevity, we denote

D = D(R) = C∞
0 (R).

Remark 19.2. From the functional analysis point of view, the set {lϕ : ϕ ∈C∞
0 (R)}

satisfying the conditions (18.8), (18.12) (a distribution) is a continuous linear func-

tional on D(R), that is, the element of the dual space D ′(R):

l = {lϕ : ϕ ∈ D(R)} ∈ D
′(R); l(ϕ) ≡ lϕ , ∀ϕ ∈ D(R).

Thus, D ′(R) is the space of distributions.

Notation 19.3. For a distribution {lϕ : ϕ ∈ D(R)} its value lϕ on a test function

ϕ(x) will be denoted by l(ϕ), 〈l,ϕ〉, and also 〈l(x),ϕ(x)〉, and will be called the

scalar product of the distribution l with the test function ϕ:

lϕ = l(ϕ) = 〈l,ϕ〉 = 〈l(x),ϕ(x)〉. (19.1)

Let us point out that l(x) is not the value of the function l at the point x, but

merely a symbolic notation.

Example 19.4. Distribution (18.13) is called the Dirac δ -function:

δϕ = δ (ϕ) = 〈δ ,ϕ〉 = ϕ(0), ∀ϕ ∈ D(R). (19.2)

Remark 19.5. The formula (18.3) assigns a distribution to each continuous function

u(x) ∈C(R):
u(x) 7→ {〈u,ϕ〉 : ϕ ∈ D(R)}.
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According to (18.5), this mapping is injective:

C(R) ⊂ D
′(R).

But not every distribution could be represented by (18.3) using some continuous

function (for example, δ (x) could not be represented in this way).

Let us consider examples of distributions.

a. For k ∈ N, set

〈dk,ϕ〉 = ϕ(k)(0), ∀ϕ ∈ D(R).

Check that dk(x) ∈ D ′(R) (that is, check the conditions (18.8) and (18.11)).

b. The Heaviside function (see Fig. 19.1):

Θ(x) =

{

1, x > 0;

0, x < 0;
(19.3)

〈Θ ,ϕ〉 ≡
∞
∫

−∞

Θ(x)ϕ(x)dx =

∞
∫

0

ϕ(x)dx. (19.4)

Check that Θ ∈ D
′(R).

Fig. 19.1

Θ(x)
1

0 x

20 Operations on distributions

Addition of distributions

Let us first notice that for continuous functions u1(x), u2(x) and their sum u1(x)+
u2(x) we have, due to (18.10),

〈u1 + u2,ϕ〉 = 〈u1,ϕ〉+ 〈u2,ϕ〉, ∀ϕ ∈ D(R). (20.1)

Definition 20.1. For l, m ∈ D ′(R) we set

(l + m)ϕ = lϕ + mϕ , ∀ϕ ∈ D(R). (20.2)



20 Operations on distributions 111

Remark 20.2. Under such a definition, the addition of continuous functions u1(x),
u2(x) coincides with the addition of the corresponding distributions. This is seen

from (20.1) and (20.2).

Problem 20.3. Check that l + m ∈ D ′(R).

Multiplication by a scalar

Let us notice that for any u ∈ C(R), α ∈ R, and ϕ ∈ D(R), we have 〈αu,ϕ〉 =
α〈u,ϕ〉.
Definition 20.4. For l ∈ D ′(R) and α ∈ R we define

〈αl,ϕ〉 = α〈l,ϕ〉, ∀ϕ ∈ D(R).

Multiplication by a smooth function

Let g ∈C∞(R). If u ∈C(R), then, as seen from (18.3),

〈gu,ϕ〉 = 〈u,gϕ〉, ∀ϕ ∈ D(R).

Definition 20.5. For l ∈ D ′(R), we set

〈gl,ϕ〉 = 〈l,gϕ〉, ∀ϕ ∈ D(R). (20.3)

Remark 20.6. The right-hand side of (20.3) makes sense, since

g(x)ϕ(x) ∈ D(R). (20.4)

Problem 20.7.

a. Verify that if g ∈C∞(R) and g ∈ D ′(R), then gl ∈ D ′(R).

b. For the Dirac δ -function, compute xδ .

c. Prove that

g(x)δ = g(0)δ . (20.5)

Shift of distributions

For u(x) ∈C(R) and a ∈ (R),

∫ ∞

−∞
u(x−a)ϕ(x)dx =

∫ ∞

−∞
u(y)ϕ(y + a)dy, ∀ϕ ∈ D(R).
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Definition 20.8. Let a ∈ R. For l ∈ D ′(R), we define its shift to the right by a,

denoted l(x−a) ∈ D ′(R), by

〈l(x−a),ϕ(x)〉 = 〈l(y),ϕ(y + a)〉.

Remark 20.9. The notations l(x) and l(x− a) do not make the sense as functions

(unless l ∈D ′(R) corresponds to a function defined pointwise). Yet, these notations

reflect the fact that l(x−a) is the shift of the distribution l by a ∈ R. Such notations

are common and useful in the analytical manipulations. For example,

〈δ (x−a),ϕ(x)〉 = 〈δ (y),ϕ(y + a)〉 = ϕ(a). (20.6)

Change of scale (dilation) in the argument of distributions

For u(x) ∈C(R) and k 6= 0,

∫ +∞

−∞
u(kx)ϕ(x)dx =

1

|k|

∫ +∞

−∞
u(y)ϕ

(y

k

)

dy.

Definition 20.10. For f (x) ∈ D(R) we set for k 6= 0

〈 f (kx),ϕ(x)〉 =
1

|k|
〈

f (y),ϕ
( y

k

)

〉

.

Problem 20.11. Prove that

δ (kx) =
1

|k|δ (x), k 6= 0.

In particular, prove that δ is even:

δ (−x) = δ (x).

Remark 20.12. From the definition (20.6) we get:

〈δ (y− x),ϕ(y)〉 = ϕ(x).

This means that δ (y− x) is the integral kernel of the unit operator Iϕ = ϕ . In the

linear algebra the matrix of the unit operator is the Kronecker δ -symbol, δi j. It is

due to this analogue that Dirac called functional (19.2) the δ -function.

Problem 20.13. Write the formula of a general change of variable x = g(y) in a

distribution, where g : R → R is a smooth diffeomorphism.
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Convergence of distributions

Definition 20.14. Distributions un(x) ∈ D ′(R) converge (weakly) to u(x) ∈ D ′(R)
as n → ∞ if for ∀ϕ(x) ∈C∞

0 (R) ≡ D(R) one has

〈un,ϕ〉 → 〈u,ϕ〉 as n → ∞. (20.7)

There is the following notation: un(x)
D

′(R)−−−→ u(x) as n → ∞.

Examples of convergent series of distributions:

a. If un ∈C(R) and un(x)−→−→ u(x) as n→ ∞, then un

D
′(R)

−−→u as n→∞. (Prove this!)

b. If un(x) ∈ L2(R) and un → u in L2(R) as n →∞, then un
D

′(R)−−−→ u. (Prove this!)

c. sinkx
D

′(R)−−−→ 0 as k → ∞. Indeed, integrating by parts, we obtain:

〈sinkx,ϕ(x)〉 =

∫

coskx

k
ϕ ′(x)dx −→ 0 as k → ∞.

d. Analogously, k2 sin kx
D

′(R)−−−→ 0 as k → ∞.

Remark 20.15. Sequences of functions sinkx and k2

ther in the space C(R), nor in the space L2(R), but they do converge in D ′(R).

e. “δ -like” sequences. Consider the Steklov step-functions

un(x) =

{

n, x ∈ [0, 1
n
];

0, x 6∈ [0, 1
n
], n ∈ N.

(20.8)

Obviously,
+∞
∫

−∞
un(x)dx = 1, ∀n = 1, 2, 3, . . ..

Problem 20.16. Prove that

un(x)
D

′(R)−−−→ δ (x) as n → ∞. (20.9)

Hint. Apply the mean value theorem to the integral
∫ +∞
−∞ un(x)ϕ(x)dx.

Analogously, the Gauss distributions converge weakly to a δ -function (prove

this!):

e−
x2

2σ

√
2πσ

D
′(R)−−−→ δ (x) as σ → 0+.

Differentiation of distributions

Let ϕ ∈ D(R), ϕ(x) ≡ 0 for |x| ≥ A. For u(x) ∈C1(R), integrating by parts, we get:

sinkx do not converge nei-
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∫ +∞

−∞
u′(x)ϕ(x)dx = uϕ

∣

∣

∣

A

−A
−
∫ A

−A
u(x)ϕ ′(x)dx = −

∫ +∞

−∞
u(x)ϕ ′(x)dx.

The boundary term is equal to zero since ϕ(A) = ϕ(−A) = 0.

Definition 20.17. For u ∈ D ′(R) we set

〈u′,ϕ〉 = −〈u,ϕ ′〉, ∀ϕ ∈ D(R). (20.10)

Problem 20.18. Prove that u′ ∈ D ′(R).

Thus,

∥

∥

∥

∥

Any distribution has a derivative which is also a distribution,
and hence derivatives of all orders!

Let us consider examples of differentiation of distributions.

a. (sinx)′ = cosx.

b. Let us find Θ ′ (see (19.3), (19.4)). According to the definition (20.10),

〈Θ ′,ϕ〉 = −〈Θ ,ϕ ′〉 =

∫ +∞

0
ϕ ′(x)dx = −ϕ(x)

∣

∣

∣

+∞

0
= ϕ(0) = 〈δ ,ϕ〉.

From here, we see that

Θ ′(x) = δ (x). (20.11)

Continuity of the differentiation in the sense of distributions

Lemma 20.1. The operator d
dx

: D ′(R) → D ′(R) is continuous.

Proof. Let un
D

′(R)−−−→ u. Then for ∀ϕ ∈ D(R),

〈u′n,ϕ〉 ≡ −〈un,ϕ
′〉 −−−→

n→∞
−〈u,ϕ ′〉 ≡ −〈u′,ϕ〉.

Consequently, u′n
D

′(R)−−−→ u′ according to the definition (20.7).

Problem 20.19. Prove that for for any u ∈ D ′(R),

u(x + ε)−u(x)

ε

D
′(R)−−−→ u′ as ε → 0.
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21 Differentiation of jumps and the product rule

Differentiation of jumps

Lemma 21.1. Let u(x) ∈C1 for x < a and for x > a, while at the point x = a it has

the jump discontinuity; that is, the one-sided limits u(a±0) := limx→a±0 a(x) exist

and are different (for simplicity, we assume that u′(a±0) also exist). See Fig. 21.1.

Fig. 21.1

Then the following formula is valid:

u′(x) = {u′(x)}+ h ·δ (x−a), h := u(a + 0)−u(a−0). (21.1)

The function u′(x) in the left-hand side of (21.1) is a generalized derivative of the

distribution u(x), while {u′(x)} in the right-hand side is a function continuous for

x 6= a, which is equal to the derivative of the function u(x) at the points where this

derivative exists. The distribution given for {u′(x)} by the formula (18.3) is called

the regular part of the generalized derivative u′(x).

Example 21.1. For u(x) = Θ(x), we have: a = 0,{Θ ′(x)} ≡ 0, since Θ ′(x) = 0 for

x 6= 0, h = Θ(0+)−Θ(0−) = 1. Therefore, in agreement with (20.11), the formula

(21.1) gives

Θ ′(x) = δ (x). (21.2)

Problem 21.2. Compute |x|′′.
Solution. According to the formula (21.1),

|x|′ = {|x|′}+ 0 ·δ (x) = sgnx ≡
{

1, x > 0;

−1, x < 0.

Again, using the same formula,

|x|′′ = (sgnx)′ = {sgn′x}+ 2δ (x) = 2δ (x). (21.3)
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Problem 21.3. Prove the formula (21.1).

Solution. For ϕ ∈C∞
0 (R),

〈u′,ϕ〉 = −〈u,ϕ ′〉 = −
a
∫

−∞

u(x)ϕ ′(x)dx−
+∞
∫

a

u(x)ϕ ′(x)dx

= −uϕ
∣

∣

∣

a−0

−∞
−uϕ

∣

∣

∣

∞

a+0
+

∫

x6=a

u′(x)ϕ(x)dx = u(a)(ϕ(a + 0)−ϕ(a−0))+ 〈{u′},ϕ〉,

which is equivalent to (21.1).

Product rule

For g ∈C∞(R) and u ∈ D ′(R), the product g(x)u(x) is well-defined (see the defini-

tion (20.3)). It turns out that the following common formula is valid:

(

gu
)′

= g′u + gu′. (21.4)

Problem 21.4. Prove the formula (21.4).

Problem 21.5. Using the formula (21.4), compute the following:

( d

dx
+ λ

)

(

Θ(x)e−λ x
)

. (21.5)

Solution. According to formulas (21.4) and (20.5),

d

dx
(e−λ xΘ(x)) = −λ e−λ xΘ(x)+ e−λ xΘ ′(x) = −λ e−λ xΘ(x)+ δ (x).

Adding λΘ(x)e−λ x to both sides, we see that (21.5) is equal to δ (x):

( d

dx
+ λ

)

(

Θ(x)e−λ x
)

= δ (x). (21.6)

Problem 21.6. For ω 6= 0, compute
( d2

dx2
+ ω2

)(

Θ(x)
sinωx

ω

)

= . . . .

Solution. According to formulae (21.4) and (20.5),

d

dx

(

Θ(x)
sin ωx

ω

)

= Θ(x)cosωx +Θ ′(x)
sinωx

ω
= Θ(x)cosωx.

Using the same formulae, we get



21 Differentiation of jumps and the product rule 117

d2

dx2

(

Θ(x)
sinωx

ω

)

=
d

dx
(Θ(x)cosωx)

= −ωΘ(x)sin ωx +Θ ′(x)cosωx = −ωΘ(x)sinωx + δ (x).

Substituting ω2Θ(x) sinωx
ω , we get δ (x):

( d2

dx2
+ ω2

)(

Θ(x)
sin ωx

ω

)

= δ (x). (21.7)

Problem 21.7. Prove (21.6) and (21.7) using formula (21.1) instead of (21.4).

Solution. Let us prove (21.6). We plot Θ(x)e−λ x (Fig. 21.2).

Fig. 21.2

According to the formula (21.1) (with a = 0 and h = 1),

d

dx
(Θ(x)e−λ x) = Θ(x)(−λ )e−λ x + δ (x).

Adding λΘ(x)e−λ x, we get (21.6).

Let us prove (21.7). The plot of Θ(x) sinωx
ω is on Fig. 21.3.

Fig. 21.3 Fig. 21.4

According to the formula (21.1) (with a = 0 and h = 0),

d

dx

(

Θ(x)
sin ωx

ω

)

= Θ(x)cosωx.

The graph of Θ(x)cosωx is plotted on Fig. 21.4.

We use the formula (21.1) (with a = 0 and h = 1):
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d2

dx2

(

Θ(x)
sinωx

ω

)

=
d

dx

(

Θ(x)cosωx
)

= −ωΘ(x)sinωx + δ (x).

Adding ω2Θ(x) sinωx
ω , we get (21.7).

Remark 21.8. We have the equality (21.6) since the function Θ(x)e−λ x for x 6= 0

satisfies the homogeneous equation

( d

dx
+ λ

)

(

Θ(x)e−λ x
)

= 0 for x 6= 0, (21.8)

while its jump is h = 1. Analogously, we have the equality (21.7) since the function

y(x) = Θ(x) sinωx
ω for x 6= 0 satisfies the homogeneous equation

( d2

dx2
+ ω2

)(

Θ(x)
sin ωx

ω

)

= 0 for x 6= 0. (21.9)

Besides, the function y(x) is continuous at x = 0, while its first derivative y′(x) =
Θ(x)cosωx has a jump equal to 1:

{

y(0−) = y(0+),

y′(0+) = y′(0−)+ 1.
(21.10)

Thus, the regular parts in (21.6) and (21.7) cancel out due to equations (21.8) and

(21.9), respectively.

22 Fundamental solutions of ordinary differential equations

Fundamental solutions of ordinary differential equations

Let us consider a linear differential operator of order m with constant coefficients:

A = A
( d

dx

)

=
m

∑
k=0

ak

dk

dxk
, am 6= 0. (22.1)

Using the chain rule, we get dk

dxk u(x− y) = u(k)(x− y), x ∈ R. Therefore,

A
( d

dx

)

u(x− y) = (Au)(x− y), x ∈ R. (22.2)

Definition 22.1. The fundamental solution of the operator A is a distribution E (x)∈
D

′(R) such that

A
( d

dx

)

E (x) = δ (x), x ∈ R, (22.3)
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where the derivatives are understood in the sense of distributions.

Remark 22.2. As it follows from (22.2), A
(

d
dx

)

E (x− y) = δ (x− y), x ∈ R.

Examples.

a. For A = d
dx

, the fundamental solution is E (x) = Θ(x). See (21.2).

b. For A = d2

dx2 , E (x) = 1
2
|x|. See (21.3).

c. For A = d
dx

+ λ , E (x) = Θ(x)e−λ x. See (21.6).

d. For A = d2

dx2 + ω2, E (x) = Θ(x) sinωx
ω . See (21.7).

Let us point out that for a fixed operator A there could be infinitely many funda-

mental solutions.

Question 22.3. Why does one need fundamental solutions?

Answer. To solve nonhomogeneous equations

A
( d

dx

)

u(x) = f (x), x ∈ R.

A particular solution could be found using the formula

u(x) =

+∞
∫

−∞

E (x− y) f (y)dy ≡ (E ∗ f )(x) =

+∞
∫

−∞

E (y) f (x− y)dy, (22.4)

if f (x) = 0 for |x| ≥ const and f (x) ∈ C(R). The operation ∗ in (22.4) is called a

convolution of E with f .

Let us prove this for the case f (x) ∈Cm(R): For the function (22.4) we get from

(22.3), for x ∈ R:

A
( d

dx

)

u(x) =

+∞
∫

−∞

E (y)A
( d

dx

)

f (x− y)dy =
〈

E (y),A
(

− d

dy

)

f (x− y)
〉

=
〈

A
( d

dy

)

E (y), f (x− y)
〉

=
〈

δ (y), f (x− y)
〉

= f (x).

Examples.

a. For the equation d
dx

u(x) = f (x), x∈ R, the formula (22.4) gives a particular

solution

u(x) =

+∞
∫

−∞

Θ(x− y) f (y)dy =

x
∫

−∞

f (y)dy, x ∈ R.

b. For the equation

d2

dx2
u(x) = f (x), x ∈ R
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the formula (22.4) gives a particular solution

u(x) =

+∞
∫

−∞

1

2
|x− y| f (y)dy, x ∈ R,

which is analogous to the Cauchy formula for repeated integration,

u(x) =

x
∫

a

(x− y) f (y)dy.

Construction of fundamental solutions for arbitrary operators

For an operator A of the form (22.1), let u0(x) be a solution to the Cauchy problem



























A
( d

dx

)

u0(x) = 0, x > 0;

u0(0) = 0, u′0(0) = 0, . . . , u
(m−2)
0 (0) = 0;

u
(m−1)
0 (0) =

1

am

.

(22.5)

Then the function

E =

{

u0(x), x > 0;

0, x < 0
(22.6)

is the fundamental solution of the operator A.

Problem 22.4. Prove (22.3) for the function (22.6) using the formula (21.1).

Problem 22.5. Solve the equation

3u′′(x)−u′(x) = δ (x), x ∈ R.

Solution. The characteristic equation 3λ 2 −λ = 0 gives λ1 = 0 and λ2 = 1
3
, hence

u0(x) = c1 + c2e
x
3 .

The initial conditions in (22.5) give c1 + c2 = 0,
c2
3

= 1
3
, hence c1 = −1, c2 = 1.

Answer. u(x) = Θ(x)(e
x
3 −1).

Problem 22.6. Find a particular solution to the equation

u′′(x)−3u′(x)+ 2u(x) = f (x), x ∈ R
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where f (x) ∈C(R), f (x) = 0 for |x| ≥ const.

Solution. Let us find the fundamental solution:

E
′′(x)−3E

′(x)+ 2E (x) = δ (x).

The roots of the characteristic equation λ 2 −2λ + 2 = 0 are λ1 = 1, λ2 = 2, hence

E (x) = Θ(x)(c1ex + c2e2x).

The initial conditions in (22.5) take the form c1 + c2 = 0, c1 +2c2 = 1; hence, c1 =
−1, c2 = 1.

Answer. According to the formula (22.4),

u(x) = E ∗ f (x) =

+∞
∫

−∞

Θ(x− y)(e2(x−y)− ex−y) f (y)dy =

x
∫

−∞

(e2(x−y)− ex−y) f (y)dy.

23 Green’s function on an interval

Definition of Green’s function

Let us find the solution to the following boundary value problem (where ω 6= 0):

{

u′′(x)−ω2u(x) = f (x), 0 < x < l;

u(0) = u(l) = 0.
(23.1)

Green’s function of this boundary value problem is a function G(x,y) on [0, l]× [0, l],
smooth for x 6= y and satisfying the equations







(

d2

dx2 −ω2
)

G(x,y) = δ (x− y), 0 < x < l;

G(0,y) = G(l,y) = 0.
(23.2)

Here y plays the role of a parameter, y ∈ (0, l). We can say that Green’s function

is the fundamental solution that satisfies the boundary conditions.

Having Green’s function, one can find the solution to the boundary value problem

(23.1) using the formula

u(x) =

l
∫

0

G(x,y) f (y)dy. (23.3)
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Indeed, the boundary conditions (23.1) follow from the boundary conditions (23.2):

At x = 0,

u(0) =

l
∫

0

G(0, l) f (y)dy = 0

and similarly at x = l. Equation (23.1) can be checked formally:

( d2

dx2
−ω2

)

u(x) =

l
∫

0

( d2

dx2
−ω2

)

G(x,y) f (y)dy =

l
∫

0

δ (x− y) f (y)dy = f (x).

Remark 23.1. The formula (23.3) means that Green’s function G(x,y) is the inte-

gral kernel of the operator G which is the inverse to the operator A = d2

dx2 −ω2 of

the boundary value problem (23.1):

A =
d2

dx2
−ω2 : C2

0 [0, l] −→C[0, l]. (23.4)

Here C2
0 [0, l] is the space of functions u(x) ∈ C2[0, l] which satisfy the boundary

conditions u(0) = u(l) = 0.

Remark 23.2. Operator (23.4) is symmetric, as was shown in (11.6). Hence, the

operator G = A−1 is also symmetric. It is here that the important symmetry property

of Green’s function is coming from:

G(x,y) = G(y,x), ∀x, y ∈ [0, l].

Construction of Green’s function

The differential equation (23.2) is homogeneous for x 6= y, since δ (x− y) = 0 for

x− y 6= 0. Therefore, analogously to (21.9),

( d2

dx2
−ω2

)

G(x,y) = 0 for x 6= y. (23.5)

Therefore,

G(x,y) =

{

Aeωx + Be−ωx, x < y;

Ceωx + De−ωx, x > y.
(23.6)

For determining the constants A, B, C, and D, we have two boundary conditions in

(23.2) and two jump conditions at x = y (see Fig. 23.1), which are similar to (21.10):

{

G(y−0,y) = G(y + 0,y),

G′
x(y + 0,y) = G′

x(y−0,y)+ 1.
(23.7)
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Fig. 23.1

These four equations determine A, B, C, and D uniquely.

Problem 23.3. Derive (23.2) from (23.5) and (23.7).

Hint. Apply the formula (21.1) (twice) for computing d2

dx2 G(x,y).

We point out that one could automatically take into account the boundary condi-

tions (23.2) looking for Green’s function in the form

G(x,y) =

{

Asinhωx, x < y;

Bsinhω(x− l), x > y.
(23.8)

Then (23.6) is satisfied. It remains to take into account the jump conditions (23.7):

Asinhωy = Bsinhω(y− l), Bω coshω(y− l) = Aω coshωy + 1.

Solving these two equations, we find

A =
sinhω(y− l)

ω sinhω l
, B =

sinhωy

ω sinhω l
. (23.9)

Finally, from (23.8) we find Green’s function for the problem (23.1):

G(x,y) =















sinhω(y− l) sinhωx

ω sinhω l
, x < y;

sinhωy sinhω(x− l)

ω sinhω l
, x > y.

(23.10)

Substituting into (23.3), we find the solution of the boundary value problem (23.1):

u(x) =

x
∫

0

sinhωy sinhω(x− l)

ω sinhω l
f (y)dy +

l
∫

x

sinhω(y− l) sinhωx

ω sinhω l
f (y)dy.

Note that Green’s function (23.10) is symmetric, in agreement with Remark 23.2.

Problem 23.4. Let ω 6= 0. Find the solution to the boundary value problem

{

u′′(x)+ ω2u(x) = f (x), 0 < x < l;

u(0) = u(l) = 0.
(23.11)

Solution. We find Green’s function G(x,y) for y ∈ [0, l]:
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{

( d2

dx2 + ω2)G(x,y) = δ (x− y), 0 < x < l;

G(0,y) = G(l,y) = 0.

Substituting in (23.5) the sign ”− ” by ”+ ” we get the following (Cf. (23.8)):

G(x,y) =

{

Asinωx, x < y;

Bsinω(x− l), x > y.

Substituting G into the jump conditions (23.7), we see that for sinω l 6= 0,

A =
sinω(y− l)

ω sinω l
, B =

sinωy

ω sinω l
.

From here, similarly to (23.10),

G(x,y) =















sinω(y− l) sinωx

ω sinω l
, x < y;

sinωy sinω(x− l)

ω sinω l
, x > y.

(23.12)

Finally, we write down the solution to the problem (23.11):

u(x) =
∫ x

0

sinωysinω(x− l)

ω sinω l
f (y)dy +

∫ l

x

sin ω(y− l)sinωx

ω sinω l
f (y)dy. (23.13)

Let us point out that Green’s function (23.12) is also symmetric.

Problem 23.5. Find the solution to

{

u′′(x)−ω2u(x) = f (x), 0 < x < l;

u(x) = u′(l) = 0.

Problem 23.6. Find the solution to

{

u′′(x)+ ω2u(x) = f (x), 0 < x < l;

u′(x) = u(l) = 0.
(23.14)

Problem 23.7. Construct Green’s functions and write the solutions for the following

boundary value problems:

a. u′′(x) = f (x), 0 < x < 1; u′(0) = u(0), u′(1) = −u(1).

b. u′′(x)+ u(x) = f (x), 0 < x < 1; u′(0) = u(0), u′(1) = 3u(1).

c. x2u′′(x)+ 2xu′(x) = f (x), 1 < x < 2; u′(1) = 0, u(2)+ 5u′(2) = 0.

d. (3 + x2)u′′(x)+ 2xu′(x) = f (x), 0 < x < 1; u′(0) = u(0), u(1) = 0.
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24 Solvability condition for the boundary value problems

Let us point out that the formula (23.13) for the solution of the Sturm – Liouville

problem (23.11) and Green’s function (23.12) do not make sense for ω l = kπ , k ∈N,

since then sinω l = 0.

Question 24.1. Could we foresee this without solving the problem (23.11)?

Answer. Yes. When ω l = kπ , problem (23.11) has a nonzero solution u0(x) for

f (x) ≡ 0, given by u0(x) = sin kπx
l

,











( d2

dx2
+ ω2

)

u0(x) = 0, 0 < x < l;

u0(0) = u0(l) = 0.

(24.1)

Therefore, the operator A ≡ d2

dx2 +ω2 : C2
0 [0, l] →C[0, l] is not invertible! It follows

that the (left) inverse G does not exist, hence its integral kernel G(x,y) is not defined.

We point out, though, that the absence of the inverse operator to A does not mean

that the problem (23.11) does not have solutions for a single f (x)!

Question 24.2. Under which conditions on f (x) does the problem (23.11) have

solution u(x), and how could this solution be found?

Normal solvability for linear algebraic systems

To answer this question, we need to take a detour into the linear algebra. The thing

is, the similar question arises when solving the system

Au = f , (24.2)

where A is a real n×n matrix and f ∈Rn. The system (24.2) has a (unique) solution

u = A−1 f if detA 6= 0. If instead detA = 0, then the system (24.2) may not have

solutions.

The necessary and sufficient condition on f so that the system (24.2) has a solu-

tion is the following orthogonality condition (see [CH53]):

f ⊥ KerA∗. (24.3)

Here KerA∗ is the subspace in Rn that consists of solutions to the adjoint homoge-

neous system:

h ∈ KerA∗ ⇐⇒ A∗h = 0.

Thus, (24.3) means that

〈 f ,h〉 = 0, ∀h ∈ KerA∗. (24.4)
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Let us prove the necessity of conditions (24.3), (24.4). If for a given vector f ∈Rn

there is a solution u to the system (24.2), then for each vector h ∈ KerA∗

〈 f ,h〉 = 〈Au,h〉 = 〈u,A∗h〉 = 〈u,0〉 = 0. (24.5)

Problem 24.3. Prove the sufficiency of the conditions (24.3), (24.4) for the well-

posedness of the system (24.2).

Due to the form of the condition (24.3) we say that the system (24.2) is normally

solvable.

Let us emphasize the particular case when A is self-adjoint, that is, A∗ = A. In

this case, the normal solvability condition (24.3) takes the form

f ⊥ KerA. (24.6)

Application to the Sturm – Liouville problem

The formula (11.4) shows that the operator A = d2

dx2 +ω2 corresponding to the Sturm

– Liouville problem is formally self-adjoint. Respectively, we suggest that the con-

dition (24.6) is necessary and sufficient for the solvability of the Sturm – Liouville

problem (23.11). We will prove this below (see Problems 24.4 and 24.5).

Let us note that KerA is the space of solutions to the problem (24.1):

KerA =

{

C sin
kπx

l
: C ∈ R

}

.

Thus, the orthogonality condition (24.6) takes the following form:

〈

f (x),sin
kπx

l

〉

=

l
∫

0

f (x)sin
kπx

l
dx = 0. (24.7)

Problem 24.4. Prove the necessity of the condition (24.7) for the solvability of the

problem (23.11) when ω = kπ
l

.

Solution. Analogously to (24.5) and in view of (11.4), we have:

〈

f (x),sin
kπx

l

〉

=
〈( d2

dx2
+ ω2

)

u(x),sin
kπx

l

〉

=
〈

u(x),
( d2

dx2
+ ω2

)

sin
kπx

l

〉

= 〈u(x),0〉 = 0.

Problem 24.5. Prove the sufficiency of the condition (24.7).
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Solution. Let us take ω → kπ
l

, but ω 6= kπ
l

. Then the problem (23.11) has the solution

(23.13). It turns out that, first of all, the function (23.13) under the condition (24.7)

has a limit as ω → kπ
l

, and, secondly, this limit is the solution to the problem (23.11).

Let us prove the first statement. By the formula (23.13),

u(x) =
1

ω sinω l

(

∫ x

0
sinωysinω(x− l) f (y)dy +

∫ l

x
sinω(y− l)sinωx f (y)dy

)

.

(24.8)

When ω = kπ
l

, the integrands in both integrals have the same form. We use the

identities






sinωy sinω(x− l) = sin ωy sin(ωx− kπ) = (−1)k
sinωy sinωx,

sinω(y− l) sinωx = sin(ωy− kπ) sinωx = (−1)k
sinωy sinωx.

Then the expression in the brackets in (24.8) takes the form

(−1)k
sinωx

∫ l

0
sinωy f (y)dy. (24.9)

But when ω = kπ
l

the integral (24.9) is equal to zero due to the orthogonality con-

dition (24.7)! Therefore, when ω → kπ
l

, both the numerator and the denominator of

expression (24.8) tend to 0, and we obtain the indeterminate form 0
0
.

Problem 24.6. Find the limit of (24.8) as ω → kπ
l

. (Apply the l’Hospital rule.)

Answer.

u(x) =
1

ω l sinkπ

{

∫ x

0

[

ycosωy sinω(x− l)+ sinωy(x− l)cosω(x− l)
]

f (y)dy

+
∫ l

x
[(y− l)cosω(y− l) sinωx + sinω(y− l)xcosωx] f (y)dy

}

. (24.10)

Problem 24.7. Prove that the function (24.10) is a solution to the problem (23.11)

(valid when ω = kπ
l

and the condition (24.7) is satisfied!).

Question 24.8. The solution to the problem (23.11) for ω = kπ
l

is not uniquely

defined, since one could add to it C sin kπx
l

with any value of C. What is a special

feature of the solution (24.10) among all other solutions?

Answer. The formula (24.10) gives a solution to the problem (23.11) which satisfies

the condition
〈

u(x),sin kπx
l

〉

= 0, that is, u ⊥ KerA.

Problem 24.9. Find the solvability condition and the solution for the problem

(23.14) with

ω =
(k + 1

2
)π

l
, k = 0, 1, 2, . . . .
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25 The Sobolev functional spaces

Let Ω be some region in Rn, and s = 0, 1, 2, . . ..

Definition 25.1.

a. The Sobolev space Hs(Ω) consists of all functions u(x) ∈ L2(Ω) which satisfy

∂ α
x u(x) ∈ L2(Ω), for |α| ≤ s,

where the derivatives are understood in the sense of distributions.

b. The Sobolev norm ‖u‖s in the space Hs(Ω) is defined by

‖u‖2
s ≡ ∑

|α |≤s

‖∂ α
x u(x)‖2

L2(Ω) = ∑
|α |≤s

∫

Ω

|∂ α
x u(x)|2 dx.

Remark 25.2. H0(Ω) ≡ L2(Ω), and, obviously, C∞
0 (Ω) ⊂ Hs(Ω).

Definition 25.3. Hs
0(Ω) is the closure of C∞

0 (Ω) in the space Hs(Ω).

Let us list the most important properties of the Sobolev spaces.

Property 25.4. Hs(Ω) is the complete Hilbert space. Later we will always assume

that Ω is a bounded region in Rn (with the compact closure Ω̄ ) and the smooth

boundary ∂Ω .

The two following properties are known as Sobolev embedding theorems:

Property 25.5. Hs(Ω) ⊂C(Ω̄) for s > n
2
.

Property 25.6. For s1 > s2, the inclusion Hs1(Ω) ⊂ Hs2(Ω) is compact.

Proofs of Properties 25.4, 25.5, and 25.6 are in [Pet91, SD64].

Let us consider examples of the Sobolev spaces. Let n = 1 and Ω = (0, l), where

l > 0. Then:

a. H0(0, l) = L2(0, l), and, decomposing u(x)∈ L2(0, l) into the Fourier series

u(x) = ∑∞
k=1 uk sin kπx

l
and applying the Bessel identity, we get:

‖u‖2
0 =

l

2

∞

∑
k=1

|uk|2. (25.1)

b. The space H1(0, l) consists of functions u(x) ∈ L2(0, l) which satisfy

‖u‖2
1 ≡

l
∫

0

|u(x)|2 dx +

l
∫

0

|u′(x)|2 dx < ∞. (25.2)

c. The space H1
0 (0, l) consists of functions u(x)∈ C[0, l] such that norm (25.2) is

finite, and, moreover, u(0) = u(l) = 0. (Prove this!)
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Problem 25.7. Prove that, analogously to (25.1), for u ∈ H1
0 (0, l)

‖u‖2
1 =

l

2

∞

∑
k=1

|uk|2 +
π2

2l

∞

∑
k=1

k2|uk|2. (25.3)

Hint. First prove (25.3) in the case u(x) ∈C∞
0 (0, l).

Corollary 25.8. For u ∈ H1
0 (0, l) the norm ‖u‖2

1 is equivalent to the norm

|||u|||21 ≡
∞

∑
k=1

k2|uk|2.

Problem 25.9. Prove that (25.3) is not valid for u(x) ∈ H1(0, l)\H1
0 (0, l).

Problem 25.10. Prove the Poincaré inequality: For u(x) ∈ H1
0 (0, l),

l
∫

0

|u(x)|2 dx ≤C

l
∫

0

|u′(x)|2 dx, (25.4)

where C > 0 does not depend on u.

Hint. Express the integrals in (25.4) via the Fourier coefficients uk with respect to

the basis
{

sin
kπx

l
: k ∈ N

}

.

Problem 25.11. Prove that there is no constant C > 0 such that the inequality (25.4)

holds for all u ∈ H1(0, l).

Problem 25.12. Prove that H1
0 (0, l)⊂C[0, l], using the finiteness of the norm (25.3)

and decomposition of u(x) into the Fourier series.

Problem 25.13. Prove the compactness of the embedding

H1
0 (0, l) ⊂ H0(0, l)

using (25.1) and (25.3).

Problem 25.14. Let Ω be a ball |x| < 1 in Rn, n ≥ 1. For which α ∈ R do the the

following inclusions take place:

a. |x|α ∈ H1(Ω)?

b. (sin |x|)α ∈ H1(Ω)?

c. (ln |x|)α ∈ H1(Ω)?



130 3 Distributions and Green’s functions

26 Well-posedness of the wave equation in the Sobolev spaces

Consider the problem (14.1) and the formula (14.6) for its solution. Assume that

ϕ(x) ∈ H1
0 (0, l) and ψ(x) ∈ H0(0, l) ≡ L2(0, l). (26.1)

Let us verify that the formula (14.6) with the initial data ϕ , ψ from (26.1) gives

the solution to the problem (14.1).

Problem 26.1. Prove that the function (14.6) satisfies equation (14.1) in the sense

of distributions from D ′((0, l)×R).

Problem 26.2. Prove that for ∀t ∈ R

u(x,t) ∈ H1
0 (0, l) and u̇(x,t) ∈ H0(0, l).

Problem 26.3. Prove that the mapping t 7→ u(x,t) is continuous from R into

H1
0 (0, l), while t 7→ u̇(x,t) is continuous from R to H0(0, l), and, moreover, that

u(·,t) H1
0−−−→ ϕ(·) and u̇(·,t) H0

−−−→ ψ(·) as t → 0.

Problem 26.4. Prove the uniqueness of a solution to the problem (14.1) in the class

of functions u(x,t) which possess properties formulated in Problems 26.1, 26.2, and

26.3.

Problem 26.5. For t ∈ R, denote by Wt the mapping

Wt : (ϕ ,ψ) 7−→ (u(·,t), u̇(·,t))

represented by the formula (14.6). According to the statement of Problem 26.2, the

mapping Wt maps the space E ≡ H1
0 (0, l)×H0(0, l) into itself.

Problem 26.6. Prove that for all t ∈ R the mapping Wt : E → E is continuous.

Problem 26.7. Prove that the mapping Wt defined above form a group:

WsWt = Ws+t , ∀s, t ∈ R.

Problem 26.8. Prove the energy conservation for the solution (14.6):

H ≡
∞
∫

−∞

(

|u̇(x,t)|2 + |u′(x,t)|2
)

dx = const, t ∈ R.

Remark 26.9. It is for justification of the solution (14.6) under assumptions (26.1)

that S.L. Sobolev introduced the functional spaces Hs. The Sobolev theory gives a

mathematically rigorous approach to the analysis of all finite energy solutions.
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27 Solutions to the wave equation in the sense of distributions

As we have seen in Section 2, a solution to the homogeneous d’Alembert equation

∂ 2u(x,t)

∂ t2
= a2 ∂ 2u(x,t)

∂x2
(27.1)

can be written in the form (2.3):

u(x,t) = f (x−at)+ g(x + at). (27.2)

If the functions f (x) and g(x) are C2 (have two continuous derivatives), then u(x,t)
from (27.2) also possesses the same property. If, instead, f (x) or g(x) are discon-

tinuous, then so is u(x,t). Let us show that in this case the function u(x,t) in (27.2)

is still a solution to equation (27.1) if one considers the derivatives in both sides of

(27.1) in the sense of distributions (see Remark 2.1). This means that

〈∂ 2u

∂ t2
,ϕ(x,t)

〉

= a2
〈∂ 2u

∂x2
,ϕ(x,t)

〉

, ∀ϕ ∈C∞
0 (R2). (27.3)

To prove the identity (27.3), let us remind that, according to the definition of the

derivatives of distributions,

〈∂ 2u

∂ t2
,ϕ
〉

= −
〈∂u

∂ t
,

∂ϕ

∂ t

〉

=
〈

u,
∂ 2ϕ

∂ t2

〉

,
〈∂ 2u

∂x2
,ϕ
〉

= −
〈∂u

∂x
,

∂ϕ

∂x

〉

=
〈

u,
∂ 2ϕ

∂x2

〉

.

Therefore, the identity (27.3) is equivalent to
〈

u, ∂ 2ϕ
∂ t2

〉

= a2
〈

u, ∂ 2ϕ
∂x2

〉

, or

〈

u,
∂ 2ϕ

∂ t2
−a2 ∂ 2ϕ

∂x2

〉

= 0. (27.4)

The identity (27.4) in the coordinates ξ = x− at, η = x + at takes the following

form (Cf. (2.7)):
∫ +∞

−∞

∫ +∞

−∞
u(ξ ,η)

∂ 2ϕ

∂ξ ∂η
dξ dη = 0. (27.5)

According to (27.2), u(ξ ,η)= f (ξ )+g(η). Substituting this expression into (27.5),

we get:

∫ +∞

−∞
f (ξ )

(

∫ +∞

−∞

∂ 2ϕ

∂ξ ∂η
dη
)

dξ +

∫ +∞

−∞
g(η)

(

∫ +∞

−∞

∂ 2ϕ

∂ξ ∂η
dξ
)

dη = 0.

But this equality is immediate due to the compact support of ϕ(ξ ,η):

∫ +∞

−∞

∂ 2ϕ

∂ξ ∂η
dη =

∂ϕ

∂ξ
(ξ ,η)

∣

∣

∣

η=+∞

η=−∞
= 0,

∫ +∞

−∞

∂ 2ϕ

∂ξ ∂η
dξ =

∂ϕ

∂η
(ξ ,η)

∣

∣

∣

ξ=+∞

ξ=−∞
= 0.

Thus, the equality (27.3) is proved.



Chapter 4

Fundamental solutions and Green’s functions in

higher dimensions

28 Fundamental solutions of the Laplace operator in Rn

Distributions of several variables x1, . . . , xn and operations with them are defined

similarly to the case n = 1 (see Sections 19, 20).

a. For example, the Dirac δ -function in Rn is defined by

〈δ(n),ϕ〉 ≡ ϕ(0), ∀ϕ ∈C∞
0 (Rn); (28.1)

b. For each distribution u(x) ∈ D ′(Rn),

〈 ∂u

∂x2

,ϕ
〉

≡−
〈

u,
∂ϕ

∂x2

〉

, ∀ϕ ∈C∞
0 (Rn). (28.2)

Denote the Laplace operator in Rn by

△n =
∂ 2

∂x2
1

+ . . .+
∂ 2

∂x2
n

. (28.3)

Usually one simply writes △ for △n.

In this section we will find the fundamental solution of the operator △3, that is,

the function E (x) ∈ D ′(R3) such that

△3E (x) = δ(3)(x), x ∈ R
3. (28.4)

First, we approximate δ(3)-function by the step-functions δε (x), analogous to the

Steklov step-functions (20.8):

δε(x) =











1

Ωε
, |x| < ε,

0, |x| > ε,

(28.5)
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where Ωε = 4
3
πε3 is the volume of a ball of radius ε > 0.

Problem 28.1. Prove that, analogously to (20.9),

δε (x)
D

′(R3)−−−→ δ(3)(x) as ε → 0+. (28.6)

We find the solution to equation (28.4) as the limit as ε → 0+ of solutions Eε to

the equation

△3Eε(x) = δε(x), x ∈ R
3. (28.7)

It is natural to look for the solution to this equation in the form Eε(x)≡ Eε(r), where

r = |x|. To accomplish this, we introduce the spherical coordinates in (28.7).

Problem 28.2. Prove that for any smooth function which depends on |x| only,

△3ϕ(r) =
∂ 2ϕ

∂ r2
+

2

r

∂ϕ

∂ r
=

1

r

∂ 2

∂ r2
(rϕ). (28.8)

Corollary 28.3. As it follows from equation (28.7),

1

r
(rEε )

′′
rr = δε(r) for r > 0, (28.9)

where

δε(r) ≡











1

Ωε
, 0 < r < ε;

0, r > ε.

Equation (28.9) is readily solved by integrating twice:

Eε(r) =















r2

6

1

Ωε
+

C1

r
+C2, 0 < r < ε;

C3

r
+C4, r > ε.

(28.10)

It remains to find constants C1, . . . , C4.

We take into account that, according to (28.9), Eε and E ′
ε are continuous at ε = r

(this follows from the formula (21.1)):















ε2

6

1

Ωε
+

C1

ε
+C2 =

C3

ε
+C4,

ε

3

1

Ωε
− C1

ε2
= −C3

ε2
.

(28.11)

We choose C1 so that Eε(0+) is finite, thus setting C1 = 0. Then the second equation

in (28.11) gives

C3 = − ε3

3Ωε
= − 1

4π
. (28.12)
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Since one can add an arbitrary constant to a solution of equation (28.7), we can take

C4 = 0. We then have

lim
r→∞

Eε(r) = 0.

Using the value of C3 from (28.11), we derive from the first equation in (28.11) that

C2 =
C3

ε
− ε2

6Ωε
= − 1

4πε
− 1

8πε
= − 3

8πε
. (28.13)

Thus, Eε(r) is given by (28.10) with C1 = C4 = 0 and with the values of C2 and C3

from (28.13), (28.12):

Eε(r) =















r2

8ε3
− 3

8ε
, 0 < r < ε;

− 1

4πr
, r > ε.

(28.14)

See Fig. 28.1.

− 1

4π |x|

Eε (|x|)

|x| = ε
x1, x2, x3

0

Fig. 28.1

Remark 28.4. The condition that Eε(0) is finite resulted in Eε(x) ≡ Eε(|x|) being a

smooth function in the ball |x| < ε:

Eε(x) =



















x2
1 + x2

2 + x2
3

8ε3
− 3

8ε
, |x| < ε;

− 1

4π |x| , |x| > ε.

(28.15)
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Thus, it satisfies equation (28.7) not only for x ∈ R3 \0 (as it follows from (28.9)),

but also in an open neighborhood of the point x = 0, and hence for all x ∈ R3.

Problem 28.5. Prove that, in the sense of convergence of distributions in D ′(R3),

Eε(x)
D

′(R3)−−−→ − 1

4π |x| as ε → 0 + . (28.16)

Corollary 28.6. As it follows from (28.16),

△
(

− 1

4π |x|
)

= δ(3)(x), x ∈ R
3. (28.17)

Indeed, from (28.16), due to the continuity of the operator △ in D ′(R3) (see

Lemma 20.1),

△Eε(x)
D

′(R3)−−−→ △
(

− 1

4π |x|
)

as ε → 0 + . (28.18)

But, on the other hand, from (28.6) and (28.7) we also see that

△Eε(x) = δε(x)
D

′(R3)−−−→ δ(3)(x) as ε → 0 + . (28.19)

The relation (28.17) follows from (28.18) and (28.19).

Thus, the fundamental solution for △3 is the Coulomb potential (also known as

the Newton potential),

E (x) = − 1

4π |x| . (28.20)

Problem 28.7. Prove that if C1 6= 0 in (28.10), then the function Eε(|x|) is not a

solution to equation (28.7).

Hint. Use (28.17).

Problem 28.8. Find the fundamental solutions for the operator △2.

Answer.

E (x) =
1

2π
ln |x|, x ∈ R

2. (28.21)

Remark 28.9. Both fundamental solutions (28.20) and (28.21) tend to negative

infinity as |x| → 0. On the other hand, (28.21) grows as |x| → ∞, while (28.20)

remains finite.

Problem 28.10. Find the fundamental solutions for the operators △n, n > 3.

Problem 28.11. Find the fundamental solutions for the operators △3 ± k2, k > 0.
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29 Potentials and their properties

Volume potentials

Once one knows the fundamental solutions to the Laplace equation (28.20) and

(28.21), one can also find solutions to the nonhomogeneous Laplace equation in Rn

for n = 2 and n = 3. For example, the solution to the equation

△2u(x) = f (x), x ∈ R
2 (29.1)

is the function

u(x) =
1

2π

∫

R2
ln |x− y| f (y)dy, (29.2)

which is well-defined for f (x) ∈C(R2), f (x) = 0 for |x| > const. In the same fash-

ion, a solution to the equation

△3u(x) = f (x), x ∈ R
3 (29.3)

is given by

u(x) = − 1

4π

∫

R3

1

|x− y| f (y)dy. (29.4)

Remark 29.1. Integrals of the form (29.4) are called the Coulomb (or Newton)

volume potentials. As the matter of fact, in electrostatics, the integral (29.4) up to a

scalar factor (which depends on the choice of units) and up to the sign represents the

potential of the electric field of the charge with the volume density f (x). Equation

(29.3) for the electric potential is called the Poisson equation. It takes the form

(29.1) in a particular case when the charge distribution f (x) does not depend on

the coordinate x3. For example, the potential of a uniformly charged straight infinite

wire satisfies (29.1).

It follows that the fundamental solution − 1
4π |x| from (28.20) is the potential of a

point charge +1 located at the point x = 0, since in this case the charge distribution

is given by the Dirac δ -function, f (x) = δ(3)(x).

Surface potentials: single layer potential

The single layer potential is a potential of the charge distributed over a surface:

u(x) = − 1

4π

∫

S

1

|x− y|σ(y)dS(y). (29.5)

Here S is a smooth compact surface in R3 and σ(y) is the surface charge density.
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Problem 29.2. Compute the potential of the uniform distribution of charge on a

sphere |x| = R, with the surface density σ .

Solution.

u(x) = − 1

4π

∫

|y|=R

σ dS

|x− y| = − 1

4π

π
∫

0

2π
∫

0

σR2 sinΘ dϕ dΘ
√

R2 + |x|2 −2R|x|cosΘ
. (29.6)

Above, Θ ,ϕ are the spherical coordinates of the point y, counted from the vector x,

RsinΘdϕ

RdΘ•y
dΘ

Θ

dϕϕ
ϕ = 0

0

• x

Fig. 29.1

with ϕ being the longitude and Θ the altitude. See Fig. 29.1. By the cosine theorem,

|x− y|2 = |x|2 + |y|2 −2|x| · |y| · cosΘ = |x|2 + R2 −2|x|RcosΘ .

The integral (29.6) is readily evaluated:

u(x) = −σR2

4π
2π

Θ=π
∫

Θ=0

−d(cosΘ)
√

R2 + |x|2 −2R|x|cosΘ

= −σR2

2

−1
∫

1

−dt
√

R2 + |x|2 −2R|x|t
=

σR2

2



2

√

R2 + |x|2 −2R|x|t
−2R|x|





t=−1

t=1

= − σR

2|x|
(

∣

∣R + |x|
∣

∣−
∣

∣R−|x|
∣

∣

)

=











−σR, |x| ≤ R;

−σR2

|x| , |x| > R.
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Answer.

u(x) =











−σR, |x| ≤ R;

−σR2

|x| , |x| > R.
(29.7)

See Fig. 29.2.

Fig. 29.2

Let us point out that for |x| > R the potential (29.7) coincides with the Coulomb

potential uQ of the point charge of magnitude Q = 4πR2σ equal to the charge of the

sphere:

uQ(x) = − 1

4π

Q

|x| = − 1

4π

4πR2σ

2|x| = − σR

2|x| .

Remark 29.3. The single layer potential (29.7) is continuous on the sphere |x|= R,

while its normal derivative is discontinuous, with

∂u

∂nnn

∣

∣

∣

∣

|x|=R+0

− ∂u

∂nnn

∣

∣

∣

∣

|x|=R−0

=
σR2

|x|2
∣

∣

∣

∣

|x|=R

= σ ,

where nnn is the outer normal to the sphere. Besides, one can easily see from (29.7)

that

△u(x) = 0 for |x| 6= R.

It turns out that these properties of the single layer potential are common for the

integrals of the form (29.5).

Properties of the single layer potential:

a. If σ(y) is a continuous function, then so is u(x) for all x ∈ R3, including x ∈ S;

b. If σ(y) has a continuous derivative, then

∂u

∂nnn
(x + 0nnn)− ∂u

∂nnn
(x−0nnn) = σ(x),

where nnn is the normal to S at the point x ∈ S;

c. For x 6∈ S, the potential is a harmonic function: △3u(x) = 0, x ∈ R3 \S.
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Surface potentials: double layer potential

The double layer potential is a potential of the surface distribution of dipoles.

First, let us compute the potential of a single dipole, which is a pair of point

charges − p
ε and + p

ε at an “infinitely small” distance ε from one another, in the

direction of a unit vector eee. The vector peee (see Fig. 29.3) is called the dipole moment.

x0 εeee x0 + εeee

− p
ε + p

ε
|eee| = 1

⊖ ⊕-

Fig. 29.3

The dipole potential is equal to

u(x) = − lim
ε→0

1

4π

( − p
ε

|x− x0|
+

p
ε

|x− (x0 + εeee)|
)

= − p

4π

d

dε

∣

∣

∣

∣

ε=0

1

|x− x0 − εeee| = − p

4π

1

|x− x0|2
cos( ̂x− x0,eee). (29.8)

The sign of expression (29.8) could be checked by considering the case when the

directions of the vectors x− x0 and eee coincide.

Let us find the double layer potential on the surface S in R3 (see Fig. 29.4) with

the dipole density p(y), with the dipole moments in the direction of the normal nnny

to the surface at every y ∈ S:

u(x) = − 1

4π

∫

S

p(y)cos( ̂x− y,nnny)dS(y)

|x− y|2
. (29.9)

Fig. 29.4
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Problem 29.4. Compute the potential of the double layer potential for a sphere with

the constant dipole density p.

Solution. We consider the single layer potential for the spheres of radii R + ε and R

with the charge density
pε
ε and − p

ε , respectively (Fig. 29.5).

Fig. 29.5

The density pε could be determined from the fact that the total charge of the

spheres is equal to zero:

pε

ε
·4π(R + ε)2− p

ε
4πR2 = 0,

since the sum of charges in each dipole equals zero! Hence,

pε = p
r2

(R + ε)2
.

Using the formula (29.7), we obtain the desired double layer potential:

u(x) ≈



















− pε

ε
(R + ε)+

p

ε
R, |x| < R;

− pε(R + ε)2

ε|x| +
pR2

ε|x| , |x| > R + ε.

Taking the limit ε → 0, we obtain the exact formula

u(x) =



















− d

dε

∣

∣

∣

∣

ε=0

(R + ε)pε , |x| < R;

− 1

|x|
d

dε

∣

∣

∣

∣

ε=0

pε(R + ε)2, |x| > R.

Answer.

u(x) =

{

p, |x| < R;

0, |x| > R.
(29.10)
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Properties of the double layer potential:

a.

points of the surface S:

u(x + 0 ·nnnx)−u(x−0 ·nnnx) = −p(x), x ∈ S (29.11)

(if the function u(x) is differentiable at the point x);

b. Beyond the surface S, the potential u(x) is a harmonic function:

△3u(x) = 0, for x ∈ R
3 \S. (29.12)

Example 29.5. The potential (29.10) agrees with (29.11) and (29.12).

Computation of volume potentials

Problem 29.6. Compute the potential of the uniform distribution of charges with

the density ρ in a spherical layer R1 < |x| < R2.

Solution. The potential we are looking for can be converted to a form

u(x) = − 1

4π

∫

R1<|y|<R2

ρ dy

|x− y| =

∫ R2

R1

ur(x)dr. (29.13)

Here ur(x) is the potential of the same form as in (29.6), obtained according to

(29.7):

ur(x) = − 1

4π

∫

|y|=r

ρ dS(y)

|x− y| =











−ρr, |x| < r;

−ρr2

|x| , |x| > r.

We consider the following three cases:

a. For |x| < R1, u(x) =
∫ R2

R1
(−ρr)dr = −ρ

(

R2
2

2
− R2

1
2

)

;

b. For R1 < |x| < R2,

u(x) =

∫ |x|

R1

(

− ρr2

|x|
)

dr +

∫ R2

|x|
(−ρr)dr =− ρ

|x|
( |x|3

3
− R3

1

3

)

−ρ
(R2

2

2
− |x|2

2

)

;

c. For |x| > R2,

u(x) =
∫ R2

R1

(

− ρr2

|x|
)

dr = − ρ

|x|
(R3

2

3
− R3

1

3

)

. (29.14)

The graph of the potential (29.13) is plotted on Fig. 29.6.

The double layer potential (29.9) is a function which is discontinuous at the
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Fig. 29.6

Remark 29.7. For |x| > R2, the potential (29.14) is equal to the Coulomb potential

of a point charge, of the value equal to the total charge of the spherical layer:

u(x) = − 1

4π

4
3
π(R3

2 −R3
1)

|x| .

30 Computing potentials via the Gauss theorem

Since △u = divgradu, the Poisson equation (29.3) can be written in the form

divgradu(x) = f (x).

Integrating this relation over an arbitrary domain Ω ⊂ R3 and using the Gauss the-

orem (sometimes called the divergence theorem), we obtain:

∫

∂Ω
gradu(x) ·nnnx dS(x) =

∫

Ω
divgradu(x)dx =

∫

Ω
f (x)dx. (30.1)

In electrostatics, ϕ(x) = −u(x) is the potential of the charge distribution f (x),
E(x) = −gradϕ(x) = gradu(x) is the intensity vector of the electric field at the

point x, and Q(Ω) =
∫

Ω f (x)dx is the total charge in the region Ω . Hence, (30.1)

could be written in the form
∫

∂Ω
E(x) ·nnnx dS(x) = Q(Ω). (30.2)

This identity is valid for any region Ω ⊂ R3.

Let us compute the potential (29.6) with the aid of the Gauss theorem. The charge

density in (29.6) is spherically symmetric, hence the potential u(x) also possesses

this property. Therefore, u(x) = u1(|x|), for some function u1. Thus, the field E(x) =
−gradu(x) is radial:

E(x) = − x

|x|u
′
1(|x|). (30.3)
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Applying to this field the identity (30.2), taking as Ω the ball Ω = {x∈R3 : |x|< r},

we get:

|E(x)| ·4π |x|2 =

{

0, |x| < R;

4πR2σ , |x| > R.
(30.4)

According to (30.3), |E(x)| = |u′1(|x|)|, and we get from (30.4):

u′1(r) ·4πr2 =

{

0, r < R;

4πR2σ , r > R,
hence u′1(r) =







0, r < R;

R2σ
r2 , r > R.

Integrating, we obtain:

u1(r) =

{

C1, r < R;

−R2σ
r

+C2, r > R.
(30.5)

Problem 30.1. Derive the formula (29.7) from (30.5).

Hint. Constants C1 and C2 are determined from the continuity condition at r = R

and from the equality lim|x|→∞ u(x) = 0, which easily follows from (29.6).

Problem 30.2. Use the Gauss theorem to compute the potential (29.13).

31 Method of reflections

The Dirichlet problem with zero boundary conditions is solved using the method

of odd reflections, while the Neumann problem is solved using the method of even

reflections. This is analogous to the method of odd and even extentions from Sec-

tions 5 and 6.

The Dirichlet problem in the half-space

Let us illustrate the method of reflections by solving the Dirichlet problem for the

Laplace equation in the half-space R3
+ = {x ∈ R3 : x3 > 0}:







△3u(x) = f (x1,x2,x3), x1, x2 ∈ R, x3 > 0;

u|x3=0 = 0, u(x) −−−→
|x|→∞

0.
(31.1)

Here f (x) is a given function in R3
+, f (x) ∈C(R̄3

+), f (x) ≡ 0 for |x| > const.

Let us find Green’s function G(x,y) for the problem (31.1). By definition (com-

pare with (23.2)), G is a solution to the problem
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{

△xG(x,y) = δ (x− y), x3 > 0;

G((x1,x2,0),y) = 0; G(x,y) → 0 as |x| → ∞;
(31.2)

G(x,y) is smooth for x 6= y. Here y is an arbitrary fixed point from R3
+.

Denote by ȳ = (y1,y2,−y3) the point symmetric to y with respect to the boundary

x3 = 0 of the half-space R3
+ (see Fig. 31.1).

⊕

⊖

x3

x1, x20x

y

ȳ

Fig. 31.1

Then the solution to the problem (31.2) is given by the function

G(x,y) = − 1

4π

1

|x− y| +
1

4π

1

|x− ȳ| . (31.3)

According to (28.17),△xG(x,y) = δ (x−y)−δ (x− ȳ). This yields the first equation

in (31.2), since

δ (x− ȳ) = 0 for x3 > 0.

Indeed, δ (x− ȳ) is a distribution supported at the point ȳ of the lower half-space!

Let us verify the boundary condition in (31.2): If x3 = 0, then the distances |x−y|
and |(x− ȳ)| are equal, as one sees on Fig. 31.1. Therefore from (31.3) one obtains

G(x,y) = 0. Finally, it is clear that G(x,y) −−−→
|x|→∞

0.

Solution to the boundary value problem (31.1) is given by the integral

u(x) =
∫

R3
+

G(x,y) f (y)dy = − 1

4π

∫

y3>0

( 1

|x− y| −
1

|x− ȳ|
)

f (y)dy.

Indeed, in the sense of distributions,

△xu(x) =

∫

R3
+

△xG(x,y) f (y)dy =

∫

R3
+

δ (x− y) f (y)dy = f (x).

The boundary condition is readily verified:

u
∣

∣

x3=0
=

∫

R3
+

G(x,y)
∣

∣

∣

x3=0
f (y)dy = 0, u(x) −−−→

|x|→∞
0.
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Electrostatic interpretation: Reflected charges

In electrostatics, the solution u(x) to the boundary value problem (31.1), up to a sign

and a factor that depends on the metric system, is the potential of the electrostatic

field generated by the charge density f (x) in the upper half-plane R3
+, located above

the conducting surface x3 = 0 (this could be, for example, the surface of the Earth

or the flat tin roof). Electrostatically, Green’s function G(x,y) from (31.2) can be

viewed as the potential of the point charge of magnitude +1, located at the point

y above the conducting plane x3 = 0. The field of the point charge redistributes

the charges in the plane x3 = 0: It attracts negative charges while repelling positive

charges, forcing them to go to infinity. See Fig. 31.2.

Fig. 31.2

It is known that after this redistribution took place, the field lines (the integral

curves) E(x) = −gradu(x) (see Fig. 31.2) are orthogonal to the conducting surface

(the Earth), or else the free charges in the conductor would start moving along the

surface. It follows that the surface of a conductor is the level surface of the potential

u(x) (equipotential surface in electrostatics). This property of the field lines allows

us to find the field E(x). To do this, let us recall the plot of the field curves of the

field of two point charges of the same magnitude and opposite sign (see Fig. 31.3).

Fig. 31.3

As it follows from the symmetry of the field curves with respect to the plane of

symmetry of the charges, the field curves are orthogonal to this plane. Therefore the

field above the plane of symmetry coincides with the field we are looking for. This

yields the formula (31.3).
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The Dirichlet problem in the quarter-space

We consider the quadrant of the space, R3
++ = {(x1,x2,x3) ∈R3 : x1 ≥ 0, x2 ≥ 0}.

Let f (x) ∈ C(R3
++) be a function such that f (x) ≡ 0 for |x| > C, with some C > 0.

Consider the Dirichlet problem in R3
++:

{

△u(x1,x2,x3) = f (x1,x2,x3), x1 > 0, x2 > 0, x3 ∈ R;

u|x1=0 = 0, u|x2=0 = 0; u(x) → 0 as |x| → ∞.
(31.4)

Green’s function G(x,y) for the problem (31.4), by definition, is a solution of the

boundary value problem

{

△xG(x,y) = δ (x− y), x1 > 0, x2 > 0, x3 ∈ R;

G|x1=0 = 0, G|x2=0 = 0; G(x,y) → 0 as |x| → ∞.
(31.5)

Here y ∈ R3
++ is a parameter.

⊖

⊖⊕

⊕•
x

0

ŷ

ȳ

ỹ

y

x2

x1

Fig. 31.4

Again, Green’s function for this problem can be found by the method of (odd)

reflections; see Fig. 31.4. Let ȳ = (y1,−y2,y3) be the reflection of the point y in

the plane x2 = 0, ỹ = (−y1,y2,y3) be the reflection in the plane x1 = 0, and ŷ =
(−y1,−y2,y3) be the composition of these two reflections. We put the charges of

magnitude +1 at the points y and ŷ, and the charges of magnitude −1 at the points

ȳ and ỹ. Then their electrostatic field is represented by the potential

G(x,y) = − 1

4π

1

|x− y| +
1

4π

1

|x− ȳ| +
1

4π

1

|x− ỹ| −
1

4π

1

|x− ŷ| . (31.6)

Let us verify that this function satisfies equation (31.5). First of all, for x ∈ R3
++,

△xG(x,y) = δ (x− y)− δ (x− ȳ)− δ (x− ỹ)+ δ (x− ŷ) = δ (x− y),

since δ (x− ȳ), δ (x− ỹ), and δ (x− ŷ) are equal to zero for x ∈ R3
++! Therefore, the

first equation in (31.5) is satisfied.
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Further, let us verify the boundary conditions from (31.5):

a. When x1

cancel out, and so do the second one with the fourth one.

b. Similarly, when x2

cancel out, and so do the third and the fourth ones.

c.

(31.5) are also satisfied.

Therefore, G(x,y) from (31.6) is Green’s function of the Dirichlet problem

(31.4). Hence the solution of the latter could be written in the form

u(x)=
∫

R3
++

G(x,y) f (y)dy =− 1

4π

∫

R3
++

( 1

|x− y| −
1

|x− ȳ| −
1

|x− ỹ|+
1

|x− ŷ|
)

f (y)dy.

Problem 31.1. Find Green’s function and write the formula for the solution to the

boundary value problem in a quadrant of the space (under the same conditions on

f (x) as in (31.4)):







△u(x) = f (x), x1 > 0, x2 > 0, −∞ < x3 < ∞;

u|x1=0 = 0, ∂u
∂x2

∣

∣

x2=0
= 0; u(x) → 0 as |x| → ∞.

(31.7)

Hint. Apply the method of even reflections in x1 and of odd reflections in x2.

Problem 31.2. Find Green’s function and write the formula for the solution to the

Dirichlet problem in the following domains:

a. A wedge with the dihedral angle α = π
n

, n = 3, 4, 5, . . ..
b. An octant of the three-dimensional space, x1 > 0, x2 > 0, x3 > 0.

c. The layer 0 < x3 < a; x1, x2 ∈ R (investigate the convergence of the series).

d. A “half” of the layer: 0 < x3 < a, −∞ < x1 < ∞, x2 > 0.

e. A “quarter” of the layer: 0 < x3 < a, x1 > 0, x2 > 0.

Remark 31.3. In the previous problem, instead of the Dirichlet condition u
∣

∣

Γ
= 0,

one can consider the Neumann condition ∂u
∂nnn

∣

∣

Γ
= 0 at certain parts of the boundary,

as in the problem (31.7). For solutions of such problems one has to use the method

of even reflections at these parts of the boundary.

Problem 31.4. Find Green’s function of the Dirichlet problem in the following

domains:

a. The ball |x|< R. Hint. Look for Green’s function in the form of the sum of

the fundamental solution − 1
4π

1
|x−y|

q
4π

1
|x−y∗| of certain magnitude q> 0, located at the point y∗ = r 2

|y|2 y which is the

sphere inversion of the point y.

= 0, the point x is equidistant from y and ỹ, and also from ȳ and ŷ (see

Fig. 31.4). Therefore in the right-hand side of (31.6) the first and the third term

= 0, the point x is equidistant from y and ȳ, and also from ỹ

and ŷ. Therefore, in the right-hand side of (31.6) the first and the second terms

At last, it is clear that G(x,y)→ 0 as |x|→∞. Thus, the boundary conditions in

and the potential of the “reflected” charge
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b. The upper half of the ball |x|< R, x3 >0. Hint. Use the method of odd reflections

with respect to the plane x3 to reduce the problem to the ball.

c. A quarter of the ball |x| < R, x2 > 0, x3 > 0.

32 Green’s functions in 2D via conformal mappings

The Dirichlet problem in half-plane

Let us consider the Dirichlet problem for the Laplace equation in the half-plane

R2
+ = {x ∈ R2 : x2 > 0}:

{

△u(x1,x2) = f (x1,x2), x1 ∈ R, x2 > 0;

u|x2=0 = 0, u(x) → 0 as |x| → ∞,
(32.1)

where f (x) ∈ C
(

R2
+

)

, f (x) = 0 for |x| > const. Green’s function G(x,y) of this

problem satisfies the equation

{△xG(x,y) = δ (x− y), x1 ∈ R, x2 > 0;

G
∣

∣

x2=0
= 0, G(x,y) → 0 as |x| → ∞,

where y ∈ R2
+. Similarly to (31.3), this function is found by the method of odd

reflections applied to the fundamental solution (28.21) of the Laplace operator in

the plane:

G(x,y) =
1

2π

(

ln |x− y|− ln|x− ȳ|
)

, (32.2)

where ȳ = (y1,−y2). See Fig. 32.1.

⊕

⊖

x2

x10

y

ȳ

Fig. 32.1

Thus, the solution to the problem (32.1) has the form

u(x) =

∫

R2
+

G(x,y) f (y)dy =
1

2π

∫

R2
+

ln
|x− y|
|x− ȳ| f (y)dy.
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The Dirichlet problem for simply connected domains

Unlike in the case of three-dimensional boundary value problems, Green’s functions

for many simply connected two-dimensional domains could be found with the aid

of conformal maps. This is because Green’s function G(x,y) is harmonic in x for

x 6= y, while the conformal mappings send harmonic functions into harmonic ones.

Let us illustrate the relation of Green’s functions to the conformal mappings on

a particular example of the boundary value problem (32.1). For this, we rewrite the

formula (32.2) in the following form:

G(x,y) =
1

2π
ln

|x− y|
|x− ȳ| =

1

2π
ln

∣

∣

∣

∣

x− y

x− ȳ

∣

∣

∣

∣

. (32.3)

Remark 32.1. The last equality in (32.3) holds under the condition that
x−y
x−ȳ

is

understood in the sense of the division of the complex numbers:

x− y

x− ȳ
=

x1 + ix2 − y1 − iy2

x1 + ix2 − y1 + iy2

.

Here ȳ = y1 − iy2 coincides with the complex conjugate of y.

Let us point out that for each fixed y ∈ R2
+, the map

x 7→ z = Φy(x) ≡
x− y

x− ȳ
(32.4)

maps the half-plane x2 > 0 conformally into the unit disc |z|< 1 (see Fig. 32.2), and

that under the mapping (32.4) the point y is sent to zero: y 7→ Φy(y) = 0.

Fig. 32.2

More generally, let us consider the Dirichlet problem in a flat simply connected

region Ω ⊂ R2 with a piecewise-smooth boundary ∂Ω , which contains at least two

points:
{

△u(x) = f (x), x ∈ Ω ;

u|x∈∂Ω = 0,
(32.5)
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where f (x) ∈ C(Ω̄), f (x) = 0 for |x| > C(y). Additionally, if Ω is unbounded, it is

required that u(x) → 0 as |x| → ∞, x ∈ Ω .

Green’s function of this problem by definition satisfies the conditions

{△xG(x,y) = δ (x− y), x ∈ Ω ;

G
∣

∣

x∈∂Ω
= 0.

(32.6)

Additionally, if Ω is unbounded, it is required that G(x,y) → 0 as |x| → ∞, x ∈ Ω .

Here y ∈ Ω is a parameter. It is known from the theory of functions of a complex

variable (the Riemann theorem; see [Ahl66]) that for any simply connected region

Ω ⊂ R2 with the boundary ∂Ω which contains at least two points there exists a

conformal mapping of the region Ω onto the unit disc. Moreover, any a priori fixed

point y is mapped to zero. Let Φy(x) be such a map (see Fig. 32.3).

Fig. 32.3

It turns out [CH53] that Green’s function (32.6) has the form (32.3):

G(x,y) =
1

2π
ln |Φy(x)|. (32.7)

Then we get the solution to the Dirichlet problem (32.5):

u(x) =
1

2π

∫

Ω
ln |Φy(x)| f (y)dy. (32.8)

Problem 32.2. Check that the function (32.7) is a solution to the problem (32.6).

Hints.

a. ln |Φy(x)| = RelnΦy(x) is a harmonic function if Φy(x) 6= 0, that is, for x 6= y.

b. ln |Φy(x)| at x = y allows the decomposition

ln |Φy(x)| = ln |x− y|+ O(1), x → y. (32.9)

c.

harmonic function at x = y.

d. The boundary condition G
∣

∣

∂Ω
= 0 is obviously satisfied, since

∣

∣Φy(x)|x∈∂Ω

∣

∣=1.

Use the theorem about a removable singularity to prove that O(1) in (32.9) is a
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Problem 32.3. Let us find Green’s function and the formula for the solution of the

Dirichlet problem in the strip Ω (for f (x) ∈C(Ω̄), f (x) = 0 for |x| > const):

{

△u(x) = f (x), 0 < x2 < a, −∞ < x1 < ∞;

u|x2=0,a = 0, u(x) → 0 when |x| → ∞.
(32.10)

Solution. Let us map conformally the strip Ω into a disc (see Fig. 32.4). By the

Fig. 32.4

composition of the maps v = e
πx
a , z = e

πx
a −e

πy
a

e
πx
a −e

π ȳ
a

, the point y is mapped into the origin:

y 7−→ w = e
πy
a 7−→ 0.

According to (32.7), G(x,y) =
1

2π
ln

∣

∣

∣

∣

e
πx
a − e

πy
a

e
πx
a − e

π ȳ
a

∣

∣

∣

∣

. Now the solution of the problem

(32.10) is given by (32.8):

u(x) =
1

2π

∫ +∞

−∞

∫ a

0
ln

∣

∣

∣

∣

e
πx
a − e

πy
a

e
πx
a − e

π ȳ
a

∣

∣

∣

∣

f (y)dy2 dy1.

Let us mention that e
πx
a = e

π
a (x1+ix2) = e

πx1
a (cos π

a
x2 + isin π

a
x2).

Problem 32.4. Find Green’s function and write the formula for the solution of the

Dirichlet problem in the following regions:

a. The angle of magnitude α (see Fig. 32.5).

b. The disc |x| < 1 (one gets the classical Poisson formula).

c. A half of the disc: |x|<1, x2 >0 (use the method of odd reflections with respect

to x2 to reduce to the previous problem).

d. Sector of a disc: |x| < 1, 0 < argx < α (see Fig. 32.6).

Remark 32.5. It turns out that, knowing Green’s function of the Dirichlet problem

in the region Ω , one can solve the homogeneous equations △u(x) = 0 in Ω with
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Fig. 32.5 Fig. 32.6

nonhomogeneous boundary conditions u|∂Ω = f (x): If ∂Ω is of class C2 and f ∈
C2(∂Ω), then

u(x) =
∫

∂Ω

∂G(x,y)

∂nnny

f (y)dy,

where ∂
∂nnny

is the differentiation in the direction of the external normal to the bound-

ary at the point y ∈ ∂Ω . This holds for the region Ω of any dimension: Ω ⊂ R2,

Ω ⊂ R3, et cetera.

Problem 32.6. Find the solution for the Dirichlet problem in the half-plane:

△u(x1,x2) = 0 for x2 > 0, u(x1,0) = f (x1), u(x) −−−→
|x|→∞

0,

where f (x1) ∈C(R), f (x1) = 0 for |x1| > const.

Solution. Green’s function for the half-plane is given by (32.2):

G(x,y) =
1

2π
ln

√

(x1 − y1)
2 +(x2 − y2)

2 − 1

2π
ln

√

(x1 − y1)
2 +(x2 + y2)

2

=
1

4π
ln
(

(x1 − y1)
2 +(x2 − y2)

2
)

− 1

4π
ln
(

(x1 − y1)
2 +(x2 + y2)

2
)

.

Taking into account that the external normal nnny to the half-plane x2 > 0 is repre-

sented by the vector (0,−1), we get:

∂G(x,y)

∂nnny

∣

∣

∣

y2=0
= − ∂

∂y2

G(x,y)
∣

∣

∣

y2=0

=
1

4π

2x2

(x1 − y1)
2 + x2

2

+
1

4π

2x2

(x1 − y1)
2 + x2

2

=
1

π

x2

(x1 − y1)
2 + x2

2

.

Answer. u(x1,x2) =
x2

π

∫ +∞

−∞

f (y1)dy1

(x1 − y1)
2 + x2

2

.



Appendix A

Classification of the second-order equations

Differential equations with constant coefficients

We consider the following equation in Rn:

n

∑
i, j=1

ai j
∂ 2u

∂xi∂x j

+
n

∑
i

ai
∂u

∂xi

+ a0u(x) = 0, x ∈ R
n; ai j = a ji, (A.1)

where ai j, ai, and a0 are constants. Let us bring it to the canonical form, that is, to

the form so that ai j = 0 for i 6= j. To accomplish this, consider the linear change of

variables:






y1 = c11x1 + . . .+ c1nxn,
. . .
yn = cn1x1 + . . .+ cnnxn,

(A.2)

or, in the vector form,

y = Cx. (A.3)

In the coordinates yk we have

∂u

∂xi

=
n

∑
k=1

∂u

∂yk

∂yk

∂xi

=
n

∑
k=1

Cki

∂u

∂yk

,
∂ 2u

∂xi∂x j

=
n

∑
k,l=1

CkiCl j

∂ 2u

∂yk∂yl

.

Substituting these identities into (A.1), we get

∑
i, j,k,l

ai jCkiCl j

∂ 2u

∂yk∂yl

+ . . . = 0, (A.4)

where dots denote terms which contain lower order derivatives of the function u. We

can write (A.4) in the form

n

∑
k,l=1

bkl

∂ 2u

∂yk∂yl

+ . . . = 0, (A.5)

155
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where

bkl = ∑
i, j

ai, jCklCl j .

In the matrix form, b = CaC∗, where a is the matrix (ai j)i, j=1, ...,n and C∗ is the

transpose of C. This formula resembles the transformation law for the matrix of the

quadratic form

(aξ ,ξ ) =
n

∑
i, j=1

ai jξiξ j. (A.6)

Namely, if one makes the change of variables

ξ = dη , d = (di j)i, j=1, ...,n, (A.7)

then, taking d∗ = C, one gets

(aξ ,ξ ) = (adη ,dη) = (d∗adη ,η) = (CaC∗η ,η) = (bη ,η).

Therefore, if the change of variables (A.7) brings the quadratic form to the diagonal

form (aξ ,ξ ) = ∑n
k=1 bkη2

k (we know from linear algebra that such a change of vari-

ables exists), then the change of variables (A.3) with the matrix C = d∗ brings the

differential equation (A.1) to the form (A.5) with the same diagonal matrix b:

n

∑
k=1

bk

∂ 2u

∂y2
k

+ . . . = 0. (A.8)

After this is accomplished, one of the following possibilities takes place:

a. 6 k in (A.8) can

be made equal to ±1. Then there are three possibilities:

(i) All the coefficients bk are of the same sign (all are equal to +1 or instead all

are equal to −1). Then equation (A.8) has the form ∂ 2u
∂y1

+ . . .+ ∂ 2u
∂y2

n
+ . . . = 0

and is called elliptic. An example is the Laplace equation (8.11).

(ii) All the coefficients bk but one are of the same sign. Then equation (A.8) takes

the form
∂ 2u

∂y2
k

+ . . .+
∂ 2u

∂y2
n−1

− ∂ 2u

∂y2
n

+ . . . = 0 (A.9)

and is called hyperbolic. An example is the wave equation (7.1).

(iii) Some of the coefficients bk (more than one) are positive, while others (also

more than one) are negative. Then equation (A.8) has the form

∂ 2u

∂y2
1

+
∂ 2u

∂y2
2

. . .− ∂ 2u

∂y2
n−1

− ∂ 2u

∂y2
n

+ . . . = 0

and is called ultrahyperbolic. This is only possible if n ≥ 4.

det a = 0. Then equation (A.1) is called nondegenerate, and all b



A Classification of the second-order equations 157

b.

tion (8.8).

Problem A.1. Find the canonical form and the corresponding change of variables

(A.2) for the equation

∂ 2u

∂x2
1

+ 4
∂ u

∂x1∂x2

−3
∂ 2u

∂x2
3

= 0. (A.10)

Solution. We write down the quadratic form (A.6) and bring it to the diagonal form:

ξ 2 + 4ξ1ξ2 −3ξ 2
3 = (ξ1 + 2ξ2)

2 −4ξ 2
2 −3ξ 2

3 = η2
1 −η2

2 −3η2
3 . (A.11)

Therefore, equation (A.10) is of hyperbolic type, as in (A.9). The change of vari-

ables (A.7), or, rather, the inverse to it, has the form







η1 = ξ1 + 2ξ2,
η2 = 2ξ2,
η3 = ξ3.

(A.12)

To bring these relations to the form (A.7), one needs to solve equations (A.12); this

yields






ξ2 = η2
2

,
ξ3 = η3,
ξ1 = η1 −2ξ2 = η1 −η2.

From here we get the matrix d:

d =





1 −1 0

0 1
2

0

0 0 1





and, consequently,

C = d∗ =





1 0 0

−1 1
2

0

0 0 1





Therefore, substitution (A.2) has the form







y1 = x1,
y2 = −x1 + 1

2
x2,

y3 = x3.

According to (A.11), the canonical form of equation (A.10) is as follows:

∂ 2u

∂y2
1

− ∂ 2u

∂y2
2

−3
∂ 2u

∂y2
3

= 0.

det a = 0. Then equation (A.1) is called degenerate. An example is the heat equa-
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Problem A.2. Find the canonical form and the change of variables (A.2) for the

following equations:

a.
∂ 2u

∂x1∂x2

+
∂ 2u

∂x2∂x3

+
∂ 2u

∂x3∂x1

= 0;

b.
∂ 2u

∂x2
1

− ∂ 2u

∂x1∂x2

+ 6
∂ 2u

∂x1∂x3

= 0.

Equations with variable coefficients

Now we assume that the coefficients in (A.1) are variable:

n

∑
i, j=1

ai j(x)
∂ 2u(x)

∂xi∂x j

+ . . . = 0. (A.13)

Then for each fixed x0 ∈ Rn one can consider the equation with the constant coeffi-

cients, obtained from the variable coefficients “frozen” at the point x0:

n

∑
i, j=1

ai j(x0)
∂ 2u(x)

∂xi∂x j

+ . . . = 0.

The type of this equation is called the type of equation (A.13) at the point x0. The

example is the Euler-Tricomi equation

∂ 2u

∂x2
+ x

∂ 2u

∂y2
= 0,

which is elliptic in the half-plane x > 0, hyperbolic in the half-plane x < 0, and

degenerate on the line x = 0.
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boundary conditions, 3

canonical form, 10, 155

Cauchy formula for repeated integration, 120

characteristic, see characteristic curve

characteristic:

cone, 50, 56

conormal, 48

curve, 14–16, 19, 23, 46–49

principal, 30

equation, 20, 23, 24

hyperplane, 48, 49, 56–60

hypersurface, 48

line, see characteristic curve

polynomial, 25

Cherenkov radiation, 63

conformal map, 150

convolution, 119

d’Alembert formula, 11

d’Alembert operator (d’Alembertian), 19

Dirac δ -function, 109

Dirichlet boundary conditions, 73

distribution, 109–118

domain of dependence, 17, 49

domain of influence, 18

double layer potential, 140

eigenfunctions and eigenvalues, 68

energy conservation, 130

equation:

d’Alembert, 1

degenerate, 29, 157

elliptic, 28, 156

Euler-Tricomi, 158

heat, 58, 65

hyperbolic, 1, 156

Laplace, 60, 156

nondegenerate, 156

ultrahyperbolic, 156

wave, 1, 46, 156

finite energy solutions, 130

Fourier method, 67, 78

fundamental solution, 118–121

Gauss theorem, 143

Green’s function, 121–124

Huygens principle, 51–55

incident wave, 32

initial conditions, 7

Kirchhoff formula, 51

light cone, 50

method of reflections, 144

Neumann boundary conditions, 98

normal solvability, 126

Poincaré inequality, 129

Poisson formula, 55

reflected wave, 32

Schwartz, L., 105

shock wave, 16

single layer potential, 137

Sobolev embedding theorems, 128

Sobolev space, 128–130

Sobolev, S.L., 105, 130

Sturm – Liouville problem, 68–77
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