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New Trends in Distribution Logistics 
Editorial 

The globalization of markets has increased the interest in logistics, concerning all 
problems controlling the flows of material and information through complex 
networks the nodes of which represent suppliers of raw materials, manufacturers, 
warehouses, retailers and customers. The complexity of a logistic network is related 
to the variety of problems which have to be managed in order to transfer goods to 
the right place at the right time at the right cost. The network design, production 
planning and control, internal and external transportation, and fmally, inventory 
management are all critical and interrelated problems. The large number of actors 
and of different objectives in the decision processes make it extremely difficult to 
optimize the network. The lack of information - in the past a justification for 
avoiding complex optimization models - is no longer a problem. Contrarily, the huge 
amount of information now available is sometimes of no help with respect to the 
goal of taking good decisions. Hence, the problem is how to use the available 
information. Meanwhile, some concepts of logistics planning have become more and 
more widely accepted. The fundamental concept of a global view of the logistics 
system is one of these. The concept of global cost and the need for coordination in 
the supply chain are well understood and generally shared ideas. However, in front 
of some clear ideas, there is still a largely recognized lack of tools for the decision 
support in logistics. The constantly increasing level of competition among 
companies has created an extensive need for improvement of the logistics, in terms 
of cost reduction and/or of service level increase. 

In this book we focus our attention on a part of the logistic network, the distribution 
network. This network represents the most complex and critical part of the logistic 
system, due to the high percentage of the total cost absorbed by its operation and to 
the essential impact of its management on service levels and on customer 
satisfaction. 

What makes scientific work in distribution logistics different from the union of 
scientific work in facility location planning, in transportation, vehicle routing, 
inventory management, ... ? We believe that the difference is the effort to capture 
the complexity of real decisions in logistics which involves a multi-layer system 
with a multi-criteria objective function, typically the sum of various cost 
components to be minimized. The scientific approach to logistic issues, combined 
with a high level of attention towards practice, has motivated a series of 
"International workshops in distribution logistics (lWDL)". This book includes 
some reviewed papers which are the outcome of the discussion of presentations 
during IWDL 4, at Brescia (Italy) in May 1998. 
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We have organized the papers in four Chapters, according to the basic types of 
logistic problems: design of distribution networks and location problems; tactical 
and operational planning of transportation; operational issues internal to the 
production center or the warehouse; inventory problems. The approaches adopted in 
the contributions vary in dependence of the problem treated and include simulation, 
mathematical programming models, and stochastic models. In most of the papers, 
the emphasis lies on the description of managerial problems and not on the 
techniques used. Two survey papers provide open problems and references to the 
researchers interested in starting research activities in this area. 

In Chapter 1, the paper by Daganzo and Erera addresses some issues which arise in 
the planning and design of logistics systems when the environment in which they are 
to be operated cannot be modeled accurately with certainty. The paper aims at both 
describing the difficulties created by uncertainty and at proposing approximate 
methods to analyse the effects of uncertainty. Two papers are dedicated to reverse 
logistics. Environmental interest has attracted much attention towards a problem 
which, basically, is not new, the problem of the industrial recovery of used materials 
and products. The review paper by Bloemhof-Ruwaard, Fleischmann and van Nunen 
addresses major issues and concepts in reverse logistics, paying special attention to 
the logistics network design. The paper considers reverse logistics from a 
distribution management perspective, pointing out both the specific characteristics 
of reverse logistics problems and parallels to traditional logistics. A specific problem 
in reverse logistics is addressed in the paper by Krikke, Kooi and Schuur, where a 
mixed integer linear programming model is proposed for the design of the physical 
network structure of a multi-echelon reverse logistic system. An application of the 
model to a case in the automotive industry is also presented. The contribution by 
Feige, Klaus and Werr is strongly related to German experience in the development 
of a Decision Support System for the design of cooperative networks and describes 
the main elements of the system and the type of problems which can be addressed 
by the system. Engeler, Klose and Stahly describe a depot location-allocation 
problem which emerged at a large food producer in Switzerland. They show that 
savings in distribution costs could be realized by closing some depots and 
reallocating customer zones. 

Chapter 2 is concerned with the tactical and operational issues of transportation. The 
network structure is given and the problem is how to organize the flows in the 
network with possibly both the aim of evaluating and of operating the network. The 
transportation costs, in the logistic perspective, represent only one of the cost factors 
in the decisions, due to the relation between transportation decisions and other types 
of decisions. Romero Morales, van Nunen and Romeijn propose a model for the 
minimization of transportation, production and handling costs in a logistic network, 
taking into account a dynamic environment. The other papers in this chapter focus 
on the relation between transportation and inventory issues. The survey paper by 
Bertazzi and Speranza reviews and discusses the literature on the joint consideration 
of transportation and inventory issues, organizing the contributions on the basis of 
main characteristics of the models proposed. Fleischmann investigates the 
apparently simple, but complex, problem of transporting different products with 
steady demand on a single link, when shipments can start at discrete times only, i.e. 
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at a certain time of a day or a certain day in the week. The problem of jointly 
considering transportation and inventory issues in a distribution network is 
addressed in the paper by Bertazzi, Paletta and Speranza where the impact of 
considering single cost factors, such as transportation costs or inventory costs, on the 
total costs is studied. 

In Chapter 3, the paper by van der Meer and de Koster presents a simulation model 
to evaluate the performance of internal transportation when multiple load vehicles 
are used. The authors show in particular that centralized dispatching rules 
outperform decentralized dispatching rules. De Koster, Roodbergen and van 
Voorden show that good routing algorithms for the picking process in a distribution 
center can produce a large reduction in the walking time and in the total order 
picking time, by discussing a case study. The production context is addressed in the 
paper by Arbib, Ciaschetti and Rossi, where the problem of distributing flows in a 
manufacturing system is discussed with reference to a real case. Two different 
models are presented which correspond to different levels of accuracy in the 
modeling process. 

In Chapter 4, the paper by Kleijn and Dekker discusses single-location inventory 
systems where the customers are differentiated and organized in classes which may 
have different stock-out costs and may require different types of service. Pesenti and 
Ukovich discuss the issue of staggering periodic replenishments, presenting some 
simple cases which can be dealt analytically. A multi-echelon divergent inventory 
system with periodic review is studied in the paper by TUshaus and Wahl. They 
suggest an easy-to-handle strategy for material rationing which outperforms most of 
the more complicated rationing rules existing so far. 

The editors would like to thank the authors of the papers for their contributions. All 
papers submitted for publication in this volume have been subject to a refereeing 
process and we are deeply indebted to the referees whose professional help has been 
fundamental to ensure a high quality level of this book. 

Prof. Dr. M.Grazia Speranza, University of Brescia, Italy 
Prof. Dr. Paul Stahly, University ofS. Gallen, Switzerland 
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Chapter 1 

Warehouse Location and Network Design 



On Planning and Design of Logistics Systems 
for Uncertain Environments 

Carlos F. Daganzo1 and Alan L. Erera2 

1 Department of Civil and Environmental Engineering, University of California, Berkeley, 
CA 94720-1720 

2Department of Industrial Engineering and Operations Research, University of California, 
Berkeley CA 94720-1720 

Abstract. This paper addresses some issues that arise in the planning and design 
of logistics systems when the environment in which they are to be operated 
cannot be modeled accurately with certainty. The paper describes the analytical 
difficulties introduced by explicitly considering uncertainty, and suggests possible 
modeling steps that may result in more efficient, uncertainty-friendly plans. 

1 Introduction 

The two main goals of this paper are: (i) to describe the difficulties introduced 
by uncertainty in the planning and design of logistics systems, and (ii) to suggest 
approximate methods to systematically analyze the effects of uncertainty. The ideas 
are illustrated by means of two examples. 

The effectiveness of conventional mathematical analysis methods, e.g. numer
ical optimization and optimization-based heuristics, for solving large-scale trans
portation/logistics problems involving deterministic data is well known. Example 
applications include vehicle routing, as indicated by the extensive literature on the 
"VRP" problem (see Fisher (1995) and Bramel and Simchi-Levi (1997) for recent 
reviews), and network problems such as the airline fleet assignment problem (see, 
e.g. Rushmeier and Kontogiorgis (1997) or Hane et al. (1995» and the crew 
pairing problem (see, e.g. Vance et al. (1997». 

Unfortunately, the standard methodologies are difficult to apply when uncertainty 
is a significant issue (i.e. for planning and design problems) and the solution 
effectiveness is notably reduced. In traditional stochastic programming approaches, 
approximate deterministic formulations are employed where uncertain values are 
replaced by expected values or by percentiles, but this is only appropriate for 
some problems and cannot always be done accurately and realistically. Stochastic 
optimal control theory and dynamic programming offer better ways to incorporate 
randomness into the optimization of systems that evolve over time (or another 
single dimension) but the scope of the problems that can be solved in this way 
is extremely narrow. The extensive literature that exists on the relatively simple 

M. G. Speranza et al. (eds.), New Trends in Distribution Logistics
© Springer-Verlag Berlin Heidelberg 1999
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problem of determining optimal inventory re-order policies from a single store (see 
Graves et ai. (1993» is an indication of the difficulties introduced by randomness. 
Thus, it should not be surprising to see that to solve large-scale problems involving 
uncertainty analysts invariably resort to heuristic formulations; e.g. of the "rolling 
horizon" type. 

It should be clear that if one cannot anticipate when extra resources will be 
needed for a given task, a logistics system must be redundant; e.g. by maintaining 
larger inventories, using larger vehicle fleets, or by some other means. The chal
lenge is to determine the most cost-effective form of redundancy required, and an 
operating/control strategy that will be able to exploit it. The goal of an analysis 
should be to explore the broadest possible space of system designs using an objec
tive function that properly captures uncertainty. Since carefully idealized systems 
often can be examined accurately in generality, it is suggested in this paper that 
the possible forms of redundancy should always be explored systematically with 
idealized models before embarking on a detailed numerical analysis. 

Using two deterministic examples, Section 2 examines the issues introduced by 
uncertainty. Section 3 then describes its conventional treatment, the simplifications 
that are usually made, and suggests possible remedies; the examples of Section 2 
are analyzed as proposed. Section 4 provides some closing comments. 

2 Deterministic Analysis and Uncertainty 

2.1 The static vehicle routing problem (VRP) 

The vehicle routing problem has many variants and we consider here the problem 
of minimizing the transportation cost required to deliver (or collect) lots of small 
but varying sizes from a set of scattered customers with vehicles of fixed capacity, 
V. Transportation costs are assumed to be a linear function of the fleet size and 
the total vehicle distance traveled. 

Suppose now that the problem involves many customers and many vehicle tours, 
and that a customer's demand can be split between vehicles. An efficient strategy 
in this case is to divide the service region into non-overlapping delivery zones 
containing V units of demand, elongating these zones toward the depot with a 
width that depends on the local density of customers, 8, as shown in Figure I(a) 
and explained in Daganzo (1984b), and then to route a vehicle within each zone 
with an "up and down" strip strategy (Daganzo (1984a». If the delivery lot of the 
last customer in a tour does not fit in the vehicle, then that customer should also 
be visited by the following tour. If the delivery zones dove-tail reasonably well, 
then the distance of the VRP can be approximated by the integral over the service 
region of the following expression (Daganzo (1984b»: 

2r8jC + 0.5781/ 2 (I) 

which represents the delivery distance per unit area. In this expression r is distance 
from a point in the delivery zone to the depot and C is the average number of 
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stops made by a vehicle; i.e. the ratio of V to the average delivery lot size, v. We 
assume for clarity of exposition that C is independent of location but 8 may vary. 
Let us now examine the effect of using overlapping zones (redundancy). 

"-
\ , 

8 I 0 

\ I 0 
0 

"-
\ I \ 

\ 

A 
\ 

I 
\ I 
I 

/ 

/ 

Depot 
(a) (b) 

Figure 1: Non-overlapping (a) and Overlapping (b) Vehicle routing zones 

If the stops in an area A3 were to be allocated to two different tours, as shown 
in Figure l(b), the calculation would be different. One would have to calculate 
the distances for tours 1 and 2 separately by integrating (1) over the two zones 
Al U A3 and A2 U A3, using in each case the proper customer density within A3. 
Suppose the customer densities for tours 1 and 2 in A3 are 81 > 0 and 82 > 0 
(81 + 82 = 8). Consideration shows that if this is done then the total distance 
always exceeds that of the non-overlapping case by an amount: 

.6. =! O.57[(8i/2 + 8~/2) - (81 + 82)1/2jda ~ 0 
A3 

(2) 

where da is the differential of area. Note that .6. can never be negative, independent 
of our choices for A 3 , 81 and 82 , because the square root function is subadditive. 
This result suggests that geographical areas should be served (non-redundantly) by 
single vehicles, but assumes that tours can be built with perfect a-priori information 
regarding lot sizes. 

If customer locations and/or lot sizes are uncertain when planning, the fixed
zone strategy may be impractical, since the demand of some zones may exceed 
vehicle capacity. The desirability of alternative schemes then will depend on how 
and when lot size information becomes available and the degree of control that a 
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dispatcher can exert over en-route vehicles. Researchers have attempted to address 
the problem when customer lot size information becomes known only after the 
arrival of the vehicle. Unfortunately, all of the mathematical algorithms that have 
been proposed to date are based either on operating conditions that are unlikely to 
be feasible in practice as occurs for TSP partitioning heuristics (Bertsimas (1992», 
or on feasible forms of operation that are too restrictive to be appealing in practice. 
More discussion of these issues can be found in Erera (1998). 

Demand that is uncertain prior to vehicle arrival may be managed for example 
by designing delivery zones as if the vehicle capacity were smaller (V- < V) to 
ensure that few tours would overflow, and then serving the overflow customers with 
a set of secondary "sweeper" tours (see Daganzo (1991». Gendreau et at. (1995) 
optimizes such a scheme, but assumes quite restrictively that each sweeper tour can 
serve only the customers left behind by a single primary tour. More appealing ways 
of introducing redundancy exist but they are difficult to optimize with numerical 
methods. For example, redundancy can be introduced by: (i) eliminating the single 
tour restriction, (ii) designing overlapping routes as in Figure l(b) to allow vehicles 
to cover for one another, and (iii) instructing vehicles with remaining capacity after 
their last delivery to stay where they are (or even reposition to strategic locations) so 
that they can more efficiently "sweep" the overflow. A mixed strategy combining 
elements of (i), (ii), and (iii) also may be desirable. Section 4 will show how 
strategy (i) can be designed using idealized models as an evaluation tool. 

2.2 The warehouse location-inventory-routing problem (WLIRP) 

The second example involves determining the number and location of warehouses 
to be supplied from a factory, and the vehicle routes and delivery schedules from 
the warehouses that are needed to serve a set of customers with time-dependent 
demands. The objective is to minimize the sum of the transportation, warehousing 
and customer inventory costs. This planning problem is very common; it arises 
for example in companies such as Clorox (consumer goods) and Safeway (gro
cery stores). As explained in Daganzo and Newell (1986), efficient designs for 
this type of problem do not require geographical redundancy when demands are 
known. Furthermore, detailed designs can be obtained via numerical optimization, 
as explained below. 

Let Xij be the distance from warehouse i to customer j. If the transportation 
cost Cij of delivering d ij items to j from i can be expressed as Cij = Aj + 
BidijXij, independently of how many items are delivered to other customers, and 
if the transportation costs from the factory, 0, to warehouse i are proportional to 
the item-Kms sent, dioXio (so that cost = B~dioXiO)' then it is relatively easy to 
find efficient system designs. The two cost expressions just introduced are good 
approximations for many forms of transportation, although this may not always be 
apparent. For example, if deliveries from every warehouse occur with VRP tours 
under the conditions described in Section 2.1, then the proposed expression for Cij 

holds with Aj = 0.578;1/2 and Bi = 2/Vi. (The subscripts j and i have been 
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used with {j and V to stress that the former parameter may vary across customers 
and the latter may vary across warehouses.) 

The purpose of this paragraph is to establish the "easy" nature of the determin
istic problem; it may be skipped without loss of continuity. For ease of exposition, 
it is assumed that all warehouses dispatch vehicles simultaneously at times {Td, 
and that each customer is served instantaneously with each dispatch*. If the cumu
lati ve customer demands as a function of time D j (t) are known then, conditional 
on two consecutive warehouse dispatch times Tk-l and Tko one can calculate cus
tomer inventory costs for the intervening interval independent of the location of the 
warehouses. t The best dispatch schedule with a given number of dispatch inter
vals, K, and the resulting inventory cost, z*(K), can then be found with dynamic 
programming. Conversely, and quite fortunately, transportation costs depend on the 

schedule only through K. To see this, define an indicator decision variable, Ii;) , 
which is 1 if customer j is served from warehouse i in period k and 0 otherwise, 

and let d;k) = D j ( Tk) - D j (Tk- d denote the demand of j in the kth interval. The 
transportation cost for customer j in this interval is then: 

for j fixed. (3) 

The sum of (3) across all j and k is the total transportation cost. It should now 
be clear from the functional form of (3) that for any fixed set of x's (warehouse 
locations) and d's (dispatch schedules) the total transportation cost is minimized 
by setting Ii;) = 1 for the warehouse i that minimizes BiXij + B~Xio. Because 

these terms are independent of d;k) , the optimum allocation is the same for all 

dispatch intervals. Therefore, we can replace Ii;) with lij in the formulation. On 

recognizing that Ek d;k) = Dj(Tend) is a constant, we can simplify the expression 
for the total transportation cost for all customers across all time periods to read as 
follows: 

L L lij(KAj + BiDj(Tend)Xij + B~Dj(Tend)Xio) 
j 

which can be further simplified to: 

(4) 

L L lij (BiDj (Tend)Xij + B~Dj(Tend)Xio) + K L Aj (5) 
j j 

since Ei lij = 1 for all j. Since the number of warehouses is a variable, to solve 
the design problem we should add to (5) a term representing the fixed costs of 
opening warehouses at different locations i. For a fixed K the last term of (5) 

• These assumptions can be relaxed, but doing this is beyond the scope of this paper. 
tWarehouse inventories can be neglected because, given advance knowledge of demand, inbound 

shipments can be planned to arrive "just-in-time" for dispatch; this is the "cross-docking" role of 
warehouses. 
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can be ignored and the remaining part of the objective function has the standard 
form of a location-allocation problem with a variable number of warehouses. This 
problem is "easy" to solve, and the resulting cost is denoted c*. Hence, it is a 
simple matter to find the minimum of z*(K)+KEj Aj+c* over K, which gives 
the complete solution. 

Uncertainty in customer demands, and the way in which uncertain demand be
comes known as control decisions are made, complicates matters considerably. In 
addition to the decision variables considered in the above paragraph, one needs to 
determine appropriate "safety stock" inventory levels at the warehouses which can 
be used to absorb demand fluctuations during the orders' lead times. The status 
of the inventory stocks at any given time can also be used to decide if and how to 
adjust the basic ordering scheme and warehouse-customer allocations in real time. 
Unfortunately, determining optimal or near-optimal ways of doing so remains an 
unsolved problem. 

One simple approach to this problem assumes that the warehouse-customer al
location is fixed (denoted C), and allows the warehouse stocks to be replenished 
dynamically by varying the ordering frequency or the order size in response to 
changing demand. As suggested in Daganzo and Newell (1986) for the deter
ministic problem, and shown in Figure 2, one possible system design carves the 

.".h",,-. \L 
warehouse 

1 
Plant 

Figure 2: Influence areas with centrally-located warehouses 

service region into influence areas with centrally located warehouses, and all cus
tomers within an influence area are allocated to its warehouse. This method does 
not utilize "geographic redundancy" in the form of influence area overlap, and 
the warehouses can be controlled/operated independently. Individual warehouse 
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safety stocks provide the buffer against uncertainty. Guidelines for the design and 
evaluation of this configuration can be derived easily (e.g., see Daganzo (1991». 

A more general but more complicated approach (suggested in Cheung and Pow
ell (1996» would treat customer-warehouse allocations as control variables that 
depend on the inventory positions of the warehouses at the time of dispatch. By 
allowing customer shipments to come from more than one warehouse in this dy
namic fashion, it should be clear that safety stocks can be reduced at the expense of 
higher transportation costs. Unfortunately, the formulation in Cheung and Powell 
(1996) is unrealistic because the system's final state is not required to be equal to 
its initial state, and thus it ignores important future costs. Because these are hard to 
quantify, no way has yet been found of formulating this problem in detail without 
introducing a (heuristic) "rolling horizon" fix. This problem will be examined in 
a different way in Section 3. 

Section 2.1 illustrated the difficulties introduced by randomness, while the above 
paragraphs described the added difficulties introduced when one wants to design 
dynamic strategies over long time horizons; i.e. strategies that can be revised over 
time as information becomes available. Space considerations preclude us from 
discussing more complicated systems, such as many-to-many airline networks with 
supply uncertainty, but it should be clear that the same difficulties should arise in 
those cases; an expanded discussion of these issues can be found in Erera (1998). 
The technical nature of the problem and the help that can be derived from simplified 
analyses are explained in the next section. 

3 Treatment of Uncertainty 

3.1 Conventional approach 

Figure 3 contains a flowchart with the various components of a logistics problem. 
Decision variables are classified as being either of a "design" or "control" type. 
Design variables D, such as the location and number of warehouses in the problem 
of Section 2.2, are chosen at the beginning of the study and have a lasting influence. 
Control variables U, such as the dispatching times and requested amounts, are 
chosen dynamically by means of a strategy S while the system is in operation, 
assuming full information of the system history at each particular decision point. 
Optimization tools such as mathematical programming or stochastic optimal control 
theory can be applied to solve the control problem for a given system design. 

When successful, these tools find an algorithm (or strategy) S* (D) that identifies 
the best possible set of dynamic controls-in the sense that the expected cost of 
operating the system with any other strategy S, < co(D,S) >, always exceeds or 
equals the expected cost of operating it with S*(D). This minimum expected cost 
is denoted R(D) and, by analogy to stochastic programming, will be called the 
(design) recourse function. 
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The figure also illustrates that: (i) there are fixed design costs cf(D), (ii) the 
objective of the problem is to find the best design/control combination, and (iii) 
this may be achieved with a two-step process. The inner loop of this process 
identifies S*(D) and R(D). 

Design, D 

Fixed Cost 
(Predictable) 

cf(D) 

Operating Strategy, S 

Operation Cost 
(Long-run Average) 

< Co(D, S» 

Figure 3: Logistics Problem Components 

If the set of allowable control strategies is very broad and the control problem 
is solved optimally, then experience shows that the design recourse function is 
usually: (i) very difficult to obtain, and (ii) of an unfavorable form for the outer 
optimization loop with respect to D. 

In view of this, it makes sense to simplify the control problem by limiting the 
search to a carefully chosen subset of all possible control strategies. It is particularly 
useful if the elements of this restricted set can be described in terms of numerical 
parameters P because then one can replace the mapping < co(D, S) > with an 
ordinary function, < Co (D, P) >. An example of this parameterization occurs in 
inventory control theory where the family of so-called (s, B)-reorder strategies is 
used as a proxy for all possible strategies+. Of course, we should make sure that 
our subset of possible control strategies includes efficient near-optimal strategies, 
and that the function < Co(D,P) > is of a favorable form for optimization. 
Simplifications that achieve these goals may not be easy to find. 

Therefore, one may want to simplify the design problem while ensuring that 
reasonable forms of redundancy are retained in the formulation. One good method 
consists in considering an idealized problem with symmetries that may reduce the 
number of decision variables in the combined design/control problem by several 
orders of magnitude. The idealized problem, which can be solved exactly, can then 
be a realistic testbed for design alternatives provided that the simplifications do not 
eliminate the phenomena of interest. Choosing a proper idealization is an art more 
than a science, but it is critically important. The right simplifications can help us 
eliminate from further consideration redundancies that are clearly inappropriate for 
a given case, and in this way narrow the scope of the non-idealized design problem 

+(s,S) policies are described by two parameters: the reorder trigger point and the fixed reorder 
quantity. 
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to a manageable level. The next two subsections describe two idealized models 
that can be used to think about the problems described in Sections 2.1 and 2.2, and 
how the insights gained may help define design ,guidelines for the non-idealized 
problem. 

3.2 The static VRP with uncertain demand 

We show here how certain simplifications can be used to investigate designs for 
the static VRP with uncertain demand, VRP(UD). Of the three forms of design 
redundancy discussed in Section 2.1, we choose to evaluate (i); see Figure 4. 
Determining the primary delivery zones, A, is the design problem, and choosing 
the routes of the secondary vehicles is the control problem. Construction of the 
primary vehicle routes is part of the design problem if the customer locations 
are known, and part of the control problem otherwise. Here we assume that the 
locations are known, but the methodology changes little if they are not The main 
issue is selecting the size of the delivery region A = IAI because this entails a 
tradeoff between primary and secondary delivery costs. We show below how a 
simplified analysis of a continuum model can help generate a design. 

Unserved 
customers 

Fraction f 

, 
\ 

I 

, 
I 

Depot 

---- ... 

0 

...,f-------'-...---= Prim ary delivery 
reg ions 

0 

0 
0 0 

0 0 0 

0 0 , , 

0 0 

0 
, , 

, 

I 
I 

\ 

\ 
\ 

I 

Area A 

Figure 4: Primary/Secondary Operating Strategy for VRP(UD) 

In addition to the notation of Section 2.1, let J.l be the coefficient of variation of 
the (uncertain) customer lot size. If the distribution of lot sizes is one where the 
central limit theorem holds approximately (e.g. if there are more than a few stops 
per tour), then the number of uncollected items in one zone is the non-negative 
part of a normal random variable, as in the well known "newsboy problem". For 
our problem, it is not difficult to show that the fraction of items overflowing, f, 
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only depends on two parameters, Q and (3, which are: 

and (3 = (V/v)/(bA) (6) 

The first relation is the ratio of the coefficient of variation squared and the number 
of stops available in the zone; the second relation is the ratio of the average number 
of stops the vehicle can make and those available. The fraction 1 can be shown 
to be: 

1 = Qw(((3 - 1)/Q) (7) 

where w(z) is the integral of the standard normal c.dJ. (cumulative distribution 
function), <1>, from -00 to -z. As shown in Figure Sea), this function decreases 
toward zero; it can be expressed in terms of the standard normal density ¢( z) and 
c.dJ.: w(z) = ¢(z) - z<l>( -z). If customer lot sizes are mutually independent and 
small relative to the vehicle size, then the overflow fraction 1 is also approximately 
the fraction of customers that remain unserved; therefore, Ibis the density of 
customers for the secondary tours. We note that (6) and (7) imply a relation 
1 = F(A) between the overflow and our decision variable, and that this relation 
has an inverse A = G(f); see Figure S(b). Therefore, we can use 1 instead of A 
as the decision variable in the manipulations below. 

If we imagine that the secondary stops are uniformly distributed, rather than 
clustered around corners of overflowing delivery regions (see Figure 4), we can 
write an expression for the total distance traveled per unit area for both the primary 
and secondary tours, using equation (1). (Consideration shows that the effect of 
clustering is so minor that it can be ignored in this type of analysis.) We may also 
want to add a level-of-service penalty k for every customer served with a secondary 
tour; i.e., a term of the form klb for every unit area. The resulting distance per 
unit area is: 

2r/G(f) + 2r(b/C)1 + 0.5715 1/ 2 [(1- 1)1/2 + 1 1/ 2 ] + klb (8) 

The first two terms represent the line-haul distance traveled by primary and sec
ondary vehicles, and the third term the combined local delivery distance. The four 
components of (8) are plotted on Figure S(c). As one may expect intuitively, the 
main trade-off occurs between the primary and secondary line-haul costs. Exam
ination of (8) reveals at a glance how the optimum value of 1 (and therefore A) 
depends on the parameters of the problem. For example, we see clearly that as r 
increases the last 3 components of (8) become relatively smaller, and therefore that 
the optimum 1 increases as we move away from the depot. Thus, we may want 
to use smaller primary zones near the depot. 

One can also explore how the solution to our problem depends on 15, v, /-L, etc., 
if these parameters change geographically. Then the optimum solution of (8) for 
suitable values of the parameters would indicate the desirable zone size that should 
be used in various geographical subregions of the service region. This information 
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could then be used to generate a design, e.g., as done by Clarens and Hurdle (1975) 
for a related problem and further discussed in Daganzo (1991). 

Given this design, each primary vehicle follows the TSP tour constructed between 
the depot and the customers in its zone, returning to the depot when its capacity 
is reached and possibly leaving some customers unserved. The control problem 
is then to determine secondary vehicle tours through these skipped customers, and 
this is an ordinary deterministic VRP. Thus, the proposed methodology leads to 
practicable solutions of the combined design/control VRP(UD) problem. Analysis 
shows that these solutions are more efficient than those requiring sweeper tours to 
serve customers within a single zone, even if the latter problem can be configured 
closer to optimality (e.g. as proposed in Gendreau et at. (1995». 

-1.0 o 
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Per Unit 
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f 
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Figure 5: Analysis of the VRP(UD): (a) \l1(x), (b) F(A) and G(f), (c) Cost Per 
Unit Area as Function of f 
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The modeling approach described above is quite useful. It has been proposed 
for the inventory-routing problem with uncertain demands (Daganzo (1991» and 
can also be applied to other possible strategies for the VRP(UD); e.g., those that 
allow for overlapping delivery zones and for tours that do not return immediately 
to the depot as in strategy (iii). We are currently investigating these strategies and 
plan to conduct numerical tests to evaluate performance. 

3.3 The warehouse-Iocation-inventory-routing problem with uncertain de
mand, WLIRP(UD) 

The complications introduced by uncertain demands in the WLIRP were men
tioned in Section 2.2. They are foreboding due to the multi-stage nature of the 
problem. As a result, no "exact" algorithm has been found for this problem, even 
for drastically simplified versions of it. 

To reduce these difficulties to a manageable level while retaining sufficient flex
ibility to reduce safety stocks, we propose partitioning the set of warehouses into 
fixed subsets of size n to which customers are statically allocated. Warehouse 
subsets would "share" a safety stock chosen to ensure that customer demand is 
met with very high probability. To prevent stockouts at individual warehouses, 
customers would be dynamically allocated within their subset in a transportation
efficient way. We would expect the reduction in safety stock to increase with n, 
but to be bounded from above, and the transportation costs also to increase with 
n albeit in a different way. We do not know the precise form of the latter relation 
but believe that it increases rather rapidly with n, and that there is a small n = n* 
which optimally balances the inventory savings with the transportation penalty. 
As an illustration of the modeling approach, we examine below the costs for the 
special case with n = 2 in some detail. (It is shown that with n = 2 the benefits 
of dynamic allocation almost always outweigh the drawbacks; i.e. that n* 2: 2 in 
most cases.) Results for large n are also given without a derivation. They suggest 
that n * should not be large. 

We consider now the simplest possible example (Figure 6) which exhibits the 
aforementioned issues. It includes two warehouses centered on opposite sides of a 
rectangular service region, with base length L distance units. Travel on this region 
is permitted vertically and horizontally (L1 metric)§. The demand in a vertical 
slice of the region ranging from abscissa x to x + i during time t, t + T is given by 
D(x, x+i, t, t+T). Changing unpredictably with time, this demand is assumed to 
be a stationary process in x and t, with independent increments; accordingly, D'iT 
will denote the expectation of D(x, x + i, t, t + T) and ,D'iT its variance, where 
, is the process' index of dispersion. Assume that warehouses serve customers 
instantaneously (the latter do not carry a safety stock) and order from the factory 
regularly an amount equal to that depleted since the previous order (periodic review 
system). Units of time are chosen so that the time between warehouse reorders 

§Note that the shortest paths from either warehouse to a given customer require the same vertical 
distance, hence only horizontal distances are considered in this discussion 
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is 1 and this unit is referred to as a "day." Finally, the "lead time" between a 
warehouse order and the arrival of goods equals T reorder times . 

• 
wa r ehouse wareh ouse 

o x L 

Figure 6: Idealized System for WLIRP(UD) with n = 2 

Two cases will be compared: (a) Static allocation: customers with .1: < Lj2 
are allocated to the warehouse at x = 0 and the others to the one at x = L; and 
the safety stock at each warehouse is chosen to be three standard deviations of its 
total customer demand during one lead time, 3(rD'(Lj2)T)1/2 , so as to ensure 
that the probability of a stockout is low. (b) Dynamic allocation: customers are 
dynamically assigned to a warehouse each period; and the combined safety stock 
is chosen to be three standard deviations of the lead-time demand in the complete 
service region, 3(, D' LT) 1/2. The dynamic allocation method is described in more 
detail below; it ensures that a customer goes unserved only if both warehouses are 
empty, and achieves this goal with the least possible item-Kms of travel between 
the warehouses and the customers. 

Static allocation evaluation. The total system safety stock for this strategy is: 

(18,D'LT?/2 

and the average item-Kms of travel in any given day are: 

Dynamic allocation evaluation. The total system safety stock is only: 

(9,D'LT) 1/2 

(9) 

(10) 

(11) 

If the inventory positions at the two warehouses at the beginning of a "day" are II 
and 12 , and the cumulative demand for the "day" as a function of position d(x) 
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is also known, e.g. as shown by the curve in Figure 7, then the best allocation 
can be obtained graphically as depicted.' We look for a point x* that defines the 
influence areas for the day. Note that the item-Krns of travel are given by the 
shaded areas of the figure. If the demand can be satisfied, i.e. d(L) < h + h, 
we first find Xl, X2 such that d(X1) = h, d(L) - d(X2) = h and then choose 
x* = middle(x1,x2,L/2), as shown in Figure 7. If the demand is not satisfied, 
which is rare, then customers in (O,X1) are served from 0, customers in (x2,L) 
from L and those in (Xl, X2) are lost. If we assume for the purpose of calculating 
the item-Kms that inventories are at their average positions at the beginning of the 
day, h = 12 = D'L/2 + ~(9'YD' LT)1/2, which also tilts the calculations slightly 
in favor of this strategy, then an approximate formula for the shaded area is (see 
appendix): 

# of Items 

deL) 

X2 

o Ll2 

Figure 7: Dynamic warehouse allocation 

We see from (9) and (11) that the dynamic strategy saves 

1.24T1/2(rD'L)1/2 

(12) 

12 

x 

L 

(13) 

items in inventory, but also see from (10) and (12) that it induces approximately 

(L/IOO)(rD'L)1/2 (14) 

extra item-Kms of travel every "day". From the ratio of these quantities we see 
that for every truckload-"day" of inventory saved by the dynamics, a truck has 

, In many cases d( x) may not be known sufficiently in advance for us to be able to achieve the best 
allocation; thus, our derivations are somewhat tilted in favor of this strategy. 
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to be driven (L/124)/T 1/ 2 Kms. A truckload of inventory for many goods such 
as automobiles costs on the order of $30 per day, and also $30 per "day" if we 
assume that 1 "day" = 1 day. (This number can be much higher for certain goods, 
such as jewelry, computer equipment, etc., but such goods may not be transported 
as described here.) Driving a truck costs on the order of $1 per Km. Therefore, 
dynamic allocation will be attractive if (L/Tl/ 2 ) < 3720 Km. This should be the 
case even if T = 1 and the goods are much cheaper. 

Asymptotic results for large n: We present here generalizations of (13) and (14) 
that include n as a parameter without a detailed derivation. The results show that n* 
should not be large. First note that the rationale that led to (11) and (13) now yields 
(1- (l/n) 1/2)(9,D' LT)1/2 for the inventory savings per terminal for large values 
of n, where L is the separation between terminals. The dynamic transportation 
costs can also be approximated analytically if the warehouse subsets are arranged 
one-dimensionally, and one uses a simple "greedy" allocation strategy. (Considered 
sequentially, e.g. from left to right, each warehouse would serve, starting with the 
last customer served by the previous warehouse, as many customers as it inventory 
position would allow without encroaching on the territory of the warehouse that 
follows.) This strategy is suboptimal but easy to analyze. It is mathematically 
analogous to a Brownian queuing problem for which formulas exist. We find that 
the extra transportation cost per terminal increases linearly with n 1/ 2 for any given 
" D', Land T, according to the asymptotic formula: kn1/ 2('D' L3 /T)1/2 where 
k is a dimensionless coefficient which is k = 1/6 if the inventory positions are 
equal and k = 1/3 if they are random. An optimal strategy would treat customers 
on both sides symmetrically, and this would reduce k by more than a factor of 
2. We believe that for an optimum strategy k would be somewhere between 1/10 
and 1/25. The extra distance formula is more difficult to derive for other (non
one-dimensional) warehouse groupings but its rapid increase with n, and other 
qualitative behavior should not change much. 

The above results suggest that the optimum n * is small and that it can be found 
with the help of simple idealized models. In order to design a system one would 
have to minimize an approximate "logistic cost function" in which the warehouse 
influence area diameter (L) and the size of the dynamic subset (n) would appear 
as decision variables. The dynamic allocation algorithm (control problem) would 
be relatively easy to solve since it decomposes by warehouse subset and n is small. 
A discussion of this issue, however, is beyond the scope of this paper. 

4 Conclusion 

As the examples in this paper have illustrated, uncertainty usually requires that 
redundancies be introduced into a system design. The design game is to determine 
which kinds of redundancies offer the most benefit for the least cost. If this is 
difficult to do with detailed models (which is usually the case) an approximate 
analysis with idealized models may yield the desired insights. Idealized models 
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allow many more forms of redundancy to be evaluated without the ad hoc assump
tions of detailed models, which are often limiting and hard to understand. Idealized 
models can identify efficient strategies that are simple enough to be implemented; 
i.e. strategies that allow detailed designs for the original, non-idealized problem to 
be developed and the control subproblem to be solved, as occurred in the examples 
of this paper. 

If prediction accuracy is important one can simulate the chosen design/control 
configuration (and perturbations to it) to obtain accurate cost estimates; these can 
be compared with the idealized predictions. In this respect, the most useful op
timization methods would seem to be case-specific "meta-heuristics" that would 
allow us to sort through these perturbations while retaining the flavor of the basic 
design. 

If closed form solutions can be developed, the expressions reveal at a glance how 
the solution depends on the input data. This is useful when proposals have to be 
made to management. For example, the analytic solution may indicate which data 
influence costs and which are irrelevant. The former may even suggest alternative 
problems that management should consider. 

In closing, we recognize that the methodology proposed in this paper is more 
an art than a science but also note that once mastered it can be effectively applied 
quite broadly. We believe that the results of the approach can be very fruitful and 
hope that this paper will stimulate others to pursue similar avenues of thought in 
the future. 
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Appendix 

Since stockouts are rare, we evaluate the item-Kms only for the case where X2 < 
Xl. Three possibilities exist: (a) Xl < L/2; (b) X2 > L/2; (c) X2 < L/2 < Xl. 
The average item-Kms traveled in case (c) will be D'L/4, and the average item
Kms for cases (a) and (b) will be larger. Insofar as h = 12 = I, the latter two 
averages should be equal to each other, by symmetry. Thus, the derivations below 
focus on case (a). 

Consider d( x) now as a stochastic process. We know from the first passage time 
formulas for processes with independent, positive increments that Xl is approxi
mately normal with E[XIJ = I/D' and var(xI) = (I/D'}(--y/D'). We also know 
from symmetry considerations that the expectation of the shaded area conditional 
on Xl> A(XI), is equal to the area of the two right triangles in Figure 8. (To see this 
note that for every realization of the process d( x) we can define a dual realization 
d'(x) by setting: d'(x) = I -d(XI -x) if X < Xl, and d'(x) = I +d(L) -d(L-x) 
if X > Xl. Our statement is true because dual pairs of realizations partition the 
sample space and because every dual pair has the same combined area: twice the 
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shaded area.) Therefore, 

(AI) 

If we let E = L/2 - Xl and assume E « L (not many extra miles) the above 
expression can be simplified: 

d(L) 

1 
A(E) = "2[/(L/2 - E) + D'(L/2 + E)2] 

a 

= D'L2/8 + IL/4 + (D'L - I)E/2 + D'E2/2 

~ D' L2 /4 + (I - D'L/2)L/4 + (D'L - I)E/2 

# of Items 

XI 
L/2 

Figure 8: Calculation of Expected Item-Kms of Travel 

Thus, the expected added miles due to Xl < L/2 are: 

x 

L 

1 
(I - D'L/2)(L/4)p(E) + "2(D'L - I)E[max(O, E)] (A2) 

where p(E) = Pr{E > O} = Pr{d(L/2) > I} = q>([D'L/2 - 1]/(--yD'L/2)1/2) . 
Recall that [I - D'L/2] is the safety stock at X = 0 which is ~(9'YD' LT)1/2 as 
per (11). Thus, p( E) = q>( -(9T /2)1/2) , which is on the order of 0.01 or less, 
and the first term of (A2) becomes: 

If we use 1 ~ D'L/2 as an approximation in the expression for the variance of 
E, the expectation of max(O, E) reduces to: (--yL/2D')1/2iJ!((9T /2)1/2), where iJ! 
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is the previously defined integral of the standard normal c.d.f. Thus, the second 
term is: 

and the total miles added become: 

Letting a = CrD'L/2)1/2, (3 = L/4, and f(T) = (9T/2) 1/2, this expression 
simplifies to: 

a(3¢(J(T)) - 'Y(3f(T)W(J(T)) 

When T is close to 1, this expression is closely approximated by: 

~ (L/lOO)('YD'L)1/2 (A3) 

as claimed in the text. 
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Abstract. Growing environmental concern has called much attention to industrial 
recovery of used products and materials. Driven by customer expectations and 
legislative regulation, manufacturers are held responsible to an increasing extent 
for the entire lifecycle of their products. From a logistics perspective, take-back 
and recovery of used products leads to additional goods flows from the users back 
to the sphere of producers. "Reverse Logistics" addresses the management of 
these flows opposite to the conventional supply chain flows. In this paper we 
consider Reverse Logistics from a distribution management perspective. We 
review major issues and concepts and discuss upcoming decision problems, 
paying special attention to logistics network design. Moreover, we point out both 
specific characteristics of Reverse Logistics and parallels with traditional logistics 
contexts. We illustrate our analysis with a number of examples based on recent 
case studies. 

1. Introduction 

Reverse goods flows for reuse are not new. Traditional examples include empty 
containers, bottles, or trays. The (economic) reason for these reverse flows is the 
fact that collecting and cleaning these packages is cheaper than producing or 
buying new ones. Moreover, reverse flows have occurred in situations where 
precious raw material is used as, e.g., in computers containing gold. Due to 
growing environmental concern in the last decade, reverse flows have come to 
include durable products and consumer packaging. Furthermore, new technology 
has reduced costs for product recovery substantially. In general, main reasons for 
new types of reverse goods flows include: (i) reduction of waste disposal, (ii) 
extension of product lifecycles, (iii) savings of resource materials. Both producers 
and consumers as well as governments are nowadays concerned with the 
collection of used products and packaging material to give them a new 
destination. This requires an integral management of reverse flows through a 
supply chain: Reverse Logistics. 

Reverse Logistics deals with the design and development of logistics systems 
for efficient and effective collection and transport of products and packages in 
order to reuse them one way or another (adapted from eLM, 1993; see also Stock, 
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1998). The recovery of used products has increased significantly during the last 
five years. The recovery rate of waste paper in Europe (in percentage of total 
paper consumption) reached 43% in 1994. The recovery rate of glass in Europe 
(in percentage of total glass consumption) has grown to roughly 60% in 1994 
(Eurostat, 1997). In the Netherlands, 46% of all industrial waste was reused in 
1994 (CBS, 1998). Of household waste in the Netherlands (about eight million 
tons in 1997) 13% was landfilled, 38% was incinerated for energy recovery, and 
46% was reused (CBS, 1998). 

As an area of scientific interest Reverse Logistics has only been emerging 
recently. For a long while focus has been on technical rather than logistics aspects 
of product recovery. The aim of this paper is to provide a review of terminology, 
concepts, and problems in Reverse Logistics and thereby to contribute to a 
broader understanding of this field. In particular, we highlight the relation 
between Reverse Logistics and distribution management. Since Reverse Logistics 
is a young field, related scientific literature is not numerous yet. Therefore, much 
information has to be retrieved from business case reports, Masters theses, and 
working papers rather than from standard scientific journals or books. This 
explains the relatively high number of 'non-standard' sources among our 
references. 

The remainder of the paper is structured as follows. Section 2 briefly describes 
typical forms of Reverse Logistics ranging from reuse to recycling. Furthermore, 
main motivations for developing Reverse Logistics networks are explained as well 
as the impact of Reverse Logistics on the logistics activities of a company. Section 
3 deals with distribution aspects of Reverse Logistics. In particular, we discuss 
requirements for developing or redesigning logistic networks for goods return 
flows. Section 4 presents examples of typical distribution network structures for 
Reverse Logistics, while Section 5 briefly considers the corresponding 
mathematical models. In Section 6 we summarise our conclusions and point out 
guidelines for future research. 

2. Aspects of Reverse Logistics 

2.1 Terminology in Reverse Logistics 

Reverse Logistics is developing as a new area in logistics. Therefore, clear 
terminology of the main aspects is important. The Council of Logistics 
Management has developed some general definitions for this field (Council of 
Logistics Management, 1993). 

Recovery of used or discarded products can be distinguished in a number of 
graduations: product recovery (longer use of products and packages e.g. through 
repair and cleaning), parts recovery (disassembly of products and reuse of parts in 
the original form) and material recovery (recycling in alternative forms) (Ferrer, 
1997). 
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Product recovery (Reuse): Reusable packages and products are collected for 
direct reuse, possibly after some simple activities such as inspection and cleaning. 
Examples of reusable packages are bottles, pallets, and containers. Examples of 
reusable products are second-hand books, clothing, or furniture. 

Parts recovery (Remanufacturing): Products containing valuable components 
are disassembled after collection and testing. Often, extensive disassembly is 
necessary to reach the valuable components. These components can be reused in 
the assembly of new products or in repairing defective ones. Remanufacturing 
conserves the product identity and seeks to bring the product back into an 'as 
new' condition. Examples of remanufacturables are aircraft engines, car engines, 
copiers, and printers. 

Material recovery (Recycling): Recycling does not retain the functionality of 
used products or parts. The purpose of recycling is to reuse the materials from 
used products. Often the recovered materials are used in other markets. The 
numerous examples include recycling of building materials, refrigerators, and 
metal recycling from scrap. 

2.2 Forms of Return Flows 

Reverse logistics is closely related to 'forward' logistics. Figure 1 describes a 
general forward channel from suppliers via production and distribution to end
consumer. Subsequently, used products or packaging materials either end up in a 
waste flow, which can be landfilled or incinerated for energy use, or become part 
of the reverse flow, postponing the end of the product life cycle (see Jahre, 1995). 
The reverse flow can be used for recycling, remanufacturing and reuse. 

As described above, diverse forms of return flows are possible, varying from 
reuse of packaging to recycling of construction waste in secondary markets. 
Which form of reuse - if any - is useful, from either an economic or ecological 
point of view, depends heavily on the type of product and the type of industry. 
Reverse flows add costs to the supply chain through additional transportation, 
disassembly, processing and reassembly. Apart from economic costs, it is also a 
question if the environmental benefits of postponing landfilling add up against the 
environmental burden of additional transportation from the end-user to the 
reassembly plant and additional processing in disassembly and reassembly. To 
find (near) optimal recovery plans for products and packaging, life cycle analysis 
can be very valuable (e.g. Rose, 1994). However, methods for life cycle analysis 
are still under development and are quite time consuming. In the remainder of the 
paper, rather than discussing life cycle analysis we give a broad classification of 
recovery situations in order to offer some guidelines in the labyrinth of product 
recovery management. 
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Figure 1: Flows in forward and reverse network 

2.3 Motivations for Reverse Logistics networks 

Motivations for Reverse Logistics in general, and for developing Reverse 
Logistics networks in particular may be threefold: 
• Environmental regulation: Political concern for the environment has led to 

new environmental policies towards product recovery. Some ten years ago, 
Germany was one of the first countries to introduce the principle of 'product 
life-cycle responsibility' for manufacturing companies (Thierry, 1997). Since 
then, many countries have introduced more specific legislation with respect to 
the recovery of used products. Legislation may concern collection and return, 
transportation, recovery, and disposal of used products. Instruments vary from 
prescriptive laws, tariffs, and taxes to covenants, subsidies, and information 
provision. Some examples: 

The Dutch Government has adopted legislation that obliges the car 
industry to take back and recover used cars as of January 1, 1995. 
Similarly, as of January 1, 1999 producers and importers of white- and 
brown-goods in the Netherlands have to take back and recover their 
products after use. 
As of September 1994, EU countries have the right to refuse non
recyclable waste from other EU countries, and as of January 1998 it is 
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prohibited to export non-recyclable European waste to non-members of the 
OECD (Thierry, 1997). 

These regulations stimulate goods return flows and therefore the need to set-up 
corresponding logistics networks. 

• Economic profitability: Economic motives for Reverse Logistics are twofold. 
On the one hand, costs for waste disposal have increased heavily. Recycling or 
reuse decreases the amount of waste and therefore the costs for landfilling. On 
the other hand, recycled parts or products can be sold to other parties or used 
in the production process, saving the costs of new components and materials. 
This is the more attractive since new technology allows to organise reuse of 
products and materials against lower costs. 

• Commercial considerations: To an increasing extent, customers ask for so 
called 'green' products, forcing manufactures to set up some recovery 
management. In addition, managers themselves may be concerned and take 
initiatives to reduce the negative environmental impacts of their business. 

2.4 Impact of recovery activities on logistic processes 

Recovery may have a large impact on the logistics activities of a company. Below, 
we briefly sketch major elements. 
• Material Management: The secondary supply of raw material arising from 

product recovery saves a company primary supply of raw material (i.e. buying 
from external suppliers). Although this secondary supply of raw material can 
be economically useful, it also has some disadvantages: uncertainties with 
respect to the available quantity and the quality of the raw material are much 
higher than for primary supply. Moreover, the company has little influence on 
the timing of supply of recovered raw materials. Therefore, adaptations in the 
standard material requirement planning systems are necessary (Vander Laan, 
1997). 

• Production Management: An important requirement for recycling and 
remanufacturing is the possibility to split products in useful and useless parts. 
Taking product recovery into account in the design and production phase, e.g. 
by using component coding, makes disassembly and sorting much easier. 

• Marketing: Marketing has an essential role by seeking and establishing 
markets for recovered products. For example, barriers may have to be 
overcome in public perception of product quality. Moreover, campaigns can 
support the 'green' and 'responsible' image of a company and environmental 
paragraphs in the annual reports can inform consumers about the 
environmental behaviour of a company (as is already done by most of the big 
multinationals like Shell, Philips, Dow Chemicals and others). 

• Information Management: It is very important to test a used product on its 
quality or, more general, on the quality of its components. Testing can be quite 
time consuming and expensive if no information on the product is available 
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beforehand. Modem information technology can be exploited to summarise 
the history of a product using e.g. tracking and tracing or sensoring (how often 
was it used, how often was it repaired, have there been yearly controls etc.). 

• Distribution Management: Distribution is one of the most important elements 
in the supply chain for the performance of reverse logistics. Decisions are to 
be made, e.g., with respect to the routing of return flows, the choice between 
out-sourcing and in-house recovery, and the development of a reverse flow 
logistics network. In the next paragraph, we discuss the distribution aspects of 
reverse logistics in more detail. 

3. Reverse Logistics and Distribution 

3.1 Reverse Channel Functions 

Reverse distribution and recovery can only take place if appropriate infrastructure 
is available. In other words, a logistics network is to be set up. As a starting point, 
it is useful to consider the activities that are required on the way from a disposed 
product to a useful good again. Subsequently, it is to be determined where and by 
whom the different steps are carried out. 

While the specific activities involved differ per case the following channel 
functions appear to be typical of Reverse Logistics (adapted from Pohlen and 
Farris, 1992) : 
• Collection 
• Sorting 
• Transportation 
• Testing 
• Disassembly 
• Recovery 
Moreover, once a useful product has been obtained as a result of the above steps it 
is to be delivered to a market. Hence, another 'forward' distribution step is 
required from the recoverer to the next user, which closes the re-use cycle. In the 
sequel we briefly discuss each of the above functions. A graphical representation 
is given in Figure 2. 

Collection: In the collection phase the used products are separated from the 
waste flows and enter the reverse channel. 

Sorting: Sorting may be fairly expensive and time consuming. Therefore, it is 
often one of the main bottlenecks on the way to a successful and effective logistics 
network for reuse, recycling or remanufacturing. Improvements are possible if 
sorting can be done immediately at the beginning of the network, i.e. during 
collection, or by standardising shape and volume, as for example with bottles. 
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Transportation: Transportation is required between the different steps in the 
reverse channel and is an important cost factor in Reverse Logistics. Especially, 
transport from end-users to the fust level of the reverse channel tends to be 
expensive because of a large number of sources and small volumes. High costs 
also arise if entire products are transported while only some components can 
eventually be reused. Transportation costs may be reduced substantially if 
products can be partially disassembled or pre-processed (shredding, densification) 
close to the sources. 

Testing: Befor~ (or during) disassembly, components can be tested on their 
quality. Depending on this quality the components are disposed of, the material is 
recycled, or the components are used in remanufacturing. Testing and inspection 
in an early stage may save unnecessary voluminous transportation. 

Disassembly: Disassembly often occurs at manufacturing locations, satisfying 
the Just in Time principle in Operations Management. Why disassemble if there is 
no need for the component yet? On the other hand, transportation cost may benefit 
from disassembly at an earlier stage (s.a.). The availability and price of 
disassembly and testing equipment and the required knowledge to perform 
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disassembly and testing determines where and how this function will eventually be 
carried out. 

Recovery (Remanufacturing/ Recycling); Here the actual rebuilding of a new 
good takes place involving, e.g., cleaning, repair, replacement, and reassembly 
steps. In case of remanufacturing the product identity is preserved. In case of 
recycling products are broken down to raw materials, which may then be used in 
completely different products. 

3.2. Distribution issues and decisions in Reverse Logistics 

Given the reverse channel functions discussed in the previous section many 
questions arise concerning design and operation of efficient Reverse Logistics 
systems. Major decisions to be made in this context include the following: 
• outsourcing versus in-house activities 
• form of collection system 
• location of reverse channel activities 
• routing for collection and distribution 
We briefly discuss each of these aspects below. 

Outsourcing versus in-house activities 
A first decision concerns the actors involved in the reverse channel. On the one 
hand, a manufacturing company may decide to carry out all recovery activities 
concerning its products in-house. In this way product specific knowledge and 
control may be kept within the organisation. However, return flow volumes may 
be critical to justify investments in recovery equipment and specialised expertise 
may be required. On the other hand, all recovery activities may be outsourced if 
re-use, remanufacturing, and recycling are not perceived as a company's core
activities. Outsourcing appears appropriate, in particular, in case of material 
recycling and small and variable return flows. In this case, benefits from 
economies of scales can be expected from centralised processing of higher 
volumes. Moreover, a market for recovered materials may be more easily 
accessed by a specialised party. In practice, all intermediate forms between the 
two extremes sketched above may be encountered. For example, collection and 
sorting may be outsourced to a logistics service provider while the recovery 
process of sorted products is carried out in-house. In this way, transportation 
economies of scales can be combined with protecting sensitive technical 
knowledge. In some situations co-operation with competitors may be an option to 
achieve a branch-wide solution. This approach is often found as reaction to 
legislative take-back obligations where recovery does not interfere with core
activities and volumes per individual company are rather low. For example, 
recycling of old cars is organised jointly by the automobile industry in the 
Netherlands whereas recovery approaches by individual car manufacturers prevail 
in Germany. 
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Form of coUection system 
An aspect closely related with the previous one is the choice of the collection 
system. Used products and packages can be collected at several stages of the 
supply chain, e.g., at the final customer (industrial or household), at the retailer, or 
at the manufacturer. Moreover, collection may be taken care of by a party outside 
the original supply chain, e.g., the municipality. The complexity of the return flow 
increases with the number of supply chain stages involved. Realising a return 
logistics system between two consecutive stages may be fairly straightforward, 
e.g., exchange of reusable transportation packages between carrier and 
manufacturer. The situation is considerably more complex if a manufacturer is 
responsible for the recovery of durable products once they are disposed by the 
consumer. A first question is whether the customer is to deliver the used product 
(e.g., to a retailer or to a municipal collection site) or whether it is picked up (e.g., 
by a logistics service provider). Furthermore, questions have to be answered such 
as: is the product returned through the original distribution system, can some 
stages be bypassed, or is an entirely distinct return system set up? Examples for 
the latter case include return via public or private mail services. Pre-paid return 
packages are sometimes distributed together with the original product, e.g., for 
toner cartridges. The acuteness of time pressure is an important factor in the 
choice of the collection system. While, e.g., machine spare parts must possibly be 
repaired very fast, transportation packages such as pallets can often circulate for a 
longer while. 

Location of reverse channel activities 
Another important question is where to carry out the reverse channel activities 
discussed above. To this end locations for required processing facilities, e.g., 
recycling plants or test centres need to be chosen as well as corresponding 
transportation links. For this purpose trade-offs need to be considered between 
processing, investment, and transportation costs. Recycling often involves 
expensive processing equipment while material values are typically low. Hence, a 
central processing site exploiting economies of scale can be expected. On the 
other hand, as pointed out above, products may be pre-processed locally to reduce 
volume and save transportation capacity. For reusable packages such as pallets 
and boxes transportation costs may play a dominant role since processing steps 
are not that involved. Local depots close to collection points may thus be chosen 
in order to reduce transportation flows. In yet another environment, location of 
testing and inspection sites may be a critical factor. For example, feasible 
recovery options for electronic equipment often depend critically on the quality of 
the products collected, which is only known after inspection. Hence, early 
inspection close to collection might save transportation of useless products or 
components. On the other hand, investment costs for testing equipment may be 
substantial, restricting it to a few locations. Yet another aspect to be taken into 
account in location decisions is possible interaction and integration of the return 
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channel and the original 'forward' distribution channel. For example, inspection 
and handling of returns may take place at a distribution centre or remanufacturing 
activities may be co-located with the original manufacturing equipment. 

Routing of collection and distribution 
Also in transportation planning the relation between 'forward' and reverse 
distribution channel plays a key role. For example, for reusable beer or softdrink 
bottles both channels often coincide. While transportation routes are typically 
planned completely forward flow driven, empty bottles are collected along with 
the delivery tours. On the contrary, collection for material recycling of plastic 
consumer packages is fairly independent of the original product distribution since 
the parties that are responsible and the transportation means that are required are 
different in both channels. Similarly, if transportation is outsourced to a logistics 
service provider it appears not to be relevant whether a specific ride represents a 
'forward' or a 'reverse' movement in the client's network. In general, integration 
of 'forward' and reverse distribution may help to increase transportation capacity 
utilisation and to reduce the amount of empty rides. Integration is favoured by the 
fact that timing constraints are sometimes less stringent in the return network. 
Hence, collection rides may be carried out when they best fit in. It should be noted 
that integration of forward and reverse distribution is a crucial factor for the 
amount of additional transportation induced and hence for the overall 
environmental assessment of product recovery approaches. 

4. Examples of Reverse Logistics Networks 

In this section we illustrate Reverse Logistics issues by discussing a set of 
examples. Focus is on network design aspects. We structure the field by 
considering different categories of return flows, namely re-use, remanufacturing, 
recycling, and warranty claims. Recent case studies form the basis of our analysis. 

4.1. Logistics networks for reusable packages 

Probably one of the best known examples at all of 're-use' is re-usable packages, 
including glass and plastic bottles, crates, boxes, and pallets. Industry branches 
that successfully employ re-usable packages are numerous and range from beer 
and softdrink industry to flower auctions and from food to chemical industry. 
Moreover, many logistic firms in sea transport use containers for cargo shipment. 
Kroon and Vrijens (1995) report on a case study concerning the design of a 
logistics system for reusable transportation packages. More specifically, a closed
loop deposit based system is considered for small collapsible plastic containers 
that can be rented as secondary packaging material. While the container pool is 
owned by a central agency, a logistics service provider is responsible for all 
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logistics activities, i.e., storage and maintenance, delivery, and collection of empty 
containers. When they are not used, containers are stored in depots owned by the 
logistics service provider. Upon request they are shipped to a company intending 
to send goods to some other party. Moreover, after use empty containers are 
collected from the recipient. The full shipment from sender to recipient may be 
realised by different carriers and is therefore not considered in the study. Figure 3 
depicts the different goods flows in this system from the perspective of the 
logistics service provider. 
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Figure 3: Reusable Packages Network 

An important question in the network design phase is where to locate the depots 
based on expected requests for container supply and collection. In addition, the 
number of containers required and an appropriate fee per shipment are to be 
determined. In the above study a facility location mixed integer linear program 
(MILP) is developed for this problem, which is closely related with a classical 
uncapacitated warehouse location model. The study reveals several aspects that 
appear to be characteristic of reusable packages networks. First of all, in many 
cases only minor 'reprocessing' steps are required before packages can be re-used. 
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For example, soft drink bottles need to be washed and inspected on damage. 
Similarly, in the above case plastic containers need to be cleaned and maintained. 
The simplicity of operations has consequences for the logistics network structure 
which is often found to be rather flat, comprising only a small number of levels, 
e.g., corresponding to depots. Moreover, a closed loop chain structure seems 
natural in this context, in the sense that there is no distinction between 'original 
use' and 're-use'. (Nevertheless, new items may have to be fed in regularly, due to 
loss and damage.) Determining the number of items required to run the system 
and prevention of loss are important issues in this closed loop situation. The latter 
may be reason for branch-wide co-operation as, e.g., in the beer and softdrink 
industry where identical bottles are used by different companies. Standardisation 
is an important issue in this context. The number of re-use cycles is often rather 
large for re-usable packages whereas cycle times are short. For example, PET 
softdrink bottles are used about 25 times on average and have a market sojourn 
time of about twelve weeks. Consequently, transportation is a major cost 
component and may be reason for a decentralised network including many depots 
close to potential customers. Availability and service aspects point to the same 
direction. On the other hand, decentralisation renders balancing of item flows an 
important task in re-usable packages networks (Crainic et al., 1993). 

4.2. Logistics networks for remanufacturing 

Traditional examples of products being remanufactured include mechanical 
equipment such as machine tools and engines, and spare parts in the automotive 
and aircraft industry. More recently, remanufacturing of electronic equipment 
such as copy machines and computer subassemblies is becoming an important 
area. Logistics network design for the latter cases has been addressed in several 
case studies. 

Thierry et al. (1995) consider the recovery of copy machines by an original 
manufacturer. Based on the same study Thierry (1997) proposes an LP model for 
evaluating combined production-distributionlcollection-recovery logistics 
networks. The model addresses the situation of a manufacturing company 
collecting used products for recovery in addition to producing and distributing 
new products. Collected products need to be inspected and disassembled. 
Recoverable subassemblies are then remanufactured while the remainder is 
disposed of. Remanufactured products are assumed to be sold under the same 
conditions as new ones. The model objective is to determine cost-optimal goods 
flows in the network for given locations and capacity constraints. In this way 
different network layouts can be compared, e.g., integration of production and 
remanufacturing versus dedicated facilities and versus outsourcing recovery 
activities. Reporting on a study at Oce Copiers, Krikke (1998) also deals with 
copier remanufacturing. He proposes an MILP model including location 
decisions. A similar model is investigated by Berger and Debaillie (1997) in a 
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study on remanufacturing of printed circuit boards from used electronic 
equipment. The authors analyse how to extend an existing production-distribution 
network with disassembly centres to allow for product recovery activities. Finally, 
Jayaraman et al. (1997) analyse the logistics network of a specialised electronic 
equipment remanufacturing company in the USA. The company's activities 
encompass collection of used products (cores) from customers, remanufacturing 
of collected cores, and distribution of remanufactured products. Customers 
delivering cores, on the one hand, and demanding remanufactured products, on 
the other hand, do not necessarily coincide. For this setting the optimal number 
and locations of remanufacturing facilities and the number of cores collected are 
to be determined considering investment, transportation, processing, and storage 
costs. 

Commonalities of the above examples give an indication of aspects that are 
typical of remanufacturing networks. The general network structure is depicted in 
Figure 4. 
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Figure 4: Remanufacturing Network 
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Added (manufacturing) value recovery is the main economic driver for 
remanufacturing, typically involving relatively high value assembly products. 
Important characteristics of added value recovery include a close relation with the 
original production process and strong dependence on the actual condition of the 
products to be recovered. Both aspects are reflected by the structure of the 
corresponding logistics network. First of all, added value recovery such as 
remanufacturing both requires and reveals thorough knowledge about the product 
concerned. Therefore, it is not surprising that these recovery activities are often 
carried out by the original equipment manufacturer. Marketing aspects may be 
another reason pointing to the same direction since markets for remanufactured 
and virgin products may overlap and hence involve competition issues. At the 
same time, a close link between recovery network and original logistics network 
may give rise to opportunities for integration, e.g., by combining transportation or 
handling of both flows. Consequently, extending existing logistics structures may 
be a natural starting point for the design of a recovery network. Input quality 
dependence of added value recovery often entails a complex set of interrelated 
processing steps and options which again may be reason for a rather complex 
logistics network structure. For example, reusability of parts and subassemblies of 
a copy machine depends on the time and conditions of its previous usage. Parts 
mayor may not be worn out requiring replacement etc. Hence, the required 
recovery steps may vary per item. Moreover, they are, in general, not known prior 
to inspection, which results in a high level of uncertainty in remanufacturing 
networks. In this context, decentralisation of testing and inspection activities is a 
major issue. As pointed out before, early inspection close to collection may save 
unnecessary transportation of non-reusable parts while investment costs may be 
higher for local installation of testing equipment and personnel. 

4.3. Logistics networks for recycling 

Materials recycling is a well-known phenomenon. Paper, glass, and metal scrap 
recycling have been around for a long while. Recently, recycling is extended to 
materials requiring more advanced technological equipment, such as plastic 
recycling. Logistics network design in the latter context has been addressed in 
some recent case studies. 
Flapper et al. (1997) consider the design of a recycling network for carpet waste. 
High disposal volumes (1.6 million tons of carpet waste landfilled in Europe in 
1996) and increasingly restrictive environmental regulation on the one hand, and a 
potential of valuable material resources, in particular nylon fibres, on the other 
hand has inspired the European carpet industry to setting up a joint recycling 
network together with some chemical companies. Through this network carpet 
waste is to be collected from former users and pre-processed to allow for material 
recovery. The actual recovery operations and sales of recovered materials are 
taken care of by the chemical companies involved. Since the content of carpet 
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waste originating from various sources (e.g., households, office buildings, carpet 
retailers, aircraft and automotive industry) varies considerably, identification and 
sorting is required. Moreover the sorted waste is to be shredded and pelletised for 
ease of transportation and handling. For these pre-processing steps regional 
recovery centres are to be set up from where a homogenised material mix is 
transported to chemical companies for further processing. Goal of the study is to 
determine appropriate locations and capacities for the regional recovery centres 
taking into account investment, processing and transportation costs. Carpet 
recycling is also addressed by Ammons et al. (1997). In the USA a volume of 5 
billion pounds of used carpet material landfilled per year makes recycling an 
economically attractive option. While the entire carpet recycling chain in this 
example involves several parties, leadership is taken by a chemical company 
taking care of the actual processing, separating different re-usable materials and a 
remainder to be landfilled. Unlike in the previous example, the logistics network 
considered extends from used carpet collection from carpet dealerships on the one 
end to end-markets for recycled materials on the other. While the system is 
currently operational with a single processing plant, optimal number and location 
of collection sites and processing plants are investigated for alternative network 
configurations. Barros et al. (1998) report on the design of a logistics network for 
recycling sand coming free in processing construction waste. Re-use in large-scale 
infrastructure projects, e.g. road construction, is considered as a potential 
alternative to landfilling, in line with environmental legislation. Before being 
reused sand needs to be inspected on possible pollution and cleaned if necessary. 
A sand recycling network encompassing depots and cleaning installations is 
jointly being set up by a syndicate of construction waste processing companies. 
Another example of a recycling network is given by Spengler et al. (1997) 
considering recycling of by-products from steel production. 

Figure 5 gives a general picture of the logistics network structure in the above 
examples. The supply chain forms an open loop, i.e. the recovered material is not 
necessarily re-used in the production process of the original product. 
Consequently, material suppliers play an important role in these networks in 
addition to original equipment manufacturers. Moreover, the economics of 
the above recycling networks are characterised by low value per volume collected, 
on the one hand, and high investment costs for specialised equipment on the other. 
Therefore, high processing volumes exploiting economies of scale are vital for 
making the recovery activities economically viable. This is reflected by a 
centralised network structure concentrating processing capacities at few locations. 
Co-operation within a branch may be another means to ensure high processing 
volumes. It is important, in this context, that recovered material sales can be 
expected to hardly interfere with market shares in the original product market so 
that conflicting interests may be avoided. Finally, we find a fairly simple network 
structure in all of the above examples involving few levels only. This appears to 
be a consequence of the limited number of recovery options and the fact that 
material recycling is fairly robust with respect to input quality. 
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Figure 5: Recycling Network 

4.4. Logistics networks for claims and commercial returns 

While Reverse Logistics is a fairly young field product return flows as such are 
not a new phenomenon. Goods flows from customers to producers due to 
commercial returns and customer complaints have been around for a long while. 
Experience in this area may on the one hand serve as a point of reference for 
managing 'reverse' product flows in a wider setting. On the other hand, a 
comprehensive Reverse Logistics perspective may help to improve the handling of 
traditional forms of product returns, too. Logistics network design for commercial 
returns and complaint handling has been the subject of a recent case study 
(Anonymous, 1998). 

The study considers a large manufacturer of electronic household appliances. A 
major supply chain reengineering phase is carried out with the aim of reducing 
costs and stock levels and increasing flexibility. For this purpose, a national 
organisation of the supply chain is replaced by a structuring along larger 
geographical regions. Therefore, national distribution centres of several countries 
are being integrated into one central warehouse, supplying retailers in all of the 
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countries concerned. Two categories of product return flows from retailers to the 
manufacturer are considered in this context. The first category concerns 
commercial returns, i.e. excess stock for which return rights are contractually 
granted. The second group concerns the reverse flow of products due to 
complaints related with the physical distribution process, e.g., wrong delivery or 
damage. It should be noted that in this example product returns are directly related 
with mistakes that were made in the system and hence that avoiding returns 
altogether should be a major goal. This is an important difference with many 
Reverse Logistics situations concerning end-of-life products. 

Until present, all product returns in the above example are shipped to the 
national distribution centres where a classification is made of the product quality. 
Three options are available for further handling; A-quality products are added to 
the commercial stock at the national warehouse, B-quality products are sold in 
personnel stores, and the remainder of the products is scrapped or recycled 
externally. In addition to the product classification, investigation of complaint 
reasons and responsibilities is taken care of at the national distribution centre. The 
question arises how to integrate return flow handling in the new, supra-national 
supply chain structure. 
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Figure 6: Claims and Commercial Returns 
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Two main options are considered, namely concentrating all returns in the central 
European warehouse versus handling returns locally on a national basis. While the 
first approach complies better with the distribution network structure the latter 
may avoid unnecessary transportation of defective goods over long distances. In 
the above case study priority was eventually given to the first, centralised solution 
as displayed in Figure 6. Key factors for this decision were (i) coherence of 
complaint handling with the supply chain structure, (ii) avoiding difficult to 
control local stocks, and (iii) concentrating personnel and responsibilities. 

5. Quantitative Models for Reverse Logistics and Distribution 

We conclude our review on distribution aspects of Reverse Logistics by briefly 
discussing mathematical models that have been proposed as decision support tools 
in this field. For a more detailed analysis we refer to Fleischmann et ai. (1997). 
Since Reverse Logistics, in general, is a fairly young area quantitative analysis has 
not yet been well developed. This also holds for distribution issues. To date focus 
has been on network design. A number of facility location models have been 
proposed in the studies mentioned in the previous section (see, e.g., Jayaraman et 
aI., 1997; Thierry, 1997; Barros et aI., 1998; Krikke, 1998). 

The structure of the models is very similar in all cases and relies on mixed 
integer linear programming. Typically, optimal locations for recovery facilities are 
determined while sources of used products and sinks for recovered products are 
assumed to be known. Hence, the networks considered have a transshipment 
character and the models are closely related with multi-level warehouse location 
models (see, e.g., Tcha and Lee, 1984). In most cases the problems are solved 
using standard approaches such as branch-and-bound with LP-relaxation, add
and-drop heuristics, etc. The main differences with traditional models are related 
with diverging flows. Sorting, testing, and disassembly split incoming goods flows 
into different sub-streams assigned to different recovery and disposal options (see 
Section 3.1). If the fractions dedicated to each option are fixed beforehand this 
can be interpreted as multi-commodity flows which are known from traditional 
distribution network models (see, e.g., Van Roy and Erlenkotter, 1982). Models 
are more complex if the splitting fractions are not fixed but only constrained by 
upper and/or lower bounds. The latter means that the recovery strategy chosen for 
a certain product may depend on the network layout, in particular on 
transportation requirements. For example, certain components may be disposed of 
rather than recycled even if this is technically feasible, if the distance to the 
recycling plant is large. This interaction between logistics network layout and 
product recovery strategy certainly merits more detailed research. 

All in all, we come to the conclusion that current network design models for 
Reverse Logistics seem not to differ much from traditional facility location 
models. Yet at the same time we raise the question whether this necessarily has to 
be so. It appears that at least two important characteristics of recovery networks 
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have not been taken into account in current models, namely uncertainty and 
interaction between 'forward' and 'reverse' distribution. It has often been pointed 
out that uncertainty is typically much higher in a product recovery context than in 
a traditional production-distribution setting (Thierry, 1997). While demand is the 
main uncertain factor in a traditional context, product recovery additionally 
involves supply uncertainty since volume, timing, and quality of product returns 
may vary considerably. However, all current network design models for product 
recovery follow a completely deterministic approach ignoring any of the above 
uncertainties. Therefore, additional research is surely needed to come to a good 
understanding of the economics of product recovery networks. Moreover, in 
Section 3.2 we have sketched the possible interaction between distribution and 
collection, and between production and recovery. This is another aspect that is not 
included in any of the facility location models we know of. Hence, important 
questions yet to be answered include: What is the impact of integrated routing for 
distribution and collection? How should traditional distribution networks be 
modified if product recovery tasks are added? Moreover, in addition to 
location/allocation issues routing aspects in Reverse Logistics are to be 
investigated. To date we are aware of only one work addressing this subject 
(Beullens et aI., 1998). Traditional pickup-and-delivery travelling salesman 
models may provide a starting point in this direction (Mosheiov, 1994). 

We conclude that distribution management in a Reverse Logistics context offers 
many challenges for fruitful quantitative analysis. In this early stage, establishing 
some well-grounded standard models reflecting typical Reverse Logistics 
characteristics seems of prime importance. Later on this may also give rise to 
algorithmic issues such as developing efficient solution methods. 

6. Conclusions 

In this paper we have considered the field of Reverse Logistics from a distribution 
management perspective. We have given an overview of important aspects of 
product recovery including different classes of goods return flows and economic 
and environmental drivers. Moreover, we have indicated the impact of product 
recovery on companies' processes such as production, marketing, information 
management, and distribution. For distribution management in a Reverse Logistics 
context, the selection of reverse channel functions carried out in-house versus 
outsourced plays an important role, as well as the form of collection system 
chosen. Moreover, Reverse Logistics involves both location and routing issues. 
We have seen that recovery situations for different products can differ 
considerably with respect to all of the above aspects. There is no such thing as the 
typical Reverse Logistics system. Efficient logistics management of product 
recovery activities requires careful adjustment to the specific context. Important 
factors to be taken into account include product value, required equipment and 
knowledge, form ofrecovery, and technical constraints. We have illustrated these 
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differences in Reverse Logistics systems by considering a number of examples 
from different fields. 

In the near future, new developments can be expected. Distribution networks for 
Reverse Logistics will hopefully get more attention from academia, leading 
towards the development of more advanced mathematical models for the 
distribution of reverse flows, and adequate solution approaches for the new 
channel type. In addition, more practical information with respect to typical 
recovery functions can be expected since more firms will adapt their logistics 
networks to include recovery activities. 

Classical studies in supply chain logistics consider fairly strict boundaries 
between suppliers, producers, distributors and users. Each part of the chain has its 
own function and location. This pattern is changing as activities such as assembly 
are being spread over the chain in different parts. In analogy with forward chains, 
a return chain can be described by the path from users to collectors, 
remanufacturers and, finally, the recyclers. However, functions as described in 
this paper are less strictly assigned to actors than in traditional logistics 
approaches. Therefore, Reverse Logistics may play a leading role in developing 
new network concepts, in which actors and functions can be assigned to each 
other in a more flexible way. 
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Abstract. The introduction of (extended) producer responsibility forces Original 
Equipment Manufacturers to solve entirely new managerial problems. One of the issues 
concerns the physical design of the reverse logistic network, which is a problem that fits 
into the class of facility-location problems. Since handling return flows involves a lot of 
different processing steps, the physical system might consist of two or more echelons. In 
this paper, a MILP-model is presented that gives decision support in designing the physical 
network structure of a multi-echelon reverse logistic system. The model is applied to a case 
from the automotive industry. The general applicability of the model in logistic network 
design is discussed. Finally, subjects for further research are pointed out. 

Keywords. reverse logistics, location allocation, MILP, network design 

1. Introduction 

Over the past few years, environmental problems have reinforced public 
interest in reuse and recycling. What is new, is the role of industry in this process. 
More and more, Original Equipment Manufacturers are held responsible for the 
take-back and recovery of their own products, both by the consumer and by new 
environmental legislation. This means that material flows should be closed to 
obtain an integral supply chain, which is reflected in Figure 1. A new managerial 
area called Product Recovery Management (PRM) emerges, which can be 
described as "the management of all discarded products, components and 
materials for which a manufacturing company is legally, contractually or 
otherwise held responsible" , cf. (Thierry et ai., (1995». 
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recovery 

'-------- disposal 

Figure 1. Reverse logistic system in integral supply chain (grey) 

As a result, many industrial businesses will compulsorily be confronted with 
large volumes of discarded or return products. A number of managerial problems 
of an entirely new nature will have to be solved. Some critical problems include 
the following: 

• product design must enable cost effective disassembly and processing as well 
as high quality recovery 

• secondary end markets must be sufficiently developed 
• products must be returned in sufficient quantity and quality 
• relevant information must be available to decision makers 
• a recovery strategy must be determined for return products. 

Another key issue concerns the network design of a reverse logistic system, 
i.e. , the locations and capacities of processing facilities -such as disassembly 
stations or shredders- and the optimisation of good flows between facilities. These 
kind of problems are generally known in OR-literature as facility-location 
problems. A physical network can consist of one, two or more echelons. A reverse 
logistic system may involve more than two echelons, due to the high number of 
(different) processing steps to be performed. This paper discusses a multi-echelon 
model that can deal with more than two echelons and multiple facility types. The 
paper is built up as follows. In Section 2, the problem situation is defined. Section 
3 discusses literature. In Section 4, a mathematical model is presented for 
determining an optimal multi-echelon network structure. In Section 5, we present 
a case from the automotive industry. Section 6 is meant for discussion and 
conclusions. 
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2. Problem definition 

The problem situation studied in this paper can be described as follows. Return 
products of a certain type are discarded from the consumer market. The products 
are collected at a finite number of supply points and from there supplied to the 
reverse logistic system. Every product is to be processed by a recovery strategy. 
This strategy gives quality dependent decision rules regarding the degree of 
disassembly and processing options (reuse, recycling, disposal) applied and hence 
determines the sequence of processes to be performed (Krikke, (1998)). The aim 
of a recovery strategy is to regain maximal economical value at minimal 
economic cost while meeting technical and ecological (legislative) restrictions. 
We assume that supply and demand for different Recovery and Disposal (RD-) 
options are balanced in this recovery strategy, so in our physical network design 
model we can assume that collection volumes and (secondary) demand volumes 
are equal. The secondary products, components and materials -resulting from 
applying the recovery strategy- are delivered at customer demand points. As we 
mentioned, every RD-option requires a sequence of processes, where every 
process type requires a specific facility type. The reverse logistic system must 
provide the processing capacity for realising the degree of disassembly and RD
options assigned in the predetermined recovery strategy. This is to be taken into 
account in the network design. 

The following entities are assumed to be known: 

• for each supply point: the amount (kg) of discarded products, specified per 
RD-option 

• for each customer demand point: the amount (kg) of secondary products, 
specified per RD-option 

• for each RD-option: the sequence of facility types required to realise this 
option 

• for each facility type: a set of feasible locations plus investment and (constant 
and variable) processing cost at these locations 

• distances between all possible locations plus transportation cost. 

For simplicity, we neglect the problems concerning material loss or emissions 
during the processing. We also assume that there is only one problem owner - the 
OEM - and only one type of return product. Of course, in practice many 
complications might arise. Therefore, we shall discuss extensions of the model is 
Section 6. 

Now, in the physical network design model, it is to be determined for every 
facility type which location(-s) should be opened and which volumes are handles 
by which facility. The aim is to minimise the sum of transportation, processing 
and yearly investment cost while demand and supply constraints are satisfied. 
Also, the predetermined recovery strategy must be implemented correctly and no 
capacity constraints are set on the facilities and transportation links. 
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3. Literature 

The use of location-allocation models in reverse logistics is described in a number 
of studies, mostly related to cases. Below, we give a review of these models. 

(Caruso et ai., (1993)) consider an Urban Solid Waste Management System 
(USWMS). They develop a location-allocation model to find the number and 
locations of the processing plants, given the locations of the waste generators and 
landfills. For each processing plant, the technology -incineration, compo sting or 
recycling-, the amount of waste processed as well as the allocation of service users 
(waste sources) and landfills (waste sinks) are determined. No more than one 
facility may be located in one geographic zone and there are maximum capacities 
for all facilities and landfills. The model is single period and has a multi-criteria 
objective function, with components for economic cost, waste of resources and 
ecological impact. Efficient heuristics are developed to solve the problem. The 
model was applied in a case study for the region of Lombardy (Italy). 

(Ossenbruggen and Ossenbruggen, (1992)) describe a computer package for 
solid waste management (SWAP) based on LP-modelling. The model describes a 
waste management district as a network, where nodes represent waste sources, 
intermediary (capacitated) processing facilities and destinations (sinks) on given 
locations. Sources, sinks and intermediary stations can be of multiple (technology) 
types. Decision variables are the amount of waste to be processed by each facility 
and the magnitude of flows between the facilities. Implicitly, the processing paths 
are determined, where a flow can be split into sub-streams for different 
processing. Constraints follow from technically allowed processing sequences and 
capacity limitations. The algorithm finds a cost optimal solution, where the cost 
function only includes variable costs per waste unit, e.g. kg. These unit costs 
incorporate tipping fees, shipping costs and revenues from reuse. 

(Pugh, (1993)) describes the HARBINGER model, which gives decision 
support in the long term waste management planning of a city or county. The 
waste management system involves collection, transportation, treatment and 
disposal or reuse of a communities waste stream. These systems tend to be very 
complicated, which explains the need for mathematical analysis. The heart of 
HARBINGER lies in the multi-period allocation sub-model, which determines the 
cost-optimal assignment of waste flows from the sources to treatment and disposal 
facilities on given locations, within constraints set by the user (e.g. for capacity). 
Optimisation occurs on least cost. Other sub-models of HARBINGER are used to 
specify the input for the allocation sub-model and for post-optimality analysis. 
Unfortunately, the model description is not very detailed. 

In a study of (Marks, (1969)), the problem of selecting transfer stations is 
considered. Waste is generated at discrete sources and from there routed via 
intermediary transfer stations to discrete sinks, representing the disposal locations. 
The sinks have a demand that varies between a lower and upper bound reflecting 
minimal throughput requirements and maximum capacities of these disposal 
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locations. At the intermediary transfer stations activities like transfer, packing and 
sorting can take place. The transfer stations can be located at a number of 
locations, where capacities are restricted. Each opened location has a fixed cost 
and linear processing cost. Also transportation cost between sources, intermediary 
transfer stations and sinks are linear. The problem is formulated as a Mixed 
Integer Linear Programming problem. A Branch & Bound algorithm, using an 
out-of-kilter algorithm at the nodes, is developed to fmd the solution with the least 
overall cost. 

(Gottinger, (1988)) develops a similar, but more extensive regional 
management model. The model is concerned with the number, location and 
capacity (expansion) of both intermediary transfer stations and the ultimate 
disposal locations (sinks) as well as the routing from discrete waste sources 
through the system to the sinks. There is one type of transfer station and one type 
of disposal facility. For both types of facilities a set of potential and existing 
locations is given. The concave cost functions are approximated by linear 
segments, whereby one segment is represented by a pseudo-facility. Each pseudo
facility has a fixed cost and linear processing cost, in compliance with the cost 
function of the corresponding real life facility, within the capacity range covered 
by the pseudo-facility. Only one pseudo-facility per location can be opened. 
Existing locations have a restricted (current) capacity, potential new locations 
have infmite capacity. In addition, source locations and magnitude of waste flows 
generated and (linear) transportation costs are given. The aim is to minimise 
overall cost. A B&B procedure, very similar to the one of (Marks, (1969)), is used 
for optimisation. Some variations of the model are described, for which special 
purpose algorithms are developed. The general model is applied in a case study 
for the Munich Metropolitan Area. 

(Spengler et aI., (1997)) develop a MILP-model for the recycling of industrial 
by-products in German steel industry. The model is based on the multi-level 
warehouse location problem and modified for this case study. It has to be 
determined which locations will be opened and how flows are routed from the 
sources through the intermediary facilities to the sinks. The model is multi-stage 
and multi-product, while it is allowed to transfer sub-streams of interim products 
from one intermediary facility to another in various ways, before delivering it at a 
sink. A sink can be either a reuse or a disposal location. Facilities can be installed 
at a set of potential locations and at different capacity levels, with corresponding 
fixed and variable processing cost. The type of processes to be installed at the 
intermediary facilities also have to be determined, hence the processing graph is 
not given in advance. Maximum facility capacities are restricted and 
transportation costs between locations are linear. While the amounts of waste 
generated at the sources are fixed, the demand at the sinks is flexible within a 
range. This range is set by the minimal required throughput and the maximum 
capacity of the sink. 

(Barros et aI., (1998)) present a MILP-model to determine an optimal network 
for the recycling of sand. In this real life case, sieved sand is coming from 
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construction works, which represent the sources. The sand is delivered at a 
regional depot, where it is sorted in three quality classes. The first two classes, 
clean and half clean sand, are stored at the regional depot in order to be reused. 
The dirty sand is cleaned at a treatment facility, where it is also subsequently 
stored as clean sand. Both the clean and the half clean sand can be reused in new 
projects, which represent the sinks. Supply and demand are fixed for the 
respectively three and two qualities of sand. It has to be determined at which 
locations regional - and treatment centres must be opened, where locations can be 
picked from a pre given set of potential locations. Also the capacities of the 
facilities and the routing through the system have to be determined, where 
capacities of both facilities are restricted. Opening a facility incurs a fixed and 
variable linear processing cost, transportation costs are also linear. The model 
used is a multi-level capacitated warehouse location model, for which heuristic 
algorithms are developed. 

A huge amount of research has been carried out in facility location theory in 
general, for a review see e.g. (Domschke and Krispin, (1997». However, classical 
models are primarily oriented at classical production-distribution systems and not 
directly applicable to reverse logistics due to some typical characteristics of 
reverse chains. Firstly, forward logistic systems are pull systems, while in reverse 
logistics it is a combination of push and pull due to the fact that there are clients 
on both sides of the chain, namely the disposer and the reuser. As a result, there 
remains a logistic design problem quite different from forward problems, because 
it includes both transhipment and facility location aspects. Secondly, forward 
logistic models usually deal with divergent networks, while reverse flows can be 
strongly divergent and convergent at the same time. Thirdly, in reverse logistics, 
transformation processes tend to be incorporated in the distribution network, 
covering the entire 'production' process from supply (=disposal) to demand 
(=reuse). In addition, since only a fraction of return flows is valuable, it is likely 
that in an efficient design, operations are spread over a high number of echelons. 
Traditional forward logistics models usually focus on one or two echelons. We 
conclude that the classical facility location models lack most of the above 
characteristics, which are typical for reverse logistic systems. Therefore, we only 
discussed models specifically developed for reverse logistics. 
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4. Model formulation 

Next, we give an extended version of some of our earlier work, presented in (Kooi 
et ai., (1996)). 

4.1 The concept of routes 

The core of the model is the concept of the processing route. As mentioned 
before, every RD-option assigned in the recovery strategy requires a sequence of 
processing facilities. For every facility, a set of locations is available. 

Now, a processing route represents a sequence of facilities (required for a 
particular RD-option) all assigned to one location chosen from the set of potential 
location of that facility. For example, for RD-option "recycling" a processing 
route could be (shredder, location 1) -> (me Iter, location 2) or (shredder, location 
3) -> (me Iter, location 2). A set of all possible processing routes is generated for 
each RD-option. Note that a facility -and thus a location- can be part of multiple 
processing routes. Each processing route can be used by return products assigned 
to the corresponding RD-option, at a certain cost per kg, i.e., variable processing 
costs per kg of every facility on the route and transportation cost between the 
facilities (from the first to the last facility on the route). A location must be 
opened, if at least one processing route is chosen that 'passes' through this 
particular location. For this, investment costs are charged. If multiple facilities are 
opened at one location, facility investment costs are charged for each facility, 
hence investment costs are not shared. Facility investment costs are also not 
capacity dependent. 

In addition, we need entry routes and delivery routes. An entry route is the 
connection between a supply point and the first facility of a processing route. 
Entry routes can be used at a certain cost, equivalent to the transportation cost 
between the two locations involved. Analogously, the secondary products are 
delivered to a customer via a delivery route. The 'delivery costs' are equivalent to 
the transportation costs between the last facility of the processing route and the 
demand point. The model now has to determine an optimal configuration of entry, 
processing and delivery routes, which is referred to as the optimal reverse logistic 
network design. 
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4.2 Construction of an MILP-model 

Schematically, the problem with one RD-option rl, one processing route pi, three 
entry - and three delivery routes can be represented as in Figure 2. 

ENTRY ROUTES 

PROCESSING ROUTE 

DELIVERY ROUTES 

Figure 2. Mathematical representation for one RD-option rl with processing route 
pi, three supply points SI.S3 and three demand points dl .. d3. 

To formulate our model we introduce the following notation: 

f 
loc 
Clr,1oc 
p 
r 
s 
C 

CPpr 

CEprs 

CDprc 

Vsr 

Dcr 

facility type, f=fl .. fF 
location, loc=loc I •• locL 

investment costs of facility type f on location loc 
processing route, P=PI .. pp 
RD-option, r=r I·.r R 

supply point, S=SI .. SS 
customer demand point, c=cI .. cc 
processing costs for RD-option r via route p 
entry costs ofRD-option r via route p for supply from point s 
delivery costs of RD-option r from route p to customer c 
supply of products assigned to RD-option r at supply point s 
demand at customer demand point c for secondary products, 
components and materials resulting from RD-option r 
I if (f,loc) on p for r, else 0 
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The decision variables are: 

the amount (kg) of products from supply point s assigned to 
RD-option r to be processed via route p 
the amount (kg) of products assigned to RD-option r, processed 
by route p, delivered to customer c 
the amount (kg) of products assigned to RD-option r, processed 
via route p 

Note that XPpr is an implicit decision variable and dependent on XEprs and XDprc' 

In other words XP pr is equivalent to L XEprs and L XDprc ' 
s c 

• Yr,loc is 1, if location loc is open for facility f, else O. 

The MILP-model becomes: 

MINIMISE 

L L L CEprs * XEprs + L L CPpr * XPpr + 
p r s p r 

L L L CDprc *XDprc + L L CIr./oc * Y r.loc 
p r c f lac 

(1) 
S.t. 

Vsr L XEprs 'if s,r (2) 
p 

L XDprc Dcr 'if c,r (3) 
p 

L XEprs XPpr 'if p,r (4) 
s 

XPpr L XDprc 'if p,r (5) 
c 

XEprs * Mrprloc <= Yr,loc * Vsr 'if r,p,s,f,loc (6) 

XEprs, XPpr ,XDprc >= 0 'if p,r,s,c (7) 

Yr,loc = 0,1 'if f,loc (8) 
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The constraints (2) to (8) are formulated to make sure that: 

• all waste supplied enters the systems via entry routes (2) 
• all demand is satisfied via delivery routes (3) 
• all products entering a processing route are taken away from this route (4) (5) 
• if a route p is used by any supply point s for any option r, then all locations loc 

at this route are opened (6) 
• logical constraints (7) (8) are for possible values of variables 

Let us now take a look at the results of the automotive case, which is described 
in the next section. 

5 Automotive case 

The case is meant to give an idea of the working of the model. Firstly, we shall 
give a description. Then the data that serve as model input are described. Finally, 
results are discussed. 

5.1 Description 

An OEM of automobiles takes back its family cars. All cars are treated exactly the 
same, so they can be considered as one type of car. The recovery strategy is as 
follows: 

I. 70 % of all cars is disassembled and reusable parts are reused in the car-repair 
business 

II. 30% of all cars is disassembled and shredded. The shredder fluff is sold to 
material recyclers, who recycle the materials. 

Figure 3 reflects the recovery strategy graphically. 

CARS RETURNED 
1000/0 r-------------, 

---.. , disassembly 
70% (reusable parts) 

---------.~ CAR REPAIR BUSINESS 

30% (parts for recycling) 

shredding 
30% (shredder fluff) 

t-----... MA TERIAL RECYCLERS 

Figure 3. The recovery strategy in the automotive case 



55 

5.2 Model parameters 

Collection points as well as customer demand points are at three locations. There 
are seven possible locations for the facilities disassembly stations and the 
shredders. Facility investment costs are different per location (per facility) due to 
different landprices. For each facility type, (variable) processing costs are 
equivalent for all locations, so they have no influence on the optimal solution. 
Therefore, they are left out of consideration in this case, hence CP pr is now 
equivalent to the transportation costs between the locations on processing route p 
(generally, this is not the case!). Transportation costs are calculated by 
multiplying the distance between locations with a cost of fl. 0.16 per kIn per ton. 
Facility investment costs are depreciated linearly in 10 years, without interest. 
Below, we summarise the data for the cost parameters in Table 1,2 and 3. 

Table 1. Entry and delivery costs per ton in Dutch guilders 
facility lac. supply supply supply demand demand demand 

Bop Den H. Zwolle Hoekv.H. Lemmer Roermond 
Z 

Enschede 38.9 37.8 11.5 35.4 20.3 32.8 
Groningen 47.4 24.1 16.6 39.8 12.3 44.3 
Haarlem 29.1 12.5 20.8 11.6 19.3 30.1 
Maastricht 29.1 46.4 37.1 36.1 46.4 7.2 
Middelburg 10.1 43.8 40.8 14.9 45.4 33.1 
Tilburg 10.1 31.5 25.3 17.3 31.4 14.2 
Utrecht 17.9 19.5 14.4 13.6 18.4 22.9 

Table 2. Yearly facility investment costs in Dutch guilders 
facility location 

Enschede 
Groningen 
Haarlem 
Maastricht 
Middelburg 
Tilburg 
Utrecht 

investment cost shredder 

3.054.000 
3.000.000 
3.030.375 
3.000.000 
2.993.250 
3.006.750 
3.175.500 

investment cost disassembly 
station 
177.500 
167.500 
223.700 
167.500 
166.250 
168.750 
200.000 

Table 3. Transportation costs per ton between facility locations (Dutch 
guilders) 

E'de Groningen H'lem Maastricht M' burg Tilburg Utrecht 
Enschede X 
Groningen 21.4 X 
Haarlem 28.3 31.4 X Symmetric 
Maastricht 41.6 53.3 35.5 X 
Middelhurg 48.3 57.0 31.7 38.6 X 
Tilburg 29.9 41.4 20.5 19.7 19.7 X 
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Utrecht 22.1 30.4 8.5 28.3 27.3 13.3 x 

Basically, two situations with different supply and demand parameters are 
analysed in the case. The supply and demand parameters are reflected in table 4 
and 5. 

Table 4. Yearly supply of cars in 1000 tons for two scenarios 
Collection point Collected volume RD-option I. Collected volume RD-option 2. 
Bergen op Zoom scenario I: 9 scenario2: 7 scenario 1: 5 scenario2: 3 
Den Helder scenario 1: 5 scenario2: 7 scenario 1: 1 scenario2: 3 
Zwolle scenario 1: 7 scenario2: 7 scenario 1: 3 scenario2: 3 

Table 5. Yearly demand for secondary parts/materials in 1000 tons for two 
scenarios 
Customer demand point 
Hoek van Holland 
Lemmer 
Roermond 

5.3. Results 

Demand volume RD-option 1. 
scenario 1: 10 scenario2: 7 
scenario 1: 4 
scenario 1: 7 

scenario2: 7 
scenario2: 7 

Demand volume RD-option 2. 
scenario I: 4 scenario2: 3 
scenario 1: 2 
scenario 1: 3 

scenario2: 3 
scenario2: 3 

The model was implemented in CPLEX, on a HP 90001710 workstation. Run 
times for the case parameter settings were around 5 seconds. The problem 
complexity for the problem instance chosen is not very high. However, larger 
problem instances may cause problems. We will come back to this in Section 6. 
The results are worked out for two scenarios. 

In scenario 1, the supply is (9,5,7) and (5,1,3) tons for RD-option I and II 
respectively, while demand is (10,4,7) and (4,2,3) tons. In this scenario, 
disassembly stations are opened in Tilburg and Utrecht and a shredder is located 
in Tilburg only. Overall costs are 4.313.660 guilders per year, variable processing 
costs not included. The processing flows are given in Table 6. 

Table 6: processing flows for scenario 1 for option I and II 
facility location processing flow 
disassembly station Utrecht I: 12,11:0 
disassembly station Tilburg I: 9, II: 9 
shredder Tilburg I: 0, II: 9 

In scenario two, supply and demand are (7,7,7) and (3,3,3) for both RD-option 
and II. Now, a disassembly station is opened in Utrecht and a shredder in 

Haarlem. Overall costs are 4.392.639 guilders per year, again variable processing 
costs excluded. The flows are given in Table 7. 
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Table 7: processing flows for scenario 2 for option I and II 

facility location processing flow 
disassembly station Utrecht I: 21, II:9 
shredder Haarlem I: 0, II: 9 

Sensitivity analysis 
Given the fact that investment costs represent the largest cost component, the 
depreciation period chosen is therefore of crucial importance to the final solution. 
To illustrate this, we vary this parameter in a range between 1 and 15 years for 
scenario 1. The results are in Table 8. Similar results are obtained for scenario 2. 
Additional sensitivity analysis revealed that the optimality of solutions did only 
moderately depend on variance in other parameters. 

Table 8: Sensitivity analysis for scenario 1- vary depreciation period of fixed costs 

depreciation period in yearly cost (guilders) optimal solution 
number of years 

2 
3 
4 
5 
6 
7 
8 
9 
10 (initial choice) 

11 
12 
13 
14 
15 

32.911.520 

17.033.520 
11.740.853 
9.094.520 
7.506.720 
6.448.186 
5.692.091 
5.125.020 
4.683.964 
4.313.660 

4.006.807 
3.751.080 
3.534.695 
3.349.222 
3.188.479 

in 
from year 1 till year 9: 
disassembly station 
Tilburg and shredder in 
Tilburg 

from year 10 till year 15: 
additional disassembly 
station in Utrecht 
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6. Discussion and conclusions 

Managerial use of the model 
The managerial usefulness of the model can be exploited in scenario analysis, as 
module in a hierarchical decision process. For example, the management of the 
OEM might like to know the impact of: 

• opening or closing of facilities in an existing network 
• changes in transportation costs due to increased tariffs or improved 

infrastructure 
• the implementation of new recovery technologies, resulting in different cost 

functions or entirely new RD-options 
• new supply points or customer locations. 

In addition, results of sensitivity analysis might used to compare potential benefits 
of improved robustness with the cost of gathering additional information or 
improving logistic control. 

Model complexity and computational results 
The model complexity is: 

I R 1.1 S I + I R 1.1 c I + I R I .1 pi + I P 1.1 R I + I R I .1 P 1.1 S 1.1 F 1.1 LJ LJ I with 

respect to the number of constraints and I LJ LJ I with respect to the number of 

boolean variables, with Ljthe set of locations loc for facility f. 
Regarding constraints, it is clear that constraint (6) adds most complexity to 

the problem, namely I R 1.1 P 1.1 S 1.1 F 1.1 LJ LJ I constraints. In order to reduce 

the complexity, we might use a weak formulation of constraint (6), i.e.: 

<= L., Y f, IDe * V" 'if r,p,f,loc (6') 

This reduces complexity with a factor I S I, One can see that constraint (6') is 
effective, since all locations at a route are opened if at least one supply point s 
uses route p for an option r, Reducing complexity can also be realised by 
removing the booleans and using an LP-relaxation to solve the problem. In a 
reverse logistics situation where supply and demand are balanced and given, we 
obtain a location problem with transhipment characteristics. This can be used in 
developing algorithms, e,g. a network flow algorithm can be used in a branch and 
bound solution procedure or smart heuristics, since an LP-relaxation of the 
problem can easily be solved as a network flow problem. A general disadvantage 
of the weak formulation is that we obtain less integer values in the LP-relaxation, 
The complexity of the case given in Section 5 is given in Table 9, 
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Table 9: complexity of case problem for various model variants 
model variant number of constraints number of boo leans 
strong formulation 9644 14 
weak formulation 3214 14 
LP-relaxation 9658 0 

As we can see, the case problem is small and causes no problems in 
computational sense (about 5 seconds solving time using CPLEX for the strong 
formulation). However, in larger problem instances it may be necessary to use an 
alternative variant of the model, possibly in conjunction with heuristic algorithms. 

Also, smart model formulation can be used to reduce complexity of modelling. 
The problem complexity may be reduced by: 

• clustering of supply and demand points 
• reducing the set of possible routes by eliminating routes unlikely to be 

selected. 

Computational results were not the first concern in the research, in which it was 
focused on model formulation. 

Subjects for future research 
In this paper, the focus was very much on open loop systems. In closed loops an 
integral supply chain is realised, which increases the number of interactions in the 
system and hence system complexity. Also, in reverse logistics there is often 
uncertainty with respect to quantity, quality and timing of returns. Gaining control 
over returns is a notorious problem. It remains to be seen whether this has 
consequences for the modelling of location-allocation problems. For example, 
uncertainty in supply may be dealt with by traditional methods in sensitivity 
analysis, but also new stochastic or probabilistic location models may be 
developed. For example, in our automotive case, the parameter Vsr might be 
stochastic, as a result of uncertain return quality, hence the volume of return flows 
at location s feasible for some RD-option r might have some kind of distribution. 
(Laporte et aI., (1994» provide some interesting insights in stochastic location 
models. To the best of our knowledge, current stochastic locational models deal 
with uncertainty in the right hand side 'b' of the constraint matrix Ax=b. This 
might be applicable to our parameter V.,. Another way of modelling is to 
introduce a reusability fraction parameter Y, which would be part of the left hand 
side' A'. Future research could focus on dealing with this kind of models. 

Moreover, we have restricted ourselves to a relatively easy problem, which 
might be more complicated in practical situations. Therefore, further model 
extensions might follow from changes in the problem definition of Section 2. 
Some examples include problem situations in which: 



60 

• supply and demand are not balanced, hence no recovery strategy has been 
determined 

• customers do not take full batches of secondary parts or materials but only 
parts of it 

• the OEM co-operates with other OEMs 
• the OEM has to deal with multiple product types 
• facility investment costs are capacity related 
• the number of facilities is limited per location 
• the capacities of facilities are restricted 
• minimal throughput for each opened facility is required 
• volume reduction, emissions and material loss occur during recovery 

processes. 

This might lead to additional minimal throughput/maximal capacity constraints, 
piecewise linear cost functions, a volume reduction factor in the balance equations 
etc. Our future research aims at improvements of the model on the above aspects. 
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1 Cooperative Distribution as a New Response to 
Cost Pressures 

German manufacturers of consumer goods, which supply for an annual retail sales 
volume of more than DM 700 billion, are in a difficult position today: they are 
suffering from severe profit pressures due to 

• stagnating consumer demand, 
• a massive concentration among their customers in the retail sector, 
• changing service and price demands in the context of the "ECR" revolution, 
• the challenge of the "europeanization" of markets, and 
• uncertain effects of "electronic shopping" on demand and the viability of 

established distribution channels. 

Consumer goods manufacturers are responding to these challenges by trying to 
drive down cost and simultaneously to secure service improvements that may be 
shared with retailers. Specifically, consideration is given to the potentials of 

• consolidating inventories, cargo movements, and introducing cross-docking 
as a standard practice, 

• consolidating deliveries to retailers in order to relieve congestion at retailers' 
receiving docks, 

• shifting towards EDI-based, centralized, automated "no touch" order 
processing and replenishment processes, and 

• ecologically "clean" modes and practices of transport. 

Currently, the consolidated annual transport volume of this group of 
manufacturers in the German market amounts to 

M. G. Speranza et al. (eds.), New Trends in Distribution Logistics
© Springer-Verlag Berlin Heidelberg 1999



Orders/consignments: 
Tonnage: 
Range of weights: 
Customers: 
Transport cost: 

64 

365,000 
220,000 t 
1 kg ... 120 t 
14,500 
36Mio.DM 

Specifically, the group was interested in the identification and assessment of the 
effects of cooperative distribution alternatives on their logistics cost. With 
mounting pressure from retailers to lower cost and to find ways to "unclog" 
retailer receiving docks, the joint operation of warehouses and transportation in a 
common network seemed to be an interesting option, despite the fact that the 
manufacturers continue to compete in the markets. They wanted to include the 
cost-saving consolidation effects, which had been. 

A study was initiated with the Nuernberg Fraunhofer Center of Applied 
Research in Transport Logistics to find answers to the following logistical issues: 

• What are the transportation costs of a selected period "as is" (if performed 
separately) according to a model calculation, and how much do the real costs 
differ from the model costs? 

• What savings can be achieved by joint transport operations in a cooperative 
distribution system? 

• How much do various structures of the common distribution system influence 
the total distribution cost and the distribution cost of each individual 
company participating, and which distribution system structure would be the 
optimal one? 

• What is the leverage of "planned synergies", i.e. the coordination of delivery 
dates among the partners with respect to cost development, and which kind of 
coordination should be preferred? 

• How would shipments sizes and assignments to traffic lanes and cross
docking points change by cooperation? 

• What would be the optimal "weight-cuts" for the assignment of shipments to 
truck-load (TL), less-than-truck-Ioad (LTL), and parcels services? 

An important additional consideration, beyond finding some optima on the basis 
of the data provided, was to develop a better understanding of interactions 
between the various effects respectively the cost-leverage of the variables studied 
(such as cooperative volumes, network structure, coordinated delivery schedules, 
etc.), in order to base future strategies on these findings and to design appropriate 
mechanisms for sharing savings among the cooperation partners. 

In order to solve this task, a DSS tool had to be developed to provide qualified 
support in answering the questions raised. It was expected that the new DSS had 
to be intuitive and transparent enough to the participating logistics practitioners to 
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allow them to follow the analyses step-by-step. At the same time, it had to be able 
to handle a degree of data and network complexity - due to the specificity of 
issues in cooperative distribution - that goes well beyond familiar logistical 
network modelling demands. 

The purpose of this paper is to describe the approach taken by the Nuremberg 
group to meet these demands and to suggest that it this DSS design may be 
applied to other cooperative distribution modelling problems. It appears likely that 
problems of this type are becoming more frequent and economically more and 
more relevant in the practice of consumer goods logistics. 

2 Problem Description 

Usually, manufacturers of consumer goods make use of a service provider for the 
distribution of their goods. The finished products are provided for delivery either 
in a warehouse associated with the factory or in a central warehouse, which 
consolidates the products of several factories. Larger shipments (starting at about 
2 ... 3 tons) are either picked up from the factory or central warehouse and 
delivered directly (as "TL" cargo) to the customer without intermediate 
transshipment operations. Smaller shipments (up to 30 ... 50 kg) are usually 
shipped through parcel services, which allow for cost-effective delivery of 
shipments from factories or central warehouse to retail outlets. I 

The major part of typical consumer goods shipments, however, is routed through 
LTL networks. Individual LTL shipments (usually in the weight range between 30 
kg and 2000 kg) are combined into consolidated LTL-Ioads by the respective 
destination areas. Central warehouses serve as L TL-consolidation nodes. 
Consolidated LTL-Ioads are then transported to destination areas by the L TL
carriers on their scheduled, daily line-haul lanes, sorted at destination depots/ 
transhipment centres - which usually are terminals of the LTL-service providers
and delivered to the customers on final delivery routes. Destination may also be 
regional warehouses or distribution centres operated by the manufacturers, or 
cross-docking centers or warehouses operated by retailers. In the following 
discussion, the destination nodes of any consolidated line-haul lanes will be called 
distribution nodes. 

The process of shipment delivery from the distribution nodes to the customers 
by local tours is relatively the most expensive phase in the distribution system? 
Therefore, the design of the distribution areas plays an important role for the 
improvement of the distribution network. 

1 Parcel delivery can be considered a direct shipment, although parcel services handle their 
shipments by a highly organized network. 

2 50% and more of the total costs of L TL transports fall to the share oflocal delivery. 
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The most elementary task in the cooperative distribution network analysis, 
hence. is the evaluation of the effect of the consolidation of each participating 
manufacturer's cargo volume on distribution costs, and then to search for a most 
favourable common network structure. 

The analysis is based on detailed shipment data (for any shipments moving 
between the cooperating manufacturers and their retail customers) during a 
representative period of time. The data had been "exported" from the order
transaction systems of the participating manufacturers. The processing and 
coordination of the large amount of shipment data (365,000 shipment data sets in 
the project described here!) stemming from four different sources is a very 
cumbersome task, which, due to the variety of formats, can only poorly be 
supported by the DSS tools themselves. 

The evaluation of a distribution system, even for a single manufacturer, and 
more so for a cooperation of several manufacturers, is difficult for several reasons: 
transport market rates typically offered by service providers reflect the true 
structures of costs only poorly and tend to fluctuate due to short-term competitive 
influences. Therefore, they cannot be taken as a base for longer-term "strategic" 
calculations. An evaluation requires, at least for the decisive parts of the 
calculation, to apply cost models which are related to "true" cost of the logistics 
services, based on the assumption that market rates will vary about and converge 
towards "true cost" over the long run. 

The non-linear dependencies of the costs from shipment sizes. transportation 
distances, third-party tonnage in the system, and expectations for back-haul 
shipments for the destination regions, adds another dimension of complexity to the 
problem of cost modelling and calculation. A transport cost model which is as 
close to reality as possible, however, is essential for a comparison between the 
situation "as is" and the effects of cooperative transportation and warehousing 
transactions. It is also useful as a basis for pricing assessments and negotiations 
between shippers, transport service providers, and retailers. 

In order to assess cooperation effects, first of all the costs of the single partners 
have to be determined separately on the foundation of their specific networks. 
After that the shipments of all partners in a common network are evaluated and 
cost savings are determined. As a first approach, the existing network of one of the 
partners may be used as the "common" network. Later on, additional central and 
regional nodes may be defined for more and more cost effective solutions. Beyond 
savings that can be achieved by changing the common network structure 
(structural effect) there will be additional savings through the coordination of 
delivery dates (synergetical effect). 

The design of a cooperative distribution network and its operation modes will 
also be influenced to a significant degree by the special interests and demands of 
the involved partners. Therefore, not an optimal solution, but information about 
the leverage of changes in relevant system variables is so important. The 
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advantages and disadvantages of those changes have to be evaluated and 
compromises acceptable by all partners should be achieved. 

In the following sections of the paper, the model, the principal approach, and the 
methods used in addressing the problem described are presented, as well as a 
discussion of some results. 

3 Elements of the Model 

In order to answer the questions raised in section 2, three elements of the DSS
modelling process must be considered: 

• mapping the distribution network into a structured graph, 
• modelling transport and warehousing/transhipment costs, and 
• preparing the data for input into the model. 

3.1 Mapping the Distribution Network 

A graphical depiction of the structural model is shown in figure 3.1. Four types of 
nodes - factories, consolidation nodes (central warehouses), deconsolidation 
nodes (regional depots), and customers (e. g. retail outlets) - are considered. The 
customers are aggregated in 5-digit zip code areas. Each individual customer, 
however, keeps his identity. 

Individual orders can still be referred to a specific customer. The customers' 
orders can be "routed" from the manufacturers plant to a customer's outlet through 
the network model on several ways: Very large orders are shipped to the customer 
directly as partial or full truckloads. Small orders (up to 32 kg) are delivered by 
parcel services. Sources for these truckloads and parcels may be factories as well 
as central warehouses. The remaining orders are transported as LTL cargo. The 
supply of the central warehouses is managed by cost-effective shuttle transports. 
In the central warehouses, the LTL goods are compiled as day-by-day or 
destination-related shipments and transported to the end-of-line depots. From there 
the goods are delivered to the customers (smaller shipments on tours, larger ones 
directly). 

There are several assumptions underlying the structure of this model: 

• The orders determine the flow of goods. In all orders, the sources (factory) 
and sinks (customer) are fixed. These delivery relations must not be changed. 

• The weight thresholds for splitting off (partial) truckloads and parcels are 
given as input parameters and are considered as fixed for the duration of one 
calculation. 

• It has to be determined in advance, if the delivery of truckloads and parcels 
should start already ex-factory or only from the central warehouses. 
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• The long-distance line hauls between the consolidation and the delivery 
nodes are considered as immediate relations. Possible shipment consolidat
ions in hubs are not modelled explicitly but considered by the adaptation of 
cost functions. 

• Every factory is uniquely assigned to one central warehouse (single source 
condition).3 

• Every customer area is uniquely assigned to one distribution node (single 
source condition). The total of all customer areas assigned to one distribution 
node makes up the service area of that node. 

• The routing of a certain order through the network is therefore uniquely 
determined by the assignments "factory-central warehouse" and "customer 
area--distribution node". When passing through each node, the incoming 
orders are consolidated to destination-related shipments. 

3.2 Modelling Cost 

The model costs consist of the transport costs and the transshipment costs. In 
order to asses costs which reflect reality and the relation to the cost-originators at 
best, mostly process cost models are applied. 

3 If one factory shall deliver to several central warehouses, it can be virtually divided into 
several factories, each of which is assigned to a different central warehouse. 



69 

3.2.1 Transport Costs 

In the transport cost model, the system costs of the distribution system are 
mapped. Transport costs must be modelled for the following transportation modes: 

• central warehouse supply, 
• direct-store TL deliveries, 
• parcel shipments, 
• L TL cargo line hauls from the central warehouses to the regional depots with 

transshipments in both of them, 
• the delivery of goods from the regional depots, 

as well as for 

• transshipment costs. 

Central warehouse supply 

The calculation of the supply of the central warehouses from the factories is 
done under the following assumptions: 

• Goods are transported as full truckloads. 
• Hypothetical back-haul loads of the circulating transportation equipment are 

considered. 

These cost-effective shuttle transports to the central warehouses are calculated 
as follows: 

KVL Transport costs from one factory to its central warehouse for the 
whole planning period [DM] 

cftx fixed vehicle costs for one working day [DM/day] 
c, fixed cost rate with reference to the working time [DMIh] 
Cd distance-dependent variable portion of costs [DM/km] 
T vehicle operation time for one working day [h] 
tD vehicle loading and unloading time in the depot [h] 
q load capacity of one vehicle [kg] 
g total tonnage of one factory output during the planning period 

[kg] 
d factory distance from the warehouse [km] 
r third-party back haul rate [per cent] 
13 own share of the shuttle circulation costs 
v(d) average line haul transportation speed with respect to the 

transport distance [km/h] 4 

nu number of necessary circulations 

4 Cf. Ebner (1997), p. 206, "Tabelle der mittleren Geschwindigkeiten im Fernverkehr nach 
Entfernungsstufen" (table of average speeds in line hauls dependent on the transportation 
distance) 
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Figure 3.2 Cost rates for partial truckloads, shown for several origin-to-destination 
distances 

Direct-store TL deliveries and parcel shipments 

The cost rates for parcel and truckload shipments are hardly influenced by 
consolidation effects. Therefore, we can use cost tables or tariffs for their cost 
calculation.5 The cost tables can be edited in any way and adopted to the real 

5 In order to determine real freight costs, the German Pricing Reference Tables for Freight 
Transport ("Preisspiegel GUterverkehr") were applied (Gilmer (1998». 
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costs by margins.6 In figure 3.2, the freight rates used for partial truck loads are 
shown graphically. 

LTL cargo line haul costs 

The ability to assess L TL cargo costs is essential. They have the biggest share in 
tonnage, and by their consolidation cost saving effects can be achieved. Structural 
changes in the distribution network have a high impact on these effects. Therefore, 
a cost modeling which is close to practice and reflecting the cost originators is of 
high importance. 

For evaluating the cost for LTL transports, it was necessary to model the "true" 
system costs rather than the transport prices of the service providers, since the 
latter would have concealed the consolidative saving effects. For the cost 
assessment we use system cost functions based on Ebner's7 process cost models. 

The line haul costs are calculated on base of time- and distance-dependent 
vehicle cost rates for the vehicle circulations. Depending on the shipment amount 
of one day and the vehicle capacity, a certain number of vehicles will be 
necessary. For a calculation of the circulation costs, we assume the following: 

• A vehicle circulation is initiated if the vehicle capacity is already used up by 
75 per cent. In this case, the full costs are charged. 

• Unless more than 75 per cent of the load capacity are used, only fractional 
costs are charged. 

• For smaller shipments, a fixed cost rate of at least DM 100 is calculated. 
• For the back haul, a refunds gained from third-party back-loads recharging 

the back haul costs can be expected. As a rule, we can assume a back haul 
quota of about 80 per cent. 

• When exceeding the vehicle's capacity (a permissible "overload" of 10 per 
cent already considered), another circulation or another vehicle becomes 
necessary. 

The costs for a complete or partial truckload within the line haul are calculated 
as follows: 

KHL line haul transportation costs of one day for one origin
destination pair [DM] 

Kuml full costs for one complete circulation [DM] 
c, share offixed costs, related to working time [DMIh] 

6 A foundation of process-cost oriented assessment of partial truckloads (without back haul 
loads) can be found at Kraus (1998), pp. 212. We did not follow that approach, since such 
partial loads are usually supplemented with other loads by the service provider and can 
therefore be transported cheaper. 

7 
Cf. Ebner ( 1997) 
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Cd share of distance-dependent variable costs [DMlkm] 
Cmin basic cost rate for small shipments [DM] 
q min minimum load for the initiation of a truck circulation [kg] 
qmax maximum truck load (overload included) [kg] 
tBE average time needed for loading and unloading [h] 
v(d) average line haul transportation speed with respect to the trans

port distance [kmlh] 8 

a(d) cost increase rate for line hauls of a distance below 50 I km 9 

fJ own share of circulation costs 
g transportation load, rounded to full 100 kg [kg] 
d transportation distance [km] 
r third-party back haul rate [%] 

200- r 
fJ= ----wi) 

K"m' = [ c, . ( 2 ~ d + t BE ) + Cd ·2· d l a . fJ 

If the shipment weight g exceeds the maximum vehicle capacity qmax, the 
shipment is split into several full loads and a remnant load, for each of which the 
costs are calculated separately and then added. 

The graphs in figure 3.3 show the degressive courses of the cost rates for several 
transportation distances. 

Delivery costs 

The goods are shipped from the delivery nodes to the customers on tours. If a 
shipment for one customer exceeds the weight threshold for L TL cargo after its 
consolidation in the delivery node, it will be shipped to the customer directly. The 
delivery costs are assessed by an approximative calculation of the tour costs and 

8 Cf. Ebner (1997), p. 206, "Tabelle der mittleren Geschwindigkeiten im Fernverkehr nach 
Entfernungsstufen" (table of average speeds in line hauls dependent on various distances) 

9 Ibid., p. 211, "Tabelle der Kostenerh6hungsparameter bei Hauptlaufen unter 50 I km" 
(table of cost increase rates for line hauls of a distance below 50 I km) 
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their distribution over the shipments. The calculation method used for this comes 
from the ring model of Fleischmann 10 , using Ebner's calculus and parameters 11. 
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Figure 3.3 Calculated line haul cost rates for several distances 

KNL delivery costs of one shipment to one customer [DM] 
q load capacity of the delivery vehicle [kg] 
qs maximum shipment weight for delivery on tours (L TL 

threshold) [kg] 
clq) share of fix costs for the vehicle class with a load capacity of q, 

related to the operating time [DMIh] 
Cd(q) distance-dependent share of costs for vehicle class with load 

capacity q [DMlkm] 
T maximum duration of a delivery tour [h) 
g shipment weight [kg] 
d customer's distance from the delivery depot [km] 
Gk local cargo class of the customer area 12 

10 Cf. Fleischmann (1979) pp.192-211, and Kraus (1997) pp.263-270, respectively 

II 
Cf. Ebner (1997), pp.193-202. 

12 In Germany, the former collective wages for cargo transport and the current pricing 
recommendations of the Bundesverband Spedition und Logistik e. V (BSL) (Federal 
Shipping and Locistics Union) contain a classification for cities into 12 local cargo classes 
from' A' to 'M' (letter 'J' is not used). The classes characterize the location with respect to 
the transportation efforts needed for delivery of goods to customers. The cheapest class' A' 
represents cities "in the country". Large overcrowded regions are classified as 'M'. Basing 
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v(d) average line haul transport speed for the approach to the 
customer area, dependent on the travelling distance [km/h] 

vk(d,G,J average delivery speed in the customer area, dependent on the 
local cargo class [kmlh) 

dk(G,J average inter-customer distance in the customer area, dependent 

N, 

on the local cargo class [km] 
time needed for the approach into the tour area [h) 
time needed for travelling between two customers [h) 
customer stop interval, dependent on the shipment weight [h) 
maximum number of equivalent customers that can be served 
within tour time T 

Nq maximum number of equivalent customers that can be served on 
a tour by a vehicle of capacity q 

The cost parameters c, and Cd are taken from the tables for fixed costs and for 
variable costs for vehicles of various load capacities, and are linearly interpolated 
for intermediate values. 13 

Parameters v, Vh dk and ts are given in tabular form at Ebner. 14 

If g>qs , the shipment is delivered directly, and its cost totals to: 

KNL = C, . (2 ~ d + t,) + Cd ·2· d 

In case of delivering on a tour (g ~ qs), the following calculation is performed: 15 

d 
t =

a V 

N=!!.. 
q g 

on these local cargo classes the so called direct store freight rates (Hausfrachten, extra 
charge for delivery to the consignee's house) are calculated for shipments up to 3000 kg. 

13 Cf. also the Standard Rate Tables (Richtsatztabellen) KURT from July 1st, 1998, p.23. 

14 
Cf. Ebner (1997), pp.199-200, p. 206. 

15 The formulas presented here shall only reflect the principles of the calculation. For 
computation in a software, several special cases not contributing to understanding here have 
to be considered. 
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Hence, the maximum number of shipments on a model tour is: 

N = min{ N,; NJ 

For these shipments, the length and duration of the tour can be calculated as 
follows: 

dT = 2·d + (N -l)·dt 

IT = 2·la + (N -I)·/t + N·t, 

With this, the tour costs can be calculated and distributed proportionally over the 
shipments. The tour cost share of a certain shipment is: 

1 
KNL = N·(c,.tT+cc/.dT) 

In figure 3.4, the course of cost rates for deliveries (tour delivery) at several 
customer distances are shown. 

3.2.2 Warehollsingffransshipment Costs 

Finally, the costs of handling shipments in central warehouses and regional depots 
have to be evaluated. For cost calculation, we use simple cost rates: 

cf fixed costs for one working day [DM] 
cg weight-dependent cost rate [DM/IOO kg] 
Cs shipment-related cost rate [DMIshipment] 

Hence, the handling costs of a central warehouse or depot are calculated as 
follows: 

KWH handling costs of a warehouse/depot for one working day [DM] 
g, daily throughput of the warehouse [kg] 
s, number of shipments a day 

3.2.3 Total Cost 

The shipment costs for LTL cargo of one working day are mapped by 
summarizing line-haul, delivery, and handling costs of that day. Finally, all day
by-day costs of the whole planning period have to be added. A kind of "fine 
tuning" in order to adapt the modelled costs to the real costs is managed by 
adjusting margin coefficients. 
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Figure 3.4 Cost rates for local delivery 

3.3 Preparing th e Data for Input into the Model 

The following kinds of data make up the basis for a calculation and optimization 
of the distribution system: 

• order/shipment data of all participating cooperation partners, 
• the locations and the factories, 
• the customers, 
• the original networks: 

- central warehouses and their assignments to the factories, 
- delivery nodes and their service areas. 

The order data from a representative period provide the quantity profile for all 
further calculations. The volume of these data is very high, usually containing 
several hundred thousands of data sets gained from the electronic data processing 
equipments of the cooperation partners. They need to be trimmed to a uniform 
data structure. After error-checking and correcting, the remaining faulty sets are 
removed and cleansed data are handed over to the DSS tool. 

Sources of the shipments are factories with given locations. Also import or 
factory stocks, ports, or other starting points can serve as sources. They are few in 
number (usually less than ten), and in our task, their locations shall not be put into 
question. 

The customers are the sinks of transportation. The day-by-day shipments need to 
be assigned uniquely to the customers. Since the data originate from different 
order transaction systems, it is a necessary task to harmonize lists of customers 



77 

and their IDs. This cumbersome work has to be done in advance and can only 
poorly be supported by tools. 

The products are stocked up in the central warehouses and compiled to 
shipments for delivery. The number of warehouses is small, ranging usually from 
one to three. Mostly their locations cannot be changed and the decision is a choice 
between only few variants. If optimum locations have to be found, though, these 
optimization tasks can be solved with special tools apart from our planning 
system. 

The regional delivery depots or customer-related transshipment points are the 
destinations of the line hauls and, simultaneously, the starting points for the 
delivery of the shipments to the customers in short-haul transportation. 

4 Principal A pproach: Scenario Evaluation 

The main idea for finding improvements to the problem is "scenario evaluation", 
an approach which is also implemented in the DSS tool. The method shall give 
evidence about the effects of cooperative distribution. Therefore, the distribution 
process must be modelled most truly with respect to various levering parameters, 
and key figures must be determined as realistically as possible. 

In many cases, the desired cooperation effects are only achieved by a 
coordination of delivery dates. A method is needed to assess these synergetical 
effects. 

Since the joining of the distribution necessarily leads to a common network, a 
structure optimization is an important component of the system. Having only little 
variation possibilities in the choice of central warehouses, the cost-intensive 
delivery area structure must be designed as good as possible. 

A problem ofthat kind is usually processed in the following steps: 

Step 1: Importing and pre-processing the data for a representative period. 
Analyzing the shipment structure according to shipment sizes, flows and 
temporal fluctuations. Testing ofthe model data's plausibility. 

Step 2: Modelling of the situation "as is" with the current structures, quantities, 
and cost functions. Calibrating of the model, so it can serve as a 
foundation for the calculation of scenarios. 

Step 3: Defining of alternative networks, quantities, costs and conditions together 
with our clients as scenarios. 

Step 4: Evaluating the scenarios, selecting reasonable variants, and discussing 
solutions with our clients. 

Step 5: Testing the sensitivity and robustness of the interesting solutions and 
working out recommendations. 
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5 Heuristics Employed for Scenario Evaluation 

The evaluation of scenarios bases on a c1ose-to-reality simulation of the 
transportation and transshipment processes in the distribution network, for which 
originator-related costs and service key figures can be calculated. 

The effects of decision-relevant model parameters (levers) can be examined 
experimentally by intentional changes and subsequent calculations. 

With the help of a built-in method, the effects of coordinating delivery dates can 
be calculated. 

The scenario settings are derived from the objectives of our clients. The 
experience and the knowledge of the practitioners allow for a reduction from a 
theoretical plethora of theoretical variants to a manageable number of reasonable 
alternatives. Within them, the generation of alternative network structures can be 
supported by an optimization method for planning the distribution areas. 

To represent the approach used, the following terms are needed: 

Indices: 

• plants: p = I ... np 
• consolidation nodes: i = I ... m 
• distribution nodes: j = L.n 
• customers: k = L.nk 
• orders: 1 = I ... nl 
• working days: t = I ... nt 

Data: 

• order a with sending date a.t , sending factory a.p , destination customer a.k 
and order weight a.g 

• set of all orders: A 
• distances between factories, network nodes and customers: d(.,.) 
• parameters for cost calculation (compare section 3.2) 

Definitions: 

• Assignment of factories to consolidation nodes: 

zeN = {I, if factory p is assigned to consolidation node i 
/" 0, otherwise 

• Assignment of customers to distribution nodes: 

DN {I, if customer k is assigned to distribution node j 
z -

/if - 0, otherwise 

• Weight thresholds for LTL shipments: 
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• Delivery of parcels ex-factory: 

PS {true, if allowed 
iexplanl = false, ifnot allowed 

• Delivery of partial truckloads ex-factory: 

{
true, if allowed 

fe~~/anl = false, ifnot allowed 

Quantities and flows 

• Weight of shipments on day t from source node v to customer k : 

• Volume of central warehouse supply transports on day t : 

• Transported volume on day t on line haul between i andj : 

VL 
X/pi 

• Transshipment volume on day tin consolid. (i) or delivery (j) node: y~'N , y{fN 

Costs 

• Cost of parcel (PS) and partial truckload (TL) shipments on day t : PS TL 
c{ ,c{ 

• Total costs on day t in a consolidation (i) or delivery (j) node: eN DN 
e,i' CIj 

• Total costs on day t for line hauls (HL) and local distribution (NL): C{HL, c:L 

• Costs of shuttle transports from the factories: 

• Total costs: 

For the cost functions, the terms from section 3.2 are used. 

5.1 Scenario Evaluation 

The scenario evaluation simulates the transport process for the given period. The 
method reacts very sensitively with respect to the input parameters when 
producing the key figures. Due to the closeness of the process evaluation to 
reality, the method is also suitable for the verification of optimization results, e.g. 
of the structural optimization. 

The method requires the following data: 

• the order dates, 
• the network structure, 
• the parameters. 

The evaluation method subsequently processes the shipments of each day, 
separating them into parcels, LTL cargo, and truckloads, consolidates and de-
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consolidates them in the network nodes and inspects their flow though the 
network. In every single step, the occurring costs are calculated. 

For each day, the evaluation proceeds in the following steps: 

Step 1: Separation of all orders of the current day t: 

- Set of orders: 

- Set of order indices: 

AI = {a,la,.t= t} 
L, = {/la, E AI} 

Step 2: Determination of parcel shipments and their costs: 

- Set of parcel shipments: 

- Set of parcel shipment indices: 

- Cost calculation for all parcels I E L;s: 

{ 
'f ,ps 

alo p, I J explant 
V= 

i, otherwise 

CI;S = KpAa,.g,dv.lIl.k) 

- Total parcel costs of the day: 
PS_ ~ PS 

cl - L, C" 
IE LP,\ 

- Remaining orders:' 

A,Res, = AI \ AlPS 

L~e" = {II a, E A,Re"} 

A PS { A I ITL} I = a,E I a,·g<gmin 

L;s = {/la, EAts} 

Step 3: Cost calculation of the partial truckloads of the day: 

- Combination of orders to shipments: 

- Separation of all partial truckloads and cost calculation: 

then begin 

for all p, k with (b'Pk > g,;~; ) 
CI

TL := cl
TL + KTL(b'Pk,dpk) 

b,Pk := 0 

end 

end 

do begin 

) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(11) 

(12) 
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- Adding of parcel shipments, which are only delivered from 

consolidation node if not fe~:'an' ,to the shipments from factory to 

consolidation node: 

( 13) 

Step 4: Calculating of the shuttle transport and transshipment tonnage of the 
consolidation nodes as well as their day costs: 

- Shuttle volume of the day: 

(14) 

- Shipments delivered from the consolidation nodes: 

eN "eN . 
b'ik = L. Zpi . b,pk , V I (15) 

p 

- Number of the shipments starting from consolidation nodes: 

eN'" CN· nS'i = L. slgnblik , V I (16) 
k 

- Tonnage transshipped in the consolidation nodes: 

eN " CN Yli = L. blik 
(17) 

k 

- Calculating the day costs of all consolidation nodes: 

eN" (eN eN) c, = L. KWH Y'i ,ns'i (18) 

- Reducing of the shipments by parcels starting from consolidation node, 
I'f t I"?S • no J explant • 

. _ ... _. ,,{a,.g, if (a,.p= p)A(a,.k= k) 
b'Pk'- b'ek L.. ,Vp,k 

. . IEL;s 0, otherwIse 
(19) 

Step 5: Determining the partial truckloads starting from consolidation nodes and 
their costs: 

for all i, k with (b,;: > g;,~~) do begin 

TL._ TL K (beN d ) } c, . - c, + TL 'ik' ik 

b,~::= 0 

end; 

Step 6: Determining the transport volume and the costs of the line hauls: 

- Transport volume on a single line: 

HL " DN beN \-/. . 
x'ij = L.Zkj . lik' vi,} 

k 

(20) 

(21) 
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- Line haul transportation costs of the day: 

CI
HL = I I KHL (XIZL A;) (22) 

i j 

Step 7: Volume of transshipments and outgoing shipments of the delivery nodes 
and costs of the day: 

- Transshipment volume in the delivery nodes: 

ON " HL \-I' Y lj = L... Xlij , V I (23) 

- Outgoing shipment volume: 

b ON " ON beN \-I' k 
Ijk = L... Z kj . Ilk , v}, (24) 

- Number of outgoing shipments: 

ON " . bON \-I' 
nSIj = L... Sign Ijk ' v} (25) 

k 

- Day costs of all delivery nodes: 

ON "K (ON ON) 
CI = L... WH YIj ,nslj 

j 

(26) 

Step 8: Determining the delivery costs for transportation from the delivery nodes 
to the customers: 

(27) 

After step 8, the next working day is processed starting with step 1. 

Finally, when all working days are processed, the shuttle costs are calculated 
and the partial results combined to the total costs: 

Step 9: Calculating ofthe shuttle costs, the total costs and other key figures: 

- Costs of shuttle transports: 

CVL = I I KVL( I x~,dpI) 
pI' 

- Total costs: 

(28) 

CTOIaf = CVL + I (ctS + cl
TL + C;'N + C,HL + CION + ctL ) (29) 

I 

In figure 5.1, an overview of the algorithm for cost calculation is given: 



start 
for t := I to nt do begin 

• Selection ofthe orders of day t 
• Determination of parcel shipments 

.f r Ps 
I J explant 
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then calculate parcel shipment starting ex-factory 
else calculate parcel shipment starting from consolidation nodes 
• Combination of orders going to the same customers to shipments ex-factory 

if f :;~/ant then calculate partial truckloads starting from factories 

• Determination of shuttle volumes factories -> consolidation nodes 
• Determination of transshipment volumes and day costs in the consolidation 

nodes 
• Combination of shipments to the same customers starting from consolidation 

nodes 
• Calculation of partial truckload delivery from the consolidation nodes 
• Calculation of volumes and costs ofthe line haul transports 
• Determination of transshipment volumes and day costs in delivery nodes 
• Combination of shipments to identical customers in delivery nodes 
• Calculation of local delivery costs 

end 
• Calculation of shuttle transport costs 
• Calculation of total costs 
• Determination of further key figures 

end. 

Figure 5.1 Rough schedule of the cost evaluation algorithm 

5.2 Method for Delivery Day Coordination 

By consolidating the pieces of cargo, besides the volume concentration on the line 
hauls also the number of expensive customer stops shall be decreased. Already by 
the combination of the shipments of the cooperation partners into one system, 
unplanned, "stochastical" synergies come into effect. 

Stronger effects, however, can be achieved by the intentional coordination of 
delivery days. From the customer's point of view, the following points have to be 
regarded in order to coordinate delivery dates: 

• The number of delivery days per week and per customer may not be reduced. 
• Individually for each customer, a possibly high volume of goods from all 

suppliers should be handed over on one "main delivery day" per week. 
• The delivery days of the main supplier should remain unchanged. 
• The delivery days of all other suppliers may be shifted within the week. 

Considering these demands, a coordination of delivery days for one customer 
can be managed in the following way: 
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Step 1: Selection of the deliveries for that customer from all suppliers in one 
week. 

Step 2: Determination of the main supplier: the one with the maximum number 
of delivery days in the week. 

Step 3: Sorting of the main supplier's delivery days according to decreasing 
delivery volumes. These days are now fixed for all deliveries in the 
calculated order. 

Step 4: Assignment of all delivery days of the remaining suppliers according to 
their decreasing delivery volumes, to the delivery days of the main 
supplier. 

These steps have to be performed for all customers and for all weeks of the 
planing period. 

In the following example, the method is demonstrated for one customer in one 
week: 

• In that week, the customer receives the following deliveries from four 
suppliers (table 5.1): 

Table 5.1 

Supplier 
A 
B 

Ie 
D 

Mo ! 
6441 

2052 

Tu We 

...... _[. 1016 
Th Fr Numb. 

2 
180 2 

.... --~ .. , .... , 

i 136 3 

• Supplier '0' becomes main supplier with tree delivery days: Tu, We, and Fr. 
• Sorting according to decreasing volumes produces the order: We, Fr, Tu. 
• The assignment of delivery days of the other suppliers according to decreas-

ing volumes to the fixed delivery days results in: 

for supplier 'A': Mo to We, We to Fr; 
for supplier 'B': Mo to We, Tu to Fr; 
for supplier 'C': Mo to We. 

• The coordinated week delivery schedule is shown in table 5.2: 

Table 5.2 

Supplier Fr Numb. 
A 1016 2 
B 180 2 

~~,=~=-~ 

e 
D 136 3 

Totals 1332 
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Coordinating the delivery days led to a reduction from originally five to three 
deliveries. 

The method can be modified in a way that a given maximum number of delivery 
days per week will not be exceeded. 

5.3 Planning of Service Areas 

The planning of service areas comprises: 

• determining a reasonable number of delivery nodes, 
• planning the locations of the delivery nodes, 
• planning the service areas for these delivery nodes. 

This planning task describes a "large scale" problem. Usually, the task has to be 
solved for 20 to 50 delivery nodes and several thousands of customer areas. 

Though actually the transportation costs of the local deliveries shall be 
minimized, further demands are made to the regional structures for the reason of 
service quality: 

• The single regions must be separated from one another uniquely and may not 
overlap. They must have a "compact" shape 16. 

• The customer areas must be assigned to a delivery node uniquely (single 
source condition). Splitting of customer areas is not permitted. 

• The shape of the customer areas shall help avoiding long transportation 
distances. 

• The average shipment volumes of the single delivery areas should be 
"balanced" in some way. 

• Some locations are fixed and may not be changed. 
• Sometimes, certain assignments of customer areas to fixed delivery nodes are 

already given (e.g. maximum supply radius) which may not be changed. 
• In some cases, company policies or other service arguments require the 

separation of areas according to geographical features. 

If the number of delivery nodes is already given, we get the well-known basic 
problem of location and service area planning: 

centres of customer areas with the average 
L TL cargo demand bj per day 

requested position of the delivery nodes, 
which have capacities of Qi per day 

di~ = (Xi - qj r + (Yi - '1j r squared Euclidean distances 

16 The notion "compact" is not used in a strictly mathematical sense here. 
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subject to the constraints: 
m 

L wij = bj , j = 1.oon 
i=1 
n 

" < ·=1 L... Wij - a j , I •.. m 
j~1 

wij E {bj;O} 
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(30) 

(31) 

The substitution of the cost function by the objective (30) is reasonable for the 
following reasons: 

• The objective leads to a "punishment" of long distances and tries to pull areas 
with high demands close to the depot location. By this, the cost drivers for 
regional transports are reduced. 

• The line haul costs are not considered, since they are far less sensitive to 
distances than the local transport costs. 

Planning can be performed by a location-allocation method. 17 The additional 
conditions, however, require some changes in comparison to the classical 
approach. 

The procedure is performed in the following steps: 

Step 1: Initialization 
Determination of starting coordinates for the locations (e. g. in center of 
the planning area oder arbitrarily at some customer locations) 

Step 2: Allocation 
Assignment of customer areas to depot locations by solving the classic 
TPP. The determination of the "cost coefficients" d~ is performed by a 
special method which also calculates detours around geographical 
barriers. 18 

Step 3: Location 
Shifting of depot locations into the" points of gravity" of the assigned set 
of customer areas. If the maximum of location shifts exceeds a given 
limit, continue with step 2. 

Step 4: Local search 
Storing of the best result found up to then. 

17 Besides others, cf. Fleischmann / Paraschis (1988), Domschke / Drexl (1996). 

18 Distance calculation regarding geographical barriers is performed by a heuristics which 
can consider even complex barrier structures, like T - or star-shapes as well as open 
(passable) points in the barriers. 
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Randomized shifting of the depot locations by a certain amount (that 
decreases in the run of the procedure) or onto randomly selected 
customer locations. 
If the maximum of all shifts exceeds a given threshold, or the given 
maximum of iterations is not yet exceeded, it is again branched to step 2. 

Step 5: Split solving 
Reconstructing the best solution found. Solving of splits by heuristics. 19 

Step 6: Geo-coding 
For each of the calculated depot locations "on the plain", the closest city 
from the locations database (the one with the minimum tonnage-distance 
product when using the road distance) is determined. 

The delivery areas determined that way are subsequently evaluated by a cost 
calculation. 

Usually, a sequence of planning calculations with various numbers of delivery 
nodes is performed and evaluated by cost calculations. The best variant is then 
selected from the results. In figure 5.2, a result of planning delivery areas with the 
tool NCdis is shown. 

Geographical bani ... (separating the 
Brill5h Islands from the ConlJllent) 

Figure 5.2 Result of a delivery area planning (example) 

F ",ed locallon WIIh 
as signed minimum 
service area (c .. cle) 

19 The heuristics for split resolve keeps the compactness of the delivery areas. The depot 
capacities (which are regarded as "soft" constraints) may but be slightly exceeded. 
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6 The NCdis Software Implementation 

In order to perfonn the data manipulation and planning tasks described in the 
previous chapters, a new DSS software tool named NCdis (network configuration 
for distribution systems) was developed. It should not only contain the basic 
calculation and optimization procedures, but also facilitate data handling and 
scenario design and evaluation. NCdis follows our principles of DSS design, 
which are apparent to the user by the design of the user interface. The visible 
panels provide access to various problem-solving support functions (figure 6.1): 

• The graphic panel contains a zoomable map to visualize the problem area 
geographically. It serves not only as a display area for the model structures 
(locations, lanes, quantities, ... ) and planning results, but also as an 
interaction field for the planner's design inputs (editing of networks and 
scenario parameters). The majority of functions for this can be accessed via 
the graphic editor panel. 

• The tabbed notebook panel contains all input and output tables sorted by 
subjects in tabbed pages. The graphic panel display and the content of the 
notebook panel always correspond, i. e. every model change in one of the 
panels is immediately visible in the other, and many of the textual inputs in 
the notebook panel can also be done graphically and vice versa. 

• The speed button panel displays a line of function buttons, which are a subset 
of all available functions. In order to solve the problem, many operations 
have to be perfonned predominantly in a certain sequence. The user is guided 
through this sequence by following the order of the buttons. Some of the 
buttons lead to optimization functions, for which different planning windows 
appropriate to the current problem solving task are opened (e.g. for service 
area planning; see figure 5.2 in section 5.3). 

/~ 

Speed button 
panel 

Graphic 
panel 

Tabbed notebook 

. -. _. .. ~ .. '" 
' .... I .. ~ .. -."')) 
D.',. 

· ... '., ..... & ' ''''-
~ .. ~\.c-J~ 

."-I~ • _,,,-..00 ._-... -~ ... 
• • .,u .... tf,IIU, 

... ,.-
panel --tz.~>t~~~~~L~;;;~~~ 

Figure 6.1 Components ofthe NCdis user interface 
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The NCdis system expects data to be provided as simply structured text files, 
that can easily be created with exporting functions of the customer's databases or 
transaction systems. Planning results and statistics are stored by NCdis in a similar 
way, so that they can be easily post-processed by other calculating tools or 
database systems. On the other hand, efficient binary formats can be chosen to 
store data for quick reloading (data consistency checks or geo-coding procedures 
can be omitted then), which accelerates the frequent input of identical large-scale 
data for various scenarios. 

7 Results and Key Learnings for the Assessment of 
Cooperative Distribution Networks 

7.1 Network Scenarios Studied and Savings Achieved 

The scenarios presented here are the results of preceding discussions with the 
practitioners, in which a certain number of practicable scenario variants had 
already been selected. The choices were mainly dealing with the number of central 
warehouses (four, as up to now / two, for each of two neighboured factories / one, 
for maximizing the possible consolidations). For each of these main scenarios, two 
different ways of shipment consolidation were calculated: 

• stochastical synergies (where shipments from different manufacturers can be 
combined simply because they are transported in a common network), and 

• planned synergies (where the delivery day coordination algorithm is applied 
to reduce the number of delivery days and therefore to force more shipments 
into consolidation). 

For some of the calculations, two different kinds of networks were used: one 
with a given structure of a certain German service provider (whose network had 
the best coverage over Germany, with 31 delivery nodes or depots), and one 
virtual network that had been optimized within NCdis with respect to the number 
of regional delivery nodes and service area assignments (18 delivery nodes). 

As a result of discussion, the following scenarios were inspected more closely: 

1) four central warehouses and the real network, stochastical synergies 
2) four central warehouses and the real network, planned synergies 
3) four central warehouses and the optimized network, stochastical synergies 
4) four central warehouses and the optimized network, planned synergies 
5) two central warehouses and the real network, stochastical synergies 
6) two central warehouses and the real network, planned synergies 
5a) like Scenario 5, but with the optimized network 
6a) like Scenario 6, but with the optimized network 
7) one central warehouses and the real network, stochastical synergies 
8) one central warehouses and the real network, planned synergies 
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Table 7.1 and figure 7.1 give an overview of the considered scenarios and their 
results (scenarios 5a and 6a are not explicitly shown in figure 7.1, since they 
resemble 5 and 6. Scenarios 7 and 8 were only of theoretical interest: with only 
one central warehouse, the transportation costs starting from the warehouse were 
optimal, as it could be expected. But the rise in supply transport costs from the 
factories to the warehouses would more than compensate these savings). Besides 
the plain differences in total costs and savings, the following insights were 
interesting: 

Table 7.1 Selected scenarios in comparison with situation "as is" (CN= number of 
consolidation nodes; DN= number of distribution nodes) 

No. cenario CN DN ynergies 
a';ngs top rate 1l.wlume 
1%1 (5 hi !W""s topl (tlYday( 

-b- Separate warehous ing, 
4 31 

stochastical 2 1.39 537 
2 real cOlTlllJn network planned 5 1.66 537 

2- Separate warehous inS, 
4 18 

stochastical 4 1.39 537 
4 optinl. cOlTlllJn network planned 7 1.66 537 

2- ColTlllJn warehous inS, 
2 31 

stochastical 8 1.35 551 
6 real cOlTlllJn network planned 13 1.51 565 

Sa ColTlllJn warehous inS. 
2 18 

stochastical 9 1.35 551 -
6a opt in\. COlTlllJn network planned 14 1.51 565 

f I cons. node, coromn 
I 31 

stochastical -II 0) 1.29 568 
network (w/o shuttles) planned -50) 1.35 597 

*) considering the consolidation node supply costs of DM 10,152,000 per year 

No. Parcel Transship- LTL costs on Regional 
TL costs Total costs 

costs ment costs 

• By cooperative distribution, the total expenses of the four cooperation 
partners can be reduced by 8% if realizing the fifth scenario - with two 
central warehouses and using the real network for joint delivery (reduction is 
not significantly rising to 9% in case of scenario 5a). 

• 45% of the savings (that is 4% of the costs) are on account of the commonly 
used regional delivery network and therefore an improvement of the stop 



91 

number20 from 1163 to 1050 (i.e., by 10%) 

• Accordingly, more than half of the savings comes from the improved share of 
truckloads and a better utilization of the line hauls with LTL cargo. 

• By consolidating the delivery dates, the saving potential can be even 
increased by more than 50% of the savings mentioned (to 13% and 14%, 
resp., for scenario 6 and 6a). Stop number improves from 1050 to 860 (by 
18% in total, in any network case). 

• If we evaluate the underlying costs with the best (cheapest) service provider 
margin of the biggest cooperation partner (by this assuming that by the 
market power of that partner, a similar reduction can be achieved by 
negotiations for the total tonnage) the saving potential increases by another 
50 per cent up to 21 per cent (for all that, it is not yet checked if common 
delivery days can be realized that way, and if those margins can be kept). 

• Advantages or disadvantages resulting from centralized warehousing are only 
considered as far as transportation costs are affected. 

Distribution Costs 
OM/yeor 

010.000000 

l l ,OOO.OOO 

JOOOO 000 

21000000 

20,000,000 

Il.OOO,OOO 

10.000.000 

l ,OOOOOO 

Scenarios 

Figure 7.1 Overview of scenarios and their costs (in total and separately for the various 
transportation modes and handling) 

20 The stop number is a significant key figure for the efficiency of local deliveries: each 
customer stop is time consuming and reduces the number of customers that can be visited 
on a local tour by one vehicle. The less customer stops per time interval, the less trucks 
must be used (even if the transportation volume does not change). 
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• A sensitivity analysis of the best scenario (no. 5) with respect to the weight 
threshold for TL revealed only marginal effects on the saving potentials. 

A comparison of a general cooperation with a cooperation by pairs showed that 
the only pairing of neighboured companies would already result in savings making 
up a major part of the total savings (DM 1.7 million out ofDM 2.7 million). 

7.2 Learnings from the DSS Development Process 

With NCdis, we could develop a real DSS tool which, in the meantime, could be 
successfully applied in several other projects. During the processes of software 
development and scenario calculations, we found the following points remarkable: 

• Data collection, error proofing and consolidation is extremely time
consuming. 

• The location of central and regional network nodes has relatively little 
leverage on total logistics costs. 

• The number of regional nodes - within the "practical" range being used by 
the practitioners - is also relatively insensitive in comparison to the leverage 
of consolidation effects 

• Primary savings are in the consolidation of L TL orders into "direct store 
truck load deliveries" 

• ... and in increased "stop densities" at retail outlets 

• which can be significantly enhanced by coordinated delivery schedules 

7.3 Open Issues 

For a further development ofNCdis, the following activities are in discussion: 

• further improvements on location optimization algorithms sought by better 
local search procedures (but: low sensitivity) 

• introducing more choices to select and assess servIce provider cost- and 
pricing structures 

• "internationalizing" the tool - interface languages, international measures and 
metrics, distance network 

• more effort into data interface, "error-proofing" and analysis capabilities -
especially robust consolidation of "consignee addresses" and other customer 
identification data 

• "individualizing" of cost functions, introduction of standard tariffs 

• more key indicators for plausibility tests 

• more possibilities to manipulate shipment and network data via user interface 
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A Depot Location-Allocation Problem of a 
Food Producer with an Outsourcing Option 

Katja Engeler, Andreas Klose, and Paul Stahly 

University of St. Gallen, 9000 St. Gallen, Switzerland 

Abstract This paper describes a depot location-allocation problem of a large food 
producer in Switzerland. After significant reductions in profitability during the last 
years, the firm aims to cut down production costs, personnel costs and distribution 
costs in order to strengthen its economic position again. Savings in distribution 
costs should be realized by closing some depots and reallocating customer zones. 
Furthermore, the management wanted to assess the potential savings which can be 
realized by outsourcing parts of the distribution activities. In order to answer these 
questions, the problem has been formulated as a discrete location problem. The 
paper discusses the used model, the derivation of the model parameters, and the 
analyses which have been performed. 

1 Problem Description 

The location problem to be discussed here has emerged at a large producer 
of dairy products in Switzerland. Similar location studies have been con
ducted by Gelders et al. (1987), K6ksalan et al. (1995), and Tiishaus and 
Wittmann (1998). 

The firm is owned by Swiss milk producers, i. e. the firm's shareholders are 
several associations of dairy producers and dairy farmers which have merged 
in the beginning of the nineties in order to centralize their production and 
distribution activities and to secure the livelihood of about 20,000 associated 
farmers and their families. Today, the firm produces and distributes about 
290 main product groups comprising different kinds of dairy products (cheese, 
cottage cheese, curd, yoghurt, coffee cream, ice cream, powdered milk, etc.), 
but also meat, vegetables and frozen food. The firm collects and processes 
more than 900 million kilogrammes of milk every year. Annual sales amount 
to 1.7 billion sfr., and more than 2,200 people are employed. 

The 290 product groups are produced at 4 main production centres in 
Switzerland. At each plant a depot is located, from which customers (whole
salers, retailers, restaurants, hotels, food industry, bulk consumers) are de
livered on vehicle routes by the firm's vehicle fleet. Products which are not 
available at a given plant/depot site are either received from another plant 
site or procured from external suppliers. 

Losses during the last two years forced the company's management to 
reduce over-capacities, production costs, as well as personnel and distribu
tion expenditures. The aim of the study described here was to investigate, 

M. G. Speranza et al. (eds.), New Trends in Distribution Logistics
© Springer-Verlag Berlin Heidelberg 1999
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if savings in distribution costs can be realized by closing some of the de
pots and reallocating the assigned customer zones. Additionally, it should be 
taken into account that parts of the secondary distribution could be left to 
certain "distributors". These are large customers which are able to deliver 
smaller customers in a certain area at the expenditure of a price discount 
on the additional quantities. The alternative decisions regarding the distri
bution structure are interrelated with the question where to produce which 
products. Nevertheless, such production decisions should not be addressed 
in this study. Thus, the focus is on the minimization of distribution costs 
comprising the costs of the primary distribution (transports from plants to 
depots and distributors, respectively), the costs of throughput at the depots, 
the fixed costs of maintaining the depots, the costs of the secondary distri
bution (delivery to the customers), and the costs of price reductions granted 
to the distributors. 

2 Mathematical Model 

Regarding the possible changes of the distribution structure, the firm's de
cision problem consists in the following questions: 

1. Which of the four existing depots should be operated? 
2. Which of the possible distributors should be taken into closer considera

tion in order to initiate negotiations? 
3. How should the customers be allocated to the depots and distributors? 
4. What is an optimal product How from the plants to the depots and dis

tributors? 

The questions should be answered in such a way as to minimize the total 
distribution costs consisting of the costs of the primary and secondary distri
bution, the depot costs and the compensations payed to the distributors. A 
suitable problem formulation is a multi-product, multi-stage facility location 
model similar to the model given by Geoffrion and Graves (1974): 

min :E:E:E CijpXijp + :E :E (C!j + :E UjpbkP ) Zkj + :E !jYj (1) 
iEI jEJ pEP jEJ kEK pEP jEJ 

s.t. :E Zkj = 1, V k E K, (2) 
jEJ 

:E Xijp ~ aip, ViE I, PEP, 
jEJ 

:E :E bkpZkj ~ SjYj, V j E J, 
kEKpEP 

:E Xijp - :E bkpZkj = 0, V j E J, PEP, 
iEI kEK 

(3) 

(4) 

(5) 
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Xijp :$ aipYj, ViE I, j E J, pEP, 

Zkj :$ Yj, V k E K, j E J , 

Xijp ~ 0, ViE I, j E J, PEP, 

Zkj E {O, I}, V k E K, j E J, 

Yj E {O, I}, V j E J. 

(6) 
(7) 
(8) 

(9) 
(10) 

In the above formulation, I denotes the set of plants, J = J e U Jd the set of 
existing depots (j E Je ) and possible distributors (j E Jd); P is the set of 
product groups and K the set of customers; aip is the production capacity 
for commodity p at plant i, bkp customer's k demand for product p, and 8j 

the maximum throughput of depot j; cijp denotes the unit cost of shipping 

product p from plant i to depot/distributor j, and c£j the cost of supplying 
customer k from depot j; I; is the cost of operating depot j and the fixed 
costs associated with employing distributor j, respectively; for j E Je , the 
parameter Ujp describes the unit cost of throughput for product p at depot j; 
and in the case of j E Jd, Ujp = vpapj equals the compensation per unit payed 
to distributor j, which is determined by the product price vp and a price dis
count apj. The binary variable Yj equals 1 if depot/distributor j is selected 
and 0 otherwise, Zkj equals 1 if customer k is assigned to depot/distributor j 
and 0 otherwise, and Xijp is the amount of product p shipped from plant i 
to depot/distributor j. Constraints (2) stipulate that the demand of all cus
tomers must be met, and constraints (3) reHect the limited supply. The con
straints (4) force Zkj to be 0 for all k if Yj = 0, and limit the throughput at 
each depot j to be not greater than its capacity 8j. Finally, the constraints 
(5) are the "How conservation constraints". The additional constraints (6) 
and (7) can be useful if certain relaxations are used in order to compute 
lower bounds. Geoffrion and Graves (1974) apply Benders' decomposition 
to solve a similar model; approximate solutions and lower bounds may be 
obtained using Lagrangian heuristics (Klose, 1999b) or linear programming 
based heuristics (Klose, 1999a). 

In the present case, some data are highly aggregate in nature, and some 
parameters are not really invariable. Thus, it appears appropriate to simplify 
the model, and to use a more detailed model only if necessary: 

- On the basis of linear transportation costs, the problem can be reduced 
to a one-stage model by assuming unlimited production capacities. In 
this case, every depot/distributor j will receive his demand for product p 
from the "cheapest" plant ij, where ci;jp = miniEI{cijp : aip > O} . 
This assumption is justified since the firm's plants are currently overca
pacitated. 

- An uncapacitated facility location problem results if the depots and pos
sible distributors have unlimited capacities. While nonbinding capacity 
constraints for the existing depots are probable in our case, unlimited 
capacities for the distributors cannot be assumed. On the other hand, no 
information about the capacities of the possible distributors have been 
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available. Thus, only a reasonable radius of the area which can be covered 
by a distributor has been predetermined by the company's management. 

- In the above model, the price discount CXpj granted to distributor j for 
quantities of product p is independent of the quantity. It appears to be 
more appropriate to use discount factors which increase with the quant
ity bought. A piecewise-linear discount function can be handled by re
placing each possible distributor j by a number of "pseudo-distributors" 
equalling the number of line segments, introducing lower and upper ca
pacity limits for each pseudo-distributor according to the domain of the 
corresponding line segment, and stipulating the constraint that at most 
one of these pseudo-distributors can be selected in a feasible solution. 
This procedure would reintroduce capacity constraints into the model. 
However, the actual discount functions will be the result of negotiations 
with the distributors, whilst the aim of this study is first to elicit can
didate distributors with which negotiations seem to be promising with 
respect to a possible reduction in distribution costs. For the purposes 
of this study, it is therefore sufficient to use reasonable price discounts 
which are independent from the quantity. 

On the basis of the above assumptions, the model (1)-(10) is reduced to the 
well-known simple plant location problem (see e. g. Krarup and Pruzan, 1983) 

min L LCkjZkj + L!jYj 

kEK jEJ jEJ 

s.t. L Zkj = 1, V k E K, 
jEJ 

Zkj :::; Yj, V k E K, j E J, 
Yj, Zkj E {O, I}, V k E K, j E J, 

(11) 

(12) 

(13) 

(14) 

where Ckj now denotes the total cost (costs of primary and secondary dis
tribution, as well as costs of throughput or distributor's compensation) of 
assigning customer k to depot / distributor j. In the following, the determina
tion of these cost coefficients and their components will be explained in some 
detail. 

3 Data 

The data used to perform the computations based on the above model com
prise customer data, depot/distributor data, product and plant data, vehicle 
data, time and distance related driving costs, and road network data which 
have been used in order to compute travel times and distances. 

Customer data 

The customer data comprise about 3,400 customer locations, their coordin
ates or postal codes, the average weekly demand per product group, the 
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Fig. 1. Customer locations 

average unloading times, average drop sizes, and the average weekly delivery 
frequencies. The coordinates are used to assign the customers sites to the 
nodes of a road network. In the case of missing coordinates, a further map
ping of postal codes to coordinates has been used. The other data are used to 
compute the costs of the primary and secondary distribution. Figure 1 shows 
the customer locations. 

Depot data 

Besides geographical information (coordinates or postal codes), the depot 
data include the fixed operating costs, the unit throughput costs, and an 
average time needed to unload vehicles arriving at a depot. The depots are 
located at the plants (black filled circles in Fig. 1). Fixed operating costs and 
unit throughput costs have been provided by the firm's accounting depart
ment. Because of the firm's difficulties to provide more detailed information, 
the unit throughput costs are averaged over all products and assumed to be 
independent of the throughput. The firm's management selected 82 possible 
"distributors" from the customer set. The distributors are large customers 
being able to perform such (additional) distribution activities. Their locations 
are shown in Fig. 1 as thick dots. The only data concerning the distributors 
is a maximum radius of the area which can be covered by a distributor. A 
unique radius of approximately 15 km has been chosen. No fixed costs asso
ciated with employing distributor j have been considered. 
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Fig. 2. Road network 

Product and plant data 

Products have been aggregated to 290 types of products. A possible price 
discount - the distributor's compensation per unit value of a product - has 
been provided by the firm for each product type. Since unlimited production 
capacities have been assumed, information about the origin (produced at 
which plant or procured externally) of each product was sufficient. 

Travel times and distances 

Travel times and travel distances have been computed on the bases of the 
road network shown in Fig. 2. 

The network encompasses 6,677 nodes, and 9,950 edges divided into 7 edge 
classes. With a Swiss surface of 41,293 km2 , every node covers a square of 
2.5 km2 on average. Every customer, plant, depot and distributor location 
has been assigned to its closest node with respect to the euclidian distance, 
yielding 1,150 "customer nodes". The corresponding demand data have been 
aggregated accordingly. 

The travel time on each edge has been derived from an average speed 
for the corresponding edge class and some technical properties of the used 
vehicle. Travel distances and times between the nodes are then obtainable 
from cost minimal paths in the network by weightening the edge distances and 
times with the driving costs per unit of distance and time. These cost factors 
differ between primary distribution (transports from plants to depots) and 
secondary distribution (transports from depots to customers) since different 
types of vehicles are used. 
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4 Determination of Cost Parameters 

The cost coefficients Ckj in the simplified model comprise the cost of assigning 
customer k to depot or distributor j. These costs are composed of 

1. the cost C~j of handling customer's k demand bk at depot j and the cost 
of leaving customer k to distributor j, respectively, 

2. the cost C~j of transporting customer's k demand to depot/distributor j, 
and 

3. the cost C£j of delivering customer k from depot j. 

Throughput costs 

The cost of handling customer's k demand at depot j are easily derived 
from the unit throughput cost Uj and the customer's weekly demand bkp for 
product p: 

C~j = Uj L bkp , for j E Je • 

pEP 

The unit cost Uj includes the cost of unloading vehicles at the depot. These 
costs are determined from an average unit unloading time Lvar at the depots 
and a cost rate wr consisting primarily of wages. 

The cost of leaving customer k to distributor j are given by the distrib
utor's compensation for delivering this customer and the unloading cost: 

C~j = L Qpvpbkp + Lvarwr L bkp , for j E Jd , 

pEP pEP 

where vp denotes the product price and Q p the discount factor. 

Costs of primary distribution 

The costs cfjpof transporting one unit of product p from plant i to de
pot/distributor j have been estimated as 

C'!. = { (2dijW a. + 2tijWr + wr Lfiz) /Qv if aip > 0, 
~JP 00 otherwise, 

where dij and tij denote the travel distance and time between plant i and 
depot/distributor jj wr and wa. are cost rates per unit distance and time, 
which apply to vehicles used for the purposes of primary distributionj Lfiz 

is a fixed time spent on unloading vehicles at the depot, and QV denotes the 
vehicle capacity. The part C~j of the assignment cost Ckj allotted to primary 
distribution is then obtained from 

C~j = L bkpcf;jp, where cf;jp = rrJr{cfjp : aip > O} . 
pEP 
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Stem distance/time 

Fig. 3. Components of a tour 

Costs of secondary distribution 

Variable 
running 

distance/time 

Costs of secondary distribution occur if customers are delivered from the 
existing depots. In this case, several customers are delivered at the same route 
of a vehicle. Delivery costs are therefore the result of a vehicle routing, whilst 
the routing again depends on the customer allocation to be determined. As 
a consequence, the use of a location-routing approach seems to be necessary. 
On the other hand, only information about delivery costs is of interest here, 
while detailed delivery routes need not be computed. It suffices therefore 
to (roughly) estimate these costs. Slightly different approximation schemes 
applicable to these purposes are proposed e. g. in (Fleischmann, 1979; Kroon 
and Romeijn, 1995; Klose, 1996; Fleischmann, 1998; Tiishaus and Wittmann, 
1998). The procedure used here is based on decomposing a delivery tour into 
the three basic components (see Fig. 3): 

1. stem distance and time, i. e. the distance and travel time to the first and 
from the last customer on a route, 

2. variable running distance and time (inter-customer distance), i. e. the 
distance and time spent on travelling between successive customers, and 

3. unloading times. 

Denote by dkj , tkj, 6kj and Tkj some reasonable estimates for the stem dis
tance and time, and for the inter-customer distances and travel times of a 
route which starts at depot j and includes customer k. H Skj is the num
ber of deliveries on such a route, its length Dkj and travel time Tki can be 
approximated by 

Dki ~ fhj = 2dki + (ski - 1)6ki and Tkj ~ 'hi = 2tki + (Ski -l)f,.i· 

Suppose that bk and Lk approximate the average drop size and the average 
unloading time on the route, respectively. Furthermore, let Qf denote the 
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average capacity of a vehicle used for delivery purposes, and T max denote 
the maximum route duration which is determined by the number of working 
hours per day, the time for breaks and the time required to prepare a tour. 
The number Skj of stops may then be estimated as the largest integer Skj 
which meets the two constraints 

Skj :::; Q! /bk and 2tkj + (Skj -l}fA:j + SkjLk :::; Tmax· 

Summarizing, the following expression is obtained as an approximation of 
customer's k share on the routing costs: 

w~iJkj/Skj + wf'Aj/Skj + w{ L k , 

where Lk is the unloading time at customer k; w{ and w~ denote cost rates 
per unit distance and time, which apply to vehicles used for delivery purposes. 
Multiplying this cost share by customer's k delivery frequency gk per week 
gives the cost C'j allotted to the delivery of customer k from depot j. In case 
that customer k cannot be reached in time from depotj, i. e. 2tkj+Lk > Tmax , 

the cost C'j is set to an arbitrary high value. 

5 Performed Analyses 

The proposed simple plant location model has been used to compare the 
optimal solutions in case of not considering additional distributors with those 
obtained if additional distributors may be employed. Furthermore, the effect 
of closing one of the existing depots has been investigated. Finally, some 
sensitivity analyses have been carried out with respect to the fixed depot 
costs, the unit throughput costs, and the radius of the area which may be 
covered by a distributor. 

In general, even large instances of a simple plant location problem can 
be solved efficiently using branch and bound methods based on dual as
cent/adjustment methods (Erlenkotter, 1978; Korkel, 1989) or on combina
tions of dual ascent methods and subgradient optimization for lower bound
ing (Klose, 1995; Klose, 1998). However, in the present case, there is no need 
for these methods. No fixed costs have been associated with the 82 possible 
distributors. Furthermore, only 11 combinations of closed and open exist
ing depots are possible (a solution with only one open depot leads to viola
tions of the maximum route duration). An optimal solution is therefore easily 
obtained by selecting all possible distributors, enumerating the 11 possible 
combinations of closed and open existing depots, and removing "inactive" 
distributors in the best combination found. 

Solutions with and without employing distributors 

In the case that no distributors may be employed, all four existing depots are 
open in an optimal solution (see Fig. 4). The increase in the total cost which 
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Fig. 4. Solution without distributors 

results if one of the existing depots is closed ranges from 0.5 % to 4.7%. If 
additional distributors may be employed, 65 distributors are selected from 
the set of 82 possible distributors and only 2 depots are open in an optimal 
solution (see Fig. 5). Compared to the solution without distributors, a savings 
of 22 % results. However, due to the very simple structure of the underlying 
discount function, this estimate seems to be over-optimistic. 

Fig. 5. Solution with distributors 
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Fig. 7. Sensitivity of fixed costs 

Decisions on the locations of depots have a long-term planning horizon. Fur
thermore, there is uncertainty with respect to the demand development, the 
fixed depot costs, and the variable costs for satisfying demands. Sensitiv
ity and parametric analyses are therefore important instruments to support 
locational decision making. 

A sensitivity analysis with respect to the fixed costs of a single depot is 
carried out by comparing the value of the optimal solution with the value of 
the solution obtained if the corresponding depot is fixed to be open or closed, 
respectively. The result of this analysis is shown in Fig. 6. The dark shaded 
boxes mark the percentage change in the fixed costs of a single depot for 
which the computed solution remains optimal. As can be seen from Fig. 6, 
the obtained solution is very robust with regard to variations in the fixed 
costs of a single depot. 

An analysis of simultaneous changes in the fixed costs of a subset Je of 
depots can be derived from the convex hull ~ of the value function 

<p(P) = min{ L L CkjZkj + L /iYj: (12), (13), (14) and L Yj = q} . 
kEK jEJ jEJ jEJ. 

As known from the theory of Lagrangian relaxation, there is a one-to-one cor
respondence between subgradients of the function ~ and optimal multipliers 
JL for the Lagrangian relaxation of the additional constraint I::jEJ• Yj = q. 
The solution of the Lagrangian relaxation for fixed JL again answers the ques
tion what does happen if the fixed costs of all depots j E Je are increased by 
JL. The convex hull of the value function <P can be computed effectively using 
tangential approximation (Klose and Stahly, 1998). In this way, the results 
shown in Fig. 7 have been obtained. The dark shaded boxes indicate the 
range of the fixed depot costs - expressed as percentage of the average fixed 
costs - for which an optimal solution with the corresponding number of open 
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depots results. Figure 7 shows that only a very large decrease in the fixed 
costs of all existing depots can prevent the computed solution with 2 open 
depots from being optimal. 

Analysis of unit throughput costs 

In order to investigate the sensitivity of the unit throughput costs for a 
single depot, these costs have been changed along a binary search until it 
was an equally good choice to operate or not to operate the depot under 
consideration. The results are shown in Fig. 8. Large percentage changes in 
the unit throughput costs of a single depot have to occur so that the computed 
solution is no more optimal (e.g. at least -17% in case of depot no. 3). 

Effect of changes in a distributor's delivery area 

The radius of a distributor's delivery area has been limited in order to reflect a 
distributor's unknown limited capacity. The chosen unique radius of 15 km is 
a rough estimate proposed by the firm's management. It is therefore obvious 
to investigate changes in this radius. Setting the minimal costs obtained with 
a radius of 15 km to 100 %, Fig. 9 shows the development of the total costs 
and of the number of distributors selected in an optimal solution if the radius 
is increased in steps of 5 km. As can be seen from this figure, both values 
decrease with further increases in the radius. However, the set of selected 
depots is not altered until the radius doubles from 15 km to 30 km. 

6 Conclusions 

In this paper, a location-allocation problem of a large Swiss dairy produ
cer was described. In contrast to conventional location-allocation problems, 
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Fig. 9. Effect of changes in radius r 

an additional optional choice was to leave some customers to certain "dis
tributors" . The possible distributors are not professional suppliers of logistic 
services, but large customers being able to perform such additional distribu
tion activities as a sideline. A distributor's compensation is a price discount 
per unit value of the quantities bought. This situation could be modelled by 
treating possible distributors as potential depots with no fixed costs and a 
"unit throughput cost" determined by multiplying product price and price 
discount. The aim of the study was to assess the potential savings resulting 
from the employment of additional distributors, to investigate which of the 
existing depots should be further operated, and how the customers should be 
allocated to depots and distributors. Since the firm's plans to restructure its 
distribution system are just at the beginning, no detailed information about a 
distributor's capacity and practicable discount functions was available. Thus, 
a simplified model, i. e. a simple plant location problem, was used to address 
the above questions. The solution obtained in this way was not surprising 
to the firm. Together with the performed sensitivity analyses, it reinforced 
the management's existing plans to concentrate the distribution activities on 
two depots. Furthermore, the analyses showed that the management's idea 
to engage large customers as "distributors" can contribute to a substantial 
savings in distribution costs. However, a detailed planning and support of ne
gotiations with potential distributors has to be based on more comprehensive 
models, which take into account a distributor's limited capacity, price dis
counts increasing with the quantity bought, as well as production decisions 
concerning the allocation of products to manifacturing plants. 
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Abstract. Most of the optimization models proposed in the literature for 
evaluating the layout of a logistics distribution network consider a static 
demand pattern, which then leads to a single-period problem. Hence, the 
adequacy of those models is limited to situations where the demand pattern 
exhibits no remarkable variations throughout the planning horizon. We pro
pose a dynamic model including many relevant issues which playa role when 
evaluating a logistics distribution network. In addition to dealing with dy
namic demand patterns, our model includes aspects related to the inventory 
policy (in contrast with the static models). Heuristic solution approaches 
are presented for particular cases of this model and insight is given for the 
general model. 

Keywords. dynamic models, dynamic demand pattern, perishable prod
ucts, heuristic solution approaches 

1 Introduction 

The tendency to move towards global supply chains necessitates that com
panies consider redesigning their distribution structure. For example, within 
Europe we can observe an increase in the attention that is being paid (by 
West-European companies) to markets in Eastern Europe and the former 
Soviet Union, and the fact that European borders are disappearing within 
the European Union results in questions about the reallocation (often con
centration) of production and the relevance of national distribution centers. 

In addition to this tendency, logistics has, during the last decade, become 
an integral part of the product that is being delivered to the customer. Devel
opments in information technology have resulted in the possibility of imple
menting flexible manufacturing, ED I-message exchange, etc. The customer, 
being aware of these possibilities, in turn requires customized products and 
(just-in-time) deliveries. Therefore, logistics network structures that enable 
improved performance of the distribution task, as measured by indicators 

M. G. Speranza et al. (eds.), New Trends in Distribution Logistics
© Springer-Verlag Berlin Heidelberg 1999



114 

representing, for instance, flexibility and quality, have to be designed. More
over, competitiveness encourages a continuous improvement of the customer 
service level. For example, one of the most influencing elements in the quality 
of the customer service is the lead time. Thus, distribution networks should 
be modified and enhanced to reduce those lead times. 

Some examples of recent work in this area are the following. Gelders, 
Pintelon and Van Wassenhove (1987) use a plant location model for the 
reorganization of the distribution network of two small breweries into a bigger 
one. Hagdorn-van der Meijden (1996) presents some examples of companies 
where new structures have been implemented recently. Myers (1997) presents 
a model to forecast the demand that a company producing plastic closures 
can accommodate when dealing with products with a shorter life cycle. From 
an environmental point of view, decreasing the quantity transported is highly 
desirable. Kraus (1998) claims that most of the environmental parameters 
for evaluating transportation in distribution networks are proportional to the 
total distance traveled, thus a lot of effort is put into developing systems that 
decrease that distance. 

Distribution problems are also challenging from a purely scientific point of 
view. Geoffrion and Powers (1995) summarize some of the main reasons. The 
most crucial one is the development of the capabilities of computers which 
allows for the investigation of richer models than before, where additional 
important issues can be included. For example, Boumans (1991) suggests 
improvements to an existing Decision Support System for the production 
and distribution planning of a brewery based on this argument. 

Bramel and Simchi-Levi (1997) claim that, in logistics management prac
tice, the tendency to use decision rules that were adequate in the past, or 
that seem to be intuitively good, is still often observed. However, it proved 
to be worthwhile to use scientific approaches to ratify a good performance 
of the distribution network or to be on the alert for deficiencies in it. Many 
times this leads to savings in costs while maintaining or even improving the 
customer service level. There are many examples of different scientific ap
proaches used in the development of decision support systems (see e.g. Van 
Nunen and Benders (1981), Benders et al. (1986), Beulens and Van Nunen 
(1986), Boumans (1991), and Hagdorn-van der Meijden (1996)), or the de
velopment of new optimization models representing the situation at hand as 
closely as possible (see e.g. Geoffrion and Graves (1974), Gelders, Pintelon 
and Van Wassenhove (1987), Fleischmann (1993), Chan, Muriel and Simchi
Levi (1998), Klose and SUihly (1998), and Tiishaus and Wittmann (1998)). 

In this paper, we propose an optimization model for evaluating the per
formance of a given distribution network in a dynamic environment. In 
particular, this model is valuable when dealing with products exhibiting a 
dynamic demand pattern. In Section 2, the Distribution Network Configu
ration Problem is described, and a time discretization approach is proposed 
when products exhibit a dynamic demand pattern. A (basic) dynamic model 
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to evaluate the layout of a distribution network is introduced in Section 3. 
This model is extended in further subsections to cover issues relevant to the 
evaluation. Section 4 describes heuristic solution approaches used for some 
particular cases of this model and gives some insight for more general ones. 
Finally, in Section 5, some conclusions are drawn and topics for further re
search mentioned. 

2 Important issues in distribution problems 

2.1 Description of the problem 

A company delivers its products by means of a distribution network. Such 
a network typically consists of product flows from the producers to the cus
tomers through distribution centers (warehouses). In addition, it involves a 
methodology for handling the products in each of the levels of the distribution 
network. For example, the choice of an inventory policy, the transportation 
modes to be used, etc. 

Designing and controlling a distribution network involves different levels 
of decision-making, which are not independent of each other, but exhibit in
teractions. At the operational level, day-to-day decisions must be taken like 
the assignment of the products ordered by individual customers to trucks, 
and the routing of those trucks. The options and corresponding costs that 
are experienced at that level, clearly depend on choices that have been made 
at the longer term tactical level. The time horizon for these tactical decisions 
is usually around one year. Examples of decisions that have to be made at 
this level are the allocation of customers to warehouses and how the ware
houses are supplied by the plants, the inventory policy to be used, the deliv
ery frequencies to customers, and the composition of the transportation fleet. 
Conversely, issues that play a role at the operational level can dictate certain 
choices or prohibit others at the tactical level. For instance, customer service 
considerations may include the desirability of frequent, just-in-time deliveries 
to customers - leading to a limitation of the allowable transportation modes. 
Similarly, the options and corresponding costs that are experienced at the 
tactical level, clearly depend on the long-term strategic choices regarding the 
design of the distribution network that have been made. The time horizon 
for these strategic decisions is often around three to five years. The most sig
nificant decisions to be made at this level are the number, the location and 
the size of the production facilities (plants) and distribution centers (ware
houses). But again, issues that playa role at the tactical level could influence 
the options that are available at the strategic level. The abovementioned ex
ample of the desirability of just-in-time deliveries to customers could dictate 
the choice for many smaller (local) warehouses, as opposed to fewer, but 
larger, (regional or national) warehouses. Section 2.2 shows that many exist
ing models do not take the interaction between the different decision levels 
into account. 
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In this paper we focus on a strategic planning problem, the Distribution 
Network Configuration Problem (see Bramel and Simchi-Levi (1997) for a 
classification oflogistics management issues) in a dynamic environment, tak
ing into account interactions with issues that play a role at the tactical and 
operational level. In this problem a distribution network needs to be de
signed, or revised due to external forces (see Section 1). When deficiencies 
in the design of a distribution network are found management can define 
alternatives to the current design. In order to be able to evaluate and com
pare these alternatives, various performance criteria (under various operating 
strategies} need to be computed. An example of such a criterion could be 
total operational costs. 

There are many examples of products where the production and distri
bution environment is dynamic, for instance because the demand contains 
a strong seasonal component. For example, the demand for soft drinks and 
beers is heavily influenced by the weather, leading to a much higher demand 
in warmer periods. A rough representation of the demand pattern, disre
garding the stochastic component due to daily unpredictable/unforeseeable 
changes in the weather, will show a peak in summer and a valley in winter. 
Nevertheless, most of the existing models in the literature implicitly assume 
that the environment is static. In practice, this means that all (by nature 
dynamic) input parameters to the model are approximated by static ones, 
usually by some form of aggregation over the planning horizon. Hence, the 
adequacy of those models is limited to situations where the demand pat
tern exhibits no remarkable changes throughout the planning horizon. Due 
to the aggregation of information, they are static (single-period) in nature. 
Van Nunen and Benders (1981) use only the data corresponding to the peak 
season for their medium and long-term analysis. Tour operator catalogues 
to be supplied to travel agencies is another example of a product exhibiting 
a seasonal demand pattern. Daduna (1998) proposes two models for their 
distribution where the seasonal factor is neglected. 

Note that, in addition, a single-period modeling of the problem prevents 
aspects related to the inventory policies from being included in the model. 
When considering seasonal patterns, a feasible flow from the factories to 
the customers through the distribution centers should take into account the 
peaks in the pattern. In particular, capacity conditions at the plants and 
warehouses should be satisfied at each point in time. In contrast, in static 
models where the demand pattern is assumed to be flat, that condition is 
only imposed in an aggregated sense over the whole planning horizon. 

A notable exception to the above is Duran (1987) who plans the produc
tion, bottling, and distribution to agencies of different types of beer, with an 
emphasis on the production process. A one year planning horizon is consid
ered, but (in contrast to the previous references) the model is dynamic with 
twelve monthly periods. 
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2.2 Discretization approach 

As will be clear from the above, the accuracy of the evaluation of a net
work design depends on the types of input data required by the performance 
criteria chosen. Consider, once again, the demand pattern. For strategic 
purposes, real demands are substituted by forecasts, and are assumed to be 
deterministic. The ideal forecast would be a continuous function of time rep
resenting the demand rate, see Figure 1. Then, the area below the curve 
between any two points in time represents the total forecasted demand in the 
corresponding period. Since such a continuous forecast is impossible to ob
tain in practice, as well as difficult to work with, the forecast is discretized, 
corresponding to a demand rate function that is a step-function assuming 
only a finite number of values. 

Following this practice, our approach is to discretize the planning horizon, 
thereby approximating closely the ideal forecast. We propose to split the 
planning horizon into smaller periods where demands are forecasted in each 
period as a constant value, see Figure 1. (Note that it is not required that 
the periods are of equal length!) That constant value is calculated in such a 
way that the aggregate demand per period is approximately the same in the 
ideal and in the new forecast. Implicitly, we are assuming that the demand 
has a stationary behavior in each period. 

demand 
rate 

t 

~ 
V \ 

/ 1\ 
V ~ 

-t time 

Figure 1: Discrete approximation of the ideal forecast 

The discretization of the planning horizon allows for taking into account 
tactical and operational aspects. For example, we are able to include explic-
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itly in the model inventory levels at the end of each period. This enables us to 
estimate the costs of storing products. Recall that this is not possible when 
considering an aggregated single-period representation of the problem. Our 
model can also deal with products having a limited shelf-life, in other words, 
products that suffer from perishability. Due to deterioration or consumer 
preferences, products may not be useful after some fixed period of time. In 
the first case the product exhibits a physical perishability while in the second 
case they are affected by a marketing perishability (obsolescence). In both 
cases, the storage duration of the product should be limited. Perishability 
constraints have mainly been taken into account in inventory control, but 
they can hardly be found in the literature on Distribution Network Config
uration. A notable exception is Myers (1997), who presents a model where 
the maximal demand that can be satisfied for a given set of capacities and 
under perishability constraints is calculated. 

3 The multi-period single-sourcing problem 

3.1 The basic model 

In this section we propose a model that estimates the operational costs of a 
given network configuration. We start by describing a basic model where the 
main contribution is a discretization of the planning horizon, leading to a dy
namic model. For clarity of exposition, additional relevant constraints when 
analyzing the performance of a distribution network are discussed separately 
in further subsections. 

The type of distribution networks that we will consider can be described as 
follows: A single product type is produced in a set of plants. The production 
in the plants is constrained due to their capacities. We assume that products 
are transported to a warehouse immediately, i.e., no storage is allowed at the 
plants. A set of warehouses is used to facilitate the delivery of the demand 
to the customers. When the products arrive at the warehouses they can be 
stored until a customer demand occurs. We do not allow for transportation 
between warehouses. The physical capacity of the warehouses is limited, so 
the amount of product in storage cannot exceed this limit. Customers are 
supplied by the warehouses. Customer service considerations lead to the so
called single-sourcing condition that each customer has to be delivered by 
exactly one warehouse (see Benders and Van Nunen (1983), and Gelders, 
Pintelon, and Van Wassenhove (1987)). An example of a possible allocation 
of plants to warehouses and warehouses to customers in a given period is 
illustrated in Figure 2. This can be formalized in the following way. 

Let n denote the number of customers, q the number of production facili
ties, m the number of warehouses, and T the number of periods. The demand 
of customer j in period t is denoted by djt , while the production capacity at 
facility I in period t is equal to bit, and the physical capacity at warehouse 
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Figure 2: Allocations in the Multi-Period Single-Sourcing Problem 

i in period t is equal to lit. The production, handling and transportation 
costs per unit produced at facility l and transported to warehouse i in period 
t are Clit. The costs of delivering the demand of customer j from warehouse 
i in period t (Le., the costs of assigning customer j to warehouse i in period 
t) are aijt. The inventory holding costs per unit at warehouse i in period t 
are hit. (Note that all parameters are required to be non-negative.) 

The multi-period single-sourcing problem (MPSSP) can now be formu
lated as follows: 

Tqm Tmn Tm 

minimize L L L ClitYlit + L L L aijtXijt + L L hitlit 
t=1 1=1 i=1 t=1 i=1 j=1 t=1 i=1 

subject to 

n 

L djtXijt + lit 
j=1 

m 

LYlit 
i=1 

lit 

liO 

q 

= LYlit+ l i,t-1 
1=1 

i = 1, ... , mj t = 1, ... , T 

< bit l = 1, ... , qj t = 1, ... , T 

< lit i = 1, ... ,mj t = 1, .. . ,T 

= 0 i= 1, ... ,m 

(1) 

(2) 

(3) 

(4) 
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LXijt = 1 
i=l 

120 

j = 1, ... ,nj t = 1, ... , T (5) 

Xijt E {O, I} i = 1, ... ,mj j = 1, ... ,nj t = 1, ... ,T (6) 

Ylit > 0 

lit > 0 

1= 1, ... , qj i = 1, ... , mj t = 1, ... , T 

i = 1, ... ,mj t = 1, ... ,T, 

where Ylit is the amount produced at facility I for delivery to warehouse i in 
period t, Xijt is 1 if customer j is delivered by warehouse i in period t and 
o otherwise, and lit denotes the inventory level at warehouse i at the end of 
period t. 

Constraints (1) impose the balance between the inflow, the storage and 
the outflow at warehouse i in period t. The maximal production capacity 
at plant I in period t is restricted by (2). The maximal physical inventory 
capacity at warehouse i in period t is restricted by (3). Without loss of 
generality, we impose in (4) that the inventory level at the beginning of the 
planning horizon is equal to zero. Constraints (5) and (6) ensure that each 
customer is delivered by exactly one warehouse in each period. 

The MPSSP estimates the production, transportation, and handling costs 
for a given layout of a distribution network allowing for comparisons of dif
ferent scenarios. Apart from the costs, the optimal values of the decision 
variables can be used to compute other criteria for the evaluation of the net
work configuration: for instance, the usage rate of the warehouses or the 
number of times a customer/warehouse assignment is switched. 

The quality of the estimation given by the MPSSP clearly depends on the 
accuracy of the input data. In addition, the level of precision required for 
the data also depends on the length of the planning horizon. To illustrate 
this, consider the transportation costs included in the definition of Clit or 
aijt. The mode of transport influences the way of estimating transportation 
costs. We can distinguish between having an external carrier or owning a 
fleet of trucks. In the former case, the external carrier specifies the trans
portation cost charged to the customer as a function of the quantity to be 
shipped. It is commonly assumed that this cost function is piecewise linear, 
and that the tariff per unit shipped is nonincreasing in the quantity shipped, 
see Fleischmann (1993). In the latter case, we need to distinguish between 
the case of full-truckload (FTL) and less-than-truckload (LTL) deliveries. IT 
the deliveries are FTL, meaning that only a single destination is visited in 
one trip, the transportation costs associated with one trip are proportional 
to two times the distance between origin and destination. IT the deliveries 
are LTL, meaning that several destinations are combined in one trip, the 
former approximation is very rough. There are several references in the lit
erature where the cost estimation for the latter situation is addressed. For 
example, Gelders, Pintelon and Van Wassenhove (1987) propose the follow
ing expression as an estimation of the transportation costs per unit delivered 
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from warehouse i to customer j in a (single-period) Plant Location model: 

2 d · fdj TC x zst·· x - x 
'3 ct (7) 

where distij is the distance between warehouse i and customer j, fdj is the 
frequency of delivery to customer j, ct is the average number of customers 
per trip, and TC are the transportation costs per kilometer. 

The MPSSP can be used in strategic planning to compare different scenar
ios for the layout of the distribution network. The MPSSP is also suitable for 
clustering customers with respect to the distributions centers, and through 
this as a first step towards estimating operational costs in the network related 
to the daily delivery of the customers in tours. 

The MPSSP generalizes the model proposed by Romeijn and Romero 
Morales (1998b). In that approach they disregard the production level, im
plicitly assuming that the physical inventory capacity is unlimited, and each 
warehouse is associated with a unique plant (so the number of plants is equal 
to the number of warehouses). 

In the following sections, we will discuss separately other issues and how 
they can be incorporated into the MPSSP. 

3.2 Limited throughput capacity 

Due to capacity restrictions on handling in the warehouses, their maximal 
throughput is limited. Such constraints can easily be added to the MPSSP. 
Let 'fit be the maximal throughput capacity at warehouse i in period t, then 
constraints 

n 

L djtXijt < 'fit 
j=1 

i = 1, ... ,mj t = 1, ... , T (8) 

force throughput at warehouse i in period t to be below its upper bound 'fit. 
Let us analyze this new piece of input data. For sake of simplicity, we focus 

on one warehouse and one period of time so that we can ignore the indices i 
and t. Constraints (8) restrict the throughput within a time interval. During 
this period customers are supplied so that new shipments from the plants 
can be handled. This means that a higher frequency of delivery from the 
warehouses to customers corresponds to a larger throughput capacity (and 
thus less restrictive constraints (8)), i.e., the maximal throughput 'f is larger. 
Roughly, 'f can be calculated as 

'f = physical dimension of the warehouse x 

frequency of delivery to customers. (9) 

Gelders, Pintelon, and Van Wassenhove (1987) argue that constraints (8) 
can easily be relaxed. We have seen that the maximal throughput capacity 
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depends on the frequency of delivery in such a way that an increase in the 
latter implies an increase in the former. The frequency of delivery is usu
ally agreed on between the warehouses and the customers by a negotiation 
process, and can thus be influenced rather easily when convenient or needed. 

When dealing with perishable products, we must ensure that products 
are not stored for a longer time than their shelf-life. IT the shelf-life is larger 
than the length of one period (e.g., k periods where k = 1,2, ... ), this issue 
can be modeled by imposing a (variable) upper bound on the inventory level, 
see Section 3.4. When the shelf-life is shorter than a period, we can model 
the perishability by imposing a lower bound on the throughput. Let !.it be 
the minimal throughput capacity at warehouse i in period t, then constraints 

n 

L djtXijt ~ !.it 
j=1 

i = 1, ... ,mj t = 1, ... , T (10) 

force throughput at warehouse i in period t to be above its lower bound !.it. 

A similar expression to (9) can be given for!.. IT the shelf-life of the 
product decreases, customers should be supplied more frequently. So, the 
shorter the shelf-life the more restrictive must be constraints (10). Roughly, 
the minimal throughput!. can be calculated as 

!. = physical dimension of the warehouse/shelf-life. (11) 

As the constraints in the maximal throughput (8), constraints (10) can 
be easily relaxed by adjusting the shelf-life of the products. Note that a 
shelf-life can be viewed as an upper bound on the throughput time. By 
replacing shelf-life by the maximum throughput time in (11) other situations 
where a maximum throughput time applies can be handled. Benders and 
Van Nunen (1983) point out the case where a solution satisfies all constraints 
except for a minor violation of the maximal throughput time. They propose 
to modify the problem (instead of the solution) by adjusting the minimal 
rate of throughput in such a way that the minimal throughput capacity is 
relaxed slightly (and therefore not violated anymore). 

3.3 Cyclic demand pattern 

As mentioned above, one of the possible applications of the MPSSP is to 
evaluate the layout of a distribution network. The evaluation is meant to 
take into account a typical planning horizon in the future. Moreover, it will 
often be reasonable to assume that this typical planning horizon will repeat 
itself over time. 

In contrast, the MPSSP considers a single planning horizon, including 
a given starting point (denoted by time 0) and endpoint (denoted by time 
T). For strategic purposes this is a major disadvantage of this model since 
those models contain a start up effect (by fixing the initial inventory, usually 
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to zero) and an end-oj-study effect since the inventory at the end of the 
planning horizon will, in the optimal solution, always be equal to zero. 

So in the context of the stmtegic problem of evaluating a logistic network 
design, we would like to have a model that eliminates these boundary effects. 
In other words, a model is needed without a predefined beginning or end in 
the planning horizon. This can be achieved by assuming that the planning 
horizon represents an equilibrium situation, i.e., the planning period will 
repeat itself. The demand pattern is then stationary with respect to the 
cycle length T. That is, d j ,T+1 = djl,dj,T+2 = dj2, .•. ; in other words, the 
demand pattern is cyclic with period T. As a consequence, in equilibrium 
the inventory pattern at the warehouses will (without loss of optimality) be 
cyclic as well. Thus, the model will now determine optimal starting (and 
ending) inventories. To be able to incorporate both the cyclic and the acyclic 
case at the same time in our model, we introduce the set C ~ {I, ... , m} of 
warehouses at which the inventory pattern is restricted to be cyclic. It is 
clear that the only interesting and realistic cases are the two extremes C = szj 
and C = {1, ... ,m}. Then, constraints (4) must be replaced by 

liO = liT 

liO = 0 

iEC 

iftC 

(12) 

(13) 

which impose that the inventory at the beginning of the planning horizon 
should be equal to the inventory at the end in the warehouses at which the 
inventory pattern is restricted to be cyclic, and it should be equal to zero in 
the rest of warehouses. 

3.4 Perishable products 

The model we have proposed is suitable for products which are not affected 
by long storage periods. However, modifications must be included in cases 
where we are dealing with perishable products. When the product has a 
limited shelf-life, we need to be sure that the time the product is stored is 
not larger than its shelf-life. 

To be able to incorporate both the case with and without perishable 
products at the same time in our model, we introduce the set P ~ {I, ... , m} 
of warehouses at which the perishability constraint needs to hold. (As in the 
case of cyclic inventories, it seems that the most relevant cases are the two 
extreme cases P = szj and P = {I, ... , m }.) IT the shelf-life ofthe product is 
equal to k periods, the constraints 

t+k n 

L L I{T$T}djTxijT > lit 
T=t+l j=1 

i E P; t = 1, ... , T (14) 

impose that the inventory at warehouse i at the end of period t is at most 
equal to the total demand supplied out ofthis warehouse during the min{k, T 
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-t} consecutive periods following period t E {I, ... , T}, for each i = 1, ... , m, 
t = 1, ... , T. Here, l{Q} is the indicator function which takes on the value 1 
if the statement Q is true, and 0 otherwise. 

Constraints (14) contain an end-of-study effect that may be even more 
serious than the one mentioned in Section 3.3. For periods t > T - k, the 
upper bounds on the inventory level are less than they should be, simply due 
to the fact that the model does not cover periods beyond period T. Once 
again, this problem disappears if it can be assumed that the demand pattern 
is cyclic (see Section 3.3). In that case, constraints (14) must be altered to 
read 

t+k n 

L L 1{iEcvT~T}dj[T1Xij[Tl > lit 
T=t+1 j=1 

i E P; t = 1, ... , T (15) 

where [7] = (7 - 1) (mod T) + 1. 

3.5 Limited switching of customer assignments 

Since decisions are taken each period in the MPSSP, customers could be 
forced to switch between warehouses from one period to the next. This could 
be inconvenient when each period is short, for instance due to administrative 
costs. These costs can be easily modeled through variables Xijt. Let Sij 

be the fixed costs arising when starting or ending an administrative relation 
between customer j and warehouse i. Then, for customer j expression 

m T-I 

L Sij L IXij,HI - xijd (16) 
i=1 t=1 

represents the total administrative switching costs when supplying customer 
j. Note that the implied costs arising from an assignment switch of customer 
j from warehouse i to warehouse i' are equal to Sij +Si' j. We may observe that 
each term in the inner summation in equation (16) is not linear in the decision 
variables Xijt. By standard techniques, it can be equivalently formulated as 
a linear expression, at the expense of adding a number of decision variables. 
Note that, using this reformulation, different costs for starting and ending 
the administrative relation can be handled as well. 

To maintain a certain customer service level, it could be recommended 
to supply certain customers by the same warehouse throughout the planning 
horizon. To be able to add those constraints to the MPSSP, we introduce 
the set S ~ {I, ... , n} of customers who are restricted to be supplied by the 
same warehouse during the complete planning horizon. Then, constraints 

Xijt = Xiji i = 1, ... ,m; j E S; t= 2, ... ,T (17) 

impose that each customer j in S has to be supplied by the same warehouse 
in each of the periods. 
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The MPSSP together with constraints (17) is a tool to measure the trade
off between improving the customer service and decreasing costs in the distri
bution network. Considering several definitions for the set of static customers 
we can compare the increase in the costs when the customer service is im
proved in one direction. Thus, we can go from the model where all the 
customers are assigned dynamically (S = 0) to the model where all the cus
tomers are assigned statically (S = {I, ... , n}) through intermediate cases. 

3.6 Minimal utilization 

Some models impose a minimal utilization level of the plants and of the 
warehouses, see Benders and Van Nunen (1983) and Bruns (1998). Those 
conditions can be trivially added to the MPSSP. Let Q,t be the minimal pro
duction capacity allowed at plant I in period t, and lit be the minimal physical 
capacity allowed at warehouse i at the end of period t. Then, constraints 

m 

LYlit > Q,t 1= 1, ... ,q; t = 1, ... ,T (18) 
i=l 

lit > lit i = 1, ... ,m; t = 1, ... ,T (19) 

impose that minimal utilization in plants and warehouses. Even though such 
constraints can easily be incorporated into the MPSSP, they are frequently 
not initially included in the model to be able to determine whether any of 
the proposed or existing facilities is (largely) redundant. 

3.7 Opening and closing of facilities 

We have assumed a fixed (proposed) layout for the distribution network and 
our aim has been to develop a model to evaluate it. This approach is feasible 
if the number of candidate layouts for the distribution network is limited. In 
case a large set of possible locations for plants and warehouses is given, we 
could adjust the model to incorporate the decisions on which ones should be 
opened. Similarly, some existing facilities could be candidates for closing. In 
the literature, we can find models to decide on the locations of the warehouses 
under capacity constraints in the plants and the warehouses, see Bruns (1998) 
and Geoffrion and Graves (1974). However, it is not so common to find 
models where the opening and closing of plants is allowed. The MPSSP 
could deal with the opening and closing of warehouses by including new 
decision variables and the corresponding logical restrictions which ensure 
that customers can not be assigned to a closed warehouse. 

Let !i be the fixed costs of opening a candidate warehouse i. The opening 
of the candidate warehouses can be modeled by adding to the feasible region 
of the MPSSP the constraints 

Xijt < Zi 

Zi E {0,1} 
i EN; j = 1, ... ,n; t = 1, ... ,T 

i EN 

(20) 
(21) 
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where Zi is a binary variable taking value 1 if warehouse i is opened and 0 
otherwise for i E .N, where.N is the set of warehouses that are candidates 
for opening. Finally, to the objective function we add the term LiEN" !iZi. 

The closing of warehouses could be modeled in a similar way. 

3.8 Multiple products 

The demand of the customers could consist of more than one (say P) different 
products produced by the company. For example, a brewery will usually offer 
several types of beer, and moreover they are offered in different packages, such 
as bottles (of various sizes), cans or kegs. 

When the products are all different throughout the part of the production 
and distribution process that we are considering or when they require different 
treatment, and thus need to be handled separately, the MPSSP can easily 
be extended to handle the different products, whether or not the customers 
are required to be assigned to the same warehouse for all products (see e.g. 
Geoffrion and Graves (1974) and Fleischmann (1993». 

However, difficulties arise when the different products and product vari
eties could possess homogeneous physical properties. In other words, they 
should be treated equally in some or all stages of the production or distri
bution process. On the other hand, some products may require different 
conditions, for instance cold storage space. In that case, the warehouses 
should be split into several sections with adequate environmental conditions 
for (a subset of) the products. All those sections together must cover the 
range of products. 

When products share utilities, aggregate capacity constraints over all (or 
a subset of) the products must be added to the model. For example, when all 
products share the same production capacity, we need to add the following 
constraints to the model: 

P m 

L L cx.pYlitp ~ bit 
p=li=l 

I = 1, ... , qj t = 1, ... , T. (22) 

where Ylitp denotes the quantity produced of product p (p = 1, ... , P) (and 
the other indices are as in the basic MPSSP), and the coefficients cx.p are 
meant to unify the units of measurement between the different products. 

3.9 Cross docking strategy 

The MPSSP describes a two-stage Distribution Problem where warehouses 
are used for consolidation. Nowadays, there is a tendency towards specializa
tion in the production which yields geographically more disperse distribution 
networks. More levels of distribution are needed to achieve an advantage from 
economies of scale, for example considering central and regional warehouses 
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where inventory is allowed in both. This extension can clearly be added to 
the model in a straightforward way. 

However, another concept of consolidation center may be considered, 
namely the transshipment point where products are arriving from a central 
warehouse to be delivered to the customers immediately without interme
diate storage, see Boutellier and Kobler (1998), Fleischmann (1993). This 
strategy has recently gained renewed attention in the form of a cross docking 
strategy, see Bramel and Simchi-Levi (1997). 

Basically, we can see a transshipment point as a warehouse where the 
physical inventory capacity is assumed to be zero. The physical dimensions 
of the transshipment point together with the frequency of delivery still deter
mine a positive throughput capacity. Then, transshipment can be incorpo
rated to the MPSSP by setting lit = 0 for those warehouses i that correspond 
to transshipment points. 

4 Heuristic approaches 

4.1 Difficulty of the MPSSP 

The MPSSP has been proposed to evaluate the layout of a distribution net
work. Clearly, the most accurate estimation of the operational costs of the 
network by the MPSSP is through its optimal value. However, finding this 
optimal value will be a formidable task due to the difficulty of the prob
lem. To even answer the question whether a given problem instance of the 
MPSSP has a feasible solution is an NP-complete problem. This can eas
ily be shown by considering the following particular problem instances: let 
T = 1, bll 2:: E;=l dj1 for each l = 1, ... , q. Then the MPSSP reduces to the 
(single-period) Single-Sourcing Problem (SSP), which has been shown to be 
NP-complete by Martello and Toth (1990). Throughout this section we will 
refer to some results on the GAP, since it is an extension of the SSP. The 
GAP is the problem of finding a minimal cost assignment of jobs to machines 
such that each job is assigned to exactly one machine, subject to capacity 
restrictions on the machines. The SSP can be seen as the special case of the 
GAP where jobs correspond to customers, machines to warehouses, and the 
requirement of a job is independent of the machine processing it. 

The complexity of the MPSSP suggests that finding its optimal value will 
be a very time consuming task, and time is usually very limited. Therefore, 
in this section we will focus on heuristic approaches aimed at finding a good 
solution for the MPSSP in reasonable time. For exact approaches to (static) 
assignment-type problems we refer to Savelsbergh (1997) and Fleischmann 
(1993). 

The difficulty of the MPSSP contrasts with a nice property of its Linear 
Programming relaxation (LP-relaxation). The LP-relaxation of the MPSSP 
is obtained by relaxing the Boolean constraints (6) on Xijt to nonnegativity 
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constraints (note that the semi-assignment constraints (5) imply that the 
assignment variables are upper-bounded by 1). Lemma 4.1 shows that the 
number of fractional assignment variables Xijt in the optimal solution to the 
LP-relaxation of the MPSSP is bounded by an expression depending on q, m, 
and T but not on n. A similar result has been proved by Benders and Van 
Nunen (1983), Dyer and Frieze (1992), and Romeijn and Romero Morales 
(1998b) for simpler models. 

Let (y, x, f) be a feasible solution for the LP-relaxation of the basic 
MPSSP introduced in Section 3.1. Let F(x) be the set of fractional as
signment variables in (y, x, f), and B (x) be the set of fractionally assigned 
pairs (j, t), i.e., 

F(x) = {(i,j,t): 0 < Xijt < I} 

B(x) = {(j, t) : 3i such that (i,j, t) E F(x)}. 

Lemma 4.1 For a given optimal solution (y*, x*, 1*) for the LP-relaxation 
of the MPSSP, it holds that 

IF(x*)1 < 4· m . T + 2 . q . T 

IB(x*)1 < 2·m·T+q·T. 

Proof: To prove this result we give an equivalent formulation for the MPSSP. 
Observe that variables f iO can be eliminated from the MPSSP substituting 
them by zero. Rewrite all the constraints as equality constraints by intro
ducing slack variables. In the new formulation, we have q . m . T + m . n . T + 
m . T + q . T + m . T variables, and m . T + q . T + m . T + n . T constraints. 
There exists exactly one nonzero variable xijt for each pair (j, t) f/. B(x*), 
and at least two of them for (j, t) E B(x*). Then, 2IB(x*)1 + n . T - IB(x*)1 
is a lower bound on the number of nonzero variables. Since the number of 
nonzeroes cannot be bigger than the number of constraints, we have 

2IB(x*)1 + n . T - IB(x*)1 ~ m . T + q . T + m . T + n . T. 

The desired upper bound on the cardinality of B(x*) follows easily from this 
inequality. In a similar way, we have that 

IF(x*)1 + n . T -IB(x*)1 ~ m . T + q . T + m . T + n . T, 

or equivalently, 

IF(x*)1 ~ IB(x*)1 + m· T + q. T + m· T. 

By using the upper bound on IB(x*)I, the result follows. o 

Similar results can be obtained in the presence of many of the extensions 
of the basic MPSSP discussed in Section 3. 
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In real-life problems the parameters q, m, and T are relatively small with 
respect to the number of customers n, implying that the optimal solution of 
the LP-relaxation of the MPSSP is almost feasible for the MPSSP. 

Based on this property, Benders and Van Nunen (1983) propose for their 
(static) model to solve the LP-relaxation and fix all feasible assignments, i.e., 
the ones which do not violate the integrality constraints. Then, a rounding 
heuristic is used to try to feasibly assign the fractionally assigned customers, 
i.e., those ones delivered by more than one warehouse in the optimal solution 
of the LP-relaxation. Clearly, such a rounding approach may often fail to 
yield a feasible solution to the problem. In the following section we will 
introduce greedy heuristics having the property that many (but not all) of 
the assignments are made according to the LP-solution. These heuristics 
are provably asymptotically optimal in a probabilistic sense for some special 
cases. 

4.2 Heuristics 

4.2.1 Desirable properties 

The difficulty of the MPSSP suggests that we should look for heuristics that 
can find good solutions in a reasonable time. Apart from the time, feasibility 
and quality of the obtained solution are the most relevant issues for evaluating 
a heuristic. 

When the problem instances for the MPSSP are tight with respect to the 
capacity constraints, it may be difficult for the heuristic to find a feasible 
solution. Nevertheless, the degree of rigidity depends on the type of con
straints we are dealing with. For example, we have argued in Section 3.2 
that (maximal or minimal) throughput constraints can easily be relaxed by 
adjusting some parameters in the model. Benders and Van Nunen (1983) use 
this to find a feasible solution when the rounding procedure (see Section 4.1) 
fails due to minimal throughput constraints. 

The aim of a heuristic is to find a solution which can approximate the 
optimal one. The difference in their objective values can measure the quality 
of the found solution. However, in practice, the optimal objective value 
will not be known. An alternative is to compare the objective value of the 
solution given by the heuristic to a lower bound on the optimal objective 
value. (Note that the MPSSP is a minimization problem!) A straightforward 
lower bound on the optimal value for the MPSSP is given by the optimal 
value of its LP-relaxation. The quality of the estimation of the error incurred 
when approximating the optimal solution by the one given by the heuristic 
depends on the quality of the lower bound on the optimal value of the MPSSP. 
While lemma 4.1 suggests that the LP-Iower bound is adequate if a feasible 
solution to the MPSSP can be found that agrees with the LP-solution for 
many assignments, instances of the MPSSP can be constructed for which the 
bound is arbitrarily bad. 
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The quality of the heuristic needs to be tested on instances. Preferably, 
we would like to test heuristics on real-life instances of the MPSSP. The 
availability ofthose instances is often limited. Moreover, they could be biased 
with respect to some of the parameters since a limited set of instances is not 
necessarily representative for all real-life instances. Those issues suggest we 
should, in addition, generate an extensive collection of problem instances on 
which the heuristic can be exhaustively tested. It is common to generate 
instances by randomly generating some or all of the parameters according to 
some probabilistic model. Clearly, an inadequate probabilistic model can bias 
the conclusions drawn for the quality of the heuristic. Romeijn and Romero 
Morales (1998a) analyze the random generators proposed in the literature 
for the GAP. They observe that the tightness of the instances obtained using 
this generators decreases when the number of machines (or warehouses in 
the SSP) grows. Romeijn and Romero Morales (1998a,b) propose stochastic 
models that do not suffer from this defect for the GAP and the particular 
case of the MPSSP described in Section 4.2.3. 

4.2.2 Single period 

Romeijn and Romero Morales (1997) propose a class of greedy algorithms 
for the GAP based on a heuristic proposed for the Generalized Assignment 
Problem (GAP) by Martello and Toth (1981). This heuristic relies on a 
measure of the desirability of assigning a given customer to a given warehouse. 

Basically, the heuristic works as follows. Assume that a pseudo-cost func
tion is given that measures the cost of making each possible assignment. The 
set of customers is then ordered decreasingly with respect to the difference 
between the pseudo-cost of the two most cheapest warehouses for each cus
tomer. This difference can be interpreted as the urgency or desirability of 
assigning the customer to its (current) best choice. Then, the customer with 
the highest desirability is assigned to his best choice and the desirabilities are 
recalculated after evaluating the current available capacities. A collection of 
pseudo-cost functions is given by Romeijn and Romero Morales (1997) which 
includes the ones proposed by Martello and Toth (1981). 

As in the MPSSP, the assignment of customers in the SSP is restricted 
by capacity constraints. At the early stage of the heuristic these may not be 
relevant. However, the current available capacity in some of the warehouses 
could not be sufficient to satisfy the demand of some customers at a later 
stage. This means that when choosing the two cheapest warehouses (with 
respect to the pseudo-cost function) for a given customer we must restrict 
ourselves to the set of feasible warehouses for this customer. In the SSP, a 
warehouse i is feasible for a customer j if the current remaining capacity of 
warehouse i, say bi , is not smaller than the demand of customer j, say dj , 

i.e., bi 2:: dj . 

An analysis of the dual formulation of the SSP gives some insight in a 
possible definition of the pseudo-cost function. Given a vector A E R+, (recall 
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that m is the number of warehouses), Romeijn and Romero Morales (1997) 
define the pseudo-cost of assigning customer j to warehouse i (when that 
assignment is feasible) as 

aij + Aidj. 

In this definition, the information given by costs and demands is combined. 
For example, if A = 0 assignments are evaluated in terms of costs so that the 
more expensive a warehouse is, the less attractive that warehouse is for the 
customer. IT Ai = M/bi, we combine the assignment costs together with the 
relative usage of warehouse i, by customer j, dj/bi. An extreme case is when 
M is very large compared to aij. In this case, assignments are evaluated in 
terms of the relative usage of the warehouses only. 

Alternatively, we could choose A to be the vector of optimal dual multipli
ers of the capacity constraints. The dual prices for a given capacity constraint 
estimates the cost of using one unit of that capacity. Thus, the pseudo-cost 
function then combines the assignment costs with a measure of the cost of 
capacity usage. Romeijn and Romero Morales (1997) analyze the asymptot
ical behaviour of the heuristic for this choice of the vector A. Asymptotical 
feasibility and optimality with probability one are shown, and computational 
experiments illustrate the asymptotical properties of the heuristic, i.e., as the 
number of customer n grows, feasibility is always obtained, and moreover the 
error decreases. 

4.2.3 Multiple periods 

This heuristic can be generalized to dynamic versions of the SSP, and shows 
promise as a heuristic approach to many of the variants of the MPSSP dis
cussed in this paper. The most straightforward case is when the first level of 
distribution is ignored. 

Romeijn and Romero Morales (1999) consider the following particular 
case of the MPSSP. There is a one-to-one relationship between plants and 
warehouses, so that each plant supplies only its corresponding warehouse 
(see Figure 3), and only the capacity constraints at the plants are considered. 
Moreover, the model is assumed to exhibit cyclic demand data (and inventory 
levels; see Section 3.3), and customers are allowed to be either static or 
dynamic (see Section 3.5). It can be shown that this problem can be seen as 
a generalized assignment problem with convex objective function. Hence, we 
can define a similar heuristic to the one described in Section 4.2.2. We only 
need to define a pseudo-cost function for the assignment of customer j to 
warehouse i through the whole planning horizon, and to characterize feasible 
assignments. Romeijn and Romero Morales (1999) propose to use 



132 

D D D D plants 

D D D D warehouses 

000000000000 cu~omers 
Figure 3: A special case of the MPSSP 

for dynamic customers, and 

T T 

L aijr + L Airdrj 

r=l r=l 

for static customers, where A E lR+,T. Since storing products is allowed, and 
the model is cyclic, warehouse i can supply customer j when the aggregate 
capacity in warehouse i over all T periods is not smaller than the aggregate 
demand of customer j over all T periods. As in the single period case dis
cussed in the previous section, we choose A to be the vector of optimal dual 
multipliers corresponding to the capacity constraints. Note that, through 
feasibility of these dual multipliers, the multipliers themselves carry informa
tion regarding the holding costs incurred by a given assignment. Therefore, 
the holding costs do not need to be explicitly included in the pseudo-cost 
function. It can be shown that the heuristic thus obtained is asymptotic 
optimality in a probabilistic sense. 

This approach can be also modified to the acyclic case, and to handle con
straints like maximal throughput, maximal inventory, etc. The main issue is 
how to define the concept of a feasible assignment. A topic of current research 
is the generalization of the heuristics when the first level of distribution is 
included. 
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5 Concluding remarks 

In this paper we have addressed some aspects of the evaluation of the layout of 
a logistics distribution network in a dynamic environment. The Multi-Period 
Single-Sourcing Problem has been proposed for modeling this situation. The 
adequacy of this model is twofold. On one hand, it can deal with the dis
tribution of products with a dynamic demand pattern. On the other hand, 
tactical aspects, for example, the inventory policy, are included. The com
plexity of this model suggests that obtaining its optimal value can be a very 
time consuming task. Hence, heuristic solution approaches are presented for 
some particular cases of this model. In particular, we have proposed heuristic 
solution approaches for the case when the production level is not taken into 
account explicitly. Current research deals with the development of solution 
approaches for the complete model. 
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Abstract. We survey the papers which present models for the minimization 
of the sum of inventory and transportation costs on logistic networks. The 
aim is to give an overview of the literature in this area and to provide some 
guidelines in the understanding of the different approaches and their evolution 
over time. 
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1 Introduction 

In this paper we present a survey of the results which have been obtained in 
the deterministic modelling of logistic networks where inventory and trans
portation problems are solved in an integrated way with the aim to find 
the best trade-off between their costs. Although the first example of integra
tion between inventory and transportation costs has been published in Harris 
(1913) (see Erlenkotter, 1990, for comments and curiosities), integrated lo
gistic systems have been intensively studied only recently. In fact, until 15-20 
years ago, the main interest was to study inventory problems and transporta
tion problems separately, without paying attention to the entire system (for 
a survey on inventory problems we refer to Urgeletti Tinarelli, 1983, Bonney, 
1994 and Prasad, 1994 and for a survey on transportation problems to Bodin, 
1983 and Laporte, 1992). Recently, there has been an increasing interest to
wards the integration of inventory and transportation aspects. A survey of 
the results obtained on dynamic routing-and-inventory problems, based on 
the dichotomy frequency domain/time domain, can be found in Baita et al. 
(1996), where stochastic models are also discussed. In this paper we sur
vey the papers on deterministic integrated transportation-inventory systems 
with the aim to give some guidelines in the understanding of the different ap
proaches adopted and their evolution over time. We clarify the assumptions 
of the main approaches and discuss the different contributions. We review 
the results according to the following classification scheme: 

1. Continuous time models: 

(a) succinct models; 
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(b) models with asymptotic analysis; 

(c) mathematical programming models. 

2. Discrete time models: 

(a) models with power-of-two policies; 

(b) models with given frequencies; 

(c) models with discrete shipping times. 

Two basic types of integrated systems have been studied: Distribution 
systems and production-distribution systems. In the former the aim is to 
minimize the sum of inventory and transportation costs, while in the latter 
the set-up costs have been taken into consideration in addition to the inven
tory and transportation costs. For each of these systems, different logistic 
networks have been considered; starting from the single link case (with two 
nodes only), we discuss the cases of more complex networks, such as sequences 
of links, one origin-multiple destinations networks, multiple origins-one des
tination and multiple origins-multiple destinations networks. The number of 
results obtained on production-distribution systems is still very limited. 

The paper is organized as follows. In section 2 we introduce the different 
types of logistic networks and briefly analyze the basic components of the 
logistic cost. In section 3 we survey the contributions focused on the integra
tion between inventory and transportation costs and in section 4 the papers 
on the integration among set-up, inventory and transportation costs. 

2 Logistic networks 

Logistics can be defined as the study of how to move products during time 
and over space in order to optimize a trade-off between the service level to the 
customers and the total cost. A modern view of logistic problems suggests 
that the systems should be analyzed in an integrated way. For an overview of 
logistic problems with indication of research opportunities we refer to Daskin 
(1985), Golden and Baker (1985), Hall (1985a) and Sheffi (1985). In this 
section we briefly summarize the most important characteristics of the lo
gistic networks we are interested in. We will simply describe them, without 
investigation of the problems concerned with the modelling of the systems, 
for which we refer to Fleischmann (1993) and Slats et al. (1995). 

We consider the following basic types of networks: The single link case, 
the sequence of links case, the one origin-multiple destinations case, the mul
tiple origins-one destination case and the multiple origins-multiple destina
tions case. The single link case is the simplest example of logistic network: 
It is composed of two nodes only, one referred as origin and the other as 
destination. This basic network is important both from the theoretical and 
practical point of view. The single link case models several practical situa
tions. Moreover, it may represent the building block for the analysis of more 
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complex logistic networks when the dimension of the network does not make 
it possible a global optimization. In these cases the following approach may 
be applied: First, the network is decomposed into subnetworks (typically 
single links), then each subnetwork is optimized independently and, finally, 
the solution obtained is improved by means of local search techniques. 

The sequence of links case is composed of one origin, one destination 
and one or several intermediate nodes. Each product must be shipped from 
the origin to the destination through all the intermediate nodes. A typical 
application is the case in which the products are shipped on different links by 
using different types of vehicles; an example is the case of overseas shipments 
in which products have to be shipped first from the producer to a depot by 
trucks or train, then from there to overseas by ship or plane and then to the 
destination by trucks or train again. Similar networks have been analyzed 
in the framework of production systems, where they are referred to as serial 
systems (see Muckstadt and Roundy, 1993). 

The one origin-multiple destinations case represents the typical distri
bution system in which a set of products is produced or made available at the 
origin and must be shipped to the destinations. In this case the following two 
alternative shipping strategies can be applied: Direct shipping or peddling. 
In the former one, each destination is served independently by each other: 
This means that each journey is composed of two nodes (the origin and one 
destination) and, therefore, no routing problems are involved. In the sec
ond strategy (peddling) each journey can touch more than one destination; 
therefore, the optimization problem has to determine. also the route traveled 
by each vehicle. The multiple origins-one destination case represents the 
typical material management system in which products produced or made 
available at different origins must be shipped to a unique destination that 
can be, for instance, a depot. The structure of this network is symmetric to 
the one origin-multiple destinations case; therefore, the models and methods 
developed for the one origin-multiple destinations case can be often adapted 
to it. 

Finally, the multiple origins-multiple destinations case is a very com
plex network, typically used by trucking companies that collect products from 
a set of nodes (origins) and then distribute them to another set of nodes (des
tinations). In some cases we cite also some more complex structures such as 
networks with multiple origins, intermediate nodes and one destination. 

Let us briefly analyze the basic components of the logistic cost. The 
transportation cost is the cost to move products over space. If a logistic 
network is composed of more than two nodes, we can distinguish the follow
ing different types of transportation cost: Pickup cost (when a vehicle visits 
more than one origin to pickup the products), linehaul cost (to ship prod
ucts from an intermediate node to another node or from a region to another 
region), delivery cost (when a vehicle visits more than one destination to 
deliver the products), backhaul cost (for going back to the origin when the 
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products have been delivered). The inventory-holding cost is the cost of 
holding products in inventory during time. It has several components, such 
as interest, insurance, cost of the capital. The handling cost is the cost of 
the activities involved in the movement of the products different from trans
portation. Typical examples are costs for order selection, packing, loading, 
unloading and consolidation. For a more detailed analysis of the different 
components of the total logistic cost, we refer to Daganzo (1996) and Higgin
son (1993). In the latter paper, the reader can find a classification of some 
of the papers presented in this survey based on the types of costs. 

3 Distribution systems 

In this section we survey the main contributions to the analysis of distribution 
systems. As already mentioned, in these systems one or several products are 
made available or produced at the origins and must be shipped to the desti
nations, where they are absorbed. The problem is to find shipping strategies 
that minimize the sum of inventory and transportation costs. We classify the 
contributions in two main classes: Continuous time models and discrete time 
models. 

3.1 Continuous models 

Here the shipments from origins to destinations are assumed to be performed 
in a continuous way. This implies that the length of the time interval between 
any two consecutive shipments can take any positive real value. 

We divided the contributions in the continuous time setting in three 
classes: Succinct models, models with asymptotic analysis and mathemat
ical programming models. 

Succinct models 

The largest number of contributions has been given in the area of succinct 
modelling, where the essential characteristics of a systems are captured in 
simple models. A small set of data is assumed to be known and the models are 
used to obtain various types of guidelines for the support to strategic/tactical 
decisions. A relatively large number of these models has its basis in the EOQ 
model. For these latter class of models we list the main common assumptions: 

• Single product: Only one product is considered; the extension to 
multi-product networks is made by introducing the concept of com
po.site product; 

• Steady state and equilibrium: The product is offered at the origins 
and absorbed at the destinations at given constant rates, such that the 
sum over the origins of the production rates is equal to the sum over 
the destinations of the consumption rates; 
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• Single and continuous shipping frequency: Only one frequency f can 
be selected on each link to ship all the products and the time between 
any two shipments t = 1/ f can take any positive real value; 

• Identical vehicles: All vehicles are identical. 

Let us first consider the class of the EOQ-based results. 
In Blumenfeld et al. (1985) an EOQ-based model is applied to the single 

link case, the one origin-multiple destinations case, the multiple origins-one 
destination case, the multiple origins-multiple destinations case and to more 
complex networks as well. For the single link case a model is formulated which 
is an extension of the basic Wilson's model in inventory theory. Let h be the 
inventory cost in the time unit, q the production and consumption rate of the 
product at the origin and at the destination and v the unit volume. Moreover, 
let c be the transportation cost per journey and r the transportation capacity 
of one vehicle (volume). Then the optimal time between any two consecutive 
shipments is: 

t* = mine ~hc , ~), V hq vq 

where the first quantity over which the minimization is taken is the classical 
Wilson's formula (see for instance Erlenkotter, 1989), while the second one 
takes into account the finite capacity of the vehicles. 

The multiple origins-one destination case is analyzed under the assump
tion of direct shipping on each origin-destination pair. In this case, the 
optimal solution can be obtained by simply decomposing the network into 
links and optimizing separately each link using the solution obtained for the 
single link case. The same approach is applied to the symmetric case of 
the one origin-several destinations network with the assumption of direct 
shipping. The more complex case with peddling is analyzed in Burns et al. 
(1985) and Daganzo (1996). The multiple origins-multiple destinations net
work with the assumption of direct shipping is also optimized by means of a 
decomposition of the network in links. Finally, some more complex networks 
are considered. In the first one the product must be shipped from several 
origins to several destinations through a consolidation node. The main as
sumption is that shipments to the consolidation node and shipments from 
the consolidation node are independent. Under this assumption, the optimal 
solution is simply obtained by optimizing separately each link. The second 
more complex network can be described as follows: A product is offered at 
several origins and absorbed at several destinations; it can be shipped from 
the origins to the destinations either directly or through consolidation nodes. 
This problem involves routing decisions; in fact, for each link three alterna
tive types of routing can be chosen: Ship all directly, ship all through the 
consolidation nodes, ship a part of the product directly and the other part 
through the consolidation nodes. The authors first show that the third pos
sibility is always more expensive than the first two; therefore, the decision 
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becomes of the type "all-or-nothing". Then they prove that the network can 
be optimally decomposed into subnetworks (one for each destination) if the 
quantity to ship from the origins to the consolidation node is kept fixed. On 
the basis of these results they propose a heuristic algorithm. In Blumenfeld 
et al. (1987) the methodology is applied to the distribution system of the 
General Motors in the United States and Canada. This system has 20,000 
suppliers, 160 assembly plants and 11,000 dealers. The authors show that by 
applying this approach the reduction in the total cost has been about 26%. 
In this latter paper the concept of composite product is introduced, which 
is a pseudo-product with volume and inventory cost equal to the average 
weighted volume and the average weighted inventory cost, respectively. 

In Burns et al. (1985) and in Daganzo (1996) the one origin-multiple 
destinations case is deeply studied. The aim is to give some guidelines and 
not to propose exact methods for solving the distribution problem on these 
networks. As a consequence, some approximations are made on the data; 
for instance, the methodology is not based on the exact location of the des
tinations, but only on their density. Two different strategies are compared: 
Direct shipping and peddling. In the first strategy the optimal solution is 
obtained by applying separately the EOQ-model proposed in Blumenfeld et 
al. (1985) to each link. In the second strategy (peddling) each vehicle can 
visit more than one destination during the same journey. The problem is to 
determine the shipping frequency and the route of each vehicle that minimize 
the sum of inventory and transportation costs. The authors first prove that 
the optimal shipping frequency is the one that corresponds to a full load ve
hicle. Then, given that only the density of the destinations is known, they 
solve the routing problem on the basis of the concept of "delivery region". A 
delivery region is the set of destinations that one vehicle has to visit during 
one journey and its size is given by the number of destinations that belong 
to it. The routing problem is solved as follows: First determine the size of 
the delivery regions (all regions have the same size, with exception of one at 
most); then determine the destinations which belong to each region; finally, 
send to each region a full load vehicle on the minimum distance route. Hall 
(1985c) shows that if the shipping frequency differs among the nodes, then 
the total cost can be reduced. 

In Hall (1985b) the dependence between shipping frequency and trans
portation mode is analyzed. Three different transportation modes are consid
ered (truckload contract carriers, less-than-truckload common carriers and 
United Parcel Service). For each of these modes, the optimal solution is ob
tained by applying the EOQ-type model. The author shows that the optimal 
shipping frequency is a discontinuous function of the production rate and 
that the optimal transportation mode depends on the production rate. Some 
other succinct models have been proposed which have different characteristics 
from those described above. In particular, they are not based on the EOQ 
model. 
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A different type of analysis and result for the one origin-multiple destina
tions case (not satisfying the assumptions listed above) has been obtained by 
Gallego and Simchi-Levi (1990), where the effectiveness of the direct shipping 
strategy is evaluated for the case in which the origin is only a transshipment 
point (no inventory cost is charged for it) and under the assumption that the 
transportation costs are proportional to the distance travelled. The authors 
prove that the effectiveness of direct shipping is at least 94% if the economic 
lot size of each destination is at least 71 % of the capacity of the vehicles. 
Hall (1992) points out that the result holds only if the fixed transportation 
costs are negligible. 

Some other results have been obtained which can be included in the class 
of the succinct models, but are not EOQ-based. 

The one origin-multiple destinations case is analyzed in Daganzo and 
Newell (1985) in the case in which the total demand of the products is pre
dictable over time but the destinations are randomly scattered on a day-to
day basis (an example is the limousine service from an airport). Moreover, 
each product requires a vehicle stop. The decision variables of the problem 
are: Number and size of delivery regions, number of vehicles, number of stops 
per vehicle, shipping frequency per delivery region. The aim is the minimiza
tion of the sum of transportation and inventory costs. The authors conclude 
that the optimal cost increases less than proportionately with distance, but 
the saving reduces as the size of the delivery regions increases. The possible 
use of different transportation systems is studied by Daganzo (1985) in a 
multiple origins-one destination network, where a simple method is proposed 
to determine the number of transportation systems and the sources to be 
served by each. 

The role of break-bulk terminals is studied by Daganzo (1987, 1996) in 
the context of multiple origins-multiple destinations networks. The author 
first considers the case without terminals and derives the optimal shipping 
frequency and the number of stops which minimize the sum of inventory 
and transportation costs. Then, he shows that a better solution can be 
obtained through the introduction of a break-bulk terminal by modifying 
the routes of the vehicles during the phase of collection of the products from 
the origins. A different result is obtained for one origin-multiple destination 
networks by Daganzo (1988), where it is shown that under certain conditions 
a peddling strategy with no transshipments is superior to any strategy with 
transshipment. 

Models with asymptotic analysis 

We present here the continuous approach proposed by Anily and Federgruen 
(1990) for the one origin--several destinations logistic networks. This ap
proach is based on the following main assumptions: 

• Single product; 
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• Constant consumption rate: The product is absorbed at each desti
nation at a given constant rate that can be different in different destina
tions; the rates are assumed to be integer multiples of a given minimum 
rate; 

• Regional partitioning strategy: The considered shipping strategies 
are composed of two steps. First, the destinations are clustered into 
regions with the possibility that the same destination belongs to several 
regions (regions may overlap); then, for each region, a single efficient 
route is computed. If a node of a region is visited by a vehicle, then all 
the nodes that belong to the same region are visited within the same 
journey; 

• Single and continuous shipping frequency per region: Each region 
is visited with a single frequency and the corresponding time between 
shipments can take any positive real value; 

• Identical vehicles: All vehicles are identical. 

The aim is to determine a shipping strategy which minimizes the sum 
of inventory and transportation costs on the network over an infinite time 
horizon. 

This approach has been introduced by Anily and Federgruen (1990) un
der the assumption that the inventory cost is charged only at destinations; 
in other words, the origin is simply a transshipment point. The authors 
propose an efficient heuristic algorithm in which the clustering of the desti
nations into regions is made by a heuristic referred to as Modified Circular 
Region Partition scheme and the computation of the shipping frequency is 
made for each region separately as in the EOQ-model; then, they prove that 
the proposed heuristic is asymptotically optimal in the numberc of destina
tions within the class of considered strategies. Moreover, they compare lower 
and upper bounds of the minimum cost and prove that these bounds are 
asymptotically tight in the number of destinations. Finally, the performance 
of both heuristics and bounds is shown on the basis of computational experi
ments. In Hall (1991) some improvements to the approach proposed by Anily 
and Federgruen (1990) are proposed and in Anily and Federgruen (1991b) a 
reply to this comment is given. 

An extension of the problem presented in Anily and Federgruen (1990) is 
studied by Anily (1994). In this paper it is assumed that the inventory cost 
per unit can be different at different destinations. For this problem, a heuris
tic algorithm based on a regional partitioning scheme is proposed; in this 
heuristic first the destinations are clustered on the basis of the ratio between 
distance and inventory cost per unit and then on the basis of their position. 
This scheme is proved to be asymptotically optimal in the number of the 
destinations within the considered class of strategies. Finally, computational 
results show that the heuristic is good also for problems of small size. 
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Extensions of the model and methods of Anily and Federgruen (1990) 
are studied in Anily and Federgruen (1993) and in Viswanathan and Mathur 
(1997). As the shipping policies are of the type power-of-two, we discuss 
these papers in section 2.2. 

The asymptotic effectiveness of Fixed Partition policies (the destinations 
are partitioned in classes) and Zero Inventory Ordering policies (a destination 
is replenished as soon as there is no inventory) are investigated in Chan et al. 
(1998) for a one origin-multiple destinations network. A strategy is designed 
which is asymptotically optimal within the considered class of strategies and 
computational results are given to show the effectiveness of the proposed 
strategy. 

Mathematical programming models 

At the best of our knowledge, only two papers take into account transporta
tion and inventory costs in a continuous time setting explicitly using mathe
matical programming models. 

The multiple origins-multiple destinations case is considered in Klincewicz 
(1990) for the case of multiple products. The problem is to decide for each 
origin-destination pair the quantity of each product to ship directly and the 
quantity to ship through a consolidation node. Given that, as stated in Blu
menfeld et al. (1985), it is never optimal to send the same product partially 
directly and partially through a consolidation node, the author develops for 
this problem a binary mathematical programming model and proposes heuris
tic algorithms based on facility location techniques. Moreover, two particular 
cases, for which the optimal solution can be easily found by decomposing the 
original problem into subproblems, are identified. The heuristic algorithms 
are compared with the optimal solution on the basis of problem instances 
with up to 50 origins, 6 consolidation nodes and 50 destinations. 

In Popken (1994) a logistic network composed of multiple origins, inter
mediate nodes and one destination is analyzed. The aim is to find shipping 
strategies that minimize the sum of inventory and transportation costs in 
the case in which the objective function is not linear. The author develops 
a nonlinear network model that takes into account three attributes of the 
products (weight, volume and inventory cost) and proposes a heuristic algo
rithm based on the alternance between linearization techniques (which find 
local optima) and local search techniques (which improve the obtained solu
tion). The performance of the algorithm is evaluated on the basis of a series 
of computational experiments. 

3.2 Discrete time models 

While for strategic/tactical analyses continuous models highlight key deci
sions, in a tactical/operational setting, the main drawback of the continu
ous models is that they are not accurate and may generate infeasible so-
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1 utions from a practical point of view. For instance, as discussed in Hall 
(1985c), Maxwell and Muckstadt (1985), Jackson et al. (1988), Muckstadt 
and Roundy (1993), the decision to ship products every J2 time instants is 
not realistic. The approaches we present in this section were designed to go 
beyond this drawback of the continuous models. The main common idea is 
that the time between any two consecutive shipments is a multiple of a min
imum time between shipments. For instance, it can be assumed that only 
one shipment (possibly with several vehicles) can be performed in the time 
unit. Given that the minimum time between shipments (or base planning 
period) can be normalized without loss of generality to 1, this means that 
shipments are performed only in discrete times. For this reason, we refer to 
these models as discrete time models. 

Models with power-of-two policies 

We present a first example of discrete models based on power-of-two strate
gies (i.e. shipments are performed on the basis of shipping frequencies with 
times between shipments that are powers of 2). This type of models was 
introduced in the context of production-inventory systems in which the aim 
is to minimize the sum of set-up, inventory, and ordering costs (see for in
stance Goyal and Gunasekaran, 1990 for a survey of multi-stage production
distribution systems, Zangwill, 1987, Crows ton et al., 1973, Karimi, 1992 for 
some examples of these problems). These models played an important role 
also in the analysis of distribution systems. 

In the following we first summarize the common assumptions these models 
are based on and then analyze the models presented for distribution systems. 

• Single product; 

• Acyclic logistic networks: This approach can be applied to all kinds of 
logistic networks that can be represented by an acyclic oriented graph; 

• Continuous demand: Each product is absorbed at a constant and 
continuous rate; 

• Nested and stationary power-oJ-two strategies: Each frequency must 
have a constant (stationary) and power of 2 time between shipments; 
moreover, the frequency selected in a successive stage must be not lower 
than the one selected at current stage (nested); 

• Single shipping Jrequency: The shipments between two successive 
nodes can be performed only on the basis of a unique frequency. 

Although oriented to production systems we cite some papers here due to 
their importance in the study of power-of-two policies. In Maxwell and Muck
stadt (1985) two types of costs are considered: Fixed set-up/ordering costs 
in each production node and echelon holding cost in each node. The aim is 
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to find a strategy that defines for each stage the single frequency at which 
reorder the products in order to minimize the total cost on the network. 
The model proposed by Maxwell and Muckstadt is generalized to the capac
itated case by Federgruen and Zheng (1993) by introducing bounds on the 
frequency, while the analysis proposed by Maxwell and Muckstadt (1985) is 
reviewed and extended to the case in which the production nodes have a 
capacity constraint in Jackson et al. (1988) and in Muckstadt and Roundy 
(1993). The one origin-multiple destinations network is studied in Roundy 
(1985) where two strategies, referred to as q-optimal integer ratio and opti
mal power-of-two policies, are proved to be at least 94% and 98% effective 
when backlogging is not allowed. Mitchell (1987) extends this result to the 
case with backlogging. In these cases, set-up and inventory costs only are 
included. The one origin-multiple destinations case is studied in Muckstadt 
and Roundy (1987, 1993). At each retailer a fixed joint order cost is charged 
whenever a shipment is received, independently of the number of products. 
For this problem the authors propose a nonlinear integer programming model 
and an efficient exact algorithm for its solution. Finally, they prove that the 
error generated by the algorithm with respect to each optimal nested solution 
is always not greater than 6%. No guarantees exist for nonnested solutions. 

In Rerer and Roundy (1997) the power-of-two approach is applied to 
the one origin-multiple destinations case. The problem is to find shipping 
strategies that minimize the sum of inventory, ordering and transportation 
costs. The authors first propose several power-of-two heuristics for a gen
eral production/distribution system and prove that the ratio between the cost 
generated by the heuristics and the optimal cost is bounded. Then, they con
sider the particular case of distribution systems with one origin and several 
destinations and compare the heuristic solutions with the optimal power
of-two strategy (obtained by a dynamic programming based algorithm) on 
the basis of computational experiments with up to 16 destinations randomly 
distributed in the unit circle and in the unit square. Moreover, the solution 
generated by each heuristic is compared with the solution of the other heuris
tics on instances with up to 100 destinations in order to evaluate performance 
and robustness. 

The following papers use the power-of-two policies but the adopted ap
proach here is that of Anily and Federgruen (1990). 

In Anily and Federgruen (1993) the problem presented by the same au
thors in 1990 is studied in the case in which the inventory cost is charged also 
at the origin. The authors develop bounds for both the uncapacitated and ca
pacitated case (the bound is on the frequency); then, they develop a heuristic 
algorithm and upper and lower bounds of the minimum cost. The heuristic 
proposed is based on the following three steps: First, determine a clustering 
of the destinations into regions by using the Modified Circular Regional Par
titioning algorithm proposed in 1990; then determine for each region a single 
continuous shipping frequency; finally, round-off the obtained frequency to 
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a power-of-two frequency. The lower bound is computed by applying the 
Extremal Partitioning algorithm proposed in Anily and Federgruen (1991a). 
The authors prove that the gap between this solution and a lower bound of 
the optimal cost is not greater than 6% when the number of destinations 
goes to infinity. Finally, the performance of the heuristic algorithm and of 
the bounds is evaluated on the basis of a computational experiment. 

The problem presented in Anily and Federgruen (1990) is analyzed for the 
case of multiple products by Viswanathan and Mathur (1997). The authors 
present a heuristic algorithm that generates stationary nested joint replen
ishment policies and compare it with the heuristics of Anily and Federgruen 
(1990) on the basis of randomly generated problem instances with a single 
product. 

Models with given frequencies 

A frequency based approach has been introduced by Speranza and Ukovich 
(1994b) on the basis of the motivation given in Speranza and Ukovich (1992b), 
where a Decision Support System for logistic managers is presented. The aim 
was to propose specific models and optimization techniques for the cases in 
which a set of shipping frequencies is given and each frequency is such that 
the corresponding time between shipments is an integer number. In this case, 
the problem is to select the frequencies that minimize the sum of inventory 
and transportation costs. 

The main assumptions are in this case: 

1. Multiple products; 

2. Steady-state and equilibrium: Each product is offered at the origins 
and absorbed at the destinations at given constant rates, such that the 
sum over the origins of the production rates is equal to the sum over 
the destinations of the consumption rates; 

3. Given discrete frequencies: Shipments from the origins to the desti
nations are performed on the basis of given frequencies; each frequency 
is such that the corresponding time between shipments is an integer 
number; for each frequency the first shipment is performed at time 0; 

4. Fixed shipping quantity: For each frequency, the quantity shipped 
every time is constant. 

In Speranza and Ukovich (1994b) this approach is applied to the sin
gle link case. Four different situations are analyzed on the basis of two di
chotomies: single frequency/multiple frequencies, frequency consolidation/time 
consolidation. The first dichotomy distinguishes between situations in which 
only one frequency can be selected for each product from the situations in 
which each product can be partially shipped with several frequencies. The 
second dichotomy refers to how the products can be loaded on the vehicles. 
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In the case of frequency consolidation only the products shipped at the same 
frequency can share the same vehicles, while in the case of time consolida
tion all the products shipped at the same time instant can share the same 
vehicles, even if they are shipped at different frequencies. For each situation 
a mixed integer linear programming model is proposed and properties are 
shown. Moreover, dominance relations among the models are investigated; 
in particular, the authors prove that the model with multiple frequencies and 
time consolidation is equivalent to the model with multiple frequencies and 
frequency consolidation. In Speranza and Ukovich (1996) the model with 
multiple frequencies and frequency consolidation, referred to as Problem 'P, 
is deeply analyzed both from the theoretical and the computational point of 
view. The authors first prove that Problem 'P is NP-hard and then show 
properties which allow to design an efficient branch-and-bound algorithm. 
The performance of the algorithm is evaluated on the basis of randomly 
generated problem instances with up to 30 frequencies and 1,000 products. 
The efficiency of the branch-and-bound algorithm is improved on the basis 
of dominance rules by Bertazzi, Speranza and Ukovich (1996). In the case 
where all the vehicles have the same cost and capacity, the authors find rules 
which allow to evaluate if a feasible solution of Problem 'P is dominated by 
another one with lower inventory cost and not greater transportation cost; 
then, these rules are embedded into a branch-and-bound algorithm in order 
to avoid the exploration of dominated parts of the search tree. Moreover, the 
initial upper bound is set to the best solution obtained by solving five heuris
tic algorithms. The two branch-and-bound algorithms are compared on the 
basis of randomly generated instances with up to 15 frequencies and 10,000 
products. The computational results show the the new branch-and-bound 
significantly outperforms the old one both in terms of number of visited nodes 
and computational time. Finally, given that the computational time required 
by the exact algorithms can be too large from the practical point of view in 
some cases, the heuristic algorithms are compared with the optimal solution. 
The computational results show that one of the heuristics is very good, with 
an average error less than 0.4%. In Speranza and Ukovich (1992a) the model 
is viewed as a particular case of a model that can be applied to the prob
lem of dimensioning modular production processes and to a machine loading 
problem with preemption and set-up costs. 

The approach with given frequencies has been also applied to more com
plex logistic networks such as sequences of links and one origin-multiple des
tinations cases. A first analysis of these more complex networks can be found 
in Speranza and Ukovich (1994a), where some particular cases are studied 
from the theoretical point of view. 

The sequences of links are deeply analyzed in Bertazzi and Speranza 
(1999a, 1999b). In this problem one of the main issues is the computa
tion of the inventory cost in the intermediate nodes. In Bertazzi and Sper
anza (1999b) a general formulation of the inventory cost is presented and 
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in Bertazzi and Speranza (1999a) several particular cases are derived. In 
the one decision-maker sequences a unique actor has to determine, for each 
link and for each product, the shipping frequencies that minimize the sum 
of inventory and transportation costs. In Bertazzi and Speranza (1999b) a 
mixed integer linear programming model is formulated for the general case 
in which the inventory cost of each product in the unit time can be different 
on different nodes. Given that this problem is NP-hard, heuristic algorithms 
are proposed. The problem with identical inventory cost of each product 
in the unit time is studied both from the theoretical and the computational 
point of view in Bertazzi and Speranza (1999a). From the theoretical point of 
view, a general framework of analysis is proposed and several particular cases 
are derived; from the computational point of view, the heuristic algorithms 
proposed in Bertazzi and Speranza (1999b) are implemented and compared 
on randomly generated problem instances. 

The one origin-multiple destinations case is studied in Bertazzi, Speranza 
and Ukovich (1997). A basic heuristic algorithm and several variants are 
proposed and compared. In the basic heuristic, each link is first optimized 
independently by solving Problem P; then, the destinations are clustered 
into subsets and local search techniques, which involve modifications of the 
selected shipping frequencies and the solution of routing problems, improve 
the obtained solution. In the variants the preliminary zoning of the desti
nations and the possibility of phasing the frequencies are considered. All 
these heuristics are compared on the basis of randomly generated problem 
instances. 

Models with discrete shipping times 

A model for the single link case has been introduced by Bertazzi and Speranza 
(1997) for a discrete time setting where no set of possible shipping frequencies 
is naturally given. 

The main assumptions are 

1. Multiple products; 

2. Given minimum time between shipments: The time between any two 
shipments is not lower than a given minimum time, which is normalized 
without loss of generality to 1; 

3. Given discrete time horizon: The time horizon is a given integer 
number; 

4. Discrete shipping times: A shipment can occur in each discrete time 
instant and the quantity of each product shipped in each time instant 
can be different from the quantity shipped in the other ones. 

Given these assumptions, the problem is to determine the quantity of 
each product to ship in each shipping time and the number of vehicles to 
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use in order to minimize the sum of inventory and transportation costs. In 
Bertazzi and Speranza (1997) a mixed integer linear programming problem, 
referred to as Problem F, is presented for the single link case. The authors 
prove that the optimal solution generated by Problem F is always not bet
ter than the one generated by the capacitated EOQ model and not greater 
than the one generated by Problem P for the case with given frequencies. 
For Problem F, discrete cyclic strategies are proposed and analyzed in Fleis
chmann (1996, 1999). Some worst-case results are presented by Bertazzi and 
Speranza (1999c), who show that the use of more than one frequency may 
reduce the worst-case error of a heuristic strategy with respect to round-off 
strategies of the EOQ optimum period. 

4 Production-distribution systems 

In this section we review the limited number of contributions to the integra
tion of production, inventory and transportation issues, typically aimed at 
the minimization of the sum of set-up, inventory and transportation costs 
on given logistic networks. 

The problem of finding the shipment size on each link and the production 
lot size for each product has been treated for different types of logistic net
works in Blumenfeld et al. (1985), where an EOQ-based approach is used. 
In Benjamin (1989) the single link case and the multiple origins-multiple 
destinations are studied. For the single link case, the author presents a 
nonlinear optimization model with optimal solution in closed form. For the 
more general multiple origins-multiple destinations case, a nonlinear pro
gramming model is proposed and solved exactly on small instances and by 
means of a heuristic approach based on Bender's decomposition for larger 
instances. Computational results show that the heuristic proposed generates 
small errors with respect to the optimal solution. 

The problem of determining the single production frequency and the single 
shipping frequency is analyzed by Hahm and Yano (1992) for the single link 
case with one product. The authors prove that the ratio between production 
interval and the time between shipments is integer in any optimal solution 
and, on the basis of this result, propose an exact algorithm for the solution 
of this problem. In Hall (1996) the attention is focused on the integration 
between production and distribution by means of EOQ-type models in one 
origin-multiple destinations network. 

Conclusions 

In this paper we have reviewed the state of the art in the integrated deter
ministic modelling of transportation and inventory costs. In the last two 
decades, with an intensification in the last decade, several results have been 
obtained. Trying to summarize the evolution of the research in this area, we 
may say that in the eighties by means of macroscopic models, based on con-
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tinuous time and space, strategic guidelines have been obtained for several 
different situations in different types of logistic networks. In the last decade 
more accurate modelling, based on continuous time and discrete space or on 
discrete time and space, has made possible the derivation of relevant results 
to tactical/operational issues by means of more sophisticated mathematical 
analysis. Among the several issues which still deserve investigation, we only 
cite the integrated modelling of production, inventory and transportation 
problems, where the number of results is still very limited. 
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Abstract. The paper investigates the transport of different products with steady 
demand on a single link, e.g. from a factory to a warehouse, when shipments can 
start only at discrete times, e.g. a certain time of a day or a certain day in the 
week. The objective is to minimize cost for transport and for the inventory at the 
origin and at the destination. This problem arises in a multi-product production! 
distribution system, when the production and transportation schedules are 
independent. 

For the single-item case, a class of dominant transport strategies is defined and 
analytical results on the optimal strategy within this class are proven. Then, the 
optimal partition of the inventory and of the shipment quantities into different 
products is derived. Numerical examples show, that this approach yields lower 
costs than the models with given discrete shipment frequencies. 

1. Introduction 

Simultaneous planning of production, inventory and transports for supply of 
material and for distribution is an important issue in modem Supply Chain 
Management which claims to optimize globally all flows along the supply chain. 
Classical production planning and scheduling includes the consideration of work
in-process and fmished product inventory, also for many items, but disregards 
distribution. Classical inventory theory does not consider transport processes 
explicitly either and is mostly restricted to the single item case. Of course, the 
ordering process, in a single or multi-echelon inventory system, could be 
interpreted as transport, but only for the primitive case of shipping a single item 
from point to point. The necessity of considering many products in transportation 
arises, like in production, from the interdependence of products sharing a limited 
capacity. But the logic of this interdependence is quite different: Products sharing 
the same machine have to be produced one after the other with restricted speed, 
whereas they can be transported altogether, but with a restricted volume (or 
weight) per shipment. 

This relationship in production-distribution systems has been studied 
extensively by Blumenfeld et al (1985), Blumenfeld et al (1991) and Hall (1996) 
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(for further references see the overview article of Bertazzi and Speranza (1999) in 
this volume). They consider production and transport scheduling in networks of 
different types, where the products have constant deterministic demand in the 
destination(s), and they investigate the impact on the inventory at the production 
site(s) and the destination(s). They underline the difference between independent 
and synchronized schedules for production and distribution. However, 
synchronization schemes are only presented under the restrictive assumption that 
any product is demanded at a single destination only. It seems that in the general 
case, where all products go to all destinations, synchronization becomes rather 
impracticable. The case of independent scheduling in a one-factory-many
destinations network can be decomposed into a production scheduling problem 
with constant demand and single-link transportation problems with constant 
production at the source. This is the motivation for considering such a simple type 
of transportation system, as it is the case in this paper. 

Recently, another type of inventory and transport planning, a combination of 
routing and lotsizing problems, has been studied in a series of papers (see e.g. 
Anily and Federgruen (1990 and 1993), Herer and Roundy (1997), Viswanathan 
and Mathur (1997), Chan et al (1998) and the overview in Bertazzi and Speranza 
(1999)). Many destinations with constant demand are supplied from a single 
origin in round trips by vehicles with limited capacity; in addition to the routing 
decisions, the frequency of supplying a certain destination is variable. These 
models are restricted to a single product. 

Speranza and Ukovich (1994 and 1996) have emphasized a restriction on 
shipping times or frequencies which is often encountered in practice: Shipments to 
a certain destination can only take place at certain discrete times (e.g. a certain 
time of the day; a certain day in the week) and, therefore, the frequency of the 
shipments is restricted to a discrete set (e.g. daily; twice a week; once a week). 
This restriction is violated by the continuous solution of usual transport models. 
The above papers and Bertazzi and Speranza (1997a and b), Bertazzi et al (1997) 
present exact and heuristic planning algorithms for the single link and for more 
complex distribution systems with many products with constant demand. The 
resulting schedule for one link can be composed of several frequencies; the 
decision variables are the number of vehicles to be used for every feasible 
frequency and their load for every product. However, all these models are based 
on the assumption, that all vehicles used with a certain frequency start traveling at 
the same time. This seems to be an unrealistic restriction and causes excess stocks, 
because for a given number of shipments per unit of time, it is optimal to spread 
them as uniformly as possible over the time axis, as will be shown in Section 3. 

In this paper, we directly consider the restriction of discrete shipment times, 
instead of frequencies, for a single link and many products and we derive 
analytical results on the structure of optimal schedules and the determination of 
optimal and approximate solutions, the latter being optimal in a subclass of the 
solutions. The next Section formulates and motivates the considered problem. 
Section 3 summarizes the easy case of continuous shipment times. Section 4 
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analyzes the case of discrete shipment times for a single product, which is then 
extended to many products in Section 5. 

2. Problem setting and motivation 

The problem is based on the following assumptions: 
(1) We consider transports on a single link from a warehouse A (e.g. the factory 

warehouse) to a warehouse B (e.g. a regional warehouse). 
(2) There are many products to be shipped, each with a steady rate of demand 

(representing the outflow from B), which has to be satisfied without 
backlogging. 

(3) All products are produced in parallel, each with a steady rate of production 
(representing the inflow into A) which is equal to its demand rate. 

(4) The travel time from A to B is zero. 
(5) The shipments are carried out by identical vehicles with a limited capacity. 
(6) The relevant costs are: aflXed cost per shipment and the holding cost for the 

inventory in A and in B. The holding cost coefficients are positive. They may 
differ by product, but are identical for A and B. 

(7) Shipments are only possible at the beginning of a period. The periods have 
an identical fixed length, which is considered as 1 unit of time, w.l.o.g. 

A transport schedule (or transport strategy) specifies the times and product 
quantities of the shipments for a certain planning horizon. Because of the steady 
demand we only need to consider cyclic transport schedules over an infinite 
horizon. The objective is to minimize the total cost per unit of time. 

The assumptions (1) to (4) appear very restrictive and unrealistic; nevertheless, 
they can be motivated as follows: The steady demand assumption (2), which is 
also used in all papers referred to in Section (1), is a reasonable approximation for 
medium term planning, except for strongly seasonal demand functions. It leads to 
cyclical plans for infmite horizon, which need to be supplemented by short term 
plarming. This point will be discussed in detail at the end of this Section. 
Assumptions (1) and (3) result from the decomposition of a one-factory many
destinations network in the case of independent schedules for production and 
transport, even if the products are produced consecutively, as explained in Section 
1. An important consequence of assumption (3) is that the stock of any product in 
warehouses A and B together is constant. A given transport schedule implies, for 
a certain product, stock curves IA(t), IB(t) in A and B over the time t such that 
IA(t) + Ib(B) = I is constant, but depends on the initial stocks in A and B. The 
minimum stock I required is obtained by adapting the initial stocks so that IA(tAJ 

= 0 and IB (tB) = 0 for some tA , tB and IA(t), IB(t) ~ 0, hence 

1= IA (tB) = maxtlA (t) or 
1= IB (tAJ = maxt IB (t). 

Thus, the relevant stock is the maximal stock in A (or in B) as opposed to usual 
lot-sizing models. 
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Assumption (4) causes no loss of generality: For a positive travel time to from 
A to B, the total stock I of a certain product with demand rate d satisfies at any 
time t 

1= IA (t) + d to + IE (t + to), 
because the first two terms equal the stock which, at time t + to, is still in A or in 
transit. Hence 

1= maxtIA (t) + d to, 

i.e. the total stock has to be increased by dtO, the average stock in transit, which 
does not depend on the transport schedule and therefore can be disregarded in the 
optimization of the schedule. 

Assumption (5) is realistic for trunc haulage from factory, assumption (6) is 
true, if the holding cost is mainly capital cost, because the value of the products 
does not increase remarkably by the transport from A to B. The assumption (7) 
on discrete shipment times has been motivated in Section I. 

We can now state the problem formally, using the notations: 

dp demand rate (and production rate) ofproductp (p = 1, ... ,n). 
vp volume per unit of product p 
Q vehicle capacity 
F cost per shipment 
hp holding cost of product p. 

The decision variables are 

T cycle length 
k number of shipments within a cycle 
Ti time ofi-th shipment (i = 1, ... ,k) 
qip quantity of product p in the i-th shipment 

It stock of product p in A immediately before the i-th shipment 

Ip required total stock ofproductp. 

W.1.o.g. we set Tk = T. Instead of Ti we also consider the times between 
shipments 

t i = Ti - Ti-1 (i = 2, ... , k) and t 1 = T 1. 

The following problem is to be solved: 

minimize L:p hp Ip + Fk/T, s.t. 

It+1,P = It - qip + ti+1 d p 
(all p; i= 1, ... , k - 1) 

(2.1) 

(2.2) 
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I~p = Ikp qkp + t/ dp (allp) (2.3) 

I~ ~ qip (all i, p) (2.4) 

I p ~ I~p (all i, p) (2.5) 

Lp vp qip::S;Q (all i) (2.6) 

k 
Lti = T (2.7) 
i=l 

I~, qip' ti ~ a (2.8) 

ti integer (2.9) 

(2.2) and (2.3) describe the cyclical development of the stocks. (2.4) causes Ip 
to equal the maximum stock in A (which is reached immediately before a 

shipment). I p - I~ is the stock in B, which is not considered explicitly. (2.5) 

ensures nonnegativity of the stock in A after the shipment. (2.6) is the vehicle 
capacity restriction, (2.7) the definition of the cycle length. 

An immediate consequence of (2.2) to (2.5) is I p ~ I~ ~ ti d p for all i,p or 

(2.10) 

where t~ax = maxi ti . This relation is important for the analysis in the following 

sections. 

In problem (2.1) to (2.9), the transport strategy seems to be the primary decision 
which determines the stock curves in A and B and the constant stock Ip. But in 
reality, the dependence is converse: First, the stock Ip has to be planned; it is 
needed, in addition to the stock in transit and the safety stock, to determine the net 
requirements for production planning. Then, transport planning has to respect the 
available stock. Transport decisions are taken for a very short horizon, maybe just 
for the next shipment, starting from the current stock situation. Due to the 
assumption of steady demand, the model (2.1) to (2.9) supports the medium term 
planning of the stock levels; but for transport planning, it can only create rough 
guidelines, which have to be precised by a short term planning procedure. 

3. Continuous shipment times 

In this section, we disregard the discrete shipment times, i.e. assumption (7) and 
restriction (2.9). Transport planning for a single link with continuous shipment 
times is very simple. It leads to a EOQ model, as the following proposition 
shows. 
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Proposition 1. Any optimal solution of problem (2.1) to (2.8) has the following 
properties: 

(a) The shipments are equidistant with a time interval t*. 

(b) Every shipment contains every product p with constant quantity q ~ = d pt· . 

• • (c) I p = qp for allp. 

Proof. Property (c) immediately follows from (a) and (b), because the stock of 

product p in A fluctuates between 0 after every shipment and q~ before it. 

Consider any strategy S with k shipments in a cycle of length T and compare it 
with strategy S* satisfying (a) and (b) with t* = Tlk. The feasibility of S implies 

T Lp vp d p $ k Q, hence Lp q; $ Q , i.e. the feasibility of S*. Both strategies 

have identical transport cost per unit of time. In S, we have t~ax;:::: T 1 k , hence 

due to (2.10) I p ;:::: I~ for every p, where equality for all p holds only, if Sand S* 

are identical. Thus, the strategies with properties (a) and (b) strictly dominate all 
other strategies .• 

As a consequence, the optimal strategy is determined by the single variable t* 
which implies the cost 

C=t*" h d +Flt* L...p p p 

and therefore has the optimal value 

This strategy is considered by many other authors (e.g. Blumenfeld et al. 1985, 
Speranza and Ukovich 1994, Hall 1996), but starting from the properties (a) and 
(b) as an assumption. The Proposition 1 shows, that this assumption does not 
cause any loss of optimality. 

Example 1. Speranza and Ukovich (J 994) use the following example for 
illustrating their model with discrete frequencies: There are 3 products A, B, C to 
be shipped with daily demand of 24, 4, 3 pallets and holding cost of 4, 0.4, 0.2 $ 
per day and pallet, respectively. The vehicle capacity is Q = 48 pallets, the fixed 
cost per shipment F = 500 $. Measuring both demand and capacity in pallets, we 

have vp = 1, Ivp dp = 31, I hp dp = 98.2, hence t* = min (48/31, .JSOO/98.2) 
= 48131 and the cost C = 474.97 $ per day. 

We will consider the same example for the more complicated cases in the 
following sections where a comparison with the results of Speranza and Ukovich 
will be made. 
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4. Discrete shipment times, single product 

4.1 Problem setting 

We now consider assumption (7) and restriction (2.9). To be more concrete, we 
will speak of a period as a day, but any other period could be considered as well. 
Thus, shipments are possible once a day at a certain time, and time is measured in 
days. Note that Proposition 1 is no longer valid, because t* = T/k is not integer in 
general. In this section, we focus on the case of a single product, the extension to 
several products follows in Section 5. We use the same notations as in the 
previous section, but we drop the subscript p and set v = 1, i.e. the vehicle 
capacity Q is measured in demand units. 

We can assume Q > d, i.e. the vehicle capacity is sufficient for the daily 
demand, because the case Q ::; d can be reduced to this assumption as follows: It 

is obvious that an optimal strategy contains at least m = l ~ J daily shipments 

satisfying the demand mQ. Only the remaining demand d' = d - mQ::; Q has to 
be scheduled. If a transport strategy for d' requires the stock J', the total stock is 
J' + mQ, because the daily shipments for the demand mQ require, in warehouse A, 
a stock of zero after the shipments and of mQ before the shipments. 

To simplify the notations w.l.o.g., we now set d = 1 (or d' = 1, if the original 
demand has been reduced, as explained before), i.e. the (remaining) demand per 
day is used as quantity unit, and therefore Q > 1. 

A simple approximate solution to the problem with discrete shipment times can 
be derived from the continuous solution with regular shipments of quantity q* all 
t* = q* units of time: We keep the constant quantity q*, but delay the shipments 
to the next possible time, i.e. the i-th shipment to the time I it* l. This requires an 
additional "discretization stock" for one day. Thus the transportation cost is the 
same as for the continuous solution, but the stock is q * + 1. This solution might 
be satisfactory in practice in many cases, in particular if q* is large relatively to 
the daily demand. In the following we propose transport strategies which improve 
this rough approximation and are of importance for smaller q*. 

Example 2. Consider the same data as in Example 1, but disregarding the 
different products. The standardization of the data, as explained above, leads to d 
= 1, Q = 48/31 and h = 98.2, without changing t* = 48/31 = q*. The simple 
approximate solution requires the stock q * + 1, hence inventory cost of h ( q * + 
1) = 250.25, transport cost of 500·31/48 = 322.92 and total cost of 573.17$ per 
day. Thus, the discretization raises the cost by 20.7 %. 

4.2 Discrete transport strategies 

We define a class of cyclic discrete strategies S(k, T), which are completely 
determined by the cycle length T and the number of shipments k per cycle, 
satisfying the following conditions: 



k,Tinteger 
g.c.d (k, T) = 1 
k~T 

Q ;?Tlk 
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(4.1) 
(4.2) 
(4.3) 
(4.4). 

(4.2) excludes cycles consisting of identical subcycles, (4.3) forbids several 
shipments at the same time, which would be efficient only, if Q < 1; but this case 
has been removed by demand reduction, as explained above. (4.4) is necessary for 
a feasible transport schedule. Note that k = T is only possible if k = T = 1. The 
trivial strategies (1, T) consist in regular shipments of quantity T every T days. 
Now consider the case 2 ~ k < T. 

The shipment times are defined as follows: The i-th shipment occurs at time 

Ti = riTlk1 (i = I, ... ,k) (4.5) 

after the beginning of the cycle; therefore, Tk = T and the times ti between the 
shipments are 

ti E {t - 1, t}, t 1 = t, tk = t - 1, where t = r Tlk 1. 

It follows from (2.10) that the required stock I ;? t. 

The shipment quantities are defined recursively using the notations 

It, If stock in warehouse A immediately before and after the i-th shipment. 

Starting from IZ = 0 , we set 

qi = min {Q, It} (i = 1, ... ,k) (4.6) 

Definition (4.6) ensures If ~ 0 for i = I, ... ,k, but not necessarily n = 0 , or 

Ii qi = T, which is required for a feasible cyclic schedule. We show that this is 
true for the particular shipment times (4.5). 

Proposition 2. 

(a) The definitions (4.5) and (4.6) imply 1% = o. 
(b) The strategy S(k, T) requires the stock 

(c) 1= max {Ti- (i-I) Q: i = 1, ... , mI} 

(d) where mi = min {i: If = 0, 1 ~ i ~ k}. 

(e) If Q = Tlk, all shipments qi = Q and I = (T + k - I)/k. 

(4.7) 
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Proof. (a) Let M= {m: Ic:n = 0, I 5{ m 5{ k}. There exists m I EM, because 

and Tk = T 5{ kQ. If there is any m E M such that m < k, then there is an m I E M 

such that m < m '5{ k, because m I = min {i: Ti - T m - (i - m) Q 5{ 0 , m < i 5{ k} 
exists, due to 

Tk - T m 5{ T - mTlk = (k - m) Tlk 5{ (k - m) Q. 

Hence k EM, which proofs (a). 

(b) As explained in Section 2, I = max {lib, i = I, ... , k}. For i = I, ... , mI- I we 
have lib = Ti - (i - I) Q. Hence (b) is true, if max {Jib: i = I, ... , m I} ~ max {llh : 

i = mi + I, ... , k}. For i > mI, there is some mE Msuch that 

lib = Ti - T m - (i - m - I) Q 
l(mT + (i - m) 1)lkl-lmTlkl- (i - m - I) Q 

5{ l(i-m) Tlkl - (i - m - I) Q 5{ If-m. 

Hence lib attains to the maximum for i 5{ mI. 

(c) If Q = Tlk, then qi = Q is the only feasible schedule and 
lib = liTlkl- (i - I) Tlk = Tlk + liTlkl - iTlk 

= (T+(-i1)kJlk(i=I, ... ,k) 

where (x) k = x modulo k and 0 5{ (x) k < k. Due to (4.2), (-i1) k assumes all integers 
O, ... ,k-I, hence I = maxi lib = (T + k - I)/k .• 

In the special case ( c), we are close to the rough approximation explained in 
Section 4.1, as I = Q + I - 11k. But, as we will see in Section 4.3, this choice of 
(k, T), which uses up Q completely, is not necessarily optimal. The next 
proposition shows that the S(k,1) strategies, and even a subset of them, are 
dominant. 

Proposition 3. 

(a) S(k,1) dominates all discrete strategies with k shipments in T days. 
(b) Let m I be defmed as in Proposition 2(b). If m I < T, then 

S' = S(m I, I mi Tlkl) strictly dominates S(k,1). 

Proof. (a) Let S be a discrete strategy with k shipments in T days, times between 
shipments fi, shipment quantities qi 5{Q (i = I, ... , k) and stock I, and let 1* be the 
stock of S(k, 1). S(k,1) and S have the same transport cost and we show I ~ 1*: 
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j 
According to (4.7), 1* = 1) - () - 1) Q for some j. Let U r = L t r + i (r = O, ... ,k-I), 

i=l 

k k-l 
where ti = ti-k for i > k. As L ti = T, L U r = jT and therefore U r ~ jTlk for at 

i=J r=O 

least one rand, Ur being integer, Ur ~ljTlkl = 1). It follows from (3.1) 

j 
I > Ib . > Ib + U - "q > T· - () - 1) Q = 1* - r+ } - r r L.. r+i - } . 

i=2 

(b) The transport cost of S' is lower than that of S(k, T), as 

mIll mI Tlkl < mI l(mI Tlk) = kiT, 

where the strict inequality is due to (4.2). We show that the stocks for S(k,T) and 
S', say I and 1', are equal. The defmition of m 1 implies mJ Q "? T m and 

J 

i Q < Ti (i < mI), hence 

(4.8) 

The shipment times of S' are T;' = liT m I mJ l. (4.8) implies T;' s Ti, and 
J 

T m > mIT I k implies Ti' ~ Ii (m I Tlk) I mIl = I iTlk l = Ti , hence Ti' = Ti for 
J 

i = I, ... ,mI- 1 and T'm = T m by defmition of T m'. Thus I = I' by (4.7) .• 
J J J 

Example 3. Let d = 1, Q = 1.7. The strategy S(5,8) has the shipment times 
(TJ = (2,4,5,7,8) and mI = 3, since T3 - 3Q s 0, and requires the stock 
I = T2 - Q = 2.3. Therefore, according to Proposition 3(b) S(5,8) is dominated 
by S(3, 5) with the same stock but lower shipment frequency 315 < 518. 

4.3 Optimal strategies 

We introduce a subclass of the strategies S(k, T) with a simple structure, which 
allow an analytical optimization and are at least locally dominant. 
The following strategies are called pure strategies: 

S(J,t) , t ~ 1 

Sk,t = S{k,kt -1), k"? 2,t"? 2 

Sk,t = S(k,k{t -1) + 1), k"? 2,t"? 2. 

S(J, t) consists of shipments of q = t every t days and requires the stock I = t. 
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Sk,t has the following properties: 

• feasible, if Q'? t - 11k 
• shipment times Ti = it (i < k) 
• times between shipment ti = t (i < k), tk = t - I 
• shipment quantities qi = Q (i < k), qk = t - I + (k - 1) (t - Qj, 
ifQ < t, 
• otherwise qi = Ii (i = 1, ... ,k) 

• stock I = ILl = I + (k - 2)(1 - Q), if Q < I, otherwise I = I. 

Sk.t has the following properties: 

• feasible if Q ,? I - 1 + 11k 
• shipment times Ti = i (I - 1) + I. 
e times between shipment I I = I, Ii = I - 1 (i > 2) 
• shipment quantities qi = Q (i < iO), qi = I - I (i > iO) and 
q. = iO(I-1)+1-(iO -1)Q,where iO = rll(Q - I + 1)l, 

'0 

if Q < I, 

• otherwise qi = Ii (i = I, ... ,k) 

• stock I = I~ = I. 

Note that s1,t = Sl,t . 

Example 4. As in Example 3, let d = 1, Q = 1.7. The strategy S!,2 = S(3,5) is the 

strategy considered in Example 3, the stock I = I + (k - 2) (I - Q) = 2.3. Other 

feasible pure strategies are S1,2 = S2,2 = S(2,3), Sj,2 = S(3,4) , S"4,2 = (4,3), etc. 

The strategies St.2 with k > 3 and Sk,t with I > 2 are not feasible, e.g. 

S~,2 = (4,7) requires the capacity 714 > Q. According to Proposition 3(c), S(3,5) 

dominates all strategies S(k, T) such that 312 < Tlk < 513, and according to 
Proposition 3(b), S(2,3) dominates S(k,T) such that 1< Tlk < 312. 

Therefore, S(3,5) and S(3,2) are the only efficient strategies such that 

I < Tlk < Q. However, for Q < 1.5, the strategies Sk,2 may become efficient. 

The pure strategies have the following dominance properties. 

Proposition 4. 
(a) If Q ,? I, then S(J,!) dominates any S(k, T) such that I - 1 < Tlk < I, in particular 

Sk,t und Sk,t for k ~ 2. 

(b) If Q'? - 1 + 11k, then Sk,t dominates any SO, T) such that 

I - 1 < T/j < I - I + 11k, in particular Sf,t for j > k. 
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(c) If t - 11k ~ Q < t, then Sk,t dominates any SO, T} such that t - II(k-I) < T/j 

< t - 11k. Any such SO, T} has the same stock as Sk,t . 

Proof. (a) S(k, T} has the shipment frequency kiT > lit, hence higher transport 
costs than S(1,t), and needs a stock I ~ rTlk1 = t, thus at least the same stock as 
S(1,t). 

(b) SO, T} has a higher shipment frequency than Sk,t and needs a stock 

I ~ rT/j1 = t, the stock of Sk,t. 
(c) Assumption (c) impliesj > k and 

kt-I-II(k-I) < k T/j < kt-I, 

hence rkT/j1 = kt - 1 ~ kQ. For i ~ k - 1 we have i T/j > it - i/(k - 1), hence 
ri T/j1 ~ it - L i/(k - 1) -E J for some E > 0, and therefore 

r iT/j 1 ~ it > iQ. Thus by Proposition 3(b) and its proof, Sk,t dominates SO, T} and 

both strategies have the same stock. • 
We now construct the optimal pure strategy, starting from the optimal 

continuous cycle length t* = .j F / h, which minimizes the cost function 
Crt) = ht + Fit. The following three cases have to be distinguished: 

Case 1: rt*l ~ Q. 
As Crt) is convex and is also the cost of S(1,t), the best S(1,t) is either s(1Jt*l) or 
S(1, Lt* J) (the latter only if t* ~ 1). By Proposition 4(a), these two strategies 
dominate all S(k, T} with kiT < r t* 1 and, as C (r t* 1) < crt) for t > r t* 1 , also for 
kiT > rt*l 

Thus, either S(1, r t* V or S (1, Lt* j) is the optimal strategy. 

Case 2Jt*1 > Q and Q < r Q1- ~. 
Let t = r Q1 . As Q > 1, t ~ 2. By Proposition 4(a) and (b), the optimal pure 

strategy is either S(1,t-I) or Sk.t with minimal feasible k, i.e. such that 
t- J+llk < Qor 

k = kmin = r II(Q - t + 1)1 (4.9) 

which implies kmin ~ 3. 

Case 3: r t* 1 > Q and Q ~ r Q 1- ~ . 
Again, t = r Q 1 ~ 2, and the optimal pure strategy is either S(1, t-I) or some 

st (2 ~k ~ kmaxJ where kmax = LII(t-Q)J. But as there is no dominance among 

the st for fixed t, the optimal k has to be determined as follows: the cost of 
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st (k 22) is 

U(k) = h(t + (k - 2) (t - Q)) + Fk/(kt - 1) (4.10) 

which is convex for k > lit and has the minimum for 

k*=(J+ IF")/t. 
V~ 

(4.11 ) 

Due to t - Q < 1, we have k* > (J + t*)/t > 1. Ifk* :5; 2, then k = 2 is optimal, if 
k* ~ kmax then k = kmax• Otherwise we have to compare k = Lk* J and k = r k* l . 

If k* :5; kmax, then, by Proposition 4(c), the best stt even dominates all SO,T) 

with t - 1 < T/j :{ Q, so that the construction yields the optimal strategy. 
In any case, we can easily determine the optimal pure strategy by the 

comparison of at most three strategies. Only in Case 2 and in Case 3, if k* > 
kmax, there might be strategies SO, T) which are better than the best pure strategy, 
in Case 2 with t - 1 + l/kmin < T/j :{ Q, in Case 3 with t - lIkmax < T/j :{ Q, 
which use up the vehicle capacity better than it is possible by pure strategies. 

From a practical viewpoint, and considering that a steady demand model is 
always an approximation, the pure strategies seem to be a reasonable 
approximation to the optimal solution. 

Improvements might be possible in the two cases mentioned before by 
considering two further strategies: 

I) SO, T), where T/j is a rational subapproximation of Q, with fixed shipment 
quantities qi = T/j and the cost, according to Proposition 2(c): 

C = h(T+k-1)/k + Fj/T. 

2) The mixed strategy Su,k,t = Sk+I,t + (a -1) st,t = S(ak + 1, (ak +l)t - a), 

where k = kmax and a is the smallest integer such that the strategy is feasible, 
i.e. 

a = r t-Q l>l' ast-1/k <Q <t-1/(k+1). 
1-k(t-Q) 

This strategy has the shipment times of Sk+I,t ' followed by (a - I) repetitions 

of those of Sk+I,t ,and it reaches the maximal stock in A, like Sk+I,t ,before 

the k-th shipment, i.e. I = t + (k-1) (t-Q). (Note that this is not true for more 

general mixed strategies of the form j3 Sk+ I,t + (a - 1) Sk,t with integers 

a,j322). 
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The cost of these two strategies has to be compared with the cost of the optimal 
pure strategy. 

Example 5. As in Example 3 and 4, let d = 1, Q = 1.7. We now consider also the 

cost h = 1 and F = 4. Then t* = J4 = 2 > Q so that Case 3 applies. (4.11) leads 

to k* = 2.54 and kmax = 3, thus the strategies S!,2 = S(3,5), S2,2 = S(2,3) and 

S(1,l) have to be compared. As Table 1 shows, S(2,3) is optimal. Table 1 also 
gives the results for other values of F. The strategies to be compared depend on 
k*. For k* > 3, we also consider the full shipment strategy S(JO,17) which is, in 

this case, equal to the combined strategy S"4.2 + 2 S!,2 and requires the stock 

(17 + 9)/10 = 2.6 according to Proposition 2(c). 

Table 1. Results for Example 5 

Strategy Inventory Frequency Total cost for 
F = 2 F = 4 F = \0 F =40 

S(l, I) I 1 3 5 11 41 
S(2,3) 2 0.667 3.33 4.67 
S(3,5) 2.3 0.6 4.7 8.3 26.3 
S(10,17) 2.6 0.588 8.48 26.12 

k* 11.79 2.54 3.39 6.27 

Example 6. We come back to Example 2 (the aggregate form of Example 1): 
d = 1, Q = 48/31, h = 98.2, F = 500. Again, this is the Case 3 with kmax = 
L31114J = 2 and k* = 3.83, according to (4.11). Therefore, the best pure strategy 

is either S2,2 = S(2,3) or S(I,I). As k* > kmax , we consider St.2 + 4 S2,2 = S 

(11,17) with the same stock as S!,2, i.e. 2 + 14/31, and the full shipment strategy 

S(3I,48) with the stock 78/31, according to Proposition 2(c). Table 2 shows that 
S(2,3) is optimal. This solution can be disaggregated for the single products by 
decomposing the stock and all shipment quantities proportionally to the daily 
demand. Speranza and Ukovich (1994) consider S(1,I) and S(31,48) as well, but 
their best solution with discrete frequencies has the cost 538.53 which is higher 
than that of S(2,3), 529.73. In the following Section, Example 7, we will see that 
this result can still be improved by a better decomposition of the stock into the 
single products. 

Table 2. Results for Example 6 

Strategy Inventory Frequency Total Cost 
S(I,I) 1 I 598.2 
S(2,3) 2 0.667 529.73 -
S( 11 ,17) 76/31 0.647 564.28 
S(31,48) 78 /31 0.646 570.00 
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In the two-level decision process, as discussed in Section 2, we only need to 
know, on the first level, the necessary stock for an optimal transport schedule. The 
above analysis yields the stock for an optimal approximate solution. On the 
second level, the decisions on shipment times and quantities can be taken by 
simple local rules. Our defmition of qj (4.6) is already such a rule, and the 
definition of Tj (4.5) is the same as the rule "ship when needed": Starting from the 
stock zero in A and the complete stock I in B, ship whenever the stock in B has 
dropped below 1. 

5. Discrete shipment times, different products 

We use again the notations of Section 3, with product subscript 
p = I, ... ,n. In order to be consistent with the previous Section, we make the 
following assumptions w.l.o.g.: 

dp = I for allp, 

i.e. the unit quantity is the daily demand; 

i.e. the capacity unit is the daily shipment volume and vp is the proportion of 
product p. The total stock is measured in capacity units 

the total cost is 

C = Lp hp Ip + FkIT (5.1) 

for k shipments in T days and the conditions (4.1) to (4.4) remain valid. We order 
the products according to decreasing holding cost per capacity unit, 
i.e. 

We remove again the case Q s I by a demand reduction, but now, this has to be 
done more carefully. As explained in Section 4.1 the total stock results from the 
addition of the stock for m = r I IQ l daily shipments and of the stock required for 
scheduling the remaining demand. For a particular product p, the daily shipments 
cause a stock of one daily demand, which is necessary in any case. But the 
additional stock can be avoided, if the product is transported completely in the 
regular daily shipments, which have a capacity of mQ s I (= I only, if I1Q is 
integer). Therefore, the m regular shipments are used for the complete demand of 
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the products p = 1, ... ,r, where L v p ~ mQ and L v p > mQ, and for the 
pSr pSr+1 

demand (mQ - L v p) / Vr of product r. The remaining demand of product rand 
pSr 

the complete demand of the products p = r + 1, ... ,n, which has a daily volume 
smaller than Q, has to be scheduled in the next step. 

Note that after this demand reduction, the data have to be updated: The first r 
products are removed, hp, vp and Q changed according to the new demand and 
capacity units. In the following we assume that the data concern the situation after 
an eventual demand reduction and Q > 1. 

We first determine the optimal partition of the total stock and of the shipments 
to the products for a S(k, T) strategy. Then we investigate the consequences for the 
determination of the optimal strategy. 

For any strategy S(k,T), there is at least one time between shipments t = IT/kl 

and therefore every product needs a stock Ip::? t to bridge this interval. As a 
consequence, for all strategies with total stock 1 = t, a fixed partition of all stocks 
and shipments, according to the proportions vp, is optimal. In this case, the 
shipment quantities (4.6) are valid for every single product p (expressed in daily 
demand units) or are to be multiplied by vp (expressed in capacity units). This is 

true in particular for the pure strategies S (l,t) and S"k,! . 

For a strategy S(k, T) with stock 1 > t, in particular the strategies 

Sk,! (k ~ 3, t ~ 2 ), we construct a partition, which minimizes the holding cost 

for the part 1 - t, whereas the partition of the part t of the stock cannot be 
influenced. 

Let r be such that L vp ~ Q/ t < L vp; this implies r < n, as Ip vp = 1 
pSr pSr+1 

and Q/t < 1. 

Let vR = Q/t - L v p' The stock assigned to product p is defmed as follows: 
pSr 

Ip = t (p 5{r) (5.2a) 

Ir+ 1 = (vR/vr+ 1) t + (1 - vR/vr+ 1) (I - Q) / (J - Q/t) (5.2b) 

Ip = (I - Q) / (J - Q/t) (p > r + 1). (5.2c) 

It is easy to verify that Ip vp Ip = I. The quantities qip for the i-th shipment have 
to satisfy 

(5.3) 

because the lower bound is the demand ti+ 1 during the next shipping cycle minus 
the stock in B, the upper bound is the stock available in A. The shipment 
quantities are determined by the following rule: 
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~ Ib <_Q'. ~p Vp ip 

otherwise choose qip arbitrarily such that (5.3) is satisfied and 

Proposition 5. 
(a) The above rule for the shipment quantities is feasible. 

(5.4a) 

(5.4b) 

(b) If t - 11k :{ Q < t, the above partition of the total stock and of the shipment 

quantities is optimal for the pure strategy St.t (k ~ 3, t ~ 2) and for any 

feasible mixed strategy Sa,k,t (k ~ 2, t ~ 2, a ~ 2) 

Proof. (a) It follows from I ~ t that (I - Q)/(/ - Q/t) ~ t and hence Ip ~ 1 for all p, 

according to (5.2 a,b,c). Due to ti:{t for all i, the lower and upper bounds in (5.3) 

are compatible. We still have to show, that in the case If > Q the lower bounds 
in (5.3) are compatible with the capacity restriction. The shipment quantity rule 
(5.4a, b) ensures that the aggregate quantity qi = Ip vp qip satisfies the rule (4.6) 

for S(k, T), hence the aggregate stock If behaves like in S(k, T). Therefore 

Lp vp(I~ - Ip + li+l) = If - I + ti+1 ~ If - I~+I + ti+1 = qi ~ Q. (5.5) 

(b) W.l.o.g. we assume vR = 0, because otherwise, we can split product r + I into 

two products with volume vR and Vr+ I - vR, respectively. The stock for S1 t is 

1= (k-2) (I-Q), hence (5.2c) leads to Ip = (Ie-I) t for p > r. Moreover, ti = t for 
i = I, ... , k-I. Therefore (5.3) implies, for p:{ r, qip = t (i :{ k - 2) and 

I~ = t (i :{ k -I). The most expensive products p :{ r hold only the unavoidable 

stock I~p = t ; the set of these products cannot be increased because 

L qip = 1 L vp = Q (i ~ k - 2). 
pSr p5.r 

(5.6) 

The stock of any product p > r cannot be decreased, because (5.6) implies 

qip = 0 (i:{k - 2), hence Ii-I,p ~ (k - I) t. For the mixed strategy Sa,k,tthe 

proof is analogous, considering that the stock and the first k shipments are 

identical with those of 81+1 t·. 
When comparing S1 t for different k, the cost function U(k) (4.10) has to be 

modified as follows (note that r does not depend on k): 
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U(k)=tL hp+(k-1)tL hp-hr+dk-2)tvRlvr+l+Fkl(kt-1), 
p~r p>r 

which attains its minimum for 

k* = (J+,JFI H)lt, where H=t (L hp -hr+l v R IVr+l). (5.7) 
p>r 

This determination of k* replaces (4.11). 
The optimal pure strategies can now be determined in the same way as in 

Section 4.3 and the optimal stock levels per product as explained above. 

Example 7. Consider again Example 1, but now with 3 different products and 
discrete shipment times. The standardized data are: dp = 1, (vp) = (24/31, 4131, 
3131), (hp) = (96, 1.6, 0.6), Q = 48131 and F = 500. From Example 6 we know, 
that kmax = 2 and S(2,3) is the best pure strategy for the aggregate problem. 
S(2,3) has the stock t = 2, hence the proportional partition is optimal, which yields 
no improvement over the aggregate solution. However, the strategies S(lI, 17) and 
S(31,48), considered in Example 6, are candidates for a non-proportional 
partition. As VI = Q12, we have r = 1 and vR = 0, and according to (5.7) H = 4.4 
and 
k* = 5.83, which is larger than k* in the aggregate problem. 

For S(lI, 17) the stock 1 = 76131 is partitioned by (5.2 a, c) into 

11 = 2,12 = 13 = 2817 = 4, or in capacity units 
vIII = 48131, v212 = 16131, v313 = 12131, 

resulting in the holding cost 200.8 and total cost 524.329. For S(31,48) the stock 
1 = 78131 is partitioned into 

11 = 2, 12 = 13 = 3017, or in capacity units 
vIII = 48131, v212 = 1201217, v313 = 901217, 

resulting in the holding cost 201.429 and the slightly higher total cost 524.345. In 
both cases, the optimal partition reduces the cost of the aggregate solution 
drastically and yields better solutions than the best aggregate solution. 

6. Conclusion 

The problem considered arises in multi-product production/distribution systems as 
a part of the medium-term planning. The main decisions are a rough periodic 
transport schedule and the inventory level for every product required for the 
transport lot-sizes so that the cost of transport and inventory is minimal. The 
resulting inventory has to be taken into account in the short-term calculation of 
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the net production requirements. However, the shipment quantities will fluctuate 
on the short-run and deviate more or less from those in the steady demand model, 
depending on the current demand and stock situation. The rule (5.3) and (5.4) for 
the shipment quantities can be applied in a dynamic short-term situation as well. 

Optimal transport strategies can be determined by comparing a few (at most 4) 
analytically derived strategies. Only if the best pure strategy violates the vehicle 
capacity restriction, there may be better mixed strategies between the best feasible 
pure strategy and the full load strategy. In this case, a near-optimal mixed strategy 
Scr,k,t can also be determined. By extending the investigation to a broader class of 
mixed strategies, the result might be still improved slightly in some cases. But this 
level of detail seems to be inappropriate to the planning framework outlined 
above. 

The transport model with discrete shipment times generalizes the model with 
given discrete frequencies, as shown by Bertazzi and Speranza (1997b), so that its 
optimal solution is always better or equal to that of the latter model. The presented 
analysis permits to determine easily optimal or near-optimal solutions, which 
indeed outperform the solutions with discrete frequencies in examples. 
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Abstract. We consider a distribution problem in which a product has to be 
shipped from a supplier to several retailers on a given time horizon. Ship
ments from the supplier to the retailers are performed by using a vehicle of 
given transportation capacity and cost. Each retailer determines a minimum 
and a maximum level of the inventory of the product. Every time a retailer 
is visited, the quantity delivered by the supplier is such that the maximum 
level of the inventory is reached at the retailer; in other words, a deterministic 
order-up-to level strategy is applied. The problem is to determine for each 
discrete time instant the retailers to be visited and the route that the vehicle 
has to travel. Various objective functions are considered which correspond 
to different decision strategies and possibly to different decision-makers. For 
this problem we present a heuristic algorithm and compare the solutions 
obtained with different objective functions on a set of randomly generated 
problem instances. 

Keywords. Distribution Systems, Inventory and Transportation Costs, 
Heuristic Algorithms 

1 Introduction 

One of the interesting problems in the management of distribution systems 
is to determine shipping strategies that allow to integrate vehicle routing 
problems with inventory control problems. In these strategies the aim is to 
minimize the sum of different types of logistic costs, such as transportation, 
inventory and handling costs. The main decisions to take are the set of de
livery time instants, the quantity of the product to ship to each retailer in 
each delivery time instant and the routing of the vehicles. These decisions 
must satisfy a set of constraints on the level of the inventory both at the sup
plier and at the retailers and on the capacity and the routing of the vehicles. 
Typical examples of integrated distribution systems are given by internal 
distribution systems, in which the supplier and the retailers are different ech
elons of a single company, and by external distribution systems, in which 
the supplier replenishes the retailers in the respect of a given service level 
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and with the aim to minimize the total cost. There are several models that 
allow to integrate vehicle routing problems with inventory control problems. 
A first example is given by deterministic periodic models in which a strategy 
is determined over a time horizon, that can be either a data parameter or a 
decision variable of the problem, and then is repeated at infinity. These peri
odic shipping strategies are often based on the concept of shipping frequency. 
This is the case of the classical EOQ model, published first in Harris (1913), 
in which the product is shipped at the single continuous frequency that min
imizes the total cost. This model is applied to several logistic networks in 
Blumenfeld et al. (1985) and to distribution systems in Burns et al. (1985). 
The main drawback of this model is that the obtained solution can be in
feasible from a practical point of view, as discussed in Hall (1985), Maxwell 
and Muckstadt (1985), Jackson et al. (1988) and Muckstadt and Roundy 
(1993). In order to go beyond this drawback, Speranza and Ukovich (1994) 
proposed a model in which shipments can be performed on the basis of a 
given set of discrete frequencies; this model is applied to distribution systems 
in Bertazzi, Speranza and Ukovich (1997). A second type of models that 
integrate vehicle routing problems with inventory control problems is given 
by the so called inventory-routing models. As described in Federgruen and 
Simchi-Levi (1995) and in Bramel and Simchi-Levi (1997), these models can 
be classified as follows: Single-period models with stochastic demand, multi
period models with deterministic demand and infinite horizon models with 
deterministic demand. An example of single-period models with stochastic 
demand can be found in Federgruen and Zipkin (1984). In this model, the 
quantity of product to ship in each delivery time instant to each retailer is 
determined on the basis of the level of the inventory at the retailer. Then, 
the retailers are assigned to the vehicles and the routes are determined. The 
multi-period models with deterministic demand are deterministic models in 
which several shipments can be performed over a time horizon. In these 
models, single-period models are often used as subproblems (see for instance 
Dror and Ball, 1987). Finally, in the infinite horizon models with determin
istic demand the product is absorbed at each retailer at a given constant 
rate; the problem is to determine an infinite horizon shipping strategy that 
minimizes the sum of inventory and vehicle routing costs. Examples of these 
models can be found in Anily and Federgruen (1990). 

The scope of this paper is to study a deterministic problem in which a 
product is made available at a common supplier and absorbed by several 
retailers in a time-varying way. The product is shipped from the supplier to 
the retailers by a vehicle of given transportation capacity and cost. Shipments 
can be performed only in the discrete time instants that belong to a given 
time horizon. A starting level of the inventory is given both for the supplier 
and for each retailer and the level of the inventory at the end of the time 
horizon can be different from the starting one; therefore, the problem is 
not periodic. Each retailer determines independently a lower and an upper 
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level of the inventory of the product; every time a retailer is visited, the 
quantity delivered is such that the maximum level of inventory is reached 
at the retailer; in other words, a deterministic order-up-to level strategy 
is adopted. A unique decision-maker, typically a logistic manager, has to 
determine a shipping strategy that satisfies the constraints of the problem and 
allows to minimize a given objective function. A shipping strategy consists 
in determining for each retailer a set of delivery time instants and for each 
delivery time instant a route for the vehicle. The constraints of the problem 
guarantee that in each tour the capacity of the vehicle is not exceeded and 
that the level of the inventory both at the supplier and at each retailer is 
always not lower than the minimum level. Finally, the objective function 
can take different forms depending on the decision strategy of the decision
maker. Let us describe some of them. A first case is when the decision-maker 
determines a shipping strategy with an integrated view of the system. In this 
case his/her goal is to minimize the total cost and the objective function is 
the sum of the transportation cost and of the inventory cost both at the 
supplier and at the retailers. A second case is when the goal of the decision
maker is to minimize only the sum of the inventory cost at the supplier 
and of the transportation cost, without any regard to the inventory cost at 
the retailers. This happens when the strategy is defined by the supplier 
who organizes the routing and determines at its discretion when to visit 
each retailer guaranteeing that the level of the inventory at each retailer is 
always not lower than the minimum one. A third case is when the goal of 
the decision-maker is to determine a shipping strategy that minimizes the 
transportation cost only, without any regard to the inventory costs. This 
happens for instance when the value of the product is low and therefore the 
inventory cost is negligible or when the decision-maker is in charge only of 
the transportation. Different cases are when either the inventory cost at the 
supplier or the inventory cost at the retailers plays a dominant role with 
respect to the other costs. 

This problem with any of the cited objective functions is very complex; 
therefore, given that models looking for the exact solution would be im
practical, we use a heuristic algorithm to compare the solutions obtained by 
modifying the objective function of the problem. 

The paper is organized as follows. In Section 2 the problem is described; 
in Section 3 the heuristic approach is proposed; finally, in Section 4 the 
computational results obtained on randomly generated problem instances 
are shown and discussed. 

2 Problem description 

In this section we formally describe the problem we are interested in. We 
consider a logistic network in which a product is shipped from a common 
supplier 0 to a set I = {l, 2, ... , n} of retailers over a given time horizon 
H. In each discrete time instant tEO = {l, 2, ... , H} a quantity Tit of 
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the product is absorbed at the retailer i E I and a quantity Tat is made 
available at the supplier. Each retailer i E I defines a maximum level Ui and 
a minimum level Li of the inventory of the product. If retailer i is visited at 
time t, then the quantity qit of product shipped at retailer i is such that the 
level of the inventory in i reaches exactly its maximum level Ui (order-up-to 
level strategy). More precisely, if we denote by Bit the level of the inventory 
at node i at time t, then qit is either equal to Ui - Bit if a shipment to i is 
performed at time t or equal to 0 otherwise. 

Shipments from the supplier to the retailers can be performed in each 
time instant tEO by a vehicle with given transportation capacity Cj in 
each tour the vehicle can visit several retailers, i.e. routing is allowed. The 
transportation cost C;j from each node i to each node j, with i, j E I' = IU{O}, 
is known. Therefore, given a route traveled by a vehicle, the corresponding 
transportation cost is simply obtained by summing up the cost of the arcs 
that belong to the route. 

An inventory cost is charged both at the supplier and at the retailers. If 
we denote by hi the unit inventory cost at node i E I' and by 0' the set of 
discrete time instants from 1 to H + 1, then the total inventory cost of node 
i over the time horizon is simply 2:tE01 hiBit, where the Bit's are computed 
as follows. At the supplier 0, the level of the inventory at time t + 1 is given 
by the level at time t, plus the quantity of product made available at time t, 
minus the total quantity shipped at the retailers at time t, that is 

BOHl = Bot + Tat - L qit 

iEI 

where Boo (the starting level of the inventory) is given, TOO = 0 and qiO = 0, 
Vi E I. At each retailer i E I, the level of the inventory at time t + 1 is given 
by the level at time t, plus the quantity of product shipped from the supplier 
to the retailer i at time t, minus the quantity of product absorbed at time t, 
that is 

Bit+l = Bit + qit - Tit 

where B iO (the starting level of the inventory) is given and TiO = qiO = O. The 
time instant H + 1 is included in the computation of the inventory cost in 
order to take into account the consequences of the operations performed at 
time H. 

The problem is to determine for each retailer i E I a set Di of delivery 
time instants and for each time instant tEO a route Rt that allows to visit all 
the retailers served at time t such that the following constraints are satisfied: 

1. Capacity constraints: They guarantee that the total quantity of the 
product loaded on the vehicle is not greater than the transportation 
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capacity. These constraints can be formulated as follows: 

tEO. (1) 

2. Stock-out constraints at the supplier: They guarantee that the level 
of the inventory Bot is non-negative in each time instant tEO. These 
constraints can be formulated as follows: 

Lqit $. Bot 
iEI 

tEO. (2) 

3. Stock-out constraints at the retailers: They guarantee that for each 
retailer i E I the level of the inventory Bit in each time instant tEO' 
is not lower than the minimum level L i . These constraints can be 
formulated as follows: 

tEO' i E I. (3) 

The objective function can have different forms depending on the aim of 
the decision-maker, as described in the previous section. We will consider 
the following cases: Minimization of the total cost (problem IS + IR + T), 
minimization of the inventory cost at the supplier (problem IS), minimiza
tion of the inventory cost at the retailers (problem IR), minimization of the 
transportation cost (problem T) and minimization of the sum of inventory 
cost at the supplier and transportation cost (problem IS + T). 

This problem with any of the cited objective function is obviously NP
hard, given that even the simpler well known Vehicle Routing Problem is 
NP-hard (see Christofides, 1985). 

3 A heuristic algorithm 

As mentioned before, we propose a heuristic algorithm for the solution of the 
problem described in the previous section. The algorithm is composed of two 
steps. The first one, referred to as Start, is an iterative procedure that builds 
a feasible solution of the problem by adding at each step a retailer; the second 
one, referred to as Improve, is an iterative procedure which aims at improving 
the obtained solution by removing and then reinserting each retailer in the 
solution. Let us describe in more detail each step. In the first one, at each 
iteration the retailer with maximum range Ui - Li is selected. Then, for 
this retailer, a good feasible set of delivery time instants is determined by a 
procedure, referred to as Assign, that finds the shortest path on an acyclic 
network in which every node is a possible delivery time instant. Finally, 
for each of the obtained delivery time instants, the retailer is inserted in a 
route by a procedure, referred to as Insert, that uses the well known rule 
of insertion at cheapest cost. In the improvement step of the algorithm the 
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starting solution is improved. At each iteration every retailer is temporarily 
removed from the routes by using the procedure Remove; then, the procedure 
Assign is reapplied to the retailer in order to find a different set of delivery 
time instants and, finally, if this set allows to reduce the total cost, the 
solution is modified accordingly. The second step is iterated until a saving is 
reached. The procedure Assign and the procedures Insert and Remove are 
formally described in Sections 3.1 and 3.2, respectively. 

Heuristic Algorithm 

1. Start 

While I =1= 0 

• Select the retailer s E I such that s = arg maxiEJ{ Ui - L;}. 

• Determine for s a set D. of delivery time instants by using the 
procedure Assign. 

• For each time instant tED. insert the retailer s in the route R t 

traveled by the vehicle at time t by using the procedure Insert. 

• I:= I - {s} 

2. Improve 

(a) For s = 1, ... , n 

• il t := R t , Vt EO. 
• Let TO. be the cost of the partial solution before removing 

s. For each tED., remove s from the route ilt by using the 
procedure Remove. 

• Determine for s a new set D. of delivery time instants by using 
the procedure Assign. 

• For each tED., insert s in the route ilt by using the procedure 
Insert. Let T-O. be the cost of the obtained solution. 

• If TO. < TO., then adopt the new solution, that is Rt := ilt , 

Vt E 0, D. := D •. 
(b) If a new solution has been adopted in (a) for at least one retailer, 

then go to (a). 

3.1 Determining the delivery time instants 

In this section we describe the procedure Assign used during the algo
rithm in order to determine a good feasible set of delivery time instants for 
each retailer s. This procedure works on an acyclic network G.(v., A., Q., p.) 
in which each element of the set V. is a node that corresponds to a discrete 
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time instant between 0 and H + 1 and each element akt of the set As is an arc 
that exists if s can be visited at time t without determining stock-out in s, 
given that the previous visit has been at time k; therefore, each path on the 
network between 0 and H + 1 is a set of delivery time instants for s that sat
isfy the stock-out constraints (3). Each element qkt of the set Qs is a weight 
on the arc akt that represents the quantity of product to deliver at time t 
and each element Pkt of the set Ps is a weight on the arc akt used in order 
to determine a good path between 0 and H + 1 on the network, i.e. a good 
set of delivery time instants for s. Let us describe in more detail the sets As, 
Q sand Ps. The set As has for elements the arcs that satisfy the stock-out 
constraints (3) at the retailer s; in particular, the arc aOt, 1 ~ t ~ H + 1, 
exists if "E}=I Tsj-I ~ Bso - Ls and the arc akt' 1 ~ k < t ~ H + 1, exists 

if "E}=k+1 Tsj-I ~ Us - Ls. Note that if the arc agH+I exists, then a feasible 
strategy is not to visit the retailer during the time horizon. The set Qs is a 
set of weights in which each element qkt' associated to the arc aktl represents 
the quantity of product to ship to s at time t. Given that an order-up-to 
level strategy is adopted, then the quantity qkt is such that the maximum 
level of the inventory Us is reached in s, that is qkt = "E}=k+1 Tsj-I for each 

arc akt with 1 ~ k < t ~ Hand q8t = Us - Bso + "E}=I Tsj-I for each arc aOt 
with t ~ H. Note that qkH+I' k 2: 0, is obviously equal to 0, given that a 
shipment cannot be performed in H + 1. Finally, the set Ps is a set of weights 
in which each element Pkt' associated to the arc akP represents the estimate 
of the variation in the total cost that may be obtained if the partial solution 
generated by the algorithm before applying this procedure is modified by 
including a visit of the retailer s at time t, given that the previous visit has 
been at time k. Let us describe how the Pkt'S are computed for the problem 
IS + IR + T in which all the components of the total cost are included in the 
objective function; obviously, for the other problems, the Pk/s are computed 
by taking into account only the relevant components of the total cost. For 
each arc akt the weight Pkt is computed on the basis of the partial solution 
generated by the algorithm before applying this procedure, that is on the 
basis of the route R t traveled by the vehicle at time tEO, of the level of 
the inventory Bot at the supplier and of the level of inventory Bst at the 
retailer s at time tEO'. If this partial solution does not include any retailer, 
then each route R t , tEO, is empty and the level of the inventory Bot at 
the supplier is equal to the level obtained if no shipments occur up to time 
t, that is Bot := Boo + "E}=I TOj-I, for each time instant tEO'. Given the 
partial solution, the weight Pkt is computed in the problem IS + IR + T as the 
sum of three components. The first one cit is the estimate of the variation 
in the transportation cost obtained if the retailer s is served at time t; this 
estimate is 2Cos if no retailers are visited at time t in the partial solution, i.e. 
if R t = 0; otherwise, cit is computed by taking into account that the retailer 
s has to be inserted between two of the nodes of the route R t ; given that in 
the algorithm the rule of insertion at cheapest cost is used (see for instance 
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Rosenkrants et al., 1977), then s would be inserted between the node i* E R t 

and its successor su(i*) E R t such that 

i* = arg~h~{<;,s + Cs,su(;) - <;,su(i)}; 

therefore, the estimate cit of the variation in the transportation cost is <;',s + 
Cs,su(i')-<;',su(i'). Obviously, if the capacity constraint (1) at time t is violated, 
then cit := +00. The second component of the weight Pkt is the estimate 
.6.~t of the variation in the inventory cost at the supplier. This estimate is 
computed by considering that, if a quantity qf:t of product is shipped to the 
retailer s at time t, then the level of the inventory Bot of the supplier decreases 
of a quantity qf:t for all the time instants between t+ 1 and H + 1. Therefore, 
.6.~t = -ho(H + 1 - t)qf:t. Obviously, if the stock-out constraints (2) at the 
supplier are violated, then .6.~t := +00. Finally, the third component of the 
weight Pkt is the estimate .6.kt of the variation in the inventory cost at the 
retailer s. This estimate is computed by considering that every time the 
retailer s is visited the level of the inventory in s reaches its maximum value 
Us and that then it decreases on the basis of the quantities absorbed in s. 
Therefore, if a shipment to s is performed in t and the previous shipment has 
been in k, then the estimate .6.kt of the variation in the inventory cost in s 

is hs I:~=k+l (Us - I:{=k+l rsl-l), while, if the shipment performed at time t 
is the first shipment to s during the time horizon, then .6.kt = hs I:~=l (Bso -

I:{=l rsl-l). In conclusion, the weight Pkt associated to the arc akt is 

Pkt = cit + .6.~t + .6.kt · 

Once the weight Pkt is computed for each arc akt E As, the procedure 
computes the shortest path between 0 and H + 1, by using an algorithm for 
acyclic networks (see for instance Hu, 1982), in order to obtain a good set of 
delivery time instants for s. Finally, the procedure includes in the set Ds of 
the selected delivery time instants for s the intermediate nodes that belong 
to the shortest path. 

The procedure Assign can be formally described as follows. 

Procedure Assign 

• Build the acyclic network G s (Yo, As, Q s, Ps). 

• Determine the shortest path between 0 and H + 1 on the basis of the 
weights in Ps • 

• Include in the set Ds the intermediate nodes that belong to the shortest 
path. 

Note that the total quantity Q: of product shipped to s up to each delivery 
time instant t, 1 :5 t :5 H, is independent of the path between 0 and t 
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selected on the network GsCv., As, Qs, Ps). In fact, if tI. t2, ... ,tn are the 
delivery time instants selected up to time t, with t = tn, then the total 
quantity Q: shipped to s up to time t is qOtl + qtlt2 + ... + qLltn' that is 

equal to Us - BsO + L~=I rSi-I, as qOtl = Us - Bso + L~!:I rSi-I and qLtm+l = 

L~:i~+1 rsi-I. 15m < n. Therefore, Q: is independent of the selected 
delivery time instants t I , t 2 , ••• , tn-I' Moreover, note that the total quantity 
QS of product shipped to s during the time horizon depends on the last 
delivery time instant f selected for Sj in fact, QS = Q;' Therefore, QS can be 
different from the total quantity LtEO rst of product absorbed from S during 
the time horizon. This implies that the level of the inventory in s at time 
H + 1 can be different from the level at time 0 and, therefore, that the problem 
is not periodic. 

3.2 Inserting and removing a retailer 

In this section we describe the procedures Insert and Remove used during 
the algorithm in order to insert and to remove, respectively, a retailer s 
from the route Rt traveled by the vehicle at time t. Let us first consider 
the procedure Insert. As described in the previous section, two different 
situations can happen when the retailer s has to be inserted in the route R t . 

The first one happens when the route Rt is emptYj in this case, the insertion 
of the retailer gives a route composed of only the arcs (0, s) and (s,O). The 
second one happens when the route Rt already contains some retailersj in this 
case, the rule of insertion at cheapest cost described in the previous section 
is used. The procedure can be formally described as follows. 

Procedure Insert 

If R t = 0, then Rt := {O, s, OJ. 

Else 

- Select the retailer i* such that 

i* = arg ~J:-{ Ci,s + Cs,su(i} - C;,su(i}}' 

- Remove from Rt the arc (i*, su( i*)). 

- Introduce the arcs (i*,s) and (s,i*). 

The insertion of the retailer s in the route R t implies an increase in the 
total quantity of the product loaded on the vehicle equal to qkt' a variation in 
the transportation cost equal to either 2Cos if the route R t was empty before 
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inserting s or C;',s + Cs,su(i') - C;',su(i') otherwise and a reduction of the level 
of the inventory at the supplier equal to 

j=t, ... ,H. 

Let us now describe the procedure Remove used during the algorithm in 
order to remove the retailer s from the route R t . Two different situations 
can happen, depending on the fact that s is the only retailer visited in the 
route or not before removing it. 

Procedure Remove 

If Rt = {O, s, O}, then remove the arcs (0, s) and (s,O). 

Else 

- Remove the arcs (pr(s), s) and (s, su(s)). 

- Introduce the arc (pr(s), su(s)). 

The decrease in the total quantity of the product loaded on the vehicle is 
qkt' while the variation in the transportation cost is -2£:os if only the retailer 
s was in the route before to remove it and is -S>r(s),s - Cs,su(s) + S>r(s),su(s) 

otherwise. Finally, the level of the inventory at the supplier becomes 

j=t, ... ,H. 

4 Computational results 

The heuristic algorithm described in the previous section has been imple
mented in Fortran and used in order to obtain a solution of the problems 
described in Section 2 in a set of computational experiments. Our aim is 
to answer the following questions: How different is the solution obtained by 
minimizing only some components of the total cost from the solution obtained 
by minimizing the total cost? Which of the solutions obtained through the 
minimization of a single cost component is closer to the global optimum? 
Which is the importance of each type of cost in the total cost? How does the 
goal of the decision-maker affect each type of cost? 

Sixty instances have been generated on the basis of the following data: 

Number of retailers n: 50, 100, 150, 200, 250, 300; 

Time horizon H: 30; 

Transportation capacity C: 10,000 units of the product; 
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Retailers [$ +[ll+T I'~ III T [$ +T 
50 166,660 185,173 (11.31) 168,546 (1.11) 166,995 (0.21) 171,300 (2.85) 
100 335,632 369,401 (10.11) 337,889 (0.67) 336,104 (0.14) 345,76.5 (3.03) 
1.50 510,306 5.53,800 (8.70) 514,366 (0.78) 511,629 (0.2.5) 524,722 (2.87) 
200 674,712 726,722 (7.92) 680,652 (0.84) 677,415 (0.38) 693,278 (2.83) 
250 813,536 884,747 (8.99) 819,521 (0.70) 816,083 (0.31) 839,761 (3.30) 
300 933,755 1,025,806 (9.95) 938,922 (0.55) 935,917 (0.23) 968,933 (3.80) 

Table I: Average total cost on 10 instances 

Minimum level Li of the inventory at retailer i: Randomly generated 
in the interval [10,100]; 

Maximum level Ui of the inventory at retailer i: 2Li; 

Starting level BiO of the inventory at the retailer i: 1.5Lj ; 

Starting level Boo of the inventory at the supplier 0: l:iE[(Ui - Li); 

Quantity of product Tit absorbed at retailer i at time t: L(Ui - Lj)/g;j, 
where gi is a value randomly selected from the set {2, 4, 5, 10}; 

Quantity of product TOt made available at the supplier at time t: l:iE[ Tit; 

Inventory cost hi: Randomly generated in the interval [0.5,1]; 

Transportation cost C;j: Randomly generated in the interval [10,100]. 

In all cases, random selections have been performed in accordance to a 
uniform distribution. The computations have been carried out on a Intel 
Pentium II personal computer. 

The obtained results are shown in the Tables I-IV. Each table is orga
nized as follows: The first column contains the number of retailers, while 
the columns 2-6 show the average results obtained on 10 instances for the 
problems IS +IR +T, IS, IR, T and IS +T, respectively. The Table I allows 
to answer the first question: How different is the solution obtained by mini
mizing only some components of the total cost from the solution obtained by 
minimizing the total cost? In this table the average total cost and, in paren
theses, the average percent increase error of the total cost with respect to the 
total cost of the problem IS + IR + T are given for each problem. The results 
show that the total cost obtained by minimizing the transportation cost only 
(problem T) is close to the total cost obtained in the problem IS + IR + T, 
with an average error always less than 0.4%. Moreover, the problems IR and 
IS + T give a total cost quite close to the one obtained by minimizing the total 
cost; the average percent increase error is always less than 1.2% in the first 
problem, in which only the inventory cost at the retailers is minimized, and 
always less than 4% in the second problem, in which the sum of the inventory 
cost at the supplier and of the transportation cost is minimized. Instead, the 
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problem IS, in which only the inventory cost at the supplier is minimized, 
gives a total cost substantially greater than the one obtained by minimizing 
the total cost, with an average error always not lower than about 8%, al
though not greater than 11.5%. Moreover, these results allow to answer the 
second question: Which of the solutions obtained through the minimization 
of a single cost component is closer to the global optimum? It can be observed 
that the minimization of the transportation cost gives solutions close to the 
solutions obtained through the minimization of the total cost, although the 
transportation cost is the least component of the total cost, as shown in the 
Tables II-IV. These tables give for all problems the average transportation 
cost, the average inventory cost at the supplier and the average inventory 
cost at the retailers, respectively. For instance, the cost of 8,393 shown in 
Table II at the intersection between the first row and the second column is 
the average transportation cost, the cost of 65, 261 shown in Table III at the 
same position is the average inventory cost at the supplier and the cost of 
93,006 shown in Table N at the same position is the average inventory cost 
at the retailers for the instances with 50 retailers in the problem IS + IR + T, 
corresponding to the total cost of 166,660 shown in the Table I at the same 
position. These tables allow to answer the third question: Which is the im
portance of each type of cost in the total cost? The results show that in each 
problem the inventory cost at the retailers is the main part of the total cost, 
followed by the inventory cost at the supplier and then by the transportation 
cost. Finally, the answer to the fourth question - how does the goal of the 
decision-maker affect each type of cost? - can be found by observing the 
numbers in parentheses in the Tables II, III and IV. In the Table II the 
numbers in parentheses give the average percent increase error of the trans
portation cost obtained in each problem with respect to the transportation 
cost obtained in the problem T, in which the transportation cost only is min
imized. The results show that the transportation cost increases significantly 
when the aim of the decision-maker is to minimize only the inventory cost 
at the supplier or to minimize the sum of the inventory cost at the supplier 
and of the transportation cost; in the first case the average error is not lower 
than about 230% and in the second one not lower than about 57%. In the 
Table III the numbers in parentheses give the same type of information for 
the inventory cost at the supplier; the results show that, as expected, when 
this cost is not included in the objective function, it increases significantly; 
moreover, the same happens in the problem IS + IR + T in which all the 
costs are included in the objective function. Finally, in the Table IV it can 
be observed that the inventory cost at the retailers, as expected, increases 
significantly in the problems IS and IS + T in which is not included; instead, 
more surprisingly, the error is always less than 4.33% in the problem T in 
which only the transportation cost is minimized. 



Retailers 
50 
100 
150 
200 
250 
300 

8,393 (5.00) 
14,096 (3.74) 
20,347 (6.80) 

26,836 (10.88) 
30,521 (8.46) 
34,668 (3.14) 
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26,312 (229.72) 
46,182 (240.33) 
63,705 (234.55) 
81,148 (235.40) 
97,115 (245.41) 

114,841 (241.88) 

9,558 (19.68) 
15,481 (13.92) 
21,388 (12.23) 

26,1053 (8.03) 
31,0582 (12.22) 
37,881 (12.70) 

T 
7,993 

13,595 
19,059 
24,229 
28,153 
33,620 

[.I+T 
12,539 (56.66) 
22,756 (67.76) 
34,0556 (81.24) 
47,121 (94.78) 
53,872 (91.94) 
61,683 (83.49) 

Table II: Average transportation cost on 10 instances 

Retailers [.~ + [ll+T [.~ [ll T [.~ +T 
50 65,261 (36.57) 48,078 70,820 (47.49) 67,009 (39.54) 55,965 (16.74) 
100 132,709 (37.77) 96,429 141,966 (47.24) 135,126 (4O.16) 110,786 (14.87) 
150 208,758 (35.01) 155,353 225,795 (405.37) 2105,906 (38.99) 174,566 (12.84) 
200 277,977 (33.14) 210,054 307,379 (46.18) 293,955 (39.90) 230,270 (10.14) 
250 323,862 (36.51) 239,023 351,557 (47.08) 336,964 (4O.94) 265,315 (11.77) 
300 364,457 (39.03) 262,938 384,303 (46.18) 368,882 (4O.33) 294,863 (12.53) 

Table III: Average inventory cost at the supplier on 10 instances 

Retailers [.~ +[ll+T [.~ [ll T [.I+T 
50 93,006 (05.51) 110,783 (25.64) 88,168 91,993 (4.33) 102,796 (16.60) 
100 188,827 (4.64) 226,790 (2S.68) 180,442 187,383 (3.8S) 212,223 (17.57) 
ISO 281,201 (5.26) 334,742 (25.29) 267,183 276,664 (3.5S) 315,600 (18.15) 
200 369,899 (6.51) 4305,520 (25.46) 347,120 359,231 (3.48) 415,887 (19.81) 
250 459,153 (5.23) 548,609 (2S.72) 436,382 450,966 (3.34) 520,574 (19.28) 
300 534,630 (3.48) 648,027 (25.41) 516,738 0533,415 (3.23) 612,387 (18.53) 

Table IV : Average inventory cost at the retailers on 10 instances 
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Conclusions 

In this paper we studied a logistic problem in which a deterministic order-up
to level strategy is adopted for the minimization of the total cost in distribu
tion systems. We considered five different problems obtained by considering 
five different goals of the decision-maker and we used a heuristic algorithm in 
order to compare the solutions obtained for these problems on randomly gen
erated problem instances. The results obtained show that the minimization 
of the transportation cost only generates solutions which are close to the so
lutions generated with the objective of minimizing the sum of all costs, both 
in terms of total cost value and in terms of how the total cost is distributed 
on the various cost components. A different situation is observed in the other 
cases where the total cost, obtained through the minimization of some cost 
components only, is not far from the minimum total cost but the distribution 
of the total cost on the cost components is substantially different. 
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Chapter 3 

Operations within the Warehouse 



Using Multiple Load Vehicles for Internal 
Transport with Batch Arrivals of Loads 
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Abstract. In previous papers, we used a simulation model to look at how different 
dispatching rules can be classified, and at the effects on the performance of 
internal transport if the release time of loads can be forecasted using a virtual 
release time. We concluded that centralized rules outperform decentralized rules 
and that the performance of internal transport can be improved using virtual 
release times. 

The simulation model will now be extended. When a truck with loads arrives at 
the receiving area of a warehouse, the loads are released for transport in batches, 
rather than one at a time. This means that several loads might have to wait before 
they can be picked-up. In general, batch releases of loads increase the average 
load waiting times. 

We will also look at the classification of dispatching rules when multiple-load 
vehicles are used. When vehicles can transport more loads at a time, some of the 
loads can be picked up relatively earlier. Hence, reducing load waiting times. 
However, by combining load transports, the load transportation time will increase 
since some loads remain relatively longer on a vehicle (while being delivered). 
We will therefore look at the effects of the load throughput time, i.e. the load 
waiting time plus the load transportation time. 

Lastly we will combine batch releases of loads and the use of multiple-load 
vehicles and classify the dispatching rules accordingly. 

Keywords. Multi-load vehicles, batches, simulation, Automated Guided Vehicles, 
warehousing, internal transport, decentral control, central control, throughput time 

1 Introduction 

Manned or Automated Guided Vehicles (AGVs) usually take care of the 
transportation of material between different locations within warehouses. Manned 
vehicles, such as Forklift Trucks (FLTs), with vehicle mounted terminals can be 
controlled in the same way as AGVs and can therefore make use of the same 
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dispatching rules. In this paper we will make no distinction between manned 
vehicles with terminals and AGVs, and refer to both vehicle types as AGVs. 

In general, AGVs have a capacity of only one load. An alternative to increasing 
the number of vehicles needed to handle the transport requests is to use vehicles 
with mUltiple load capacity. In practice, multiple-load vehicle systems are not 
very common. The capacity seldom exceeds three loads. The advantage of multi
load vehicles is that jobs can be combined and therefore load waiting times can be 
reduced. It is also possible that fewer vehicles are necessary to handle the required 
throughput, which can improve the performance of such systems since 1), fewer 
vehicles are used and 2) traffic efficiency improves. The disadvantage is that 
multi-load vehicles are more expensive and the dispatching rules are more 
complex, since by combining loads with different origins and/or different 
destinations, more variations of dispatching rules arise. 

In previous papers, De Koster and Van der Meer (1997) and Van der Meer and 
De Koster (1998), we compared central control with decentral control and 
classified different dispatching rules for uni-load vehicles. It was concluded that 
central control outperforms decentral control. Furthermore, within the class of 
central control, distance based rules such as Shortest-Travel-Distance-First 
outperforms location-based rules such as Worklist-Dispatching, which in tum 
outperforms time-based rules such as Modified-First-Come-First-Served. In this 
paper we look at the robustness of the classification when multi-load vehicles are 
used, and also see how the classification holds up when loads are released in 
batches at the receiving stations. The release of loads in batches at the receiving 
area is more realistic than loads being released one by one. In practice, when a 
truck arrives to deliver pallets with loads, the data of the pallets are entered into 
the Warehouse Management System in small groups and the release of the loads 
to the transport system follows in a similar fashion. 

When loads are released for pick-up in batches (often two or three at once), and 
un i-load vehicles are used, one or more loads will be left behind, which will 
increase the average load waiting times. On the other hand, using multi-load 
vehicles, transportation jobs can be combined which will decrease the average 
load waiting times. 

In this paper we will also look at the effects when multi-load vehicles are 
combined with batch releases of loads. 

Although the interest of using multi-load vehicles rises, there are only a small 
number of papers concerning multi-load vehicles. Co and Tanchoco refer (1991) 
to a few ones in their review paper. 

Bartholdi and Platzman (1989) describe a decentral control system with only 
one AGV which can carry multiple loads. The vehicle drives on a simple loop and 
must continue to move at all times. Thonemann and Brandeau (1996) also 
describe a single AGV System (AGVS) with multiple load capacity. In another 
paper, Thonemann and Brandeau (1997) extended the model to a zoned AGVS 
with multiple vehicles with mUltiple load capacity. The vehicles are controlled by 
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a simple "go-when-filled" dispatching rule where workcenters demand raw 
material from a central storage depot. 

Hodgen et al. (1987) uses a Markov Decision Process to model their system. 
However, the system is kept simple, only one dual-load vehicle is used. 

The model in Ozden (1988) uses vehicles with capacity of 1 and 2 loads. In 
their model, vehicles with capacity 2 can lead to a 50 % reduction in fleet size 
compared to when only uni-Ioad vehicles are used. In this case the system is fairly 
simple with only 3 workstations, 1 loading and unloading facility. Sinreich and 
Palni (1998) study a manufacturing system arranged around a single loop serviced 
by a single multiple-load carrier. They show that, as vehicle capacity increases, 
the First-Encountered-First-Served control rule performs reasonably well 
compared to optimal schedules. 

The next section describes the model used in this paper. The general difference 
with the literature above is that the model used for this paper is more complex. 
The environment is more realistic in the sense that several (up to 7) multiple load 
vehicles are used which are not restricted to one simple loop. Furthermore, we 
compare the performance of a set of well known dispatching rules for one 
situation. 

2 The Model 

The model in this paper is based on the one described in Van der Meer and De 
Koster (1998). However, it has been adapted to generate batch arrivals of loads at 
the receiving lanes and check-in area, and use multi-load vehicles. Using 
simulation (in the AutoMod simulation language) with actual data of a study at the 
European distribution center of a computer hardware and software wholesaler, we 
will rank the dispatching rules from section 3. We would like to see which 
dispatch rule gives the best performance and if this is consistent with earlier 
fmdings. 

For the sake of completeness we will shortly describe the model. Figure 1 gives 
a schematic representation of the layout of the distribution center (DC). Similar 
stations at a certain location are grouped together (see figure 1). At the DC, pallets 
(loads) are transported by AGVs that travel on un i-directional paths. However, 
they are allowed to pass each other. Different AGV dispatching rules are 
compared. Depending on whether a decentral dispatching rule is used, the paths 
are divided in 2 main parts. Part 1, which is a loop layout, which is bold-printed in 
figure 1, is the smallest" loop" ; all other stations and paths are grouped in part 2 
which we will refer to as " loop 2" . Table 1 gives the average daily flow intensity 
between locations. Per day, about 580 pallets have to be moved. Pallets are 
received at the receiving lanes, the check-in area and the return stations. From 
there, the pallets are transported to the storage areas. The storage areas consist of 
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an odd-size area for pallets with an irregular load shape, an overflow area for 
block-stacking of pallets and storage module 1 for the storage of regular loads. 

I Stor'OV- Module 1 

J Ov.'''ow Jl OClCl-S'W_ 
Sto ... ove 

II I I II~LIIII It ~'tll It II"~~O II 

k1n9 S~A "t' 
111_ .J1;.0~~: ".:: I.. .J 1..1 .. 0 "''''''- oo.l1~ eRA _ 

" .... 0 

..... 

I I UI 

I "'_tu"'l"1 Station_ I 

I II 
ShippinG Lon_. Reaelvlng Lan •• 

Figure 1 Path layout connecting all pick up and delivery locations. The bold printed paths 
belong to Loop 1, the other paths to Loop 2. All main transport tracks are uni-directional 

After retrieval from the storage areas, the loads are usually transported to the 
shipping area. Some pallets undergo additional handling, for example at the 
Labeling Area where the pallets obtain a customer-sticker or the Repalletization 
Area (RPA) where the pallets are re-stacked (on average, 6 pallets arrive and 10 
leave this area each day). The pallets at the Shelf Replenishment Area (SRA) are 
transported by conveyor to the shelf area, where orderpickers hand pick single 
products. At the Central Return Area (CRA), inbound problem pallets can be 
checked on their contents, and repalletized if necessary. 

Table 1 Total throughput in pallets per day 
From / To 1 2 3 4 5 6 7 8 9 10 11 Total 

1 Labeling Area 0 0 159 0 0 0 0 0 0 0 0 159 

2 Check-in Area 0 0 0 0 0 0 22 0 0 0 0 22 

3 Shipping Lanes 0 0 0 0 0 0 0 0 0 0 0 0 

4 Receiving Lanes 0 0 0 0 0 0 109 2 2 0 0 113 

5 SRA 0 0 0 0 0 0 0 0 0 0 0 0 

6 RPA 0 0 0 0 0 0 9 0 0 0 1 10 

7 Storage Module 1 144 0 31 0 17 5 2 0 0 0 0 199 

8 Overflow Storage Area 4 0 12 0 0 0 0 0 0 0 0 16 

9 Odd-Size Storage Area 11 0 40 0 0 1 0 0 0 0 0 52 

10 Return Stations 0 0 0 0 0 0 6 0 0 0 0 6 

11 CRA 0 0 0 0 0 0 4 0 0 0 0 4 
Total 159 0 242 0 17 6 152 2 2 0 1 581 

In the simulation, to obtain about 5800 pallet moves, the loads are 
independently generated for a total of 10 days following a Poisson process. Thus 
the interarrival times of loads follow an Exponential distribution. Each day is in 

I 
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tum divided into 4 periods. Period 1: from the start of the day until the coffee 
break, period 2: from the coffee break until lunch, period 3: from lunch until the 
tea break, and period 4: from the tea break until the end of the working day. These 
periods are introduced in order to realistically represent the variation in the 
interarrival rates over the day. For example, in period 4 more loads need transport 
to the shipping lanes than in period 1. The load generation locations are, the 
receiving lanes, the check-in area, the return stations, the storage areas, RPA and 
eRA. When more than one load is generated, the period between load generations 
increases in proportion. So if one load is generated every x time units, then n loads 
are generated every n*x time units. Loads are generated in this way at the 
receiving lanes and check-in area. At these locations, the result of the check-in 
process may be that loads are released for transport in batches of 1, 2 or 3. 
Furthermore, the load generation processes at all locations are independent. The 
pick up and set down time are set to 15 seconds each where the vehicle capacity is 
1, 2 or 3 loads depending on the scenario. Table 2 gives a summary of the model 
parameters; the parameters for the AGVs hold both for empty and loaded vehicles. 

Table 2 Several parameters used in the model 
AGV speed 2 m/s 
Acceleration/deceleration 0.5 m/s2 

Pick up time of a load 15 s 
Set down time of a load 15 s 
Vehicle capacity 1, 2 or 3 loads (pallets) 
Simulation period 10 days 
Number of working hours per day 7.5 hours 
Load release batch size 1,2 or 3 units 

The model will be executed with each of the dispatching rules described in the 
next section. In each of these scenarios, the parameters are kept the same in order 
to make a fair comparison to rank the rules accordingly. These parameters 
include: the material flow (see table 1), the number and locations of loads 
generated in the system (see table 1 and figure 1), load generation instants, vehicle 
parameters (speed, capacity etc., see table 2), the paths on which the vehicles may 
travel (see figure 1) and total simulated time (see table 2). The only variables in 
the model are the vehicle dispatch rule, the number of vehicles, the vehicle 
capacity and the batch size. 

3 Dispatching rules 

In the previous section we described the warehouse layout (see figure 1), the load 
throughput (see table 1) and the design of the vehicle (see table 2). In this section 
we describe the dispatching rules to control the vehicles, given the layout, the 
throughput and design of the vehicles. 
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The dispatching rules in this paper can be classified into two general 
categories: 

l. Decentral control; and 
2. Central control. 

These categories and the dispatching rules are explained in the remainder of 
this section. The dispatching rules used in the simulation model are based on 
earlier work and rules described in literature. 

3.1 Decentral control 

In decentral systems, the decisions on which tasks to do next are made by the 
vehicles. The vehicles drive in assigned loops from workstation to workstation in 
a fixed sequence. When a vehicle arrives at a location without a load waiting for 
transport, it will go to the next location. If there was a load, the vehicle brings it to 
its destination and continues to circulate the loop from there. A clear example of 
decentral control of Automated Guided Vehicles is presented by Bartholdy and 
Platzman (1989). They present a decentral greedy First-Encountered-First-Served 
(FEFS) heuristic to control AGVs on a simple loop. With FEFS, the AGV 
continuously circulates the loop and picks up the first load it encounters (when the 
vehicle has ample space). The loads are delivered whenever the destination is 
encountered. They conclude that for a simple loop, the FEFS heuristic performs 
better (less load waiting time) than alternative simple control rules such as: First
Come-First Served (FCFS), Largest-Number-in-Queue (LNQ) and Pick-up-Load
Closest-to-its-Destination (PLCD). Expanding the simple loop model, Bozer and 
Srinivasan (1991) introduced the FEFS heuristic on a tandem configuration. In the 
tandem configuration, the system is decomposed into non-overlapping, single
vehicle loops operating in tandem. 

(a) First-Encountered-First-Served (FEFS) 
In the implementation of this rules in this paper, the system (see previous section) 
is divided into 2 overlapping" loops" . In the first loop (bold printed in figure 1) 
there is a single AGV operating with the FEFS rule. In the second loop there are 
multiple vehicles operating with the FEFS rule. Although the vehicles are allowed 
to drop-off a load in the other loop, they can only pick-up loads in their own loop. 
That is why the vehicles will immediately return to their own loop as soon as they 
have dropped-off a load in the other loop. The idea of using the overlapping loop 
construction, is that no use of intermediate or interface stations have to be made, 
which could normally increase the throughput time of the load (see Bischak and 
Stevens, 1995). 
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Because the layout is divided in 2 overlapping loops, an extra instance 
concerning the vehicle capacity is evaluated. So next to the scenarios where all 
vehicles have capacity 1 or 2, a scenario where the vehicle of the smallest loop, 
has capacity 1 and the other vehicles, in loop 2, have capacity 2 is evaluated. 

3.2 Central control 

In central control systems, a central controller or computer, like a Warehouse 
Management System (WMS), is used for the dispatching of loads or vehicles. The 
central controller uses global information about the position of the loads and 
vehicles and the state of the PID (pick-up and drop-off) points to match vehicles 
to loads or vice versa. In general, dispatching rules for the control of internal 
transport can use two types of operating decisions. The first determines how the 
vehicles should be routed when the vehicle has done its task and is ready for the 
next (vehicle-initiated dispatching). The second determines which vehicle is 
selected among one or more (free) vehicles when a load (workcenter or load
initiated dispatching) initiates requests for transactions. De Koster and Van der 
Meer (1997) compared a FEFS decentral control system with central control 
systems. Three different Work-List (WL) implementations for the central control 
systems were examined. Earlier, Egbelu and Tanchoco (1984) presented a 
characterization of AGV dispatching rules. Some well-performing rules of these 
studies are now studied further in this paper. 

(b) Modified First-Come-First-Served (MOD FCFS) 
Under this rule, studied by Srinivasan et ai. (1994), (see also Bozer et aI., 1994), 
the vehicle delivering a load at the input queue of station i, first inspects the 
output queue of that station. The vehicle is then assigned to the oldest request 
(longest waiting load) at station i if one or more loads is found. However, if the 
output queue of station i is empty, the vehicle serves the oldest request in the 
entire system. If there are no move requests in the system at all, the vehicle will 
park at the nearest parking location and becomes idle until a move request 
becomes available. 

(c) Work-list-Dispatching (WLD) 
With this rule it is possible to give priorities to certain locations where loads are to 
be picked up. See figure 2 for an example. Each delivery or drop-off location has 
a WL. The WL contains locations or areas that have to be searched in sequence 
for loads to be picked-up. If an entry on the WL contains multiple locations with 
loads, then these are selected in a first-come-first-served order. If there are no 
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more locations to check on the list, and still no work has been found, the vehicle is 
instructed to park at the nearest parking place, and waits until it is called for again. 

In this case there are many work lists (see figure 2), a unique one for every 
drop-off area (27 in all). For example, at the labeling area, the first search location 
on the WL is labeling area then storage module 1 then return stations etc., at the 
end of the list all remaining stations are checked for possible work. The WLs are 
constructed in such a way, that in most cases, the locations around the current 
position of the idle vehicle are checked first for work. Furthermore, the route the 
idle vehicle should follow next is consistent (in most cases) with the uni
directional flow of the paths. In other words, the sequence of locations on the lists 
is consistent with the arrangement of pick up locations on the un i-directional flow 
paths of the vehicles and therefore reduces the probability to pick up a load 
upstream of the vehicle. 

Drop-off Area Shipping Lanes SRA RPA Storage Module 
(# locations) (6) (I) (I) 1 (9) 

Search Areas Odd-Size Area RPA RPA Storage Module 
(in sequence) Overflow Area CRA CRA 1 

Check-in stations Storage Module I Return Stations RPA 
Receiving Lanes Return Stations Receiving Lanes CRA 
Storage Module I Receiving Lanes Storage Module I Return Stations 
Labeling Area Labeling Area Labeling Area Overflow Area 
ALL ALL ALL Receiving Lanes 

Labeling Area 
ALL 

Drop-off Area Overflow Area Odd-Size Area CRA Labeling Area 
(# locations) (5) (4) (I) (I) 
Search Area Overflow Area Odd-Size Area CRA Labeling Area 
(in sequence) Odd-Size Area Overflow Area RPA Storage Module I 

Storage Module I Storage Module Storage Module 1 Return Stations 
RPA 1 Return Stations Receiving Lanes 
CRA RPA Receiving Lanes ALL 
Return Stations CRA Labeling Area 
ALL Return Stations ALL 

ALL 

FIgure 2 Work hsts for all dehvery locatIOns for the control system WIth work hsts, based 
on the case of section 3 

(d) Load-ListiWork-List Combined (LLWL) 
A Load-List (LL) is a list of locations where a waiting load may find an empty 
vehicle to wake up. When a load is output to a pick-up point, it will first scan the 
LL at that location for parking locations to wake an idle vehicle. The newly 
awakened vehicle then searches the WL of the parking location. Since the vehicle 
scans the work list, it may find a higher priority load than the load that woke it. 
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With this rule the first dispatching initiative lies with the load, however, the 
vehicle will detennine the move request. If there are no vehicle requests in the 
system, the (empty) vehicle will park at the nearest parking location and become 
idle until a request becomes available. 

(e) Shortest-Travel-Distance-First (STDF) 
Using this rule, a released or idle vehicle searches for the closest available load to 
transport. The closeness is measured in tenns of travel distance. However, a 
facility layout may contain a few remote stations. These stations are then not near 
a vehicle release point and can therefore rarely qualify to receive a vehicle 
dispatch. This illustrates the major drawback of this rule; it is sensitive to the 
facility layout. If there are no move requests in the system when the vehicle is 
looking for work, the vehicle will park at the nearest parking location and 
becomes idle until a move request becomes available. 

(f) Nearest Vehicle/Shortest-Travel-Distance-First Combination (NV/STDF) 
Under this rule, the load or workcenter has the dispatching initiative. When a load 
or workcenter places a move request, the shortest distance along the traveling 
paths to every available vehicle is calculated. The idle vehicle, whose travel 
distance is the shortest, is dispatched to the point of request. It should be made 
clear that the closest vehicle in distance is not necessarily the closest in travel 
time. This phenomenon is due to acceleration and deceleration effects, a 
congested travel network, speed restrictions on some paths or variable vehicle 
speed. On the other hand, when a vehicle becomes idle, it searches for the closest 
load, i.e., at that point the dispatching initiative is at the vehicle and the rule used 
is STDF. If there are no vehicle requests or loads in the system, the (empty) 
vehicles will park at the nearest parking location and become idle until a request 
becomes available. 

3.3 Dispatching rules using multiple load vehicle capacity 

Multi-load vehicle scheduling is based on the concept of closest task. Therefore, a 
multi-load vehicle picks up as many loads as it can carry from its current location 
before moving away. When the vehicle moves, it goes either to deliver one of its 
loads or to pick up another load if it has remaining capacity. The vehicle only 
looks for additional loads to pick up that are closer in distance than the closest 
destination of its onboard loads. If the vehicle goes to deliver a load, it always 
goes to the closest among the destinations of its onboard loads. This applies to all 
of the previously described dispatching rules. So the first load mainly 
characterizes the perfonnance of those rules when multi-load vehicles are used. 
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4 Results 

The perfonnance criteria we look at to evaluate the robustness of the different 
dispatching rules are the following: 
• Average load throughput time (= average load waiting time + transportation 

time) 
• The number of vehicles needed to handle the required throughput 
• Vehicle utilization 
• Maximum number of loads waiting at any time 

The average load throughput time is the average of all tabulated times that a 
load spends waiting to be picked-up, (after being released to the vehicle-system) 
plus the time it spends on the vehicle until it is delivered. 

The number of vehicles is set to the current number of vehicles used at the 
modeled DC. In general, the number of vehicles is held at the same value for all 
rules, except that the number of vehicles for the FEFS (decentral) rule where 
loops are used, is higher. 

The utilization of a (multi-load or uni-load) vehicle is calculated by adding the 
percentage of time used for delivering and retrieving loads. Another way of 
calculating this is by taking the percentage of idle time (i.e. the percentage of time 
used for going to the parking location and parking) from the percentage of total 
time (100%). 

Throughout the simulation period, statistics are kept about the number of loads 
waiting to be transported. The maximum number of loads waiting at any time is 
useful to see whether the vehicles can cope with the load throughput. 

Some of these criteria might lead to contradictory results. For example, an extra 
vehicle can lead to a reduction of pallet waiting times. And a complex dispatching 
rule could need just a few vehicles, but use them with full utilization. In practice, 
there usually is some rank in the importance of these criteria. Since costs and 
throughput realization are important, we will try to keep the number of vehicles to 
handle the required throughput as low as possible. This is the most important 
perfonnance criterion. Next is load throughput time. Throughput times should be 
small, so that delivery schedules are met and queues do not overflow. 

Table 3 explains how the results are tabulated for the different dispatching rules 
in the following sections. For example, when loads are released in batches of two 
and the vehicle capacity is I, one should look at the cell "Batch 2/Capacity I". In 
total there are 5 statistics in this cell. The first is the average load throughput time 
in seconds followed within brackets by the percentage increase of the throughput 
time compared with the row "Batch 1". The last statistic of the first row of the 
cell is the percentage of vehicle utilization. This is usually between 65 and 85 
percent except for the FEFS rule where the vehicles never park and have a 
utilization of 100 percent. The second row of the cell states the number of vehicles 
necessary to handle the required load throughput. This is usually 5, except for the 
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FEFS rule, which makes poor use of the information and needs 7 vehicles in total. 
In loop I, I vehicle is needed and in loop 2, 6 vehicles are needed. Because this 
rule makes use of loops, it is possible to make a distinction between the vehicles 
by giving them different vehicle capacity. An extra column has been added to 
table 4 where loop I has one uni-load vehicle and loop 2 has 6 multi-load 
vehicles. The last statistic in the cell represents the maximum number of loads 
waiting at any time. 
Table 3 Explanation of result tables 

~ Batch 1 

Average load throughput time Vehicle utilization 
1 Number of vehicles Max. number of loads waiting 

Average load throughput time Vehicle utilization 
2 (Percent increase with first row) 

Number of vehicles necessary Max. number of loads waiting 

Results Decentral Control System Using FEFS Dispatching 

The decentral First-Encountered-First-Served dispatching rule is the simplest of 
all. Using only local information, the vehicles continuously move from station to 
station checking if there is any load to be transported. Because the vehicles are 
always in motion, the utilization is 100 % (see table 4). As expected, the average 
load throughput time increases as the batch size increases. This is because one or 
more loads have to wait longer as soon as one is picked up. Increasing the load 
capacity of the vehicle can compensate this effect. The vehicle can then carry 
more loads at a time and the average load waiting time decreases, (which reduces 
the throughput time). When the two effects are combined the average throughput 
time also decreases. This can be explained intuitively by the fact that the arrival of 
loads changes but the number of loads stays the same and the number of 
transportation units increases. When only loop 2 is provided with multi-load 
vehicles, the effects remain almost the same and would therefore be the cheaper 
option for using multi-load vehicles. 

Table 4 Results First-Encountered-First-Served dispatching 

~ 
I for Loop 1 

Batch 1 2 2 for Loop 2 
269 100 251 100 251 100 

1 1+6 14 1+6 10 1+6 13 
279 (3.7) 100 259(3.2) 100 260(3.6) 100 

2 1+6 14 1+6 12 1+6 11 
287(6.7) 100 260(3.6) 100 259(3.2) 100 

3 1+6 17 1+6 12 1+6 11 
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Results Central Control System Using MOD FCFS Dispatching 

Although the positive effects of adding capacity and the negative effects of 
batch releases on the average load throughput time show the same trends as with 
FEFS dispatching, the relative difference is greater. Adding capacity (when 5 
vehicles are used) leads to a reduction in average load throughput time of 21 % 
and more, while increasing the batch size from 1 to 3 leads to an increase of 
nearly 13% for the case of un i-load vehicles (see table 5). 

Table 5 Results Modified-First-Come-First-Served dispatching 

~ Batch 1 1 1 2 

305 80 228 75.7 209 59.1 242 75.7 
1 5 21 6 13 7 11 5 13 

317(3.9) 82.2 242(6.1 70.0 214(2.4) 60.4 251(3.7 76.1 
2 5 20 ) 15 7 8 ) 10 

6 5 
344(12.8) 73.4 246(7.9 63.7 221(5.7) 55.2 254(5) 68.7 

3 5 29 ) 13 7 9 5 10 
6 

As expected, the increase in throughput times, when increasing the batch size, 
is smaller for dual-load vehicles than for un i-load vehicles. Also, the maximum 
number of pallets waiting is much less when multi-load vehicles are used. In order 
to obtain a comparable throughput time between situations of dual-load vehicles 
and uni-Ioad vehicles, it appears that for all batch sizes nearly 6 uni-Ioad vehicles 
are necessary to yield the same performance as 5 dual-load vehicles. So one could 
say here, the performance of I dual-load vehicle is about the same as 1.2 uni-Ioad 
vehicles. 

Results Work-List Dispatching 

The results with WL dispatching are almost identical with MOD-FCFS 
dispatching when the capacity is 2 (and 5 vehicles are used). When the vehicle 
capacity is 1 the results are more favorable except that the relative increase of load 
throughput time is larger when the batch size changes from I to 3. Furthermore, 
there is a small decrease in the maximum number of pallets waiting at a time (see 
table 6). The location based WLD rule therefore outperforms the time based 
MOD-FCFS rule. This is consistent with earlier mentioned results (see Van der 
Meer and De Koster, 1998). 
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Table 6 Results Work-List dispatching 

~ Batch 1 2 

281 79.7 242 75.7 
1 5 20 5 12 

290(3.2) 81.7 246(1.7) 75.2 
2 5 18 5 10 

322(14.6) 72.4 251(3.7) 67.8 
3 5 22 5 9 

Results Load-List-Work-List Dispatching 

The results of LL WL dispatching (see table 7) are practically identical to those 
of WL dispatching when 5 vehicles are used (see table 6). This is consistent with 
the results of a previous paper of Van der Meer and De Koster (1998). In that 
paper WL dispatching ranked just a little higher because that rule is less complex. 
However, when multi-load vehicles are used, both rules have about the same level 
of complexity, so LLWL dispatching is preferred due to the fact that the average 
load waiting times are more favorable. The results show (see table 7) that the 
number of uni-load vehicles has to increase to 6 to obtain a similar average 
throughput time as 5 dual-load vehicles. So 1 dual-load vehicle is about the same 
as 1.2 uni-load vehicles. 

Table 7 Results Load-List-Work-List dispatching 

~ Batch 1 1 1 2 

278 78.5 215 65. 196 55.6 236 73.3 
1 5 20 6 13 7 11 5 12 

289(4) 81.4 226(5.1 68. 204(4.l) 57.8 242(2.5) 74.0 
2 5 18 6 11 7 8 5 11 

313(12.6) 72.2 235(9.3 72. 211(7.7) 53.2 248(5.1) 67.7 
3 5 20 6 12 7 9 5 11 

Results Shortest-Travel-Distance-First 

The STDF rule is comparable to LL WL dispatching, as WLD is comparable to 
MOD-FCFS. The results (see table 8) are comparable when the vehicle capacity is 
2. However, when the vehicle capacity is 1 and the number of vehicles 5, the load 
throughput times show a significant reduction, also the maximum number of loads 
waiting decreases. Even the worst result (for load throughput time) when the batch 
size is 3 and the capacity is 1 is better than the best result of LL WL dispatching 
(see table 7). The distance based STDF rule therefore outperforms the previous 
location based rules. 
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Table 8 Results Shortest-Travel-Distance-First dispatching 

~ Batch I 2 

246 76.7 234 74.3 
1 5 12 5 II 

257(4.5) 79.4 241(3) 74.4 
2 5 15 5 9 

275( 11.8) 71.5 245(4.7) 67.0 
3 5 18 5 10 

Results Nearest- VehiclelShortest- Travel-Distance-First 

The results of the NV/STDF rule (see table 9) are comparable with those of 
STDF. Almost all results are slightly better, except for a light increase in the 
maximum number of loads waiting. Table 10 shows that the load waiting time 
indeed decreases as the capacity of the vehicle increases. However the advantage 
decreases as the capacity increases. The results also show that the load 
transportation time, i.e. the difference between the throughput time in table 9 and 
the waiting time in table 10, increases as the vehicle capacity increases. When uni
load vehicles are used, the waiting time is (241 - 130 =) III seconds. When 
vehicles with capacity 2 are used the transportation time increases with 18.9 % to 
(229 - 97 =) 132 seconds, for vehicles with capacity 3 the transportation time 
increases to 140 seconds. This makes clear that the reduction in load waiting time 
outweighs the increase in transportation time, which leads to a reduction in the 
average load throughput time. 

The results of vehicles with capacity 2 and vehicles with capacity 3 are rather 
similar with respect to the throughput time. However, the throughput time 
increases as the capacity of the vehicle increases from 2 to 3. This is due to the 
increase in load travel time. Apparently the increase in load transportation time is 
not compensated by the decrease in load waiting time which results in an increase 
in load throughput time (see table 9). It is therefore not favorable in this case to 
use multi-load vehicles with capacity 3. 

Table 9 Results Nearest-Vehicie/Shortest-Travel-Distance-First dispatching 

~ty 
Batch 1 1 2 3 

241 77.1 208 63.9 229 72.8 232 72.0 
1 5 13 6 9 5 II 5 7 

258(7.1) 76.8 217(4.3) 67.1 236(3.1 73.2 237(2.2 73.2 
2 5 17 6 10 ) 10 ) 9 

5 5 
271(12.4) 70.3 225(8.2) 70.9 241(5.2 67.3 242(4.3 66.2 

3 5 17 6 10 ) 11 ) 10 
5 5 
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Table 10 Average load waiting times NV/STDF dispatching with 5 vehicles 

~ Batch I 2 3 

1 130 97 92 
2 147 102 96 

3 160 107 101 

5 Summary and conclusion 

In this paper we looked at the performance of several dispatching rules when 
loads are released in different batch sizes and vehicles can have multi-load 
capacity. The rank of the (multi-load) dispatching rules (see table 11), with 
respect to the average load throughput time, remains practically the same as their 
single load counterpart described in Van der Meer and De Koster (1998). 
However it is now clearer which rules perform better than others. As expected, the 
decentral rule requires more vehicles relative to any of the central rules. This is 
due to the poor use of information of the location and status of vehicles and loads, 
and due to the fact that vehicles are dedicated to a loop so that the work can not be 
shared. 

Within the group of central dispatching rules, three subgroups can be defined, 
e.g.: time based dispatching, location based dispatching and distance based 
dispatching. Time based dispatching, represented by MOD FCFS, performs the 
least well of the central rules. However when multi-load vehicles are used, it 
becomes comparable with the other rules. This is actually no surprise because the 
dispatching rules of multi-load vehicles are more or less similar. The incentive to 
pick up the first load is driven by the character of the dispatching rule, but when 
more than one load has to be picked up or dropped of, a distance based rule for 
multi-load vehicles "takes over". 

Table II Summary of results, the ranking of the various dispatching rules, with respect to 
average load throughput time 
~ JnDdive Number LoodthroughplItmemsec. Lood1hroughputtmemsec. 

Rule ofvehidfs (Cap.=I, BaIdt=I,2,3) (Cap.=2, BaIdt=I,2,3) 

NVSIDF Load 5 240 / 258 / 271 229 / 236 1241 
SIDF Vehicle 5 246/257/275 235/241/245 

-ILWL - -Co-ad - - - - -5- - - - - - - 278-fi8s 7 3ff - - - - - -i36 I 24iFi48 --
WID Vehicle 5 281/290/322 242/246/251 

MoIiFCFS Vehi;le - - - -5- - - - - - - 305-(3-177344- - - - - - -242/25(1-254 --
FEFS Vehicle 7 269/279/287 2511 260/259 
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The location based rules are subdivided in a vehicle initiative rule, represented 
by WLD, and a load initiative rule, represented by LL WL dispatching (see also 
table 11). Although there is little difference, LL WL dispatching perfonns better 
than WL dispatching. In a previous paper (Van der Meer and De Koster, 1998), 
the preference between these two rules was not clear yet, and WLD was preferred 
because that rule is less complex when using uni-Ioad vehicles. In this paper, 
using multi-load vehicles, both rules are complex; therefore LL WL dispatching 
outperfonns WLD. 

The distance based rules are subdivided in a vehicle initiative rule, represented 
by STDF, and a load initiative rule, represented by NV/STDF dispatching. Again 
there is little difference, but NV/STDF dispatching is be ranked higher than STDF 
dispatching because it is less complex when using uni-Ioad vehicles. 

The load throughput times of the worst perfonning central rule, MOD FCFS, 
can be up to 27 % higher than the load throughput times of the best perfonning 
central rule, Nearest-Vehicle/Shortest-Travel-Distance-First (NV ISTDF). 

By introducing vehicles with multiple-load capacity, more loads can be 
transported simultaneously. This means that the average load waiting time 
decreases because load transports can be combined, but the average load 
transportation time increases. For a fixed batch size, increasing the capacity of the 
vehicle leads to a reduction of the average throughput time (see table 11). The 
magnitude of the reduction is stronger for larger batch sizes. This is intuitive, as 
the opportunity for combining loads on a multi-load vehicle increases for larger 
batch sizes. 

For a fixed vehicle capacity, the average load throughput time increases as a 
function of the batch size. This additional waiting time increases the average 
throughput time of loads (see table 11). 

The combined effect on the throughput time for batch-releases of loads and the 
use of multi-load vehicles is not clear beforehand. In the investigated case, the 
relative increase in load throughput time due to an increase in the batch size is 
smaller for multi-load vehicles than it is for uni-Ioad vehicles. 

With an increasing vehicle capacity, one needs fewer vehicles to give an 
identical average throughput time. In figure 3, the dual- and triple-load vehicle 
situations are compared to the uni-Ioad vehicle situation. The results point out that 
about 1.3 uni-Ioad vehicles are needed for the same average throughput time of 1 
dual-load vehicle. But for triple-load vehicles this ratio is also almost 1.3:1, (in 
fact a little worse than the ratio for vehicles with capacity 2). Therefore, 
increasing the vehicle capacity from 2 to 3 works contraproductive in this case. 
For vehicles with capacity 3, the load transportation time increases relatively too 
much, which results in an increase in the average load throughput time. 
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Figure 3 Number of un i-load vehicles needed to give the same performance as 1 multi-load 
vehicle 

In conclusion, a more realistic batch release of loads (in batch size 2 or 3) at the 
receiving lanes and check-in area, can increase the average load throughput time 
with 15 % for uni-load vehicles and about 5 % for multi-load vehicles. Using 
dual-load vehicles, the average load waiting time can reduce by 35 % (see table 
10). Furthermore, about 30 % more uni-load vehicles are needed to yield 
approximately the same results as with dual-load vehicles. This means that the 
costs of a dual-load vehicle should be less than 30 % higher than those of an uni
load vehicle in order to be cost effective. This percentage depends, of course, on 
the situation. We feel that it is sensitive to the idle time of the vehicles. In our case 
the vehicle utilization is high, about 80 %. The higher the utilization, the more 
effect multi-load vehicles will have and the sooner the costs for mult-load vehicles 
can be justified. 
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Abstract. In many distribution centers, there is a constant pressure to reduce the 
order throughput times. One such distribution center is the DC of De Bijenkorf, a 
retail organization in The Netherlands with 7 subsidiaries and a product 
assortment of about 300,000 SKUs (stock keeping units). The orders for the 
subsidiaries are picked manually in this warehouse, which is very labor intensive. 
Furthermore many shipments· have to be finished at about the same time, which 
leads to peak loads in the picking process. The picking process is therefore a 
costly operation. 

In this study we have investigated the possibilities to pick the orders more 
efficiently, without altering the storage or material handling equipment used or the 
storage strategies. It appeared to be possible to obtain a reduction between 17 and 
34% in walking time, by simply routing the pickers more efficiently. The amount 
of walking time reduction depends on the routing algorithm used. The largest 
saving is obtained by using an optimal routing algorithm that has been developed 
for De Bijenkorf. The main reason for this substantial reduction in walking time, 
is the change from one-sided picking to two-sided picking in the narrow aisles. 

It is even possible to obtain a further reduction in walking time by clustering 
the orders. Small orders can be combined on one pick cart and can be picked in a 
single route. The combined picking of several orders (constrained by the size of 
the orders and the cart capacity) leads to a total reduction of about 60% in walking 
time, using a simple order clustering strategy in combination with a newly 
developed routing strategy. The reduction in total order picking time and hence 
the reduction in the number of pickers is about 19%. 

Keywords. warehouse, order picking, routing, batching, case study. 

1. Introduction 

In many warehouses and distribution centers, short order throughput times are of 
crucial importance. There are several causes for this. 

M. G. Speranza et al. (eds.), New Trends in Distribution Logistics
© Springer-Verlag Berlin Heidelberg 1999
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• Suppliers of manufacturing companies are being forced to supply in a just-in
time manner. Their customers have lowered their inventories and demand a 
rapid and timely supply from their vendors. 

• Many internationally operating companies have centralized their European 
distribution in so-called EDCs, European distribution centers. These EDCs are 
responsible for the warehousing function and distribution to mUltiple European 
countries. The internal process organization often leads to wave picking, in 
which the pick process is carried out in batch, governed by fixed truck 
departure times for the different countries or regions. In order for these trucks 
to leave in time, the orders must be ready before departure, regardless of their 
number. However, in practice it can often be observed that there is a peak of 
departures in the afternoon and of receipts in the morning. This leads to order 
picking processes that are capable of handling peak loads in a timely manner. 

• In contrast to the above way of working in EDCs, customer sales does not want 
any concession in the customer service and simultaneously wants to guarantee 
short delivery times (overnight for customers in a radius of 500 km of the 
EDC). This leads to order cut off times that are as late as possible before the 
truck departure times. Often special procedures are created to be able to handle 
late emergency orders in time. 

• Short delivery times are considered in many branches as a competitive weapon. 
This puts pressure on the internal throughput times, especially order picking 
throughput times. 

• It becomes more and more difficult to realize short order throughput times 
because of factors such as a gradual increase in assortment and smaller, yet 
more frequent, orders. For the increasing assortment an increasing amount of 
floor space is necessary. This in tum results in increased walking times per 
order. Smaller orders (less items per line) and an increased frequency of 
ordering lead to an increase in the work contents of order picking: less full 
pallets can be picked and more single item picks are necessary. 

• The increase of value added logistics (VAL) activities in many warehouses has 
lead to additional activities that have to be carried out during or after the order 
picking. These additional activities often lead to the necessity of picking and 
handling such orders separately, within the short time frame available for 
handling the orders. 

• Especially in the retail business, the increased application of ECR (efficient 
consumer response) concepts has lead to the direct transmission of order 
information from scanning cash registers to the distribution centers. These 
orders are then translated in replenishment instruction from the DC to the 
stores. This often means more, but smaller orders that have to be supplied. 

Most warehouses are gradually confronted with the above mentioned 
developments. It is important to fmd an adequate solution to maintain short and 
well-controlled throughput times. One such option is a radical new design 
consisting of a new layout, further mechanization and automation of processes. 
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However, often also by less radical methods the efficiency of the order picking 
process can be increased. 

In this paper, a number of methods are discussed that can help improving the 
efficiency of the order picking process, without layout change, or a change of 
storage policies or of material handling equipment. Order picking is, in most 
companies, a manual job. By a better organization of the process, a more efficient 
order picking, it is often possible to obtain a substantial reduction of the order 
throughput time. According to Tompkins et al. (1996) the operation costs in 
warehouses are determined to a large extent by the order picking process 
(approximately 55%). 

The efficiency of the order picking process depends on factors that are difficult 
to change, such as the chosen storage systems (racks), the layout, the order 
picking system (order picking trucks, pick carts, pick-to-belt, pick-to-light, etc.), 
but also by parts that are more easily changeable, such as the storage strategy (the 
storage location determination), the sequence by which items are collected from 
storage locations (routing strategy) and the possible clustering of customer orders 
in a single order picking route (hatching). 

In section 2, these relatively simple strategies are considered in more detail. In 
section 3 it is demonstrated by the case of the distribution center of 'De Bijenkorf 
in Woerden, The Netherlands, that proper choices for these parts can lead to 
strong improvements in the efficiency of the order picking process. In this case 
study the focus is on routing and batching strategies. In section 4 some 
conclusions are drawn. 

2. Reduction of the order pick time in distribution centers 

Order picking and shipping customer orders within an agreed time is the core 
function of a distribution center. In the picking process, customer orders are 
converted into pick orders. 

The time, needed for picking an order can be split in travel time (walking or 
driving time), pick time and remaining time. The travel time is related to the 
movement between locations that have to be visited (where the items are stored 
that have to be picked). The pick time is related to grabbing the items. This 
includes search for the article, grabbing the units, depositing them on the pick 
cart, checking the pick, administration of the pick on the pick list (if applicable) 
and reading the next location to be visited. The remaining time is related to 
activities such as the acquisition of the pick order, dropping off the full pick cart, 
waiting time for a next assignment, social contacts etc. 

According to Tompkins et al. (1996), the travel time in a warehouse is, in 
general, responsible for half the total order picking time (see table 1). Hence, 
reduction of the travel distances and therefore of the travel times has a significant 
impact on the total order picking time. In a stepwise approach for gradual 
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improvement of the order picking process, walking distance reduction is an 
important candidate. 

Table 1. Typical distribution of an order picker's time (according to Tompkins et al. 
(1996». 

Other 

Setup ... 
Pick __ _ I_ % ct orderpicker's time 1 Sean:h. __ _ 

o 10 20 30 40 50 

There are several ways to reduce the travel distances in the order picking 
process in a warehouse. It is possible to reduce walking distances by system 
changes, using a higher degree of automation. Examples are the use of A-frames 
(automatic product dispensers) for automated picking of small articles, AS/RS 
warehouses, miniloads and carousel systems, in which the items that have to be 
picked are automatically moved to the picker (,goods-to-man'), or the use of pick
to-belt order picking combined with automatic sortation. 

On the other hand it is also possible to reduce walking times by less radical 
changes. Instead of changing equipment, we can try to improve the operating 
policies. In sections 2.1 - 2.3, we will restrict ourselves to conventional solutions 
that are applicable in many warehouses. In specific we will discuss: 
• Compact storage. The idea with compact storage is to make the area that has to 

be traversed by the order pickers as small as possible. 
• Routing. Given an order to be retrieved from storage, in which sequence should 

the order picker visit the pick locations? 
• Order batching. Combining two or more orders into one pick route can 

decrease the total distance to be traveled by the order picker. 

2.1 Compact storage 

This can be reached by applying several principles, such as narrowing pick aisles 
and densifying storage locations, separation of bulk and pick stock, dividing the 
pick stock over pickfrequency based storage zones (ABC-storage). 
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2.1.1 Reduction of storage space needed 

Aisles in warehouses may have various widths. This depends on the items and 
product carriers that have to be stored and on the material handling systems used 
to store and pick them. Since warehouse aisles occupy a considerable percentage 
of the total storage floor area (costs) and since the average distance to be traveled 
for order picking or storage increases with the aisle width, it is important to make 
the aisles as narrow as feasible. In pallet storage areas this may lead to narrow
aisle (semi) high-bay storage with aisle widths varying between 1.2 and 1.7 m. 
This is a significant reduction when compared to traditional wide-aisle pallet 
storage with aisles between 2.5 m (reachtrucks) and 3.5 m (forklift trucks). Of 
course, such a choice has impact on the material handling systems that can be 
used and on the order picking and storage policies that can be used. 

A second way of reducing the storage area is a more efficient use of storage 
locations. In many warehouses, the average storage location filling rate is low, 
about 20%. By distinguishing between slot sizes, compacting stored loads as 
much as possible (for example, storing multiple SKUs per location, or combining 
multiple small loads of one SKU on one location), it is often possible to achieve 
great savings in storage space. This can result in a smaller storage area and hence 
in reduced throughput time and lower costs. 

Another option, which may be the most important one, has to do with better 
cooperation and coordination with suppliers. Storage space reduction can be 
achieved in various manners. One can think of: 
• ordering more frequent smaller quantities, which reduces inventory, 
• using drop shipments whenever possible, which avoids handling and storing 

items first, 
• focusing on cross-docking rather than first bringing material to storage, 
• reducing standard package quantities, which avoids separate locations for 

broken packages. 

2.1.2 Separation of bulk and pick stock 

The purpose of separating pick stock in a forward area (from which orders are 
picked) and bulk stock in a reserve area (used for the replenishment of the pick 
stock) is to reduce the space in the order picking zone, i.e. the forward area. This 
can significantly reduce the travel time needed in the order picking process. 
However, the gain in travel time has to be balanced against the additional time 
needed to replenish the pick stock from the bulk stock. The main question to be 
answered is: which quantity per article has to be stored in the forward area. Some 
methods used in practice to solve this problem are: 
• allocate the same space to every article in the forward area ('equal space 

method'); 
• allocate to every article an amount of space sufficient to meet the demand over 

a predefined period ('equal time method'). 
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Other procedures to allocate products to the forward area, with their 
performance bounds, can be found in e.g. Hackman and Rosenblatt (1990) and 
Hackman and Platzman (1990). 

In most warehouses all articles have a pick position in the forward area. From 
recent research by Van den Berg (1996) it appears that considerable savings are 
possible by picking some articles directly from the reserve area. It has to be noted, 
however, that order picking from the bulk area needs material handling systems 
capable of both order picking and storage and retrieval of unit loads. 

2.1.3 Pickfrequency class-based storage of articles in a warehouse 

In general, travel times can be significantly reduced if zoning is used to store 
the articles. Zoning can be applied in different ways. First, it is possible to create 
separate storage areas and even separate storage systems, handling systems and 
separate control for SKUs with different turnovers. For example, in the retail 
business it is a custom to create a fixed zone for discount articles that move 
extremely fast. The discount actions are often planned in advance and the storage 
area is continuously adapted according to the sale action of the coming period. 

A second way to apply zoning is subdividing a single physical storage system, 
for example a pallet warehouse, in multiple logic zones, that contain SKUs 
belonging to different pickfrequency classes. Fast moving items are stored close 
to the front end of the racks at easily accessible locations and slow moving items 
are stored further away. According to Hausman et a1. (1976) pickfrequency class
based storage can lead to a reduction of up to 60%, using only three 
pickfrequency classes. The savings that can be reached, depend on the number of 
SKUs responsible for a significant part of the picks to be carried out. Van den 
Berg (1996) suggests that in some situations, five or six pickfrequency classes 
yield a significant further reduction in travel time. More classes have virtually no 
additional effect. 

Although the above research was carried out in an automatic warehouse 
environment with aisle-bound trucks or cranes, several authors have reported 
similar results in other pick-storage layouts. See for example, Caron et a1. (1998). 

2.2 Routing 

When the items that have to be picked in a single tour by the picker and their 
corresponding storage locations have been established, the sequence has to be 
determined by which these locations have to be visited. This sequence is 
determined by a routing strategy. The chosen routing strategy has a direct impact 
on the length and travel time of the tour. Good routing strategies can significantly 
reduce travel time. De Koster and Van der Poort (1998) report reductions of30%. 

Ratliff and Rosenthal (1983) developed an algorithm to find shortest order 
picking routes in warehouses with mUltiple parallel aisles, a central depot and 
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without cross aisles. Their method is based on dynamic programming, where they 
start in the left most aisle and consider all possibilities to visit the next aisle. This 
procedure is repeated until all aisles are added. Five different methods 
(transitions) are distinguished to add an extra aisle and six transitions are 
distinguished to visit the locations within the aisle. In routes resulting from their 
method it is possible that an aisle is skipped first, but that it has to be finished later 
by returning to the aisle. The algorithm of Ratliff and Rosenthal has been 
extended by De Koster and Van der Poort (1998) for the situation that the picked 
items can be dropped off at the head of every aisle (decentralized depositing). 

In practice, usually simple heuristics are used. To the knowledge of the authors, 
at the current moment no standard Warehouse Management System (WMS) 
package exists that contains the Ratliff and Rosenthal algorithm. Methods that are 
used include the 'S-shape' strategy, the 'Midpoint' return strategy and the 
'Largest gap' return strategy (see Hall (1993». In the S-shape strategy, the aisles 
containing items are fully traversed in a single direction. This is done in an S
shaped curve fashion. In the application of this algorithm, a distinction has to be 
made between single-sided picking and two-sided picking. See figure 1. Single
sided picking is only to be preferred in case the aisles are either very wide or 
when many items have to be visited within the aisles. 

,-- ....-~-- .... (' .. 

1 L- ___ -..J t 1. 
Figure l. Warehouse (top view) with single-sided picking (left) and two-sided picking 
(right) using the S-shape algorithm. 

The midpoint return strategy and largest gap return strategy are both routing 
strategies where the order picker travels in the aisle but always returns to the aisle 
head where he started. The point of return in the aisle is either determined by the 
aisle midpoint or by the largest gap between two sequential item locations. The 
largest gap between such item locations is not traveled. The largest gap strategy is 
always beneficial over the midpoint return strategy. See for example, Hall (1993). 
Hall shows that if the number of items to be picked per aisle is small (less than 
about 3) then the Largest gap strategy is beneficial over the S-shape strategy, with 
respect to travel time. 
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For the case that the warehouse has a middle aisle (cross aisle) as in figure 2, an 
optimal routing algorithm has been developed by Roodbergen and De Koster 
(1998). A middle aisle divides the warehouse in a front and a rear block. They 
also developed a Combined heuristic for routing order pickers in a warehouse 
with any number of cross aisles. The heuristic uses a dynamic programming 
technique to combine S-shape and an aisle return strategy for traveling within 
aisles. In traveling to a next aisle, significantly fewer possibilities are allowed than 
in the optimal algorithm: only two (front or rear end). In the traveling within 
aisles the best is selected of the S-shape strategy and the 'enter-aisle-and-return' 
heuristic. A difference with the optimal algorithm is further that picking is done 
per warehouse block and that no returning to previously skipped aisles can occur. 

Examples of the different routing strategies can be found in figure 2. 

S-shape Largest gap 
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Combined Optimal 
Figure 2. Examples offour different routing strategies, for a warehouse with a middle aisle. 
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2.3 Order batching 

Batch picking is defined in this paper as a method by which multiple orders are 
picked in one pickroute. The items that are combined in the pickroute in this way 
have to be sorted per order. Sorting per order can happen during picking ('sort
while-pick') or afterwards (,pick-and-sort'), the latter often via a sortation 
machine. 

The difficulty of batch picking is how to determine which orders can be 
combined best in order to minimize the total travel time. A boundary condition is 
that the capacity of the pick device (cart, pallet, roll cage) may not be exceeded. 

The problem of fmding an optimum is NP-hard (see Gademann et al. (1996». 
Gademann et al. (1996) describe a branch-and-bound algorithm for a related 
problem where the objective is to minimize the maximum pick time of any of the 
batches formed. Their algorithm is complex and has unpredictable (and often 
long) calculation times. 

However, simple heuristics can be used with very good results, as shown by De 
Koster et al. (1999). In their paper, the batching heuristics were divided into three 
groups: 
• Simple, straightforward algorithms (like First Come, First Served) 
• Seed algorithms 
• Algorithms based on time savings. 

Each of these groups will be described below in more detail. Other methods 
could possibly be developed by adjusting solution methods for the Vehicle 
Routing Problem (see e.g. Fisher (1995» for the case of order batching. 

2.3.1 'First Come First Served' 

In the 'First Come First Served' batching algorithm, the orders are assigned to 
pickroutes in sequence of arrival, until the capacity of the pickdevice is reached. 
Each time that this happens, a new route is started. Only complete orders are 
assigned. This is a method widely used in practice, because of its simplicity. 

2.3.2 Seed-algorithms 

Seed algorithms consist of two different steps, which are repeated for each new 
route. First, via a seed selection rule an order is selected, that has not yet been 
included in a route. Next, with an order addition rule, orders are added one by 
one, until the capacity of the pickdevice is reached or no order can be added. the 
addition may, for instance, be based on the distance (measured with some distance 
metric) between the existing orders in the route and the order that may be added. 
The advantage of seed rules is, that they are in general simple to use and fast in 
calculation. 



224 

2.3.3 Time savings algorithms 

Time savings algorithms are based on the time savings that can be obtained if two 
orders are combined instead of executed separately (inspired by the time savings 
algorithm for vehicle routing by Clarke and Wright (1964)). 

For each pair of orders the time saving is calculated. The order pair that yields 
the maximum time saving and that fits on the pickdevice is combined in a route. 
The order pair with the next greatest time saving is then taken. If one of the orders 
has already been assigned to a route, the other order is added to that route, if 
possible. If none of the orders is contained in a route, a new route is formed 
containing the two orders. This process is repeated for the remaining pairs until all 
orders have been assigned to a route. 

In the calculation of the time savings, a routing algorithm may be used. This 
may be one of above mentioned heuristics (S-shape, Largest gap, etc.) or an 
optimal algorithm. 

Several types of the above mentioned algorithms are discussed in De Koster et 
a1. (1999). In the next section the impact of efficient routing and batching on 
travel time are discussed for the case of De Bijenkorf. 

3. Case: The distribution center of 'De Bijenkorf' 

3.1 De BijenkorfB.V. 

De Bijenkorf B.V. is a chain of department stores in the Netherlands with 7 stores 
in the major cities and over 3600 employees. The assortment is very broad, about 
300,000 stock keeping units (SKU) and changes constantly. The assortment 
contains fashion, consumer electronics, household appliances, books, furniture, 
personal care products, etc. 

All stores are supplied from one DC in Woerden. The arriving articles are 
checked on quantity, quality and, in many cases, are labeled with the sales price. 
Next, a part of the arrivals are directly cross-docked to the stores. Another part is 
stored in one of the four storage areas. One of these storage areas is for hanging 
fashion. The other three storage areas have conventional storage equipment, like a 
bin storage area, a pallet area and an open shelf storage area. 

In the bin storage area, the products are stored in plastic bins. They are also 
picked in the same type of bins. In this area the picking is the most labor 
intensive. 
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3.2 Order picking in the bin storage area 

3.2.1 The bin storage system 

The plastic bins are stored on two different floors in shelf racks. Both floors 
consist of 12 blocks each having 11 aisles of 18.6 m. length and an aisle width of 
90 cm. Every rack has 42 sections offering space for 8 plastic bins, stored on top 
of each other. Two adjacent blocks form a so-called preferred zone. Every article 
stored in the bin storage area is assigned to one preferred zone, depending on the 
cash register from which it is sold in the department stores. Therefore, products 
sold at a singe cash register are grouped together in one preferred storage zone, a 
form of family grouping of a similar kind as can be observed in food retail 
warehouses. The most important activities in the bin storage are the storage of 
plastic bins with incoming goods and the picking of single units from the plastic 
bins. 

3.2.2 Storage 

Within the bin storage area, a semi-random storage strategy is applied. This means 
that if a (group of) bin(s) containing a single SKU has to be stored, the 
information system (named VIRGO) indicates the preferred storage zone where 
the bins have to be stored. Within this zone, the warehouse employee may store 
the bin at any free location. The employee has to keep the bins together (in a 
vertical stack) as much as possible. Every employee tries to minimize the walking 
distance when storing a group of bins and stores the bins at the free location 
closest to the inbound conveyor. After storage, the storage location is confirmed 
to VIRGO. 

3.2.3 Order picking 

A pickorder consists of those SKUs that have been ordered by the department 
corresponding to one cash register in a store and is picked by one order picker in 
one preferred zone (although exceptions occur). Each order picker usually picks 
one order at a time. The picked items are put in plastic bins on a small pick cart. 
The sequence in which the orderlines (SKUs) have to be picked is indicated on the 
pick list. This sequence is based on a simple sortation of the picklocations in 
increasing order. When the pick order has been finished, the pickorder is 
confirmed to VIRGO at a central terminal. The pick bins are placed on a conveyor 
and transported to a sortation system where they are sorted per store and prepared 
for further transportation. 
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3.3 Problem description 

In 1992, a large business process reengineering project 'Het Distributieproject' 
was started at De Bijenkorf in order to make distribution processes more efficient. 
This process resulted in a number of important changes. First, a new logistic 
information system, VIRGO, was introduced for support of purchasing, 
distribution and sales. This system also supports scanning cash registers, where 
point-of-sales information is matched with the stock in the store and immediately 
translated into replenishment orders at the warehouse, if necessary (an ECR 
application). Second, the sales area in the stores was enlarged, so that a larger 
number of SKUs is now displayed at the stores, rather than stored in the 
warehouse, in order to increase sales. The stock per SKU has decreased at the 
stores. 

This has put more pressure on the warehouse. All stores are now supplied 
daily, instead of once every two weeks. In the bin storage area, this has lead to 
many small orders, instead of few and very large orders. The total walking 
distance needed to collect the orders has increased significantly. In a study of Van 
Voorden (1997) it appeared that an order picker in the bin storage area walks on 
average 7 km on a daily basis to collect the items. 

The research project at De Bijenkorf focused on a reduction of these walking 
distances. In the previous part of this paper several methods of travel time 
reduction have been discussed, but here we focus only on two, relatively simply 
implementable methods, namely sequencing the pick locations on the pick lists 
(routing) and combining multiple orders per pickroute within a preferred zone. 

3.4 Problem solution approach 

The approach that was chosen consists of the following steps: 
1. Order analysis. A fairly large number of orders in two representative preferred 

zones of the bin storage area were each analyzed for: 
articles contained in it, 
storage location of each article, 
route taken by the order picker to pick the order (this actually required 
walking the order together with the picker), 
time distribution of the picker: time for picking, walking and 
administration, 
number of pick bins needed to pick the order (the number of pick bins 
necessary to pick the order always fits on the pick cart), 
registration of incidents, such as: location empty registration, search for a 
new empty pick bin, article not available at indicated location, etc. 

2. Simulation of current situation. The current order structure and routing method 
was implemented in a simulation program. 
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3. Simulation of alternative routing strategies. A number of routing strategies 
were implemented in a simulation program and compared for a large number of 
orders with the current method. 

4. Simulation of batching strategies. A number of different batching strategies 
were defmed and investigated on practical feasibility . 

5. Comparison of results. The batching strategies of the previous step were 
implemented in a simulation program and compared for a large number of 
orders with the current method. 

6. Conclusion. Results were obtained and the best alternative was chosen. 
7. Implementation. The best solution is currently being implemented. 

The above steps are worked out in the sequel. 

3.5 Order analysis 

During two consecutive weeks all orders in the two preferred zones were 
recorded. Some data of these orders is listed in table 2. Not only averages were 
obtained, but also full frequency distributions of all quantities listed in table 2. In 
this table, units per order indicates the number of product units (a single product 
or a set of products in one wrapping) in an order. Lines per order stands for the 
number of product types in an order (multiple units of one product account for 
one order line). 

Table 2. Some data collected for two preferred storage zones. 

. l'rclcl1"cd lonc I I'rclcl1"cd lone 2 

Ave. orders per day 
Ave. lines per order 
Ave. units per order 

Ave. pick bins per order 
Re ression: bins/order = 

47 
17.0 
39.3 
3.6 

fO.994 + 0.156lines/orderl 

29 
31.6 
J31.2 
3.4 

From the collected data it was possible to fmd a pickfrequency distribution for 
the different storage sections within the preferred storage zones. This was used 
later on in a simulation program to generate random storage locations of pick 
items. The storage location distribution is quite skewed, due to the fact that within 
a preferred storage zone, a worker may freely find a location sufficiently large for 
the bins to be stored. 

The number of pick bins necessary for picking the order depends largely on the 
size of the order, as can be seen from figure 3. The maximum number of pick bins 
in one route is 12, in the current situation. 

The regression analysis results are also listed in table 2. Due to the upward 
rounding of the number of bins needed (even 0.1 bin means that 1 bin is needed) 
in table 2, adding more variables in the regression equation (like the number of 
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units/order) does not yield a significantly better prediction of the number of pick 
bins necessary. The regression results were used for the simulation. 

14 -,------------, 10 -.--------------., 

5 15 25 35 45 55 65 75 5 152535 4555 65 75 85 95105 
llnaslordar Iines/ordar 

Figure 3. Regression line for the average number of pick bins per group of orderlines. The 
left figure is for preferred zone I, the right one for preferred zone 2. 

3.6 Analysis of the current pick routes 

From the analysis of the pick routes it appeared that the large distances that are 
traveled in the picking process can be attributed mainly to the single-sided 
orderpicking. It is a well-known fact that two-sided orderpicking greatly 
outperforms single-sided orderpicking unless the number of pick locations per 
aisle is very large or the aisles are very wide, see Goetscha1ckx and Ratliff (1988). 
The single-sided picking is again due to the location numbering. The location 
numbers increase as indicated in figure 4. The pick locations are indicated on the 
pick list, sorted on increasing location section numbers. The layout in figure 4 
(and figure 5) has been simplified slightly; the number of locations per rack is 
only 4 (42 in reality). 

In fact, the pickers use two main different traveling strategies. Some pickers 
work from the middle aisle: they leave their pick cart in the middle aisle when 
entering an aisle. Other pickers always take their pick cart with them and then 
consequently travel the full aisle when they have to switch to a neighboring aisle. 
However, all pickers pick strictly in the sequence indicated on the pick list. After 
simulation (see next section), it appeared that the last method is slightly better on 
average than the first one. For the comparison, only this best one was used. 

In figure 5 an example is given of this last type of pick routes, in which 17 
locations have to be visited. In the righthand storage block of the preferred zone, 
the picker enters the aisle from the middle aisle and returns to the middle aisle 
after the furthest pick in the aisle. In the lefthand storage block, the picker 
traverses the full aisle, starting from the middle aisle, if the next pick location is 
also in the lefthand storage block and the traveling direction matches with the 
location numbering sequence (see figure 5). 
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Two aisles have been marked with an arrow in figure 5, to show that in the top 
aisle the picker returns to the middle aisle to make sure that in the next pick aisle 
the travel direction matches the location numbering sequence. On the other hand, 
in the lower aisle the picker travels the aisle completely also to achieve that the 
traveling direction matches the location sortation. 

~ I 
Figure 4. Current location numbering. 

: I i : : 
Figure 5. Orderpicking route in the current method with full aisle traveling (leftband block) 
and return (righthand block). 
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3.7 Order simulation and results 

For each of the two preferred storage zones, 10,000 orders have been randomly 
generated. The travel times needed for these orders were calculated with different 
routing and batching strategies, including the current one (see figure 5). The 
number of orderlines of an order, the pick location of each of the articles and the 
number of pick bins needed for the order, are all drawn from the corresponding 
probability distributions based on the order analysis. 

3.7.1 Routing results 

In total, 3 different heuristic routing methods and an optimal algorithm have been 
compared with the current routing method. The heuristic routing methods are S
shape, Largest gap and the Combined heuristic (see Roodbergen and De Koster 
(1998)). The optimal algorithm (see Roodbergen and De Koster (1998)) is based 
on dynamic programming and similar to the algorithm of Ratliff and Rosenthal 
(1983). The results can be found in table 3. 

Table 3. Comparison of three heuristics and the optimal routing method with the current 
routing method. 

:\ll"Ilwd I AHrage dail~ Diffl"rcnce" ith Total aHragc I>iffen'ucc \l ilh 

traHI distance , CIIITcnt method dail) picJ,tinll' ClIrrent method 

, in hin storagl' (1:;1.352111.) (1:53 hours. 

:m~a 31 min,) 

, ·shape 125,738 m 16.9% 145 hrs, 5.2% 

(25,61401) 37 min. (7 hours. 54 min.) 

Largest gap 116,979 m 22.7% 142 hours, 6,9% 

(34.373 m) 55 min. (10 hours. 36 min.) 

Combined 105,091 m 30.6% 139 hours. 9,3% 

heuristic (46,261 m) 15 min. (14 hours. 16 min.) 

Optimal 99.349 m 34.4% 137 hours. 10.5 '3-0 
(52,003 m) 28 min. (16 hours. 3 min.) 

The results in table 3 have been obtained by extrapolation of the simulation 
results of 2 preferred storage zones to all 12 preferred storage zones in the bin 
storage area. It appears that even a simple heuristic such as S-shape or Largest gap 
yields a significant reduction in traveling distance, namely 16.9% and 22.7%, 
respectively. This magnitude of the reduction is mainly due to the change to two
sided picking. If the smarter Combined heuristic or an optimal algorithm is used, 
improvements of even 30.6% or 34.4%, respectively are obtainable. 

Even though the reduction in walking distance is significant, the improvement 
of the total pick time (which includes, besides traveling time, also picking time 
and administration time) is far less. This is due to the fact that a large part of the 



231 

non-travel time is spent on removing bins from the racks, waiting for a non
occupied computer terminal to confirm the picks and other administrative tasks. It 
is clear that further improvements are possible here. The result is that the saving in 
total pick time varies from 5.2% for S-shape up to 10.5% for the optimal 
algorithm. Assuming that a productive manday is on average 7 manhours, this 
leads to a reduction in personnel varying between 1.1 and 2.3 ftes. 

It is clear that the optimal algorithm has an advantage over the 3 other 
heuristics. In practice, there are however also some disadvantages. One such 
disadvantage is that the algorithm is more complex than the other ones. It has to 
be implemented in the core part of the Warehouse Management System, which is 
not an easy task. Also, the optimal algorithm is not very easily adaptable. For 
example, if the layout of a preferred storage zone would be changed from 2 to 3 
adjacent blocks, the algorithm is not usable anymore and not easily adaptable 
either. Another disadvantage of the optimal algorithm is, that the sequence of the 
locations on the picklist is not always straightforward to a picker: it does not work 
block for block and also backtracking to previously skipped aisles is possible. 
Also, the picker has freedom in deciding via which aisle head he moves to a 
neighboring aisle. This could lead to longer walking times than expected. The 
heuristics do not have these disadvantages, or to a less extent. 

From the simulation results it appears that the Combined heuristic has very 
good performance, but that the routing is much less complicated, than that of the 
optimal algorithm. Therefore, the management of De Bijenkorf decided to 
implement the Combined heuristic for routing the order pickers. 

3.7.2 Batching results 

In total, 4 different batching strategies have been compared with the current 
method, in which no batching takes place. Since the batched orders are to be 
sorted by order during the picking process (,sort-while-pick'), it was also 
necessary to investigate how the pick bins could be stacked on the pick cart. The 
results for three different stack variants have been indicated in table 4. 

All stack variants depend on the design of the pick cart. Two pick carts have 
been sketched in figure 6. Pick cart type A has multiple levels. The pick bins are 
individually accessible by sliding them off the cart, which offers the possibility of 
picking a large number of orders at the same time. Pick cart B has only one level 
on which two bins can be placed next to each other. Other bins can be stacked on 
top of these two bins. 

Stack variants I and II both use a pick cart of type A. The difference is, that the 
pick cart for variant I has 6 layers with each 2 bins, which makes all bins 
individually accessible. In variant II only 8 bins are individually accessible from 4 
layers. The remaining 6 bins are stacked on top of each other on the top level (5th 
layer). For stack variant III, pick cart B is used. With this pick cart only 2 bins are 
directly accessible, since otherwise bins may have to be removed before a 
particular bin is accessible. Therefore, in stack variant III only two orders can be 
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collected simultaneously. The picker starts with two empty bins, one for each of 
the two orders. If a bin is full, another empty bin for the same order is stacked on 
top of it. Empty bins are available everywhere in the bin storage area. 

The advantage of batching variants using a pick cart of type A, is that a 
variable number of orders can be collected, as long as the pick bins needed for 
these orders fit on the cart. The disadvantage compared to pick cart B, where bins 
are stacked on top of each other is, that less bins can be picked in one route 
(assuming a maximum ergonomic stacking height). 

.... r -

J~ I 

~ 
..... ", '" 
U L 

I 

" .......... 

~:l 
",'-

411. 
-4 • --4 • 

Figure 6. Example of two different pick carts, type A (left) and type B (right). 

It should be noted that the extra activities in sorting out the picked items in the 
proper bin (for all variants) and retrieval of the proper bin from the cart (variants I 
and II) cost extra pick time compared to the current situation. The extra time per 
pick location is estimated at 4, 5 and 2 sec. for the three variants, respectively. 

From the simulation experiments, it appeared that good results can be obtained 
with a time-savings-based batching strategy. This strategy can be implemented 
relatively easy. Also seed algorithms for batching have been implemented, but 
these did not yield better performance (not even with an extended local 2-0PT 
optimization procedure). Only the Combined routing heuristic was applied since 
this was the routing method preferred by the management of the Bijenkorf. The 
results can be found in table 4. 

Although the difference in total average daily walking distance between the 
three stacking variants is substantial (distance reductions varying between 57 % 
and 68%), due to the difference in pick time, the difference in the total order pick 
time is moderate. In practice, variant III, with sortation of only two orders, is the 
simplest to the order pickers, with the least possibility (of the three) to make 
mistakes: sorting the picked items for the wrong order. The savings in total pick 
time mount up to about 19%, which is about 4.2 pickers, based on an effective 7 
hours per picker per day. 
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After the Combined routing algorithm has been implemented, De Bijenkorf 
will implement the time savings batching heuristic (using the Combined routing 
algorithm) with stack variant III . 

Table 4. Average walking distance and total order pick time with order batching and three 
different stacking methods in the bin storage area. 

: .heragc t1ail~ [)itTer~Uf~ "ilh Tutal ;I\cragl' DitTerclicc "ilh 

,~ Stark, ariant traHI t1ishutrc ClIlTl' lIt dail~ pil'ktimc current method 

in bin storage methud (1:;3 hours. 

IIrea (151.352 m.) 31 mill.) 

VariantI (12 bins) 54,196 m 64.2% 123 hours, 19.2% 

(97.156 m) 58 min. 

Variant II (14 bins, 48,571 m 67.9% 124 hours, 18.9% 

max. 8 orders) (102,781 m) 31 min. 

Variant III (14 bins, 64,825 m 57.2% 124 hours, 18.9% 

max. 2 orders) (86.527 m) 32 min. 

4. Conclusions 

In this study, it has been shown that substantial savings in a warehouse can be 
achieved by making the order pick process more efficient. In the bin storage area 
of De Bijenkorf the travel distances could be reduced by 30% and the number of 
pickers by 1.2, by application. of a relatively simple routing heuristic. This 
improvement is to a large extent due to the fact that order pickers currently follow 
the location numbering, which results in single-sided picking. The introduction of 
a simple heuristic and corresponding double-sided picking gives a significant 
improvement. An optimal algorithm for routing was not considered necessary by 
the management of De Bijenkorf, since travel time improvement was only 3,8% 
higher than that of the best heuristic. Furthermore, confusion for the order pickers 
might increase when introducing an optimal routing method. This is due less 
intuitive routing. 

If orders are batched as well, with a time-savings method and the combined 
routing heuristic, even stronger savings can be achieved, about 68% reduction of 
travel distance and a saving of 3 to 4 pickers. Better results may even be possible 
by developing new batching methods based on their analog to the vehicle routing 
problem. 

Besides the above savings, more is probably achievable, by properly looking at 
reduction of administration time per order. For example, by using barcodes and 
scanners in the pick process. This would also eliminate the order confirmation 
process. 
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Abstract. Distributing material Hows among the workstations of a plant is a cru
cial problem in order to reduce both production and logistics costs, especially when 
product mix and volume production are very large. Optimal solutions should meet 
due dates requirements while assigning operations in accordance to the production 
capacity available at the moment. Pursuing this objective is however complicated 
in case of a large product mix, due to the possibly large number of machine set-ups 
required. This paper deals with a real production process consisting in the assembly 
of micropumps and dispensers carried out by a major international manufacturer 
in its plants in Centre Italy. Two articulated methods based on column generation 
are devised for tackling situations of different size and complexity, and a sample of 
their potential effectiveness is exhibited. 

Keywords: Material Flow Distribution, Scheduling, Column Generation. 

1 Introduction 

1.1 The application 

This study addresses problems of material flow distribution and scheduling 
in a real assembly plant characterized by high-volume production and wide 
product range. The plant, situated in Centre Italy and owned by an inter
national corporate based in the U.S., assembles atomizing micropumps and 
dispensers with a catalog of about 30,000 different items. A micropump con
sists of 4 basic components: the group, the pump, the tube and the distributor. 
Micropumps (dispensers) differ from each other by component quality (ma
terial, color, precision, etc.), process details (screw down or clung assembly), 
number of operations needed, and custom part size. The production volume 
is around 500,000 ppd (pieces per day). 

The plant operates a mixed-model production with roughly 2,500 prod
uct families out of the 30,000 part types (in fact, many components differ 
from each other by non-functional features such as the color). About 120 
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automated machines purchased in distinct periods and therefore of different 
performance, capabilities and speed, are employed for the assembly opera
tions. According to cellular manufacturing, these machines are grouped into 
4 stages, one for each assembly phase. The machines of each stage can be 
suitably tooled to execute different operation types; however, machines are 
not provided with tool magazines, and tooling is performed manually before 
beginning a new operation type. 

Micropumps and dispensers differ in the component specifications, but not 
in the basic assembly process: this in fact roughly refers to the same simple 
plan - with only 4 assembly operations - for all items. Some items may require 
additional operation, but these are irrelevant to the planning strategy, and 
are therefore not considered in the model. On the other hand, some standard 
components are produced upon a previous estimation of the requirements, 
and are therefore always available: as a consequence, some items may not 
require all the operations. 

Production is scheduled on the basis of client orders. A client order con
sists of one or more batches (each with a possibly distinct due date), and 
a batch is generally formed from 10,000 up to 100,000 pieces of the same 
item packed into cardboard boxes (cartons) of about 10,000 pieces each. The 
presence of long jobs makes job preemption now and then tolerated. 

Different schedules entail different costs. In our study, we considered the 
total cost as formed by production and logistics costs. The former are basically 
related to machine utilization, manpower and, less important (considered the 
low value added per part produced), product lead times. Though detailed 
scheduling does not influence production costs as dramatically as machine 
set-up (varying in a typical range of 1 +- 20 hours) and loading, respecting 
due dates as long as possible is on the other hand essential in view of both i) 
the impact on logistics and ii) the importance attributed to client satisfaction 
and production flexibility. Thus, in this paper we will mainly focus on 

• machine loading with the objective of set-up minimization; 
• operation scheduling with due date related objectives. 

In order to address these problems, we propose two methods based on 
column generation [4], [7] and report an initial test based on real instances. 

1.2 The approach 

At present, machine loading and operation scheduling are concurrently done 
with the help of OPENPLAN@, a software tool that heuristically assigns 
resources to jobs according to a (manually weighted) combination of several 
dispatching rules, including: earliest due date (EDD), shortest processing 
time (SPT), first available machine, current workload balancing, etc. The 
software is integrated with the plant information system, retrieves from it all 
the necessary data on machine status, machine availability and so on, and 
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returns a job scheduling proposal. The main advantage of OPENPLAN© 
is that it allows a single operator to output an activity plan within about 
half an hour, a negligible period of time if compared to the previous manual 
practice requiring several employees for several hours per plan. 

One drawback of the present approach to production scheduling is the 
short-sightness of online dispatching that leads to sub-optimal solutions with 
no guarantee of approximation. Furthermore, the system model suffers in 
various aspects from a lack of information. In fact, though machine tooling 
entails a relevant usage of time and human resources for set-up, this issue is 
not considered at all by OPENPLAN©. 

In order to cover the set-up issue and to improve the scheduling quality, we 
adopted a decomposition approach and split the global scheduling problem 
into i) routing and ii) detailed operation scheduling. 

The two approaches proposed in the following differ in the level where 
the decomposition applies and, as a consequence of that, in accuracy and 
complexity. 

In the first approach (Section 2) we set this level at the assignment of 
operation families to machines: first, solving a large (integer) linear program 
by column generation, the families are assigned to the machines with the aim 
of minimizing the number of set-ups; then the production capacity assigned 
to each family is scheduled accounting for the due date of each job. 

In the second approach (Section 3) we directly assign jobs instead of 
operation families. Again, machines are loaded after solving a large integer 
program by column generation. In this case, however, the cost of each col
umn is not the number of set-ups, but the cost of the best schedule of the 
jobs assigned to the machine. Thus, separating a column means in this case 
solving a one-machine scheduling problem with set-up and a due date related 
objective. 

The first approach is easier than the second: since we load families instead 
of jobs, the linear program has in fact less rows, and there exists a polynomial 
separation oracle; and since families are a priori scheduled without interrup
tion, job scheduling does not involve set-up times. In our application, this 
approach is suitable for tackling the production of micropumps, which is 
characterized by a very large number of jobs to schedule within the planning 
horizon. The second approach, more accurate than the first, has on the other 
hand been specifically designed for managing the production of dispenser, 
which involves a smaller number of jobs and machines but where, for market 
reasons, client satisfaction is at the moment more critical. 

1.3 Literature 

There is a wide literature on routing and scheduling problems in manufac
turing systems: we therefore quote here only the contributions that, in our 
opinion, appear relevant to the approach here discussed. 
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The first-Ioad-then-schedule approach to prerelease planning is introduced 
by Stecke [11 J: according to this method, after a check on material availability, 
an order selection phase is activated with the aim of forming batches for pro
duction; then, depending on batch sizes and production types, system set-up 
is performed providing machines with tools and parts with fixtures; finally, 
parts are sequenced into the system accounting for job due dates. A common 
suggestion to approach prerelease planning is to divide it into order selection 
and loading: order selection means choosing the orders (characterized by part 
type, demand and due date) to process, and therefore deciding which jobs 
must share the production capacity in the next planning horizon; loading 
means assigning tools and resources to the machines in order to manufacture 
the products required. A slightly different terminology is now and then intro
duced: in particular, the term part routing is generally referred to material 
flow distribution when machine tooling is irrelevant or determined off-line; in 
these cases, loading is simply used to indicate operation assignment. 

Loading and routing problems have been addressed by many authors. 

Kuhn [6J formulates a model that has in input the required operations 
and the available resources (tools, machines) with the related attributes -
processing times and resource demand for the operations, tool magazine ca
pacities and tool sizes for the resources. The objective is to concurrently 
assign tools and operations to machines in such a way as to minimize the 
greatest workload assigned to any machine. This approach is, however, not 
appropriate to our situation, because we do not have flexibility in machine 
tooling. 

Balancing the workloads through operation assignment is the subject of 
[2J: the authors propose a methodology to route operations to machines when 
the former are bound to precedence constraints: a routing is here interpreted 
as a convex combination of semi-assignment, and this interpretation leads to 
nice combinatorial properties of solutions. This approach is further developed 
by Agnetis [1 J with special reference to assembly systems; a characteristic of 
this paper, which is particularly relevant to us, is the column generation 
based solution method proposed for the routing problem. Both papers focus 
on the problem of minimizing part transfers: this aspect, particularly impor
tant when dealing with complicated assembly plans and whenever cellular 
manufacturing is not adopted, is, however, not crucial in our situation. On 
the other hand, they (and Kuhn's paper either) do not address operation 
sched uling, whereas this is one of the main concerns of our application. 

Instead of adopting like [lJ and [2J a (multicommodity) flow model for the 
routing phase, and in view of an assembly plan structure and a system layout 
allowing for a straightforward decomposition, we prefer to combinatorialize 
machine loading and develop a column generation method where, similarly 
to [1], columns are associated with distinct ways of assigning operations to 
machines. The main difference to the quoted approach is that in our case the 
cost of a column does not depend on part movements, but rather on machine 
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set-up, in one case, or, on the solution of a complex scheduling problem in 
the other case. 

2 The first approach 

2.1 The routing problem 

In the following, we refer to the production of a particular order as a job. 
Due to the system layout and the simple assembly plan, the routing phase 
is approached as the iteration of four distinct assignment steps. These steps 
are performed in a pull manner from the final stage (tube assembly) back to 
the initial ones (group and distributor assembly), having the job due dates as 
initial problem input, and reflecting back the release times obtained at each 
step as due dates for the previous stage. 

Let us focus on a single assignment step at a given stage. We face a set of 
assembly operations () to be performed on a set of parallel unrelated machines 
M [8]. We can partition () into families 4)1, ••• , 4)n so that operations of the 
same family require the same tool(s). A straightforward approach to the 
routing phase is then to assign a fraction Xhj of each operation family 4)h to 
each machine Mj in M with the objective of minimizing the total number of 
tool set-ups (clearly, variables Xhj are defined only for those pairs (h,j) such 
that M j can execute 4)h). Denote as Phj the total processing time of family 
4)h on machine M j , and as OJ the residual capacity of M j evaluated along the 
current planning horizon. The routing problem can then be formulated as a 
sort of plant location problem as follows: 

subject to: 

n 

min L L Chj Zhj 
x,z 

h=lM;EM 

LPhjXhj ::;: OJ VMj EM 
Wh 

L Xhj = 1 V4)h 

M;EM 

Xhj ::;: Zhj VMj E M, V4)h 

Xhj ;::: 0, Zhj E {O, I} 

(1) 

(2) 

(3) 

(4) 

(5) 

where Chj denotes the cost (man-hour) of preparing Mj for the production 
of family 4) h . 

According to constraint (4), in an optimal solution binary variable Zhj is 
set to 1 if and only if family 4)h is loaded onto machine M j : thus each Zhj 

accounts for exactly one set-up. Constraint (2) models the available produc
tion capacity of machine M j • Constraint (3) defines Xhj as a fraction of the 
whole work required to finish the operations of family 4)h. 
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Problem (1)-(5) can be solved rather efficiently by standard packages 
up to roughly 1,200 0-1 variables (corresponding to, say, 40 families and 
30 machines). However, since in our application the number of families and 
machines can entail a very large number (rv 200, 000) of such variables, we 
here consider an alternative, more effective formulation based on column 
generation. According to that, let us define the loading mode of a machine as 
follows: 

Definition 1. The loading mode of a machine is a non-negative n-vector 
q = (ql,'" ,qn), where qh denotes the fraction of family ~h that must be 
loaded on that machine if mode q is chosen. 

Each loading mode can be associated with any machine M j , provided 
that M j can execute all the operations of the families ~h for which qh > O. 
Notice that for any loading mode q the total number s of set-ups required is 
univoquely determined and equals the number of non-zero entries of q (the 
cost of these set-ups can be associated with q in a similar way). 

Denote now as Q (as s) the set of feasible loading modes (of the corre
sponding set-ups or set-up costs); let also mh be the number of machines 
available for the execution of the operations of family ~h, and h be the set 
of indices i such that the i-th loading mode has a strictly positive h-th entry. 
The routing problem can then be reformulated as: 

subject to: 

minsx 
x 

Qx=1 

LXi ~ mh, V~h 

x ~ 0, integer 

(6) 

(7) 

Variable Xi equals the number of machines that are loaded according to 
the i-th loading mode. The equality constraints require that each family is 
loaded onto some machine. The remaining nontrivial inequalities impose that 
the machines loaded with family ~h are no more than those really available. 

Due to the very large number of feasible loading modes, problem (6)-(7) 
is solved via column generation. For simplicity of presentation, let us describe 
the separation oracle under the assumption of machines with identical capa
bilities (mh = m) and with the objective of minimizing the set-up number. 

Let Q ;2 Q E Rnxp, s ;2 S E RP, and x ;2 x E RP; let also x* be an 
optimal solution of the linear relaxation 

min{sx: Qx = 1, LXi ~ m,x ~ o} (8) 
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of the current primal problem. Denoting by (y*, >'*) E Rn+l an optimal dual 
solution of this linear program, a sufficient condition to improve the current 
primal basis is the existence of a loading mode q* with s(q*) set-ups and a 
machine M j E M such that 

y*q* + >'* > s(q*) (9) 
n 

Such a loading mode can be generated in polynomial time by solving at 
most n linear knapsack problems, corresponding to the values attained by 
s(q*) (Le., to the number of non-zero components of q*) in {1, ... , n}. 

2.2 The scheduling problem 

Once the routing has been determined, the scheduling problem consists of 
i) assigning the jobs to the production capacities that, after the routing 
phase, have been dedicated to operation families on each machine, and ii) 
determining the sequence in which these jobs have to be processed. 

We formulate this problem as a weighted stable set problem on a partic
ular multipartite graph. Let us recall that, if G(V, E) is an undirected graph, 
where V is the set of vertices and E the set of edges, a stable set in G is 
a subset of pairwise non-adjacent vertices of G [5]. The Maximum Weighted 
Stable Set problem consists of finding a stable set in G of maximum weight. 

After the routing, for each family tPh and machine M j a time interval 
Whj is specified that individuates the capacity of M j devoted to operations 
of type tPh. Define then a schedule oftPh any non-preemptive schedule of the 
time intervals {Whj : M j EM} on the available machines. 

Let now 8h be a class offeasible schedules of tPh, 1 ~ h ~ n. Two schedules 
of the same class are mutually incompatible, and so are two schedules of 
different classes 8h, 8k requiring the same machine in some time instant. Let 
us give each schedule 0" E 8 h a weight c(O") corresponding to the cost of the 
best detailed schedule of the jobs of tPh within the time windows of 0" (a cost 
like Lmax can for instance be easily computed in case of job preemption with 
a modification of Bruno and Gonzales' algorithm; though in general NP-hard 
for due date related objectives and m ~ 2, the non-preemptive problem can 
be solved rather effectively in most practical cases, see e.g. [8]). Then, an 
optimum schedule of the jobs of all families corresponds to a maximal stable 
set of minimum weight in the compatibility graph defined on 81 U ... U 8n . 

Summarizing, the scheduling problem is tackled in three subsequent steps: 

1) enumerate a large enough class of family schedules for each tPh; 
2) within each family schedule, find an optimum detailed job schedule re

specting due dates as far as possible; 
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3) find and patch together a maximal set of compatible job schedules, one 
per family, having minimum total cost. 

Note that, since families are processed continuously, machine set-ups are 
taken into account once for all at step 1 by including each of them into the 
relevant family schedule. 

3 The second approach 

In the following, we describe a second, integrated approach to job distribution 
and sequencing. The approach is based on a set-partitioning master formula
tion which defines the feasible ways of loading the available machines. Since 
in our case, as already observed in Section 2, the shop floor is decomposable 
into stages whose mutual dependence is managed through a pull strategy, 
and since each stage consists of parallel machines which are visited by each 
job only once, it follows that each machine of the stage can be scheduled 
independently from each on the other. Where scheduling costs are additive, 
this implies that cost minimization can be obtained by solving a large set 
partitioning problem in which columns, corresponding to machine schedules, 
are iteratively generated by dual pricing. Unlike the previous, this kind of 
decomposition does not affect in principle global optimality (apart from con
sideration on the size and complexity of set partitioning and separation). 
It actually entails the separate solution of two types of problems: a linear 
(integer) program to compute both primal solutions, corresponding to ma
chine loading, and dual solutions, used in the pricing step; and a scheduling 
problem with set-up and a due date related objective, used in the column 
generation step. These problems are separately considered in the following. 

3.1 The routing problem 

Let J denote a set of n jobs to be executed within due dates dl ::; d2 ::; ... ::; 
dn , and M I , ... ,Mm be the available machines of the stage considered. For 
any machine Mk, let also Jk ~ J denote the set of jobs that Mk can execute. 
In a context in which jobs are individually loaded onto machines, the notion 
of loading mode given in Section 2.1 needs to be re-defined as follows: 

Definition 2. A loading mode is a 0-1 n-vector w = wk associated with a 
particular machine Mk with Wj = 1 if and only if job j E Jk is loaded onto 
M k • 

Let A denote a set of feasible loading modes, and denote by W, E two 0-1 
matrices with n (respectively, m) rows and IAI columns: similarly to Section 
2.1, the i-th column of W corresponds to the i-th loading mode of A; and 
if such a mode is associated with machine M k , then the i-th column of E is 
the k-th unit m-vector. Let also Xi be a 0-1 variable which is set to 1 if and 
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only if the i-th loading mode of A, say w, is chosen to load the corresponding 
machine, say M k , and denote by Ci the cost of the best schedule of jobs 
{j E Jk : Wj > O} onto Mk (we will define such a cost later, according 
to usual due date related objectives). Suppose that the costs associated to 
schedules on distinct machines are additive. Then, an optimal distribution 
of jobs to machines is identified by an optimal solution of the following 0-1 
linear program: 

subject to: 

mincx 
x 

Wx=l 

Ex:':::: 1 

x ;::: 0, integer 

(10) 

The first set of constraints ensures that each job is executed by some 
machine; the second, that each machine is loaded according to a single mode. 

It remains to describe how to compute matrix Wand cost vector c. On 
account of the huge the number of distinct loading modes very large, this is 
in turn done by means of column generation. 

3.2 The scheduling problem 

Generating a column of problem (10) corresponds to solving a scheduling 
problem on some available machine. This problem consists of choosing 

1) a machine Mk among those available in the stage; 
2) a subset of jobs in Jk; 
3) a sequence in which these jobs have to be executed on Mk. 

The above decisions should be made concurrently. The aim is to minimize 
a suitable function that, as required in Section 3.1, expresses a scheduling cost 
which is additive with respect to machines. Costs of this type are modeled by 
classical due date related objectives such as U (the number of tardy jobs) or 
L (the total lateness of jobs) - notice however that not all due date related 
objectives fulfil the additivity requirement: for instance, Lmax (the maximum 
lateness of a job) does not. 

Let c, [':J denote the current input of the master problem (10), and 
indicate by [y*, z*] an optimal dual solution of the corresponding linear re
laxation. In general z* ;::: 0, whereas y* can have positive as well as negative 
components. In particular, zZ > 0 (zZ = 0) indicates that Mk is already (may 
not be) loaded, and therefore it may not (it may) be advisable generating a 
loading mode for it. Similarly, yj > 0 (yj :.:::: 0) indicates that job j may (may 
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not) be considered in the loading mode as a candidate to enter the basis at 
the next pivot. 

A column is then obtained by finding an optimal solution of the following 
I-machine scheduling problem: 

Problem 1. For any sequence a[ of a set of jobs I ~ J, let c(a[) denote a due 
date related scheduling cost additive with respect to machines. Given 

• a set Jk of q jobs with due dates d1 , ... , dq , prices yt, ... , y;, sequence
dependent processing times Pij, (i, j) E Jf, 

• a machine Mk with total capacity fh 

choose and schedule on Mk a job set X ~ Jk so that Cmax ~ Ok, and the 
following 

is minimized. 

~(X,ax) = c(ax) - Lyj 
jEX 

Notice that if c(.) is regular, considering the jobs j E Jk with yj ~ 0 as 
candidates to be sequenced is not necessary. 

Problem 1 is in general difficult (see for instance [12)). However, the fol
lowing theorem holds: 

Theorem 1. Problem 1 admits a polynomial-time algorithm when Pij = 1 
for all (i, j) E Jf. 

Proof. In fact, one can formulate the problem as that of assigning unit jobs 
to time slots. One has: 

subject to: 

9k 

max L L CjtXjt 

jEJk t=l 

LXjt~1 l~t~Ok 
jEJk 

Xjt ;:: 0 j E Jk, 1 ~ t ~ Ok 

(11) 

where Xjt = 1 if and only if job j is assigned to time t, and, if for instance we 
assume c(.) to be the total lateness of the jobs scheduled, Cjt = yj - (t - d j ) 

for t > d j and Cjt = yj otherwise. 

From formulation (11) it follows that Problem 1 can be solved efficiently 
if job preemption is allowed, provided that processing times are sequence
independent and set-up times negligible. 



245 

In its more general version, Problem 1 can be viewed as a particular stable 
set problem (though formulated on a graph of pseudo-polynomial size). In 
fact, non-unit processing times can be managed through disjunctions of the 
type 

Xit + Xj,t+Pij+1 ::; 1 (i,j) Eft, 1::; t ::; Ok - Pij - 1 (12) 

Schutten et al. [10] gave a branch & bound method for 1lrj, silLmax (see 
[8] for the notation), a simplified version of Problem 1 with a non-additive 
objective. This method can be used to solve instances with up to 40 jobs to 
optimality. However, since a method of this kind is clearly unpractical within 
a column generation scheme, we resort to heuristics: we first sort 1= {j E 

Jk : yO; > O} by non-decreasing yjj then select the first i jobs of I (1 ::; 
k ::; III) and try to schedule them on Mk using a trivial sequence improved 
by some steps of local search. The gap between the schedule found and the 
optimum is evaluated using the linear relaxation of (11)-(12). This practice 
makes the optimum value of the master problem be an overestimate of the 
optimum scheduling cost: to get a further improvement, one can, however, 
try to reschedule afterwards the jobs assigned to each machine applying a 
more accurate algorithm. 

3.3 An example 

To illustrate the method, let us give a short example of application elaborated 
on the basis of real data and referring to a single stage with m = 5 machines. 
In this example, J contains 18 jobs available from time to = 12/03/98 h20:00. 
In Table 1, jobs due dates are indicated together with family specification. 
The machines speed and eligibility are specified in Table 2. The time needed 
to set-up a new family is 15 hours. 

We initialize the method by generating one column for each available ma
chine. Each column represents an assignment of some jobs to that machine. 
Jobs are initially loaded on the sole basis of machine eligibility. In this ex
ample, we set for simplicity Ok = 00: thus, the cost of a column equals the 
value of a (possibly) optimal schedule of 1lrj, Sij I E Uj . The feasibility of the 
resulting integer LP (which contains equality constraints) is guaranteed by 
adding suitable non-redundant columns. To distinguish between columns as
sociated to the same machine we use the notation <machine id.>-<loading 
mode>. 

The initial matrix [':] has 23 rows and 7 columns. The LP optimum 
selects columns 0902-0,0903-0,0904-1,0906-1, with respective loading modes 
{003, 004, 008, 009, 010, 013 ,014, 015, 016, 018}, {007, 012, 017 }, {002 , 
005 , 006, 011}, {00l} This solution entails 8 tardy jobs and one machine 
idle. Its positive dual variables are Y4 = 1, Ys = 7. 

The latter values trigger the separation heuristic procedure. In general, 
we pick machine M k • The jobs of Jk with yj > 0 are then divided by family, 
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job family # items due date 
001 8009 72,100 12/05/98 h8.00 
002 8001 52,328 12/16/98 h8.00 
003 8004 25,750 12/06/98 h8.00 
004 8004 900 12/07/98 h8.00 
005 8001 6,541 12/13/98 h8.00 
006 8001 10,902 12/17/98 h8.00 
007 8010 5,452 12/16/98 h8.00 
008 8007 12,75012/09/98 h8.00 
009 8007 12,75012/09/98 h8.00 
010 8007 10,200 12/09/98 h8.00 
011 8001 10,902 12/08/98 h8.00 
012 8010 13,519 11/21/98 h8.00 
013 8002 51,912 12/05/98 h8.00 
014 8002 51,912 12/05/98 h8.00 
015 8007 51,000 12/09/98 h8.00 
016 8007 103,824 12/09/98 h8.00 
017 8010 10,383 12/23/98 h8.00 
018 8003 54,075 12/19/98 h8.00 

Table 1. Data for the jobs (example). 

and families are ordered according to the due date of the earliest job. Then 
we pick the first family, and adopt within it an EDD sequence until the due 
date of some job of another family is violated. At this point, we evaluate 
the set-up time incurred with a family swap and, if convenient, repeat the 
procedure starting with the new family. 

The column generated in this way could however not enter the basis for 
feasibility reasons due to the equality constraints; thus, we generate new 
columns obtained by deleting the jobs that each column of W shares with 
the entering column. Since we do not allow column duplication, the original 
columns are at most doubled. 

In the case on hand we have however only 2 jobs, namely 004 E 8004 and 
008 E 8007, with yj > O. The eligible machines are 0902, 0904, 0913 (with 
Jk = {004, 008}) and 0906 (with Jk = {008}). So we globally add 4 columns 
(one per machine), plus other seven to grant feasibility. The LP has now 18 
columns and yields an optimum solution with basis 0902-2, 0903-0, 0904-1, 
0906-1, 0913-3, and respective loading modes {013, 014, 018}, {007, 012, 017}, 
{002, 005,006, Oll}, {001}, {003, 004, 008, 009,010,015, 016}. This solution 
entails 2 tardy jobs and no machine idle (see the first schedule of Figure 
3: tardy jobs are dotted, and set-ups are striped). Its positive dual variables 
are yi = 2, Ys = 6, yia = l. 

Going on in this manner, we generate 15 new columns by pricing, plus 17 
to grant feasibility. The primal solution of the resulting LP selects a basis in 
which the machine loads are modified as follows: 0902-9, with loading mode 



247 

{013,014}; 0906-7, with loading mode {001,008,009,01O,015,018}; 0913-8, 
with loading mode {003, 004, 016}. This solution produces a schedule with 
only one tardy job (see the second schedule of Figure 3). The only positive 
dual variable is now yh = 1. A new pricing phase generates 6 new columns 
plus 15 needed for feasibility. The LP has now 69 columns and yields an 
optimal basis with the schedule represented in the third diagram of Figure 
3. The final result has no tardy jobs. 

903-+~12~~~~1~7-L ______________________________________________ __ 

904 11 5 2 6 

906,-+ ________ ~ ______ ~ ________________________________________ __ 

902 13 : : ~ , ~ : ~ ~1~~:~:~:~: 

903 12 7 17 

904- 11 5 2 6 

906 8 9 10 15 18 

913 3 16 

";-1' 

902 13 

903 12 17 

904- 14- 11 5 2 6 

906 8 9 10 15 18 

913 3 16 

..;-" 

Fig. 1. Three schedules generated from the data set of the example. 

4 A small computational test 

The approach described in Sections 3.1, 3.2 can be used either to find a good 
formulation through repeated column generation, or within a branch & price 
scheme (see e.g. [3], [9]). In the former case a single 0-1 linear program with 
enough columns (the root problem) is determined after several LP pivots, 
and then is solved by branch & bound using XPRESS MP Version 10.33. In 
the latter a branching scheme is devised, and distinct problems - generated 
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by dual pricing at each branching node - are used to obtain bounds at these 
nodes. 

The experience here reported deals with the production of dispensers. 
Here, the former method appeared sufficient to solve the instances coming 
from the plant. 

The scheduling problem is heuristically solved using the bounds provided 
by formulation (11) to evaluate the solution quality. In general, after few 
iterations we either end up with a dual solution having all y entries ~ 0 
or reach the maximum number of columns allowed (in this experience, we 
set this number to 4,000). At this point, we start branch & bound. Table 3 
summarizes the results of the computation in a few real instances from various 
assembly stages with 41...;- 313 jobs (cpu times are expressed in seconds) and 
3 ...;- 13 machines. 

Problem jobs machines columns cpu LP branches cpu tardy 
id. generated time optimum time jobs 

PI 41 3 44 0 0 1 0 0 
P2 87 11 77 5 2 1 1 2 = 2.30% 
Pa 101 9 1,569 342 5 1 0 5 =4.95% 
P4 313 13 3,006 904 16.5 11 2 17= 5.43% 

Table 2. Computational sample. 

The tests were executed with a very naYve release of the code. We expect 
that the performance of both the separation oracle and the column addition 
procedure can be definitely improved by a smarter implementation. In any 
case, we point out the very good performance of the final formulation ob
tained, for which XPRESS MP is able to find an integer solution within a 
negligible time span. 

5 Conclusions 

In this paper we propose two approaches based on column generation for the 
solution of a loading and scheduling problem arising in a plant devoted to the 
assembly of micropumps and dispensers. The first approach is suitable for mi
cropumps assembly. This problem entails, in fact, a huge number of decision 
variables and therefore requires a problem decomposition into routing and 
sched uling. The second approach has on the other hand been specialized for 
the dispensers assembly, which involves a smaller number of parameters. A 
preliminary computational experience on the second method gives evidence 
of the effectiveness of the approach for the real-life instances. At present, an 
extensive study is in progress, in order to embed both methods in the software 
tool OPENPLAN@ used as a decision support system by the company. 
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An Overview of Inventory Systems with 
Several Demand Classes 

Marcel J. Kleijnl and Rommert Dekker1 

1 Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, 
The Netherlands 

Abstract. In this chapter we discuss inventory systems where several de
mand classes may be distinguished. In particular, we focus on single-location 
inventory systems and we analyse the use of a so-called critical level pol
icy. With this policy some inventory is reserved for high-priority demand. A 
number of practical examples where several demand classes naturally arise 
are presented, and the implications and modelling of the critical level policy 
in distribution systems are discussed. Finally, an overview of the literature 
on inventory systems with several demand classes is given. 

Keywords. Inventory, demand classes, rationing, critical level 

1 Introduction 

Inventory systems often face customer demand for many different products. 
The demand characteristics may vary from product to product and there
fore an inventory manager will generally apply a customised policy for every 
product. However, in most cases, all customer demand for a single product 
is handled in a uniform way. Although the order sizes may vary greatly and 
some orders can be handled in a different way than others, each unit de
manded is considered equally important. In this chapter we will focus on the 
situation where this is not the case, i.e. demand for a single product may be 
classified into different levels of priority. In particular, we tackle the problem 
where some customers have a higher stockout cost and/or required minimum 
service level than others. Customer differentiation, i.e. distinguishing classes 
of customers and giving them different service, has not received much atten
tion in inventory control theory. The topic does not appear in several reviews 
on the area (e.g. Veinott (1966), Chikan (1990), Lee & Nahmias (1993) and 
Porteus (1990)). All listed papers consider one type of customers only, and 
thus all demand is assumed to be equal. Also in well-known books on logis
tics and inventory control (e.g. Ballou (1992) and Silver, Pyke & Peterson 
(1998)) the situation of different demand classes is not mentioned. 

M. G. Speranza et al. (eds.), New Trends in Distribution Logistics
© Springer-Verlag Berlin Heidelberg 1999
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We think that considering multiple demand classes in inventory control is 
an interesting extension of existing theory which has many practical appli
cations. In Section 2 we will list four examples of inventory systems where 
different demand classes with different stockout cost and/or required service 
levels arise naturally. Thereafter, a policy to efficiently handle different de
mand classes in inventory systems is introduced and its characteristics are 
discussed. The problem of determining the optimal policy parameters is dis
cussed in Section 4. Finally, we present an overview of the existing literature 
in Section 5 and summarise the contents of this chapter in the last section. 

2 Examples of multiple demand classes 

In this section we will discuss real-life examples1 where multiple demand 
classes for a single product arise naturally. 

Example 1: 
The first example deals with the inventory of so-called rotables in the airline 
industry. A rotable is a part of an aircraft that can be repaired after it 
breaks down. A major airline has founded an independent company to take 
care of the inventory of serviceable parts. This company now faces different 
types of demand for these serviceable parts. The most important are the 
requests of the major airline. There is a contractual agreement stating that 
in 95% of the times the company should supply a part within 24 hours. The 
company also has contractual agreements with other airlines, with similar 
service standards. Some airlines not having a contractual agreement with 
the company, the so-called 3rd parties, also request serviceable parts from 
time to time. In such a case, the company may decide to sell a part, to loan 
it, or to exchange it for an unserviceable (broken down) part. In all cases, 
the profit to the company will be different. The company wants to analyse 
the possibility of having some rules to decide whether or not to deliver a 
request from a 3rd party. So far, such decisions have been made based on 
the knowledge and experience of the inventory manager. An advantage of 
having a decision rule is that less experienced people can also do the job. 

Example 2: 
The second example occurs in a two-echelon inventory system where the 
highest echelon (say warehouse) faces demand both from customers and from 
lower echelon stocking points (say retailers). Such a situation may arise if 
the break quantity rule is applied, and large orders at the retailers are routed 
to the warehouse (Kleijn & Dekker (1998)). A stockout for customer demand 

1 We acknowledge Ruud Teunter and Mirjam Maatman for drawing our attention to 
Example 1. 
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at the warehouse will induce a large stockout cost, whereas a stockout for a 
retailer's replenishment order merely causes a delay in the replenishment lead 
time, which usually yields a much lower cost. Therefore, customer demand 
would normally be considered more important than retailer demand. This 
example is illustrated in Figure 2.1, where the factory faces demand both 
from customers and the warehouse. Note that the example can be extended 
to general multi-echelon inventory systems. A similar example was mentioned 
by Cohen, Kleindorfer & Lee (1988). They described a multi-echelon system 
where the retailer could place normal replenishment orders and, in case of 
a stockout, emergency orders at the warehouse. The latter type of orders 
would receive a higher priority at the warehouse. 

Figure 2.1: illustration of Example 2. 

high priority 

o 
FACTORY 

Example 3: 

large orders 

\:

ePlenishment 0 
orders 

WAREHOUSE 

low priority 

small orders o 
CUSTOMERS 

Consider again a two-echelon inventory system, consisting of a warehouse 
and a number of retailers. If the retailers are located in different countries, it 
may be desirable at the warehouse level to set different priorities for the re
tailers. For example, Belgian customers most surely have different needs and 
expectations than French, Finnish or African customers (Henaux & Semal 
(1998)). 

Example 4: 
The final example is related to the previous one, and occurs in spare parts 
inventory control where an item is used in several types of equipment of vary
ing degrees of criticality. Recently, a case study was done on the inventory 
control of slow moving spare parts in a large petrochemical plant (see Dekker, 
Kleijn & De Rooij (1998)). The management wanted to study the possibil
ity of having equipment criticality determine stock levels. Some equipment 
in a plant may be critical, while others may be almost redundant. Equip
ment criticality was defined as the importance of equipment for sustaining 
production in a safe and efficient way. In the petrochemical plant one could 
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distinguish between vital, essential and auxiliary equipment. Many similar 
parts were installed in equipment of different criticality and the cost of a 
stockout depends on the degree of criticality of the equipment in which the 
part was installed. Hence, the management wished to maintain different ser
vice levels for the same part. A related example is mentioned in Ha (1997b), 
where in an assemble-to-order system a common component is shared by sev
eral end-products which have different values to the firm. IT, for example, a 
component is used in both a coffee maker and a television set, then in case of 
low inventory priority will be given to the television set because it will result 
in a higher profit to the firm. 

Well-known related problems where inventory for a single product is lim
ited and different demand classes are distinguished are found in the health 
care and airline/hotel industry. In health care, for example, the demand for 
suitable kidneys generally exceeds its availability and therefore the limited 
number of suitable kidneys needs to be rationed. In the United States, among 
those recommended for kidney transplantation there appears to be explicit 
rationing based on race, sex, age, health condition and income (Greenberg 
(1991), Held (1988)). 

In the travel and leisure industry, which markets space such as seats on 
airline flights and rooms in hotels, the notion of mUltiple demand classes 
has long been recognised. Some customers are willing to pay more for a 
hotel room than others, and therefore it may be beneficial to refuse the 
request of a low-price customer in anticipation of a future request of a high
price customer. IT customers from the different classes arrive sequentially 
(first the customers who are willing to pay less) then the optimal policy 
can be represented as a set of protection levels, i.e. the minimum number of 
rooms reserved for future classes (Robinson (1995)). For traditional inventory 
systems with several demand classes a similar policy, which we shall refer to 
as a critical level policy, is often used. In the next section the use of this policy 
is motivated and its implications for the inventory system are analysed. 

3 The critical level policy 

In the literature on inventory systems with multiple demand classes, the 
problem of stock rationing is discussed in two different settings. First, a 
number of authors consider a periodic review situation (see Section 5), where 
all demand in a period is observed before a rationing decision has to be made. 
In this case the rationing decision is easy: satisfy demand from the highest 
priority class first, then from the one-but-highest priority class, and so on. 
We will consider the continuous review situation, where a rationing decision 
has to be made at the moment demand occurs. 
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There are many different ways of rationing inventory among different de
mand classes with varying stockout cost and/or service requirements. Per
haps the easiest way is the use of separate stockpiles for each demand class. In 
this way it is very easy to assign a different service level for each class. Also 
the implementation in practice is extremely easy. However, an important 
drawback of this method is the loss of economies of scale because no advan
tage is taken from the so-called portfolio effect (Eppen & Schrage (1981)). 
It is well-known that splitting up the customer demand process will lead to 
higher inventory cost due to an increasing variability of demand. Neverthe
less, this simple policy may outperform a policy where all demand classes 
are satisfied from a single stockpile. In this case, the highest required ser
vice level among the different classes will determine the total stock needed 
and thus the inventory cost. Although all demand is centralised and the de
mand variability is reduced, the service level may be unnecessarily high for 
many demand classes which may lead to a higher cost than in the separate 
stockpiles situation. 

The critical level policy is in essence a mixture of the above two extreme 
policies. It reserves part of the stock for high-priority demand. In a sys
tem with n demand classes and unit demand the policy operates as follows: 
demand from class j is satisfied from stock on hand if the inventory level 
exceeds the so-called critical level associated with class j. It is assumed that 
demand for the highest priority class is satisfied from stock on hand whenever 
possible, so we have n - 1 critical levels. If the demand classes are arranged 
such that class 1 represents the highest priority class, then the set of critical 
levels will be non-decreasing. If customers can order more than one unit at 
a time, there are different ways to operate the critical level policy. It may 
happen that prior to a demand from class j the inventory level exceeds the 
critical level for this class, but after issueing the customer order the inventory 
level will drop below the critical level. In that case, the inventory manager 
needs to decide whether to accept or refuse the order, or maybe to deliver it 
partially. In a backorder environment, the critical policy also' causes an op
erational problem with respect to the allocation of incoming replenishment 
orders. Clearly, whenever upon arrival of a replenishment order there is a 
backorder for a highest priority customer, it is optimal to use the incoming 
order to satisfy this backorder. Also, when the stock level exceeds the largest 
critical level (Le. the critical level of the lowest priority class), one should 
first use (if necessary) the incoming order to satisfy any outstanding backo
rders of the other classes, in order of priority, and then to replenish inventory. 
However, whenever upon arrival of a replenishment order there are both out
standing orders for one of the other demand classes and the inventory level 
does not exceed the largest critical level, we need to make an allocation de
cision. Either we satisfy a backorder or we increase the inventory level. In 
an inventory system with two demand classes, this implies that there are 
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basically two ways of allocating an incoming order in this situation: 

1. satisfy backorders for low-priority customers 

2. replenish inventory reserved for high-priority customers 

For exponentially distributed lead times, Ha (1997a) proved that method 
2 is optimal. However, in general this method has the disadvantage that 
the average backorder length for a low-priority customer may become too 
large. If method 1 is applied, then this backorder length is limited, at the 
expense of a lower service level for high-priority customers. In a lost sales 
environment, all the above complications are not relevant, because there are 
no backorders. Whenever a customer demand is not satisfied from stock it 
is lost, so any incoming replenishment order should be used to increase the 
inventory level. 

The critical level policy has a number of implications for the inventory 
cost and service levels. In general, the service level for the lowest priority 
customers will decrease and the service level for the highest priority demand 
class will increase. The effect on the average holding cost depends on the 
inventory policy used. For example, by applying a critical level policy in the 
context of a lot-for-lot policy with lost sales the average inventory holding 
cost will increase, whereas in a lost sales (8, Q) model the inventory holding 
cost will be reduced (see Dekker, Hill & Kleijn (1997) and Melchiors, Dekker 
& Kleijn (1998)). 

In general, a simple critical level policy is not optimal. An optimal policy 
would incorporate knowledge about the remaining lead time. For example, 
if it is known that a replenishment order will arrive within a small amount 
of time and the inventory level is below the critical level, it may not be op
timal to refuse a demand of a low-priority customer. The probability that 
a high-priority demand will occur before the replenishment order arrives is 
negligible, and thus the stockout cost for this low-priority customer will not 
be offset. In a continuous review setting, the optimality of a simple (lead 
time independent) critical level policy can only be proved for exponentially 
distributed lead times (Ha (1997a, 1997b)). However, instead of concentrat
ing on sophisticated policies, we will discuss the simple critical level policy, 
because it is easy for practitioners to understand and this facilitates the prac
tical implementation. We feel that this is a necessary requirement for any 
policy which is to be used in practice. In reality, an inventory manager can 
check the remaining lead time and he/she may decide to overrule the refusal 
of a low-priority customer demand. If the inventory manager can really im
prove the performance of the inventory policy by overruling the critical level 
policy, then he/she should be careful when setting a desired service level. If 
the required service level is e.g. 95% for a certain demand class, it may be 
more efficient to optimise the policy parameters for a slightly lower required 
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service level, and let the inventory manager increase the service to its desired 
level by (occasionally) overruling the inventory policy. 

4 Determining an optimal critical level policy 

In this section we briefly discuss the issue of determining an optimal critical 
level policy. If the critical level policy is applied within the framework of 
an existing inventory policy, then this policy is extended by a set of critical 
levels. As mentioned before, we have n - 1 critical levels if n is the number 
of demand classes, because demand from the highest priority class is always 
satisfied if possible. Consider, for example, an (s, Q) inventory model, where 
a replenishment order of size Q is placed whenever the inventory position 
reaches the reorder level s. With a critical level policy, this model is extended 
to a (c,s,Q) inventory model, where c:= (ct, ... ,Cn-l) denotes the set of 
critical levels. Demand from class j is satisfied from stock on hand if the 
inventory level exceeds the critical level Cj-l for this class. Given the set 
of critical levels and the other policy parameters, one needs to calculate the 
average inventory holding and shortage cost and/or the service level for both 
demand classes. 

A possible way to analyse an inventory system with multiple demand classes 
and a critical level policy is to model it as an inventory system with state
dependent demand. Given the critical levels one can determine the demand 
process for each level of inventory. Another approach to determine the op
erating characteristics of such an inventory system is to model the so-called 
hitting time of every critical level, Le. the time that the inventory level reaches 
the critical level. Given these hitting times, one can calculate (or approxi
mate) the expected holding and shortage cost and/or service levels. Observe 
that the backorder case is much more difficult to analyse than the lost sales 
situation. The increased complexity arises because there may be both out
standing backorders (for low-priority customers) and a positive inventory 
level (stock reserved for high-priority customers). 

After having derived an expression for the average cost and/or service level, 
one needs to determine the optimal policy parameters. To determine the 
optimal critical levels we may use enumeration over all relevant values, if the 
other parameter values are given. The set of relevant values for the critical 
levels depends on the inventory policy which is used. For example, for the 
(c, s, Q) policy described above, it is not worthwhile to consider critical levels 
exceeding s+Q. The introduction of a critical level policy may complicate the 
search for optimal values of the other parameters. For positive critical levels 
the demand process depends on the inventory level which may affect e.g. 
convexity properties. Thus, one should be cautious when applying standard 
optimisation procedures for the other parameters. Nevertheless, using the 
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optimal values of the parameters for the situation where no critical level 
policy is applied, and determining for these parameter values the best critical 
levels, it is always possible to find a critical level policy which is at least as 
good as the old policy. Observe that a system without applying a critical level 
policy is equivalent to a system with a critical level policy where Cj = -00 for 
all demand classes j. In a lost sales environment it suffices to set all critical 
levels at zero. 

The general approach to find an optimal critical level policy would be to 
develop new (approximate) expressions for the average inventory cost and 
service levels, and derive bounds and/or convexity results for the policy pa
rameters. So far in the literature on inventory models with multiple demand 
classes, the focus has been on the derivation of (approximate) expressions for 
the inventory cost and service levels. The problem of optimising the policy 
parameters has been addressed only by few authors. In the next section an 
overview of the existing literature on multiple demand classes and the critical 
level policy is presented. 

5 Literature review 

Veinott (1965) was the first to consider the problem of several demand classes 
in inventory systems. He analysed a periodic review inventory model with n 
demand classes and zero lead time, and introduced the concept of a critical 
level policy. Topkis (1968) proved the optimality of this policy both for the 
case of backordering and for the case of lost sales. He made the analysis easier 
by breaking down the period until the next ordering opportunity into a finite 
number of subintervals. In any given interval the optimal rationing policy is 
such that demand from a given class is satisfied from existing stock as long 
as there remains no unsatisfied demand from a higher class and the stock 
level does not drop below a certain critical level for that class. The critical 
levels are generally decreasing with the remaining time until the next ordering 
opportunity. Independent of Topkis (1968), Evans (1968) and Kaplan (1969) 
derived essentially the same results, but for two demand classes. 

A single period inventory model where demand occurs at the end of a period 
is presented by Nahmias & Demmy (1981) for two demand classes. This work 
was later generalised to multiple demand classes by Moon & Kang (1998). 
Nahmias & Demmy generalised their results to a multi-period model, with 
zero lead times and an (8, S) inventory policy, with policy parameters sat
isfying 0 < C < 8 < S. Atkins & Katircioglu (1995) analysed a periodic 
review inventory system with several demand classes, backordering and a 
fixed lead time, where for each class a minimum service level was required. 
For this model they presented a heuristic rationing policy. Cohen, Kleindor
fer & Lee (1988) also considered the problem of two demand classes, in the 
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setting of a periodic review (s, S) policy with lost sales. However, they did 
not use a critical level policy. At the end of every period the inventory is 
issued with priority such that stock is used to satisfy high-priority demand 
first, followed by low-priority demand. 

The first contribution considering multiple demand classes in a continuous 
review inventory model was made by Nahmias & Demmy (1981). Theyanal
ysed an (s, Q) inventory model with two demand classes, Poisson demand, 
backordering, a fixed lead time and a critical level policy, under the assump
tion that there is at most one outstanding order. This assumption implies 
that whenever a replenishment order is triggered, the net inventory and the 
inventory position are identical. Their main contribution was the derivation 
of approximate expressions for the fill rates. In their analysis they used the 
notion of the hitting time of the critical level. Conditioning on this hitting 
time, it is possible to derive approximate expressions for the cost and service 
levels. Dekker, Kleijn & De Rooij (1998) considered a lot-for-lot inventory 
model with the same characteristics, but without the assumption of at most 
one outstanding order. They discussed a case study on the inventory con
trol of slow moving spare parts in a large petrochemical plant, where parts 
were installed in equipment of different criticality. Their main result was the 
derivation of (approximate) expressions for the fill rates for both demand 
classes. The results of Nahmias & Demmy (1981) were generalised by Moon 
& Kang (1998). They considered an (s, Q) model with compound Poisson 
demand, and derived (approximate) expressions for the fill rates of the two 
demand classes. The model of Nahmias & Demmy (1981) is analysed in a 
lost sales context by Melchiors, Dekker & Kleijn (1998). 

Ha (1997a) discussed a lot-for-lot model with two demand classes, backo
rdering and exponentially distributed lead times, and showed that this model 
can be formulated as a queueing model. He showed that in this setting a crit
ical level policy is optimal, with the critical level decreasing in the number of 
backorders of the low-priority class. Moreover, he proved that it is optimal to 
increase the stock level when upon the arrival of a replenishment order there 
are backorders for low-priority customers and the inventory level is below the 
critical level. 

A critical level policy for two demand classes where the critical level de
pends on the remaining time until the next stock replenishment was discussed 
by Teunter & Klein Haneveld (1996). A so-called remaining time policy is 
characterised by a set of critical stocking times LI, L2 , ••• j if the remain
ing time until the next replenishment is at most L1 no items are reserved for 
high-priority customers, if the remaining time is between L1 and L1 + L2 then 
one item should be reserved, and so on. They first analyse a model which 
is the continuous equivalent of the periodic review models by Evans (1968) 
and Kaplan (1969). Teunter & Klein Haneveld also presented a continuous 
review (s, Q) model with nonnegative deterministic lead times. Under the as-
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sumption that an arriving replenishment order is large enough to satisfy all 
outstanding backorders for high-priority customers, they derived a method to 
find (near) optimal critical stocking times. They showed that such a remain
ing time policy outperforms a simple critical level policy where all critical 
levels are stationary. 

Ha (1997b) considered a single-item, make-to-stock production system with 
n demand classes, lost sales, Poisson demand and exponential production 
times. He modelled the system as an M/M/1/S queueing system and proved 
that a lot-for-Iot production policy and a critical level rationing policy is 
optimal. Moreover, the optimal policy is stationary. For two demand classes 
he presented expressions for the expected inventory level and the stockout 
probabilities. To determine the optimal policy he used an exhaustive search, 
and he used the assumption that the average cost is unimodal in the order
up-to level. Dekker, Hill & Kleijn (1997) analysed a similar system, with 
n demand classes, lost sales, Poisson demand and general distributed lead 
times. They modelled this system as an M / M / S / S queueing system to derive 
expressions for the average cost and service levels. It was shown by Nguyen 
(1991) that for exponential distributed lead times, a critical level policy is 
optimal in such a queueing system. Dekker, Hill & Kleijn (1997) have derived 
efficient algorithms to determine the optimal critical level, order-up-to level 
policy, both for systems with and without service level restrictions. Moreover, 
they presented a fast heuristic approach for the model without service level 
restrictions. In this model, the different demand classes are characterised by 
different unit lost sales costs. 

The only contribution assuming deterministic demand was recently made 
by Moon & Kang (1998). They considered a single period model with n 
demand classes, lost sales and continuous review, and introduced the no
tion of rationing trigger times. Instead of having critical stock levels, there 
are critical times after which demand from certain classes will no longer be 
. satisfied. 

To conclude this section, we categorised the literature based on the fol
lowing characteristics: periodic or continuous review, 2 or n demand classes. 
This categorisation is presented in Table 5.1. It is interesting to note that 
all contributions considering n demand classes and continuous review assume 
lost sales. 

6 Summary and conclusions 

In this chapter we discussed inventory systems where multiple classes of de
mand may be distinguished. A number of practical examples where multiple 
demand classes naturally arise were presented. We also introduced the criti
cal level policy which reserves part of the stock for high-priority customers. 
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Table 5.1: Categorisation of literature on multiple demand classes. 
periodic review 
2 classes Evans (1968) 

Kaplan (1969) 
Nahmias & Demmy (1981) 
Cohen, Kleindorfer & Lee (1988) 

n classes Veinott (1965) 
Topkis (1968) 
Moon & Kang (1998) 
Atkins & Katircioglu (1995) 

continuous review 
2 classes Nahmias & Demmy (1981) 

Dekker, Kleijn & De Rooij (1998) 
Ha (1997a) 
Teunter & Klein Haneveld (1996) 
Melchiors, Dekker & Kleijn (1998) 

n classes Ha (1997b) 
Moon & Kang (1998) (deterministic demand) 
Dekker, Hill & Kleijn (1997) 

In Section 4 the problem of determining an optimal critical level policy was 
discussed. Finally, we presented an overview of the existing literature on this 
subject. 

In the recent literature, some authors have addressed the problem of mul
tiple demand classes, but the main focus has been on the determination of 
the inventory cost and service level, given a critical level policy. Due to its 
analytical complexity, the optimisation of the critical level policy has not 
been given a lot of attention. In order to facilitate the implementation of 
this policy in practice, we must focus more attention on deriving easy and 
fast methods to determine (near) optimal policy parameters. 
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Abstract. The paper deals with the problem of staggering periodic re
plenishment orders associated to different frequencies. The particular multi
item, instantaneous replenishment case with known demand is considered. 
The practical interest for such a problem is twofold: staggering orders allows 
both a reduction of the costs incurred in holding goods and an efficient use of 
space in warehouses. Some specific models allowing staggering are considered 
and, for them, theoretical results and properties are provided. 
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1 Introduction 

The present paper deals with the problem of staggering periodic replenish
ment orders. The particular multi-item, instantaneous replenishment case 
with known demand is considered. 

The practical interest for such a problem is twofold: staggering orders 
allows both a reduction of the costs incurred in holding goods and an efficient 
use of space in warehouses. 

In particular, replenishment periods of integer value are considered, since 
continuous values (even not rational, as it can turn out to be, for instance, 
using models like the Economic Order Quantity) could hardly be acceptable 
(for a thorough discussion, cf. Speranza, Ukovich (1994a)); moreover, it can 
be easily shown that rounding off the optimal EOQ value to the nearest 
feasible value can produce relevant inefficiencies (cf. for instance Speranza, 
Ukovich (1994b)). 

In the next section the relevant features of the considered problems are 
outlined, and in Sect. 3 some basic concepts and definitions are introduced. 
Then, in Sect. 4 the problems dealt with are formally stated and in Sect. 
S the practical significance of the problems is discussed comparing the per
formances obtained by applying commonly used staggering policies to some 
analytically solvable cases. The basic results already present in the literature 
are shortly introduced and generalized in Sect. 6, whereas additional results 
are yielded in Sect. 7. Finally some conclusions are drawn in Sect. 8. 
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2 Problem Framework and Basic Features 

In general, the models we deal with are basically frequency-oriented models. 
This means that for each available (periodic) reorder interval, the quantity 
to order for each item must be decided once and for all. Models in the fre
quency domain are alternative to time-oriented models, like, for instance, 
the Wagner-Whit in model (cf. Wagner, Whitin (1958)), where replenishment 
quantities are independently decided on a day-by-day basis. 

Clearly, models in the time domain are more flexible, since replenishment 
quantities in different days are independently decided, whereas frequency
oriented models are restricted to deal with periodic replenishment patterns 
only. On the other hand, models in the frequency domain are simpler, in 
the sense that they require less decisions, which are valid on a (potentially) 
infinite horizon, since replenishment quantities for each reorder interval are 
decided once and for all, whereas in the time domain new decisions must 
be taken at each time on a finite horizon. For a discussion of frequency
and time-oriented approaches to inventory management, see also Baita et al. 
1998. 

Within the framework of frequency-based models for replenishment strate
gies, in this paper we concentrate on staggering, i.e., arranging in some way 
periodic shipments not to come at the same 

time, in order to reduce costs. Highly idealized and simplified situations 
are considered, essentially in order to point out two main issues: 

- how staggering may affect the costs of a replenishment strategy 
- how optimal staggering policies can be devised. 

Accordingly, the single origin (one supplier) and single destination (one 
receiver) case is considered. Production and demand rates are assumed to 
be constant in time, and equal, so the system is balanced (in a dynamic 
sense). Only steady conditions are studied on an (ideally) infinite horizon. 
No transient phenomena nor boundary effects are considered. Instantaneous 
deliveries are assumed. 

As staggering is the main issue we focus upon, the relative phases be
tween periodic replenishments with different frequencies (as formally defined 
below) are control variables. Moreover, they are the only control variables: 
replenishment quantities are assumed to be equal in all shipments (e.g., equal 
to unity). Furthermore, no backorder is allowed. 

Two types of cost factors are considered. One is proportional to the maxi
mal inventory level achieved within the system, which in turn corresponds to 
the total amount of goods in it, since steady conditions are assumed. In pro
duction terminology, this cost factor is proportional to the work-in-process. 
The other cost factor is the holding cost. No order cost is considered, since 
the number of replenishments is given and only their relative position in time 
has to be decided. These cost factors are considered separately, in different 
problems, in order to simplify the questions and to better grasp the basic 
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impact of staggering on each of them. Finally, both the cases of single and of 
multiple commodities are studied. 

3 Terminology, Definitions and Notation 

The concepts of phase and occurrence are used. The former expresses the 
relative position in time of different events. In practice, we consider pairs 
(period,phase) as different periodic events (cf. Serafini, Ukovich (1989)) ac
cording to which replenishment orders are placed. As a consequence, for a 
same period all the possible phases originate different periodic events. 

The concept of occurrence refers to the specific occurring of (ordinary, 
nonperiodic) events repeating according to a periodic pattern. Occurrences 
are numbered according to their order of occurrence, from the beginning of 
the considered time horizon. With these concepts, we acquire new flexibility 
by allowing different replenishment quantities for different instances of a same 
(period, phase) pair. 

In the following, we call order time instant a time instant at which an order 
is sent out. In periodic inventory models, order time instants are organized 
according to a periodic pattern with period T. Thus the set of the order time 
instants is covered by subsets each of which includes all the time instants 
occurring with a given period and a given phase. Each of these subsets is 
defined as a periodic order ri(Ti,Pi) of period Ti and phase Pi. Then, the 
original set of order time instants is the set of periodic orders A(T, p) = 
{ri(Ti,pi),i = 1, ... ,m}, where, here and in the following, m = IAI, T = 
{Ti }, and p = {Pi} (in the following, when not necessary, the arguments 
of the sets A and rs are omitted). Note that, if T is minimal, as implicitly 
assumed, then T = lcm(Ti). Observe also that different sets of periodic orders 
may describe the same periodic pattern. 

In A, each generic periodic order ri is a set that includes a (theoretically) 
infinite number of elements, each of which is an occurrence of an order time 
instant t E ri . The time interval occurring between any two consecutive oc
currences, possibly belonging to two different periodic orders, will be referred 
to as headway. 

Notwithstanding the infinite cardinality of the set r i , only a single period 
T may be considered without any loss of generality. In particular, in the 
following, such period is assumed to start at time 0 with the occurrence 
first order time instant tl = O. Let [xJz denote the mod-function, i.e., the 
remainder of the integer division of x by z. Then, define i1Pi,j = minr,s [Pi + 
rTi - (pj + STj)JT the minimum phase displacement of the periodic order r i 
with respect of rj (such a value can be trivially determined in polinomial 
time). Let hk = [t[k+lJn - tkJT be the headway between the kth and (k + l)th 
consecutive order time instants occurring in T, for k = 1, ... ,n, where n is 
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the number of order time instants occurring in the period T: 

T n=I: T · 
TiET ' 

Note that some order time instants may occur simultaneously. 
Finally, assume that the kth order time instant in T is due to the periodic 

order r ik . Then, for each periodic order rj E A, define hk(ik,j) = [tk -
tk(j))T, with tk(j) = max{tr : tr :=::: tk and tr E r j }, as the (inter-order) 
headway between two consecutive order time instants belonging to the two 
(different) periodic orders r ik and rj for k = 1, ... ,n. Note that hk (i k , ik) = 
o. 

In order to clarify the above concepts, consider as an example Fig. 1 in 
which the set of periodic orders A((6, 4), (0,3)) is shown with the two peri
odic orders r l (6,0),r2 (4,3) included in it. In particular, three rows of dots 
are drawn, where each dot indicates the occurrence of an order time instant. 
The row above the dashed line corresponds to the whole set of periodic or
ders, whereas the remaining two rows correspond to the r l (6,0) and r2 (4,3), 
respectively. In the upper row, the headways between the consecutive occur
rence of the first and second order time instants hI = 3 and the ninth and the 
tenth order time instants hg = 4 of the period are highlighted. In the middle 
row, the phase PI = 0 and the period TI = 6 of n (6,0) are pointed out. 
Furthermore, the minimum phase displacement LlP2,1 = 1 between r l (4,3) 
and r2 (6, 0) and the inter-order headway between two consecutive order time 
instants h7(2, 1) = 3 are also shown. In the lower row, only the phase P2 = 3 
and the period T2 = 4 of r l (4,3) are highlighted. 

hi = 3 hg = 4 
A((6, 4), (0,3)) 00 00 0 ); i o 0 

PI = 0 

d~f oh1' TI = 6 
n(6,0) . J; 1 

P2 = 3 T2 = 4 
n(4,3) ); '6 

12 15 18 21 24 

Fig. 1. elements and parameters of a set of periodic orders .11((6,4), (0, 3)) 
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4 Staggering Problems 

4.1 Problems Statement 

The following problems are considered in the following: 

Problem 1 (Minimization of the maximum headway). Given a set of periodic 
orders A(T, p), where the entries of T are fixed, determine the values of the 
entries of p such that the maximum headway is minimized, i.e., 

mmh = minmax{hk : k = 1, ... ,n}. 
p 

(1) 

Problem 2 (Minimization of the sum of the squared headways). Given a set 
of periodic orders A(T,p), where the entries of T are fixed, determine the 
values of the entries of p such that the sum of the squared headways is min
imized, i.e., 

(2) 

Problem 3 (Maximization of the minimum weighted sum of the headways). Given 
a set of periodic orders A(T, p), where the entries of T are fixed, and a set 
of weights w = {Wj}, where each entry Wj is associated to the corresponding 
entry rj in A, determine the values of the entries of p such that the minimum 
sum of the weighted inter-order headways is maximized, i.e., 

Mwh = maxmin{ L wjhk(ik,j) : k = 1, ... , n}. (3) 
P j:rjEA 

4.2 Motivations 

Each of the above staggering problem is of interest in logistics management. 
Consider a single item inventory system for distribution, with items produced 
at a constant rate and shipped at the time instants in the sets ri , Vi. Pro
vided that the distribution channels are uncapacitated, the inventory level is 
reduced to zero at each order time instant. Then the maximum inventory level 
is reached at the end of the longest headway (dealt with by Problem 1). In 
the same context, the holding costs, incurred in a period T, are proportional 
to the sum of the squared headways (as in Problem 2). 

Finally, consider the case of a multi-item inventory system. Let a generic 
item i be characterized by a constant demand rate Ai = QdTi and by a 
reorder quantity Qi' Let the periodic order ri(Ti,Pi) correspond to the set of 
the time instants in which the replenishment orders for item i are delivered. 
Then, the overall inventory level at the order time instant tk is equal to 
L.j:rjEA(Qj - Ajhk(ik,j), where L.j:rjEA Qj is a constant and the other 
component is dealt with by Problem 3. 
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5 Comparison of Some Staggering Policies 

To make the importance of staggering clearer, the performances of some 
elementary staggering policies are compared in the following paragraphs for 
a simple situation. 

The following hypotheses are assumed to hold: 

- A(T,p) = {ri(Ti,Pi) : i = 1, . .. ,m}, with Ti = T, Vij 
- the production rate and the demand rate are constant and equal to liT, 

then w = (1IT)1j 
- all the phases Pi are allowed to assume also fractional values. 

Note that, in the above hypotheses, Llpik,j = hk(ik,j), Vk, since the 
period is equal for each periodic order ik, and n = m. 

Three staggering policies are considered: 

synchronous: all phases equal to 0, i.e., LlPi,HI = 0, i = 1, ... , mj 
uniform: all phase displacements are equal, i.e., LlPi,HI = Tim, i = 1, ... , mj 
random: all phases are independent and identically distributed random val-

ues, i.e., LlPI,i '" u(O, T), i = 2, ... , m, where u(O, T) indicates the uni
form distribution between ° and T. 

Consider first the values of the performance indices for the synchronous 
policy: 

max{hk k=l, ... ,m}=T 

~fh%=T 
k=1 

min{ L hk(ik,j) : k=l, ... ,m}=O. 
j:rjEA 

The values of the performance indices for the uniform policy are instead: 

max{hk : k=l, ... ,m}=Tlm 
1 m 

rLh% = Tim 
k=1 

min{ L hk(ik,j) : k=1, ... ,m}=(m-1)TI2. 
j:rjEA 

The uniform policy is proved to be optimal in Burkard (1986). 
Assessing the performances for the random policy is slightly less trivial. 

Without loss of generality, let PI = 0, and assume that the periodic orders 
are indexed such that LlPI,i ~ LlPI,HI, for i = 2, ... ,m - 1, (i.e., phases 
are numbered oppositely to the time evolution, see e.g., Fig. 2). Then, LlPI,2 
takes the minimum value of the m -1 uniformly distributed random variables 
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considered in the definition of the random policy. Analogously, LlPI,3 the next 
to the minimum value of the m - 1 uniformly distributed random variables, 
an so on. Note that, differently form the original variables, now the variables 
LlPI,i are not anymore independent and identically distributed. 

LlPl,2 1 

2 ~---k 

3 

Fig. 2. indexing of four order time instants over a period 

In particular, let f(.) denote the probability density function (pdf) of its 
argument, then: 

f(L1PI,2) = (m - l)(T - LlpI,2)m-2/Tm- 1 

o ~ LlPI,2 ~ 1 

f(LlpI,3ILlpI,2) = (m - 2)(T - LlpI,3)m-3/(T - LlpI,2)m-2 

o ~ LlPI,3 ~ T - LlPI,2 

f(LlPI,m-2ILlPI,2, ... , LlPI,m-3) = 2(T - LlPI,m-2)/(T - LlPI,m_3)2 
m-3 

o ~ LlPI,m-2 ~ T - L LlPI,i 
i=2 

m-2 

o ~ LlPI,m-1 ~ T - L LlPI,i, 
i=2 

hence, the joint pdf is 

m-2 
o ~ LlPI,2 ~ 1, ... , 0 ~ LlPI,m-1 ~ 1 - L LlpI,i. (4) 

i=2 

The pdf of the headways hk can be obtained from the pdf of the LlPI,i: 

f(hd = f(LlpI,2 = hI), 
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Then, it can be verified that, for m = 2, the values of the performance indices 
for the random policy are: 

E{max{hk : k = 1,2}} = 3T/4 
2 

~E{Lhn = 2T/3 
k=l 

E{min{ L hk(ik,j) : k = 1, 2}} = T/4. 
j:TjEA 

For m = 3 the values of the performance indices are: 

E{max{hk : k=1,2,3}}=l1T/18 
3 

~E{Lhn = T/2 
k=l 

E{min{ L hk(ik,j) : k = 1,2,3}} = 5T/9. 
j:TjEA 

For m --+ 00, hk tend to become independent and exponentially dis
tributed with rate m/T. Then, the values of the performance indices for 
large m are approximately: 

E{max{hk 

E{min{ L hdik,j) : k=1, ... ,m}}~(m-1)T/2 
j:TjEA 

where the approximation error becomes null if an infinite number of periodic 
orders are considered. 

Compare the performances of the random policy with the ones of the 
uniform (optimal) policy. 

The ratio between the expected maximum headway obtained with the 
random policy and the maximum headway yielded by the optimal policy 
cannot be bounded from above. 

On the other hand, the sum of the squared headways obtained with the 
random policy grows at most two times as great as the same sum yielded by 
the optimal policy. 

Finally, as long as the phases of the periodic orders are uniformly dis
tributed in T, the random policy tends asymptotically to become optimal 
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in probability coherently with the approximation suggested in Barancsi et 
al. (1990) (see Model 260 p.331). In the above context, Problem 3 seems of 
interest only for a relatively small number of periodic orders. However, note 
that the convergence to the optimal value is quite slow as indicated in Table 
1 in which the ratio between the considered performance index obtained with 
the random policy and the optimal policy is shown for the first values of m. 

Table 1. ratio between the Mwh index obtained with the random policy and the 
optimal policy 

To conclude this section, some words of warning must be spent. The 
optimality of a policy has been defined in terms of the performance indexes 
introduced. However, different reasons may prevent the application of such 
policies in practical cases. As an example, a synchronous policy, which in this 
section appears to be one of the worst possible, may be justified in order to 
reduce the fixed order cost, when consolidation among orders is allowed. 

6 Basic Results: Two Periodic Orders (Burkard (1986)) 

First observe the trivial fact that, for any set A, there is no loss of generality 
in setting the phase of one of the periodic orders to O. In particular, in the 
following, the phase of the set r 1 will be always assumed zero independently 
of the properties enjoyed by T1 . This remark trivially solves all the above 
problems when IAI = l. 

For IAI = 2, Burkard (1986) proves some fundamental results. In partic
ular, when the phase P2 can assume also continuous values, his main result 
can be restated as 
Theorem 4. An optimal solution of Problems 1, 2, and 3, when w = 1, is 
obtained for 

It generalizes to 

(5) 

when P2 is constrained to be an integer. 
Still Burkard (1986) proves, by a counterexample, that Problems 1, 2 and 

3 may have different solutions when IAI = 3. 
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7 New Results 

In the following, when not differently stated, only periodic orders with integer 
periods and phases are considered, since they are the ones of greater practical 
interest. More formally, each A(T, p) considered is such that T E Nffi and 
pETffi. 

7.1 General Properties 

The mmh part of the above Theorem 4 can also be proved by means of the 
following facts, which turn useful even in some other proofs: 

Property 5. (Nachtigall (1996)) Let two periodic orders ri(Ti,pt) and 
r 2(T2,P2) be given. Define T = lcm{Ti ,T2} and /3 = gcd{Ti ,T2 }. Then, 
the sequence of the headways {hk (1,2)} has period T and exactly contains 
(but not necessarily in this order) the integers 

T2 
LlPi,2 < LlPi,2 + /3 < ... < LlPi,2 + (7f - 1)/3 < T2· 

IfTi and T2 are co-prime, then the above Property 5 implies that, over the 
horizon T, there exists an order time instant belonging to n which takes place 
concurrently with one belonging to r2 . Note also that the above property 
implies that either LlPi,2 = LlP2,1 = 0 or LlPi,2 + LlP2,1 = /3. 

Property 6. Consider a set e of lei different time instants and a periodic 
order r i (Ti , Pi). Then, the initial phase Pi can be chosen such that at least 
a elements in r i occur in e, where 

a = rl~ll. (6) 

Proof. Partition e in Ti residue classes, i.e., subsets e(i) for i = 0, ... , Ti -1, 
such that 'T} E e(i) iff'T} E e and ['T}lTl = i. Then, at least one subset e(i*) 

exists such that le(i*)1 ~ rWl. To complete the proof, set Pi = i*. 

The following result is a consequence of the above two properties. 

Property 7. Consider a time interval of length 'T}, which periodically recurs 
every Ti time units with 'T} :::; Ti , and a periodic order r 2 (T2, P2). Over a 
horizon T = lcm{Ti , T2}, a elements of r 2(T2,P2) occur (with a different 
phases) during one of the time intervals 'T}, where 

19Cd{ii,T2 } J :::; a:::; r gcd{ii ,T2 } l· (7) 

In particular, in case that the l.h.s and the r.h.s. of (7) are different, a may 
assume either of the integer values within the interval, the actual value de
pending on P2. 
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Now, consider the mmh part of Theorem 4. In particular, take r l and 
n with TI :s: T2. Over a horizon equal to T = 1cm {TI , T2}, the number 
of headways between two order time instants belonging to either r l or r2 

and lasting TI is not less than T2 / fJ - I (TI - 1) / fJl but not greater than 
TdfJ - L(TI - l)/fJJ, where fJ = gcd{TI,Td· Indeed, over the horizon T, 
order time instants in n occur T2/ fJ times; in addition, the number of times 
that an order time instant in n occurs strictly between two consecutive order 
time instants in r l can be computed by means of (7) assuming an interval 
TJ = TI - 1 with period TI . 

Then, ifTI and T2 are co-prime, fJ = 1, then mmh = TI and it occurs T2-
(TI - 1) > 0 times. In particular, it occurs twice consecutively, immediately 
before and immediately after the order time instants belonging to r l which 
take place concurrently with the one belonging to r2 . 

If fJ > 1, a mmh = TI occurs at least (T2 - Td/fJ times, since, in this 
case, I(TI -l)/fJl = ITdfJl = TdfJ· Trivially, (T2 -TI)/fJ > 0 whenever T2 
is strictly greater than TI . If T2 is sufficiently small, i.e., TI < T2 :s: 2TI - 2, 
then two consecutive mmh headways never occur consecutively. 

The above arguments allow determining the optimal value for mmh, msh, 
and Mwh (w = 1), when only two periodic orders are considered. If TI = T2 , 

then 

else, for TI < T2 

1 Tt/fJ-I 

msh = 'TT[(T2 - Td/ fJ + L ((L1P2,1 + kfJ)2 + (TI - (L1P2,1 + kfJ))2), 
k=O 

where, according to (5), L1P2,1 = LfJ/2J. 
The implication on L1PI,2 and L1P2,1 of Property 5 allows to determine 

the optimal value for Mwh even when w i- 1. In particular, when P2 may 
assume continuous values, M wh is minimized for 

which implies 

When phases are constrained to be integer, the optimal values are obtained 
comparing the two different rounding possibilities. 
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7.2 On the Minimization of the Maximal Headway 

Three Periodic Orders. 

Property 8. Let three periodic orders r l (TI ,PI), r 2 (T2 ,P2), and r3 (T3,P3), 
with 1 < TI :S T2 :S T3 be given. Let mmh l ,2 be the value of the least maxi
mum headway yielded by r l and r2 , when dealt with separately from the order 
time instants in r3 . Then, the following two equivalent conditions 

(8) 

(9) 

are necessary to obtain an mmh < mmhl ,2. Such conditions become also suf
ficient when r l and r 2 generate a single mmhl ,2 headway over the lcm {TI , T2 } 

horizon. 

Proof. The presence of r3 leads to deal with a horizon T = lcm{TI,T2,T3}. 
Over such a horizon, consider an mmhl ,2 headway, possibly the only one, 
yielded by r l and r2 , when dealt with separately from the order time instants 
. r s h h h d t lcm{Tl,T2,T3} T3 m 3· uc an mm I2 ea way repea s I {T T} = d{T I {T T}} 

! em 1, 2 gc 3, em 1, 2 

times over T. On the other hand, due to Property 7, order time instants in r3 

occur, with phase displacement different from 0, at most r gCd{~~c'::.I;;1~T2}} 1 
times within the different instances of the mmhl ,2 headway over the T hori
zon. Then, all the different instances of the mmhl ,2 headway may be inter
rupted by an order time instant in r3 only if 

When r l and r 2 generate a single mmh l ,2 headway over the lcm{TI ,T2} 
horizon, then such a condition becomes trivially sufficient since, in this case, 
(8) states that the only mmhl ,2 headway may be interrupted by an order 
time instant in r3 . 

Now, consider different possibilities separately (here and in the following 
points assume TI :S T2 :S T3, and /3 = gcd{T3, lcm{TI' T2}} > 1. Note that 
the first condition implies mmhl ,2 = Td: 

- if TI = T2 = T3, then (9) holds and mmh = f:?t 1; 
- if T3 is co-prime with lcm{TI' T2}, then (9) cannot hold in the hypothesis 

T3 > TI , hence if TI = T2 , then mmh = f:?t 1, otherwise mmh = TI , e.g., 
TI = 4, T2 = 5 and T3 = 7; 

- if T3 > lcm{TI ,T2}, then condition (9) cannot hold, and mmh = TI . 
Actually, T3 > lcm{TI' T2 } > Tf gcd{TI' T2 } 2:: Tf/3 > TI + /3; 
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- if T3 is a submultiple of lcm{T1, T2}, then (9) always holds since its l.h.s 
is equal to 0, and mmh may result less than T1. Consider for example, 
Tl = 6, T2 = 8 and T3 = 12 or Tl = 9, T2 = 10 and T3 = 15; 

- if T3 is not a submultiple of lcm{T1,T2}, but T3 < lcm{TI ,T2}, then 
condition (9) may still hold and mmh may result less than T I . Consider, 
e.g., Tl = 40, T2 = 42 and T3 = 48 or TI = 20, T2 = 21 and T3 = 24. 

If TI and T2 are co-prime, then another necessary condition can be stated: 

Property 9. Let three periodic orders rl(T1,pr), n(T2,P2), and r 3(T3,P3) 
be given, with 1 < TI < T2 ~ T3 and T I , T2 co-prime. Then, the following 
two equivalent conditions 

(10) 

(11) 

are necessary to obtain a mmh < T I . Such conditions become also sufficient 
when T2 = TI + 1. 

Proof. The sets r l and r2 , when dealt with separately from the order time 
instants in r 3, yield at least two consecutive mmhl ,2 = Tl headways AI, A2 
over the horizon lcm{TI , T2 }. Then, Property 7 imposes (10) as necessary for 
a pair of order time instants in r3 to occur in each instance of AI, A2 over 
the horizon T = lcm{TI' T2, T3}. Condition (10) becomes also sufficient when 
AI, A2 are the only maximal ones when r l and r 2 are considered alone. 

Consider separately different possibilities: 

- If T3 is a submultiple of lcm{TI' T2}, then (11) becomes T3 ~ 2Tl - 2. 
Then, e.g., when T2 = TI + 1, the mmh may be as small as 

mmh = max{TI _l~3 J ' r~31}; 
consider, e.g., TI = 9, T2 = 10 and T3 = 15; 

- if T3 is neither a submultiple of lcm {TI' T2} nor co-prime with it, but 
T3 < lcm{TI' T2}, then condition (11) may still hold and mmh may result 
less than T1. Consider, e.g., TI = 20, T2 = 21 and T3 = 24. 

In both the above cases, the minimum relative phase p between the first 
instant delimiting AI, A2 and the first order time instants in r3 occurring in 
them must be chosen such that 

T3 
p + (73 - 1),8 + T3 - TI ~ TI - 1, (12) 

otherwise the second order time instants in r3 would fallout of A2 . 
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More Complex Cases. The previous Properties 8 and 9 may be trivially 
generalized to deal with four or more sets of periodic orders. As an example, 
Property 8 becomes: 

Property 10. Letn periodic orders r l (TI,PI), r 2(T2,P2), ... , and rn(Tn,Pn), 
with 1 < TI ::; T2 ::; ... ::; Tn be given. Let mmhl,n-1 be the value of the least 
maximum headway yielded by r l , ... , rn-I, when dealt with separately from 
the order time instants in rn. Then, the following two equivalent conditions 

Tn r mmhi n-I 1 
gcd{Tn,lcm{TI, ... ,Tn-I}}::; gcd{Tn,lcm{T:, ... ,Tn_I}} . 

(13) 

Tn - gcd{T3, lcm{TI , ... , Tn-I}} ::; mmhl,n-1 - 2, (14) 

are necessary to obtain a mmh < mmhl,n-l. Such conditions become also 
sufficient when n, ... , r n- I generate a single mmhl,n-1 headway over the 
lcm{TI , ... , Tn-I} horizon. 

In any case, the repeated application of the above properties may give 
some insight on the headways yielded by multiple periodic orders. Consider 
the following example: 

Example 11. Let four periodic orders n(7,Pl), n(12,P2), r a(15,Pa)' and n(20,P4) 
be given. The horizon to consider is T = lcm{7, 12, 15, 20} = 420. Then, in
troduce a periodic order a time over T. The time instants in n (7, pI) initially 
generate 60 headways of length 7. Property 7 guarantees that 30 of the initial 
headways can be interrupted by order time instants in r 2(12,P2)' In partic
ular, due to n(7,Pl) and r 2(12,P2), 6 headways of length 7 repeat every 
lcm{7,12} = 84. Property 7 guarantees that 12 of the remaining 30 head
ways of length 7 are interrupted by order time instants in ra (15, P3). Actually, 

19Cd{:4,15} J = 2 = r gCd{:4,15} 1· Finally, at least 6 of remaining headways can 
be interrupted by order time instants in n(20,P4)' This fact can be proved 
using Property 6 and observing that, since 20 > 7, two order time instants 
in r 4(20,P4) cannot occur in the same headway of length 7. 

7.3 On the Minimization of the Sum of the Squared Headways 

Consider A(T,p) such that T = T,i = 1, ... ,m, i.e., all the m periodic orders 
have the same period T and hk(ik,j) = Llpik,j, Vk. Then, define an exchange 
operation between two head ways as an operation in which the first headway, 
strictly larger than Tim, decreases its length of one unit and the second 
headway, strictly smaller than Tim, increases its length of one unit. 

Property 12. Let the set A(T,p) be given such that T = {T, i = 1, ... , m}, 
and Pi ~ PHI, Vi. Then, the sum of the squared headways is minimized when 
LlPi,j are such that 

l ~ J ::; LlPi,Hl ::; r ~ 1 ' Vi. (15) 
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Proof. Note that if phases p do not satisfy condition (15), then there exists 
at least a couple of head ways to which an exchange operation may be applied. 
Let ak and al be the values of the headways involved in the operation, being 
ak > aI, then the sum of the squared headways decreases of 2(ak - ad - 2. 

The above results, trivially, generalize the ones of Burkard (1986) to the 
case of discrete phases. In addition, the proof suggests that a uniform dis
tribution of the order time instants dominates in term of minimization of 
squared headways other possible choices. More formally, 

Property 13. Let the sets A(T,p), ACT,p) be given. Let the periods Ti of 
the periodic orders in A be all equal to T, and let the periods Tj of the periodic 
orders in A be possibly different. Assume that 

Then, msh{A} ::; msh{A}. 

7.4 On the Maximization of the Minimum Sum of the Headways 

Even in this case, consider A(T,p) such that T = {T,i = 1, ... ,m}, then 
again hk(ik,j) = Llpik,j, 'Vk. In addition, for the time being, drop the con
straint that forces phases to integral values. 

Property 14. Let the set A(T, p) be given such that T = {T, i = 1, ... , m}, 
and Pi ~ PHI, 'Vi. In addition, let a general vector of weight w be given. Then, 

the minimum sum of weighted headways is maximized when 

the same value of the minimum sum of weighted headways is obtained for 
any vector w permutation of the vector w. 

Proof. For the sake of simplicity, assume, without loss of generality, T = 1 
and define Xl = 0, and in general Xj = LlPI,j, 'Vj (remember that LlPI,j are 
sorted for increasing values). In these hypotheses, 

m m m 

L WjLlPI,j = L Wj(Xj - xt) = L WjXj 
j=l j=l j=l 

and for the generic periodic order r i 

m m m m i-I 

LwjLlpi,j = LWj[Xj -xih = LWjXj -XiLWj + LWj. 
j=l j=l j=l j=l j=l 
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The minimum sum of weighted headways is obtained solving the following 
linear programming problem: 

is 

max{) 
m m i-l 

{) ~ L WjXj - Xi L Wj + L Wj Vi 
j=l j=l j=1 

Xi ~ XHI Vi 

Xi ~ 0 Vi. (16) 

It may be directly verified that the optimal solution of the above problem 

",j-I 
L..,i=1 Wi 

Xj = ",m Vj, 
L..,i=1 Wi 

",m ",j-I 
{) = L..,j=1 Wj L..,i=l Wi. 

",m , 
L..,i=1 Wi 

(17) 

whereas the optimal values of the dual variables corresponding to the two 
sets of constraints in (16) are respectively: 

m 

J-Li = WiL Wj Vi, 
j=1 

Vi = 0 Vi. (18) 

To complete the proof, observe that the optimal value of {) is invariant 
under the permutation of the elements of w, and that, when T f=- 1, the 
optimal values of Xj and {) must be multiplied by T. 

Now, constrain phases to be integer. 

Property 15. Let the set A(T, p) be given such that T = {T, i = 1, ... , m}, 
and Pi ~ PHI, Vi. In addition, let w = 1. Then, the minimum sum of head
ways is maximized when 

lu - l)TJ . 
!1PI,j = m ' VJ. 

Proof. The integer version of problem (16) has to be considered, with w = 1. 
Due to the symmetry among the periodic orders under concern, there is no 
loss of generality in assuming that the minimum sum of the headways is 
obtained for r l , which implies 

m 
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Consequently, the integer version of problem (16) can be rewritten, after 
trivial algebraic passages, as 

max--8 
m 

j=l 

mx j ~ (j - 1) V j 

Xj ~ Xj+l Vj 

Xj EN Vj. 

Straightforwardly, (19) implies LlPl,j = l (j~)T J ' Vj. 

(19) 

It is worth pointing out that the order time instants introduced in the 
above property defines a most regular sequence, introduced, for another con
text, in Hajek (1985), where their general properties are discussed. Note in 
particular that the obtained values for all LlPi-l,i satisfy also condition (15), 
then optimize also the sum of squared headways. In practice, a "most regu
lar" staggering is obtained when equally capacitated vehicles are loaded at 
a constant rate and, once filled, are let depart at the immediately following 
integer time instant. 

When w f:. 1, the result obtained rounding the phases to integer values 
are not invariant under the permutation ofthe elements ofw. Differently from 
the continuous case, the maximum least weighted sum of head ways depends 
on the way in which the phases of the periodic orders are sequenced. Assume, 
as an example, that the periodic orders are phased such that the sequence of 
weights observed are {I, 1, 2, 2} over a period T = 9. In this case, 

m~n L Wj LlPi,j = 19, 
• j:rjEA 

Such a value is obtained rounding the phase vector to p = [0,1,4,7]. On the 
other side, if the periodic orders are phased such that the sequence of weights 
observed are {I, 2,1, 2} over the same period, then 

m~n L WjLlPi,j = 18 . 
• j:rjEA 

Such a value is obtained rounding the phase vector to p = [0,3,4,7]. If 
continuous phases were allowed the maximum least weighted sum of headways 
would be 19.5, independently of the sequence of weights observed. 

8 Conclusions 

Staggering periodic replenishment orders may lead to intriguing number the
ory problems with significant practical applications. 
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In this paper some significant problems were stated and their importance 
pointed out by means of some analytically tractable examples. The most 
significant results already present in the literature have been recalled and 
some additional results have been introduced, in particular for the case of 
three periodic orders and for periodic orders with the same period. 

All the considered problems are elementary cases of more general and 
difficult questions that are faced both in theory and in the everyday practice 
of logistic decisions. Moreover, it has been pointed out that the first two 
problems of Sect. 4 can also be of interest, for instance, when passengers 
move on a common leg of several transportation lines. Also, they are relevant 
in the case pointed out by Hall (1991), where a product can be supplied to 
the same customer with different frequencies. As for the third problem in 
Sect. 4, it is of interest when joint replenishment policies are contemplated 
in multi-item inventory systems (see for instance Federgruen, Tzur (1994), 
Gallego et al. (1996), Goyal, Satir (1989)). 

The general version of these problems is certainly NP-hard. What is done 
in the present paper is studying some properties of their solutions when only 
two or three periodic orders are involved. The proposed results can be useful 
to devise exact or approximate solutions, for instance in order to exclude 
dominated solutions, or to assess approximate solutions. 

Clearly, the present paper is not meant to be exhaustive with respect 
to all the possible cases and the relevant properties. In fact, besides the 
possibility of extending these results to more than three periodic orders, 
other interesting open questions remain, concerning for instance transient 
issues or the practical applicability of these models to complex situations, 
such as when alternating summer and winter schedules must be considered, 
or monthly schedules must take into account the different month duration. 
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Abstract. A multi-echelon divergent inventory system with periodic customer de
mand is considered. A central division is responsible for the control of flows of goods 
through the system. The replenishment mechanism follows stagewise nested (R, S)
policies. In case of products or material shortage at the upstream stockpoint, an 
allocation decision must be made which requires the use of rationing rules. In this 
paper a new rationing heuristic based on multiple criteria is presented. Computa
tional results indicate the effectiveness of the heuristic. 

1 Introduction 

In this paper one of the basic models in multi-echelon inventory theory is 
analyzed: the multi-echelon divergent inventory system with integral (R, S)
control. This model arises both in the context of distribution planning and 
hierarchical replenishment ordering in production systems. In the following, 
the inventory model is described in view of a fictious distribution system. 

In a distribution environment, customers arrive at downstream stock
points (retailers) demanding a homogeneous product. The customer demand 
is satisfied from stock on hand if available or backlogged otherwise. A pro
duction location supplies the products to the retailers through a chain of an 
upstream stockpoint (central depot) and possibly several intermediate stock
points (local warehouses) which can be pure distribution centers or stock 
keeping units. A central authority is responsible for periodically, say every 
R periods, issuing a replenishment order of size Q. The quantity ordered 
is determined according to the (R, S)-heuristic where the echelon inventory 
position of a stockpoint is raised to its individual order-up-to level S. By 
assumption the production location, which provides the central depot, has 
infinite capacity and it requires a constant production lead time for the re
plenishment order to arrive at the central depot. After its arrival the order is 
distributed over the subsequent stockpoints according to their replenishment 
request. In case of short products at the supplying stockpoint, an intelligent 
rationing of scarce stock is necessary. The planning and decision problem 
around this rationing is called the allocation problem and is specific for di
vergent systems. In order to allocate products in an effective way, the central 
authority requires full information about system states at all stockpoints. It is 
therefore assumed that a centralized distribution information system delivers 
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the right information at the right place in the right quality at the right time. 
After allocating the specific amounts to the stockpoints, they are shipped im
mediately and arrive after a constant distribution lead time. Then, the same 
mechanism starts again and again until the stage of downstream stockpoints 
is reached. An important management task arising in this context can be 
summarized as multi-echelon control and is defined below. 

Multi-Echelon Control (MEC): 
Which control mechanism w. r. t. the replenishment and allocation problem 
should be used to reach target service levels at downstream stockpoints at 
minimum total inventory costs? 

It must be pointed out that the aim of this paper is not to derive an optimal 
replenishment and allocation strategy. Instead, the (R, B)-heuristic is as
sumed here. Moreover, the derivation of an optimal allocation strategy (given 
a replenishment strategy) requires strict additional assumptions and usually 
leads to intractable analytical results. In view of this fact, both in theory and 
practice, simple but effective allocation rules are preferred to optimal ones. 
In this paper an easy-to-handle approximate rationing strategy is suggested. 

2 Literature 

Beginning in the early sixties, the issue of controlling multi-echelon inventory 
systems has been addressed extensively in literature. The first and funda
mental contribution was by Clark and Scarf (1960) who consider different 
system structures (serial, divergent) and already address the allocation prob
lem which especially arises in inventory systems with divergent structure. In 
the first three decades, the main focus was on exact models using stochastic 
dynamic programming. Federgruen (1993, Ch. 3) gives an excellent overview 
of this area. Today, research concentrates on the analysis and optimization of 
replenishment policies with a simple, robust structure. Therein, the focus has 
been on periodic review systems based on (R, B)-policies. This replenishment 
rule has been proven to be cost-optimal in non-capacitated serial systems 
with no fixed ordering costs. Moreover, since, independently, Rosling (1989) 
and Langenhoff and Zijm (1990) show that a non-capacitated convergent in
ventory system can be modelled as a special serial system, (R, B)-policies 
are optimal for this class of convergent inventory systems, too. We will re
strict our analysis on the discussion of inventory systems with a divergent 
structure and integral inventory control. Such a type of system can be found 
both in the area of production management as well as in the area of physical 
distribution. For reviews of the statistical control of multi-echelon divergent 
inventory systems the reader might refer to Inderfurth (1994); van Houtum 
et al. (1996) and Diks et al. (1996). In all reviews it strikes that a main focus 
is on two-echelon distribution systems. 

The literature on the integral control of two-echelon distribution systems 
based on (R, B)-policies is rich, and we will only sketch a selection of im-
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portant contributions to this research area. Eppen and Schrage (1981) are 
the first to derive optimal allocation decisions for a two-echelon system with 
a stockless depot, identical warehouses and stationary, normally distributed 
customer demands. In van Donselaar and Wijngaard (1987) the model of Ep
pen and Schrage is extended to a system where the central depot is allowed 
to hold stock. In both models the service measure is given by the stockout 
probability (also: a-service). The more customer-oriented fill rate, which is 
the fraction of demand delivered immediately from stock on hand, is modelled 
by de Kok (1990) for a system similar to that of Eppen and Schrage (1981). In 
Langenhoff and Zijm (1990) some important exact decomposition results are 
stated for arbitrary continuous demand distributions. These decomposition 
results allow to formulate an optimization problem which can be split up in 
a sequence of one-dimensional subproblems. Other related literature includes 
van Donselaar (1990), who introduces lot sizing, and Lagodimos (1992), who 
investigates the performance of priority rationing where material is allocated 
to local stockpoints based on a fixed priority list. 

Meanwhile, most publications concerning the control of divergent inven
tory systems assume multi-stage (R, S)-policies and concentrate on the allo
cation problem where a rationing decision has to be made in case of short 
material. In this context, the focus is on linear allocation functions which 
determine the quantities to be allocated to each stockpoint. The optimal al
location strategy derived for the model in Eppen and Schrage (1981) is called 
Fair Share rationing (FS) and it can be shown that FS belongs to the class of 
linear allocation functions. All the same, linear allocation functions are not 
exact in general. In Diks (1997, Ch. 6) the validity and robustness of approx
imate linear allocation functions has been tested for two-echelon inventory 
systems; he found that a linear approximation was sufficient for almost all 
problem instances. 

Jackson (1988) considers a two-echelon distribution system with identical 
downstream stockpoints and physical stocking at both echelons. Additionally, 
the upstream stockpoint has two shipping opportunities: at the beginning of 
a reorder cycle and the last period of the cycle. The model of Jackson differs 
furthermore from most other two-echelon models in that the review period 
at the upstream stockpoint can cover several review periods at downstream 
stockpoints. Jackson (1988) shows that for the given inventory system cen
tralizing a portion of systemwide stock can be beneficial. He develops the 
Run Out allocation rule (RO) which minimizes the total amount of holding 
and penalty costs in a single-period planning environment. 

More recent linear rationing heuristics belong to the class of Consistent 
Appropriate Share rationing (CAS) of which the CASI heuristic by de Kok 
(1990), the CAS2 by de Kok et al. (1994) and the CAS3 by Verrijdt and 
de Kok (1996) are the most well-known representatives. The basic CASI and 
all other variants have been designed for systems with non-identical down
stream stockpoints and general distribution functions of customer demand. 
Like for all other existing rationing rules the logic of CAS is derived from 
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the analysis of two-echelon inventory systems. An extension to more general 
n-echelon systems is not always straightforward. 

The model of Eppen and Schrage is extended in Bollapragada et al. (1998) 
to the case with non-identical downstream stockpoints. An approximate al
location rule is derived which according to a simulation study performs suf
ficiently well when compared to the numerically more expensive optimal al
location rule. The performance is measured by the stockout probability and 
the sum of inventory and backorder costs. 

Graves (1989) suggests the virtual allocation rule (VA) for a two-echelon 
inventory system with identical downstream stockpoints, strongly nested re
plenishments and constant leadtimes. Customer demand are assumed to be 
Poisson-distributed over time. The central stock is allocated virtually which 
means that orders for individual units at the supplying stockpoint are filled in 
the same sequence as the original demands at the supplied stockpoints. The 
virtual allocation assumption is only approximate, but it allows the analy
sis of periodic review models with tools known from systems with continuous 
policies. In Graves (1996) a possible extension to systems with stochastic lead 
times is discussed. For a similar inventory system, Axsater (1993) derives a 
recursive optimization procedure which allows an exact evaluation of varying 
(R, S)-policies. In all models, the system performance is measured by the 
sum of holding and backorder costs. 

Recently, van der Heijden (1997) introduced the Balanced Stock rationing 
rule (BS) which seems to be a promising candidate for real-life applications 
on account of its good performance and broad applicability. The overall result 
of a numerical study by van der Heijden indicates the dominance of BS over 
all CAS heuristics. This result is supported by an alternative study in Diks 
(1997, Ch. 2,3). The performance of the rationing heuristics is measured by 
the mean imbalance, the fill rate, and the mean physical stock in the system. 

Ernst and Kamrad (1997) address the topic of determining shipping quan
tities in a two-echelon system with non-identical replenishment schedules 
amongst the downstream stockpoints. They analyze a distribution system 
with Electronic Data Interchange (ED I). A numerical study shows that com
pared to a non-EDI system where no or only partial current demand infor
mation is available, an EDI-based dynamic allocation rule performs best in 
the major part of problem instances. A dynamic allocation rule makes use 
of all current demand processes at the downstream stockpoints (in contrast 
to static or myopic rules). As a performance measure the authors choose the 
stockout probability per downstream stockpoint. 

The paper is structured in the following way: In section 3, the basic math
ematical model and its system dynamics are introduced. Additionally, the 
allocation problem is addressed explicitly. In section 4 the topic of intelligent 
and numerically practicable rationing is dealt with describing the Balanced 
Stock Rationing suggested by van der Heijden (1997) and a new rationing 
heuristic which shall be denoted as Multiple Criteria Rationing (MC). The 
MC heuristic is meant as an alternative way of rationing scarce stock and 
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leads to allocation decisions similar to BS rationing at low computational 
efforts. The logic of MC lends itself to an intuitive interpretation of the most 
determining factors around the use of myopic rationing strategies. In section 5 
most important results are summarized. 

3 The Basic Model 

This section deals with the stochastic modelling of a multi-echelon divergent 
inventory system with stocking facilities at all echelons. To begin with, some 
definitions and operating conditions concerning the concept of the echelon 
stock and the assumed order replenishment scheduling are given in subsec
tion 3.1. Next in subsection 3.2 system dynamics are described for a two-stage 
subsystem which is composed of the upstream stockpoint and its immediate 
successors. The reasoning in subsection 3.2 leads to the allocation problem, 
the solution of which requires the design of allocation functions. In view of the 
fact that in many applications the calculation of optimal allocation functions 
can become time consuming - optimal allocation functions often have a non
linear structure - approximating linear allocation functions are introduced in 
subsection 3.3. These allocation functions considerably reduce computational 
efforts. 

3.1 Definitions and Operating Conditions 

In this subsection we will give important definitions and operating conditions 
for the general case of a multi-stage divergent inventory system. System stages 
e = 1, ... ,E are numbered beginning with the downstream (final) stage 
e = 1. Stockpoints i E Se make up all installations at stage e. In particular, 
the set of downstream stockpoints is denoted by 1) = S1 and the set of the 
most upstream stockpoints is given by U = SE. An immediate successor of 
stockpoint i E Se has subscript j E n(i), where n(i) represents the whole set 
of successors of stockpoint i. The direct predecessor of stockpoint i is given 
by h( i). 1 The logistic chain that covers all stockpoints on the path from 
stockpoint i E Se at stage e to stockpoint k E Sf at stage f :S e, is called an 
echelon. Echelons are numbered according to the highest stockpoint i in that 
echelon and are denoted by ech(i). 

Throughout this paper, it is assumed that periodic customer demand 
occurs only at final stockpoints. In case of insufficient material at final stock
points the excess demand is backlogged. Customer demand Di has a station
ary distribution function FD; (di ) with mean J.Li and standard deviation O"i for 
i E V. The transfer of products from one stage to another takes a constant 
integer lead time li for i E Se and e = 1, ... ,E. The assumption of integer 

1 Note that in the considered divergent network structure the set of direct prede
cessors v( i) of stockpoint i contains a single element, only. 
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lead times is not necessary, but simplifies model analysis without restricting 
the generality of most important analytical results. 2 

Inventory decisions are based on the echelon stock, the use of which was 
first suggested by Clark (1958). The echelon stock of a given installation 
includes all stock at that installation plus in transit to or on hand at any 
installation downstream minus backlog at the most downstream installations. 

Echelon Stock: 
Define Ii ch to be the echelon stock of stockpoint i E Se for e = 1, ... ,E, and 
ITj to be the stock in transit to stockpoint j E n( i). Then, the echelon stock 
can be defined as follows: 

i E Se 1\ e > 1 
(1) 

i E 1) , 

where Ii and Bi denote local stock on hand and backlog respectively. 

The echelon stock can become negative, and, additionally, the echelon stock of 
downstream stockpoints i E 1) is identical to the local net stock NIi = Ii - Bi. 
Furthermore, the echelon inventory position IPiech at stockpoint i E Se is 
defined as the echelon stock at stockpoint i plus all stock in transit ITi to 
stockpoint i: 

(2) 

All stockpoints i E Se follow integral (R, Si)-policies, where at the beginning 
of every review period a stockpoint decides whether to order or not. According 
to the logic of (R, Si)-based ordering, every R periods stockpoint i tries to 
raise its echelon inventory position IPtch to its order-up-to level Si, which is 
a theoretical maximum for the inventory position. 

Typically, in integral inventory control based on the echelon stock replen
ishment requests of stockpoints are strongly nested. Here, a common coor
dinating strategy, which shall be denoted as the Order-After-Delivery rule 
(OAD), is used. 

Order-After-Delivery Rule: 
The upstream stockpoint i E Se for e = 2, ... ,E replenishes according to 
its (R, Si)-policy. When and only when a shipment arrives at stockpoint i, 
all direct successors j E n( i) give in their replenishment requests of size Q j. 
The shipped quantity Pi is allocated to those successors and immediately dis
patched. In case all orders Qj can be fully met, the remaining stock is kept 
at the upstream stockpoint. The same mechanism works for lower echelons 
with the arrival of the corresponding shipment at the predecessor.3 

2 See Diks (1997, pp. 103) for some comments on the use of arbitrary constant lead 
times. 

3 In a system with OAD the rate at which ordering decisions are taken is equal 
to 1/ R, thus, resulting in an optimally synchronized timing of replenishment 
decisions. 
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The external source, say a production location, is assumed to offer a 100%
service to upstream stockpoints over time. Hence, potential bottlenecks are 
restricted to internal stockpoints. In case of a bottleneck, i. e. short mate
rial at a supplying stockpoint i E Se for e = 2, ... ,E, the current orders 
are split and partial deliveries are carried out. The shipping quantities P j 

to successors j E n( i) must be determined in an economically reasonable 
way. This problem is known as the allocation problem and does not allow to 
decompose the stochastic multi-stage inventory problem into a sequence of 
separated subproblems since the system dynamics of two subsequent stages 
are interconnected in both directions. 

In the following subsection the dynamics for a two-echelon subsystem are 
formally described. 

3.2 System Dynamics 

The subsequent model analysis is restricted to a two-echelon subsystem con
sisting of a single upstream stockpoint i E U and its immediate successors 
j E n(i). From the OAD it follows that the description of system dynamics 
for the complete inventory system works along the same lines of reasoning. 
In fact, the only difference is that 'lower' subsystems additionally carry the 
impact of possible shortages at higher echelons. The subsystem of interest is 
illustrated in Fig. 1 (see nodes inside the dashed box). 

In the subsequent model analysis stock positions immediately before and 
after an allocation are distinguished. This distinction is denoted by super
script ',' for stock situations prior to the allocation and superscript 'ff' for 
stock situations after an allocation was carried out. Furthermore, an optimal 
solution is marked by superscript '*' and a target value has superscript '*'. 

Consider the upstream stockpoint i after the arrival of a delivery of size 
Pi,t from the production location and immediately before an allocation takes 
place at the beginning of period t. As a consequence of the (R, Si)-policy and 
since the upstream lead time equals li periods, the echelon stock immediately 
before an allocation is equal to 

(3) 

where expression 

Ddt -li' t) = L Dj[t -li' t) (4) 
jEn(i) 

denotes the random aggregate demand during the upstream lead time with 
mean J.Lli = li . EjEn(i) J.Lj and variance er? = li EjEn(i) erJ. Next, let us 
distinguish the inventory positions of successors j E n( i) just before and after 
allocation. The inventory position IP;;:ch before allocation at the beginning 
of period t is given by 

IP"ech = I',ech + IT· t . 
J,t J,t J, (5) 
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Fig. 1 Three-echelon system 
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From definition of the echelon stock quantities in Eqns. (1) and (2) the fol
lowing inequality holds: 

I~,ech > '" IP~,ech ',t - ~ 1,t 
jEn(i) 

(6) 

Ob · 1 I"ech '" IP"ech. h· t hi h b VIOUS y, i,t - ~jEn(i}· j,t IS t e maxImum amoun w c can e 
allocated to the lower stockpoints. This difference corresponds to the local 
upstream stock at the beginning of period t. At the start of each period, 
the lower stockpoint j wants to raise its inventory position IP;:rh up to 
the desired level Sj. But, for all retailers this is only possible when local 
warehouse stock is sufficient; otherwise an allocation problem arises. Hence, 
one can conclude that an allocation problem is given if and only if 

Si - Ddt - li' t) < L Sj 
jEn(i) 

(7) 



295 

The following reformulation of Eqn. (7) will be used for the subsequent model 
analysis: 

Lli = (Si - L Sj) < Di[t -li, t) . 
jEn(i) 

(8) 

Note that (in contrast to serial echelon systems) the upstream order-up-to 
level Si is not necessarily greater or equal to the sum of order-up-to levels 
from subsequent stockpoints. The maximum local warehouse stock Ifax is 
given by 

(9) 

where {x}+ = max(O,x). For systems with Lli ::; 0 the upstream stockpoint 
is a transshipment point resp. a stockless distribution center. Evidently, for 
Ll i = 00, the two-echelon subsystem decomposes into n single location sys
tems working in parallel with the upstream stockpoint having infinite capac
ity. It is clear that in a system with Ll i significantly below the mean warehouse 
leadtime demand an allocation problem arises frequently which requires in 
turn a proper handling of the allocation decision where the upstream stock
point has a low or even no storage function at all. 

Now, the allocation decision at stockpoint i concerns the determination 
of allocation quantities rz! t for each stockpoint j E n(i). Once having decided 

on quantities rz! t' the low~r echelon inventory position IPJ~'tCh corresponds to , , 

IpfI,ech _ {Sj 
j,t - IP~,ech + c/. 

J,t I,t 
(10) 

In favor of an easier model analysis the warehouse allocation decision shall be 
described by the set of retailer echelon inventory positions after allocation. 
In order to do that we will introduce the allocation function Zj,t which equals 
IP;~tCh in case of material rationing. The allocation function depends on the 
echelon stock prior to allocation at the predecessor i, i. e. 

Z· t(I~,ech) = IP~,ech + c/. (I~,ech) . 
J, 'I.,t J,t t,t t,t (11) 

In Eqn. (11) the allocation decision represents a non-stationary function. 
Finding optimal decision variables Zj,t in a non-stationary environment re
quires dynamic programming. It can be expected that the structure of the 
allocation decisions varies over time which explodes the complexity such that 
a real-life application seems to be doubtful. Being aware of thousands of arti
cles that have to be positioned and partitioned in real-life inventory systems, 
an exact approach is not regarded in this paper. Instead, stationary alloca
tion functions are of interest, which yields the substitution Zj,t := Zj for t > 0 
with 

Z. (I~,ech) = IP~,ech + c/. (I~,ech) . J I,t J,t I t,t (12) 
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Furthermore, it may happen that one or more of the set of allocation quanti
ties will become negative in order to balance large differences in the current 
demand processes between several locations. The appearance of such nega
tive quantities is called imbalance and causes a rebouncing of system states 
at lower echelons on system states at higher echelons. This effect does not 
allow an exact decomposition of multi-echelon divergent inventory systems in 
a top-down sequence of closed two-echelon models. To overcome this problem 
the so-called balance assumption is introduced. In our model, the balance as
sumption claims that there is no positive probability for negative allocation 
quantities. Then, the above system dynamics can be modeled straightfor
wardly by a top-down approach for distribution systems with an arbitrary 
number of echelons. Without loss of generality, we will formalize this exten
sion for stockpoints i E Se for e = 1, ... , E which lie on the path from the 
external supplier to the final customers. The echelon inventory position of an 
arbitrary stockpoint i is defined as follows: 

IP",ech _ 
i,t -

(I"ech) 
Zi h(i),t 

i EU 

IP~(:)~; - L: 8j :::: Dh(i) [t - lh(i)' t) , 
jEn(h(i)) 

i ESe, e < E (13) 

IP~(:)~; - L: 8 j < Dh(i)[t -lh(i),t) , 
jEn(h(i)) 

i ESe, e < E . 

Now that we have seen the system dynamics of a general distribution system 
with possible shortages at all stages, a numerically tractable class of rationing 
functions is introduced: the class of linear allocation functions. 

3.3 Linear Allocation Functions 

In many cases the form of optimal allocation functions zi (.) is hard to derive. 
Therefore it has been motivated to approximate optimal allocation functions 
by linear allocation functions since, additionally, they seem to be appropriate 
for a use in real-life systems: 

(1) Linear allocation functions are optimal in case of demand distribution 
functions that share the normalization property. 4 

(2) There are close economic relations between safety stock formulas and 
policies which result from linear allocation functions. 

4 A distribution function F(x) is said to satisfy the normalization property if there 
exists a distribution function <PO such that 

with mean J-tx resp. variance 0"1- holds. 
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(3) On account of their intuitive interpretation linear allocation functions 
can be easily communicated to practitioners. 

(4) In view of their computational attractiveness linear allocation functions 
easily can be applied to real-life planning problems with thousands of 
products. 

In the following, we will introduce the linear allocation function according to 
the definition in Diks (1997, p. 22). 

Linear Allocation Function: 
A linear allocation function zj(I?Ch) for successor stockpoint j E n(i) is 
defined as follows: 

( L Sk - I;,ech) 
kEn (i) 

(I"ech) S Zj i = j - qj . (14) 

Since by definition all products are allocated, one has LjEn(i) qf = I;,ech, 
which implies LjEn(i) qj = 1. The quantities qj are referred to as the alloca
tion fractions of stockpoint j and they are claimed to be positive. 

Note that claiming positive allocation fractions qj coincides with the bal
ance assumption. Next, the impact of negative allocation fractions on system 
performance is motivated. 

Negative Allocation Fractions 
In case qj < 0, negative stock is allocated to stockpoint j such that its ech
elon inventory position after allocation is below the one before allocation. 
Contrarily, all stockpoints having positive allocation fractions will receive 
more stock than necessary. In the long run the tendancy of over- and un
derallocation of scarce stock will cause so-called imbalance at the recipients, 
i. e. highly varying system performance at single stockpoints and between 
several stockpoints. In multi-echelon divergent inventory systems there is a 
high probability that imbalances will be rolled over to subsequent stockpoints 
resulting in a corresponding amplification of this undesirable behaviour. 

The Logic of Linear Rationing 
The following reformulation of the linear allocation function gives some in
sight in the logic of linear rationing. Remember that by definition we have 
Si = LkEn(i) Sk + Lli . Substitution in Eqn. (14) gives 

Zj (I;,ech) = Sj - Qj • (Si - Lli - I;,ech) , j E n( i). (15) 

From the definition of echelon stock I?Ch one can split up the right-hand 
side of Eqn. (15) as follows: 

Zj(I;,ech) = Sj - qj . (Si - IP;"ech) - qj . (Di[t, t + li) - Ll i ) (16) 



298 

A brief analysis of Eqn. (16) makes clear that the echelon inventory position 
after allocation corresponds to the maximum echelon inventory position Sj 
corrected for 

(1) the fraction of the absolute amount of the difference between the maxi
mum echelon inventorl position and the actual inventory position after 
allocation (Si - IP:"ec ) at the supplying stockpoint (upstream shortage 
risk) and 

(2) the fraction of the absolute amount by which leadtime demand at the 
supplying stockpoint exceeds its maximum physical stock (Di[t, t + li) -
Lli ) (downstream shortage risk). 

Moreover, in a two-echelon system we have Si = IP:"ech, and Eqn. (16) 
reduces to 

(17) 

In Diks (1997, Ch. 6) the validity and robustness of approximate linear allo
cation functions has been tested. He concludes that a linear approximation 
was sufficient for almost all problem instances. 

4 Rationing Heuristics 

In all scientific works on designing rationing heuristics the starting point 
of analysis is a two-echelon system. Now, consider a two-echelon divergent 
inventory system where at final stockpoints j = 1, ... , n service targets 8; 
have to be met. The upstream stockpoint i is supplied by an external source 
with infinite capacity and it takes constant li periods for shipments to arrive. 
The delivery process from the stockpoint i to a downstream stockpoint j 
requires a constant leadtime of lj periods. The whole system is operated by 
(R, Sk)-policies for k = i,j based on OAD. Finally, in case of scarce stock at 
stockpoint i a rationing decision must be undertaken. In order to determine 
the replenishment and rationing parameters one has to solve the combined 
Service £3 Rationing Problem SRP given below 

SRP: { 8j (Sj, qj, Si, Lli ) = 8; 
n 

Eqj=l. 
j=l 

j = 1, ... ,n 
(18) 

The function 8j (.) in Eqn. (18) denotes the service function used at stockpoint 
j which is reached given local control parameter Sj and the upstream policy 
parameters Si, Lli and %. Being aware of the relation E7=1 Sj = Si - Ll i , 

the policy parameter Si is completely determined by other decision variables. 
Hence, the redundant decision variable Si can be skipped and problem (18) 
consists of 2n + 1 decision variables and n + 1 equations. As a further step 
towards solvability of SRP, it is common to assume Lli to be given in advance. 
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As a consequence of fixing the maximum stock Lli one obtains the problem 
surrogate SRP' with 

SRP': 

8j (Sj,%) = 8; 
n 

E qj = 1 
j=1 

n 
Si = E Sj +Lli 

j=1 
given: 

Lli = C 

j = 1, ... ,n 

(19) 

The assumption of given quantities Lli is not very restrictive: By applying a 
sequential analysis it is possible to analyze the impact of varying values Lli . 

For example, a possible sequence of values Lli would be: 

n n n 

Lli = (c: C E {O, 2: JLj, . .. , li . (2: JLj), (li + 1) . (2: JLj), oo}) 
j=1 j=1 j=1 

Systematically varying Lli and restricting to integer values would yield the 
optimal solution after a finite number of iterations. 5 Given SRP' we have now 
2n variables and n + 1 equations. By introducing a specific rationing logic 
one can overcome this problem of overdetermination of SRP'. As we have 
seen, linear functions intuitively seem to be natural candidates for rationing 
in multi-echelon inventory systems. There are two important classes of linear 
rationing heuristics which allow an unambiguous solution of the Service & 
Rationing Problem: 

(1) the Consistent Appropriate Share Rationing (abbr.: CAS) and 
(2) the Balanced Stock Rationing (abbr.: BS). 

The basic CAS and all its variants assume downstream order-up-to levels Sj 
to be completely determined by a linear function f(qj, 8i ) which extensively 
reduces the number of independent decision variables. The logic of the ba
sic CAS can be briefly described as follows: Every downstream stockpoint 
is delivered the expected demand during the lead time plus the next review 
period. Additionally, each echelon inventory position of a downstram stock
point is raised by a fixed amount that can be used as a protection against 
demand uncertainty. The calculation of the protection quantities is based on 
single-stage safety stock planning models. The variants CAS2 and CAS3 aim 
at retrieving the natural deficiencies of a single-stage oriented planning of the 
protection quantities. Although numerical studies for two-echelon systems in
dicate that CAS strategies work sufficiently well in most problem instances 
they are not of interest here. Diks (1997, Ch. 2,3) gives a thorough discussion 
of CAS and numerical tests. Numerical results show that a superior rationing 

5 For large multi-stage distribution systems such a procedure tends to be numeri-
cally prohibitive, of course. 
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strategy is given by BS as suggested by van der Heijden (1997) which works 
as follows: 

(1) Determine optimal rationing fractions qj. 
(2) Given qj solve the service problem by searching order-up-to levels Sj. 

It is obvious that by not defining functions f(qj, Oi) for the downstream order
up-to levels like with CAS the BS heuristic has more degrees of freedom 
which, at least in principle, supports a superior parametrization of the control 
policy. 

4.1 Balanced Stock Rationing 

In van der Heijden (1997) the BS heuristic is introduced which seeks to 
determine allocation fractions qi such that a systemwide measure of imbalance 
is minimized. Although the BS heuristic was designed for two-echelon systems 
with no central stock, it can be extended to multi-stage inventory systems 
with storage opportunities at intermediate stockpoints. Unfortunately, an 
exact extension to multi-stage distribution systems is not straightforward and 
implies burdensome computations. Therefore, an approximate procedure is 
preferred that neglects stochastic variations in echelon inventory positions 
after rationing which are caused by possible imbalances. 

To identify systems for which imbalance has a non-negligible impact on 
system performance, there is a need for quantitative measures. Several mea
sures have been proposed so far, many of which concentrate on inventory 
systems with identical final stockpoints (d. for example Zipkin (1984) or van 
Donselaar (1989, pp. 146)). One important measure is the mean imbalance 
MI which corresponds to the average sum of allocated negative stock. The 
BS heuristic of van der Heijden is based on this measure of imbalance. We 
will skip a formal derivation of MI here and restrict ourselves to presenting 
final analytical results for the BS heuristic. 

BS Heuristic 
The mean imbalance of a two-echelon system is derived by modelling the 
difference variable Yj between echelon inventory positions before and after 
an allocation at downstream stockpoints j with 

Y . - IP"ech _ IP",ech - _ j (20) 
J - j j - qi . 

Instead of deriving the true distribution function of the random variable Yj, 
van der Heijden (1997) uses a normal approximation FYj (Yj) :::::; F~j (Yj) as a 
rough, but analytically tractable approach. Now, from the definition of Yj it 
follows that imbalance occurs in the range (0; 00]. Therefore, one can obtain 
an approximate expression for mean imbalance by calculating the partial 
moment Eg" (Yj) with 

MIj :::::; Eg"(Yj) = aYj . ¢ (I-LYj ) + I-LYj . iP (I-LYj ) (21) 
O"Yj O"Yj 
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where ¢(.) (4)(.)) denotes the unit normal density (distribution) function. The 
mean and variance of Y; are defined as follows: 

fLYj = -R· fLj and (22) 

ot = (R - 2· qj . min(R, li)) . o} + 2· q; . min(R, li)· L a~ (23) 
kEn(i) 

Summing up over all MIj yields the mean imbalance of the considered sub
system. Numerical studies indicate that the normal approximation is only a 
rough approach because the right-hand side tail behavior of Y; mainly influ
ences MIj . Contrarily, the normal approximation concentrates on the mean 
and variance of Y; and not on the tail behavior. All the same, its use seems 
to be reasonable with regard to several aspects: 

(1) The objective of minimizing mean imbalance is strongly supported. 
(2) Analytical conditions for optimality can be easily derived. 
(3) All analytical results are numerically tractable. 

For the considered echelon inventory system the minimization of systemwide 
mean imbalance can be reached by solving the following non-linear program: 

n () () 
. fLY; fLYj 

mm "ay .. ¢ - + fLY· .4> -
( T) ~ 3 ay. 3 ay. 
q j=1 3 3 

n 

s.t. LQj = 1 
j=1 

I 
qj 2: %, j = 1, ... ,n . 

(24) 

Note that allocation fractions are comprised in vector qT = (ql, ... ,qn) and 
the lower bounds q~ for j = 1, ... ,n are calculated via 

a? 
I J 

% = n 

2· E a~ 
(25) 

k=1 

Note that Eqn. (25) results from deriving the variance formula (23) w. r. t. qj. 
A natural candidate to solve this program is the Lagrange-multiplier tech
nique with multiplier >'1 for the adding-up-to-one restriction of allocation 
quantities, which finally yields the following first-order conditions w. r. t. al
location fractions qj: 

(26) 

In van der Heijden (1997) a nested bisection search method is sketched to 
solve problem (24) numerically, which, in our opinion, is not necessary since 
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the given problem can be easily dealt with using standard non-linear solvers.6 
Below, the BS heuristic is summarized in pseudocode for a multi-stage dis
tribution system. 

program 1 BS (van der Heijden (1997)) 
begin 

AllocateBS; 
ServiceBS; 

end; 

procedure 1 AllocateBS 
begin 

end; 

for e := 2 to E do 
begin 

for all i E 8 e do 
begin 

for all j E n(i) do compute q; using (25); 
solve (26) for Al and all qj such that 

end; 
end; 

L:kEn(i) qk = 1 and qj E (q;; 1) for all j; 

procedure 2 ServiceBS 
begin 

end; 

4.2 

for all i E 8 2 do 
for all j E n(i) do determine Sj s. t. OJ(Ip;,,eCh) = 0; using (17) 

for e := 2 to E do 
for all i E 8 e do Si := L:jEn(i) Sj + Lli; 

Multiple Criteria Rationing 

In this section, we will motivate a so-called Multiple Criteria Rationing (Me) 
heuristic which grounds on the concept of Balanced Stock Rationing, i. e. first 
the allocation fractions are determined and second the service model is solved. 

6 We used the Excel97 solver, for example. 
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Again, for sake of clarity we will restrict model analysis to a two-echelon 
subsystem. An extension to larger systems works along the same lines as 
shown for the BS heuristic. 

Basic Idea 
The basic idea of MC is to use information concerning statistical moments 
of single and aggregate demand processes in order to form a rationing deci
sion. Some reasoning indicates that the significant influential factors for the 
rationing decision are: 

(a) the relative importance of mean customer demand resp. mean order quan
tity, 

(b) the relative importance of variation in customer demand resp. order quan
tityand 

(c) the relative importance of the coefficient of variation of customer demand 
resp. order quantity. 

Selecting an 'adequate' linear combination of these three factors in the con
text of determining allocation fractions can be expected to yield fruitful re
sults. By 'adequate' it is meant that since not all parameters are equally im
portant linear coefficients should be chosen such that the weight of a specific 
parameter is reflected correctly. Now, the Multiple Criteria allocation fraction 
q'tc for stockpoint j = 1, ... ,n results from a weighted linear combination 
of the allocation fractions qj which follow from using factor f = 1,2,3: 

(27) 

where WI, W2, W3 ~ 0 are the weighting factors of the linear combination. 
Analyzing the influential factor (a) listed above shows that a corresponding 
rationing decision would be based solely on the first moment of single and 
aggregate demand processes. In such a case short material is rationed pro
portionally to the weight of an individual current order with respect to the 
sum of all current orders. Such a rationing logic shall be denoted as Propor
tional Rationing (PR). Factor (b) concentrates on the contribution of a single 
downstream stockpoint to the total variance of the aggregate demand pro
cess. We shall denote an allocation decision based on the variance criterium 
as Variance Rationing (VR). Finally, the relative degree of variation in the 
demand process at single stockpoints can be expected to play an important 
when deciding about how much to store locally (see (c) listed above). The In
verse Coefficient of Variation Rationing (ICV) takes into account this aspect 
by calculating the ratio of an individual squared coefficient of variation with 
respect to the sum of all coefficients. In the following, the three influential 
factors are defined and motivated in detail. 

Proportional Rationing 
The economic logic of Proportional Rationing grounds on the empirical obser
vation that stockpoints with relatively high mean demand per period should 
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attain large allocation fractions. This observation is immediately comprehen
sive if one realizes that the upstream leadtime demand process Di(li) (and 
therefore the probability of shortages) are particularly influenced by final 
stockpoints with relatively large average mean demand. Therefore, such 'im
portant' demand processes should be hedged accordingly by first relatively 
high allocation fractions and second, if possible, more central stock. 

In the BS heuristic mean imbalance is minimized, where both relative 
variances in demand as well as the upstream mean leadtime demand are 
considered. Now, the logic of PR is to take into account explicitly mean 
demand during the review period: 

Logic ofPR: 
Consider upstream stockpoint i after the arrival of a shipment of size Pi. 
Immediately after the shipment, all successors j = 1, ... ,n give in their 
replenishment request Qj. In case echelon stock is short at stockpoint i, 
according to the logic of PR, the allocation fraction qj for stockpoint j can 
be determined as follows: 

For the considered model the allocation fractions qj can be specified by sub
stituting expressions Qj by mean demand during a review period R = 1. One 
obtains the 'proportional' allocation fraction qjR for stockpoint j = 1, ... ,n 
with 

(28) 

When using allocation fractions qjR stockpoints with relatively high average 
demand will have large rationing parameters. However, the impact of stochas
tic variations in demand is fully neglected. Therefore, it can be expected that 
in situations with weakly varying mean demand, but strongly varying coef
ficients of variation the PR heuristic tends to 'overration' stockpoints that 
have relatively low variances. 

Variance Rationing 

Large stochastic variations in the customer demand process increase the 
probability of intertemporal shortages at the upstream stockpoint. A proper 
valuation of allocation fractions should therefore consider the relative con
tribution of stockpoint j = 1, ... ,n to the overall variance of the internal 
demand process. In case the rationing decision is fully based on the criterium 
of Variance Rationing, one obtains the following allocation fraction qrr for 
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stock point j: 

(29) 

In Diks (1997, p. 40) the so-called BS2 heuristic7 is cited which is similar to 
variance rationing factor with 

BS2 1 (o} 1) q. =-. --+-
J 2 n n 

I: a~ 
(30) 

k=l 

The reason for using qyar instead of qjS2 in the MC heuristic is as follows: 
In the BS2 heuristic structural information about the relative weight of 10-
cational variation in customer demands is partially leveled out by the addi
tional equal-weight factor lin. In later model analysis the weighting factors 
WI, W2, W3 of the MC heuristic will be estimated using a linear model. In 
order to estimate the linear coefficients properly according to the underlying 
influential factors, i. e. 'mean demand', 'variance', 'coefficient of variation', it 
is preferred to omit the constant term 1/n.s 

Inverse Coefficient of Variation Rationing 
In Wahl (1998) the importance of the coefficient of variation of customer 
demand has been tested in the context of optimal safety stock planning for 
two-echelon inventory systems based on the PR heuristic. Numerical results 
underline that an important influential parameter w. r. t. the decision on de
centralized vs. centralized stocking is the coefficient of variation of single
period demand CV D. The observed relevance of CV D lends itself to rationing 
short material: In case of relatively high coefficients of variation, more stock 
should be held locally. Therefore, the allocation fractions should be small, if 
all stockpoints have similar mean demand. Contrarily, in case of relatively low 
coefficients of variation more stock should be provided centrally and, hence, 
the allocation fractions should be large. In order to support the behavior 
of allocation fractions as described above we use the inverse coefficients of 
variation (ICV) and one obtains qjCVl for stockpoint j = 1, ... ,n with 

(31) 

7 The BS2 heuristic has been motivated by van Donselaar (1996). 
8 Indeed, a numerical study by the authors underlined this presumption. 
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However, in case of stockpoints with largely different mean demand a use 
of unweighted inverse coefficients of variation can be expected to be less 
appropriate since the overall contribution of a stockpoint to the aggregate 
mean demand is neglected. Therefore, we will test an alternative measure 
ICY 2 which makes use of the individual share of total mean demand. The 
allocation fraction q'fv2 for stockpoint j = 1, ... ,n is defined as follows: 

(32) 

In order to emphasize the effect of low and high relative stochastic variation 
it has been preferred to use the squared coefficient of variation as the ba
sic measure. Note that by using the squared inverse coefficients of variation 
erratic demand (CY; > 1) attains progressively less weight and non-erratic 
demands attains degressively more weight. 

The Me Heuristic 

The logic of MC is to combine linearly the three influential factors cited above 
such that an economically reasonable rationing decision can be reached. By 
'economically reasonable' it is meant that the allocation fractions are quan
tified such that the impact of imbalance is under control. The BS heuristic, 
which, until today, seems to the most effective candidate for rationing, will 
be used as the benchmark on which the linear model of MC is trimmed. 

The intended effects of MC with regard to the decision of assigning large 
or small proportions of the scarce echelon stock at the upstream stockpoint to 
downstream stockpoints are summarized in table 1. There, we denote by i the 
ceteris paribus tendancy to decide to allocate a relatively larger proportion 
of scarce stock to stockpoint j = 1, ... ,n and, accordingly, by 1 we mean the 
tendancy to decide to allocate a relatively smaller proportion. Furthermore, 
we distinguish the categories 'relatively large', denoted by +, and 'relatively 
low', denoted by -, for each influential parameter. For example, the first 
entry means that in case of a relatively large contribution to the total mean 
demand (see +) the MC based allocation fraction qjC should be relatively 
large (r). 

In order to be able to quantify qjC it is necessary to estimate the partial 
contribution of each influential factor. In subsection 4.3 we will measure those 
contributions with a linear model. The Multiple Criteria Rationing heuristic 
is stated in pseudocode below for a multi-stage distribution system. 
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Table 1 Ceteris paribus influence on allocation fraction qjC 

program 2 
begin 

AllocateMC; 
ServiceBS; 

end; 

parameter 

MC Heuristic 

4.3 Linear Model 

+-

i 1 

i 1 

-1 

i 1 

In this subsection we will run a multiple regression as to determine the lin
ear coefficients W1, W2, W3 that are assigned to each influential factor. The 
underlying linear model for determining the MC based allocation fraction of 
downstream stockpoint j = 1, ... ,n reads as follows: 

q MC _ W qPR + w qVar + W qICV j - l'j 2'j 3'j (33) 

Before calculating the linear model a pre-analysis shall give some hints at the 
explanatory degree of the selected influential factors. Since the BS based allo
cation fractions serve as benchmark, they represent the endogeneous variable 
of the linear model. Although the input data for estimating the coefficients of 
the linear model are generated randomly, we will validate the parametrized 
model by means of several control samples. 

Allocation Fractions 
Extensive numerical results in Diks (1997) and van der Heijden (1997) indi
cate that the basic CAS and all its improvement strategies are significantly 
less effective in case downstream stockpoints vary moderately up to largely 
with regard to statistical moments of the customer demand process. Contra
rily, the BS heuristic outperforms CAS especially in case of large variations 
between final stockpoints. Therefore, the allocation fractions resulting from 
BS shall be used as an approximate benchmark. But this benchmark should 
be used with caution since the normal approximation of BS can be only a 



procedure 3 AllocateMC 
begin 

for e := 2 to E do 
begin 

for all i E Se do 
begin 
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for all j E n(i) do compute qrC using (33); 
end; 

end; 
end; 

rough approximation: Other criteria like, for example, higher moments of 
the customer demand process or varying downstream service targets are ne
glected when determining allocation fractions. All the same, discrete event 
simulations underline the high accuracy and robustness of the BS heuristic, 
i. e. its powerful support in reducing systemwide imbalance and by that sta
bilizing both the overall and stockpoint specific service performance. Since 
the service approximation phases of BS2, PR and MC heuristics are identi
cal to that of the BS heuristic, we will focus on the aspect of determining 
reasonable allocation fractions. 

Organization 
A two-echelon distribution system with one warehouse and three retailers 
is considered. Periodic customer demand D j occurs at the final stage with 
mean /l-j and variance aJ for j = 1,2,3. The downstream and upstream lead 
times lj resp. li vary between 1 and 4 periods. The review period equals 
R = 1. Beside of determining allocation fractions based on BS, BS2 and PR, 
a linear model for MC is fitted by parametrizing the coefficients WI, W2, W3. 

In order to do this properly, two samples of demand parameters are randomly 
generated: 

(1) The 'parametrization' sample which is used for fitting a linear model 
which approximates 'effective' allocation fractions and 

(2) The 'validation' sample which is used to check the accuracy and robust-
ness of the linear model. 

The 'parametrization' sample consists of 104 both 'normal' and 'extreme' 
problem instances. With 'normal' problem instances the absolute differences 
in mean and variance of customer demand are small up to moderate be
tween downstream stockpoints. Contrarily, with 'extreme' problem instances 
there are large variations w. r. t. to the mean demand and/or the variance of 
demand. All problems have been randomly generated from both truncated 
normal distributions9 and uniform distributions1o . Fitting a model on all 

9 Drawing from truncated normal distributions enhances the tendancy to generate 
normal instances. 

10 Drawing from uniform distributions supports the generation of extreme instances. 
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problems instances of the 'parametrization' sample should yield robust and 
reliable allocation fractions. 

The 'validation' sample consists of three subsamples with 32 problem in
stances each. The first subsample is an 'extreme case' sample since mean and 
standard deviation are generated independently from each other on a large 
range assuming a uniform distribution. The remaining two subsamples are 
generated from different truncated normal distributions and can be taken as 
'moderate case' samples. The linear model estimated for the 'parametriza
tion' sample is then used to estimate rationing factors for the 'validation' 
sample. If all three control samples yield results with 'sufficient' accuracy, the 
suggested three-factor linear approximation can be judged a robust method 
for approximating 'effective' allocation fractions. In order to judge the linear 
model to be sufficiently accurate we will calculate some descriptive statistics 
which use the BS allocation fraction as benchmark resp. reference value. 

Pre-Analysis 
To begin with we will start a pre-analysis of the 'explanatory power' of the 
suggested rationing heuristics BS2, PR, ICV! and ICV2 and VAR to the 
benchmark BS. Furthermore, an analysis of correlations between the alterna
tive rationing heuristics is done to see if a linear combination of single-factor 
rationing rules might yield allocation fractions that are near to the bench
mark. In the following we will state results for the single-factor rationing 
heuristics BS2, PR and ICV. Deviations from the benchmark BSll are mea
sured by the following statistics: 

(1) the mean absolute deviation MAD between BS and another heuristic, 
(2) the average euclidean distance ED, 
(3) the absolute maximum deviation Max from benchmark BS, 
(4) the absolute minimum deviation Min from benchmark BS and 
(5) the coefficient of correlation Pab between two heuristics a and b. 

In table 2 the first two measures of similarity between the benchmark and al
ternative allocation fractions are summarized. A brief analysis indicates that 
allocation fractions determined via a BS2 or PR approach are not too dis
tant from BS fractions on average when compared to ICV!, ICV2 or Var. By 
restricting analysis to absolute and squared deviations reliable conclusions 
are hard to make. Therefore, an analysis of underlying correlation structures 
between all allocation fractions is done. Such an investigation should give 
some hints at first the neareness to the benchmark BS and second the degree 
of dependence amongst the alternative rationing fractions. In case there are 
moderate positive or even moderate negative correlations between the alter
native rationing factor models, it can be expected that a linear combination 
of several single-factor models might yield better approximations on average. 

11 Note that the BS values are calculated by solving the relaxed version of the 
non-linear minimization problem (24). 
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The correlation matrix (P)ab calculated for the 'parametrization' set is given 
in table 3. 

Table 2 Deviations from benchmark BS 

heuristic MAD ED Max Min 

BS2 0.073 0.009 0.328 0.000 
PR 0.072 0.007 0.241 0.002 
ICVI 0.3320.1590.9270.003 
ICV2 0.296 0.131 0.8020.000 
Var 0.142 0.032 0.485 0.000 

Table 3 Correlations between rationing heuristics 

(P)ab BS BS2 PR ICV 1 ICV 2 Var 

BS 1.000 
BS2 0.859 1.000 
PR 0.898 0.589 1.000 
ICV 1 -0.270 -0.622 -0.005 1.000 
ICV2 -0.011 -0.446 0.288 0.933 1.000 
Var 0.859 1.000 0.589 -0.622 -0.446 1.000 

An analysis of the correlation matrix (P)ab shows that both for BS2 and 
PR there is a considerably high correlation with BS while this is not true for 
the remaining heuristics. Although the correlation between BS2 and PR is 
positive, the moderate value of P32 = 0.589 between BS2 and PR indicates 
that an improvement in estimation can be reached when linearly combining 
BS2 and PR. Furthermore, the correlation of ICV 1 and ICV 2 with BS, BS2 
and Var is always negative. With regard to PR there is a weak correlation 
around zero given ICVI and a slight positive correlation for ICV2 . Although 
the overall contribution of ICV 1 and ICV 2 to describing the benchmark BS 
seems to be relatively low, we will use them separately in the two estimation 
models A and B in view of the negative correlation with the allocation frac
tions determined by means of Var resp. BS2. Model A is composed of the 
exogeneous variables PR, Var and ICV 1 fraction, whereas model B has the 
ICV2 fraction instead ofICV1 . 
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Regression Model 

From the above data analysis we have seen that a linear combination of PR, 
Var and some ICV variant can be expected to yield allocation fractions which 
are nearer to the benchmark BS than a single-factor rationing strategy. In 
order to attain an appropriate linear combination, a multiple regression anal
ysis is run on model A and model B resulting in linear coefficients WI, W2, W3. 

In general, those coefficients will not sum up to one and, therefore, an ex-post 
tuning of coefficients must be done. 

Running a linear regression without constant on the 'parametrization' 
sample given model A yields the coefficients WI = 0.6436, W2 = 0.3425 
and W3 = 0.0323 with corresponding t-statistics I2 being tl = 30.7325, t2 = 

34.6799 and t3 = 3.7899. The Pearson coefficient of correlation R between 
estimated data using model A and the benchmark values amounts to R = 

0.9847. The F-valueI3 for the linear model is F = 3'283.34 which is signifi
cantly high. Next, the same sample is estimated given model B. One obtains 
the coefficients WI = 0.5634, W2 = 0.3793 and W3 = 0.0729 with t-statistics 
tl = 27.2843, t2 = 33.2799 and t3 = 7.5307. Both the Pearson coefficient 
and the F-value are slightly higher with R = 0.9865 and F = 3'726.83. The 
following conclusions can be made: 

(1) Both models seem to be appropriate to approximate 'effective' allocation 
fractions. 

(2) Both models have a low dimension with only three exogeneous factors. 

(3) All three exogeneous factors and their impact on rationing have an im
mediate economic explanation. 

(4) Both models indicate that on average using proportional rationing in
stead of variance oriented approaches improves the rationing efficiency 
since WI > W2 holds for both models. 

(5) Model B seems to fit better and is selected for the model validation phase. 

The above linear coefficients do not sum up to one. Therefore, we calibrated 
WI, W2, W3 several times accordingly, ran a linear regression model, checked 
the validity and chose the best configuration for model B. It was found that 
the best linear model is given by the following formula for qjC and j = 

1, ... ,n: 

(34) 

12 The t-statistic is a standard test-statistic for checking if a selected model factor 
contributes significantly to the overall 'explanation' of the assumed linear model. 

13 The F-value is a standard test-statistic for checking if the assumed linear model 
can be accepted or possibly must be specified differently. 
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Model Validation 
In the following, we check the appropriateness of model B by calculating 
allocation fractions for the 'validation' sample. In table 4 some descriptive 
statistics are depicted for the allocation fractions from BS2, PR and MC 
which underline the high accuracy of the MC heuristic. 

Table 4 Comparison of several rationing heuristics 

heuristic MAD ED Max Min R 

BS2 0.079 0.009 0.292 0.0002 0.477 
PR 0.048 0.0050.3430.0003 0.731 
Me 0.033 0.0020.1670.0002 0.929 

On average, MC appears to be more effective and robust than BS2 or 
PR. Then, PR seems to be more effective than BS2. An analysis of numerical 
results allows some more conlusions: 

(1) Given inventory systems where locations have large differences in mean 
demand and moderate differences in standard deviation, the following 
typical order in accuracy can be observed: 

q MC )- qPR )- qBS2 
J - J - J • 

(2) Given inventory systems where locations have moderate differences in 
mean demand and large differences in standard deviation, the following 
typical order in accuracy can be observed: 

q~C )- qBS2 )- qPR 
J - J - J . 

(3) Given inventory systems where locations have slight differences in mean 
demand and large differences in standard deviation, the following typical 
order in accuracy can be observed: 

qBS2 )- qMC )- qPR 
J - J - J . 

(4) Given inventory systems where locations have large differences in mean 
demand and slight differences in standard deviation, the following typical 
order in accuracy can be observed: 

q PR )- qMC )- qBS2. 
J - J - J 
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(5) Given other inventory systems, the following typical order in accuracy 
can be observed: 

q MC >- qPR >- qBS2 
J - J - J . 

Although the accuracy of Me rationing is considerable, there is some loss in 
accuracy when compared to the 'parametrization' sample. A thorough data 
analysis shows that a large part of the decrease in accuracy of model B is 
caused by 'unnatural' configurations like, for example, a set of three final 
stockpoints that have similar means of demand, say around 60 units of prod
uct, and largely differing standard deviations, say around 15 units for two 
stockpoints and 200 units of product for the remaining stockpoint. Omitting 
such probable 'outliers' might increase the overall accuracy: After discarding 
five 'outliers' Pearson measure increased to a value of R = 0.9351. In order 
to illustrate the considerable similarity between the 'effective' allocation frac
tions determined via the BS heuristic and the Me approach suggested in this 
paper all N = 3 . 3 . 32 = 288 allocation fractions are plotted in ascending 
order in figure 2. Note that the BS allocation fractions are combined by a 
line, whereas the Me fractions are depicted as diamonds. 

Fig. 2 Me vs. BS allocation fractions for N = 288 stockpoints 
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5 Summary 

In this paper the modelling of multi-echelon distribution systems was dis
cussed. It was shown that in a synchronized inventory system the impact of 
stockouts at upstream stockpoints on the overall system performance can be 
modelled by rationing functions. Since an economically reasonable rationing 
decision requires the design of effective allocation rules, this aspect was dealt 
in detail. In most cases the form and structure of optimal rationing func
tions is hard to derive. To overcome such difficulties linear rationing rules 
are motivated in literature. Beside of their numerical attractiveness, in most 
cases linear rules provide sufficiently accurate rationing decisions. Until to
day there exists a bunch of approaches to the design of rationing rules with 
practical relevance. In this context, the Balanced Stock Rationing heuristic 
seems to be a promising candidate. One disadvantage of this heuristic is the 
numerical efforts which involves solving non-linear minimization problems to 
obtain effective allocation fractions. Therefore, we suggested an alternative 
rationing strategy, the Multiple Criteria Rationing heuristic, which is fully 
based on simple statistics which can be made up of the first two moments of 
the underlying demand processes. Three main factors which implicitly influ
ence the calculation of BS allocation fractions were found: the mean ratio, 
the variance ratio and the inverse coefficient of variation ratio. It was pre
sumed that by linearly combining those three factors a good approximation 
of BS allocation fractions could be reached. In order to verify this hypothesis 
an extensive numerical study in which first the linear coefficients of the MC 
rule were estimated for a 'parametrization' sample using multiple regression 
and second the parametrized linear model was tested against a 'validation' 
sample. It was found that the MC heuristic gives reliable and robust results 
which lends itself to a use in the area of controlling divergent echelon systems 
with non-negligible stockout probabilities. 
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