
< Day Day Up >

Service-Oriented
Architecture Compass:
Business Value, Planning,
and Enterprise Roadmap
By Norbert Bieberstein,,
Sanjay Bose,, Marc
Fiammante,, Keith Jones,,
Rawn Shah
..
.
Publisher: IBM Press
Pub Date: October 19, 2005
ISBN: 0-13-187002-5
Pages: 272

Table of Contents |
Index

Maximize the business value and flexibility of your SOA deployment.
In Service-Oriented Architecture Compass, IBM experts offer a
complete roadmap for maximizing the business value and flexibility of
SOA in your environment. Drawing on their unsurpassed experience
and enterprise SOA migrations, the authors share best practices for
planning, architecting, implementing, managing, and securing SOA.
They clearly explain what SOA is, the opportunities it offers, and how
it differs from earlier approaches. Then, using detailed examples
from IBM consulting engagements, they show how to deploy SOA
solutions that tightly integrate with your processes and operations.
Whether you're an enterprise architect, project manager, or software
development leader, Service-Oriented Architecture Compass will
demonstrate that SOA will help your enterprise integrate its business
processes with its technical infrastructure to deliver on goals, provide
agility, and adapt to an ever-changing business world.

< Day Day Up >

< Day Day Up >

Service-Oriented
Architecture Compass:
Business Value, Planning,
and Enterprise Roadmap
By Norbert Bieberstein,,
Sanjay Bose,, Marc
Fiammante,, Keith Jones,,
Rawn Shah
..
.
Publisher: IBM Press
Pub Date: October 19, 2005
ISBN: 0-13-187002-5
Pages: 272

Table of Contents |
Index

Copyright

IBM Press
Forewords
Preface

Acknowledgments
About the Authors
developerWorks and SOA
Chapter 1. Introducing SOA

Section 1.4. Summary

Section 2.5. Summary

Section 3.6. Summary

Praise for Service-Oriented Architecture Compass

More Praise for Service-Oriented Architecture Compass

IBM Press: The developerWorks® Series

Trademarks and Notices
developerWorks® Link Icons Used in This Book

Section 1.1. SOA to the Rescue
Section 1.2. Exploring SOA
Section 1.3. A Preview of the Service-Oriented Architecture Compass

Section 1.5. References
Chapter 2. Explaining the Business Value of SOA

Section 2.1. The Forces of Change
Section 2.2. Common Questions About SOA
Section 2.3. SOA Value Roadmap
Section 2.4. The Nine Business Rules of Thumb for SOAs

Section 2.6. References
Chapter 3. Architecture Elements

Section 3.1. Refining SOA Characteristics
Section 3.2. Infrastructure Services
Section 3.3. The Enterprise Service Bus (ESB)
Section 3.4. SOA Enterprise Software Models
Section 3.5. The IBM On Demand Operating Environment

Section 3.7. Links to developerWorks
Section 3.8. References

Chapter 4. SOA Project Planning Aspects
Section 4.1. Organizing Your SOA Project Office
Section 4.2. SOA Adoption Roadmap

Section 4.3. The Need for SOA Governance

Section 4.4. SOA Technical Governance

Section 4.5. SOA Project Roles

Section 4.7. Links to developerWorks

Section 4.8. References

Chapter 5. Aspects of Analysis and Design

Section 5.1. Service-Oriented Analysis and Design

Section 5.2. Service-Oriented Analysis and Design—Activities

Section 5.4. Links to developerWorks

Section 5.5. References

Chapter 6. Enterprise Solution Assets

Section 6.1. Architect's Perspective

Section 6.2. Enterprise Solution Assets Explained

Section 6.3. A Catalog of Enterprise Solution Assets

Section 6.4. How Does an ESA Solve Enterprise Problems?

Section 6.5. Selecting an Enterprise Solution Asset

Section 6.6. Using an Enterprise Solution Asset

Section 6.7. Multitiered Disconnected Operation

Section 6.8. Request Response Template

Section 6.10. Links to developerWorks

Section 6.11. References

Chapter 7. Determining Non-Functional Requirements

Section 7.1. Business Constraints

Section 7.2. Technology Constraints

Section 7.3. Runtime Qualities

Section 7.4. Nonruntime Qualities

Section 7.6. Links to developerWorks

Section 7.7. References

Chapter 8. Securing the SOA Environment
Section 8.1. Architectural Considerations for an SOA Security Model
Section 8.2. Concepts and Elements of Security
Section 8.3. Implementation Requirements for SOA Security
Section 8.4. Standards and Mechanisms for SOA Security
Section 8.5. Implementing Security in SOA Systems
Section 8.6. Non-Functional Requirements Related to Security
Section 8.7. Technology and Product Mappings

Section 8.9. Links to developerWorks

Section 8.10. References

Chapter 9. Managing the SOA Environment
Section 9.1. Distributed Service Management and Monitoring Concepts
Section 9.2. Key Services Management Concepts
Section 9.3. Operational Management Challenges
Section 9.4. Service-Level Agreement Considerations
Section 9.5. SOA Management Products

Section 9.7. Links to developerWorks

Section 9.8. References

Chapter 10. Case Studies in SOA Deployment

Section 10.1. Case Study: SOA in the Insurance Industry

Section 10.2. Case Study: SOA in Government Services

Chapter 11. Navigating Forward

Section 11.1. What We Learned

Section 4.6. Summary

Section 5.3. Summary

Section 6.9. Summary

Section 7.5. Summary

Section 8.8. Summary

Section 9.6. Summary

Section 10.3. Summary

Section 11.2. Guiding Principles

Section 11.3. Future Directions

Section 11.4. Summary
Section 11.5. Links to developerWorks

Glossary
Index

< Day Day Up >

< Day Day Up >

Upper Saddle River, NJ 07458

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts. First printing,
October 2005

Library of Congress Cataloging-in-Publication Data
Service-oriented architecture compass : business value, planning, and enterprise roadmap / Norbert
Bieberstein ... [et al.]

p. cm.
Includes bibliographical references and index.
ISBN 0-13-187002-5

1. Computer software—Development. 2. Computer architecture. 3. System design. 4. Business—
Data processing. I. Bieberstein, Norbert.
QA76.76.D47S45 2005
005.1—dc22

2005019911

Dedication
To my wife, Joanna, and my daughters, Katherina, Caroline, and Julia N.B

To my dad, Chitta Ranjan, and my mom, Sephali, for instilling confidence and believing in me S.B.

To my wife, Corine, and my daughter, Florence, for their support of my taking some family time to work on the
book M.F.

To my wife, Gillian, and my sons, Simon and Philip K.J.

To my ever-supportive wife, Sarah R.S.

Copyright
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

© Copyright 2006 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Manager: Tara Woodman, Ellice Uffer

IBM Press Consulting Editor: Linda Foo

Cover design: IBM Corporation

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com.

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both: DB2, CICS, IMS, Lotus, Tivoli, WebSphere, Rational, IBM, the IBM
logo, and IBM Press. Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. Microsoft, Microsoft .Net, .NET, Windows, Windows NT, and the Windows
logo are trademarks of the Microsoft Corporation in the United States, other countries, or both. Linux is a
registered trademark of Linus Torvalds. Intel, Intel Inside (logo), MMX, and Pentium are trademarks of Intel
Corporation in the United States, other countries, or both. OSF/1 and UNIX are registered trademarks and The
Open Group is a trademark of the The Open Group in the United States and other countries. Other company,
product, or service names mentioned herein may be trademarks or service marks their respective owners.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.

Rights and Contracts Department

One Lake Street

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

< Day Day Up >

< Day Day Up >

Praise for Service-Oriented Architecture Compass

"Service-Oriented Architecture enables organizations to be agile and flexible enough to adopt new business
strategies and produce new services to overcome the challenges created by business dynamism today. CIOs
have to consider SOA as a foundation of their Enterprise Applications Architecture primarily because it
demonstrates that IT aligns to business processes and also because it positions IT as a service enabler and
maximizes previous investments on business applications.

"To understand and profit from SOA, this book provides CIOs with the necessary concepts and knowledge
needed to understand and adapt it into their IT organizations."

—Sabri Hamed Al-Azazi
CIO of Dubai Holding, Sabri

"I am extremely impressed by the depth and scale of this book! The title is perfect—when you know where you
want to go, you need a compass to guide you there! After good IT strategy leads you to SOA, this book is the
perfect vehicle that will drive you from dream to reality. We in DSK Bank will use it as our SOA bible in the
ongoing project."

—Miro Vichev
CIO, DSK Bank, Bulgaria
member of OTP Group

"Service-Oriented Architecture offers a pathway to networking of intra- and inter-corporate business systems.
The standards have the potential to create far more flexible and resilient business information systems than have
been possible in the past. This book is a must-read for those who care about the future of business IT."

—Elizabeth Hackenson
CIO, MCI

"Service-Oriented Architecture is key to help customers become on demand businesses—a business that can
quickly respond to competitive threats and be first to take advantage of marketplace opportunities. SOA
Compass is a must-read for those individuals looking to bridge the gap between IT and business in order to help
their enterprises become more flexible and responsive."

—Michael Liebow
Vice President, Web Services and Service-Oriented Architecture
IBM Business Consulting Services

< Day Day Up >

< Day Day Up >

More Praise for Service-Oriented Architecture Compass

"This book is a welcome addition to SOA literature. It articulates the business case and provides practical
proven real-world advice, guidance, tips, and techniques for organizations to make the evolution from simple
point-to-point web services to true SOA by addressing such topics as planning, organization, analysis and design,
security, and systems management."

—Denis O'Sullivan
Fireman's Fund Enterprise Architect

"The book Service-Oriented Architecture Compass shows very clearly by means of real projects how agile
business processes can be implemented using Service-Oriented Architectures. The entire development cycle
from planning through implementation is presented very close to practice and the critical success factors are
presented very convincingly."

—Professor Dr. Thomas Obermeier
Vice Dean of FHDW Bergisch Gladbach
Germany

"A comprehensive roadmap to Service-Oriented Architecture (SOA). SOA is, in reality, a business architecture
to be used by those enterprises intending to prosper in the 21st century. Decision makers who desire that their
business become flexible can jumpstart that process by adopting the best practices and rules of thumb described
in SOA Compass."

—Bob Laird
MCI IT Chief Architect

"This book is a major improvement in the field. It gives a clear view and all the key points on how to really face
a SOA deployment in today's organizations."

—Mario Moreno
IT Architect Leader, Generali
France

< Day Day Up >

< Day Day Up >

IBM Press: The developerWorks® Series
The IBM Press developerWorks Series represents a unique undertaking in which print books and the Web are
mutually supportive. The publications in this series are complemented by their association with resources
available at the developerWorks Web site on ibm.com. These resources include articles, tutorials, forums,
software, and much more.

Through the use of icons, readers will be able to immediately identify a resource on developerWorks which
relates to that point of the text. A summary of links appears at the end of each chapter. Additionally, you will be
able to access an electronic guide of the developerWorks links and resources through
ibm.com/developerworks/dwbooks that reference developerWorks Series publications, deepening the reader's
experiences.

A developerWorks book offers readers the ability to quickly extend their information base beyond the book by
using the deep resources of developerWorks and at the same time enables developerWorks readers to deepen
their technical knowledge and skills.

For a full listing of developerWorks Series publications, please visit: ibmpressbooks.com/dwseries.
< Day Day Up >

http://www.ibm.com
http://www.ibm.com/developerworks/dwbooks
http://www.ibmpressbooks.com/dwseries

< Day Day Up >

Inescapable Data
Stakutis and Webster

DB2® BOOKS

DB2® Universal Database V8 for Linux, UNIX, and Windows Database Administration Certification Guide,
Fifth Edition Baklarz and Wong

Understanding DB2®
Chong, Liu, Qi, and Snow

Integrated Solutions with DB2®
Cutlip and Medicke

High Availability Guide for DB2®
Eaton and Cialini

DB2® Universal Database V8 Handbook for Windows, UNIX, and Linux
Gunning

DB2® SQL PL, Second Edition
Janmohamed, Liu, Bradstock, Chong, Gao, McArthur, and Yip

DB2® Universal Database for OS/390 V7.1 Application Certification Guide
Lawson

DB2® for z/OS® Version 8 DBA Certification Guide
Lawson

DB2® Universal Database V8 Application Development Certification Guide, Second Edition
Martineau, Sanyal, Gashyna, and Kyprianou

DB2® Universal Database V8.1 Certification Exam 700 Study Guide
Sanders

DB2® Universal Database V8.1 Certification Exam 703 Study Guide
Sanders

DB2® Universal Database V8.1 Certification Exams 701 and 706 Study Guide
Sanders

DB2® Universal Database for OS/390
Sloan and Hernandez

The Official Introduction to DB2® for z/OS®, Second Edition
Sloan

Advanced DBA Certification Guide and Reference for DB2® Universal Database v8 for Linux, UNIX, and
Windows
Snow and Phan

DB2® Express
Yip, Cheung, Gartner, Liu, and O'Connell

DB2® SQL Procedure Language for Linux, UNIX and Windows
Yip

DB2® Version 8
Zikopoulos, Baklarz, deRoos, and Melnyk

IBM Press
WEBSPHERE BOOKS

IBM® WebSphere®
Barcia, Hines, Alcott, and Botzum

IBM® WebSphere® Application Server for Distributed Platforms and z/OS®
Black, Everett, Draeger, Miller, Iyer, McGuinnes, Patel, Herescu, Gissel, Betancourt, Casile, Tang, and

Beaubien

Enterprise Java™ Programming with IBM® WebSphere®, Second Edition
Brown, Craig, Hester, Pitt, Stinehour, Weitzel, Amsden, Jakab, and Berg

IBM® WebSphere® and Lotus
Lamb, Laskey, and Indurkhya

IBM® WebSphere® System Administration
Williamson, Chan, Cundiff, Lauzon, and Mitchell

Enterprise Messaging Using JMS and IBM® WebSphere®
Yusuf

ON DEMAND COMPUTING BOOKS

Business Intelligence for the Enterprise
Biere

On Demand Computing
Fellenstein

Grid Computing
Joseph and Fellenstein

Autonomic Computing
Murch

RATIONAL

Software Configuration Management Strategies and IBM Rational ClearCase®, Second Edition
Bellagio and Milligan

MORE BOOKS FROM IBM PRESS

Developing Quality Technical Information, Second Edition
Hargis, Carey, Hernandez, Hughes, Longo, Rouiller, and Wilde

Performance Tuning for Linux® Servers
Johnson, Huizenga, and Pulavarty

Building Applications with the Linux Standard Base
Linux Standard Base Team

An Introduction to IMS™
Meltz, Long, Harrington, Hain, and Nicholls

Search Engine Marketing, Inc.
Moran and Hunt

< Day Day Up >

< Day Day Up >

,
be easier to establish, confidentiality of the information will be easier to maintain, and the capability to scale the
available processing, networking, and storage capacity of the system will be enhanced. Indeed, one expects that
service providers will be able to soak up surge demands using shared computing, storage, and network assets,
while enterprises need only invest in capacity to deal with their average demands.

SOA and the many other acronyms in this book will become the alphabet by which intra- and inter-enterprise
transactions will be spelled out. Of course, the utility of all of this will depend on the development of standards
to which all software providers adhere. In the same way that the basic Internet protocols have created a common
and widespread platform upon which to build a major new communications and computing infrastructure, so too
will the SOA standards create yet another widespread and shared platform for new applications. As this book is
released, the effort is still in its infancy, but it should be apparent that a successful implementation of the
concepts can have a lasting effect on the capability of enterprise to harness the increasing power of computers,
storage systems, and networking.

Vinton Cerf
Chief Internet Evangelist
Google

It is no overstatement that we are at an information crossroads, a critical juncture from which there is no turning
back. At this introspection point we understand that, just as the Industrial Revolution transformed our economy
and society, we are now faced with the "integration revolution." We are confronting an element in the
continuation of the Industrial Revolution that explicitly leverages Moore's law and cheap and massive bandwidth
options (cable, wired, wireless). This reform is similar to the way in which global economies shifted with the
original introduction of telephony, telegraphs, mainframes, and personal computers. The new mandate sits
squarely in between all the pieces of our lives that we are demanding be treated as one. One plug for all electric
outlets, one standard for how we view information and multimedia, one mobile phone that operates seamlessly
worldwide, and one model for how we respect and meet the diverse needs of business and people. It is at this
integration challenge that we find service-oriented architecture (SOA) as our way forward.

The SOA paradigm represents an identifiable, market-analyst-certified solution to the enterprise's business and
IT challenges. The core reasons are simply a byproduct of timing. Either the existing enterprise system or
technology represents an organic infrastructure that is simply too expensive and complex to manage, or more to
the point, it simply fails to offer the capabilities that the myriad new business challenges require. The key term
here is "flexible"—flexible business processes, flexible applications, and flexible technology. It may seem trite
and even simplistic, but what SOA has effectively done is galvanize a set of major business and technical
problems that have been festering for some time now. Coupled with the massive cultural changes occurring in
business—mergers, acquisitions, downsizing, and upsizing—while offering a vast array of potential, technology
has been limited by two gating factors. First, until SOA became the battle cry, there was no coalescing rubric.
Second, the business challenges themselves have changed at such an unprecedented rate that the skills and
cultural adaptability simply fell short.

These points may all sound very elementary and even hackneyed; however, do not be misguided into thinking
this is accurate. In fact, the very elegance of these complexities is at the heart of what is happening in the
technology industry across the board. The business and technical challenges are so demanding, so complex, and
so fluid that the means to resolve them and bring value into the mix requires the same degree of adaptability. It
is not a marketing slogan, not an easily applied set of slides or quick fixes. It is a fundamental shift in the way
the business, commerce, and industry around the world will be required to adapt and change.

In its broadest sense, SOA is the architecture for integration connectedness. SOA is evolving to render the
Internet into a ubiquitous utility, readily available for all manner of exchange, commerce, and communication. It
is an architecture designed, by its very nature, to enable the diverse and naturally occurring heterogeneity of our
systems and infrastructures. It has evolved not just to help systems communicate, but to ensure that they
collaborate on multiple dimensions, across an infinitely scalable set of consumer demands: from the simple use
of Web-based commerce to the more complex needs of industry verticals.

It is almost mundane to say that much of SOA is based on the same old principles that have been helping us
improve software comprehension and flexibility for the last 45 years, namely, through increased modularity and
abstraction. The extent of the evolution is important. It is not just another incremental crank of programming
models (structured, object-oriented, and others) enabled by an environment with much greater bandwidth and
computing power embodied in standardized, global internetworks. The real shift is that we are making
fundamental tradeoffs in efficiency in favor of abstraction and modularity to drive significant improvements in
economic efficiency and innovation. We are seeing this in diverse examples, such as universal access to
products and services with much greater efficiency in supply chains that eliminate middlemen and provide
real-time feedback.

IBM has engaged with many enterprise clients on SOA, and our experience shows that after the customer
demonstrates value, he is eager to embrace it initially in increments until his confidence has been confirmed.
This trend has cascaded across various industries, and the realized business value of SOA serves as a potent
catalyst. After a short maturation cycle, the industry will wholeheartedly embrace SOA because it has to and
because it is a framework for the solutions businesses require, not because it will create another business and
technology Gordian knot that will unravel in the future.

This book provides a blend of broad technical and business guidelines while navigating an enterprise roadmap
for SOA. And although many of the issues addressed are designed for use in complex enterprise applications,
there is a need to broadly infuse the very significance of this "integration revolution."

We anticipate that you will find this book both helpful and valuable in your path to SOA adoption.

Daniel Sabbah, Ph.D.
General Manager, IBM Rational Software
International Business Machines
Somers, New York, U.S.A.

Jason Weisser, Ph.D.
Vice President, Asset &Integration Technology
International Business Machines
Paris, France

Forewords
Computing has evolved in dramatic ways since the first abstracting systems were developed in the late 1930s
and early 1940s. In the ensuing decades, the usual metrics associated with computing have increased by many
orders of magnitude: speed of computation, capability to store and retrieve information, capability to transmit
information, programmability, and so on. The twenty-first century is witnessing yet another transformation of
computing: its immersion into a networked environment. The confluence of computing and communication has
produced a fertile environment for innovation and reinvention in computation. This book is about one very
important example of new thinking: the so-called Service-Oriented Architecture.

The potential applicability of computers to administrative tasks was recognized very early in their development.
The Hollerith punched card, invented in the 1880s by Herman Hollerith, was used in connection with the 1890
U.S. census. Hollerith based his punched cards on the earlier punched card design used in 1804 in Joseph-Marie
Jacquard's eponymous loom. Although some of the earliest applications were driven by military needs (for
example, ballistics and cryptanalytic computations), after World War II, computers were turned to civilian use in
the conduct of business. Payroll, inventory, accounts receivable and payable, sales, production, numerical
control, and a host of other business data-processing applications were developed to run on expensive mainframe
machines. These so-called data-processing systems were often housed in glassed-in "fishbowls" and were
exhibited proudly by their owners as evidence that the company was at the forefront of high-technology
application. Programming languages such as Common Business Oriented Language (COBOL) were developed
for the business world as a counterpart to Fortran's dominance in scientific and engineering computing. Of
course, since that now-long-ago era, many other high-level languages and systems have been developed for
business applications.

Many of these business-oriented applications and systems deal with vast databases containing billions and, in
some cases, trillions of bytes of information. Modern database technology allows for hierarchical storage
structures capable of manipulating and storing terabytes to petabytes of information. (A petabyte is 1015 bytes.)
In most such systems, the programs that interact with the databases and with each other do so either through the
sharing of access to a common data storage system or by direct exchange through application programming
interfaces (APIs) on a shared computer. Distributed database systems are federations of database systems that
typically maintain multiple copies of data, keeping them synchronized by a variety of pairwise and group
coordination procedures. This program-centric view of data structures and file exchanges has dominated the data
management scene for decades. Only as networking has become more widespread has this philosophy been
given serious reconsideration.

Rather than thinking of database management (local or distributed) as a programming problem involving the
programmatic updating of storage structures, a network-centric view of data management sees the interaction
among the systems as a layered architecture of services. This is very much aligned with the Internet's
architecture, which sees remote systems as servers or as peers in a client-server or peer-to-peer system. In this
view, protocol replaces API as the primary mechanism of exchange between programs. The protocol specifies
the format of exchanged information and the procedures by which the information is exchanged. The APIs used
in one machine need bear no relation to those used in another. All the commonality lies in the procedures and
formats for protocol-driver data exchange.

This is a profoundly different way of looking at data handling in a networked environment. Rather than the bulk
transfer of an update file that is then run through a local program that executes the database update, the source(s)
and sink(s) of the traffic exchange transactions in accordance with agreed protocols. Each machine expects the
others to provide services in aid of database management in accordance with the agreed-upon and standardized
protocols.

Peer-to-peer data and file sharing operates along these lines—all participants agree on a protocol, format, and
representation for the exchanged data. That this is a powerful form of information processing is revealed by
statistics that show that up to half of the Internet's capacity is taken up with such transactions.

This book takes the reader, in some careful detail, through the concepts and operational issues associated with
the creation of a Service-Oriented Architecture (SOA) for distributed information processing. It is hard to
imagine a more important topic in the twenty-first-century information infrastructure. Some important side effects
of this reparsing of the data-processing architecture are that business IT continuity will be easier to establish,
interenterprise transactions will be easier to implement security and authenticity of the transacting parties will

< Day Day Up >

< Day Day Up >

Preface
Early in 2004, a small team within the IBM Enterprise Integration team was asked to draft an IBM internal SOA
cookbook to document SOA engagement experiences and share best practices. By engaging subject matter
experts across IBM and infusing our own project experiences, we created the first version of a SOA cookbook.
This was well received by the IBM SOA technical community, and a general awareness of this book spread to
our key customers. Some of these customers started requesting a formal and public version of the cookbook.
This brought us together to distill the internal cookbook and author a SOA book for the general SOA
community.

< Day Day Up >

< Day Day Up >

Trademarks and Notices
IBM, WebSphere, CICS, IMS, and Tivoli are registered trademarks of IBM in the United States and other

countries. UNIX is a registered trademark of The Open Group in the United States and other countries.
Microsoft, Microsoft .Net, .NET, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both. Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both. Other company, product, and service
names may be trademarks or service marks of others.

The figures in Chapter 10 have been reprinted with the permission of the Standard Life Assurance Company
within Section 10.1 (©2005) and the Ministry of Justice of the Government of the Republic of Austria within
Section 10.2 (©2002). Figure 2.1 has been reprinted with the permission of Forrester Research, Inc. (©2004).

The opinions expressed in this book are those of the authors and do not reflect the official opinions or positions
of IBM or its management.

< Day Day Up >

< Day Day Up >

developerWorks® Link Icons Used in This Book

A.1

Margin icons are used to indicate that links to further resources related to the text are available at the
developerWorks Web site on ibm.com. These links are listed at the end of each chapter and an electronic guide
is available through ibm.com/developerworks/dwbooks.

< Day Day Up >

http://www.ibm.com
http://www.ibm.com/developerworks/dwbooks

< Day Day Up >

Acknowledgments
To write this book, we relied on the advice, expertise, knowledge, and contribution of a number of our IBM
colleagues. Most of them are actively engaged in SOA-based customer projects and IBM software product
development.

We would first like to thank the key content contributors to this book. With their substantial effort and deep
subject expertise, it was possible to give insights into a broad range of SOA topics. Randy Langel provided input
for Chapter 2, "Explaining the Business Value of SOA." The topic of information and data services was
elaborated on by Mei Selvage in Chapter 3, "Architecture Elements." Greg Flurry and Eoin Lane helped
articulate the sample assets in Chapter 6, "Enterprise Solution Assets." Heather Hinton, a security architect in
IBM Tivoli product development, provided content for Chapter 8, "Securing the SOA Environment." Members
of the Tivoli team, including Rosalind Radcliffe, Ingo Averdunk, Sudhakar Chellam, David Cox, Steve Tremper,
and John Whitfield, provided content for Chapter 9, "Managing the SOA Environment." We would also like to
thank Derek Ireland of Standard Life, Dr. Martin Schneider of the Austrian Ministry of Justice, and Anton Fricko
for their help with Chapter 10, "Case Studies in SOA Deployment."

Several technical experts helped review individual chapters. We appreciate their valuable feedback and
input—Jonathan Adams, Yvonne Balzer, Maryann Hondo, Heather Kreger, Rick Robinson, and many others who
were supportive in various subject areas and deserve our recognition.

The team from IBM Press was instrumental in thoroughly reviewing this book and providing overall guidance
and feedback. We want to thank them for improving various aspects of the book. Kevin Davis and David Kane
did two rounds of rigorous technical reviews and provided critical inputs. Ginny Bess Munroe provided
excellent language-editing skills by streamlining the text and Amy Lepore patiently copy edited the chapters.
Lori Lyons led the project in the final stages. And finally, Paul Petralia provided overall editorial leadership and
liaison.

We would also like to thank Vinton Cerf, Daniel Sabbah, and Jason Weisser for generously donating their time
to write the forewords for this book. The work took time from our daytime jobs, and we thank our respective
management at IBM for their understanding and for granting us the necessary freedom and support.

Finally, we would like to thank our families and friends for their ample encouragement and support. Thank you
for your infinite patience during the last year while this book was being prepared. It would have been impossible
without your support and understanding.

< Day Day Up >

< Day Day Up >

About the Authors
Norbert Bieberstein is a solution architect for the IBM Enterprise Integration team and is responsible for the
team's worldwide communication. In his dual role, he gained first-hand experiences from customer projects in
various industries striving to migrate to SOA-based On Demand solutions. He currently is completing his MBA
at Henley Management College in the United Kingdom. In his communication role, he is delivering insight and
best practices to IBM and customers in various forms. Norbert co-authored the IBM Redbooks Introduction to
Grid Computing with Globus (SG24-6895-01) and Enabling Applications for Grid Computing with Globus
(SG24-6936-00), wrote the textbook CASE-Tools (ISBN: 3446175261), and published several magazine articles
on various IT topics. Norbert also worked as a technology manager in the IBM software partner organization,
where he led the IBM OMG delegation during UML definition. He also acted as a software engineering (CASE)
consultant to the IBM software development labs. Norbert has more than 25 years of experience in information
technology and computer sciences. Before joining IBM in 1989, he was an application developer for a regional
CIM provider and worked as scientific programmer at Aachen University of Technology (RWTH), where he
received his masters in mathematics and geography. He also holds teacher's degrees for higher education in
Germany. He lives with his family near Düsseldorf, Germany.

Sanjay Bose is the Design Center leader for the IBM Enterprise Integration team. He has more than 12 years of
IT industry experience, primarily focused on creating product architecture and design, articulating technical
strategy, and designing enterprise application systems using distributed technologies. He currently leads the
design center to identify IBM software portfolio requirements and to develop solution components and assets by
engaging enterprise clients and IBM software product development laboratories. His areas of expertise include
service-oriented architecture, enterprise service bus, Web services, J2EE, and e-business technologies. Sanjay
also worked in product development on the WebSphere Application Server and the WebSphere Portal Server.
He has published several technical papers and also has contributed to industry specifications and standards.
Sanjay received his bachelor's degree in computer science and engineering from the Indian Institute of
Technology (IIT) in Mumbai, India and has completed MBA coursework at the Tepper School of Business,
Carnegie Mellon University. He lives and works in Pittsburgh, Pennsylvania.

Marc Fiammante is an IBM Distinguished Engineer, elected to the IBM Academy of Technology in 2003, with
wide experience in large project architecture and software development on multiple environments. He is the chief
architect of the European, Middle East, Africa, and Asia-Pacific Enterprise Integration Solutions team. Marc has
21 years of experience in IT. He has filed several software domain patents and has published several articles
related to e-business technologies. He leads architecture teams in major industry projects. He has architectural
and technical expertise with service-oriented architecture, Web services, enterprise application integration, and
e-business and object-oriented technologies, including a number of software middleware systems, programming
languages, and standards. Marc is a graduate engineer of the Ecole Centrale de Paris.

Keith Jones, PhD, is currently a leading IT architect at IBM Enterprise Integration Solutions, where he focuses on
the definition and implementation of service-oriented architectures with leading-edge customers. He has 30 years
of experience in the IT industry as a systems engineer, software developer, strategist, systems architect, and
author of many middleware publications. Keith's professional interests center on building transactional,
message-oriented, and service-oriented middleware infrastructures in support of business processes in a wide
range of customer environments. Most recently, these have included infrastructures at major financial services,
retail services, automotive manufacturing, online media, and auction enterprises. Keith has a PhD in chemistry
and lives with his family in Boulder, Colorado.

Rawn Shah is the Community Editor (and, formerly, the SOA and Web services Zone Editor) for IBM
developerWorks. Rawn has 12 years of experience in the IT industry, serving in various roles including positions
as a network administrator, an application developer, a vice president of a regional Internet service provider, a
columnist, an author, and an editor. He has written more than 280 articles for dozens of technology magazines,
including CNN.com, NetworkWorld, JavaWorld, NC World, Windows TechEdge, and LinuxWorld, and he was
directly involved in the release of the industry-leading publications JavaWorld and LinuxWorld in the
mid-1990s. His interests lie in finding new ways for facilitating the communication and collaboration of technical
ideas and processes between distributed audiences and transferring this knowledge in meaningful ways to
nontechnical audiences such as business teams. He and his family currently reside in Tucson, Arizona.

http:CNN.com

< Day Day Up >

< Day Day Up >

developerWorks and SOA
Through the SOA and Web services Zone on developerWorks, IBM helps software developers and architects by
providing them with technical content, tools, and resources that enable them to build on demand applications in
an open environment. Our goal is to provide new, original content that guides developers both in their thinking
and implementation of Web services creation and development of a Service-Oriented Architecture.

A sampling of content includes topics that are about both cutting-edge developments as well as some of the
basics:

Business processes— What are the roles of Web services and SOA in creating and managing business
processes? How is this particularly relevant for those architecting on demand solutions?

Migration— Is it possible to migrate to a SOA? What are the steps I take to do that?

Model-Driven Architecture— How does the Rational portfolio enable more efficient creation and modeling
of services?

Standards— I'm aware of Web services standards, but not sure how to address them in my development
process.

The Enterprise Service Bus— Why do I need it?

These comprise just a small overview of the categories that we touch on in the SOA and Web services Zone on
developerWorks. We are also aware that some are looking to understand methodology and philosophy of
creating certain kinds of systems, and others want practical advice on delivery and implementation. Every month
delivers a number of articles, tutorials, downloads, sample code, and community resources that address the
broad array of issues related to services development.

Because of IBM's position as the leader in open, cross-platform software development, developerWorks benefits
from having access to some of the most accomplished thinkers in the SOA and Web services space. Some of
these people are regular contributors through their article series, blogs, and participation in our online forums,
Technical Briefings, and Web-based seminars.

We invite you to look around our zone and see for yourself how it might help you with your development and
architecture goals:

ibm.com/developerWorks/webservices
< Day Day Up >

http://www.ibm.com/developerWorks/webservices

< Day Day Up >

,
understanding of the business needs and of what must be implemented to meet those needs.

Therefore, there is a definitive requirement to find an enterprise approach that truly allows both business leaders
and IT to meet in the middle. What large organizations really need is a business and architectural framework that
identifies how diverse software solutions can interact with each other across technical incompatibilities and that
relates software solutions to business-level requirements and business problems.

Chapter 1. Introducing SOA
"Once an organization loses its spirit of pioneering and rests on its early work, its progress stops."

—Thomas J. Watson, Sr.

The increasing pace of the evolution of business requirements and the need for increased revenues and cost
optimization are leading corporate executives to deliberately align their IT organizations more closely with their
business requirements. The main goal of this convergence is to develop more optimal and operationally
integrated business processes that can be implemented by departments, business units, and business partner
networks. Historically, this convergence process has been constrained because IT systems have not kept in step
with business needs and because the IT infrastructure has inherent operational and developmental limitations,
such as proprietary programming interfaces that restrict a system's flexibility. Consequently, the integration
challenge demands a technology that can successfully bring together the needs of business and IT into a viable
solution that not only makes efficient and effective use of the IT infrastructure, but that is also flexible and
adaptive enough to keep pace with continual changes in the organization's business processes and business
models.

Integration challenges are often considered to be only a technical interoperability issue. A change to a business
need supported by functions that an application provides is considered to be a change to the actual software
program, how it is deployed, or how it interacts with other applications. When a new business need arises,
organizations order the revitalization, creation, or installation of new applications. However, this view of the
integration challenge assumes a prevailing and potentially long-term view of any application, limiting the overall
flexibility and agility of the business. Therefore, we need to reexamine the approach to and the source of this
challenge to unlock a new way to address the issue of business-driven software changes and implementation.

The prevailing integration challenge in the software industry stems from the very same force that has been the
energy of this industry: the diversity of methods and approaches deployed to solve a multitude of essentially
technical issues. This positive force has allowed software engineers to tackle increasingly complex problems
with new ideas, new methods, and new technologies. It has also helped to speed the growth of most, if not all,
other industries with the rise of computerization by exploiting a range of hardware solutions, operating
environments, application systems, programming languages, and software development techniques.

Yet it is this same evolving diversity that has allowed the creation and multiplication of barriers among the
many solutions that have been developed. The issue of incompatibility among solutions has become a paramount
problem, not just because of the technical issues that must be resolved but because it introduces barriers to the
way companies use IT to do business and interact with others.

As businesses invest in more complex and more richly featured software technologies, they also separate the
world of technical operations from that of business operations. However, focusing only on technical aspects and
not considering the organizational or business issues often leads to an information and process-integration
failure.

Integration is an old story. In 1967, Paul Lawrence, the Louis Kirstein Professor of Human Relations at Harvard
Business School, together with Jay Lorsch, addressed the organizational issues related to departmental efficiency
and enterprise integration and defined integration as the "state of collaboration that exists among departments
that are required to achieve unity of effort."

Until now, and as noted previously, most solutions for aligning technology and business requirements have been
too technology oriented and application focused. Recently, enterprise application integration (EAI) technology
has been viewed as the solution to the business-IT alignment problem. EAI, although it initially solved
significant coordination problems, has failed to evolve to address the current complex array of integration issues,
and it has often failed to deliver the expected business flexibility.

In addition to a focus on technology-derived solutions, there is the problem of language. There is a clear
division between the language used by the business operations community and the technical jargon of the IT
community. This makes it increasingly difficult to relate IT operations to business management and to relate
technical problems to business issues. Interestingly enough, one of the most common problems of implementing
software is not the complexity of creating a technology solution; instead it is the problem of developing an

< Day Day Up >

< Day Day Up >

1.1. SOA to the Rescue
The concept of service-oriented architecture (SOA) offers a framework for better-integrated systems that meet

business needs. This concept is a new rationalization of practices and techniques that already exist in
process-driven, top-down, bottom-up, and meet-in-the-middle methods of software integration. It has now come
to reality with the evolution of technology and the advent of true interoperability.

SOA envisions the implementation of a services platform consisting of many services that signify elements of
business processes that can be combined and recombined into different solutions and scenarios, as determined
by business needs. This capability to integrate and recombine services is what provides the closer relationship
between business and IT, as well as the flexibility to address new situations.

The role of the SOA services platform is to provide a foundation for delivering essential business services in a
flexible, easily composed, and highly reusable fashion. It is essential that an enterprise adopts a global
ecosystem approach to building such a platform by providing focus on the lifecycle for business-driven IT
services as they are created, evolved, and phased out during the lifetime of the organization and on using a
consistent architectural approach to providing flexible and reusable business service delivery.

The need for an enterprise ecosystem view has led to the creation of the service-oriented architecture, through
which composite applications can be created, modified, and removed dynamically using services, abstracted
from existing applications and data, provided by the platform, or provisioned from external sources.

From a business point of view, an SOA can be expressed as a set of flexible services and processes that a
business wants to expose to its customers, partners, or internally to other parts of the organization. In this
context, these same services can be recombined and supplemented to support changes to or an evolution of
business requirements and models over time. As an example, an auto parts supplier that uses an SOA can
expand to support new automobile brands and can integrate new parts catalogs without impacting its existing
business processes.

From the technical point of view, SOA defines software in terms of discrete services, which are implemented
using components that can be called upon to perform a specified operation for a specific business task. The
SOA concept evolves the existing software concept of a function—a specific piece of code that performs one
particular task—to include the notion of a contract, a technology-neutral but business-specific representation of
the function. In the auto parts supplier example, a common service might be the "catalog service" that exposes
catalogs from different providers in a common way throughout the enterprise.

The concepts of service-oriented software and architectures based on such software have existed in some form
for a number of years. We have found service-oriented implementations in COBOL/CICS® mainframe systems,
object-oriented C++ systems, and in Java® application platforms. Some of these concepts have evolved from
older ideas and from a variety of software technology origins. Thus, with no surprise from an industry that
thrives on the diversity of technical ideas, the definition of what constitutes an "SOA" varies widely across the
industry.

Before we create a working definition of SOA to be used throughout this book, we must understand the different
ways that SOA has commonly been defined and clarify our view of what "SOA" really means.

< Day Day Up >

< Day Day Up >

serv ce mp emen a on pro ec s a are no va s ecause ey o no a ress e us ness va ue, rue
reusability, and flexibility that SOAs can and should provide.

1.2.2. Dimensions of SOA

As we explore the concepts around service-oriented architectures, we need to look at various dimensions:
business value, reach and range, and maturity and adoption strategies.

1.2.2.1. Business Value

Businesses today cannot survive, let alone prosper, without leveraging diverse technologies into both their
day-to-day operations and their long-term strategy. Enterprises are adapting to broader connectivity and
increased revenues, but they also focus on innovation by restructuring applications for greater flexibility and
lower costs.

According to the 2004 Global CEO Study, a landmark survey conducted by IBM Business Consulting Services,
most CEOs say their companies are neither responsive enough to changing business conditions nor agile enough
to pursue new market opportunities. The study claims:

"Given the rate at which the market is evolving, it is almost impossible to carry out long-term planning. It is
critical to be able to plan on a rolling basis, rapidly and continuously."

One of the goals of service-oriented architecture is to provide a response to that agile, rolling enterprise vision
by delivering a strong business value proposition. Additional business drivers for SOA include the following:

Anticipating market changes

Developing new customer, partner, and supplier relationships

Improving the time to market

Creating differentiated solutions for higher-value customer and partner interactions

Reducing operating costs

The business case for SOA that this book explores requires the assessment of business needs and analysis of
any identified gaps (see Chapter 2, "Explaining the Business Value of SOA"). This approach also calls for the
identification of key differentiating components and nondifferentiating components, with detailed business cases
for each opportunity, so that investments can be intelligently prioritized. As an example, a component could be
enabled for cross-selling to increase revenue. Another component might be identified as a candidate for
outsourcing, which would be made easier by an SOA approach.

1.2.2.2. Reach and Range

The second dimension that will affect architecture is reach, where and to whom (employees, departments,
customers, or business partners) the SOA will be made available, and range, the number or diversity of services
made available. The environment—consisting of the technical software and hardware as well as the users of the
systems—can affect all stages of SOA implementation, from planning to deployment, by adding or relieving
from technical constraints. For example, different services require different levels of security, different levels of
reliability, and different levels of data access and information hiding; all of these considerations affect the
architecture.

1.2.2.3. Maturity and Adoption Strategies

As previously indicated, the business and architectural concepts behind SOA are in and of themselves not new.
For at least five to ten years, large companies have had such concepts involved in their strategy roadmap;
additionally, there have been real industry trends related to SOA, such as componentization. However, many of
these approaches either have not yet emerged from the conceptual stage or are only partially implemented. This
makes the dimension of maturity and the strategy for the adoption of this approach a key factor of SOA.

Failure to transfer the vision of such new approaches to the engineering level can be attributed mainly to the fact
that existing implementation technologies had limitations that did not allow a successful enterprise-wide
deployment of the approach. For example, a single platform might have limited the implementation due to the
absence of tools, lack of standardization, or interoperability problems.

Enterprises do not implement service-oriented architectures as big-bang projects because there is a valid need
for progressive adoption strategies that address the following considerations:

Making a business case for the adoption of the architecture

Validating available technologies

Selecting a business pilot and enabling a line-of-business

Expanding to the enterprise

Expanding to the partner network

These dimensions of SOA indicate that a compass with points facing business, organization, architecture, and
technology is necessary to approach SOA.

1.2. Exploring SOA
There are a number of ways to look at the concept of SOA. In its most basic form, SOA is an approach to

building software systems that is focused on how the software is actually implemented. To understand this
approach and implementation directive, we need to look at individual parts of the definition and the dimensions
of a typical enterprise SOA.

1.2.1. The Term "SOA"

The following are common examples of SOA definitions. Most of these definitions focus on the technical
aspects of architecture, although some include business characteristics. These definitions, which we gathered
from multiple sources, are interesting because they illustrate the number of different views or expressions of
what an SOA is; however, they all tend to coalesce into a common meaning:

A business definition: A set of business, process, organizational, governance, and technical methods to
reduce or eliminate frustrations with IT and to quantifiably measure the business value of IT while creating
an agile business environment for competitive advantage.

Another business definition (introduced by IBM): A service-oriented architecture provides the flexibility to
treat elements of business processes and the underlying IT infrastructure as secure, standardized
components (services) that can be reused and combined to address changing business priorities.[1]

[1] In an informal survey of some of its business customers done by IBM in late 2004, the previous
definition received an overwhelming 90 percent support from business executives of major industries.

The widest technical (and rather minimalist) definition: An enterprise-wide IT architecture that promotes
loose coupling, reuse, and interoperability between systems.

A moderately complex technical definition: An application architecture in which all functions or services
are defined using a description language and have callable interfaces that are called to perform business
processes. Each interaction is independent of each and every other interaction and the interconnect
protocols of the communicating devices. Because interfaces are platform independent, a client can use the
service from any device using any operating system in any language.

The least common denominator definition: A system architecture in which application functions are built as
components (services) that are loosely coupled and well-defined to support interoperability and to improve
flexibility and reuse.

The narrowest definition: SOA is a synonym for solution architectures making use of Web service
technologies such as SOAP, WSDL, and UDDI. Here SOA is defined as "any product and project
architecture conforming to the W3C Web services architecture (WSA)."

In this book, we elaborate on the principles of these definitions, particularly the first four, and we do not restrict
ourselves to the final, narrower definition. For our discussion, we have chosen to adapt the definition of SOA
that resulted from a survey of business executives:

A service-oriented architecture is a framework for integrating business processes and supporting IT
infrastructure as secure, standardized components—services—that can be reused and combined to address
changing business priorities.

In our view, there can be valid SOAs that do not define a single Web service and instead use existing
technology such as mainframe transactional or object-oriented systems. Similarly, there are valuable Web

i i l t ti j t th t t lid SOA b th d t dd th b i l t

< Day Day Up >

< Day Day Up >

service-oriented architectures gains new dimensions, for which we offer thoughts and advice in Chapter 8,
"Securing the SOA Environment."

Another complex issue is the need to manage and monitor the operational aspects of an SOA-based services
platform. The systems management concepts, the new challenges, and distributed management solutions are
covered in Chapter 9, "Managing the SOA Environment." Several supportive technologies are discussed that
facilitate 24x7 operations with failure toleration at the enterprise level.

To visualize how an SOA project comes to life, we offer the real-world examples in Chapter 10, "Case Studies
in SOA Deployment," to illustrate challenges, approaches, and the lessons learned. Finally, Chapter 11,
"Navigating Forward," summarizes the guiding principles of planning SOA projects and takes an advanced look
at future directions for this innovative approach.

New technologies for networking, computational and data grids, and autonomic computing very nicely
complement service-oriented architectures to cover the range and reach dimension. When thinking of the reach of
an SOA in particular, there are many new topics that require solutions.

1.3. A Preview of the Service-Oriented Architecture Compass
SOA can fundamentally change the direction taken by an enterprise to development and deployment of business

software systems for competitive advantage. Introducing SOA at the enterprise level cannot reasonably be
reduced to a single project because it will affect the way that IT responds to the business requirements. When an
enterprise starts on its journey to SOA, a compass is an essential navigational instrument for finding the right
direction. Therefore, any book on SOA that gives concrete prescriptions for business componentization and
technology implementation must be based on a common understanding of SOA—the concepts, recommendations,
and best practices.

But to say that service-oriented architectures are here to solve all of our technical and business problems would
be, of course, a gross exaggeration. There are numerous other problems that introduce hurdles for
interoperability, compatibility, and well-mannered operation among diverse systems. Furthermore, like any other
technological system, SOA deployment requires careful business-case evaluation, planning, design,
implementation, and management by a properly skilled and talented team to become a successful endeavor.

This book is about making SOA real in terms of justifying action to gain business value, planning for adoption,
and developing good strategies for implementation. It also proposes that even if we assume that there is
consensus on methodology within a particular organization, a discussion on the nature of business and technical
services within an enterprise is needed. This can help avoid misperceptions and misunderstandings, especially
when extended to include a wider audience such as business partners.

Building the business case for a service-oriented architecture is not a simple task. The return on investment, as
with all reuse strategies, might not be immediate. Of course, business cases are specific to each environment,
and Chapter 2 discusses some of the elements that we have found to be valuable in our experience.

SOA has brought some important business and technical concepts into the spotlight. In particular, the
significance of coupling software systems and their degrees of isolation is explored in Chapter 3, "Architecture
Elements." We also explore implementation alternatives. These identify the programming models, constructs,
patterns, protocols, and even the programming language that will be used in a SOA implementation project.

One of the most critical decisions is to avoid placing the SOA project solely in the hands of an IT department
and to foster collaboration with line-of-business representatives to get broad support across the enterprise. We
share some ideas for SOA team roles and tasks in Chapter 4, "SOA Project Planning Aspects."

It is worth mentioning that conceptual architectures and frameworks defined by corporate IT might sometimes
have a dubious reputation at the business level in many companies; this reputation might need to be
counterbalanced when an SOA vision is presented. A common statement heard in our experience is, "We have
tried this before. Why do you think it will succeed this time? How do we plan for it this time around?"
Therefore, the roadmap to introduce SOA into an enterprise and the governance to ensure true reusability and
control cannot be overemphasized. We dedicate an important part of Chapter 4 to these considerations.

In Chapter 5, "Aspects of Analysis and Design," we reflect on the important ideas that carry forward from
previous technological eras, and new techniques that apply as business requirements are analyzed and new
services identified, specified, and realized. We also discuss the role of modeling for service-oriented systems as
they are planned, prototyped, and provisioned.

For effectively leveraging SOA, architectural decisions and solution patterns need to be captured and reused
across all enterprise projects for maximum impact. We provide guidance on how to document them in Chapter 6,
"Enterprise Solution Assets," and share some sample assets.

Our previous discussion about reach and range for service-oriented architectures was intended to direct
attention to a number of non-functional requirements found in SOA deployments. Those aspects are discussed
in Chapter 7, "Determining Non-Functional Requirements." The concept of SOA does not deliver all necessary
means to tackle these issues, but rather, SOA should be regarded within a broader context of an operating
environment for on-demand applications, the general blueprint for modern IT.

One important set of non-functional requirements deserves special consideration: the security risks that services
can be exposed to and the malicious acts that an enterprise must defend itself against. Security under

< Day Day Up >

< Day Day Up >

1.4. Summary
This chapter introduced several popular definitions for SOA. We then categorized and clarified them by

identifying which characteristics are desirable.

We then discussed the SOA dimensions of business value, reach and range, maturity and adoption strategies,
and we illustrated how each of these impacts the work needed for an SOA deployment. Finally, we gave a
working list of topics that should be considered by enterprises navigating toward SOA and shared how we
elaborate these topics in this book.

Now that you have a basic understanding of what SOA is, let us look at the reasons why one would leverage it.
The next chapter covers the value of building an enterprise ecosystem with an SOA approach based on both
technical and business justification.

< Day Day Up >

< Day Day Up >

1.5. References

Crawford, C. H. Toward an on demand service-oriented architecture. IBM Systems Journal, Vol. 44, 1-2005.
http://www.research.ibm.com/journal/sj44-1.html.

Galbraith, Jay R. Competing with Flexible Lateral Organizations, 2nd Edition. Addison Wesley, 1994.

Handy, Charles. The Age of Unreason. Random House, 1995.

IBM Business Consulting Services. The Global CEO Study 2004. IBM, 2004.

Joseph, J., Ernest, M., and Fellenstein, C. Evolution of grid computing architecture and grid adoption models.
IBM Systems Journal, Vol. 43, 4-2004. http://www.research.ibm.com/journal/sj43-4.html.

Lawrence, Paul R. and Lorsch, Jay W. Organization and Environment: Managing Differentiation and Integration.
Harvard Business School Classics, revised edition, 1986.
http://harvardbusinessonline.hbsp.harvard.edu/b01/en/common/item_detail.jhtml?id=1295.

Lorsch, Jay W. and Lawrence, Paul R. Organization Planning. RD Irwin, 1972.
< Day Day Up >

http://www.research.ibm.com/journal/sj44-1.html
http://www.research.ibm.com/journal/sj43-4.html
http://harvardbusinessonline.hbsp.harvard.edu/b01/en/common/item_detail.jhtml?id=1295

< Day Day Up >

Chapter 2. Explaining the Business Value of SOA
"Small opportunities are often the beginning of great enterprises."

—Demosthenes

Why do some companies survive and others fail?

Corporations are built on the assumption of continuity; they focus on operations. On the other hand, capital
markets are built on the assumption of discontinuity; their focus is on creation and destruction. The market
encourages rapid and extensive creation and hence greater wealth building. The market is less tolerant than the
corporation when underperforming over the long term. Some of the key reasons for failure are ignoring
higher-value markets, the inability to address more technologically advanced competition, or competition from
lower-cost sources.

Consider the following: In 1917, U.S. Steel led the Forbes list and employed 268,000 people. Now it is down to
about 21,000 employees. In the same year, there were eight other steelmakers on the top 100 list and 33 other
companies in the business of extracting things out of the earth. About 45% of the list was made up of such
resource producers. Today, 61 of these companies no longer exist (a 61% extinction rate).

In 1987, U.S. Steel was still on the list of the 100 most valuable companies, but by that year it was in the
beginning of a gradual decline. One by one, over a period of many years, the other natural resource companies
slipped off the list. Although it might be slow, change is powerful.

Examination of the S&P 500 presents a similar story. Of the 500 original companies of the S&P 500 in 1957,
only 74 remained on the list through 1997, an 85% reduction rate. It is interesting to note that such driving forces
(see Michael Porter[1] under "References" section) still exist today, but the rate of change has increased. In
other words, companies are going out of business at a faster rate today than they were in 1957, as correlated by
Richard Foster and Sarah Kaplan in Creative Destruction (Currency Press, 2001). Foster and Kaplan's book
indicates that technological and public-policy shifts have consistently destabilized the market, and it is occurring
at an increasing rate.

[1] Professor Michael Porter of Harvard Business School's Institute for Strategy and Competitiveness numerous
fundamental concepts in competition theory, which have since become well accepted knowledge and practice for
about 20 years now.

Despite the dotcom bust and major bankruptcies in the United States, this phenomenon occurs worldwide. For
example, the current leading steel manufacturer in Germany, Thyssen, has replaced older, well-known names like
Krupp and Hoesch, which disappeared in the last 20 years. This rapid rate of extinction leads to the three core
questions that will be discussed in detail in this chapter:
1.

How do companies survive over the long term?
2.

How can companies effectively execute a business plan that incorporates continuous business

transformation?

3.

How can companies achieve the greatest possible business agility?

Today, enterprises must be more dynamic than ever to survive. They need new, evolved ways of handling the
competition, and their IT infrastructures must support them as they face unique challenges they didn't have to
face years ago. We believe SOA is the way that companies can develop IT infrastructures capable of supporting
dynamic enterprises. However, to understand SOA, you first need to understand the particular forces of change
that now affect businesses.

< Day Day Up >

< Day Day Up >

Based on Porter's concept of driving forces and following his thoughts on competitive advantage, the IBM
Institute for Business Value developed an approach to show how IT and business forces drive enterprises to
change their operations (see Figure 2.2). These changes allow them greater flexibility, enabling them not just to
stay in business but to demonstrate leadership in a global economy.

Figure 2.2. IT and business forces force enterprises to become more dynamic.

These forces have led to two complementary trends for business transformation: enterprise reconstruction and
industry deconstruction.

2.1.1. Enterprise Reconstruction

Enterprise reconstruction is a trend within a single company to break open the classical vertical silos that are
built up over time to support the various business units into hierarchical structures. This trend emerged because
of the necessity to achieve highly efficient performance of repetitive business processes in the enterprise.
Vertical silos reflect an efficient enterprise with a fixed set of tasks and defined interactions that allow highly
repetitive execution. Although efficient, this clashes with the drive toward more dynamically effective
operations. The hierarchical nature of vertical silos often hinders reaction time whenever the enterprise needs to
implement new services.

Applying the concept of Porter's value chain to the enterprise shows that horizontal integration maps out the
flow of work through the enterprise. As external pressure grows for the business to reorient itself to allow greater
customer focus and responsiveness, it has to learn how to display variability and resilience at the same time.
This reinforces the trend for enterprise reconstruction.

2.1.2. Industry Deconstruction

While enterprises are busy changing their internal models from vertical silos to horizontally integrated business
flows, there is another trend in the industry toward the specialization of businesses according to their core
strengths. This specialization lets an enterprise focus mostly on the core of its business. This core business
function represents the main expertise, direction, and strategies of the business; it typically also receives the
most accolades. Tasks outside the business's core are generally outsourced to third parties to provide the actual
enablement and delivery. Each of these third parties then focus on improving their own core services. Thus, a
network of business partners, each focused on its core competencies and taking advantage of its partners'
competencies, together can deliver services to customers in a more flexible and agile manner.

In this way, enterprises in general are moving away from having integrated value chains—a defined set of
suppliers and distributors in a sequence of production steps that deliver the end product to the consumer—that
are contained wholly within a single enterprise. Instead, they are moving toward new business models with
greater cooperation and interaction with their business partners, suppliers, and customers.

2.1.3. The Impact of the Enterprise Reconstruction and Industry Deconstruction
Trends

Both of these trends lead to integrated industry networks that are loosely coupled rather than strictly linked
together. In this sense, we find a deconstructed industry of services that can be aligned and realigned as needed
in a given situation.

This drive toward such a deconstructed, services-aligned industry is self-enforcing; although more services are
being offered, these services are better defined and implemented and contribute to a global economy. In addition,
there is an interest in outsourcing that will see increasingly stronger competition, not just from larger outsourcing
providers but also from niche service providers, facilitated by the standardization of interfaces, service
descriptions, and contracts. In the end, a number of general services will become commodity offerings, and
efficient players will have to share the market, whereas niche players will have to strengthen their offerings by
delivering special benefits to the service consumer.

2.1.4. The Trend Toward Business Components and Services

In most cases, businesses today no longer require a high degree of optimal performance for repetitive processes.
Instead, businesses are now measured by their time-to-market and, more significantly, by their reaction to
support their customers with flexible, well-suited solutions appropriate to their needs.

Businesses differentiate themselves from competitors by attaching services around their products. These
services are increasingly commoditized, which means companies are becoming service providers rather than
sellers of products. Just think of how quickly the mobile phone has reached market saturation in many countries.
In less than two decades, mobile phones gained a huge share of the population of the developed world, compared
to the century it took for land-line telephones to reach similar population sizes.

Customers demand new and more integrated solutions and even more for services around these commodity
products. All of these trends bring us back to the question of how SOA can address the needs of companies that
face the challenge of transitioning from product-oriented businesses to service-oriented businesses.

2.1. The Forces of Change
Most companies today are pressured by customers and shareholders to drive up growth by increasing

productivity and squeezing costs out of the operation. However, it can be difficult to maximize efficiency if a
company is wedded to rigid, expensive, or proprietary IT systems. It may be very efficient with a proprietary
system, which might be optimal if that is all the market requires. However, a rigid and proprietary system has
disadvantages in terms of effectiveness, which is what is asked for from an enterprise operating in a quickly
changing market. In fact, these days agility is the most valuable thing a company can buy itself as an
organization—the flexibility to meet new market demands and to seize opportunities before they are lost or
before the competition gets there first.

To increase flexibility, companies need to look at business operations as a collection of interconnected
functions—discrete processes and services (checking customer credit information, authenticating users, and so
on). Company leadership then needs to decide which of these functions are core to the identity of the business or
provide aspects to differentiate the business from its competitors. The nondifferentiating aspects can be
streamlined or even outsourced to a partner. If a company can mix and match the differentiated functions on
demand, or even on-the-fly, in response to changing business conditions, it can have a tremendous competitive
advantage in the marketplace.

This is a powerful idea in itself, but to achieve this degree of flexibility in business operations, companies need
an equally flexible IT environment. In our view, this indicates the need for an IT environment that can change on
demand to the needs of the business. Service-oriented architecture provides a valuable response to this need for
flexibility in business operations by providing the core structure of an on-demand operating IT environment.

Proof of this is reflected in findings from recent surveys such as those published by Forrester Research[2] in
January 2004, one of which is shown in Figure 2.1. SOA appears on top of the list in Figure 2.1. Furthermore,
recent publications by Gartner Group support its growing importance and predict a predominance of
service-oriented solutions like SOA and service-oriented business applications (SOBA). Charles Abrams,
director of Gartner Research recently stated, "In 2001, we told you that Web services would be where they are
now. Now we're telling you that they aren't done yet. Expect their impact to extend across new architectures
beyond SOA, all vendor products, and new business models."[3]

[2] A survey by Forrester Research to its members of the Enterprise Architecture Council of the Forrester Oval
Program, January 2004.

[3] On the Gartner event in Athens, Greece, March 15, 2005.

Figure 2.1. Forrester Research, January 2004 survey.

[View full size image]

< Day Day Up >

< Day Day Up >

e erm ne a company s core compe enc es

Identify an outsourcing strategy

Define a plan to reduce the complexity (such as cost) of the company's shared IT infrastructure needs with
its trading partner community

From a technical perspective, it is easy to see how the claims of SOA can be realized. With SOA and Web
services, incompatible computer systems can communicate without the previous technical complexity or high
cost of maintenance. SOA can help attain business agility through the reuse of a company's current IT assets and
integrated processes. Finally, SOA makes it easier to create a more direct, measurable association between
business assets and services, and IT assets and services.

2.2.3. What Benefits Will Businesses Receive if They Implement SOA?

At a very high level, the answers to the question of what benefits companies receive through an SOA
implementation are as follows:

It saves money, time, and effort over the long term through reuse of "components" and because of the
flexibility of SOA.

It eliminates frustrations with IT through flexible solutions and shorter times to deployment.

It justifies IT investments more clearly through the closer association of IT to business services.

It provides business executives with a clear understanding of what IT does and its value.

It allows the creation of and changes to services incrementally rather than leaving a guesstimate of the
development costs, thereby eliminating the classic IT 6-6 answer: "The project will take 6 months and cost
6 figures."

It provides a business and competitive differentiator, with direct rationalization and relation to how that
competitive advantage is implemented in IT.

Other technologies have made these same claims. However, many business leaders, analysts, and technical
leaders agree that, with SOA, we have a different situation that validates this in reality. Chapter 10, "Case
Studies in SOA Deployment," offers lessons learned from real projects that support these claims.

2.2.4. What Opportunities Will Companies Miss if They Don't Implement SOA?

Implementing business-driven IT with SOA promises to simplify and accelerate business transactions.
Therefore, the agility and flexibility options of an SOA allow organizations to better handle business situations
like the following:

Department, intracompany, or intercompany mergers

Acquisition

Divestiture

Product or service rollouts

Business partner, customer, or supplier changes

Geographical expansion

Competitive gains in market share

2.2.5. What Is Different with SOA Compared to Previous Approaches?

SOA is not a new idea. Solutions have been built according to SOA principles for at least a decade, although
they have usually been implemented in proprietary (expensive) ways. Although SOA-like solutions have been
possible on a departmental or multidepartmental scale, it became extremely difficult to scale these solutions
across large enterprises and across multiple companies and partners.

So what's so different now?

Previous SOA-based solutions have a history of successful implementation. Even with their high costs, they still
provide economic value and functional flexibility in a company. The principles of SOA can be successfully put
together for a single organization or even a few select partners through careful coordination. Software vendors
have even tried to establish communities of partners built around their application offerings. However, making
this possible on a wide scale in the industry requires well-defined and cross-platform standards implemented in
the software offerings of many vendors. The reason the term "SOA" has become so prevalent now is due to the
rise of new technologies that make SOA-based solutions much more cost efficient and productive to implement.

This new standard technology is a result of Web services. Open Web services standards are important because
they break down the proprietary barriers between vendors and software programs. This is demonstrated by the
commitments of major vendors, such as BEA, IBM, Oracle, SAP, and Microsoft, to standardize their respective
hardware and software, allowing the sharing of information and data.

2.2.6. Rethinking Components for Business and Applications

As noted previously, the premise of SOA that makes its claims possible is the concept of reusable components.
Components are the discrete business processes and services that make up a business. An SOA makes it
possible to continually reuse components. Think of it as a mosaic of individual, functional components that can
be arranged and rearranged. A company that follows the concept of SOA can build, deploy, integrate, and link
applications and heterogeneous systems and platforms together across the organization.

SOA has yet to reach its full potential. Most applications today are still integrated with custom-developed
code—they're hardwired, if you will—making it slow, difficult, and costly to rearrange the pieces in the mosaic.
What everyone has been waiting for is a way to standardize the connections among all those components so that
they work the same way everywhere without requiring additional, customized programming, which is costly and
can prevent reuse.

The common components and information utilized by and derived from business processes can be reused
multiple times in an SOA to give the customer varying experiences. For example, a piece of software is now
represented as a service, matching any business component you can identify. This is illustrated in Figure 2.3. In
this sense, business services can now be more accurately reflected in coded software.

Figure 2.3. Business components interacting with IT components.

To make it possible to rearrange and compose components, your IT systems need to satisfy a number of
criteria, mainly an agreed upon set of standards and rules that need to be in place. These include the following:

Standards: Web services for implementation and enterprise, and respective industry standards that apply to
the business side; this includes, for example, industry services models as shown in Chapter 5.

A common roadmap: Acts as the master plan to guide your enterprise to a successfully changed and agile
business as outlined in Chapter 4.

Common information model and industry semantics: This is necessary to avoid ambiguities and to support
understanding between all involved parties (see Chapter 5).

Strong governance processes: Prevents your loosely coupled systems from degrading into anarchy (see
Chapter 4).

Flexible business processes: Based on dynamic business process modeling approaches, backed by
appropriate methods and tools (see Chapter 5).

Business transformation and openness for change as a base: Changing a business involves changing not just
the system but also the people involved, including those on the IT and business ends.

2.2.7. When Not to Implement an SOA

In certain cases, it is better not to implement an SOA because it is not a suitable solution. As with all
approaches, there is no one-size-fits-all with SOA. ZapThink.com senior analyst Jason Bloomberg explains,
"When Not to Use an SOA"[4]:

[4] Jason Bloomberg, "When Not to Use an SOA,"
http://www.zapthink.com/report.html?id=ZAPFLASH-02162004. Jason Bloomberg is a senior analyst at
ZapThink LLC in Waltham, Massachusetts.

When you have a homogeneous IT environment. Theoretically, you might still need an SOA if you want to
consider opening services to an external environment.

When true real-time performance is absolutely critical, such as at telephone switches or in other situations
that require nanosecond response times. Though as hardware and networks develop, you might find
SOA-based solutions here as well.

When flexibility is not needed, such as if the processes of the business are already direct and
uncomplicated and do not need change. If there already exist optimized commodity processes, then the
organization may not benefit from changing to an SOA.

When tight coupling is needed, such as within a cohesive component or application.

If the organization isn't ready for it. SOA is typically a cross-organization effort. It is rarely likely to
deliver immediate business benefits for a single line of business application, such as order entry for
standardized products.

2.2. Common Questions About SOA
First let's get to the most basic questions about SOA. To help a business executive understand the value of

changing the enterprise's IT infrastructure into a service-oriented architecture, the following questions deserve
convincing responses:

1.

What is SOA?
2.

Why do companies need SOA?
3.

What benefits will businesses receive if they implement SOA?
4.

What opportunities will companies miss if they don't implement SOA?
5.

What is different with SOA compared to previous approaches?

The following sections attempt to provide answers to these questions. We don't provide a prescriptive method;
instead, we attempt to highlight the current perspectives from both the business and IT viewpoints. Further, in
this book we look in more detail at the conditions for an SOA project (see Chapter 4, "SOA Project Planning
Aspects"), and we consider a more formal approach to the modeling of services and common semantics (Chapter
5, "Aspects of Analysis and Design").

2.2.1. What Is SOA?

Chapter 1, "Introducing SOA," adequately provided a technical as well as a business definition of
service-oriented architecture. In summary, from the business viewpoint, SOA is a set of business, process,
organizational, governance, and technical methods to enable an agile, business-driven IT environment for greater
competitive advantage. It provides the flexibility to treat business processes as well as the underlying IT
infrastructure as components that can be reused and recombined to address changing business priorities. Thus, in
essence, SOA is the map that guides you down the road to competitive advantage.

2.2.2. Why Do Companies Need SOA?

The combination of SOA and Web services is in some ways being marketed as the silver bullet that companies
have been looking for to magically solve all business issues of today. There are valid doubts about such claims,
which certainly never will come true. Many business issues are not just solved by a specific IT architecture or a
certain approach to making business decisions. As long as people are involved, errors are still likely to occur.
However, with a foundational architecture like SOA, you can expect to do the following:

Realize the long-promised potential of utilizing IT to extensively accelerate or improve business

Justify IT expenses and capital outlays

Provide nontechnical people with a clear understanding of what IT does, how they do it, and their intrinsic
value

Projects that study the possibility for using SOA and its related technologies and methods (see Chapter 5) are of
great help to do the following:

D t i ' t i

http://www.zapthink.com/report.html?id=ZAPFLASH-02162004

< Day Day Up >

< Day Day Up >

(see Section 2.3.2.4).
5.

Show how service orientation will create a digital model of the business using a top-down approach (see
Section 2.3.2.5).

6.

Describe how IT can align with the business via processes and metrics (see Section 2.3.2.6).
7.

Show that IT can align with business via incremental delivery(see Section 2.3.2.7).

2.3.2.1. Unraveling the Concept of Architecture

An identifying characteristic of an SOA is that it is a style of IT architecture. Although this might be stating the
obvious, the point is to remember that an SOA has all the qualities, demands, and risks inherent in any type of
architecture. People are most likely to associate the word "architecture" with a technical connotation. An
architect must challenge this view by explaining the importance of architecture to the business and the need to
understand architecture from the perspective of a business benefit.

Architecture at a Glance
Architecture involves investment in process, technology, and interface standards. Its purpose is to

improve an organization's capabilities by maximizing business agility and reducing the cost of IT
development and operations.

The benefits of architectural investments span many projects, not all of which may be foreseen at the time of the
original investment. This notion of architecture helps us understand what architects do and many of the
challenges they face. Several observations are significant here, as they relate to architecture in general and SOA
in particular:

Architecture is not a specific set of tasks or skills because every organization will achieve its architectural
goals in different ways. The goal of the architecture group is to select and implement the most effective
investments in standards, procedures, technologies, and interfaces to support the organization's business
goals and business processes. The architecture group's deliverables will depend on the types of
investments that are most appropriate, given those business goals. This requires the architects to be
familiar with business language, issues, and context in order to provide that bridge.

Architecture is an investment principle, as it indicates that you should plan ahead and think through the
resulting solution during the early phases of the project.

Architecture is a risk. Not all architectural ideas can be realized as envisioned. There are unpredictable
circumstances that can force amendments to a chosen architecture, which may cause higher costs or take
away the benefits associated with an architecture style.

Architects can never predict all the applications and systems that will use the architecture they create.
Increasingly, the goal of architecture is to support general, organizational business directions rather than
specific, planned projects. Architecture is, therefore, a risk. Architects assume that if everyone (or at least
a large portion of the organization) follows the architectural rules, there will be future benefits (productivity
cost savings, business agility, or reduced time to market, for example). They hope that their architectural
plan will continue to have value in the long term, even for projects that were not envisaged at the time they
created the plan. The number and type of assumptions that an architect can make will be constrained by
many factors, especially the organization's attitude toward risk and how much the architect knows or can
guess about the future. The only way architects can have any hope of predicting future requirements is if
they are fully engaged with the direction of the business. We emphasize the architect's role, as the
understanding of technical implications requires a different way of thinking than that for business.

Architecture is a set of constraints. It is about achieving what is best for the majority. Individual projects
and programs need to follow the architectural constraints to allow the whole organization to benefit, despite
any individual inconveniences. Organizations that do not have a clear concept of what constitutes the
common good cannot implement wide-ranging architectures. Tension is inevitable because it is unlikely
that any architecture (set of constraints) will be appropriate for the entire organization; therefore, a
conflict-resolution process (governance) must be part of architecture. Conflict resolution will be next to
impossible without the architect becoming fully engaged with business management. Business needs
impose restrictions and constraints; they also define the service levels required from the IT systems which
the architect needs to plan for. To decide on priorities, possible solutions, and compromises, a strong
interlock is needed.

Architecture is an organic process, not a static document. Architecture evolves in response to changes in
the organization's business goals and the available technologies.

The goal of an architectural plan must be articulated. An architectural plan intended to minimize cost of
ownership is not the same as one intended to minimize time to market or to maximize business agility.

Architecture is hard to cost justify because it depends on making bets and assumptions. The true value of
architecture is often only proved retrospectively. If system development and operations are cost effective
and the organization's business goals can be satisfied easily, then the architecture was well designed and
executed. In practice, organizations get the architecture that they can cost justify, which is not always the
architecture that will be most beneficial from a business perspective. However, an SOA implementation
has the inherent quality of tying IT costs to specific business processes, which are tied to specific business
measurements.

Architectures are seldom universal. Different parts of the organization will have different goals and may
need different architectures to support them. Any architectural deliverable needs to be scoped; "one size
fits all" architectures are seldom successful. For example, a common goal of architecture in areas such as
mainframe applications is to promote quality and low cost of ownership. The goal of architecture in
fast-moving businesses is usually to promote time to market with acceptably low risk. There is generally a
trade-off between the depth and the breadth of architectural investments.

As indicated, architecture is a rather pragmatic approach that needs to adapt to always new and different facts
and demands. Nevertheless, there are well-defined principles and concepts that architects apply in their roles to
a broad ranging multitude of tasks.

2.3.2.2. Clarifying the Architect's Role

Architects are responsible for a myriad of tasks related to managing the business processes of developing,
deploying, and maintaining the architecture. Although the architect's role is crucial to a company's success, it is
often rarely noticed or evident to the business people. In the SOA world, architects need to change and expand
their knowledge of the business processes of the company, turning themselves into the bridge between IT and the
business groups.

Educating people on these changes requires an understanding of an architect's current, non-SOA responsibilities,
as it lays the groundwork to elaborate on the expansion of the business duties the architect assumes in a new
SOA environment. In fact, SOA architects will need to work so closely with their business groups that you might
as well regard them as super business analysts.

The following are current tasks of an architect that contribute to business success:

Identifying potential architectural investments and cost justifying them. This requires architects to seek
information from their technology and business associates to identify which architectural investments are
appropriate.

Communicating the architecture and maintenance process to its users and supporting users of the
architecture. This might involve training, publications, Web sites, groupware tools, hotline support, internal
consulting, or competency centers, so-called "centers of excellence" (For details, see Chapter 4's section on

governance considerations.)

Road map management. Few organizations have the luxury of starting from a blank sheet of paper when
defining architectures. In practice, most architecture groups maintain a roadmap that documents the current
physical architecture and the desired target architecture, defining how one is to evolve into the other.

Conflict resolution and exception handling. Conflicts between the goals of individual projects and the goals
of the organization are inherent in architectures. The absence of conflict might be a danger sign that either
the architect is being ignored or there are unsatisfied opportunities for standardization. Exceptions are
sometimes required and should be handled by a defined process. The nature of service-oriented
architectures allows less strict development efforts that can give rise to such conflicts; these should be
detected and resolved early in the project.

Deploying the architecture. Most architectural deliverables are implemented by a process of
communication, training, and mentoring. In the SOA world, these deliverables will mirror the company's
business processes.

Monitoring the effectiveness of the architecture and encouraging or enforcing compliance. To achieve the
SOA goal of business agility, it is imperative that architects regularly consult with the business members of
the team.

As enterprises drive toward greater integration across regions, lines of business, and departments, architecture
will be increasingly important to the success of organizations and will be recognized as a valuable discipline. A
clear definition of the business goals of architecture and the roles of architects is a necessary component of an
architecture function.

2.3.2.3. Realigning IT Around Services

To make businesses more responsive to change, business interactions must be represented as services, with
individual elements of business functionality performed by IT applications. Three benefits result from this:

Loyal customers. Customers have strong incentives for loyalty when you increase their efficiency and
effectiveness. As you more deeply intertwine their processes with yours, you prevent them from going
elsewhere.

Efficient suppliers. When you increase your suppliers' efficiency, you can press them for lower prices and
offer better prices to your customers while also driving down process cycle time.

Lean businesses. Through flexible outsourcing, your process can seamlessly incorporate value-added
features provided by outsourced suppliers. You might even remove steps from your customers' side of the
process by integrating some of their other suppliers into your side of the process.

A company can approach business agility deliberately by focusing narrowly on Web services, and this is fine
for just a limited number of business interactions. However, services are just the start of a much higher-level
vision of business value—the overall responsive, optimized business.

The strategic approach uses Web services to build flexibility end to end across internally and externally
connected applications. Incrementally, business services become the core IT deliverable, enabling IT to more
readily deliver value.

An aggressive and strategic approach to services will deeply restructure and realign IT around service design
and delivery. In other words, IT becomes a service-oriented business unit. From planning and requirements
through project scoping, design, creation, deployment, and governance, IT work will then revolve around
services.

2.3.2.4. IT-to-Business Services Alignment

An improved relationship between IT and business units, coupled with the incremental delivery of business
processes via services, allows the "compound growth" of business benefits; one improvement builds on another.
This combination can produce some powerful results:

Faster response to customer priorities and shifting markets. As competition, customer demand, and
regulatory forces shift the market and drive change to business processes, a company with a well-defined
and relatively developed inventory of services is able to more quickly reconfigure its applications to
incorporate new and evolved business requirements because there is a high likelihood that a needed service
is already available.

Faster delivery of business change, both internally and externally. Aside from customer- and market-driven
changes, services can also accelerate internally driven change.

Higher end-to-end process value. When IT responds quickly to internal and external change, the business is
encouraged to continually pursue process optimization. When a company continually adds one process
improvement on top of another, the cumulative impact can be huge (lower cost, faster cycle time, and better
business results).

Reduced cost of change. Besides handling change faster with services, IT can also deliver changes at a
lower cost, which further encourages the business to pursue continual process optimization.

Rule of Thumb
When services align with business process steps, they can be changed incrementally as processes

change so that IT becomes less of a drag on business change.

2.3.2.5. Creating the Digital Model of the Business

To appreciate the huge impact that services can have, you need to look at what happens over the long term as
application delivery efforts adopt a service-oriented model. Over time, as each project builds on and extends the
available body of services, it creates a digital representation of the physical world's business processes. In other
words, you create a digital model of the business. Chapter 5 provides a closer look at how this digital model of
the business can be achieved.

This occurs as a result of the following factors:

Businesses deliver services via business processes. A simple but important starting point is to recognize
that every company puts business strategy into action at a business-process level. Through either
well-defined, measured processes (such as a manufacturing production line) or uncontrolled, ad hoc
processes (such as a special project to brainstorm new market opportunities), business processes are the
way things get done.

Business processes tie to business measurements. Critical business metrics reflect either the operation of a
business process or the results of the process. They measure the cost and cycle time of a process, such as
the work effort, resources, and elapsed time required in converting a lead into a closed sale. Alternatively,
they measure what the process produces, such as total or average sales. Furthermore, metrics tie to steps in
a business process, as in the number of cold calls that turn into prospects or the total sales coming out of
the last step in the sales process.

Business process steps are delivered via IT applications. IT delivers all of its solutions—any application
or any infrastructure element—to meet the needs of one or more business processes. Specifically, there are
places within any business process where process steps interact with IT assets to capture, transform, or
report business data. As with processes, it may be structured, defined data, such as a new order, or
unstructured, ad hoc data, such as an e-mail. These interactions are the moments where IT value is
delivered to the business.

Business process steps must align with the needs of business services. Within a business process, each
interaction with an IT asset is a potential place for a service. If the interface between the process step and
the IT asset is framed in terms of the purpose of the process step, and if the interface is open to being
invoked through multiple interaction channels (such as a Web application, desktop application, Web
services, interactive voice response, and so on), the IT asset is a business service. Because a business
service directly serves the purpose of a process step, it is, in effect, a digital representation of the process
step. Furthermore, a service provides important flexibility for a process step because, no matter how the
interaction channel of the step might change, the service maintains consistent operation of the process step
through its encapsulation of the relevant business rules.

When this sequence occurs properly, the individual services model the steps of the business process, building
up an inventory of services. Thus, you can appreciatively develop a digital model of your business from this
sequence.

As the business changes—as you create new process steps and optimize existing steps by changing who does
what and when they do it—many of the underlying services become stable, and the only need for change is in the
method of access. Likewise, many new business initiatives can easily leverage the existing inventory of services.

The digital model provides a structure to collect, examine, and align business and IT metrics. The pattern,
volume, and content of interactions flowing through your services offer insight for measurement of business
process efficiency and results. In addition, services provide a place to allocate IT development, infrastructure,
and management costs, providing for additional correlation between IT costs and business process results.

2.3.2.6. Aligning IT with Business Processes and Metrics

As discussed previously—building on the basis of modeling units of business operation—services foster a
change in the relationship dynamics between IT and business. IT has long talked about alignment and partnership
with the business, but with limited ability to talk in business terms, it has made little impact on business
operations. With a strategic approach to services, IT has a chance to change this. In the following paragraphs, we
discuss how it can be done.

When the IT unit of an enterprise understands that services allow them to create a digital model of the business,
the unit might realize that the proper design of services requires an understanding of the business processes for
which the services will be deployed. As the IT organization investigates the possible choices in designing a
service, it must deepen its knowledge of relevant process steps and use the business process context to set the
scope and semantics of each service.

At this point, IT has a critical choice. It can stay in the role of simply implementing a given set of specifications
sent by the business units, whereupon it will go with the process steps as laid out by those units and simply
design services to match without really questioning why they are necessary. However, when IT takes the
strategic approach to services, it can investigate the process more deeply, looking for opportunities to optimize
service value.

To achieve this, IT architects need to be able to converse with the business units in terms of business benefits.
Therefore, the IT organization should seek to understand process metrics and examine the impact of different
service design approaches on these metrics. Such metrics can be applied by calculating the value of reusable
assets and templates used to create services, or via other means of measuring productivity. The
componentization of the business and corresponding IT services allows a much more precise metric for
implementing solutions than a large project plan, stretching an expanse of time and involving costly development
crews in maintaining complex systems.

Doing so expands the view from a focus on pure application delivery to one of business results:
1.

Which service design alternatives will yield the greatest business impact?
2.

Which alternatives will provide the most positive results for customers and partners?
3.

Could alternate interaction channels further improve these results?
4.

Could a service incorporate multiple steps, automating interim steps and thereby improving results?

The answers lie in understanding how the various options will affect business metrics. This is a difficult and
crucial step in the transition to service-oriented IT. The business might well disdain the IT organization
questioning as an intrusion that slows the application-delivery process or because it exposes the business as
having no relevant metrics. IT staff might prefer to sit tight in the comfortable role of only taking orders.
Learning the vagaries of business processes is an unfamiliar and difficult task, and many techies will view it as
extra work that is of little value and even less interest to them.

However, it is not necessary for all IT staff to tackle business processes, rather only enough to make the
translation to service design and implementation. Initial business objections can be overcome by stressing the IT
organization's need to understand and design toward the intended business value.

For example, the IT group can evaluate the key issues facing the business, such as the following:
1.

What are the primary pain points in the process?
2.

Where are the weaknesses of the process?
3.

How do process volumes vary with business activity?
4.

What data would facilitate smarter or faster decisions at any given step in the process?

In pursuing these types of questions, the IT organization can combine its new, deeper understanding of processes
with its knowledge of technology and existing applications to offer a fresh perspective on possible solutions. It
can then frame its suggestions in concrete terms describing the potential impact on specific metrics, processes,
and process steps. Rather than suggesting technical options and expecting the business to translate, it can bring to
attention operational suggestions in business terms. This allows the IT organization to take a major step toward
having strategic business impact, and if they play their cards right, the mysteries of technology implementation
can be elevated into a collaborative business design process.

The improved understanding of business operations is of significant benefit, but the chain of possibilities
extends even further. With a business and IT partnership for business design, the IT organization has a bold
chance to put its money where its mouth is by measuring its own performance, in part on the actual
improvements in business results delivered by IT projects.

Typically, the way IT is measured today—mostly by delivering on spec, on time, and on budget—is only as
good as far as the lengths it goes to provide solutions. You can be successful and still miss the underlying
purpose: improving business results. To be accurate, the business unit still retains primary responsibility for its
business results, but if the IT organization has a stake in the game, it can promote a change in the unit's thinking
and give the organization a justified basis for raising questions and issues regarding the business value of a
project.

We are aware that many in an IT department will resist such a change due to the fear of stricter control, loss of
freedom, and the like. The change of focus from solving technical issues to thinking about the business value
might be perceived as a watering down of the traditional development process. Therefore, a good starting point
is to close the loop on preproject justifications—as many firms fail to do—and publish visible results of
postproject value audits.

IT needs new skills for the transformation toward service orientation. Inserting pure techies into business
discussions would probably not result in a stronger connection with the business. Neither will adding a project
manager to nail down dates, scope, and commitments help to create that connection. Creating a partnership with
the business requires a quick study on who can win business trust by showing keen insight into business issues
and clear advocacy for the business. Some of these lessons learned are outlined in Chapter 10.

It takes a focused combination of business knowledge, creative thinking, relationship skills, and technology
savvy to build and sustain a business partnership. A company might have to look outside itself for such skills,
whereas a larger, comprehensive, and experienced service provider can be of assistance at the center of both
business design and IT delivery.

2.3.2.7. Aligning IT with Business via Incremental Delivery

Beyond the IT-to-business alignment based on business design, the digital model aspect of services fosters an
alignment toward the implementation of business change. An IT project backlog can become an embarrassment
to the IT department and a sore spot for the business. Worse, the IT side might deliver a new application only to
find that the business process can only take advantage of a subset of the full design—in other words, the
business process was not planned comprehensively in schedule with the deployment of new applications.

When business operations and IT are closely cooperating on design, it is easier to clearly define the change that
must occur on both sides to achieve the intended value. In the new SOA model, business and IT collaboratively
plan for coordinated, incremental change because of the following:

Massive business process change is too risky. Business process change is difficult. People have to break
old routines and learn new ones. Managers must learn to operate and optimize new metrics. Training and
reference resources have to change. Each change introduces risk, and the risk compounds for attempts at
massive process change.

Business changes most effectively in increments toward a vision. Big change is sometimes necessary, with
mergers and acquisitions being a major case in point. However, you can move toward a vision of big
change in small chunks that the business can more easily digest. It is easier and less risky to implement
smaller changes, plus you can learn from one set of changes to build smarter on the next set.

Process impact drives project prioritization. Measuring and prioritizing business change based on the
expected improvements in process results focuses discussion where it should be: on the facts and analysis
of options for business change, not on perceptions and emotions about pet projects.

Services change in alignment with the business. With a prioritized list of process changes, IT can focus
more narrowly on just the services and interaction channels needed for high-priority changes. IT can
incrementally develop, deploy, and manage a targeted set of services while the business is planning and
preparing to implement associated process changes. The result is that they come much closer to the goal of
changing at the speed of business. With IT and the business operations aligned on delivery timing, there
might still be a backlog of ideas for change, but they are likely to be on the backlog of both units.

2.3. SOA Value Roadmap
This section builds a roadmap for how to reach the expected benefits and value of SOA. It describes an

approach for how to explain the business value of SOA in nontechnical terms. Superiors in management will
likely ask architects to summarize the values of SOA to them.

We also provide a checklist that shows the business issues you need to cover along with suggested approaches
for explaining each issue. The checklist lays out the logical business arguments that will paint a full picture of
the value of SOA. It starts by examining the business fundamentals of architecture, and it then works through
process issues and services (or incremental delivery). This education yields an SOA business value package.

2.3.1. Explaining SOA to Business People

One of the keys to flexible business processes depends on close interaction between the IT department and the
business units. This partnership is an absolute necessity for a successful SOA implementation. Currently, in
most organizations, after a new business need is identified, the business operations team usually contracts the IT
department to build an appropriate application that satisfies the need. Business management does not really care
to know the details of how the application is built.

Similarly, the IT department builds the application only to the specifications provided and does not really look
too much further into how this impacts the business. Essentially, both sides stay within their own domains, with a
wall over which the business operations group throws a project to the IT group, and IT responds with a technical
solution. In general, this builds too shallow of a view and understanding across the groups and, therefore, too
shallow of a collaborative development process.

The IT industry has long talked about alignment and partnership with the long-term and in-depth needs of the
business side, but with such limited collaborations, IT departments have been largely unsuccessful in having
strategic impact on their business counterparts. Therefore, it is imperative to find a way to get the two groups
cooperating in deeper relationships with each other so that they can better respect and understand the needs of
the other.

Hence, educating people on the many business benefits inherent in an SOA is the first step in solidifying an
active working covenant between IT and business groups. This relationship is, after all, the foundation from
which all else in SOA can be built. As we show in Chapter 5, there are distinct layers of services abstractions
from enterprise business components to application components. Keeping the relationships between the layers
means providing a base for communication between the various levels on the business and IT sides. Chapter 4
contains a more detailed discussion about the roles involved in changing business and IT toward an SOA.

2.3.2. A Checklist for Business Change Agility

The checklist in this section shows you how to develop a business understanding of SOA. These seven steps
should help you explain the technical, operational, and functional underpinnings of SOA, which are explained in
greater detail in following subsections:
1.

First unravel the concept of architecture from its perceived technical underpinnings and explain the
business realities of this necessary business function (see Section 2.3.2.1).

2.

Clarify the architect's role in providing architectural function crucial to business success (see Section
2.3.2.2).

3.

Explain why it is better to realign IT elements around service definitions or business processes (see Section
2.3.2.3).

4.

Emphasize the need to build an in-depth IT-to-business group dialogue that leads to a meaningful,
constructive, respectful, and regularly engaged relationship between IT and the company's business units

< Day Day Up >

< Day Day Up >

2.4. The Nine Business Rules of Thumb for SOAs
The knowledge from the SOA business value roadmap can be condensed into the following rules of thumb that

we have learned from various projects across many industries:

Rule of Thumb
Rule of Thumb 1: SOA Benefits
There are many business and technical benefits to an SOA, but none is as important as the

capability for a company to respond quickly and effectively to business change and to leverage that
change to gain a competitive advantage.

Rule of Thumb 2: IT and Business as Peers
You cannot build a successful SOA model if you cannot forge peer working relationships between

the IT and business groups.

Rule of Thumb 3: Incremental Business Services
In an agile business, incremental business services that mirror business process steps become the

core deliverables of the IT group.

Rule of Thumb 4: Business-Smart IT Architects

Business-aware IT architects are the bridge between the company's IT and business units.

Rule of Thumb 5: Opportunities for Services

Within a business process, each interaction with an IT asset is a potential location for a service.

Rule of Thumb 6: Measuring Services
A service that mirrors and executes a business process can be used to allocate IT costs and

provide IT justification by correlating the IT costs with business process results.

Rule of Thumb 7: Service-Oriented Means in the Core
Companies committed to SOA will find business processes and services at the center of both

business design and IT delivery.

Rule of Thumb 8: Proving Business Value of SOA
A company's SOA gives IT a definitive way to prove business value through business results

measurements.

Rule of Thumb 9: Competitive Business Agility
When a change in business process no longer requires a change to application programming logic

(that is, when you have a successful SOA), your company has attained competitive business agility.

< Day Day Up >

< Day Day Up >

2.5. Summary
As we have shown, the forces of change, enterprise reconstruction, and industry deconstruction have led to a

trend toward business componentization and the use of business services. This trend requires organizations to
develop agility to change their businesses as needed by their current environment. The implications and benefits
of implementing SOAs have led organizations to rethink the business model toward creating reusable
components that link business processes to technical services and applications.

The use of SOA is strongly dependent on a true partnership between the IT and business units of an
organization in order to achieve business-change agility. As indicated in our checklist, there are seven decision
and operational steps toward achieving this agility, finally leading to our rules of thumb in Section 2.4. Without
an SOA, the larger concept of building an agile, on-demand enterprise is not feasible. With these business
decisions in mind, we will follow with the technical concepts for service-oriented architectures in an on-demand
environment that an IT organization needs to understand and take to heart.

< Day Day Up >

< Day Day Up >

2.6. References

Arsanjani, A. Empowering the business analyst for on demand computing. IBM Systems Journal, Vol. 44,
1-2005. http://www.research.ibm.com/journal/sj44-1.html.

Bloomberg, J. Growing an Agile Service-Oriented Architecture. ZapThink, September 2003.

Bloomberg, J. When Not to Use an SOA. ZapThink, April 2005.
http://www.zapthink.com/report.html?id=ZAPFLASH-02162004.

Cecere, M. IT Trends 2004: Organizational Design. Forrester Research, February 2004.

David, Fred R. Strategic Managemen—Concepts and Cases, 7th Edition. Prentice-Hall, 1999.

Foster, Richard and Kaplan, Sarah. Creative Destruction: Why Companies That Are Built to Last Underperform
the Market—And How to Successfully Transform Them, Random House, 2001.

Galbraith, Jay R. Designing the Global Corporation. Jossey-Bass, 2000.

Gilpin, M. Managing the Business Service Model. Forrester Research, April 2004.

Haeckel, S. H. Leading on demand businesses—Executives as architects. IBM Systems Journal, Vol. 42,
3-2003. http://www.research.ibm.com/journal/sj42-3.html.

Kotter, John P. The Heart of Change. Havard Business School Press, 2002.

Langel, R. Business Value of SOA. IBM Whitepaper, 2004.
http://www-306.ibm.com/software/solutions/webservices/eis/businessvaluesoa.html.

Leganza, G. Managing Emerging Technology: Pearls from the EA Council. Forrester Research, March 2004.
Forrester Oval Program: http://www.forrester.com/Oval/Index.

Marks, Eric A. and Werrell, Mark J. Executive Guide to Web Services, Wiley, 2003.

Moore, Geoffrey A. Inside the Tornado. Harper Perennial, New York, 1999.

Porter, Michael. Competitive Advantage: Creating and Sustaining Superior Performance, Free Press, 1985.

Porter, Michael. Competitive Strategy: Techniques for Analyzing Industries and Competitors, Free Press, 1980

Rutledge, K. (ed.). The Business Case for e-business. IBM Press, 2005.

Shi, D. and Daniels, R. I. A survey of manufacturing flexibility: Implications for e-business flexibility. IBM
Systems Journal, Vol. 42, 3-2003. http://www.research.ibm.com/journal/sj42-3.html.

Taylor, B., Stiles, P., and Tampoe, M. "Governance and Performance: The Future for the Board." Strategic
Dynamics, Henley Management College, 2001.

< Day Day Up >

http://www.research.ibm.com/journal/sj44-1.html
http://www.zapthink.com/report.html?id=ZAPFLASH-02162004
http://www.research.ibm.com/journal/sj42-3.html
http://www-306.ibm.com/software/solutions/webservices/eis/businessvaluesoa.html
http://www.forrester.com/Oval/Index
http://www.research.ibm.com/journal/sj42-3.html

< Day Day Up >

Enterprise services share some or all of these characteristics that impact what actions the service performs, how
it does so, and whom it interacts with. These services can be reclassified in the SOA model and placed into new
domains that describe what function they perform in the overall model. An analysis of the preceding list
identifies at least four different domains of architecture, along with subdomains that influence where a service
can exist and the function it performs. These domains and subdomains, discussed later in this chapter, are as
follows:

Infrastructure services domain with subdomains
o

Utility business services
o

Service-level automation and orchestration
o

Resource virtualization

Middleware domain

Business services domain

Application services domain with subdomains
o

Application programming model subdomain
o

Off-the-shelf commercial software subdomain
o

Information management subdomain

It is essential to maintain a separation of concerns and domains. In an enterprise, these domains can have
separate implementations using any permutation of packaged applications, custom applications, existing
infrastructure, and external or outsourced services.

Chapter 3. Architecture Elements
"Architecture is the learned game, correct and magnificent, of forms assembled in the light."

—Le Corbusier

The main purpose of a service-oriented architecture (SOA) is to offer synergy between the business and IT
groups in an organization and to offer the organization greater flexibility, as described in the preceding chapter.
This chapter provides more detailed architectural perspectives and models for SOA architects and implementers.

As the title of this chapter implies, architects must examine different elements of an SOA design. The first
aspect is the impact of the characteristics of an SOA—the set of implications of service componentization, the
reuse of those components from variable requesters, and the capability to compose those services in business
processes. The second aspect involves the various architecture domains where services can exist and the
functions they provide. The characteristics define how the domains interact with each other.

Figure 3.1 presents a map that includes both aspects of SOA. In this map, the first aspect influences the
relationships between the domains, as indicated by the arrows in the diagram. The domains in the rounded
rectangles are, of course, the second aspect. These characteristics, which we cover in depth in Section 3.1,
include how those relationships are influenced by the following factors detailed in the same section:

Platform

Location

Protocols

Programming language

Invocation patterns

Security

Service versioning

Service model

Information model

Data format

Figure 3.1. The domains of SOA.

[View full size image]

< Day Day Up >

< Day Day Up >

,
Services (JMS). This does not require changes to the application code, but it will affect the behavior of the
service API implementation that will then execute the service interaction through a different protocol.

3.1.4. Programming Language

SOA should be implementation independent, and therefore, it doesn't matter what programming languages are
used for implementation. However, experience has shown that there are still some interoperability issues around
requesters and producers that use different programming languages. These issues are related to the
representation of more complex data types (arrays, null pointers, mainframe data formats, and so on) that are
implemented differently on different systems and exhibit different performance behavior. If a high degree of
loose coupling is required, then the architecture must plan for a mediation layer that enables proper conversion
and that reduces or eliminates language-specific constraints for all possible requesters of a given service.

3.1.5. Invocation Patterns

An invocation pattern is the overall flow of interactions between a requester and a provider. A service might
need to be synchronized with another service, or it might need to work asynchronously if the model allows it
(that is, sending a service request without waiting for the response, and coming back some time later to gather
the response). Support for an asynchronous model has a greater impact on the architecture because it requires
the capability to correlate responses that come in at different times, and it also can imply a push or callback
pattern that enables the provider to trigger requester activity when the service has completed. We see a growing
demand for one-time services (no synchronization and the need for state management). This allows the reuse of
services in different contexts. If any response happens, it occurs as a one-time service but with roles inverted
between providers and requesters.

3.1.6. Security

The architect will have to consider how to apply the right balance between the reality of business security
requirements, and the various security options and their impact on performance, system management, and
complexity. Security is discussed in more detail in Chapter 8, "Securing the SOA Environment."

3.1.7. Service Versioning

Service providers might need to take into account greater adaptability in their implementation when they allow
differences in the versions of the services that requestors can access. A requestor in this case might need to
interface with an earlier version of a service, which implies that the provider will need to keep track of interfaces
and the semantics of their implementations between release cycles. This can be done using some form of
versioning, and some best practices are available, as in the "Best practices for Web services versioning" article
from Kyle Brown and Michael Ellis.

A.3.1

Roughly speaking, there are two types of changes in a Web Services Description Language (WSDL) document
that cannot break an existing requestor and several types of changes that can. In accordance with standard
industry nomenclature, we will call these backwards-compatible and non-backwards-compatible changes,
respectively. The following types of changes are backwards compatible:

The addition of new service operations to an existing service description using WSDL. If existing
requestors are unaware of a new operation, then they will be unaffected by its introduction.

The addition of new XML schema types within a WSDL service definition document that are not contained
within previously existing types. Again, even if a new operation requires a new set of complex data types,
as long as those data types are not contained within any previously existing types (which would in turn
require modification of the parsing code for those types), then this type of change will not affect an existing
requestor.

However, there are a host of other change types that are not backwards compatible, including the following:

Removing an operation

Renaming an operation

Changing the parameters (in data type or order) of an operation

Changing the structure of a complex data type

For backwards-compatible changes, the WDSL service description can simply be updated in the repository from
which it is made available to requestors, and the existing Web service can be updated. We would recommend
that every new edition of a service description be stored in a version-control system and that XML comments be
used to indicate unique version IDs or a version history. However, this is purely for the convenience of the Web
service provider and is not required by the implementers of the Web service requestors.

For non-backwards-compatible changes, you need to take another approach. To solve this problem, begin by
using XML namespaces to clearly delineate the versions of a document that are compatible. The mechanism by
which this is done depends on whether the SOAP binding uses the literal- or SOAP-encoded style in WSDL. In
literal encoding, the namespace is specified in the definition of the messages as part of the XML schema
namespace definitions; in SOAP encoding, it can be specified within the SOAP binding element. Regardless of
the mechanism chosen, a specific namespace value is sent along with every SOAP message. This allows a Web
service implementation to correctly determine what to do with an incoming message, based on the namespace
value.

Another version support technique is to use a semantic layer to realize the necessary version adaptation. This
technique uses matchmaking to find a "good enough" similarity between the goals of the client requester and the
exposed capabilities of the service.

3.1.8. Service Model

Enterprises need a service model that enables requesters to consume services in a way that is independent from
services implementations and that allows those implementations to be changed without impacting the requesters.
Just as enterprise application integration (EAI) refers to a canonical format for the information (that is, a common
format for the information shared across the enterprise), reusability implies a canonical service model that
reflects the enterprise view of its business services. The definition of such information and the service model in
an SOA should only target the portions of the information and the services that are exposed between the various
business domains. Thus, the effort to achieve this model is limited as it must not try to "boil the ocean," but
instead focus only on the integration of each service's facade. Controlling the definition of such a model also
leads to a specific program management or governance model that is explained in Chapter 4, "SOA Project
Planning Aspects."

3.1.9. Information Model

In a service interaction between requestors and providers, there is usually a semantic coupling of business data
models between the two sides. The application code for each will need to understand, for example, the
information required to describe a "customer," "account," or "order." In the Web services space, there are now
matchmaking engines that target semantic adaptation between requesters and providers. The use of such an
adaptation might be complicated when there are legal aspects that require the adaptation to be 100% verifiable
and traceable, as evident in formally adopted government standards for interaction.

3.1.10. Data Format

In addition to the information model, data formats are also often transformed during an exchange. It is common,
for example, to convert formats such as COBOL copybooks into XML formats when enabling new service
interfaces to existing operational systems. In addition, different XML schemas might be used by different
systems in an SOA to describe the same data models. In either case, the supported format is, or can be, defined
in a service interface. Furthermore, you can use middleware transformation capabilities in the service
infrastructure to perform the required transformations without affecting application code or behavior.

3.1.11. Applying the SOA Characteristics

We can now apply these characteristics to various aspects of services identified in an SOA. For some
scenarios, SOA or other design principles will specify the desired style of interaction; for other situations,
several of these characteristics might need to fit an existing scenario. For each aspect, however, a number of
different techniques can be applied to implement the desired interaction. To provide some context for how these
characteristics come into play in an actual model, we examine the on-demand operating environment (ODOE)
later in this chapter.

3.1. Refining SOA Characteristics
Creating reusable service components is just like building the components for a hi-fi stereo system to play

music. The music components industry has progressed to a point of near ubiquity. Without knowing the
technology inside each component, you can safely buy and plug together a set of components that comes from
different technological concepts, manufacturers, resellers, retail outlets, and even regions of the world. To further
illustrate this point, you can even take a more modern component such as a Super Audio CD player, plug it into
a decades-old amplifier, and still make it work. This type of loose coupling, reusability, and flexibility is made
possible by the support for common standards for both signal technical characteristics and content.

Similarly, in an SOA environment, the service component providers might not always know exactly what form
the requesters will take at the time a service is created. The requesters, in turn, should not have to care about the
technology behind the service implementation.

The degree of flexibility and reusability of the SOA will depend on the enterprise business model and context in
use. This will drive the degree of coupling or decoupling that the architecture will need to implement.

The following characteristics address the degrees of flexibility that will affect your architecture decisions and
the variability of the system you create.

3.1.1. Platform

The platform used to support a service implementation should not be relevant to consumers. This includes the
intermediary layers of the operating system, the communication protocol, and perhaps even application layers. If
two systems interact through interoperable protocols, such as SOAP, HTTP, or messaging middleware, each side
usually does not need to consider the hardware, operating system, or server platform supporting each. Either side
is free to change some or all of these aspects without really affecting the other.

However, if your target architecture for a given business model has the requesters' and providers' platforms
under your direct control, you may be able to gain significant advantages in performance and system
management by not separating this aspect of the architecture.

3.1.2. Location

Location is usually one of the factors leading to a more loosely coupled architecture, as several instances of the
same service may exist in different locations. It is easier to reach service delivery scalability by locating
multiple instances of the same service on different nodes. The identity of a service provider can be negotiated
through a third-party broker component. The broker might even use geographical location, client identify,
membership scheme information, transaction value, or a number of other criteria to match the service requester
with a suitable service provider.

As an example, in one of our SOA projects for the defense industry, a device carried by a soldier that invokes a
service from a command and control center, such as "identify target as friend or foe," will almost certainly need
location independence. Depending on your environment, this aspect might imply that the infrastructure will need
to perform service localization and routing appropriately.

3.1.3. Protocols

As with platform considerations, protocol independence is an aspect of SOA that may or may not be necessary
depending on the business model and context. As an example, in a retail enterprise, the protocols between
corporate and branches are under full control of the enterprise and can thus be unified to a common choice of
protocol. Therefore, you can have a preferred binding, such as an EJB binding, for service requests that flow
between the branch infrastructure and the corporate infrastructure to improve performance. This does not limit
the service exposure that is available using other protocols at the same time, such as SOAP over HTTP.

Communication protocols can be defined by a configuration statement declared in an SOA service interface. In
practice, this requires that you create applications using a protocol-independent service API such as JAX-RPC.
In this case, the protocol binding in the service interface definition can be changed readily when necessary. For
example you can change the communications protocol from SOAP over HTTP to SOAP over Java Messaging

< Day Day Up >

< Day Day Up >

Another class of services that gains importance under SOA is the set of utility business services that can be
introduced to an enterprise system of services. In an SOA with an enterprise service bus (see Section 3.3)
providing central connectivity, you can build specialized utility services in a manner similar to any application
service. However, we expose these services as an architectural element of an SOA because they are more
closely linked to the operation of the enterprise service bus (ESB).

Among other things, the architecture allows ESB-based services that deal with metering and rating of services in
the system, provide billing services based on usage information, or other functions for operating the services as a
utility. We expect a specialized market to grow when service providers offer defined business services via the
Internet. For this market, we see providers offering brokering and other related services.

3.2. Infrastructure Services
As previously stated, SOA is not just a new way of writing code; it affects all elements and services of an

enterprise and possibly even beyond to its network of partners. Our domain model for SOA depicts a set of
infrastructure services that are the foundation for services operation. As Web service standards define the
description, location, invocation, and data transport formats between services, the infrastructure services provide
the execution platform and associated utility services. In a way, you can consider this domain as a virtual,
distributed, operating system layer for services.

3.2.1. Resource Virtualization Services

The closest to the hardware, especially the network hardware, are the resource virtualization services. These are
solutions and services that enable a platform-independent environment for the execution of services in a network.
Thus, applications as services are no longer strictly bound to a specific predefined operating system or hardware
platform. Services are executed in a virtual operating system that manages the available and suitable selection of
servers as well the storage systems. As we show in more detail in Section 3.4.6, information integration plays an
important role in enterprise and service-oriented solutions. Specific services such as hard disk space or CPU
allocation fall into this "resource virtualization" category. For virtual server and storage, the IBM Virtualization
Engine is a comprehensive portfolio of systems technologies and tools that can help you aggregate pools of
resources to achieve a consolidated view of them throughout your IT environment.

Finally, as long-envisioned, the network of systems itself becomes a computer, the platform for services to run
on. The technology that enables the building and management of virtual operation in a network is known as grid
computing, such as described in the IBM grid computing portal. The grid computing solutions are based on
standards defined by the Open Grid Services Architecture (OGSA), standards that help you create computing
grids that include heterogeneous sets of hardware virtualized infrastructure components that are used for
computing, storing, and accessing of large amounts of data.

In addition to these fundamentals of virtualization, appropriate management services are required to govern the
whole system. We won't describe all of the available solutions, but you can refer to relevant literature such as
the IBM Redbooks series on grid computing. We do want to point out, however, that these services are gaining
importance in the context of SOA.

3.2.2. Service-Level Automation and Orchestration

Just as important are the technologies that facilitate automated management of required service levels and
policies in any system running services. Imagine a world in which computers could monitor, analyze, and fix
their own problems without much or any human intervention. Making a parallel with the human body, the
autonomic nervous system is the part of the nervous system that controls body functions that are not under
conscious and direct voluntary control. Computer self-management and self-healing require autonomic
computing capabilities across your entire IT infrastructure. Similar to any manufacturing processes,
self-managing computing systems can control and orchestrate an increasingly complex and expensive IT
environment using appropriate autonomic management systems. This also evolves the role of IT professionals to
include expanded responsibility that is no longer focused on basic errors or problems that are handled
automatically, but rather to focus on higher levels of operation management such as the overall quality of
services delivered.

The specific services that fall under the service-level automation (SLA) and orchestration subdomain are the
automated services for problem management and system failure recovery, workload balancing and resource
management, and system security services and data provisioning. The provisioning in this context also covers the
installation and deployment of services in the system. Products like IBM Tivoli Intelligent Orchestrator provide
these services.

All these services contribute to make IT systems resilient, responsive, efficient, and secure. Autonomic
computing technologies today are evolving rapidly and enable construction of SOA-based solutions that reflect
high service levels.

3.2.3. Utility Business Services

< Day Day Up >

< Day Day Up >

,
the infrastructure services, allowing this heterogeneity while still respecting and targeting industry standards that
focus on cross-implementation interoperability (from standards organizations such as the Web Services
Interoperability Organization [WS-I] or the OASIS consortium that drives the definition and adoption of
e-business standards). It consists of attachment points that act as intelligent switches and messaging capabilities
that provide the essential distribution capabilities.

3.3.1. Transport

When a service request is processed, the most appropriate transport protocol needs to be selected. As industry
standards are mandatory, the essential transports for Web services are SOAP over HTTP, SOAP over HTTPS,
and SOAP over JMS. In addition, with its Java 2 Enterprise Edition (J2EE) application server–based nodes, the
bus also supports Remote Method Invocation over Internet Inter-ORB Protocol technology (RMI/IIOP) and
interoperability with CORBA-based components. Finally, by the use of standard Java 2 Connector Architecture
(referred to as J2C or JCA) or other general adapters accessed through JMS, the ESB can connect to nearly all
existing applications, even those using IBM's Systems Network Architecture (SNA) protocol or base
Transmission Control Protocol/Internet Protocol (TCP/IP) interactions.

3.3.2. Quality-of-Service-Based Routing

Some integration contexts require the selection of the "best" service provider while also routing to locations
across several and varied transports. If required, this must occur within the appropriate security context,
providing the necessary quality of service (QoS), mapping, and transforming where necessary and invoking
auxiliary infrastructure services where needed. The support of quality-of-services features in an ESB in turn
enables the support and delivery of services according to defined service-level agreements. These agreements
establish the parameters for how the service should be provided over the course of its use; they can include
policies on response time, synchronicity, role-based delivery, or other factors defined in the agreement.

QoS plays an important role in a number of scenarios. It is of particular concern in the continuous transmission
of high-bandwidth video and multimedia information. Transmitting this kind of content dependably across public
networks that use common, best-effort protocols is difficult to maintain. In Web services, QoS can also refer to
the quality of the availability, accessibility, integrity, performance, reliability, regulatory, and security
capabilities of the service. In the defense industry, the fast delivery of information by selecting the appropriate
available route is very important. However, this delivery must use a known, reliable path, both to ensure that
communication is achieved and to ensure that no one can intercept or spoof the messages. In other, more
batch-oriented contexts, there may not be a requirement for such quality. Optimizing the resources by selecting
the most appropriate route is an important element of an on-demand-enabled bus.

3.3.3. Mediation

Mediation in an ESB enables the intelligent processing of service requests and responses, events, and messages.
These mediations can be implemented at application service endpoints (either requestor or provider) or can be
distributed through the infrastructure of the bus.

Mediation capabilities include the following:

Transformations: XML-to-XML translations, database (DB) lookups, and aggregations.

Message validation: This can consist of verification of any data field or a combination of fields with
specific rules.

Content or quality service selections: This requires a service selection based on content or on required
quality of service. As an example, a priority customer should probably be routed to a higher throughput
server than others of lesser priority.

Content-based routing: As an example, if the service parameters contain some country information, the
request can be routed to a provider in that country.

Customized logging: This is a legal requirement that might ask for logging and audit tracks of the services
interactions. Mediation is potentially a good place for this purpose.

Metering and monitoring: A bus should have all of the manageability anchor points to enable control of its
behavior and of the integrated services.

Autonomic behavior: This is used to react when events are detected—to self-configure, heal, optimize, and
so on.

Policy management: This allows a description of all of the behavior rules that are required for the previous
items in this list through externalized policies based on XML.

Mediators are intermediary components that operate on logical Web service SOAP message representations
between the requestor and the provider. These mediator components can be located close to requestors,
providers, or halfway between both requestors and providers as true intermediaries. SOAP messages usually
contain a header that has to be processed by the mediation handlers, but mediation can be used for purposes
other than just SOAP processing and routing.

You can implement an ESB in many different ways. It is important, however, to reuse whatever standard
infrastructure services already exist, ensuring compatibility and reliability. Thus, in a best-practice-based
implementation, mediators should use the standard Java Web services SOAP-handling standard: JAX-RPC. This
standard provides access to the SOAP headers via the handler API and can be hosted in a J2EE application
server infrastructure. Handlers can be easily chained in series and reused across systems. In addition, using
embedded mediations, the ESB supports a broad spectrum of ways to hop on and off the bus. The ESB includes
business connections that enable external partners in B2B interaction scenarios to participate in the service
interaction flows. In this B2B case, it provides the additional mediations and security that external access
imposes. Mediation on the protocols that attach to the bus enables the connectivity with existing service-oriented
components. These protocols include CORBA, RMI/IIOP, TCP/IP, JCA, native JMS, and other Java protocols.

For example, if an EJB is accessed through a service interface, it can still be invoked via RMI over IIOP at
runtime. The same can be achieved for a CORBA component. Protocol mediators enable application integration
across different platforms, software models, and messaging standards underpinning the business processes and
managed business partner integration without forcing all services to be able to produce and consume SOAP
messages.

Mediators can also act on content to provide capabilities such as validating the document against both technical
and business requirements, transforming the document into the format required by the recipient, and gathering
other information required by the recipient. Most importantly, mediators can handle content-related exceptions
originating from invalid content of the payload, ensuring that they are dealt with appropriately and also insulating
the recipient from incorrect information.

3.3.4. Web Services Gateway

A Web services gateway is an additional component of a bus that provides controlled access to the bus for
external partners, hiding details of individual internal services, validating user access, controlling access, and
auditing requests. The gateway uses core bus components such as mediation and security to implement its
routing and management services.

3.3. The Enterprise Service Bus (ESB)
To realize the scenario of an automated, self-managed SOA, the ESB is an essential architectural element. As

such, it is a core part of the ODOE reference architecture, which is introduced in Section 3.5. Figure 3.2 is a
conceptual view of the ESB, representing some service requesters at the top and service providers at the bottom
for schematic purposes. In the real world, distributed environment requestors and providers can be located
anywhere.

Figure 3.2. The ESB concept.

[View full size image]

An ESB is a core intermediary, a means to tie services together into componentized, logical sets. These sets
reflect the structure of the business and are designed for distributed, widespread use across the enterprise. The
logical grouping and design of each service component ensures that there is minimal heterogeneity in the
business semantics exposed by the services. Each service forms a facade for the components or other
technologies that implement the business logic. The essential infrastructure services that an ESB provides are
transport, quality-of-service-based routing, mediation, and gateway services.

The ESB is actually an architectural construct that can be designed and deployed in a manner that will parallel
the business processes environment. The bus can be implemented in various ways, such as with classical
messaging, EAI, and brokering technologies or by using platform-specific components such as the service
integration buses in J2EE systems (such as WebSphere Application Server). The ESB can also be a combination
of both EAI and application server technologies, but the implementation should not affect the overall
architecture. The selection between possible implementations will be the result of an initial architecture
assessment, including existing IT infrastructure, skills, and processes in the evaluation.

The ESB acts as the intelligent, distributed, transactional, and messaging layer for connecting applications,
diverse data, and other services that are commonly distributed throughout an enterprise computing infrastructure.
It attenuates its core synchronous and asynchronous messaging backbone with intelligent transformation and
routing capabilities, and it ensures that messages are passed reliably. The ESB enables developers to invoke and
use business functions in components, regardless of API or protocol, by using them as services defined by a
standard interface description based on the Web Services Description Language (WSDL).

WSDL separates the abstract descriptions of service interfaces, the reusable protocol bindings for the service,
and the actual deployed endpoints offering the service. It is inherently extensible and offers extensibility
elements for ports and bindings, allowing several different protocols to bind to the same service definition, if
needed.

Literally, any unit software task can be described in Web Services Description Language (WSDL) directly,
regardless of the protocol that is used to expose the service API (for example, Microsoft.Net, remote Enterprise
Java Beans [EJB], Common Object Request Broker Architecture [CORBA] based components, applications
listening on a Java Messaging Services [JMS] described queue, local entities such as Java bean classes, batch
programs, executable files, and so on).

Effectively the ESB is organically assembled from the different application and data components that provide

http:Microsoft.Net

< Day Day Up >

< Day Day Up >

pro ucts.

In this vein, the Web services family of protocol specifications and standards was created with a multivendor
approach to address heterogeneous platforms. The following standards play key roles in Web services:
Universal Description, Discovery, and Integration (UDDI); Web Services Description Language (WSDL), Simple
Object Access Protocol (SOAP), and Web Services Interoperability profiles (WS-I). There is not one single
body that defines a complete platform-independent model, but there are three main organizations that do play an
important role: the World Wide Web Consortium (W3C), OASIS, and WS-I.

The Web Services Interoperability Organization (WS-I), in particular, has defined a set of nonproprietary Web
services specifications, implementation directives, and common scenarios that focus on promoting platform
interoperability in what WS-I has named the Basic Profile. The base standards for interoperability, according to
what the WS-I Basic Profile defines, are as follows:

XML and XML schemas (XSD): For defining the model of the information exchanged through the services.

HTTP 1.1: HTTP is the most common application protocol used on the Internet and is also the most
commonly used transport for Web services.

SOAP 1.1: Simple Object Access Protocol (SOAP) is a specification for the exchange of structured
information in a decentralized, distributed environment.

Web Services Description Language (WSDL): For determining the access and invocation aspects of the
services.

Because business processes are essential to the SOA approach, the model must also integrate an additional
standard for this aspect: the Business Process Execution Language (BPEL). BPEL is used by business analysts
to model the business processes and by programmers to implement the choreography of services.

Finally, a software model must state or include support for aspects that are not covered by the previous
interfaces and sequencing standards, such as behavior descriptions of the services. Most of these behavioral
(also called non-functional) aspects have not yet been addressed by formal standards, but they still need to be
captured using existing tools. As of this writing, there has already been some progression of standards for the
meta-data and non-functional aspects, which include the following:

WS-Policy provides a general-purpose model and syntax to describe and communicate the policies of a
Web service.

WS-Resource provides a means for expressing the relationship between stateful resources and Web
services. This is described by the Web Services Resource Framework.

WS-Security addresses security functions such as integrity and confidentiality. The security is discussed in
detail in Chapter 8.

Other initiatives such as the W3C Web Services Architecture working group.

3.4.3. Platform-Specific Realization

An SOA can be realized on any software platform, including J2EE environments, Microsoft .NET, mainframe or
existing operational systems with messaging, or even C/C++-based environments. Each of these platforms
applies a specific software model to the environment, which also includes the principles of the previously
mentioned platform-independent model. We examine the example of the J2EE software platform further in the
next section.

Other examples are at slightly higher abstraction levels. For example, the Open Grid Services Architecture
(OGSA) defines a computational and data grid system architecture that uses Web services concepts and
technologies and also targets usual operating system-based functions to participate in the architecture as
services. In a purely message-based platform, the ESB role can be played by an EAI or message broker that
supports services interactions. For example, the IBM WebSphere Business Integration Message Broker uses
message processing nodes to implement mediations and can perform all of the functions required for an ESB.

3.4.4. J2EE Realization

We expect that many SOAs will use the J2EE platform. Therefore, there is a need for a complete model with
implementation constructs that addresses this platform environment. Such a model has to describe both the
business logic and business data aspects of a service. Implementors of this model also need to ensure that their
J2EE vendors' implementation respects industry-defined standards, interoperates with the non-J2EE platforms,
and supports Java artifacts that are reusable in cross-vendor J2EE implementations.

The model for services components (the business logic implementation) in the J2EE environment is defined by
the following standards: JSR-000921 Implementing Enterprise Web Services 1.1 or the JSR-000109
Implementing Enterprise Web Services.

These standards define the model and runtime architecture that deploys and looks up Web services in the J2EE
environment, more specifically within Web, EJB, and client application containers. They include the use of
JAX-RPC to define the model for mapping WSDL runtime artifacts into Java. More importantly, they also define
the notion of a service endpoint interface that defines the object methods for a particular Web service.

In a global SOA approach, these standards have to be complemented with a software model for business data.
In Java, there are many ways of representing data, such as ResultSet for database queries, DOM or SAX classes
for representing XML data, or Records in the Java Connector Architecture (JCA or J2C). To simplify the
handling of such a variety of representations, a new standard named service data objects (SDO) has been
created. It provides a unified way of manipulating all these kinds of data. As stated by JSR 000235: Service
Data Objects, SDOs define core infrastructure APIs for heterogeneous data access that supports common
application design patterns and higher-level tools and frameworks. They provide a common framework for
accessing and exchanging data with services.

A.3.2

3.4.5. Services Integration on the WebSphere Application Server

The IBM WebSphere Application Server, starting from version 6.0, provides comprehensive support for SOAs.
It offers the following elements:

Service integration bus: This supports applications using message-based exchanges and SOAs. In the
WebSphere Application Server environment, the bus is a group of interconnected servers and clusters that
have been added as members of the bus. Applications connect to a bus at one of the messaging engines
associated with its bus members.

Messaging engine: A component inside one or more servers that manages messaging resources for bus
members. Applications are connected to a messaging engine when accessing a service integration bus.

Data store: This consists of the set of tables that a messaging engine uses to store persistent data in a
database.

Bus destination: A virtual location within a service integration bus, to which applications can be attached
as producers, requestors, or both in order to exchange messages. Applications attach to bus destinations
within a service integration bus as producers, requesters, or both to exchange messages.

Mediation: A Java component that processes in-transit messages between the creation of a message by one
application and the consumption of a message by another. Mediations allow you to customize the
messaging behavior of the bus. They can perform the functions of message format transformation, message
routing, message augmentation with various data sources, and distribution to multiple target destinations.

Security: Authenticates the user, authorizes the user, and ensures the confidentiality and integrity of the
message in transit, integrating Web services and J2EE security standards.

Web services enablement: You can take an internal service that is available at a service destination and
make it available as a Web service, or you can take an external Web service and make it available at a
service destination.

An ESB layer might be deployed with multiple service integration topologies, depending on the functional and
non-functional requirements. A topology consisting of just a single messaging engine is adequate for some
applications. However, there are advantages in deploying more than one messaging engine and then linking them
together. This is useful when spreading messaging workload across multiple servers, placing message processing
close to the applications that are using it, improving availability in the face of system or link failure, providing
improved scalability, or accommodating firewalls or other network restrictions.

A topology can also contain links to WebSphere MQ networks. This allows applications connected to a
WebSphere MQ queue manager to send messages to an application attached to a service integration bus and
vice versa.

The simplest topology is a bus consisting of a single server (see Figure 3.3). In a single-server bus, there is one
messaging engine. All destinations, such as queues and topic spaces, are assigned to this single messaging
engine.

Figure 3.3. A single-bus, single-server topology.

You can also have a bus consisting of multiple servers (see Figure 3.4), which provides advantages of
scalability, the capability to handle more client connections, and greater message throughput. All of the
messaging engines in the bus are implicitly connected through the underlying J2EE infrastructure, and
applications can connect to any messaging engine in the bus.

Figure 3.4. Multiple servers in a single bus topology.

[View full size image]

Finally, a topology can consist of a number of interconnected service integration buses, each with its own set of
servers (see Figure 3.5). Separate service integration buses might be used for different departments within
organizations or perhaps to separate test and production facilities. These buses can be used in their own right,
but they can also be connected to allow messaging across the buses.

Figure 3.5. A multiple server, multiple-bus topology.

[View full size image]

3.4.6. The Information Management Domain

The information management domain focuses on data and information distributed across the SOA as corporate
information assets and how these assets interact with the rest of the SOA. Without a clear understanding of the
intent and value of information management services, one can easily lose the big picture of the types and
instances of information that influence business needs and thus make the wrong tradeoffs. A proactive plan to
incorporate information management capabilities into a larger SOA picture will prevent gaps in the
implementation.

The following sections describe why the information management services model is important to SOA from an
architectural point of view. It also attempts to demystify metadata and demonstrate the importance of integrating
meta-data in a common representation. It shows how meta-data management can facilitate information
management, and it enables the reuse of many of the same services required by data and content management.

3.4.6.1. Information Management

Information management substantiates SOA, for it deals with one of the most important types of corporate
assets: the information assets that are owned by a corporation. Without solid and robust information
management, SOA presents fewer opportunities for end-to-end business integration and transformation. It greatly
emphasizes enterprise information integration(EII), the process of integrating structured and unstructured
information sources into a unified information source.

Structured information deals primarily with relational, XML, or tabular data, such as in spreadsheets and
databases where the data is ordered and set to specific allowed types. The management of structured information
falls under traditional data management. Meanwhile, unstructured information includes reports, documents, Web
pages, life science data, audio, and video that does not easily conform to an ordered set with strict types. The
management of unstructured information is often given a category such as content management.

3.4.6.2. Information Management Services

Information management under SOA, particularly EII, provides an abstraction layer between the applications
and information sources with the goal of rapidly reducing the total cost of ownership and the complexity of the
information and application integration. This is often offered by middleware such as WebSphere Information
Integrator that creates the information abstraction layer, insulating application and data layers.

A.3.3

The information abstraction layer is extremely important to SOA because it allows transparency of database
vendor products, OS platforms, information location, data format, and the physical data model. You can loosely
couple your information sources from your applications in this way. Information management under SOA
accesses and aggregates heterogeneous data and content sources (a process known as federation) so that they
appear to the user as if they were one single database or content source. Because information management under
SOA acts as a middleware layer between the applications and data sources, the rules for data connectivity,
transformation, and mapping can be centralized and reused by many service requesters.

Moreover, information management under SOA offers extensibility to give applications and users access to
information not only within the enterprise but also across enterprises and industries. This complete end-to-end
horizontal business and information integration gives business high agility and flexibility.

Finally, to define its services and data representation, information management under SOA uses Web services
and other information standards related to data, content, meta-data, meta-model and meta-meta-model. For
example, information management uses XML, XML Metadata Interchange (XMI), JSR170, Unicode, Common
Warehouse Model (CWM), Web Ontology Language (OWL), Universal Modeling Language (UML), Resource
Description Framework (RDF), and Metadata Object Facility (MOF).

A.3.4

3.4.6.3. Reengineering Information Management into Services

Until the rise of information standards such as XML, Unicode, UML, and MOF, most data sources were
characterized by their existing proprietary data formats, meta-data and meta-models. It requires an enormous
effort to integrate different data sources, typically by building point-to-point data and application integration. A
great deal of effort has been put into developing Extract-Transform-Load (ETL) tools. ETL is a common
enterprise solution pattern used to extract data from a source, transform it, and load it into a target system.

On the content side, the challenges are equally daunting. Content management solutions came from different
historical lineages, and most of them are vertical or departmentally based solutions (document management for
the legal department, knowledge management for the IT department, or Web content management for the
marketing department). In today's content management market, these solutions are offered in different products
from a large number of vendors. Even within a single vendor, the functionalities frequently and heavily overlap
across products. This often leads to several coexisting content repositories, each for its corresponding vertical
solutions.

However, the lines among these solutions are becoming increasingly blurred, and we are seeing a trend toward
convergence in various aspects. Some examples are data and content integration convergence, ETL and
federation convergence, knowledge management, and Web content management convergence. SOA helps to
move out from the vertical and departmental view by allowing the model to do the following:

Transform existing information management functions into reusable services

Integrate large numbers of heterogeneous information sources

Reduce development costs

Expand capabilities quickly

Figure 3.6illustrates the information management stack, a logical view or framework for categorizing
information management services based on their value propositions: security, collaboration, availability,
management, and information consumption.

Figure 3.6. The information management stack under SOA.

[View full size image]

As a whole, these services can create a complete information management framework under SOA. Individually,
each of these services really deserves a chapter in its own right, but we can offer only a brief overview here.
Security is the entry point for applications to access heterogeneous data sources based on who-can-see-what
policies. Collaboration is indispensable in a team environment, so we need work flow and version control.
Federation, ETL, and replication are all aimed at making information available when the user needs it. Because
information encapsulates the intelligence and complexity of an organization, (structural and semantic) modeling,
(data) profiling, (content) indexing, and quality disciples are utilized to make information more manageable. In
addition, the whole purpose is to allow model-based actors to consume information from the top of the stack.
Finally, meta-data management connects various service pieces together.

As previously stated, services listed in the information management services domain are typically offered by
middleware. Users can always opt to build these services into their applications from scratch; however, the cost
and time taken is often prohibiting. The best practice is to understand business requirements, choose a vendor
that offers seamless information integration and the most complete information management solution, offer the
most standards interfaces, and build a handful of selective services to compensate for the missing pieces or even
outsource certain complex services to a third-party information service provider.

3.4.6.4. Considerations of Meta-Data Management

When we reengineer meta-data management, XML is usually chosen as the default data format for meta-data
because it is the de facto universal data format. Within a single vendor or an organization, the centralized
approach to encouraging meta-data asset reuse and reducing development effort and confusion is usually more
effective than a decentralized one. The use of standardized meta-data is also helpful.

IBM uses the open-source Eclipse Modeling Framework (EMF) in many of its tools as the common meta-data
integration technology. EMF provides meta-data integration for the tools and runtime objects so that all the
software developed on top of EMF shares a common understanding of other applications. In an ideal situation, a
single meta-data repository will be able to store all meta-data artifacts. Information management services (SSO,
ETL, federation, quality, search, versioning, and workflow) can be invoked for data, content, and meta-data
management when they are needed. In other words, "write once and use anywhere."

Regarding XML repositories, there are two popular storage mechanisms for storing XML meta-data: a relational
database management system (RDBMS) or a native XML database. Both have advantages and disadvantages.
Some of the factors that determine which will dominate the future market include performance, flexibility,
bandwidth, interoperability, support of user-defined data types, and data quality assurance (for example,
cross-schema validation and transformation).

The federation approach is a more practical method for meta-data management across vendors, enterprises, or
industries. In this approach, a federated virtual meta-data repository co-locates all application access and
heterogeneous meta-data sources behind a single API. Physical meta-data artifacts can be stored either in their
original locations or in virtual ones—using a combination of ETL, replication, and caching to improve
performance and meta-data availability. Automatic discovery, mapping, and transformation among diverse
meta-data sources are critical to improve meta-data manageability.

3.4.6.5. Meta-Data Integration

As previously stated, integrating meta-data can be even more challenging than integrating the actual data and
content it represents. This integration is essential to SOA because it decouples the business data models.
Meta-data is the "brain" behind information integration. Furthermore, information integration enables business
integration; this allows the SOA to expand across departments within an enterprise, all the way to complex
cross-enterprise systems. Meta-data integration does the following:

Provides a single and complete view of customers, partners, and business through data warehouses or
federation

Facilitates business performance management using analytical services

Enhances business applications with broad information access

Enables business process transformation with continuous information services

Many factors contribute to the difficulty of meta-data integration:

Meta-data is pervasive and hard to fully understand.

Meta-data and meta-models in many products have their own proprietary format, especially on the content
management side.

Adding meta-data to content is typically facilitated by manual workflow. Often, content items lack
well-structured meta-data that is useful for enabling integration and search.

Meta-data integration requires a higher level of automation and orchestration than data and content
integration. This requires higher levels of automatic discovery, transformation, mapping, and semantic
understanding.

Vendors might be afraid of losing customers, so they might choose to stick to their proprietary meta-data
format.

It takes time and effort to transform to a meta-data standard such as MOF, but this standardization is an
important step in the roadmap to SOA and being part of an ODOE.

3.4. SOA Enterprise Software Models
To support all of the characteristics we just described, you need a software model supported by an architectural

framework that provides key architecture principles and promotes the integration of new and existing services
and business goals.

In this section, we focus on the various models that exist in the SOA space. This includes semantic models that
address the business content and dynamics of the interactions, programming models that create or choreograph
services, and off-the-shelf integration packages that expose services. We then explore the specific project and
method aspects in Chapter 4, "SOA Project Planning Aspects," and Chapter 5, "Aspects of Analysis and
Design."

3.4.1. Industry Models

Many industries' communities (some listed in this section) have already initiated their journeys toward SOA and
offer modeling or implementation accelerators in the form of information models, services models, or business
process models. These initiatives cover one or more SOA aspects such as the data formats, Web services
interfaces, business process models, or even business services components with the associated contracts.

The following are some of the major initiatives that have made this level of progress toward an SOA:

ebXML: Specifications and standards from the Organization for the Advancement of Structured
Information Standards (OASIS) target the creation of an electronic marketplace in which enterprises can
meet and interoperate in their businesses. In a recent move, ebXML has created the Electronic Business
SOA Technical Committee.

OAGIS: In the automotive industry, the Open Applications Group Integration Specification (OAGIS) also
integrates SOA aspects.

NGOSS: Because of its inherently heterogeneous and multiparty environment, the telecommunication
industry has gone a long way in its services definition. The TeleManagement forum standards body has
defined contracts in its New Generation of Operation Support Services (NGOSS) specification that are the
business services together with business process models and decomposition and the associated information
and data model.

IFX: In the banking industry, the IFX Forum addressing public financial services is adding Web services to
its existing services and information model.

IFW: Also in the banking industry but targeting all financial domain aspects, IBM has defined a complete
Information Framework (IFW) that includes business process and models.

3.4.2. Platform-Independent Realization

The SOA software model implementation must first focus on neutrality by using platform-independent
standards. Because such standards address heterogeneous environments, platform-independent modeling,
meta-data, and operational standards are necessary. They allow the interchange of software artifacts and
facilitate interoperability between tools, applications, middleware, and data stores across platforms.

The Internet is composed of heterogeneous technologies that successfully interoperate through shared protocols.
One of the key attributes of Internet standards is that they focus on protocols rather than on specific
implementations. The need to implement to a common shared protocol standard prevents individual vendors
from imposing their own proprietary standard across the entire Internet. Open-source software development of
Internet protocols, for example, plays a crucial role in preserving the interoperability of software vendor

d

< Day Day Up >

< Day Day Up >

A.3.4

Services in the Business Services domain are the exposed part of the business processes and the business logic
that is accessed by and provides expected value to the requestor. As previously indicated, the requestor can
access these business services through a visual or a programmatic interface. The requestor, in this case, can be a
user within the organization (intranet), a user outside the organization's IT infrastructure or outside the
organization altogether (extranet), or even a customer or partner completely separate from the organization
(Internet).

The Application Services domain comprises all of the components that are necessary to build an application.
This domain includes components to support user access, business function, common services, user interaction,
business process choreography, and information management.

The Business Function Services components help integrate atomic business functions into business function
services, using software packages that adapt enterprise data. The User Access Services components support
access, sequencing, and presentation of the accessed business function services via the particular channels that
the service requestors will use. These channels can either be visual (for humans) or programmatic (for other
applications or services). The User Interaction Services components provide the additional interaction commonly
needed to support a group of requestors.

The Common Services components enable personalization of the delivery and individual processing, as well as
other utilities such as reporting. The Business Process Choreography components enable you to define and
execute conditional flows, mainly across logical business function services but also to any other service. Our
recommended software model for services choreography uses the industry standard Business Process Execution
Language (BPEL) specification.

The Information Management Services provide a uniform way of representing, accessing, maintaining, managing,
analyzing, and integrating data and content across heterogeneous information sources. They are an essential
component of SOA and play a critical role in enabling SOA. There are many functions within information
management, such as federation, replication, modeling, search, and analytics. As shown in Section 3.4.6, each of

these functions can be provided as reusable and componentized services.

The Enterprise Service Bus is an intermediation layer that interconnects all of the services, enabling all of the
(loose) coupling characteristics that have been described in other chapters of this book. It is the pivotal
architectural concept of the ODOE and deserves to be explored in greater detail, as we showed in Section 3.3.

Finally the Infrastructure Services domain, as shown in Section 3.2, is a set of platform-independent services
that enables all of the other services domain components to be installed, executed, and controlled on a concrete
infrastructure combination of operating systems and network and hardware systems.

3.5. The IBM On Demand Operating Environment
The various domains of an IT operating environment have different concerns and requirements. When planning

an SOA, the constraints from each domain will lead to different service component requirements. To address this
need for an enterprise-wide, service-oriented IT system, IBM defined the on demand operating environment
(ODOE) as its reference architecture that supports industry-wide best practices in SOA. As such, it takes a
top-down approach to the development of a secure process- and service-oriented enterprise architecture that can
be extended beyond a single enterprise into interactions with those of other organizations.

It is important to point out that starting with this high-level view does not mean that you need to rework your
entire IT infrastructure. This is an architectural framework that enables you to build and maintain a
platform-independent service model that maintains feedback from the many domains and that can be automated,
monitored, and audited.

The ODOE encourages compatibility by enabling you to encapsulate the functions of existing operational
systems and create a federation of heterogeneous software components. In this case, an existing operational
system is anything that does not already have a service-based interface and interacts using well-known service
protocols. This environment enables you to compose operational applications from atomic or coarse-grained
business services to operate as part of the SOA. The SOA allows these coarse or atomic services to be
accessed through various channels such as a visual user interface, through a portal on the Internet, or even
through programmatic access using protocols such as Web services.

Web services, as defined by the industry standards and the profiles defined by the WS-I organization, are the
basis for enabling these SOAs. Users can easily mix and match functions from heterogeneous environments into
a single application built on Web services. You can have a portal that features Web services-based public
interfaces that connect to yet another Web services portal to provide the application functionality. These
backend services can be aggregated to support a broad spectrum of requirements, from aggregated component
construction into groups of services, to transactional management of these service interactions.

Enabling functional access to Web services either through portals or service interfaces is not enough to provide
a production-ready SOA. Such a system must also integrate operational aspects such as ensuring and monitoring
service levels while using appropriate security protection.

The ODOE provides protection of the internal infrastructure and sensitive data from inadvertent or fraudulent
accesses. In some cases, it might also be necessary to protect even the existence of a service from unauthorized
access.

The on-demand computing model applies at various levels in the IT stack. At the system level, the components
are system objects (computing capacity storage and files). At the application level, the components are
dynamically integrated application modules that constitute sophisticated, yet much more flexible, applications.
At the business level, the components are business objects, defined for particular vertical industries or, more
generally, to apply horizontally across industries. With a basis on industry standards, the on-demand computing
model is appropriate not just for intra-enterprise scenarios but also across an industry ecosystem. The use of
open standards makes it possible and applicable to the heterogeneous environment to create just such a
cross-industry business computing ecosystem. It makes it possible to conceive and implement complete,
end-to-end, business-process integration.

As depicted in Figure 3.7, the ODOE architecture defines four top-level domains: Business Services,
Application Services, Enterprise Service Bus, and Infrastructure Services. We provide a basic overview of these
domains and services, but you can find more details in a separate ODOE architectural overview paper published
on IBM developerWorks.

Figure 3.7. The IBM on-demand operating environment.

[View full size image]

< Day Day Up >

< Day Day Up >

3.6. Summary
This chapter first refined the aspect of SOA characteristics such as loose coupling. We then introduced the four

main domains of an SOA model. Using the example of the ODOE, we identified each of these domains and
layers and their service characteristics. We then focused on the ESB as a pivotal element of the model. We also
looked at the programming models that are necessary for the domains that involve programming. Finally, we
looked at the domain of information management, which is an essential component. This domain can usually be
supported by off-the-shelf software packages or specialized middleware.

Implementing successful SOA will need a selection of methods, models, and a careful analysis of the
requirements and its value. This can be done only with structured roadmaps and control of the SOA
implementation, which we discuss in the next chapter.

< Day Day Up >

< Day Day Up >

3.7. Links to developerWorks
A.3.1 Brown, K. and Ellis, M. Best Practices in Web Services Versioning. IBM developerWorks, January 2004.
http://www-128.ibm.com/developerworks/webservices/library/ws-version/.

A.3.2 Beatty, J., et al. Service Data Objects. IBM developerWorks, November 2003.
http://www-128.ibm.com/developerworks/java/library/j-sdo/index.html.

A.3.3 Selvage, M., Wolfson, D., and Handy-Bosma, J. Information management in Service-Oriented
Architecture, Part 1: Discover the role of information management in SOA. IBM developerWorks, March 2005.
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-ims/.

A.3.4 IBM alphaWorks. Ontology-Based Web Services for Business Integration. September 2004.
http://www.alphaworks.ibm.com/tech/owsbi.

A.3.5 Schmidt, M.-T. and Kalyana, S. S. The On Demand operating environment—Architectural Overview.
IBM developerWorks, August 2004. http://www-106.ibm.com/developerworks/ibm/library/i-odoe1.

< Day Day Up >

http://www-128.ibm.com/developerworks/webservices/library/ws-version/
http://www-128.ibm.com/developerworks/java/library/j-sdo/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-ims/
http://www.alphaworks.ibm.com/tech/owsbi
http://www-106.ibm.com/developerworks/ibm/library/i-odoe1

< Day Day Up >

3.8. References

Bhaskaran, K. and Schmidt, M. T. WebSphere Business Integration: An architectural overview. IBM Systems
Journal, Vol. 43, 2-2004. http://www.research.ibm.com/journal/sj43-2.html.

Dijkstra, Edsger W. A Discipline of Programming (facsimile). Prentice-Hall, 1997.

Dijkstra, E. W. Go to Statement Considered Harmful (reprint). ACM Classics of the Month, October 1995,
reprint from Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147–148.

Ferreira, L. and Berstis, V. Fundamentals of Grid Computing. IBM Redpiece (REDP-3613-00), 2002.
http://www.redbooks.ibm.com/abstracts/redp3613.html?Open.

Ferreira, L., et al. Introduction to Grid Computing with Globus. (SG24-6895-01), IBM RedBooks, 2003.
http://www.redbooks.ibm.com/abstracts/sg246895.html?Open.

Globus.org. Open Grid Services Architecture. http://www.globus.org/ogsa/.

Gottschalk, K., et al. Introduction to Web services architecture. IBM Systems Journal, Vol. 41, 2-2002.
http://www.research.ibm.com/journal/sj41-2.html.

Graham, S., et al. Building Web Services with Java—Making Sense of XML, SOAP, WSDL, and UDDI, 2nd
Edition. Sams, June 2004.

IBM. Autonomic Computing Offerings. http://www-03.ibm.com/autonomic/index.shtml.

IBM. Virtualization Engine. http://www-1.ibm.com/servers/eserver/about/virtualization/.

Jacob, B., et al. Enabling Applications for Grid Computing with Globus. (SG24-6936-00), IBM RedBooks,
2003. http://www.redbooks.ibm.com/abstracts/sg246936.html?Open.

OASIS. Web Services Architecture. http://www.w3.org/TR/ws-arch/.

OASIS. Web Services Resource Framework.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.

OASIS. Web Services Security. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

W3C. Web Services. http://www.w3.org/2002/ws/.
< Day Day Up >

http://www.research.ibm.com/journal/sj43-2.html
http://www.redbooks.ibm.com/abstracts/redp3613.html?Open
http://www.redbooks.ibm.com/abstracts/sg246895.html?Open
http://www.globus.org/ogsa/
http://www.research.ibm.com/journal/sj41-2.html
http://www-03.ibm.com/autonomic/index.shtml
http://www-1.ibm.com/servers/eserver/about/virtualization/
http://www.redbooks.ibm.com/abstracts/sg246936.html?Open
http://www.w3.org/TR/ws-arch/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/2002/ws/
http:Globus.org

< Day Day Up >

Chapter 4. SOA Project Planning Aspects
"Adventure is just bad planning."

—Roald Amundsen

The architectural consideration of SOA in the preceding chapter offers advice on what directions to choose and
how to define the strategic goals for an SOA project. This chapter takes the next step toward execution by
focusing on how to plan an SOA project. The topics in this chapter constitute the best practices we have
uncovered for forming a project office (see Section 4.1), how to define the phases of SOA adoption, the need for
and mechanisms of SOA governance, and finally, the various project roles and how they interact with each other.

This is not intended to be a complete template for a project plan, nor do we intend to show the optimal
organizational structure for the parties involved in SOA projects. Based on our vigorous experience with
different clients in various industries around the world, we are fully aware that there is no one-size-fits-all
solution, nor is there a perfect approach to building an SOA for any scenario. An organization's specific
circumstances will dictate its individual needs for project structure and plans. This chapter simply proposes
ideas that you can adapt based on your scenario.

The first step is to establish the project office.
< Day Day Up >

< Day Day Up >

Component design and development centers: These are the usual IT teams. They provide design and
development of the components and processes, along with new skills such as business process modeling
(see Chapter 5). This team delivers a solution design outline, high- and low-level design abstractions,
service-oriented analysis and design (the essential aspects of which are described in Chapter 5), and
various test phases such as unit, integration, system, and acceptance tests.

Operations center: Finally, there is a production team in charge of the services components operational
aspects. These aspects include managing quality of service, enforcing business and service-level
agreements, managing the security context, charging back services, and assuring revenue. The team is
responsible for rolling out the service, performing regular maintenance, and providing overall system
management.

This model for organizing teams is derived and distilled from our experience in projects at midsize to larger
enterprises. Often, depending on the maturity level of the IT organization, existing installations can be redefined
or transformed to support the SOA projects. After these teams have been identified, you can proceed to creating
your adoption roadmap.

Based on their definitions and the associated expert knowledge, each team has a certain scope of
decision-making. Depending on the size of the enterprise, the scope, the reach of the project, and the
institutionalized IT governance structures, the individuals assigned to the teams can vary. Section 4.3further
explains the need for SOA governance.

4.1. Organizing Your SOA Project Office
As seen in the preceding chapters, SOA implies a greater focus on business value. Business models are

described as modular processes. This is achieved by breaking down the business and respective IT systems into
components, providing reusability and modularity. Componentization, in this context, applies not just to software
systems, but also to the business units across the enterprise and the organization of the enterprise in question.
Implementing an SOA project involves not just a consideration of how the project is implemented in an IT
infrastructure setting, but in the end, it also results in a business transformation process across the whole
enterprise.

To accomplish your project, you first need a roadmap to guide the strategy for your SOA adoption. To build
your SOA adoption roadmap, you need to identify who is involved in the SOA project. These individuals should
come from the contributing cross-business-unit teams. The actual teams you involve will depend on the level of
SOA adoption you choose (see Section 4.2).

Depending on business value analysis and the consequent prioritization of business objectives and services, the
team defines "what to do," "how to do it," "who should do it," and "how success is measured." The SOA project
team creates the rules, processes, metrics, and organizational structures needed for effective planning,
decision-making, steering, and controlling the SOA endeavors. They define the common business service model,
the common core processes and business components involved in the SOA project, and the core set of assets
that they will use.

Building a suitable team for an SOA project requires a careful avoidance of making radical changes to existing
team strategies because such changes can unduly disrupt the culture in the workplace. However, at the same
time, the teams need to align with the SOA goals, which usually cut across business units. In addition, the SOA
project might need to adopt a management structure—especially at larger IT shops with substantial project
goals—to manage the development processes for implementing components or to expose existing applications or
legacy functions in terms of the appropriate service granularity.

Achieving the right organizational structure is one of the critical challenges in implementing SOA. At
organizations new to SOA, one often encounters strong resistance to change that keeps the focus on short-term
successes rather than directing appropriate business transformation to align with the business challenges.

Mature SOA organizations, on the other hand, span business lines and the boundaries of roles while achieving
interdisciplinary coordination. However, starting small can help to mitigate risk by allowing you to choose a
well-scoped and focused services-integration project that has a modest plan for organizational evolution. A
cross-unit, organization structure can address all the aspects of the SOA. Based on our experience, this structure
should include the following:

SOA business transformation architecture council: This team is in charge of gathering the business
requirements, performing business domain analysis and process engineering analysis, and identifying the
necessary business components, services, and process modules. Instead of following a strict top-down
approach, the council should use a mixed approach in blending top-down, bottom-up, and goal-based
methods to ensure appropriate services identification. In particular, this team ensures that the exposed
granularity of the defined services matches the business requirements and specifications—matching
business components to IT components as services. More details on granularity issues and associated
services layers are described in Chapter 5, "Aspects of Analysis and Design."

SOA technical architecture board: This team ensures the alignment of business and IT, following industry
and enterprise standards, and technically ensures that exposed services match the requirements for
evolution and reusability as defined in the general guidelines for the enterprise IT development. Its
members are well versed in emerging industry trends, state-of-the-art technologies, and standardization
efforts. They are responsible for framing the technical enterprise architecture blueprints (the master IT plan
for the enterprise), identifying niche architecture patterns, and promoting reusability principles. They work
closely with the SOA transformation team.

< Day Day Up >

< Day Day Up >

component identification and realization. Figure 4.1 depicts an overall view of a roadmap, looking at the
adoption stages and corresponding activities. This diagram is not exhaustive but gives an indication of potential
steps you can follow.

Figure 4.1. A typical service-oriented architecture roadmap.

[View full size image]

4.2. SOA Adoption Roadmap
An SOA strategy should not be a big-bang replacement of an existing IT environment; rather, it should be a

progressive and evolutionary roadmap. Often an overall replacement is impossible when the majority of people
in the IT organization are busy maintaining the running systems. Therefore, the roadmap should reflect an
iterative process.

An enterprise has several options for entry points into a service-oriented architecture. These options identify
how much the SOA model penetrates into the business and defines levels of adoption. The options are as
follows:

Initial adoption: Enterprises that want to reduce risks initially go through a technology validation and a
readiness assessment that analyze the technical and business impact in a defined scope. Eventually, the
business and technical value realized from this scope can be extrapolated to actual implications for the
organization; this usually translates into a deeper commitment to move to SOA. It involves early pilot tests
consisting of creating and exposing services from business operations contained in new or existing
applications. These tests are used for an early validation of several decision points such as the following:
o

The capability to transform existing legacy systems. This might include technical solutions such as
messaging, adapters, and connectors, or it might lead to partnership with vendors that can provide
products for a service-oriented integration.

o

The non-functional requirements capabilities such as performance, security, manageability, and the
availability of tooling.

o

The organizational structure required to support an evolution of the enterprise, especially one that
addresses skills gaps and institutes governance structures.

Line-of-business adoption: At this level, the enterprise will identify a line of business and prioritize
processes where the agility and flexibility that SOA offers will increase business value. Of course, the
enterprise might have already defined these priorities or have a critical business issue to resolve. In these
cases, you still need to assess the SOA applicability to solve the important issue. This involves a broader
initial assessment phase and the identification of key metrics and critical success factors.

Enterprise adoption: This level of adoption involves the construction of a business view of a
service-oriented enterprise, with a complete prioritization of projects based on business value followed by
the architecture and implementation phases. You need to categorize enterprise activities into separate
business domains and components that constitute the enterprise. This categorization might already exist
within an enterprise or an industry model (for example, the telecommunication eTom model from the
TeleManagement forum) that has already-established categories. At this stage, you should establish an
SOA governance council with the required empowerment to monitor, define, and authorize changes to
services within the enterprise.

Enterprise-and-partner-network adoption: At this level, there is a broad transformation of existing business
models or the deployment of new business models involving not only the enterprise, but also its business
partners, suppliers, or customers. The enterprise can then select the roles that are appropriate for delivering
its value, becoming a service provider, consumer, broker, aggregator, matchmaker, or any combination of
those roles.

For each of the prioritized business services and components, the roadmap follows the typical phases of IT
project development, with inception, elaboration, implementation, and test and production phases, as typified in
the Rational Unified Process™. However, each of these phases includes new activities that relate to the service

< Day Day Up >

< Day Day Up >

o prov e arc tectura governance, you nee an organ zat ona structure to e p ent y a necessary ro es
and responsibilities. Based on our experience, it is quite useful to establish an SOA center of excellence (COE)
to control the SOA roadmap and to support large and complex projects. The COE is responsible for keeping the
SOA-based implementation aligned with the business requirements on a strategic, tactical, and operational level.
It requires authority over technical artifacts such as architecture blueprints, enterprise templates, and design
assets.

4.3.2. An SOA Governance Model

In her IBM developerWorks article, Yvonne Balzer describes an SOA governance model on which we based our
considerations. SOA governance is an evolution of the ideas of IT governance, introducing a greater business
involvement in supporting IT service components. There are different definitions of IT governance, but the IT
Governance Institute's definition gives a good general overview:

A.4.1

The IT Governance Institute's Definition of IT Governance

IT governance is the responsibility of the board of directors and executive management. It is an integral part of
enterprise governance and consists of the leadership and organizational structures and processes to ensure that
the organization's IT sustains and extends its strategies and objectives.

The purpose of IT governance is to direct IT endeavors to ensure that IT performance meets the business
objectives so that the following occurs:

IT alignment with the enterprise results in the promised benefits being realized.

IT enables the enterprise so that opportunities are exploited and benefits are maximized.

IT resources are used responsibly.

IT-related risks are managed appropriately.

SOA governance incorporates the control of the enterprise model as a set of standardized modular business
components and processes, and the prioritization of those based on business value. In summary, the SOA
governance model is a combination of organizational structure, joint processes, and relationships that are based
on accepted ground rules called governance principles and the strategic direction.

4.3.3. Strategic Direction and SOA Governance Principles

To sustain the focus on business needs, it is essential to define the strategic direction for developing an SOA.
Both business and IT units need a common understanding of the business strategy and objectives. Governance
principles and guidelines form the fundamental basis for any decisions. They shape the solution area and define
how business and IT units collaborate. Everyone involved should carefully understand and agree upon these
principles, from executive management to individual project personnel.

According to E.G. Nadhan in his EDS Solutions Consulting position paper of April 2003, "SOA Implementation
Challenges," there are two main governance approaches:

Central governance is optimized for the enterprise. The governance council has representation from each
business domain and from technology subject matter experts. The central governance council reviews the
addition or removal of services, as well as changes to existing services, before authorizing their
implementations.

Distributed governance is optimized for the distributed teams. Each business unit has control over how it
provides the services within its own organization. This requires a functional service domain approach. A
central committee can provide guidelines and standards.

Each guiding principle should be defined with a rationale explaining the business reasons and implications. The
specific principles for architecture design or service definition, for example, can be derived from these guiding
principles. In addition, a common understanding of a structured approach from business to IT is fundamental for
defining the architecture. You will find different methodic approaches such as process orientation, business
functions, or even component modeling like IBM's Component Business Model approach.

4.3.4. Empowerment and Funding

The move to SOA is a paradigm shift driven by the need for more flexible business models, greater integration,
and a stronger business and IT alignment. This evolution might face resistance within an organization, which can
turn it into just a simpler result of implementing Web services on a small scale rather than a move toward the
benefits of a true SOA. In truth, a successful SOA project can happen only with the strong support of senior
executives, identified funding, and proper empowerment of the SOA governance body.

One of the pitfalls is the institution of a rubber-stamp governance body or one that has a mere consultative role
and cannot enforce its recommendations. At the end of the day, the governance body needs to have proper
practical control of project funding.

Rule of Thumb
The governance body needs to have proper practical control of project funding.

4.3.5. Managing the Risk of an SOA Roadmap

When embarking on an SOA roadmap, the first action of the governance body should be to develop an initial
readiness and risk assessment. The governance body should then periodically update this assessment during the
development lifecycle. Figure 4.2, an example of this assessment, shows important aspects and criteria that need
to be taken into account. The scale values and the specific criteria can be chosen based on the situation of the
individual project. The goal of this assessment is to identify the business, organizational, and technical gaps and
roadblocks between the current state of the enterprise and a future service-oriented business model.

Figure 4.2. An SOA readiness and risk factor assessment.[1]

[View full size image]

[1] This was adopted from IBM internal SOA assessment practice and was modified by editors.

This kind of assessment should balance the vision of the SOA-based solutions with the delivery capabilities of
the IT department and should help establish specific a business case for the SOA for the organization. It includes
both an evaluation of business readiness and one of IT readiness. It requires customer and partner understanding
and determines if changes to the client's or partner's needs can be mapped to existing products or applications in
a service-oriented fashion.

The assessment then suggests possible action plans, with focus on improving the less mature aspects of the
enterprise relative to the SOA. As before, these improvements to develop the SOA should be executed in
well-planned, incremental projects.

4.3.6. SOA Governance Processes

Governance processes are those needed for strategic business and IT planning and steering—for example,
strategy development, IT technical planning, portfolio management, sourcing, innovation management, and
architecture management. Any IT organization also needs processes that provide control. Depending on the size
of the organization, these processes should be implemented at the appropriate level matching the size, from
individuals to teams to departments or even larger. The following types of processes are essential for successful
SOA adoption.

A business component identification and prioritization process:

Defines a structured approach to model, identify, and prioritize business processes and services
components.

Provides formal definition of the business goals and key performance indicators that can be delivered by
the architecture and implementation.

A business exception fallback process:

Business process models can rarely be exhaustive. No one can preview each and every possibility that can
happen in an enterprise. Therefore, there must be rules for exception handling that are set up and agreed to.

This ensures that the concrete SOA solution architecture has to incorporate entry points that enable certain
users or processes to bypass the normal, formalized processes and process exceptions. In a way, this gives
another degree of flexibility for ad-hoc business process changes.

An architecture review and approval process:

Defines a structured approach to review and approve changes to the existing SOA and to make decisions
in accordance with the governance guidelines.

Formal design and service evaluation reviews are key control points of SOA development for the installed
governance units.

An architecture exception and appeals process:

Provides means to appeal architectural decisions.

Allows exceptions to the SOA architecture to meet unique business needs.

An architecture vitality process:

Ensures that the SOA is maintained and communicated as new services are incorporated into the
architecture.

Variances to the architecture are documented and communicated.

An architecture communication process:

Ensures that the SOA is available to all who need access.

Promotes the understanding of the importance of the SOA.

Having outlined the process we now describe how to launch a governance model in practice.

4.3.7. Launching the Governance Model

The process we use to develop a governance model is a three-phased approach (see Figure 4.3). This
governance launch model was adopted from Yvonne Balzer's developerWorks article "Improve your SOA
project plans" and enhanced by the authors. The approach is based on time-constrained SOA engagements. The
key to success is to begin to establish the governance functions from day one. To speed up this operation, you
can launch the governance model in the following three steps:

A.4.1

Step 1. Operationalize

Set the governance core functions in place, integrated with the enterprise's business operations.

Perform the initial SOA assessment.

Learn and adjust by doing by experiences and available assets, delivering quick results.

This phase will need experienced practitioners.

Define the next steps.
Step 2. Professionalize (Automate)

Build up the necessary structures, processes, methods, and tools.

Adapt experiences from the operational step.

Initialize the service-oriented modeling and architecture practice.

Gather experienced architects and method practitioners.
Step 3. Stabilize

Teach and train the personnel to run the operation.

Change from operations mode to coaching mode.

Need to nurture coaching expertise.

Figure 4.3. Launching the governance model.

[View full size image]

4.3.8. Hints and Tips for Success

Even with strong governance, in the real world there are many roadblocks that prevent this type of evolution;
thus, it is essential to build on solid ground. The following are some practical lessons we have learned from
engagements:

Set up rules and roles (discussed in Section 4.5) to organize and project-manage the SOA endeavor.

Communicate regularly. SOA also involves corporate cultural change; therefore, to hurdle barriers,
communication is critical, especially between lines of business and technology teams.

Document each decision, constraint, and assumption to ensure transparency in decision-making and
departmental buy-in.

Define key deliverables and necessary toolsets or templates. These deliverables need to be readable by a
variety of parties in the enterprise.

Set up pragmatic tools for lifecycle management and versioning. Particularly see the discussion on
long-lived business processes in Section 4.4.

Assign a weight factor to each decision and then document and communicate those decisions and their
weights.

Continue to keep a strong sponsorship by all stakeholders and the buy-in of decision-makers.

4.3. The Need for SOA Governance
Enterprises using SOA can adapt to target broader connectivity and increased revenues; on the other hand, doing

so requires restructuring applications for greater flexibility and lower costs. This requires the alignment of the
business and IT value chain, as described in Chapter 2, "Explaining the Business Value of SOA." With this
evolution, the enterprise will also need to adapt the way the business and IT units interlock and define a new
way of reflecting business requirements in terms of IT applications. For this reason, organizational governance
plays a more prominent role than before. The following sections provide guidance on establishing key
governance functions for operating an SOA.

4.3.1. SOA Governance Motivation and Objectives

The business operations and the underlying IT infrastructure in an organization must react very quickly to
rapidly respond to new business opportunities. Business units have to prioritize new IT services that have to be
designed and managed as part of highly integrated and complex enterprise architecture. To achieve this, we
discuss in the following sections a set of key governance functions for a successful SOA roadmap.

Governance provides an overarching structure to prioritize and then support the enterprise business objectives
on a strategic, functional, and operational level. The governance model defines "what to do," "how to do it,"
"who should do it," and "how it should be measured." It defines the rules, processes, metrics, and organizational
constructs needed for effective planning, decision-making, steering, and control of the SOA engagement to meet
the enterprise business needs and challenging targets. As previously indicated, the SOA project team is
responsible for creating this governance model.

The following are key questions that can help define the appropriate governance structure:

What business change does the enterprise expect from SOA? Is it a better use of its existing infrastructure
at lower costs, does it target new business and interaction models, or does it target both?

Which roles, responsibilities, structures, and procedures exist to allow business prioritization and IT
funding, planning, steering, and decision making?

How can you develop skills and leadership competency?

Which principles and guidelines are necessary to optimize the alignment of business and IT?

What is the appropriate way to structure the business-to-IT relationship while keeping consistency and
flexibility to allow the organization to quickly adapt to new changes?

What is the appropriate level of standardization of services, the service definition, and the description?

How do you control and measure services and service providers? What key business performance
indicators do you need to monitor? Who should monitor, define, and authorize changes to existing services?

How do you decide on a sourcing strategy for services?

We believe that an accepted and formalized governance model is crucial to successfully achieve business
objectives, so we will define important governance functions in the following sections. For fast and high-level
acceptance, it is essential to start from the existing enterprise structure and adapt it to the SOA roadmap.

T id hi l d i i l h l id if ll l

< Day Day Up >

< Day Day Up >

business analysts must look at making the processes more granular so that unexpected variations and exceptions
will be easier to handle in the operational environment.

4.4. SOA Technical Governance
With SOA, you can expect that business process cycles will be different from vendor product cycles. As a

result, it is inevitable that, in the case of long-running or long-lived processes, you will need to support scenarios
in which different versions of a business process exist concurrently on a changing infrastructure. Managing this
challenge has implications throughout the project development lifecycle, not just for the runtime but also for the
tools and methods used to define business processes within an enterprise.

You can manage the challenge of the dichotomy between business process cycles and product cycle by doing
the following:

Reducing the impact of changes by modularization

Achieving middleware independence by defining the explicit process state

Monitoring and handling business exceptions

Each of these topics is discussed in the following sections.

4.4.1. Reducing Impact by Modularization

Just as services can have different levels of granularity and permutations in the enterprise, processes also can
have such granularity. This granularity appears when processes are designed as a composition of individual
process modules. Each module offers a service interface and manages its own particular state internally. It then
becomes much easier to change parts of the processes by developing new process modules that are selected
from existing services using policies.

4.4.2. Achieving Middleware Independence with Explicit Process State

Current business process middleware engines maintain their process state internally. This dependency ties the
process instances to the particular middleware engine, sometimes even to a particular version of the middleware.
To avoid this, business process designers should elevate the explicit state beyond the engine level at each
process step that leads to a waiting state until an external event arrives.

Thus, there is a need to be able to maintain and communicate state as distributed across the SOA. One
particular programming model support for capturing these state descriptions is the set of specifications included
in the WS-Resource Framework (as published on IBM developerWorks). These specifications allow the
programmer to declare and implement the association between a Web service (a process module) and one or
more identified, datatyped state components called WS-Resources.

4.4.3. Business Exceptions Monitoring and Handling

Even if the enterprise has spent a significant amount of time and effort to understand and model its business
processes, undoubtedly unplanned business exceptions can still occur. A fully automated, services-oriented
infrastructure that is capable of supporting any such exceptions to the business processes is unrealistic. This
means that all business processes and their supporting infrastructure should be designed to allow manual
recovery and control. Furthermore, for each business or technical domain, the organization should identify
individuals that can handle such exceptions and act on the infrastructure. In most process and services
identification modeling activities, the focus is on delivering mainstream models and a few variations. The

A.4.2

< Day Day Up >

< Day Day Up >

Business domain analysis

Solution architecture outline

High- and low-level design

Analysis and design (today mainly OOAD and DB design)

Various test phases (such as unit, integration, system, and acceptance tests)

Going live

Maintenance

Management

Aspects such as service modeling (for example, using a coarse- or fine-grained interface), choice of SOAP
engine (IBM WebSphere SOAP, Apache Axis, or Apache SOAP 2.3), and organizing interoperability tests are
primarily examples of Web service–specific considerations. The nature of these issues varies. For example,
service modeling prerequisites a different skill and mindset than interoperability testing.

4.5.4. Examining and Adapting Roles

The following sections look into a model that shows how existing roles work in SOA development projects. For
presentation purposes, we divided the roles in our model into two categories—existing roles and new
roles—followed by a discussion on the integration of both categories.

Because SOA projects are just another type of development project, it is not surprising that we find a lot of
well-known roles that we can define as a category of existing roles. However, some of the existing roles receive
additional SOA-related responsibilities. From our SOA project experiences, we saw the need to establish new
roles, which are listed as the new roles section. Please keep in mind that these are general descriptions of roles
rather than detailed job descriptions.

4.5.5. A Look at Existing Roles

Let's start with the six roles you may have seen (or participated as) on different technical projects: the project
manager, the business analyst, the architect, the developer, the security specialist, and the system and database
administrator. Note that this list is certainly nonexclusive, and it is not always applicable to every organization.
Therefore, we have limited the list to the most prevalent roles that will later apply to SOA projects.

4.5.5.1. The IT Project Manager

The project manager has the overall management and leadership responsibility for the project team. He or she
defines and tracks project plans and determines the work breakdown structure. For an SOA project, certain
additional skills and knowledge are needed to best perform this role, as described in Section 4.5.5.11, "The
SOA Project Manager."

4.5.5.2. The Business Analyst

The business analyst harvests the functional requirements of business users and provides domain knowledge to
the team. He or she must understand the business language and have industry- and domain-specific skills. In an
SOA approach, the business analyst should use a component business modeling approach, a technique for
modeling an enterprise as disjunctive components in order to identify opportunities for innovation or
improvement.

4.5.5.3. The Architect

This is the technical leader of the project. The architect's task is to develop the logical and physical layout
(structure) of the overall solution and its components.

4.5.5.4. The Developer

The developer creates and tests the software implementation. In SOA, the role is not significantly different, with
the exception of the code written in SOA projects, which is written as services. This turns the developer into a
service developer.

4.5.5.5. The Security Specialist

The security specialist is responsible for the definition of security guidelines (policies) and the implementation
of security means adhering to these guidelines. The domain for this role is described in Chapter 8, "Securing the
SOA Environment."

4.5.5.6. The System and Database Administrator

This role performs the installation and provides ongoing maintenance on the technical infrastructure: the
hardware, operating and database systems, and middleware. Certain aspects of information integration under
SOA were described in Chapter 3, "Architecture Elements." This role typically falls into the domain of the
classic database administrator.

4.5.5.7. The Service Deployer

The service deployer takes the development artifacts and installs them in the target runtime environment,
generates stubs and skeletons for the target environment from WSDL and installs them together with the service
implementations, and provides JAX-RPC (Java API for XML-based remote procedure calls) mapping and
handler configuration through services-specific deployment descriptors.

4.5.5.8. The Service Integration Tester

The service integration tester is responsible for the various standard test stages such as integration, load, and
acceptance tests. He or she also defines test cases for services interoperability and conformance tests. This role
is aligned to the architect and to the governance bodies, as previously described. It is the quality assurance role.

4.5.5.9. The Toolsmith

The role of toolsmith is responsible for designing and implementing the project-specific scripts, generators, and
other utilities needed by various aspects of the SOA. The degree of standardization in the Web services world
now makes it possible, for example, to develop custom WSDL-, JAX-RPC-, or JSR-109-aware tools.

4.5.5.10. The Knowledge Transfer Facilitator

This role provides access to subject matter experts and technical instructors who bring in extended knowledge
regarding SOA, on-demand, and in most cases, Web services concepts and implementation assets. By relating
the use cases created during requirements gathering to the functions of this role, this role can easily be taken by
so-called customer-proxies that represent individual service requests within the SOA.

4.5.5.11. The SOA Project Manager

This role is an evolution of the classic project manager. The SOA project manager not only needs to plan for
much shorter delivery cycles, but he or she must also establish new acceptance models. The project manager has
to work with service providers to establish the appropriate service-level agreements and resource usage. This
role becomes more important with increased use of aggregated services (those that are composed of other
services).

4.5.5.12. The SOA System Administrator

In this role, in addition to managing and monitoring the platform infrastructure, the system administrator also
manages the business and service-level agreements within the SOA.

4.5.6. A Look at New Roles

In addition to the revised roles, there are other roles involved with SOA projects: the SOA architect, the service
modeler or designer, the process flow designer, the service developer, the integration specialist, the
interoperability tester, the UDDI administrator, the UDDI designer, and finally, the services governor.

4.5.6.1. The SOA Architect

The architect role evolves into an SOA architect, a mediator between business and technology. More than a
structural architect, as in the role of a classic software architect, the SOA architect acts more like a city planner,
with a higher-level view. This person plays a dynamic business-to-IT adaptation role to transform the ideas and
concepts of business operations into terms and concepts available in the IT infrastructure. In this role, the SOA
architect is responsible for the end-to-end service requestor and provider design and takes care of inquiring
about and stating the non-functional service requirements.

4.5.6.2. The Service Modeler or Designer

A service modeler applies data and function modeling techniques to define the service interface contracts,
including the schemas for messages during an exchange. The service modeler works with the SOA architect to
create these contracts.

4.5.6.3. The Process Flow Designer

In place of an integration specialist, this role investigates the explicit, declarative, service orchestration
(aggregation, composition) possibilities. It concentrates on the technical process flows that support given
business processes. It is an optional role in most cases.

4.5.6.4. The Service Developer

The service developer is typically an enterprise developer, expert in programming models such as J2EE and
familiar with Web services concepts and XML. The role develops service interfaces and implementations on the
provider side and service invocation code on the requestor side of service interactions. The service developer is
probably the best-equipped role today. An SOA development environment focuses on providing tool-based
support for designing and deploying service-based components.

It is the role of the SOA architect to ensure that the SOA developers are not overemphasizing the use of
technology. It often becomes easy to expose any piece of logic as a service but at the cost of ignoring best
practices for defining the granularity of these services, thus impacting overall performance and manageability.
For example, you can easily turn a useful, simple, calculation function into a service so that it can be called from
numerous other services.

A service developer using WS-* and J2EE standards-based tooling might also have some subroles:

Web Services designer and programmer, with implementation skills in J2EE, C++, or .NET

Legacy integration and adaptation designer, with services-enabled adaptation skills

4.5.6.5. The Integration Specialist

Integration specialists are mediators and users of both the service modeler's and the process flow designer's
work. They typically have a broad-based technical knowledge in the integration field because they will need
some understanding of SOA systems, enterprise integration means, business processes, and applications coded
in Java or other languages. Tools like WebSphere Business Integration Workbench™ allow the person in this
role to compose complex systems of available services.

4.5.6.6. The Interoperability Tester

The interoperability tester verifies that any developed requestor and provider implementations will interoperate
seamlessly. Another primary activity is to ensure Web Services Interoperability (WS-I) conformance and
industry standard conformance.

4.5.6.7. The UDDI Administrator

The UDDI administrator defines how a generic UDDI data model can be customized and populated with
services. This is, in most cases, an optional role. It also depends on whether UDDI is chosen as the standard or
there is an alternate proprietary data model in the organization. In this case, there might be another similar role,
often part of the IT governance body, that acts as administrator.

4.5.6.8. The UDDI Designer

There might be the need for a UDDI designer who is responsible for planning, designing, and building the UDDI
registry where services are published and announced for the various levels of the SOA.

4.5.6.9. The Services Governor

This is an important new role that has the cross-enterprise responsibility, on the SOA governance team, to
validate and select the business services most appropriate for the given enterprise and then identify who owns
them. This role can be played by either SOA architects or business analysts when working in the SOA
governance team.

4.5.7. Integrating Existing and New Roles

These new roles originate from existing ones (for example, SOA architect and service developer). However, we
believe that for the new roles, the introduction of new names for these roles is justified. Each of the roles
addresses a different aspect of the project as a whole. Earlier we stated that one person typically wears several
hats, in other words acts in more than one role. However, a project's risk decreases if different people with broad
and diverse skills are on board. There are situations in which only such a purposeful cooperation of different
individuals can unveil the crucial issues of the project and lead to a sound solution.

On the other hand, the communication overhead increases with each new team member. There is no single or
simple answer to the roles-to-people mapping challenge. There are many different opinions and controversies
regarding how it should be approached. As previously mentioned, the assignment of individuals to these various
roles depends on the situation, the skills and experiences available, and the scope of the project.

Rather than entering a debate about what is the optimal formation, consider the following scenario: A fictitious
company in the insurance industry has decided to build a new set of mid-office business applications for risk
and policy management, and the set has to interface with two different backend systems. Both backend systems
have been built as J2EE applications: one uses EJBs and the other uses only servlets, JSPs, and JDBC to
connect to its customer and contract databases.

During the initial stages of the development project, the roles defined in the example are assigned to team
members. In addition to the Web services-specific activities, the standard project tasks and roles are also
identified and assigned. To illustrate how a team setup can look, Table 4.1shows an example of selected new
roles, their tasks, prerequisite skills, and supporting tools. Additionally, we list the other roles on the team that
collaborate with each selected role.

Table 4.1. The Responsibility of Selected New SOA Roles

Project Role Performed Tasks Collaborates With Prerequisite Skills Supporting Tools

SOA architect Solution outline,
requirements
analysis,
architectural
decisions, component
modeling,
operational
modeling,
communicating
business issues and
components to
services

Any other team
member plus
line-of-business
(LoB)
representatives

General IT
architectures, J2EE
technology, XML,
XML schema Web
services and SOA
concepts, platforms,
best practices,
business knowledge

UML editors, office
suites

Service modeler Interface contract
design, WSDL
editing (top-down,
bottom-up,
meet-in-the-middle)

Business analyst,
SOA architect,
service developer

WSDL XML schema
and namespaces
J2EE technology

WSDL editors,
Java-to-WSDL
generators

Process flow
designer

Business process
modeling, assembly
of atomic services
into chains
(processes)

Service modeler,
business analyst,
SOA architect, LoB
representatives

BPEL4WS, WSDL Graphical flow
modeling tools,
BPEL4WS
generators,
corresponding
runtime support

Service developer Service provider
coding, service
requestor coding,
provide SOAP
header handlers if
needed, code
documentation

Service provider
coding, service
requestor coding,
provide SOAP
header handlers if
needed, code
documentation

J2EE, XML, SOAP,
WSDL

Web services
wizards in IDEs,
WSDL-to-Java
generators

Interoperability
tester

WSDL inspection,
SOAP envelope
tracing, conformance
testing,
troubleshooting

Service developers
(requestor and
provider side)

SOAP, WSDL, WS-I
profiles

TCP/IP tunnels and
monitors, WSI test
tools

Because the definition of roles depends on the concrete project situation, assignments to the actual people cannot
be prescribed in a standardized way; they have to be defined and assigned per the needs of the situation.
Assignments can be used by the project manager in cooperation with the SOA architect to create the work
breakdown for the project at hand. Further corporate guidelines, restrictions, and best practices are influencing
the final project setup and management.

In addition to the previously mentioned roles at the SOA level, there is a complementary list of roles specific to
Web services in the developerWorks article, "Web Services project roles," by Olaf Zimmermann and Frank
Mueller (2004).

A.4.3

4.5. SOA Project Roles
The notion of handling exceptions in a manual fashion brings to light the key significance of people involved in

SOA projects and the roles they might play. SOA projects involve many familiar project roles: project manager,
business analyst, architect, developer, security specialist, and system and database administrator. However,
these roles were created for different purposes and might have different inherent meanings based on the
organization's viewpoint. To appropriately structure an SOA project, you need to consider that these roles might
need to evolve to match the componentization and decomposition of the applications into services. In addition,
implementing an SOA might also call for some additional roles.

In the following sections, we explain the functions of roles, and then we discuss roles versus skills in a project,
followed by the phases in the project where these roles might apply. We then describe how these roles can be
extended under SOA, as well as the new roles that follow. Finally, we examine some of the interactions among
the various roles in SOA projects.

4.5.1. The Function of Roles

There is no single, global, standard definition of all IT jobs, not to mention SOA projects. Many jobs require
certifications, a defined knowledge base, or cognitive tests; however, these certifications cannot always truly
prove a candidate's applied knowledge, skill transfer, and creativity aspects. Because the team size, the
workload, the types of work, and the subjects needed to solve IT problems vary greatly across companies,
industries, and geographies, flexible teams with some specialist members are necessary. To coordinate such
teams, the leaders (the architects and project managers) have to demonstrate the aforementioned capabilities
beyond mere subject knowledge.

In this book, we use the notion of roles because doing so brings some order to the chaos. Roles are related to
project phases and define an abstraction layer separate from actual job descriptions and assigned human
resources. All project team members take on one or more roles.

Roles are a common concept in project management and design methodologies. The role concept establishes a
commonly understood vocabulary, which has proven to be a powerful instrument at project-initiation time. A
role does not imply that a specific individual person must execute the tasks that are associated with the role;
instead, it implies an identity (an individual, a team, an organization, and so on) that fulfills that part of the
process.

4.5.2. Roles and Skills

Identifying the roles involved in your project will certainly help, but finding the right people with appropriate
skills is crucial. Services typically are technologically lightweight and simple; this is part of their power. With
this technology, islands of heterogeneous systems can be more easily opened up for collaboration. However,
along with these new possibilities come new sources of errors. SOA projects may be a new kind of project for
your organization, but chances are they will not be a simpler kind of project.

An SOA project team setup should reflect these specific issues with the inclusion of appropriate skill levels and
talents. We highly recommend a mix of practitioners who have experience with different platforms, different
technical problems, and different skill domains. This is especially important for the SOA architect. If such a
person is not available to the team, it would be feasible to have additional (part-time) co-architects to fill the
gaps.

4.5.3. Project Phases

Development projects have different phases, requiring different skills and collaborations throughout the
lifecycle, and SOA projects are no different. Independent of your organization's choice of the individual
methodology used (waterfall approach or others), most projects will generally include the following development
phases:

Requirements engineering

< Day Day Up >

< Day Day Up >

4.6. Summary
After the SOA governance model has been launched, it sets the stage for the services modeling and architecting

phase, which also includes the design of the necessary supporting IT infrastructure. This step requires the use of
a formalized method. The next chapter covers the best practices and the modeling and architecture method we
have captured from many of our SOA projects.

< Day Day Up >

< Day Day Up >

4.7. Links to developerWorks
A.4.1 Balzer, Y. Improve your SOA project plans. IBM developerWorks, July 2004.
http://www-106.ibm.com/developerworks/webservices/library/ws-improvesoa/.

A.4.2 IBM. The WS-Resource Framework. IBM developerWorks, March 2005.
http://www-128.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpaper.html.

A.4.3 Zimmermann, O. and Mueller, F. Web services project roles. IBM developerWorks, June 2004.
http://www-106.ibm.com/developerworks/webservices/library/ws-roles/.

< Day Day Up >

http://www-106.ibm.com/developerworks/webservices/library/ws-improvesoa/
http://www-128.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpaper.html
http://www-106.ibm.com/developerworks/webservices/library/ws-roles/

< Day Day Up >

4.8. References

Belbin, R. Meredith Management Teams, 2nd Edition. Elsevier Books, 2004.

Belbin, R. Meredith Managing without Power. Butterworth-Heinemann, 2001.

Bieberstein, N. Application Development as an Engineering Discipline: Revolution or Evolution? IBM Systems

Journal, Vol. 36, 1-1997.

Hess, H. M. Aligning technology and business: Applying patterns for legacy transformation. IBM Systems

Journal, Vol. 44, 1-2005. http://www.research.ibm.com/journal/sj44-1.html.

IT Governance Institute. IT Governance definition.
http://www.itgi.org/template_ITGI.cfm?Section=Purpose&Template=/ContentManagement/HTMLDisplay.cfm&
ContentID=14697.

MacMillan, K. and Downing, S. Governance and Performance Goodwill Hunting in Strategy Dynamics, Henley
Management College, 2001.

Meredith, Jack R. and Mantel Jr.,Samuel J. Project Management—A Managerial Approach, 3rd Edition. John
Wiley & Sons, 1995.

Nadhan, E. D. Service Oriented Architecture Implementation Challenges. EDS Solutions Consulting, position
paper, April 2003. http://www.eds.com/services/innovation/downloads/so_architecture.pdf.

Telemanagement Forum. Homepage. http://www.tmforum.org.
< Day Day Up >

http://www.research.ibm.com/journal/sj44-1.html
http://www.itgi.org/template_ITGI.cfm?Section=Purpose&Template=/ContentManagement/HTMLDisplay.cfm&ContentID=14697
http://www.itgi.org/template_ITGI.cfm?Section=Purpose&Template=/ContentManagement/HTMLDisplay.cfm&ContentID=14697
http://www.eds.com/services/innovation/downloads/so_architecture.pdf
http://www.tmforum.org

< Day Day Up >

Chapter 5. Aspects of Analysis and Design
"Every bright thing has been thought of before. One must just try to think of it again."

—Johann Wolfgang von Goethe

SOA has been developed and implemented in many ways by enterprises during the last decade using custom
approaches for analysis and design. The increasing focus within the IT industry on widespread deployment of
SOA is bringing greater attention to the practicalities of introducing specific service-oriented analysis and design
methodologies and technologies.

In this chapter, we will explore some of the analysis and design considerations that apply to the development of
service-oriented systems—those based on open-standard concepts and technologies as well as industry-tempered
methods and well-tried software engineering principles.

Chapter 4, "SOA Project Planning Aspects," discussed the considerations for establishing SOA projects, and the
roles needed as services are developed and deployed. In Chapter 6, "Enterprise Solution Assets," and Chapter 7,
"Determining Non-Functional Requirements," we will continue to explore the SOA compass headings, with
discussion focused on reusable architectural patterns, non-functional requirements, and qualities of service.

< Day Day Up >

< Day Day Up >

Each layer in a typical SOA is characterized by a number of important categories of artifacts, each with its own
set of properties and relationships.

The Enterprise layer, for example, is characterized by a business model that describes the business that an
enterprise is engaged in, whereas the Process layer is characterized by descriptions of business processes that
together fulfill the business model.

Changes to the business model at the Enterprise layer raise requirements for change at the Process layer and a
probable cascade of requirements in lower layers. Analysis of these requirements at each layer results in a
number of architectural and design decisions that must be logged for traceability and allowed to evolve over
time in accordance with best practices. Chapter 6 provides guidance for capturing these architectural decisions
so that they are reusable across enterprise projects.

5.1.2.1. Enterprise Layer

A number of existing architectural frameworks (for example, the Zachman framework) and methodologies can
be applied at the Enterprise layer, and SOA introduces a small number of new artifacts and new architectural
considerations.

However, the business model that describes the way an enterprise operates in a particular industry will most
likely identify criteria by which business processes are judged to be either core competencies (and therefore
essential to competitive advantage and implemented under tight control) or supporting competencies (and
therefore possibly delegated to industry partners). Refer to Chapter 2, "Explaining the Business Value of SOA,"
for our earlier discussion on the business model.

Although these criteria are not new to enterprises at the highest level, they are becoming more relevant as SOA
enables partnerships to be established at the Process and Service layers and enhances enterprise responsiveness
in the on-demand era.

5.1.2.2. Process Layer

A number of existing, well-known frameworks and methodologies also operate at the Process layer. They do so
by identifying and characterizing business processes that are incorporated into the enterprise business model.
Each process is unique in its handling of one major functional area of the business and might be characterized by
decomposition into subprocesses as required to achieve its goals.

Subprocesses might be further decomposed to expose dependencies on services. It is usual to find that the
collection of subprocesses needed to implement a given business process at the highest level is unique within an
enterprise context, but this might not be true in enterprises that have grown by acquisition, where duplicated
processes are often found. Top-down analysis techniques, such as BPM and Component Business Modeling (see
the CBM discussion later in this chapter), can be useful for populating this layer.

A.5.2

The Process layer is emphasized in SOA, as some processes can be modeled and later implemented as
services. Unfortunately, this presents a gray area in the use of terminology between "process" and "service."
What is a process, and what is a service? In our experience, one distinguishing characteristic between these
concepts can be found in intended usage. Processes are defined once and used ideally within a single context.
Services, on the other hand, are defined once and reused many times over within diverse contexts such as
different business processes, corporate divisions, and lines of business.

5.1.2.3. Service Layer

Abstraction at the Service layer is characterized by a number of services that carry out individual business
functions. In an SOA, this layer often provides a conceptual bridge between the higher-level Enterprise and
Process layers and the lower-level Component and Object layers. Some business analysts use this layer to
identify critical functions that are needed to run the business, whereas IT specialists use this layer to identify and
expose technical functions that match business analysts' requirements. These critical functions are often regarded
as integration points within the enterprise application domain.

Each service within this layer can be decomposed into a flow of simpler services that in turn are implemented
using a number of components. For example, a billing service might be introduced at this layer that is dependent
on customer information and order-processing services. These, in turn, are mapped in the next layer to
component implementations such as CICS transactions and AS/400 programs. IBM Patterns for e-Business can
be used to identify a number of different possible technical mappings at this layer.

A.5.3

5.1.2.4. Component Layer

Abstraction at the Component layer in an SOA identifies and characterizes a potentially large number of
components that might be composed as service implementations at some future time. Bottom-up analysis of
existing application systems will often reveal components that could be considered as candidates for reuse in
this way. Unfortunately, some components, such as customer inquiry, are often implemented many times over in
existing application packages and are deployed redundantly in operational systems. Selection of just one of
those implementations for exposure as a service becomes an important activity (see 5.2.4. "Realization of
Services" later in this chapter).

Components identified at this layer are the building blocks for services in an SOA. Although some components
will be designed specifically to satisfy the requirement for a new service, most will be adapted and composed
from existing systems in a successful SOA deployment. A number of different techniques and technologies will
have been used to implement components in those existing systems.

5.1.2.5. Object Layer

Abstraction at the Object layer identifies a wide range of business objects, their attributes, and behaviors
needed for each of the business functions required in an SOA. Well-established analysis and design techniques
(Yourdon and Coad) can be used at this layer to identify and characterize object classes, inheritance of
properties and behaviors, and the important relationships between them. These are used to implement
components at the higher layer.

It is interesting to note that although SOA does not introduce any new artifacts in the Object layer, it does
apparently reuse the concept of "services" taken from object methods. However, this overlap in terminology can
be deceiving. One of several activities introduced by OOAD was to identify and characterize services by their
functional interfaces. Some services were identified as internal or private to a domain of interest, whereas others
were public and designed for external use. In many respects, a similar activity was also important to earlier
structured programming methods. Analysis and design for services in an SOA builds on previous learning in
OOAD but goes further by characterizing certain functional interfaces as suitable for publication and invocation
at the higher service layer (not just within the object layer as "public" methods).

In a modern SOA, services are often implemented using objects. When this is true, there is a choice to be made:
whether to invoke a service using open-standard—Service layer—mechanisms or to use Component or Object
layer mechanisms such as object language method invocation. The decision should be made on the merits of the
service as a reusable component in the SOA at large and on the motivation for decoupling of components in such
an SOA tempered by performance and other non-functional requirements.

5.1.3. Reuse

Because each of the abstraction layers is populated in an SOA, it is easy to see that the number of artifacts
increases dramatically as decomposition progresses top-down from enterprise models to business processes to
services to components and objects. In a typical enterprise scenario, there might be a great deal of undesirable
redundancy at each of these layers, such as multiple business processes for supply chain, redundant services for
credit checking, duplicate components for inventory, and many, many different objects representing customers.

The goal for every SOA is to maximize reuse at each of these layers by refactoring redundant capabilities,
exposing and promoting common functionality, and composing new business-relevant functions as reusable
services. This can only be achieved by introducing strong SOA governance focused on measures that relate
reuse to reduced IT costs and time-to-market for competitive advantage.

5.1.4. Service Encapsulation

Abstraction is one of the principal techniques used by SOA modelers to bring focus to the most significant
characteristics in a system and to manage complexity. Service encapsulation (information hiding) is perhaps the
next most important. Yet the principle is simple enough.

Every service in an SOA must have an interface that is accessible to a wide range of service consumers and that
encapsulates or hides the details of implementations made available by service providers (see Figure 5.2).
Several aspects are important here. First, any consumer of a service must not be aware of or sensitive to service
provider implementation details. This allows for different implementations to satisfy consumer requests and
flexibility to be built into the SOA for evolution over time. Second, any provider of a service must not be aware
of or sensitive to service consumer implementation details. This loose coupling between consumers and
providers allows for new types of consumer to be introduced at a later time without the need for
reimplementation of service providers.

Figure 5.2. Service encapsulation—interface and implementations.

Modeling for a service interface therefore should be neutral to implementation dependencies such as platform,
operating system, programming language, provider location, or timing considerations. In addition, the description
of information flow across the service interface should be as stable (that is, nonvolatile) and as constrained as
possible to improve longevity and reuse for services in an SOA. This will be discussed later in this chapter.

5.1.5. Loose-Coupling

The lack of dependencies between service providers and consumers is very important for the health and success
of an SOA. This is often discussed in terms of the loose-coupling within an SOA (see Figure 5.3 for seven
useful dimensions of coupling). Note that these dimensions are listed in a memorable sequence, but no particular
significance is attached to the relative positioning or distance from either provider or consumer. Elements of
coupling from these dimensions are found to be additive in SOA scenarios.

Figure 5.3. Dimensions of coupling in SOA.

[View full size image]

The first dimension is concerned with location. Service consumers should not be dependent on any knowledge of
where a service provider is located or on any form of nonstandard addressing. A configurable or dynamic
service discovery component can be used to provide the necessary decoupling, and this, in turn, can be deployed
as a gateway or ESB in an SOA solution.

The second dimension is concerned with coupling introduced by service consumer and provider
implementations based on specific platform technologies. This form of coupling can be removed by using
open-standard technologies (hosted by both consumer and provider platforms), providing they have been proven
to be interoperable. A common example is the use of TCP/IP, XML, SOAP, and WSDL technologies to
decouple .NET consumers from J2EE providers.

The language dimension is concerned with a form of coupling introduced by dependencies on specific language
technologies. For example, the use of serialized Java object streams in service messages might be a highly
effective mechanism for certain (Java language) consumers and providers, but it might limit the amount of reuse
that is achievable as an SOA solution evolves. The use of open-standard formats and protocols from within
languages of choice is probably the best way to avoid this coupling.

The contract dimension is concerned with the most desirable form of coupling between consumers and
providers. The contract is implemented as a service interface with operations and policies that must be known to
both consumers and providers. The strength of this coupling might be measured in terms of the breadth of
dependency on the operations, information types, and policies (for example, the number of operations, types, and
policies used). Note that this coupling is between consumers and the service contract. Any number of possible
providers can satisfy the contract and deliver the service to consumers.

The format dimension is concerned with coupling introduced by specific message formats used in SOA
solutions. Proprietary or custom formats might be used for many reasons, but they introduce dependencies that
will become an obstacle to flexibility and growth in the future. Open-standard formats, such as SOAP XML,
provide the best insurance against this form of coupling, but adaptors, gateways, or an ESB can be used to
provide format transformations to remove this coupling.

The protocol dimension is concerned with coupling introduced by specific protocols used in SOA solutions.
Proprietary or custom protocols can be introduced for networking, federated single sign-on, transactionality, and
other capabilities, but they impose dependencies that might become an obstacle to future flexibility and growth.
Open-standard protocols, such as SOAP HTTP and the Web services standards, provide the best insurance
against this form of coupling, but configurable dynamic binding mechanisms built into SOA infrastructure can be
a reliable way to insulate consumer and provider business logic from this coupling.

The time dimension is concerned with coupling introduced by the assumption that service consumers and
providers are available at the same time or, more generally, at a specific time. Although some service requests
must be satisfied within a constrained time period, most requests can be designed to operate "as soon as
possible." The use of asynchronous service invocation mechanisms may provide the most generally applicable
decoupling solution. However, no open standard has yet been agreed upon to provide such a mechanism in a
general way. SOA infrastructures such as gateways and ESB can provide at least a partial solution in the
interim.

The dimensions of coupling listed are not the only sources of dependency that should be considered. Neither
are they ranked in order in Figure 5.3. In nearly all SOA projects, some of these forms of coupling will be found,

and SOA architects should be careful to remove as many as possible. Designing for use of open-standard
technologies and infrastructure patterns such as the ESB is the principle strategy for implementing the
loose-coupling needed for a successful SOA. See also Chapter 3, "Architecture Elements," and Chapter 7,
"Determining Non-Functional Requirements."

5.1.6. Strong Cohesion

Another important consideration when modeling services is cohesion between the operations in a service
contract. Strong cohesion is an indication that a service contract contains operations that are closely related by
shared reference to information about specific objects (usually business objects) and their properties and
relationships. Some of the dimensions of cohesion that are considered most relevant to SOA modeling are shown
in Figure 5.4.

Figure 5.4. Dimensions of cohesion in SOA.

A service interface is only weakly cohesive when information required by the operations is not of the same type
or is possibly untyped. Most modern SOA interfaces are described in terms of XML data types, according to
preferred WSDL practices, but it is only when operations share the use of specific information types that the
interface become weakly cohesive. The more complex the (business object) types that are shared, the greater the
cohesion in this respect.

When structure between information elements is shared in the operations of a service interface, some additional
cohesion results. Structure often implies certain relationships between elements of information in the operations
that must be understood by both service consumers and providers bound by the service contract.

Cohesion in a service interface becomes even stronger when relationships between information elements are
made explicit (for example, by using standard resource definition framework [RDF] technologies) and are shared
by operations. Such relationships begin to expose the semantics—that is, the intended meaning—of the
information that flows when the service operations are invoked. Operations that do not share this meaning
probably do not belong to the same service interface.

At higher levels of cohesion, the operations of a service interface must be based on shared logic and rules of
trust. At present, these aspects cannot be expressed explicitly in a standards-based service description, but the
implementation of the operations will be based on inferences that can be made about the information flowing and
rules that govern the level of trust assumed when handling that information.

The most cohesive interfaces will be the most resilient to change over time and the most reused in an SOA.

5.1.7. Service Granularity

Much has been written about the granularity of services. Should services be coarse grained or fine grained, high
level or low level, business or technical? Our experience tells us that the answer to this question is in the
balance between two fundamental, competing motivations in analysis and design for SOA solutions.

First, there is a top-down motivation to identify services that can be directly related to delivery of business
value. These are often called business services and are named using verbs (like fulfillOrder) taken from the
business community's vocabulary. Second, there is a bottom-up motivation to identify and promote services that
encapsulate the most highly reusable business logic and rules. These are often called technical services and are
named using verbs (like getOrderInfo) taken from the IT community's vocabulary.

In practice, a spectrum of service granularities results in an SOA solution from these motivations. Analysis of a
dependency graph between services in the SOA will often show that coarse-grained (highly valued) services
have relatively few invokers but a much larger dependency on fine-grained services that are invoked.
Fine-grained (highly reused) services, on the other hand, have a relatively large number of invokers but almost
no dependency on services that are invoked. It becomes a matter of judgment as to where the line between
coarse-grained and fine-grained services is drawn. It is also often predicted that coarse-grained service
descriptions will specify larger amounts of information in their operational boundaries, whereas fine-grained
service descriptions will specify smaller amounts. This proves to be an unreliable measure of granularity, but it
is useful as a factor in SOA network capacity planning.

5.1.8. Well-Designed Services

We are often asked what makes a well-designed service. The answer is always that a well-designed service is
one that satisfies all of its functional and non-functional requirements. But this answer is perhaps not as helpful
as it might be. It urges you to spend time ensuring that requirements are well analyzed, design is well focused,
and development well executed.

A better service is one that satisfies a wide range of consumer requirements with a stable and well-published
description. The combination of best practices for loose-coupling and strong cohesion (see Figure 5.5) defines
many of the important aspects of well-designed and deployed services in the face of wide-ranging and possibly
unpredictable future requirements. One of the best-known maxims from the world of distributed applications is
that no matter how hard you try to capture known requirements accurately, there will always be users
(consumers) who will find new ways to reuse your service. This is particularly true of distributed systems built
using highly reusable services.

Figure 5.5. Combined coupling and cohesion in SOA.

[View full size image]

Conclusion: Perhaps the best service is one that already exists and can be reused in creative ways rather than
being designed and developed afresh from requirements.

A.5.1

5.1. Service-Oriented Analysis and Design
The IT industry has been innovating techniques and methodologies for developing reliable, efficient enterprise
software for the last four decades. Several models for construction of such software have evolved. Simple
procedures, structured programming, data-flow programming, message-oriented programming, and
object-oriented programming are just a few of those that are still in widespread use today.

Although these paradigms introduced new concepts and principles, each was built on the approaches that
preceded it. For example, modularity is one of the engineering qualities associated with structured programming,
and information hiding (encapsulation) is one of the qualities associated with object-based programming. In
keeping with this evolution in thinking about software construction, there has been an evolution in techniques and
tools for analysis and design and an evolution in runtime execution technologies.

The good news is that, throughout this lengthy period of evolution, a number of sound principles, acceptable
constraints, and best practices have been learned within the IT industry and embodied in modern software. This
evolving framework for architectural design carries forward as new models emerge.

Service-oriented, event-driven programming is the latest in a long succession of ideas to emerge. It incorporates
many of the advantages of earlier models, builds on valuable lessons learned in previous eras, and introduces
valuable new concepts, patterns, and practices.

The question is, what must we consider in order to analyze domain requirements and identify the best
candidates for implementation as software services, and what must we consider when designing services that
fulfill those requirements in the best way possible? The answer is that many well-established and familiar
considerations still apply, but interestingly, SOA introduces some new ones that we will focus on in this chapter.

5.1.1. On Modeling

It is especially interesting to note that, independent of the industry focus on SOA, there has been an increase in
focus on modeling. The OMG has published industry standards for model-driven architecture (MDA) and the
Unified Modeling Language (UML) for use in development methodologies for commercial and other types of
software. Others have proposed standards and technologies for business process modeling (BPM).

What used to be called "analysis and design" in previous technological eras is now often called "modeling."
This development suggests a new level of formality and rigor in theoretical foundations and recognizes that there
might be a continuum of definition, refinement, and transformation activities for analyzing requirements,
developing architecture and design, and generating software code for target execution platforms. Some would
argue with the suggestion of rigor, but there is no doubt that modeling is here to stay as a powerful technique for
developing SOA solutions.

5.1.2. Layers of Abstraction

Much has been written about the value of abstraction and layering as techniques for thinking about software in
an enterprise. They help organize thoughts, discussion, and documentation and provide focus at the most
appropriate level of detail (see Figure 5.1).

Figure 5.1. SOA layers of abstraction.

< Day Day Up >

< Day Day Up >

Traditional business process modeling and other forms of direct requirement analysis—for example, using
stakeholder interviews—are also an appropriate way of identifying an initial set of candidate services. Any
existing technical use-case models coming from non-SOA projects should also be consulted if they relate to the
business process in focus.

5.2.1.2. Building a Taxonomy

As top-down decomposition of business processes proceeds, we recommend that you build a vocabulary of
terminology used by both the business and technical communities. It is likely that some of the terminology will
be peculiar to the industry that the enterprise operates in (for example, ACORD), and some will come from the
culture that is peculiar to organizational units within the enterprise. Some relationships between terms used might
also be discovered and should be recorded for later use.

The motivation for building such a taxonomy of terms has several aspects. First, it might be possible to
establish a vocabulary that becomes standard for enterprise discussion and documentation as SOA projects are
completed over time. Second, the abstractions that are captured during analysis should be expressed in the terms
that are documented in the taxonomy—this will facilitate reuse of services over time. Third, the taxonomy will
provide the basis for categorization and refinement of services as the SOA deployment evolves. A successful
taxonomy will provide a communications bridge between business and IT communities as it becomes more
widely accepted.

5.2.1.3. Bottom-Up Synthesis

SOA implementation rarely starts on a green field and almost always involves integrating existing systems. This
integration can be done by decomposing relevant existing systems into business process flows, business rules,
and potentially reusable components. In accordance with the SOA reference architecture, business process flows
and rules are factored into a separate Process layer, and components remain at the Component layer (see
Chapter 3).

By decomposing existing systems in this way, it might be possible to synthesize a set of candidate services from
the components identified and synthesize others by adapting the business process flows that have been
discovered at the higher layer of abstraction. It should be noted that process flows can be realized as services
and services realized as process flows as modeling activities conclude (see Section 5.2.4, "Realization of
Services").

5.2.2. Categorization of Services

Once an initial list of candidate services has been compiled using both top-down and bottom-up techniques, the
list must be refined in an iterative and incremental fashion. Services have different uses and purposes and reside
in different layers of SOA reference architecture. For example, application utility services such as
authenticateUser or logActivity can be distinguished from business function services such as manageInventory or
planCapacity in a manufacturing context. During the categorization step, the candidate services are assigned to a
number of recognizable types such as the following:

Categorization by role in the business model, such as processService, businessFunctionService,
businessRuleValidationService, applicationUtilityService, infrastructureService

Categorization by type of consumer, such as customerService, partnerService, internalService

Categorization by implementation strategy, such as externalService, composedService, adaptedService

Furthermore, certain services can be composed (orchestrated or choreographed) into higher level processes.
This composition step is important in SOA and is facilitated by process modeling languages such as Business
Process Execution Language (BPEL). As SOA projects categorize new services, the lists developed should be
hardened into a catalog or directory of services that are included in the SOA. This catalog will serve as the
repository for metadata about reusable services. Indeed, categorization of services should be based on the
characteristics captured in the enterprise services taxonomy and reflected in that metadata.

5.2.3. Specification of Services

A formal interface contract defining the necessary preconditions, postconditions, and invariants, as well as the
invocation syntax for services, is a very important design consideration for SOA. Service consumers and
providers must have a common understanding of the request and response information types and structure to be
exchanged when service operations are invoked. However, the semantics must also be addressed if strongly
cohesive interfaces are to be specified. Business-level domain modeling can be part of the answer, especially if
combined with a meaningful taxonomy for that domain. In many cases, that taxonomy will include
industry-specific terms (such as those defined in Insurance Application Architecture [IAA] for the insurance
industry) as well as those that are enterprise specific.

In addition to syntax and semantics, non-functional qualities of service (QoS) must also be modeled. In Web
services-based SOA implementations, the formal interface contracts must cover more than just the WSDL
information elements. RDF can be used to model semantics when inserted as annotations for the WSDL syntactic
types. Non-functional requirements may be modeled in the future using constructs from the proposed WS-Policy
specification framework (WS-Policy).

A.5.5

5.2.4. Realization of Services

Once services have been identified and specified, they must be realized for deployment in an SOA. The first
objective at this stage is to avoid having to develop new services where others can be reused. Even if a service
is not currently available in the most appropriate form, it might be possible to realize the service by composing
existing reusable components. Many projects expose reusable components by performing bottom-up analysis of
existing systems. These components are candidates for the implementation of services.

A number of issues must be addressed when abstract service definitions are mapped to IT components and are
deployed into a runtime environment:

Whether or not to realize as a service. If a positive decision is made, should the service be realized by an
IT component or by a human worker?

Implementation technology and target runtime of choice. For example BPEL, J2EE, or other.

A choice of architecture alternatives for service implementation, including advice about transaction
management (for example, one- or two-phase commit, business activity compensation).

Deployment considerations including ESB mapping, QoS, non-functional requirements, security settings,
and others.

Runtime aspects such as management. How can a service be designed to be manageable?

Several reasons for not implementing a service may exist: The human being is a better (or the only available)
transaction coordinator, service realization is too expensive, the existing systems components are not yet SOA
ready, or other nontechnical circumstances (politics) prevent service realization.

For example, the state management and workflow engine (with sound compensation capabilities) most
frequently used today in enterprise applications is the human worker. This is not necessarily the best solution,
but sometimes reality constrains design, and the introduction of an automated process layer must be a conscious
architectural decision and not implemented simply because SOA and process choreography are in vogue.

Often you make the simplifying assumption that a subsystem has a one-to-one correspondence with enterprise
components. Restructuring of components occurs when you use patterns to construct enterprise-level
components with a combination of mediators, facades, rule objects, configurable profiles, and factories.

During the realization step, the need for adaptation also has to be investigated based on the results from earlier
analysis. For example, there are several scenarios requiring introduction of adapter services (see Chapter 3):

Better quality of service is required (perhaps a caching adapter).

Only batch interface available, but real-time access is required.

Protocol conversion or data transformation is required.

Allocation of components and services to layers in the SOA is also an important task that requires the
documentation and resolution of key architectural decisions that relate not only to the application architecture
but also to the technical operational architecture designed and used to support the SOA realization at runtime.

5.2. Service-Oriented Analysis and Design—Activities
Analysis and design is based on good decision-making according to the best principles, acceptable constraints,

and best practices. Service modeling based on good abstraction into layers, information hiding, loose-coupling,
and strong cohesion can yield good services. However, just as modeling has changed the focus of analysis and
design, so have activities come to the fore in any discussion about development methodology. Activities are the
building blocks for the methods used when constructing software, whether they are sequential (waterfall),
iterative (spiral), or extreme (agile).

A number of activities have been identified as essential to any method used for architecting and building an
SOA. The activities are specific to services and do not replace any of the more traditional activities for
developing objects and other application components. This section discusses some aspects of the
most-often-used, service-specific activities.

5.2.1. Identifying Services

Perhaps the most obvious activity is identifying services. This can be done using input analysis, top-down
domain decomposition, bottom-up existing systems synthesis, and meet-in-the middle techniques. Input analysis
involves reviewing business models and existing system documentation for the business process in focus. The
following are questions that arise frequently in this phase:

Are the business drivers and goals for the SOA project articulated and quantifiable in terms of key
business performance indicators?

Have the business processes to be realized been named and described at a level of detail that is sufficient
for architectural decision-making at the IT level?

Have the existing and future non-functional requirements been documented with any unresolved pain
points?

If the input from business modeling and the existing system documentation is not sufficient, it must be possible
to schedule additional analysis activities as there is no point in proceeding with the modeling without a solid
baseline.

5.2.1.1. Top-Down Analysis

Top-down business analysis techniques, such as IBM Component Business Modeling (CBM), may be the best
starting point for identifying services. Using such techniques, it is possible to map major business functionality
against industry templates in order to identify a "heat map" of core business processes that are candidates for
SOA transformation or reengineering. Once the candidate business processes have been identified, they may be
modeled to capture requirements.

Existing object-oriented analysis and design techniques can then be applied to identify and define services
required. However, a higher viewpoint needs to be taken in most situations because a process-wide
object-oriented analysis might lead to a large, unmanageable object model. SOA does not dictate a particular
decomposition style, and alternative methods have described the use of different styles. For example, the IBM
service-oriented modeling and architecture (SOMA) method starts with a functional decomposition step for this
activity.

A.5.4

< Day Day Up >

< Day Day Up >

5.3. Summary
Techniques for analysis and design have evolved dramatically in the last four decades. Recent developments

have focused on modeling and the use of metadata as the basis for methods and tools that cater to a wide range
of activities, from business process modeling to automated generation of executable software. In this chapter, we
have discussed service analysis and design (modeling) with emphasis on the most important considerations:
encapsulation of service functionality, loose-coupling for service providers and consumers, and strong cohesion
for SOA longevity. In the next chapter, we will discuss appropriate ways to capture decision-making patterns as
templates for use across enterprise SOA projects.

< Day Day Up >

< Day Day Up >

5.4. Links to developerWorks
A.5.1 Zimmermann, O., Krogdahl, P., and Gee, C. Elements of Service-Oriented Analysis and Design. IBM
developerWorks, June 2004. http://www.ibm.com/developerworks/webservices/library/ws-soad1/.

A.5.2 Beck, K., Joseph, J., and Goldszmidt, G. BPM: Learn Business Process Modeling for the Analyst. IBM
developerWorks, February 2005. http://www-128.ibm.com/developerworks/webservices/library/ws-bpm4analyst
.

A.5.3 IBM. Patterns for e-Business. IBM developerWorks, 2004. http://www.ibm.com/developerworks/patterns/
.

A.5.4 Arsanjani, A. Service-Oriented Modeling and Architecture—How to Identify, Specify, and Realize
Services for Your SOA. IBM developerWorks, November 2004.
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

A.5.5 IBM, Microsoft, BEA, and SAP, WSPF: Web Services Policy Framework. Standard specification
proposal, IBM developerWorks, July 2003.
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html.

< Day Day Up >

http://www.ibm.com/developerworks/webservices/library/ws-soad1/
http://www-128.ibm.com/developerworks/webservices/library/ws-bpm4analyst
http://www.ibm.com/developerworks/patterns/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html

< Day Day Up >

W3C, WSDL: Web Services Description Language Version 2.0. Standard Specifications, May 2005.
http://www.w3.org/TR/wsdl20/.

Yourdon, Edward and Coad, Peter. Object-Oriented Analysis. Englewood Cliffs, N.J.: Prentice-Hall, 1991.

Zachman, J. A. A Framework for Information Systems Architecture. IBM Systems Journal, Vol. 26, 3-1987.
http://www.software.org/pub/architecture/zachman.asp.

5.5. References

Bennett, K., et al. Service-Based Software: The Future for Flexible Software. Paper submitted at Asia-Pacific
Software Engineering Conference, 5-8 December 2000, Singapore.
http://www.service-oriented.com/publications/APSEC2000.pdf.

Bhattacharya, K., et al. A model-driven approach to industrializing discovery processes in pharmaceutical
research. IBM Systems Journal, Vol. 44, 1-2005. http://www.research.ibm.com/journal/sj44-1.html.

Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd Edition. Addison-Wesley
Professional, 1993.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd Edition.
Addison-Wesley Professional, 2003.

Grossman, B. and Naumann, J. ACORD & XBRL US—XML Standards and the Insurance Value Chain.
Acord.org, May 2004. http://www.acord.org/news/pdf/ACORD_XBRL.pdf.

IBM. IBM Service-Oriented Modeling and Architecture. IBM Business Consulting Services, white paper, 2004.
http://www.ibm.com/services/us/bcs/pdf/g510-5060-ibm-service-oriented-modeling-arch.pdf.

IBM, IAA. Insurance Application Architecture, 2nd Revised Edition. 2004.
http://www.ibm.com/industries/financialservices/doc/content/bin/fss_iaa_gim_06-29-04.pdf.

Jacobson, Ivar. Object-Oriented Software Engineering: A Use Case Driven Approach, 2nd Edition.
Addison-Wesley Professional, 2005.

Jacobson, Ivar, Ericsson, Maria, and Jacobson, Agneta. The Object Advantage: Business Process Reengineering
with Object Technology. Addison-Wesley Object Technology Series, 1994.

Jacobson, Ivar and Ng, Pan-Wei. Aspect-Oriented Software Development with Use Cases. Addison-Wesley
Object Technology Series, 2004.

Kloppmann, M., et al. Business process choreography in WebSphere: Combining the power of BPEL and J2EE.
IBM Systems Journal, Vol. 43, 2-2004. http://www.research.ibm.com/journal/sj43-2.html.

Koehler, J., et al. Declarative techniques for model-driven business process integration. IBM Systems Journal,
Vol. 44, 1-2005. http://www.research.ibm.com/journal/sj44-1.html.

Latimore, D. and Robinson, R. Component Business Modeling: A Private Banking Example. IBM Business
Consulting Services white paper, 2004.
http://www.ibm.com/industries/financialservices/doc/content/news/newsletter/1061213103.html.

Mellor, Stephen J., et al. MDA Distilled. Addison-Wesley Object Technology Series, 2004.

OASIS, BPEL: Web Services Business Process Execution Language.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

OMG, MDA: Model Driven Architecture. MDA Guide 1.0.1, 2005. http://www.omg.org/mda/.

OMG, UML: Unified Modeling Language. Standard Specification. http://www.uml.org/.

Shlaer, S. and Mellor, S. J. Object Lifecycles—Modeling the World in States. Yourdon Press, 1992.

Stevens, W. Software Design—Concepts and Methods. Prentice-Hall, 1991.

W3C, RDF: Resource Definition Framework. http://www.w3c.org/RDF/.

http://www.service-oriented.com/publications/APSEC2000.pdf
http://www.research.ibm.com/journal/sj44-1.html
http://www.acord.org/news/pdf/ACORD_XBRL.pdf
http://www.ibm.com/services/us/bcs/pdf/g510-5060-ibm-service-oriented-modeling-arch.pdf
http://www.ibm.com/industries/financialservices/doc/content/bin/fss_iaa_gim_06-29-04.pdf
http://www.research.ibm.com/journal/sj43-2.html
http://www.research.ibm.com/journal/sj44-1.html
http://www.ibm.com/industries/financialservices/doc/content/news/newsletter/1061213103.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.omg.org/mda/
http://www.uml.org/
http://www.w3c.org/RDF/
http://www.w3.org/TR/wsdl20/
http://www.software.org/pub/architecture/zachman.asp
http:Acord.org

< Day Day Up >

< Day Day Up >

Chapter 6. Enterprise Solution Assets
"Great things are not done by impulse, but by a series of small things brought together."

—Vincent van Gogh

Enterprise architects and consultants are faced with some serious challenges when formulating an IT solution.
First of all, large-scale enterprise solutions are never easy to construct. They usually involve bringing
congruency to a collection of heterogeneous legacy systems; breaking down silos of processing centers;
migrating applications from niche, unviable products and homegrown platforms; and replacing ad-hoc enterprise
plumbing that currently holds up a shaky infrastructure—this, by itself, is a Herculean task. Add to this the new
demands for enhanced, non-functional requirements and qualities of service that CIOs traditionally expect when
embracing emerging technologies, and you have opened a Pandora's Box that contains all the deferred wish lists
of the past. You will have to accommodate the wish list requests in the proposed solution.

The lack of well-established, industry-tempered, reusable assets, such as templates, patterns, best practices, and
road maps, further exacerbates the architect's dilemma. This is largely due to the pace at which enterprise
technology progresses today. New specifications bloom with a rapid regularity (along with a slew of acronyms
and buzzwords), and vendors rush to incorporate and provide support for them, churning out frequent product
releases to keep pace. Hence, it is difficult to formalize, create, and maintain truly reusable assets because the
underlying technologies and the product mappings keep shifting. Therefore, the assets become obsolete at the
same pace with which technologies emerge. Additionally, there are organizational barriers in creating and
maintaining assets because of the early investment to initiate an asset repository and because the return on
investment is realized gradually. IT decision-makers are also concerned with whether asset creation and reuse
would slow the usual IT development processes and the shelf life of any assets that are created.

This chapter describes how to identify and create architectural assets that are reusable across enterprise
projects. These assets can be used for accelerating solution transition, articulating best practices, and capturing
architectural decisions.

< Day Day Up >

< Day Day Up >

Composite patterns combine Business and Integration patterns to provide commonly used high-level
architecture scenarios.

o

Application patterns provide a conceptual layout describing how the application components and data
within a Business or Integration pattern interact.

o

Runtime patterns define the logical middleware structure that supports an Application pattern. Runtime
patterns depict the major middleware nodes, their roles, and the interfaces between these nodes.

These patterns provide useful direction in articulating the high-level architecture, but they do not currently
provide reusable implementation code assets that can be leveraged for accelerating solution realization. The
ESA content can make references to these architectural patterns and exploit their concepts.

6.1.4. Performing the Product and Package Mappings

While mapping the solution context to concrete vendor products and packages, an architect might find a number
of identifiable gaps. Usually the product or package feature sets do not meet the precise requirements of the
solution. As recourse, depending on the project schedule, the gap tends to be filled in an ad-hoc fashion.
Sometimes these methods and the resultant interim "gap" solution tend to be the weakest link in the overall
solution. Providing a well-engineered solution to fill gaps has key benefits: A well-engineered solution is
reusable and prevents the proliferation of custom code to solve similar gaps in other enterprise projects.

A variety of mechanisms are available to create reusable code assets. Most prominent among them is the
reusable asset specification (RAS). RAS is an industry-tempered specification that details the structure, content,
and descriptions of reusable software assets. For the ESA code assets to have greater reuse potential, the code
assets will be RAS compliant, especially since recent development tooling (such as the Rational Studio suite)
and accelerators incorporate RAS support.

6.1. Architect's Perspective
Before describing enterprise solution assets (ESAs), it is important to understand the broad issues that an

enterprise architect faces in any reasonably sized project. These issues range from selecting the appropriate
architectural methodology to effectively mapping software products to the solution.

6.1.1. Selecting the Architectural Methodology

The first thing an architect attempts to identify is a coherent methodology and a set of techniques to apply to the
project. Some of the choices available are model-driven architecture (MDA), component business modeling
(CBM), and Rational Unified Process (RUP). Chapter 5, "Aspects of Analysis and Design," covered these
architectural facets in detail, so they are not discussed in detail here.

6.1.2. Formalizing Architectural Decisions

After analyzing the solution requirements, an architect can then look further to derive architectural artifacts,
which can be used to create high-level solution components. He can then place them in a solution context.
During this process, several alternatives are placed on the architectural palette, such as technology choices,
application patterns, and vendor choices. Based on these alternatives, the architect has to make certain choices
to meet the functional and non-functional characteristics of the eventual solution. Some of these architectural
decisions are often encountered and "rediscovered" across other intraenterprise projects. Being able to capture
and formalize these architectural decisions would provide a key reusable asset for future projects. This is
especially true for SOA projects because defining common, shared services is a critical success factor.

Currently, there are no formalized methods to capture this architectural decision framework. Design patterns
(such as Gang-of-Four patterns) primarily provide guidance only for design decisions. They provide low-level,
object-oriented patterns that are targeted and applicable for the solution design and construction phase. However,
design patterns have been available for a while, and their structure is well understood by architects. The ESA
concept will reuse the nomenclature and structure of design patterns (with certain modifications) to preserve
syntactic and semantic concepts so that they can be easily understood; it will then extend these concepts to
formalize architectural decisions.

6.1.3. Identifying Architectural Best Practices

Because SOA best practices are still maturing, an architect usually spends a lot of time searching for existing
best practices. These can then be evaluated for applicability to the enterprise solution at hand. Compounding
this is the fact that these best practices apply at various layers: low-level technology (such as J2EE) practices,
service-orientation procedures, industry vertical standards, business domain-specific scenarios, and others.

The following are some of the formalized options for such best practices currently available:

J2EE patterns and blueprints have been extensively used for adopting architectural practices that leverage
a Java-based middleware platform to implement solutions.

IBM patterns for e-business provide a group of reusable assets to create e-business applications. They
provide platform-agnostic guidance to create effective enterprise solutions quickly. The patterns are
classified into the following:
o

Business patterns that are used to create simple end-to-end scenarios involving interaction among users,
business processes, and data. They are the fundamental building blocks of most e-business solutions.

o

Integration patterns connect Business patterns to provide advanced functionality and create more
complex applications.

o

< Day Day Up >

< Day Day Up >

6.2. Enterprise Solution Assets Explained
An enterprise solution asset (ESA) is defined to assist the architect in creating reusable assets to primarily

address the issues of architectural decisions and vendor product gaps, as described in Section 6.1. An ESA
describes common problems and difficulties that occur frequently in architecting and designing enterprise
solutions, and it proposes solutions to address them. As these assets are created, they will be classified and
housed within a catalog.

As described in Section 6.1.2, the layout of an ESA closely resembles that of design patterns only to exploit its
structural familiarity. In general, an ESA has the following essential elements:

An enterprise solution asset name is a handle to uniquely describe an enterprise problem and is used as an
index into the ESA catalog. It also contains a one-line statement to describe the intent of the asset.

The problem synopsis captures the essence of the problem and describes where to apply the asset.

The context describes the problem in terms of a concrete example and lays out the situation in which the
asset might be leveraged.

Forces summarize the architectural decisions and design considerations that led to the solution presented
within the asset.

The solution is the core of the asset, and it describes a general-purpose solution to the problem that the
asset addresses. The solution section can also include technical specifications such as diagrams describing
the solution model (for example, UML class diagrams, sequence diagrams, component diagrams, and so on)
and descriptions of the participating components in the solution.

The consequences lay out the implications—the pros and cons—of using the asset. They also propose
architectural alternatives.

The solution section of an ESA also has accompanying executables and the associated usage documentation
that are compiled as an RSA-compliant package. The ESAs described later in this chapter are derived from IBM
engagement experiences with real-world SOA projects. They have been generalized and abstracted from the
engagement specificities. These primarily provide ESA samples to help create your own ESAs.

< Day Day Up >

< Day Day Up >

6.3. A Catalog of Enterprise Solution Assets
We recommend that from the onset of an SOA project, you create an ESA catalog to publish the assets so that

they are visible across the enterprise. Incorporating a taxonomy to classify the growing list of ESAs would be
beneficial and would help promote the reusability of the ESA across other enterprise projects. This book is not
intended to be an extensive ESA reference; however, to explain the concept, we describe the following ESAs:

Multitiered disconnected operation allows an enterprise application to operate in the event of failures such
as network outages and unreliable data availability. This is described in Section 6.6.

The request response template provides an infrastructure facility for client components to control how data
is requested. This allows a client to request only a data subset returned by the service. This minimizes data
flow during a service request and also helps isolate the client from service version changes and
enhancements. This is described in Section 6.7.

The IBM service engagement teams are gathering potential assets in ongoing customer projects. As the list of
assets grows, they will be classified into various taxonomies such as problem domains and industry segments.
These assets will be part of the IBM SOA integration framework. However, this chapter's primary intent is to
provide guidance to create your own ESA and ESA catalog.

< Day Day Up >

< Day Day Up >

6.4. How Does an ESA Solve Enterprise Problems?
An ESA provides some key facets in solving enterprise architecture problems. An architect equipped with an

ESA catalog is able to use formalized architectural decisions and well-engineered solutions. The key ESA
benefits and value proposition are as follows:

Productivity: By providing well-documented assets contained in an ESA catalog, an architect is able to
use these assets to address the core solution requirements, reduce the project delivery timeline, and arrive
at robust and resilient solutions.

Consistency and standardization: By generalizing the specific problem or gap scenario from a particular
project scenario, the ESA allows applicability to other enterprise projects. It also enables architects to
consistently apply a standardized asset to solve similar problems within and across various industries.

Risk mitigation: By leveraging the ESA, the architect is able to provide robust solutions for product and
technology gaps identified during a project engagement. This reduces the risk of ad-hoc architectural
decisions and solution weaknesses.

Maintainability: An ESA will be well maintained in its lifecycle with controlled changes and relevant
updates. This facilitates the delivery of further ESA enhancements and potential defect resolution in a
quality-controlled environment.

Knowledge and intellectual capital sharing: As the ESA catalog grows and evolves, it serves as an essential
artifact that enables effective awareness and guidance on key enterprise architectural issues.

< Day Day Up >

< Day Day Up >

6.5. Selecting an Enterprise Solution Asset
Finding the correct asset to solve your enterprise architecture problem is difficult, especially if the catalog of

ESAs is new and unfamiliar. The following list provides guidelines and advice for identifying the relevant assets
that might be applicable to your situation:

Scan the ESA name and intent area to narrow down your choices and read the context to ensure

applicability to your problem.

Study the assets applicable to your industry segment based on the catalog classification that is available.

Check the ESA catalog regularly because more assets are introduced as the catalog is formalized.
< Day Day Up >

< Day Day Up >

6.6. Using an Enterprise Solution Asset
After you have identified the ESA that you need, you can leverage it for your enterprise architecture by

following these steps:

Read the asset for an overview, paying attention to the forces, context, and the consequence sections to
ensure that the asset is applicable for the situation.

Step through the solution in detail and understand the core components used in the solution, paying
particular attention to the potential solution variations.

Peruse through the technical documentation and code that accompany the asset.
< Day Day Up >

< Day Day Up >

never reads from the inventory, the updates to the database must be reliable, even in the event of disconnected
operation. The black arrow in Figure 6.1 indicates that the store inventory is created and then copied to the
enterprise.

6.7.3. Forces

The retail example shows that different databases demand different treatment within the same enterprise and
sometimes even the same application. Thus, the asset must support disconnected operation in a flexible way.
Furthermore, a goal of the asset is to maximally leverage middleware infrastructure in an SOA roadmap–based
solution. Thus, the solution relies on the following:

Projection of a subset of enterprise data to appropriate levels in the hierarchy.

Advanced database replication technology to maintain consistency of the data across multiple tiers.

Enhanced services access infrastructure.

6.7.4. Solution

Because the solution is presented in terms of an SOA, we need to characterize a service. Figure 6.2 shows the
requestor and provider in a classic SOA model. In this case, the provider of the service wraps a database.

Figure 6.2. Service definition in a classic SOA model.

[View full size image]

In this classic SOA, to access the database, the requestor must do the following:

The requestor calls the factory provided by the requestor's infrastructure to get a client stub. (This is
enabled by the client configuration.)

The requestor calls the stub to send a request (read/write) to the service provider.

The provider's infrastructure (using the server configuration) invokes the service to access the database and
produce a result.

The provider's infrastructure returns the result to the requestor's stub.

The stub returns the result to the requestor.

Figure 6.3 outlines the basic enhancements that enable disconnected operation in a multitier environment:

The database of interest is duplicated in the requestor's environment.

The provider's infrastructure includes database replication technology to replicate data from the database
master to the replicas that reside on the requestors; likewise, the requestor's infrastructure includes
database replication technology.

The requestor's environment duplicates the service provider's infrastructure to enable the service wrapping
the database to run in the requestor's environment.

The requestor's infrastructure supports enhanced stub generation by the factory.

The configuration spans the tiers to configure the cross-tier replication and smart behavior of the enhanced
requestor infrastructure.

Figure 6.3. Disconnectable (disconnected) service definition.

[View full size image]

In the enhanced version of the SOA architecture for disconnected operation, the stub can transparently access
either the local or remote version of the service without any explicit requestor action. The database replication
ensures that the same data, within the bounds of the replication schedule, is available to both the local and
remote service. In theory, this makes access to the local data as good as access to the remote data.

The following additional terms are needed to further characterize this asset:

The owner is the logical master of the database wrapped by a service, due to physical or logical
considerations. For example, in the retail scenario, the store owns the inventory for that store, and the
enterprise owns the pricing. Note that the owner is potentially different than the database master.

Local refers to the local copy of the owner's database or the service representation and implementation at
the requestor.

Staleness refers to a measure of how inaccurate or incorrect data might be based on age. For example, data
replicated 10 minutes ago is better than data from an hour ago. Staleness can be made available from the
enhanced services infrastructure, but the impact of staleness is left to business logic.

A read-only service provides business function based on largely static data; examples from the retail
environment are pricing and tax tables. The typical implementation would be as follows:
o

Deploy an instance of a service at all applicable tiers.
o

Read from a local or remote replica—performance is a consideration here—with failover.
o

Write to the owner with a possible local copy.
o

Update the subset of data replicated from the owner to the appropriate tiers.

A transactional service updates shared data while maintaining data integrity. This implies reliable updates
via queued writes from the service requestor (using message-oriented middleware). Examples from the
retail environment are inventory and postsales tender. The typical implementation would do the following:
o

Deploy an instance of the service at all applicable tiers.
o

Read from the local replica, recognizing the possibility of staleness.
o

Write to local replica or write to owner (or both) via a reliable mechanism.
o

Update the appropriate subset of data replicated from the owner to the appropriate tiers.

There are three different solution variations in the asset: a simple service, a smart stub, and a smart service.

The simple service solution shown in Figure 6.4has the following general characteristics:

The service is usually deployed at all levels, and the access is always to the local service. You access the
service using standard mechanisms.

It relies on cross-tier database replication to maintain data consistency. Replication is from the owner to
replicas. (The configuration determines the database master-slave relationship.)

Figure 6.4. Simple service solution.

[View full size image]

The simple service solution is especially good for read-only services on largely static data that must be
available on multiple tiers even when disconnected.

The smart stub solution shown in Figure 6.5 has the following general characteristics:

The service can be deployed at all levels. For example, it can be deployed as a smart stub configured to
cascade access, as an access service using intelligent on-demand services infrastructure, and as an
intelligent stub that accesses local or remote services according to configuration and conditions, which
permits failover.

The variation also relies on cross-tier database replication to maintain data consistency.

Figure 6.5. Smart stub solution.

[View full size image]

The smart stub solution is good for when a simple service solution is not adequate, for example when it might
make sense to access data on another tier, if it is available, or to back off to a local copy, if it is unavailable.

The first two scenarios don't require any custom business logic, nor do they allow for a lot of dynamic
modification. The smart service scenario, shown in Figure 6.6, recognizes that custom logic might be necessary.
The scenario has the following general characteristics:

Service implementation logic determines the access pattern and conditions.

The smart service solution may depend on cross-tier database replication.

Figure 6.6. Smart service solution.

[View full size image]

The smart service solution is good for where infrastructure support is not adequate to achieve the desired
flexibility. For example, the smart service in tier 1 in Figure 6.6 might decide, based on current conditions that
include time of day, connectivity, customer, and other factors, to access the local service, the tier 2 or tier 3
services, or even all three services for whatever reasons. The three scenario variations have advantages and
disadvantages, as shown in Table 6.1.

Table 6.1. Comparing the Solutions

Solution Variation Advantages Disadvantages

Simple service No custom service "routing"
configuration

Least flexible

Simple database replication
mechanism is sufficient

Smart stub Increased flexibility Requires a more sophisticated
database replication mechanism

Maximal leverage of infrastructure
but still no custom business logic

Smart service Most flexibility Custom "smart service" must be
implemented and maintained

It should be noted that any given enterprise architecture can choose to use only one or all three solution
variations for different aspects mandated by the requirements.

6.7.5. Consequences

This ESA enables the maximal use of middleware infrastructure to lessen the burden of operation in a
potentially disconnected environment. An architect can use tested, supported, and continually improved
middleware to reduce the time spent on a custom solution for disconnected operation and to increase the time
spent on application logic. Tools that support the asset can further reduce the effort it takes to create custom
configurations and deploy the configured solution. This can lead to cost savings, simplified management, or
faster deployment.

There is no such thing as a free lunch, as the saying goes; everything has consequences. Disconnected operation
carries an overhead to support the operation of the service provider infrastructure within the requestor
environment, necessitating deployment and runtime resources to support that infrastructure. Similarly, database
replication carries some additional burden, namely the deployment and runtime resources to support the
database and its replication; this is a factor in any tier that owns a database or needs disconnected access to a
database. These additional aspects can drag in more complex versions of companion products, such as
WebSphere Business Integration—Server Foundation (WBI-SF) deployment versus Network Deployment and so
on. All these extras can increase cost and management complexity.

6.7. Multitiered Disconnected Operation
Multitier disconnected operation allows an enterprise application to operate in the event of unreliable data

availability due to failures such as network outages.

6.7.1. Problem Synopsis

Enterprises use applications or suites of applications requiring data that spans multiple infrastructure tiers.
Although increasingly reliable, the networks connecting these tiers are never 100% reliable. In addition, there are
cases when, even if connected, the data might not be available to the tier that requires it.

A fundamental problem facing enterprises is the capability to allow such multitier applications to continue
functioning during events such as network failures. This asset enables a multitier application to operate in an
environment without reliable data availability. Solutions that require multitier operation can leverage this asset.

6.7.2. Context

Scenarios from customers in the retail industry exemplify the need for multitier disconnected operation. Figure
6.1 shows a sample multitier retail enterprise. There is a point of sale (POS) application that must run at the
POS terminals in a store (terminal tier), on the store server (store tier), and at the retail headquarters (considered
here as the enterprise tier).

Figure 6.1. Multitier context for the retail industry.

[View full size image]

Figure 6.1 shows three databases with different characteristics. Pricing represents a read-only database
(containing static lookup data) that must be available to all tiers. This is because a POS terminal must know the
price of items sold, even if the terminal is disconnected from the store server. The store server acts as a POS
application as well, in case all terminals are down. The light gray arrows in Figure 6.1 indicate that the pricing
database is created at the enterprise and copied to the store server; the store server then cascades the data to the
individual terminals.

The Catalog database represents another read-only database. It differs from the Pricing database because it
does not need to be present at the terminals; the POS application can function without access to that data. The
catalog is copied from the enterprise to the store level, which is indicated by the dark gray arrow in Figure 6.1.

The Inventory database represents a transactional database that must be available and updated at all tiers. The
POS terminal needs to modify the inventory kept at the store server as items are sold or returned. Because it

< Day Day Up >

< Day Day Up >

To customize service results and optimize the data flow between the client and server.

To allow consumers and providers to develop against abstract data and service models rather than directly
against prescribed interfaces.

6.8.4. Solution

The solution to this is to use the request response template ESA tools and patterns to define abstract data and
service models and let the client determine which parts of the data and service model should be used on a
per-request basis. This is shown in Figure 6.7. Rather than prescribe an interface, a service provider defines an
object graph of the information it is willing to provide. From this model, XML schemas are generated that follow
the structure of the object graph, and they are included with the deployed service's WSDL file. Then, at request
time, clients invoke a Web service operation and include a partially filled version of the request XSD that
defines for the server exactly what data the client would like returned. The server then fills in a response
accordingly and returns it. The sequence diagram is shown in Figure 6.8.

Figure 6.7. Response template class diagram.

[View full size image]

Figure 6.8. Response template sequence diagram.

[View full size image]

This ESA requires that the service provider include special libraries in its deployed service to process Web
service response template requests, though the requirement does not preclude the provider from offering other,
non-template-based Web services in the same application. Also, although client-side libraries are available to
facilitate the use of templates, they are not required. Web service template-based requests can be sent manually
because they obey existing Web services standards.

6.8.4.1. Participants

These are the primary actors within the solution:

Information model/service graph. The object model and service model that define what information a Web
service will provide (and the operations that can request it).

Request template XSD. Lays out the possible formats of a request template by defining the structure of the
information model.

Request template. XML that follows the request template XSD but without data. It defines an object graph
for the response that is a subset of the information model.

Response template XSD. Defines the possible formats of a response template. Similar to the request
template XSD, but it allows collections of data.

Response template. The "filled in" data according to the response template XSD.

The client. The Web service client.

The client framework. Tooling supplied to the client. It includes mechanisms for sending requests with
templates and for generating request templates from an XML file.

The navigator. The WS response templates engine deployed inside the Web service code parses the
incoming request template and creates a response template as a result, pulling information from the Web
service's result object graph.

A.6.1

6.8.5. Consequences

The following are some of the consequences of using this ESA:

Extra overhead: Web services template (WST) based solutions do have some extra overhead. Requests
transmit more data than a typical Web services solution because additional information is required to prune
and filter the resulting object graphs and because each item desired in the response must be specified. In
addition, extra code is executed on both the client and the server to process a WST request. This overhead
is not excessive, but WS response templates are obviously not as effective in all cases.

Customized result: Clients of a Web service template-based service can adjust the results they receive
from service invocation. Unwanted data will not be sent by the server, nor will any placeholder data be
received on the client side (not even with nil or empty values).

Optimized data flow: The service invocation consists of a data exchange between two parts (traditionally
two computers). The Web services templates solution must minimize the data flow between those two
parts. This is partially expressed by the previous requirement (customer result); attention must also be paid
to the expression of the data flow in order to minimize the weight of this. For example, when using XML,
pay attention to namespace declarations, element prefixes, and hierarchical structure of the data flow.

Optimization of the service implementation: The Web services templates solution will allow the service
provider developer to optimize the process by only invoking methods or retrieving data that will be needed
to construct the result as defined by the client.

Web services templates designed in conformity with the Web services standards:
o

Web services templates must be implemented using the SOAP communication protocol. We will use a
JAX-RPC-compliant engine as the platform of choice for the service implementation (server side).
Whereas this implementation exists primarily for HTTP transport protocol, this does not mean that the
Web services templates must only be bound to a specific transport protocol (but can be used with others
such as JMS).

o

Services will be defined using WSDL and XML schema to define the formats of the exchanged objects.
o

The operations have a document style and a literal usage (document/literal) for WS-I compliance.

Parameterized navigation path: The navigation path against an information model hierarchy can define extra
parameters to filter a particular relationship. Also, this parameterized path can be repeated in the same
service invocation to extend the potential of the service (especially for the parameterized path). Note: This
does not mean that the Web service operation can be invoked multiple times in the same call. It means only
that the returned object graph can be controlled to a greater degree than in normal Web services design
patterns.

Level of granularity for services: The Web services template solution will reduce the granularity of Web
services. Service providers, rather than defining different services for different client use cases, now define
a single, more abstract service, which clients adjust to their individual needs.

UML as a possible way to describe service: UML notation (used in this document) is a possible way to
express the information model. Although UML is not a requirement for modeling services and data objects
(users can directly code their own WSDL and XSD according to WST specifications), there is significant
tooling available to convert UML into proper WSDL, XSD, and skeleton WST implementations that would
otherwise have to be built from scratch.

Easier maintenance and compatibility: Service providers can extend their existing Web services template
services without impact to existing clients. By extension, we mean adding a new property in a data
structure. In that case, the existing clients don't require this property in the request, so they won't get it in
the response from the new implementation. Only clients who require this new property (especially new
clients) will get it in the result.

6.8. Request Response Template
The request response template ESA is useful for decoupling the message schemas of a service requestor from

their service provider.

6.8.1. Problem Synopsis

Web service interfaces are tightly coupled contracts with usage patterns mandated by the service provider. The
asset decouples client usage of a Web service from the contract specified by a service provider.

6.8.2. Context

The following are some common problems due to the tightly coupled nature of service requesters and providers:

Tightly prescribed interfaces implicitly determine the usage patterns for a service. Service providers build
their own efficiency compromises into their interfaces, and clients are forced to accept them.

Clients need more control over the data and service models for service responses.

Clients want to circumvent large response message payloads associated with coarse-grain services.

Service providers need to evolve the interfaces they provide without breaking existing clients.

Clients would rather program toward abstract data and service models rather than directly to
WSDL-specified interfaces.

Web service providers have a common problem when dealing with multiple clients: WSDL prescribes an exact
interface for data types, messages, and operations that implicitly restrict clients to a usage pattern that is not
necessarily appropriate. Service providers must choose the WSDL they expose, even though clients are the only
ones who know the most efficient interface for their usage patterns. The result is an unattractive choice for a
service provider: It must provide multiple interfaces for multiple clients (which are hard to develop and to
maintain), or it must provide a single, one-size-fits-all, compromise interface. However, that compromise can be
difficult to realize because service and data models might provide more or even less information than a client
actually needs; the provider is left with another choice as to how to avoid message bloat (too much data) or
overly chatty interactions (not enough data). Whether producing multiple interfaces or compromise models, the
provider still might have imperfect information about the needs of its clients, forcing it to make an educated
guess about the operations and data models it should expose.

6.8.3. Forces

These are the main forces in designing this asset:

To build on existing Web service standards, enhance the existing specification, and do not reinvent the
wheel.

To use existing, well-known modeling tools that can define abstract interfaces (UML, for example).

To increase flexibility, granularity, and maintainability of an application's Web service interfaces.

< Day Day Up >

< Day Day Up >

6.9. Summary
Enterprise solution assets are primarily intended to formalize architectural decisions and create reusable

solution artifacts that can be leveraged across enterprise projects. It is recommended that project managers and
architects accommodate the ESA tasks as part of project schedules. Managing and maintaining the ESA catalog
should be placed under the SOA governance principles. As ESA catalogs mature with the addition of new ESA
assets, it will also provide the capability to share ESAs across enterprises.

< Day Day Up >

< Day Day Up >

6.10. Links to developerWorks

A.6.1 IBM alphaWorks. Web Services Response Templates. http://www.alphaworks.ibm.com/tech/wsrt/.

< Day Day Up >

http://www.alphaworks.ibm.com/tech/wsrt/

< Day Day Up >

6.11. References

Adams, J., et al. Patterns for e-business—A Strategy for Reuse. IBM Press, 2001.

Gamma, Erich, et al. Design Patterns, 1st Edition. Addison-Wesley Professional, 1995.

Kruchten, P. The Rational Unified Process: An Introduction, 3rd Edition. Addison-Wesley Professional, 2003.

OMG (Object Management Group). Model Driven Architecture. http://www.omg.org/mda/.

OMG (Object Management Group). Reusable Asset Specification.

http://www.omg.org/cgi-bin/doc?ptc/2004-06-06.

OMG (Object Management Group), UML: Unified Modeling Language. http://www.uml.org/.

Sun Developer Network. J2EE Patterns. http://java.sun.com/blueprints/patterns/index.html.

< Day Day Up >

http://www.omg.org/mda/
http://www.omg.org/cgi-bin/doc?ptc/2004-06-06
http://www.uml.org/
http://java.sun.com/blueprints/patterns/index.html

< Day Day Up >

Chapter 7. Determining Non-Functional
Requirements
"There are two kinds of truths: those of reasoning and those of fact. The truths of reasoning are necessary and

their opposite is impossible; the truths of fact are contingent and their opposite is possible."

—Gottfried Wilhelm Leibnitz

The non-functional requirements (NFRs) of a service-oriented business system address those aspects of the
system that do not directly affect the functionality of the system but can still have a profound effect on how the
business system is accepted by both service consumers and those responsible for supporting the system. The
non-functional aspects of SOAs cover a broad range of topics, each of which can have a significant impact on
the architecture. These topics can be classified into four major categories:

Business constraints

Technology constraints

Runtime qualities

Nonruntime qualities

In the context of SOAs, each of these categories has additional implications for target systems. The runtime
qualities, for example, include those often specified in service-level agreements (SLA). This chapter examines
each aspect in greater detail.

< Day Day Up >

< Day Day Up >

7.1. Business Constraints
Business constraints are non-functional requirements that can have a significant impact on the overall design or

deployment of an SOA. These constraints include operating ranges, regulatory constraints, legal constraints, or
standards established in specific industries.

7.1.1. Operating Ranges

Public services can be accessed from anywhere in the world, and this might imply that availability for such
services is almost continuous (24 hours a day, 365 days a year). Enterprise services in an intranet that spans
geographic regions may share this requirement. The enterprise service bus (ESB), an important component in any
SOA, meets such requirements. The ESB can dynamically route service requests and responses to maximize
availability of critical services based on applicable policies.

7.1.2. Legal Constraints

Legal and regulatory constraints are often forgotten when defining SOAs, but they can have significant impact
on system design. For example, the law in Luxembourg requires that information about a banking customer be
encrypted while it is in transit between service endpoints with no possible breaches by decryption. This implies
that service consumer programs running on PCs of banks must encrypt information that cannot be exposed by
intermediate application servers that would have to decrypt the information to process it. It also implies
end-to-end certificate management through software installation on the bank PC machines.

Confidentiality and the need for encryption are not the only constraints of this kind. In certain countries, there
are stringent laws regarding data privacy. SOA deployments in these countries must make provisions for an
appropriate data-privacy-handling mechanism that includes solutions such as digital signing to ensure that data is
not exposed. Another legal constraint that might arise in cross-border scenarios involves regulations and
contracts that must apply when consumers and providers are located in different countries. For this reason, many
public service providers install networking entry points in each of the countries they operate in, with provisioning
cycles that include the contractual aspects that are specific to the country.

7.1.3. Industry Business Standards

Some industries have started to characterize the significance of SOAs within their domain. These
industry-specific standards must be identified in advance of widespread SOA adoption because they influence
many aspects of the architecture. For example, the Telecommunications Industry Telemanagement Forum (
www.tmforum.org) has defined NGOSS contracts that are truly service models for operational support services.
Some governments, such as New Zealand's, have already published standards on the Web for service delivery
architectures that are for vendors who want to use their IT infrastructure. These provide a framework for
delivery of a wide range of e-government services to citizens of that country.

< Day Day Up >

http://www.tmforum.org

< Day Day Up >

Expertise constraints that restrict changes to the infrastructure due to a lack of expertise

7.2.1. Operating Environment Constraints

Most existing IT systems, such as corporate order-processing systems, have not been designed with
service-oriented flexibility and loose-coupling objectives in mind. These systems constitute core assets that
companies rely on to run their businesses, supporting mission-critical processes that must be protected from
disruption. These considerations make it difficult to change existing applications to expose service interfaces,
yet rewriting these applications is generally too costly, time-consuming, or risky to be a practical proposition.
For example, some governments now require that Linux be installed as the operating system for their new
servers, whereas a large portion of their existing business logic still runs in COBOL on mainframe computers.

Therefore, sound technical migration strategies must include comprehensive plans for managing and reusing
existing applications, data, and skills. The most important goal for this migration is to enable access to these
applications through open and standard interfaces such as Web services, enabling them to be integrated in new
enterprise-level, service-oriented architectures. Two possible styles of migration to a service-oriented
architecture include adaptation and innovation.

Adaptation, the first style of service-oriented transformation, focuses on extending existing applications beyond
their original design to create integrated solutions that yield significantly greater business value and process
flexibility. Applications can be turned into reusable services accessed by a new set of users or reused from new
front-end business functions. The underlying principle—that you can reuse existing applications with little or no
change—means this is a lower-risk approach than a replacement strategy.

Innovation, the second style of service-oriented transformation, involves some reengineering of the original
application. Undoubtedly, this method requires higher investment of resources and time, but it delivers the
capability to create components from existing applications, which are fully flexible and configurable for use in
new applications. This reuse of business logic is called componentization and might result in significant cost
savings over time when compared to developing new application code.

Often a key concept of the adaptation style is that you can reuse applications through programmatic interfaces
that allow the application to be invoked locally or remotely, either through a standardized application
programming interface (API) or through a standardized network protocol.

For example, IBM CICS and IBM IMS™ are two of the most widely used and popular mainframe transaction
managers in the world, used by many of the world's largest companies for their business transactions. Like IMS,
CICS was introduced in the early days of the mainframe platforms. It has been evolving at the same pace as
technology, running on centralized mainframes, distributed client-server architectures, and more recently on
service-oriented architectures. This has allowed enterprise users to continue to access their applications as
components through Web services technology.

Mainframe application services will probably be made accessible to several types of service-oriented clients,
and therefore a range of synchronous and asynchronous access options is needed and can be provided by such
mainframe transaction servers.

7.2.2. Technical Model Constraints

The data or information model used by an organization before introducing an SOA or in transition can have
limited flexibility. It can also be difficult to change certain information models such as the user identity model.
This is turn can have an impact on the non-functional characteristics of the SOA.

7.2.3. Access Constraints

Due to commitments to a particular technology, an organization might be forced to use specific interfaces or
access mechanisms when interacting between elements of the infrastructure. This is most often true when
off-the-shelf application packages have been deployed or production systems acquired from a third party that is
no longer available to make changes. Non-functional runtime qualities, such as performance, might become
dependent on external interfaces that your organization does not have the capability to change.

7.2.4. Expertise Constraints

Expertise constraints limit an organization from improving or changing the technical environment and
non-functional requirements. The skills and education needed for technology are constantly in flux, and often the
technical staff might need new training or you might need to bring in outside consultants to provide the expertise.
This expertise can be used to examine the existing system to determine the non-functional characteristics and
limitations, as well as to indicate how to improve the system.

7.2. Technology Constraints
Technology constraints are based on choices, decisions, and commitments to specific technologies in current

and continued use in the enterprise infrastructure. These decisions and commitments to buy and use certain
technologies can originate from business choices and relationships or from recommendations from IT technical
teams. For example, choice of particular application packages, decisions to use OEM hardware platforms, and
commitments to use industry-specific standards can impose constraints on future development of SOAs. The
difference between these business-originated technology constraints and the business constraints defined earlier
is that the former involves the use of specific products and technologies, whereas the latter involves the need for
specific features in the implementation (which might be independent of the product or technology used to
implement the features).

The business reasons for choosing technologies—and thus creating a technology constraint—can originate from
the following:

Business commitments to use a particular technology to support various internal departments, external
suppliers, partners, or governmental organizations that dictate the need.

Mergers and acquisitions that introduce additional technical infrastructures (from the acquired or other
organization) that you might need to continue operating and supporting while attempting to integrate into
your own organization's infrastructure.

Budget limitations that restrict teams from acquiring or implementing new technology.

Technical teams within an organization might also make commitments to use a particular technology based on
their evaluation and research. These technology-originated constraints might reflect technical choices that are
based on the following:

Adoption of existing or new technology standards (as opposed to business standards)

A need to continue supporting an existing base of products (usually too tightly coupled to replace or
upgrade quickly or easily)

A need to continue supporting a technical design

A lack of available technical knowledge or expertise to change the existing system or adopt a new one

Whether the technology choices are made for business or technical reasons, they can still result in the same
types of technology constraints that impact the non-functional requirements of your architecture. These
technology constraints include the following:

Operating environment constraints that restrict changes to the infrastructure (hardware or software)

Technical design/model constraints that restrict the technical teams to using or supporting an existing model
or design and the data contained in those models and designs.

Access constraints that restrict changes to interfaces and access mechanisms

< Day Day Up >

< Day Day Up >

.

7.3.1.2. The Impact of Binding Choices on Performance

The use of WSDL for service descriptions allows services to be invoked through interfaces bound using a
number of different protocols (such as SOAP/HTTP or RMI/IIOP). To allow tighter and faster interactions, the
use of multiple service bindings with faster protocols (RMI/IIOP, for example) is an option that improves system
performance. An ESB access point can select the appropriate binding based on predefined binding optimization
policies.

7.3.1.3. The Impact on Parsing and Data Volume on Performance

Compared to binary messaging, the widespread adoption of XML for encoding message contents can add
considerable processing overhead to application systems. You can reduce processing cost by not attempting to
parse or reparse XML at every node. The use of a Web services gateway that relies only on partial parsing of
XML messages can provide significant performance improvements.

Another aspect of improving parsing is to consider using a service as the control flow that carries a reference to
a separate and optimized data flow. This becomes particularly true in large data batch scenarios. For example, in
the oil industry, reservoir simulation computation can result in several gigabytes of data. Business processes in
these types of scenarios can still use a service-oriented approach for the control flow of the process; however,
they should separately pass references to the resulting data stored in a common location rather than transferring
the data each time. Failure to do so would probably result in unacceptable service performance.

7.3.1.4. The Impact of Security on Performance

You should select appropriate security architectures to match your business requirements, but avoid
unnecessary overhead. Just as for Web applications, the combination of HTTP over SSL/TLS can be used to
secure communication pipes and provide some degree of protection within an SOA. The addition of signature
and payload encryption might not be necessary for all services deployed within an SOA or for every service
interaction. For more details on security, see Chapter 8, "Securing the SOA Environment."

7.3.1.5. The Impact of Network Bandwidth on Performance

Even if the application performance, system performance, processor usage, or system processing latency at a
provider are carefully controlled, the network and processing nodes between consumer and provider endpoints
can still severely impact the level of service. Organizations that need to ensure that specified SLAs can be met
appropriately should use networks with guaranteed performance characteristics as an option to minimize risk.
Some ISPs are now providing such network capability with guaranteed bandwidth and propagation delays, albeit
at a higher cost.

7.3.2. Scalability NFRs

Scalability can become a serious problem in service-oriented systems. By definition, it is difficult to predict
over a long term the number of consumers a publicly exposed service will have. Publicly exposed services can
also lead to undesirable accesses, which can be intentional or accidental but nonetheless still be potentially
adverse to controlled scalability of the system. Controlling scalability requires the following:

Capacity planning: This is particularly relevant to internal use of services within an enterprise. The
capacity can be deduced in many cases from existing transaction measurements, with quite good accuracy.
Capacity planning for SOA needs to include the additional processing power required by the new flexibility
layers.

Provisioning: Most enterprises that expose public services to partners also define a provisioning process
that enables them to evaluate the number and type of additional resources required to deliver the service to
comply with a given SLA.

Upstream filtering: To prevent undesirable accesses that can overwhelm provider systems, access should
be filtered as early as possible. Filtering components are available on the market, and they are sometimes
delivered by Web services management software extensions.

Policy-based routing: For service requests that are allowed to proceed after any filtering, there can be
different SLAs applied per server group, thereby enabling better scalability control. These agreements can
range from best-effort delivery to guaranteed response time. As for upstream filtering, this capability is
sometimes delivered by Web services management software extensions.

In addition, when integrating with mainframe systems, the access option should support business goals and
qualities-of-service requirements. The access option should also facilitate infrastructure workload management
capabilities.

7.3.3. Transactional Integrity NFRs

Transactional integrity refers to the support for local atomic transactions (using the one-phase or two-phase
commitment protocol) in any given access mechanism, enabling a group of updates performed by the server
applications to be processed as a single unit of work. It also refers to support for global transactions (two-phase
commit), enabling an external server to coordinate updates performed by transaction managers with updates to
local resources held by that server.

Loose coupling, in many cases, implies the potential loss of controlling atomic transaction from the consumer
side. All of the integrated services are usually part of a business transaction, and the undo operation (rather than
rollback) is processed via compensation techniques that perform the opposite logical action. However, the
application design should ensure that it enables such atomic transaction capability in conjunction with granularity
concerns of service interfaces. This is accomplished either by using application server transactional composition
techniques or by using mainframe transaction decomposition software that provides this support.

7.3.4. Security NFRs

The most common security requirement is to authenticate end users and middle-tier servers. In many SOAs,
simple user ID and password authentication is still widely used, although X.501 client certificates, Kerberos
tickets, and other schemes are becoming more popular. Whichever technique is adopted, a user's credentials
must eventually be mapped to an external security manager–enabled user ID to support authorization and
accounting requirements that normally apply to existing operational applications. For more information on
security issues, see Chapter 8.

7.3. Runtime Qualities
Runtime qualities explore all of the system aspects that are directly involved with system dynamics such as

performance, scalability, transactional integrity, security, and fault tolerance. In SOA systems, runtime qualities
are directly addressed by service-level agreements. SLAs are often based on end-to-end measurements—from
consumer to provider involving all intermediary components. Consumers usually do not care how the internal
systems perform within service provider boundaries and are more concerned with the performance of services in
relation to the delivered quality at the endpoints.

7.3.1. Performance NFRs

Customers expect perceived service performance to be expressed as a combination of both response time and
throughput. The choice of technical architecture components will have serious impact on the overall delivery
capability within an SOA. For example, loose-coupling and interoperability often require the use of service
messages based on the SOAP wire format on the HTTP protocol. A SOAP message can easily be many times
larger than a traditional binary message. This results in greater bandwidth requirements. In addition, applications
need to parse the content of service messages, converted from their portable, on-the-wire format into a format
that can be more easily processed by endpoint programs. Some of the emerging Web services standards, such as
Web Services Security, present further processing and size issues. Performance in SOAs is impacted by
decisions made about the following:

Service granularity and placement

Binding choices

Message parsing and data volume

Security models

Network bandwidth

These considerations are mainly focused on the protocol needed for service invocation, the amount of
information that flows across a service interface, and the need for security-related networking interactions.

7.3.1.1. The Impact of Service Granularity and Placement on Performance

The granularity of exposed business services needs to be carefully designed. Services that are too fine grained
lead to a greater number of interactions between endpoints; on the other hand, services that are too coarse
grained can lead to unnecessarily large information exchanges. (Refer to Chapter 5, "Aspects of Analysis and
Design," for the discussion about granularity.) Poor interface design can stem from designing interfaces that do
too little with each message (sometimes called "chatty" interfaces). One reason for chatty interface design is that
the message content model does not lend itself to complex, multipart messages. This is common in remote
procedure call-based distribution models. The best practice to avoid these chatty interfaces is to have a rather
coarse-grained interface with an information model that can dynamically adapt to the consumer's needs.

Mainframe systems often require the breakdown of service requests into sequences of lower-level service
requests, or non-service-based interface requests into existing transaction systems (such as the previously
mentioned CICS or IMS examples). You can achieve this breakdown using middleware components such as MQ
Integrator Agent for CICS™, WebSphere MQ Integrator™ flows, or WebSphere Application Server™ using
micro-flows. Mainframe transaction managers seek to minimize flows that are highly optimized for traditional
styles of access, such as 3270-Terminal access over a systems network architecture (SNA) network. However,
most services-oriented solutions require additional elements (such as connectors, adapters, encrypted data flows,
or new data stream architectures) that are less optimized, and impose an apparent overhead on the execution of
the target business service

< Day Day Up >

< Day Day Up >

7.4.2. Version Management NFRs

There are many solutions to managing service versioning issues. Service interfaces can be made flexible enough
to allow flexible evolution without the requirement for strict version management. The available solutions are
already in production with banking IT providers that can decouple client-platform development cycles from their
execution lifecycle.

An alternative approach is to use dynamic adaptation layers that play the matchmaker role at runtime. These
layers work by interpreting the semantics of client requests and performing corresponding service requests to
compose the response expected by the client. This matchmaking capability is illustrated by the Ontology-based
Web Services for Business Integration tool.

A.7.1

7.4.3. Disaster-Recovery NFRs

SOAs, through their capability to deliver the same service in a rather ubiquitous manner, can facilitate a de
facto disaster-recovery capability. However, service interfaces are only the façade to concrete implementation;
the infrastructure executing the services must still be designed for disaster recovery. For example, the data
processing and storage centers still require appropriate redundancy. All routing policies and security
infrastructure must be capable of remote recovery, including long-running business process data. In particular,
when using BPEL choreography for long-running processes based on services, particular attention must be paid
to the execution infrastructure so that the process fallback capability and transactional compensation are
supported by the appropriate middleware.

7.4. Nonruntime Qualities
The non-functional requirements discussed so far have related to decisions made about the runtime components

of an SOA. Nonruntime qualities explore all of the system aspects that are related to a system's lifecycle and
that control aspects such as manageability, version management, and disaster recovery.

7.4.1. Manageability NFRs

As we progress toward delivering true SOAs, what becomes distinctly evident is the critical need for managing
agents that operate deep within the operating environment, in conjunction with high-level controlling layers. A
single management dashboard is often required to satisfy this need, and for this to work well, it must be part of a
larger services management environment, not just a slightly modified environment for gateways and exchange
management.

7.4.1.1. The Requirements for Services Management

To understand the overall effort and scope of requirements needed for services management, it is important to
achieve a common baseline of IT functionality that the services management system needs to provide. This is
not simply an issue of capturing SOAP fault alerts in a monitoring console, but rather a need to encompass a
broad range of interoperable and loosely coupled services within a SOA framework. A proposed starter set of
these functions should include the following:

Security management: This includes the capability to manage individuals and roles for authentication
("Who are you?") as well as authorization ("Are you allowed to perform this function?"). As part of an
overall policy management capability, authentication and authorization services need to be managed under
broad security policies as they exist for an enterprise.

Catalog support: The capability to catalog services with associated deployment metadata requires
management of catalogs as components in a federated network of repositories. This includes authorization
and authentication ("Can a requesting service 'see' all services available in a catalog?") so that entitlement
to access is appropriately managed.

Provisioning: This includes the capability to provision a service as well as provision additional capacity
for a service (if a service is under duress). Capacity management should be included as part of the
provisioning process.

Configuration and versioning: Another essential function in services management is the capability to
configure services as part of a policy. That configuration can be static or dynamic, depending on the terms
and conditions of the contract for which the service is being exploited. Versioning is vital to ensure that the
exploitation of services happens in accordance with prerequisite and co-requisite dependencies (such as
between the calling service or program and the receiving service).

Monitoring: The foundation of management, this includes the capability to manage service capacity
thresholds, faults, errors, and otherwise predictable and unpredictable conditions in which valid processing
did not occur.

Performance and SLA monitoring: This is the capability to monitor service throughput metrics and
capacity, as well as work with an intermediary such as a metering service to aggregate performance data
and create input for SLA reporting.

Further details on the topic of services management systems are covered in Chapter 9, "Managing the SOA
Environment."

< Day Day Up >

< Day Day Up >

7.5. Summary
In this chapter, we identified some of the non-functional requirements that SOA systems must satisfy. These

requirements were categorized according to their source and significance as business constraints, technology
constraints, runtime qualities, and nonruntime qualities. The intent was to illustrate some of the requirements
found in typical SOA projects rather than to provide an exhaustive list.

Which of many non-functional requirements will dominate the architecture of your next SOA project is
impossible to predict. Within a particular enterprise, it might be that industry standards and partner systems
dominate the requirements. The most likely scenario, from our experience, is that existing systems and the
technology choices made in previous years will dominate the non-functional requirements that must be
accommodated.

< Day Day Up >

< Day Day Up >

7.6. Links to developerWorks
A.7.1 IBM alphaWorks. The Ontology-based Web Services for Business Integration.
http://www.alphaworks.ibm.com/tech/owsbi.

< Day Day Up >

http://www.alphaworks.ibm.com/tech/owsbi

< Day Day Up >

7.7. References

Appleby, K., et al. Policy-based automated provisioning. IBM Systems Journal, Vol. 43, 1-2004.
http://www.research.ibm.com/journal/sj43-1.html.

Buco, M. J., et al. Utility computing SLA management based upon business objectives. IBM Systems Journal,
Vol. 43, 1-2004. http://www.research.ibm.com/journal/sj43-1.html.

Dan, A., et al. Web services on demand: WSLA-driven automated management. IBM Systems Journal, Vol. 43,
1-2004. http://www.research.ibm.com/journal/sj43-1.html.

Kreizman, G. and Fraga, E. E-Governmment Architecture: Development and Governance. (TG-14-6799), New
Zealand State Services Commission, October 2001.
http://www.e-government.govt.nz/docs/service%2Darch%2D200303/.

New Zealand Government Initiative. A Service Delivery Architecture, New Zealand State Services
Commission. http://www.e-government.govt.nz/docs/service-arch-200303/chapter3.html.

Telemanagement Forum. Catalyst Spotlight: Model Driven Architecture for NGOSS. TeleManagement Forum,
March 2005. http://www.tmforum.org/browse.asp?catID=1118&sNode=1118&Exp=Y&linkID=30310.

< Day Day Up >

http://www.research.ibm.com/journal/sj43-1.html
http://www.research.ibm.com/journal/sj43-1.html
http://www.research.ibm.com/journal/sj43-1.html
http://www.e-government.govt.nz/docs/service%2Darch%2D200303/
http://www.e-government.govt.nz/docs/service-arch-200303/chapter3.html
http://www.tmforum.org/browse.asp?catID=1118&sNode=1118&Exp=Y&linkID=30310

< Day Day Up >

Chapter 8. Securing the SOA Environment
"Let every eye negotiate for itself and trust no agent."

—William Shakespeare

Security in a service-oriented architecture is a process of identifying areas of risk within an architectural model
and providing trusted practices and countermeasures to mitigate those risks. As an integral component of an
SOA solution, we need to understand the business-level concepts of risk and trust to explore what security
services are required. Most enterprises already have security solutions that largely rely on established security
controls, such as firewalls and virtual private networks (VPNs), to provide perimeter protection. As deployments
of SOA solutions become more widespread, the process of securing the enterprise must become a fundamental
part of an SOA development process. In addition, as an enterprise moves toward implementing SOA patterns,
concrete implementations will require a move from the reliance on perimeter controls to a more granular view of
security services and security architecture.

This chapter covers security in SOA in terms of understanding security concepts, the available standards and
technologies in the industry, and how to structure your own SOA security model. It then examines SOA security
in the context of a multi-organization environment, including federated security. Finally, this chapter presents an
overview of relevant products for SOA security.

< Day Day Up >

< Day Day Up >

Process integration for choreographing applications and services

Information integration that federates and moves the enterprise data

The build-to-integrate method, which builds and deploys new applications and services

The more complex an environment becomes, the greater the need for a systematic method that will reduce the
complexity. Most common security errors in enterprises today are related to IT decision-makers who do not
understand the risk or the security solution. The primary goal should be to provide solutions that support the
secure deployment of complex applications on heterogeneous systems.

The complexity of the security model can transcend the needs of a single organization's environment. When
introducing an SOA or a Web services environment within an enterprise, security requirements might extend the
concept of the environment to include virtual organizations that allow intra-enterprise as well as cross-enterprise
business transactions. In some deployment topologies, transport layer security techniques (point-to-point
security) might be sufficient to meet the business requirements to protect messages in transit. However, in other
inter-enterprise scenarios, end-to-end security might be required to provide data integrity and data confidentiality
of messages in transit. The scenarios must also support authentication and authorization across trust domains. In
some environments, authorization policies include not only who is allowed to access a resource but the purpose
for which it is intended. Privacy controls and annotations are a way to express this additional characteristic of
authorization.

The next section introduces the elements of security and how these concepts apply to SOA.

8.1. Architectural Considerations for an SOA Security Model
When evaluating existing deployments, you will need to understand any new risks and countermeasures that the

SOA development model introduces. You should look at where security is implemented in an enterprise, either
embedded in applications or as IT processes, and then evaluate how you can implement new security services to
provide support to both application and enterprise SOA components.

From a security perspective, you will generally need to authorize any changes in software within an enterprise.
This requirement can be met by a range of solutions, from clear business practices that identify the people in the
organization that are responsible for managing software installation, to providing automated tracking of software
patches applied to systems through an asset management process. The critical thing is to start capturing the
business requirements for securing the change management process. These requirements fall into the following
areas:

Messaging characteristics—The capability to interact without depending on a particular messaging format,
protocol, or interaction model allows a wider reach of integration capabilities.

Transport protocol independence.

Data format independence.

The requirements for transport and data independence usually imply that the organization needs a security
model that can ensure the security of multiple, varied protocols. In an initial assessment for an SOA project, it is
important to understand what security mechanisms currently exist and identify the enterprise-wide solutions
versus the tactical solutions. The following are things to consider:

Multiple interaction models such as synchronous and asynchronous models

Message semantic independence, along with the role of tooling and runtime environments in providing
semantic support

Programming language independence

Business model independence in the form of canonical format support, industry-based message exchange
formats, and others

Independence from business process standards such as RosettaNet, OAGIS, and so on

Each interaction model generally has its own mechanism to secure message exchanges. Depending on the
number of standards that an enterprise must support, there might be a security requirement to support multiple
mechanisms and to translate from one security domain to another. These mechanisms include the following:

Support for various integration styles that provide architectural flexibility

Unified user experience to provide a consolidated and singular interaction mechanism for users

Application connectivity that addresses the communications layer that underlies all of the architecture

< Day Day Up >

< Day Day Up >

.

8.2.4. Message Authentication

One interesting side effect of confidentiality and integrity techniques is that when applied to messages (rather
than processes or applications), they can be used to also provide message authentication. Message
authentication ensures that a message is from the claimed party and is a result of previously agreed upon
cryptographic techniques used to provide integrity and confidentiality. It is important that message authentication
or data origin assurances also allow the receiver to identify the message sender.

8.2.5. Session Management

A session is the context shared between two parties engaged in a long-running exchange of messages. Instead of
having to prove their identities to each other for every message exchange, the parties establish a session context
that is bound to the authenticated identities of the parties in question. Session management refers to the
management of this session context, including the creation and deletion of this session context.

Securing a session involves authenticating each party, establishing the appropriate tokens that can be used to
secure the exchange of multiple requests and responses (transactions) in the context of this entity, and then
terminating the exchange and cleaning up any relevant information that was cached during the session.
Maintaining secure session state means that multiple request and response messages can be linked together as
part of a larger, multimessage transaction.

Managing session state is essential, from both a security and a performance point of view. One of the
fundamental issues in providing security is ensuring that users take advantage of the security offered to them.
User inconvenience often results in the first security challenge: If users must provide their authentication
credentials (such as a username and password) for every single request, they often find ways to shortcut the
security mechanisms in place.

Mechanisms such as WS-SecureConversation and single sign-on can help reduce the number of individual
authentications required but still provide the protection necessary to meet the business requirements.

8.2.6. Authorization

Authorization is the process of making a decision about the actions that an entity is able to perform and then
enforcing the appropriate decision to allow or disallow actions. At its simplest, authorizing a request addresses
the issue of "Can X do Y?" or "Can user X access resource Y?" In more advanced scenarios, this decision
process can include an evaluation of the conditions under which a request is being made: "Can user X access
resource Y at time of day Z?" Or similarly, "Can user X access resource Y given restrictions Z?" Access
decision enforcement is the process of ensuring that access is granted or denied according to the result of this
decision.

A simple example of an authorization decision is the answer to "Can Sue transfer money between account A
and account B?" There are, of course, more complicated decisions than "Can X do Y with Z?" Often the answer
to a question requires additional information. For example, the answer to this question of Sue transferring money
can be further qualified by the authentication type the system uses to establish the session, the time of day, the
exact nature of "Y," and its effect on "Z." For example, if "Y" is "transfer $10,000 from account A to account B"
where "Z" is account A, but account A has a balance of only $4.21, then clearly, the response to this question is
"No."

Granularity of authorization is an important issue to understand in a service-oriented architectural pattern.
Following the secure-the-perimeter paradigm, the system should handle initial authorization as close to the edge
of the domain and as far from the actual request invocation as possible. The strategy is to provide circles of
control. It is useful to take a layered approach to authorization in that it has the effect of removing unauthorized
requests at lower processing layers. This means that the requests that are presented to the higher processing
layers have a high ratio of authorized-to-unauthorized requests—this is good in terms of performance and
security.

Consider the layering of access control decisions, given Sue's requests to transfer money:

"Can Sue transfer money?"—Yes

"Can Sue transfer money between accounts A and B?"—Yes

"Can Sue transfer $10,000 between accounts A and B?"—Yes/May

"Can Sue transfer $10,000 between accounts A and B given that account A has a balance of $4.21?"—No

You can break down or layer the decision "Can Sue transfer money from account A to account B" to allow the
access control request to become further refined the closer the request gets to the data in question.

In general, the system can make an initial decision about authorizing a given request based on the authenticated
identity. For example, Jane is not an authenticated user, and so her requests are stopped at the edge of the
network. You can then refine those decisions as the request moves further into the enterprise network.

In the mediation layer, where requests are brokered, proxied, and routed through the enterprise, the system can
apply the next level of decision-making: "Can Mark apply for a new trading account?" No, because his account
has been suspended for six months due to improper usage; Mark is restricted to only viewing a report. At the
application layer, the system makes the final decision on "Can Sue transfer $10,000 between account A (balance
= $4.21) and account B (balance = $2,124.25)?"

When exposing resources and services to business partners, it is possible to implement filtering of authorization
at both sides of an exchange. Thus, a business partner might be responsible for ensuring that only requests that it
is willing to honor are allowed to be issued to the service provider. So if a business partner is not willing to
honor an order for 10,000 widgets at $1.25 each, the business partner should not authorize this request nor build
it, and thus the service provider should never receive this request.

This is not to say that the service provider is now exempt from making and enforcing authorization decisions.
Instead, the requests that the business partner receives have already been authorized, and the level of decision
required by the service provider moves to the level of "Is this business partner allowed to make these requests?"
and "Can I fulfill these requests?"

8.2.7. Privacy

Privacy of data, a dimension of authorization, involves mechanisms for confidentiality. This is an additional
attribute that can be defined for data elements included within a message itself. In the previous example, for an
order of 10,000 widgets at $1.00 per widget, the price of the good itself might need to be private (for example, it
might be confidential). Therefore, the system needs proper encryption to protect this data from unauthorized
viewing in addition to any previous message-level confidentiality. Within the enterprise, after the system
removes the message-layer confidentiality mechanism, it might still need to protect the price of these widgets
(that is, $1.00 per). This allows someone at the receiver side to possibly determine that an order for widgets was
placed—if they have access to the message after message confidentiality was reversed or decrypted—but not
the cost per widget.

Privacy concerns apply to this type of information within a message (for example, competitive information), but
they also apply to personal information, which is also known as personally identifiable information (PII). PII
includes information such as social security number, address, age, or even soft drink preference, and this data
might have different requirements for privacy protection.

8.2.8. Non-Repudiation

Legal situations in business often need evidence that a particular event has occurred under a set of conditions.
As businesses rely more often on computer systems to provide business services, the systems will likely receive
challenges to provide evidence to support to legal challenges. One aspect of distributing authorization decisions
across trusted partner relationships is that the business services need to have evidence of non-repudiation.

Non-repudiation refers to the inability of a party to repudiate (deny) a message or request. For example, if a
company places an order for 10,000 widgets, non-repudiation ensures that the company cannot at a later time
claim to have not placed such an order. Although true non-repudiation is extremely difficult to achieve, systems
can now use digital signatures in some circumstances to provide a form of non-repudiation that's sufficient for
online transactions.

Digital signatures, issued by the requestor in a message, provide a measure of assurance that the signor
(requestor) has approved the request. This relies on several assumptions:

The signed information includes a timestamp and the identity of the requestor.

The private (signature) key is assumed to be known only to the signor, indicating that only he is able to
generate this digital signature. The system might need separate levels of supporting evidence to assert that
the requestor is, in fact, the only entity that has knowledge of this signing key.

The system assumes that the requestor is following good practices by signing only information of which he
has knowledge and responsibility. Thus, a requestor cannot come back at a later date and claim that
although he signed a message, he did not read or understand the contents of the message.

Business policies around non-repudiation play an increasingly important role within a transactional environment
and may enable the establishment of trust relationships so that electronic systems can make authorization
decisions throughout a requestor-provider environment.

8.2.9. Cryptography

Techniques for protecting the integrity and confidentiality of electronic information are based on cryptography.
This is a complex mathematical subject, but there are many good references for cryptography and cryptographic
techniques. Briefly, encryption is the process of converting information from one format to another using a
mathematic transformation. This transformation takes as an input a key and the message to be transformed and
produces an output. Decryption is the process of reversing this transformation using the transformed output
message and another key to recover the original message.

In general, encryption is based on either symmetric or asymmetric keys. Symmetric key systems use the same
key for both the encryption and decryption functions. Symmetric key systems lead to what is called a shared key
system, in which the symmetry is known to both parties and thus must be kept secret from any other parties. An
asymmetric key system uses one key value to transform the message and a related but different key to recover
the message. A subset of asymmetric key systems are those in which one of these keys must be kept secret, but
the other can be made public—hence, a public key system.

Public key infrastructure techniques are based on asymmetric keys. In this approach, a user keeps secret a
private key while making available to partners a public key. Information that is encrypted with this private key
can be decrypted with the public key and vice versa. The issuance, registration, and distribution of the key pairs
become an important component in their use and are often the most difficult part of this technology to deploy. A
public half of the key pair is placed in a certificate, thus creating a binding of the user's public key to his
identity. This allows the user to assert his identity through the use of the private key and allow a public key
holder to validate this assertion.

Public key infrastructure (PKI)techniques are useful because they allow partners to establish a trust
infrastructure by allowing each partner to focus on managing his or her own (private) keys, while being able to
exchange the corresponding public key certificates with those partners with whom they wish to establish trust.
This is, in general, a more tractable approach to managing a broad trust relationship with a lot of partners. This
type of mechanism offers many advantages, but it does require that partners regularly check that their certificates
are still valid. An enterprise needs proper business policies to govern the validation time period.

Both shared key and public key systems are used for the encryption of data. Encryption provides protection
against the disclosure of information: If information is encrypted, then this information will be disclosed only to
those parties able to decrypt the information—that is, those parties that have access to a shared key in a shared
key environment or those that have a public key in a PKI environment.

From a performance point of view, the challenge with a public-private key pair approach is that operations on
the public key side are significantly more expensive in terms of processing power than those on the private key
side. With a symmetric key system, the cost of encryption and decryption is usually much smaller. Despite the
processing cost of the public key-based system, it is operationally cheaper than managing numerous shared keys
in the alternative. Nevertheless, when encrypting large volumes of data, shared key techniques are preferred to
reduce access time.

Public key infrastructure techniques have been used largely for the purposes of providing data integrity and data
origin authentication. In addition, PKI techniques are used for providing and managing digital signatures. In a
digital signature scenario, you usually do not encrypt large amounts of data. Instead, a hash function is used to
generate a unique, fixed-size representation of the message. This hash value is then encrypted and sent with the
message. This overall process is referred to as digital signing, and the encrypted hash value is a digital signature.

Signature validation compares the decrypted signature (the original hash value) and the result from performing
the same hash function a second time on the original message. If the two results are identical, then it is an
authentic signature. The cost of this combination of hash function and cryptography is such that it is a preferred
alternative to encrypting an entire message when only integrity protection is required.

Digital signatures provide proof against the alteration of information (that is, they maintain integrity). When
information within a signed message is modified, the signature of the information will no longer be valid (since
the hash values will be different). An invalid signature, in turn, implies the message integrity loss.

8.2.10. Trust

For two partners to secure communications between themselves, they must exchange security credentials either
directly or indirectly. However, each needs to determine what level of confidence it has in the credentials
asserted by the other party. This level of confidence is defined as trust.

Trust is another element of authorization, but it works on a larger scale between groups of entities (such as
users, systems, applications, processes, and so on). It is a required element of interorganizational message
interactions, but it can also apply inside the model of a single organization (between departments or network
domains, for example). Using trust, you can define authorization policies across the entire group of entities as
they relate to their interactions with other groups.

A trust domain defines the nature and identity of entities that it contains. It is possible to have different domains
across the same set of entities based on how these entities are viewed or mixed together in the domain. For
example, a single database can belong to two different trust domains, depending on which other domain
(containing applications for specific purposes) is allowed to access the database. These domains can also
contain other domains; for example, the trust domain for an entire corporation can contain all the trust domains of
its individual departments.

8.2.11. Federation

A higher abstraction beyond establishing trust across domains is the consideration of how services across
multiple owners can be integrated together. The common mechanism to build this level of abstraction is
federating multiple systems together. In a federation of services, there can be multiple owners of all the services
involved, but the model allows them to establish trust across the federation, provide user single sign-on (and
single sign-off), and provide distributed attribute management. Federations are particularly useful in SOAs that
extend beyond a single organization. It builds a virtual common security model by relating the individual models
of each organization to a common reference model.

8.2. Concepts and Elements of Security
The basic elements of security include the concepts of integrity, confidentiality, identity and authentication,
message authentication, session management, authorization, privacy, non-repudiation, and cryptography. These
concepts directly impact the architectural and design plans for SOA security.

8.2.1. Integrity

Integrity of information refers to the state of a piece of information such that it is not altered in an unauthorized
or unexpected manner. Maintaining the integrity of messages during an exchange between message partners
allows all parties to have some level of assurance that the message has not been tampered with in transit.
Integrity protection means that if a malicious user were to intercept and change the message content, it would be
detected.

8.2.2. Confidentiality

Confidentiality of information refers to the state of such information with respect to any unauthorized or
unexpected disclosure of that information. Integrity and confidentiality can apply to data or information at rest or
to messages in transit. Confidentiality of messages allows partners to have some level of assurance that their
messages have not been read by outside parties while in transit when it is important that sensitive details of a
message not be revealed to outside parties.

Transient message confidentiality protection means that during the message transmission, its contents are
undisclosed to malicious interceptors. Persistent message confidentiality mechanisms ensure that even after
transmission of a message, the confidentiality of the message data (for example, credit card numbers, social
security numbers, and so on) is maintained. If messages are logged, for instance, persistent confidentiality
ensures that if someone were to access a log on a server, he or she would not be able to read the contents of the
message.

Confidentiality and integrity also apply to information that is resident. For example, persistent data integrity
applies to information such as persistent data or code, whereby signing techniques are used to ensure that the
information is not altered. In general, you will need integrity and confidentiality techniques wherever you need to
ensure that the state of information is not adulterated or introspected while in transit or in storage.

8.2.3. Identity and Authentication

Authentication is the process of validating a claimed identity. The authentication process evaluates a public
piece of information (such as a username) and a private piece of information (such as a password, in theory
known only to the user) to determine its validity compared to what the system knows. This private information is
often referred to as an authentication credential. Authentication credentials might be based on something that is
known (such as a password), something that is possessed (such as a private key maintained on a hardware token
such as a portable USB storage device or fob), or an idempotent object that never changes (such as a fingerprint
for a physical user).

After authenticated, systems and applications typically establish the privileges of the authenticated entity.
These privileges, sometimes referred to as authorization credentials, are used to determine what this entity is
allowed to do within an enterprise (also see Section 8.2.6). Thus, within the context of an authenticated secure
session, the system can enforce authorized requests by the authenticated entity, and in some cases, it can also
keep a record of everything the authenticated user attempts to do (for instance, an audit trail of his or her
activities).

Consider, for example, an application used as part of an order-fulfillment process. This application might need
to leverage other applications such as shipping schedules or updating stock levels. Access to shipping schedules
might be restricted so that schedules for the next 24 hours can be viewed by the warehouse manager, but beyond
that, schedules should be viewable only by order-entry clerks. Likewise, all updates to stock levels will be
audited so that fraudulent activities can be monitored and stopped. In either case, having an authenticated
identity, a set of authorization credentials, and an established trust relationship between the parties allows the
appropriate actions to be permitted or denied, and it allows you to log requests (permit and deny) for audit
purposes

< Day Day Up >

< Day Day Up >

cases, you nee to protect ot t e message o y an t e message ea ers.

In general, both message layer and transport layer security are applied to messages within an SOA environment
as follows:

(Transport layer) security: All encrypted messages passed between two entities cannot be read or altered
by any third party able to observe these messages in transit. Transport layer security can also be used to
authenticate the entity presenting the request (which might not be the entity making the request but simply
represent the SSL endpoint at the entity's network edge).

(Message layer) privacy and confidentiality: This is the encryption of a message body so that the message
itself is not readable even if and when transport layer security is not applied. In general, implementations to
date have not leveraged end-to-end message layer confidentiality, preferring to rely on the combination of
transport layer security and message layer integrity.

(Message layer) integrity: This is the signing of information in a message that you must guarantee is
original and not tampered with. Note that this signing of information also provides some evidence of origin
authentication. We can determine the identity of the entity associated with the key used to sign the
information

8.3.4. Defining Data Protection Policies

You can achieve data protection by applying encryption mechanisms to the data-level elements within a
message. Although not widely adopted, the notion of data element confidentiality is recognized as critical in
many SOA environments (especially those that will be applied within financial and health sector environments).
Data element confidentiality enables individual data elements to be encrypted as opposed to encrypting an entire
message. This element-level confidentiality allows protection of sensitive information (such as patient medical
information) while still allowing the exposure of other elements in a message for other purposes (such as
coarse-grained authorization, routing, and so on).

8.3.5. Defining Security Token Policies

At some level, cooperating business partners will determine the types of security tokens they can issue, manage,
and exchange with each other. These tokens are used to assert information about requestors of business
processes. As such, different scenarios require different tokens with various characteristics where appropriate.
Some typical token types and their typical scenarios are as follows:

Username token: An identity assertion token that includes a password (usually in digest form). In general,
Web browsers and servers use this token in an HTTP environment in which the intelligent browser collects
a username and password that is then validated by the service provider. A special form of a username
token is an IDAssertion. This is a username token without a password, generally used within a trusted
environment in which the security token is used to communicate or assert an already authenticated identity.

X.509 certificate: This certificate is typically used to identify a requestor that has signed part or all of a
message. Typically the certificate provides a "two-for-one" approach for identifying the requestor based on
information already included in the request by the requestor.

SAML assertion: A SAML assertion can provide a means of asserting an identity or providing attributes for
a claimed identity. A SAML assertion is typically used in a passive client scenario (for single sign-on, as
described later in this chapter) or in an active client scenario when additional information about a requestor
is required (such as attributes describing the user's roles, groups, privileges, and so on).

Kerberos token: Kerberos tokens are based on an authentication mechanism designed at MIT and since
adopted by both DCE and Microsoft as a means of asserting an identity.

8.3.6. Defining Cryptographic Key Policies

An SOA environment requires that partners establish key management policies when used for signing or
encrypting information. This is both a technical consideration—technically, one should never use the same key
pairs for both signing and encryption—and a legal liability consideration. SSL certificates are easy to come by;
businesses running large volumes of high-dollar transactions will almost certainly require more assurance of their
business partner's identity than a free or self-generated SSL certificate.

8.3.7. Coordinating Policies Between Business Partners

Establishing common policies for transport layer security across the enterprise (business) is a well-understood
exercise today. Almost all businesses using the Internet have SSL certificates. Businesses have a
well-established understanding of managing such certificates and SSL sessions with the help of IETF-defined
standards.

Other aspects of security policies are less understood. As business processes become service oriented, you
cannot assume that messages will be bound to just the well-known HTTP transport layer. When considering Web
services requests, we need to leverage well-defined message structures based on XML and SOAP and their
respective security mechanisms. XML Encryption, XML Digital Signature, and the WS-Security roadmap
describe the mechanisms necessary for any security strategy for services-oriented architectures. Therefore, to
understand how you can define and relate policies to transactions that span between organizations, it is necessary
to look at the mechanisms and protocols that allow this.

8.3. Implementation Requirements for SOA Security
The elements of security have different dynamics and impact on the architecture of an organization.

Approaching security requirements from a service-oriented architectural perspective raises some new
requirements on these elements. These requirements address how to coordinate security mechanisms across
business partners and trust boundaries and are defined in terms of policies in the following aspects:

When establishing trust between partners, the accurate definition of security policies covering transport,
message, and data protection, including the security tokens in a request, will be essential (see Sections
8.3.1 through 8.3.6). In addition to having each policy, it is important to communicate these policies.

After a business has its own policies defined, it will need to manage and coordinate any changes of
security information (signing or encryption keys) across partners (see Sections 8.3.7 and 8.4).

8.3.1. Managing Security Policies

In advance of interacting with a business partner's SOA resources, you will need to determine appropriate
security policies such as requirements for transport and message layer protection as well as data level
protection. These policies can provide a component of an overall assurance strategy, leveraged by the individual
businesses. They provide confidence that the SOA will allow only authorized, trusted business partners—with
known, defined, legal liability relationships—to participate in cross-business transactions. In addition, you might
need to implement such policies and monitor these implementations for business agreement or legal compliance.

8.3.2. Defining Transport Security Policies

Transport layer security refers to the type of protection offered in the actual delivery protocols involved in the
interaction, such as using secure sockets layer (SSL) over Internet transactions. SSL is used to provide a
confidential (encrypted) channel between two endpoints.[1] The result of this encryption is that the contents of
any message flowing over this channel are not discernable to any observing, outside party. This encryption is
based on keys stored within digital SSL certificates. These are long-term keys bound to an entity during initial
SSL session establishment. Both parties use a common new encryption key that is possibly previously unknown
for the purposes of encrypting all of the messages on the wire.

[1] One quick note: Because this information is encrypted and not readable, a form of integrity protection is
implied. This follows from the fact that it is extremely difficult (practically as well as mathematically) to modify
a message (violating its integrity) without being able to read it. So in a scenario in which it is not easy to
decrypt/re-encrypt a message, integrity protection can be said to follow.

One side benefit is that SSL certificates, while defining a cryptographic key, also contain a binding of this key
to a given entity. This enables software to use SSL certificates to also determine data origin authentication—if I
am able to encrypt something for you to decrypt using the SSL certificate's key, and if I can determine that it is a
valid certificate issued by someone I trust, then we both have established some level of trust.

After the SSL channel is terminated at the SSL endpoint, the messages are available in cleartext for anyone to
see (and alter). In scenarios in which you need to terminate an SSL channel and forward the message to its
intended destination service without using SSL (with intermediaries or gateways, for example), you can open a
potential vulnerability into the system. This then leads us to a new requirement: message layer security.

8.3.3. Defining Message Layer Security Policies

Message layer security allows the system to protect the message body itself (transmitted in the HTTP message
body, for example) in terms of integrity and confidentiality; this is on top of any protection applied at the
transport level. Because this is applied to the message body, the protection is provided end to end. Furthermore,
transport layer security might change depending on the network boundaries that the message traverses (different
levels of security over the many individual networks constituting the Internet). End-to-end protection implies that
the contents of the message cannot be read or modified at any point other than the required endpoint. In some

d b h h b d d h h d

< Day Day Up >

< Day Day Up >

the XML token format defines a means of representing XML-based security tokens such as SAML assertions.
This extensible token format allows the customization of tokens, so, for example, although a RACF passticket
format has not yet been defined, it can be easily put into the XML-based security token format.

8.4.1.2. Signatures: XML Digital Signatures

Digital signatures, used to ensure confidentiality and integrity in service interactions, can be implemented with
XML Digital Signature (XML-DSig). XML-DSig was a joint initiative of the Internet Engineering Task Force
(IETF) and the World-Wide Web Consortium (W3C). As its name suggests, it defines a means of rendering a
digital signature in XML. However, people often mistakenly assume that this standard only applies to digitally
signing XML documents, when in fact it can be used to sign "any digital content," to quote the specification.

8.4.1.3. Message-Level and Element-Level Encryption: XML Encryption

XML Encryption is a W3C recommendation that is not just a means to encrypt XML but also to express
meta-information about the encryption performed on a digital document. This allows a document processor to be
aware of what algorithms were used to encrypt the document. XML Encryption allows you to encrypt only the
message subsets that must be kept confidential, thus providing a level of privacy, or confidentiality, to
information within the message.

You can encrypt element names, the data contained within them, or both. When choosing how much information
to encrypt, you need to ensure that the unencrypted information (that is, the element name such as
Phone-Number) does not, in turn, reveal information about the likely data (for example, 888-123-4567) in the
element, thus cutting down the possible dimensions that a malicious attacker has to work on with brute-force
decryption.

XML Encryption and XML Signature can be used together when a document is both signed and encrypted with
them. To check the signature of the data, the signed document must be decrypted by means of a transform.

8.4.1.4. Leveraging WS-Security

Both encryption and digital signing come with performance implications that need to be part of an organization's
assessment of risk and countermeasures in its security policy.

Encryption and signing can be expensive computationally, especially the signature validation required at the
service provider side. This cost can be even more expensive when you consider the cost of dereferencing
individually signed or encrypted elements of the message. Given that a service provider is responsible for the
decryption and signature validation of all incoming requests, a service requestor should not try to sign or encrypt
majority subsets of a message. For example, in a message with 17 elements, signing 15 of the elements might
provide an unnecessary burden. In this case, signing the entire message might be more appropriate.

Most early adopters have limited their use of WS-Security to include just security tokens for requestor identity
authentication and instead rely on transport layer security techniques for message protection. This allows
encryption to be provided point-to-point through transport layer techniques, providing point-to-point
confidentiality on a message.

As hardware accelerators and improved algorithms emerge in combination with stronger business requirements
(such as defense industry, healthcare, and others) for privacy and security, we expect that more organizations
will start to use WS-Security and XML Encryption. This enables them to leverage encryption on privacy-related
elements of a message for those scenarios in which they must not expose this private information until it is
properly received at the final destination.

8.4.2. Trust Domains: WS-Trust

The Web Services Trust specification defines a mechanism for issuing and exchanging security tokens between
partners. Token exchange provides the means of issuing and disseminating credentials within and across different
trust domains. Basic WS-Security, as previously discussed, defines the basic mechanisms for providing secure
messaging but stops short of defining trust. The WS-Trust specification provides tokens for use in WS-Security
message exchanges and uses these basic mechanisms of WS-Security to ensure its own messages. Using
WS-Trust, applications can also establish tokens for long-running conversations and can engage in secure
communication designed to work with the general Web services framework, including WSDL service
descriptions and SOAP messages.

A.8.4

8.4.2.1. Leveraging WS-Trust

WS-Trust defines the techniques to manage and exchange tokens through its <RequestSecurityToken> and
<RequestSecurityTokenResponse> messages. When deploying an application, you need to define a particular
token type that is expected by the application and that is used to authenticate the entity making the request.
Because not all Web services resource invokers are able to produce such a token, there is a mismatch in
requirements.

WS-Trust token exchange allows a business partner to issue a Web services request using one token type (for
example, a SAML assertion for authentication purposes), even if this token type cannot be accommodated by the
destination Web service. The upfront processing of the message (for WS-Security) allows other trusted elements
of the architecture to take this token, validate it, and exchange it for another token type that will allow it to
invoke the service. This application pattern enables you to deploy a single application, exposed to multiple
business partners, with varying degrees of WS-Security functionality. A token management trust service enables
this pluggable functionality.

The combination of WS-Security and WS-Trust provides a fundamental flexibility to enable security across a
Web services-based SOA environment. WS-Trust provides the means to manage the security tokens enabled by
WS-Security.

8.4.3. Federated Security: WS-Federation

The WS-Federation specification describes how to use the existing Web services security building blocks that
allows business processes to work in federated groups. It focuses on the relationships between parties and the
high-level architecture that supports these relationships. Two additional documents, WS-Federation Active and
WS-Federation Passive profile specifications, describe how to implement individual federation solutions.

A.8.5

Active clients, in the WS-Federation model, are directly Web services-enabled; that is, they are able to issue
Web services requests and react to a Web services response. The active profile of WS-Federation defines how
an entity can carry the information required to authenticate the requestor in its request. This information is
carried within the WS-Security-defined <Security> header of a request in the form of WS-Security- and
WS-Trust-defined and managed security tokens. WS-Federation allows an active client application entity to
include the required information to identify the requestor and its privileges within its request. This allows the
authentication and authorization of requests, discussed previously in an implied browser-based HTTP-based
environment, to be replicated in an SOA environment without browsers or direct user interaction.

The WS-Federation Passive profile specification describes a framework of how to implement federation
functionality in a passive client environment that is unable to build its own Web services requests. The most
commonly encountered example of a passive client is the basic HTTP browser. Because the WS-Federation
solution involves the foundation of WS-Security for infrastructure support, the same components that are used to
provide a passive client solution can be used for an active client solution.

8.4.3.1. Leveraging WS-Federation

The WS-Federation Passive profile describes how to implement both push- and pull-based single sign-on
authentication in an HTTP-based environment. This allows a service requestor to redirect a user (service
consumer) to a service provider while carrying the information required to vouch for the user's authenticated
identity to the service provider—this is a push-based single sign-on. This profile also allows a service provider
to poll for the required user identity information from the service requestor, again without direct user
involvement—this is pull-based single sign-on. This, in turn, enables the service provider to identify the user
without directly interacting with the user.

The WS-Federation Active profile describes how to include fine-grained authentication information using
transport layer security and authentication techniques. For simplicity, consider the scenario in an HTTP-based
environment. Transport-layer-based security uses SSL, in which the requestor identity can be based on the
identity bound to the service requestor's SSL session or the certificate or, more likely, the machine issuing the
request on behalf of the actual service requestor. WS-Federation Active allows service requestor authentication
to a finer degree (for example, individual users at the requesting machine) than that of transport layer security
techniques.

In general, if you need finer granularity user identification than when using transport layer techniques, you
should use WS-Federation.

8.4.4. Session Management: WS-SecureConversation

As discussed previously, validating the signature on a message can be expensive, especially when the requestor
signing the message issues multiple requests. Likewise, repeated authenticating requests from the same user can
also be expensive, especially if these requests are part of a conversation between a service requestor and a
service provider. The WS-SecureConversation specification describes how to leverage WS-Security and
WS-Trust to authenticate a series of messages within a conversation, hence establishing a secure conversation.

A secure conversation is managed by a security context, represented by a security context token (SCT). This
token contains a shared secret (symmetric key) that is, in turn, used to manage the secure conversation. This
secret key can be used to sign messages that belong to a particular conversation. The specification recommends
that this SCT be used as part of an additional negotiation to establish a derived key used to sign and encrypt
messages, for a set of messages associated with this security context.

8.4.4.1. Leveraging WS-SecureConversation

WS-SecureConversation is still an emerging technology. In large part, this is because most early adaptors
exhibit a combination of two factors: They rely on exposing HTTP-based Web services, and they are not yet
fully exploiting WS-Security techniques. We expect that WS-SecureConversation will come to play a role
similar to SSL within the Web services world.

8.4.5. Authorization and Policies: WS-Policy

In the Web services roadmap, one of the building blocks is the use of policies. The WS-Policy specification that
implements this building block consists of three core specifications: WS-Policy Framework,
WS-PolicyAttachments, and WS-PolicyAssertions. (The security-specific assertion specification is
WS-SecurityPolicy.)

A.8.6

The Web services policy framework specification defines a general-purpose model and corresponding syntax to
describe and communicate Web services policies that service consumers need to know to be able to access
services from a service provider. WS-Policy provides flexible and extensible grammar for expressing the
capabilities, requirements, and general characteristics of entities in an XML Web services-based system. Policy
expressions allow for both simple declarative assertions and more sophisticated conditional assertions. A
WS-Policy is a collection of one or more policy assertions (as defined in WS-PolicyAssertions). WS-Policy
provides a single-policy grammar to allow different kinds of assertions to be reasoned about in a consistent
manner. These assertions are specified in WS-SecurityPolicy, which focuses on grammar for defining security
policies.

The WS-PolicyAttachments specification defines how policies are associated with Web services artifacts,
including WSDL, UDDI, and endpoint references for deployed Web services. As with all the Web services
specifications (WS-*), it is extensible and allows developers to create definitions of other resources with which a
policy can be associated.

8.4.5.1. Leveraging WS-Policy

The goal of WS-Policy is to provide the information needed to enable Web services applications to express
their requirements and capabilities. WS-Policy by itself does not provide a negotiation solution for Web
services. WS-Policy is a building block used in conjunction with other Web service and application-specific
protocols to accommodate a wide variety of policy exchange models. Policies can be used to express a number
of dependencies, such as whether the service requires that the messages be digitally signed or what kind of
security tokens (X.509, UsernameToken, and others) must be used.

8.4. Standards and Mechanisms for SOA Security
This section introduces and describes the different security mechanisms available in the industry that can be

used to address security requirements within a service-oriented architecture, both within a single organization
and across multiple organizational boundaries. We will focus primarily on how this technology is implemented in
the Web services (WS-*) security family of specifications.

The basis of security in Web services is in the WS-Security Roadmap published by IBM and Microsoft to
describe the components necessary to address a secure Web services solution. This roadmap defines security
elements as composable units that can be applied only when necessary to solve a particular problem. Thus, a
security solution does not need the drag of additional functionality and components that are not required. We
will describe how the parts of this roadmap fit together to help fulfill the security requirements previously
described.

A.8.1

8.4.1. The Basic Security Standard: WS-Security

WS-Security refers to two distinct efforts: the initial WS-Security specification (published by IBM, Microsoft,
and VeriSign) and the full WS-Security roadmap containing several defined specifications (including the
WS-Security specification itself). This subsection focuses on the basic WS-Security specification.

A.8.2

The WS-Security specification was originally published in April 2002 by IBM, Microsoft, and VeriSign and
subsequently was submitted to the OASIS Web Services Security Technical Committee (WSS-TC) created for
it. The effort through the OASIS process led to an OASIS standard in March 2004 known as Web Services
Security.

A.8.3

As described in the OASIS document, the specification provides three main mechanisms: sending security
tokens as part of a message, message integrity, and message confidentiality. These mechanisms by themselves
do not provide a complete security solution for Web services. Instead, this specification is a building block for
other Web service extensions and higher-level, application-specific protocols to accommodate a wide variety of
security models and technologies.

WS-Security enables you to apply XML security techniques (described in the following sections) to
authenticate and secure message exchanges between a Web service requestor and a Web service provider. It
uses signatures and encryption placed on a message and security tokens bound to the messages.

8.4.1.1. WS-Security Tokens

The WS-Security specification is agnostic to the type of token that is actually included within a message.
WS-Security uses an XML approach to defining tokens that enables extensibility and supports multiple security
tokens. This enables services to communicate in a secure manner and exchange security information across
different implementations.

The Web Services Security: SOAP Message Security (WSS-SMS) specification defines three classes of token:
username, binary, and XML. The username token is a simple representation of a username and optional
password that represents the binding of commonly presented user authentication credentials into a simple
XML-based token. The binary token format provides a means of representing binary-formatted information such
as Kerberos tickets, X.509 certificates, and other non-XML-formatted (or -formattable) security tokens. Finally,

< Day Day Up >

< Day Day Up >

Establishment and management of a requestor's session (binding multiple requests or transactions by a
single requestor to a single authentication associated with a given session)

Authorization of requests within that session

Appropriate termination of the session (due to explicit logout, inactivity timeout, and so on)

As a PoC service processes an incoming request, it is responsible for terminating any transport layer security
and weeding out unauthorized requests. In a hybrid environment, the service will rely on existing transport layer
security techniques:

Terminating SSL sessions

Authenticating the request based on transport layer security (such as SSL certificates used for mutual
authentication of partners)

In a pre-SOAP environment, this HTTP-based point of contact would normally also be responsible for the
following:

Authenticating the end user or requestor based on a user's presented credentials, be they directly presented
credentials such as a username and password or credentials presented by a third-party such as a SAML
assertion

Authorizing the request based on the requested URL and the user's authenticated identity

Many early adopters have chosen to keep an HTTP-based point of contact in an outer DMZ, providing only
coarse-grained authentication based on the identity of the business entity in the SSL certificate. Thus, an outer
DMZ PoC provides SSL sessions with various business partners and is able to block unauthorized entities (for
which there is no business relationship and SSL certificate) from even passing through to the inner DMZ.

Adding an inner DMZ with a PoC service capable of introspecting SOAP messages, for example, allows the
system to continue leveraging the pre-SOA environment. This specialized PoC service adds Web
services-specific functionality, such as authenticating the actual requestor based on information contained in the
Web services request. This inner DMZ PoC service includes routing as part of its service offering and is able to
route a Web services request to the appropriate backend resource. More advanced PoCs might also be capable
of transforming protocols that can expose, for example, a JMS-bound Web service internally to the external
world with an HTTP binding.

In general, whether across one or many points of contact, the overall PoC service functionality includes
authentication, session management, and authorization within the scope of transport and message layer security
services.

8.5.3. Implementing Message Layer Security Services

Message layer security services are generally implemented in infrastructure components responsible for
receiving and routing messages to an internal endpoint. Such services allow the system to protect a message to a
finer degree than transport layer security, as explained in Section 8.2.3.

In general, because of the implementation cost of fine-grained message layer security implementations, message
layer security tends to be coarse grained (encrypt the entire message body), with only those aspects of the
message that must truly have end-to-end protection subject to finer-grained techniques.

8.5.4. Implementing Trust Services

PoC services functionality also includes message and requestor authentication. PoC services will invoke trust
services to manage security tokens (and, therefore, trust relationships) within Web services requests, as
explained in Section 8.3.5. Simple requestor authentication is just a matter of using the identity asserted in a
security token to represent the authenticated identity. Sometimes you need more advanced functionality such as
the capability to exchange tokens (when acting as an intermediary) or to provide detailed identity mapping on
incoming identities (for example, mapping an identity to a role within an application). Trust services provide this
functionality by managing and protecting security tokens.

8.5.5. Implementing a Federation

One additional component not shown in Figure 8.1 is a federation protocol service component because the
assumption so far has been an SOA environment within a B2B-type environment. In many environments,
however, direct browser-based interactions are considered part of an SOA environment. This means you might
also need to authenticate users within the browser client, across your business partners, a process called
cross-domain single sign-on. The end goal is to reduce the amount of user authentication across a set of
enterprises within a particular business relationship and context. To manage this, you will require an additional
service to handle all of the different single sign-on protocols. We call this a protocol service, as shown in Figure
8.2.

Figure 8.2. Basic security architecture using protocol services.

[View full size image]

The protocol service generally appears as a simple backend application, accessible in the same manner as any
other HTTP-accessible resource. The transport layer PoC can route requests to the protocol service so that the
protocol service can then handle cross-partner single sign-on protocol flows. Note that this HTTP-based single
sign-on always involves some level of interaction with a user's browser. Thus, you can continue to leverage
existing transport layer PoC techniques for maintaining a session with a browser. Once you have implemented
such an HTTP-based single sign-on, your users can invoke any manner of backend applications, as they are
allowed.

8.5. Implementing Security in SOA Systems
This section presents some common components based on the technologies described previously that you can

leverage to provide security services in an SOA reference implementation. One of the key business
transformations when implementing services-oriented architectures is to identify (common) security services and
evolve business processes to take advantage of these services. Initial implementations will most likely consist of
existing elements of the infrastructure enabled with basic security services in a hybrid environment.

8.5.1. Implementing Basic Security Services

The basic security architecture in Figure 8.1 contains two main security components, a point of contact (PoC)
and a trust service, described in detail in the following sections. Figure 8.1 also specifically illustrates two
different point-of-contact elements: a transport layer PoC and a Web services PoC.

Figure 8.1. Basic security architecture.

[View full size image]

A.8.7

In this hybrid example with multiple protocols and domains involved, SOA requests are bound to SOAP over
HTTP requests. This approach enables the SOA architecture to reuse large parts of the pre-SOA architecture,
including the HTTP (transport layer) components. This architecture shows an external demilitarized zone
(DMZ)—a neutral zone between two security domains—containing a traditional HTTP (SSL) security PoC entry
to the enterprise. When the software establishes a mutually authenticated SSL connection, it also includes a
coarse-grained authentication of the request.

The architecture also has an internal DMZ, whereby a Web services PoC provides introspection of the message.
This Web services PoC element can leverage trust services from within the trusted network as part of the actual
message validation. In this example, we show that the Web services PoC uses the RMI/IIOP protocol to
communicate with the trust service, but it also transforms the incoming SOAP/HTTP request into a SOAP/JMS
request.

The trust service is the architectural component that establishes the trust relationship between partners. The
trust is based on the validation of the incoming message, including the authentication of identities asserted in the
message, and the mapping of identities and roles as established in existing business agreements with the partners.
Each of these components is discussed in further detail in the following sections.

8.5.2. Implementing Point-of-Contact Services

One of the first tasks in defining a service-oriented architecture is to understand what the service provides and
establish the interfaces for the service. A PoC service is responsible for the following:

Authentication of requests and requestors

< Day Day Up >

< Day Day Up >

. . . .

As explained in Section 8.3.7, the WS-SecureConversation specification is an extension of the WS-Trust
credential acquisition model that describes how to request and use a secure conversation token for long-running
conversations and sessions. The SCT provides the logical equivalent of SSL session management in an
HTTP-transport-bound environment. A trust service's security token functionality should create and validate
SCTs.

8.6.2.4. Credential Store Services

In addition to trust service management, trust services (or more specifically, logical security token services) can
also act as credential stores. In many environments, information about a requestor is propagated throughout the
environment for many different purposes (for example, audit, logging, and request authorization). Rather than
carrying a large credential around with each request, it easier to carry a credential reference. This credential
reference can then be used by the security token service to appropriately look up the actual credentials when
required during request processing.

8.6. Non-Functional Requirements Related to Security
Implementing a security model can have a significant effect on how the SOA operates. In particular, it is

important to consider the relation to two other non-functional requirements: performance and manageability.

8.6.1. The Performance Impact of Security

Implementing security does not necessarily force a performance trade-off. The following guidance focuses on
minimizing the performance hit of security while not impairing the actual functionality. You can also use
additional techniques, such as clustering, linear scalability of components, or leveraging hardware accelerators,
to offset a performance impact. To this end, you need to consider several general guidelines:

Focus on layered component architecture. This enables you to appropriately tune the environment to meet
performance, scalability, and availability metrics. For example, layering security functionality away from
the application's functionality enables you to tune optimal security performance independent of optimal
application performance.

Apply only a layered security approach. Security is expensive. Minimize this cost by relying on a layered
security, focusing as much as possible on transport level security. For example, it is great to have
end-to-end security, but a point-to-point architecture is more common. Rather than immediately incur the
cost of end-to-end security, evaluate where these points are. If the endpoints are within an enterprise's
control, use transport layer security to protect the communications while on the public network. If you have
to have message-level security, be sensible about the cost of this security. For example, providing
confidentiality at the element level is also expensive. If possible, rely on encrypting an entire message body
rather than individual elements within the message body.

Rely on a layered approach to authorization. In general, you should push as much authorization
functionality as feasible close to the edge of the application domain, especially in a Web services
environment in which message payloads are typically quite large. If you layer your transport layer
authentication decision at the edge (at the external DMZ point of contact), you can prevent unauthorized
business partners from flooding the enterprise with bad requests. If you place message layer authentication
at the internal DMZ point of contact, you can ensure that only a business partner's authorized users are able
to access the internal system; this again reduces the number requests the application will just reject. This
authorization layering enables the application to best handle the security functionality in the application
level, or data authorization at the data level to which the application has direct access.

8.6.2. Managing Security

After you implement a secure SOA solution, you will need to be able to manage this security infrastructure,
including managing trust relationships, security tokens for authentication, security tokens for session
management, and credential stores.

8.6.2.1. Trust Relationship Management

Trust relationships are usually derived from the use of cryptographic techniques such as public key
infrastructure. Simply having (and exchanging) cryptographic elements across business partners is not sufficient
to establish and maintain a trust relationship. Part of a trust relationship also involves asserting and accepting
requestor identities and attributes across the established trust relationships. For this reason, it is integral to
manage the tokens used to convey this information.

8.6.2.2. Security Tokens Used for Authentication

Services can use X.509 certificates as the basis for security tokens to convey authentication information to sign
a message. A trust service's security token functionality validates security tokens to authenticate requestors.

8 6 2 3 Security Tokens Used for Session Management

< Day Day Up >

< Day Day Up >

8.7. Technology and Product Mappings
Given knowledge of technologies, implementation considerations, and related non-functional requirements, you
should now take a look at different categories of technologies and types of products that implement the various
PoCs, including those for the transport layer, Web services, trust services, and federation services.

8.7.1. Transport Layer Point of Contact

Transport layer PoCs, as separate from the Web services layer PoCs, tend to be HTTP-type components such
as HTTP servers or HTTP proxy servers. These components have become familiar elements of most
organizations, whether in intranet or internet scenarios.

8.7.2. Web Services Layer Point of Contact

The different security PoC implementations include XML firewalls and gateways, Web services gateways, and
other security services implementations. Most early product vendors in the Web services space released XML
firewalls or XML gateways. These products are typically proprietary implementations of PoC functionality
focused on XML-based requests but not necessarily those based on SOAP. These products may accommodate
multiple transport bindings, supporting HTTP-based, MQ-based, and other transport protocols. Web services
gateways are a specialized form of XML gateway that focuses on Web services–focused protocols such as
SOAP or RMI-IIOP as defined by WSDL bindings.

Security services are often included within an XML/Web services gateway. The initial implementations were
typically proprietary and did not support the standards-based functionality described by WS-Security. With the
standardization of the (SOAP-based) WS-Security specification by OASIS and the publication of the basic
security profile by the WS-I, most gateway vendors now allow for interoperability of signatures and encryption
on Web services messages.

8.7.3. Trust Services

Typically, trust services have not existed as standalone components or products. In general, they are bundled as
part of security or federation services as they apply to a network of systems. A more advanced offering for both
trust and federation is available in IBM Tivoli Federated Identity Management™.

8.7.4. Federation Services

To date, most federation service implementations focus on passive-client (HTTP browser) based approaches to
single sign-on. This approach leverages publicly available specifications for single sign-on to allow users to
seamlessly access resources within an enterprise and across trusted partners. Part of the exchange of information
that occurs as part of the single sign-on protocol includes the exchange of security tokens, very similar to the
security tokens that trust services handle.

The IBM Tivoli Federated Identity Manager is currently the only known product that includes a component- or
service-based architecture, with both trust and protocol services. The trust service of this product features,
including logical security token services, are designed to be pluggable and to provide the full range of
functionality previously described.

8.7.4.1. Liberty Alliance

The Liberty Alliance Project was formed to deliver and support a federated network identity solution for the
Internet that enables single sign-on for consumers and business users in an open, federated way. Liberty Identity
Federation Framework (ID-FF) describes profiles for B2C-based single sign-on and additional functionality.
Liberty ID-FF profiles include single sign-on (SSO), single log-out (SLO), register name identifier (RNI),
federation termination notification (FTN), and identity provider introduction (IPI). Tivoli Federated Identity
Manager implements a multiprotocol federation gateway with integrated management support for Liberty ID FF
1.1/1.2. The added federation capability enables enterprises to quickly and securely integrate identity-driven
transactions with their middleware and portal platforms.

< Day Day Up >

< Day Day Up >

8.8. Summary
The basic principles of applying security in any software solution are about identifying the risks, evaluating

them, and then formulating a plan to mitigate them. In SOA-based systems, these security principles are the
same. However, additional factors are introduced because SOA proposes distributed services and decoupled
application systems. To effectively secure these resources, a gamut of technology options and variations are
available with accompanying performance and operational management overheads. Mapping the security risks to
the solution options requires careful planning and should be conducted formally during inception of an SOA
endeavor.

< Day Day Up >

< Day Day Up >

8.9. Links to developerWorks
A.8.1 IBM, Microsoft. Security in a Web Services World: A Proposed Architecture and Roadmap, IBM
developerWorks, April 2002. http://www-128.ibm.com/developerworks/library/specification/ws-secmap/.

A.8.2 IBM, Microsoft, Verisign, Web Services Security. IBM developerWorks, April 2002.
http://www.ibm.com/developerworks/webservices/library/ws-secure/.

A.8.3 Hondo, M., Melgar, D., and Nadalin, A. Web Services Security: Moving Up the Stack—Security in a
Web Services World. IBM developerWorks, December 2001.
http://www.ibm.com/developerworks/webservices/library/ws-secroad/index.html.

A.8.4 BEA Systems, Computer Assoc., IBM, Microsoft, RSA Security, Verisign, et al. Web Services Trust
Language. IBM developerWorks, February 2005.
http://www.ibm.com/developerworks/library/specification/ws-trust/.

A.8.5 IBM, BEA Systems, Microsoft, VeriSign, RSA Security, Web Services Federation Language. IBM
developerWorks, July 2003. http://www.ibm.com/developerworks/library/specification/ws-fed/. IBM, BEA
Systems, Microsoft, VeriSign, RSA Security, Web Services Federation: Active Requestor Profile. IBM
developerWorks, July 2003. http://www.ibm.com/developerworks/webservices/library/ws-fedact/. IBM, BEA
Systems, Microsoft, VeriSign, RSA Security, Web Services Federation: Passive Requestor Profile. IBM
developerWorks, July 2003. http://www.ibm.com/developerworks/webservices/library/ws-fedpass/.

A.8.6 BEA, IBM, Microsoft, SAP AG, Sonic Software, Verisign, Web Services Policy Framework, IBM
developerWorks, May 2003. http://www.ibm.com/developerworks/webservices/library/specification/ws-polfram/
.

A.8.7 Bose, S. Using Web Services Security in WebSphere Application Server. IBM developerWorks, April
2004. http://www.ibm.com/developerworks/websphere/techjournal/0404_bose/0404_bose.html.

< Day Day Up >

http://www-128.ibm.com/developerworks/library/specification/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secure/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/index.html
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-fed/
http://www.ibm.com/developerworks/webservices/library/ws-fedact/
http://www.ibm.com/developerworks/webservices/library/ws-fedpass/
http://www.ibm.com/developerworks/webservices/library/specification/ws-polfram/
http://www.ibm.com/developerworks/websphere/techjournal/0404_bose/0404_bose.html

< Day Day Up >

8.10. References

Basic Security Profile. Web Services Interoperability Organization.
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity/.

Benantar, M. The Internet public key infrastructure. IBM Systems Journal, Vol. 40, 3-2001.
http://www.research.ibm.com/journal/sj40-3.html.

Hinton, H., et al. Federated Identity Management with IBM Tivoli Security Solution. IBM Redbooks
(SG24-6394-00). http://www.redbooks.ibm.com/abstracts/SG246394.html?Open.

Liberty Alliance Project. Liberty Alliance Project Specifications.
http://www.projectliberty.org/resources/specifications.php.

Makino, S., et al. Implementation and Performance of WS-Security. International Journal of Web Services
Research, Vol, 1, No. 1, 2004.

Menezes, Alfred, et al. Handbook of Applied Cryptography. CRC Press, 1996.

OASIS, SAML. Security Assertion Markup Language.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security.

Schneier, Bruce. Applied Cryptography, 2nd Edition. John Wiley & Sons, 1996.

W3ORG, XML-ENC. XML Encryption Working Group. http://www.w3.org/Encryption/.

W3ORG, XML-SIG. XML Signature Working Group. http://www.w3.org/Signature/.
< Day Day Up >

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity/
http://www.research.ibm.com/journal/sj40-3.html
http://www.redbooks.ibm.com/abstracts/SG246394.html?Open
http://www.projectliberty.org/resources/specifications.php
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.w3.org/Encryption/
http://www.w3.org/Signature/

< Day Day Up >

Chapter 9. Managing the SOA Environment
"The significant problems that exist in the world today cannot be solved by the level of thinking that created

them."

—Albert Einstein

With the move to service-oriented architectures, the IT management landscape is changing. Existing solutions
might no longer be adequate. Apart from managing the usual underlying physical and application resources, the
radius now includes higher-level business applications and services. To match the increasing focus on providing
business value, management solutions must evolve to measure this value.

Chapter 2, "Explaining the Business Value of SOA," describes why businesses should move to SOA and an
on-demand enterprise model. The on-demand IT environment is characterized by flexible and highly responsive
systems that have lower IT costs and higher utilization rates. To meet the challenges of business agility while
lowering costs, best-practice business processes are being implemented to help boost productivity while
increasing flexibility.

In the SOA approach, one such best practice requires additional management capabilities: service provisioning,
securing services, monitoring the service status and health, understanding relationships among the services, and
managing choreographed and aggregated services. This chapter describes these SOA management concepts and
capabilities.

< Day Day Up >

< Day Day Up >

The key areas for SOA-based IT management are shown in Figure 9.1 and are defined in the following list:

Business service management visualizes the IT environment in business service terms and manages
service levels to achieve business objectives. Business service management provides intelligent,
policy-based solutions to build, run, and manage critical, dynamic business processes through automation,
integration, and predefined best practices. This helps reduce IT support costs by creating a value-optimized
infrastructure that supports key business initiatives.

Infrastructure orchestration senses and responds to changing business needs. Orchestration helps the IT
infrastructure respond dynamically to changing conditions based on defined business policies. It provides
intelligent prioritization of automated actions and assigns computing resources where and when they are
needed. Orchestration increases utilization of existing and new resources, improves productivity of IT staff,
and accelerates responsiveness to changing business needs.

Availability ensures the health and appropriate functioning of IT environments. Management solutions in
this area help increase the resilience of critical infrastructure elements by leveraging intelligent best
practices. As a result, operators are able to respond dynamically to changing environmental conditions.

Security ensures that information assets, confidentiality, and data integrity are protected according to
corporate policies. Enhanced security features keep systems protected from external threats and effectively
manage and protect access to information with dynamic compliance. These solutions help increase the
resiliency and security of your IT environment.

Optimization ensures the most productive utilization of the IT infrastructure. Optimization solutions
intelligently allocate your resources so that they run efficiently and provide you with an increased return on
your investment. They also provide resilient workload management between resources, which can
automatically be balanced for optimal throughput and performance.

Provisioning makes the right resources available to the right processes and people. Provisioning automates
the allocation, change, and configuration of your IT infrastructure resources—including systems, networks,
middleware, and applications—using intelligent best practices. It creates identity provisioning so that users
can access the appropriate resources across multiple heterogeneous systems.

Figure 9.1. The key areas of SOA management.

Figure 9.2 shows a more detailed view of these key management areas, including more information about the
types of resources and the management roles involved.

Figure 9.2. A detailed view of SOA management.

[View full size image]

Each area of resource management can be considered independently while remaining part of the overall
management framework. For example, database management requires a specific set of tools to monitor and
manage the databases autonomously. These tools must be compatible with the database being managed for
appropriate monitoring and control of the database.

There are similar monitoring and management requirements for transactions. However, these tools need to
interact differently with the underlying functions to provide the correct levels of monitoring and control. For both
of these types of tools, a common event infrastructure provides a location for operators to visualize information
across the environment and allows for correlation across multiple systems. This correlation can be across
physical machines as well as different types of functions. For example, consider an event caused by a
transaction that is unable to access a database, and another event caused by the database running out of
transaction log space. The IT management tools should be able to correlate both events to show the operator that
the root cause of the transaction problem is actually the database transaction log being full.

9.1. Distributed Service Management and Monitoring Concepts
Enterprise IT management and monitoring usually involves the use of well-known mechanisms and strategies in

operation centers. These mechanisms can be loosely categorized into different operational models including
triage, basic problem resolution, and resource-driven operations. Using these models, this section explains the
evolution of the IT management models in use today and how they are changing with the transition to SOA. Each
progressive step of this evolution (the management models) focuses on a higher abstraction of how a particular
problem is viewed, moving from individual events to resource states (possibly aggregating events) to transaction
workflows (aggregating resources), and finally to services (aggregating workflows) with service-level
agreements.

9.1.1. Event-Driven Management

The first operational model generally performs event triage, focusing on receiving events and forwarding them
on to the appropriate groups for resolution. These triage groups do little, if any, problem resolution themselves.
They might review known problem logs to determine whether this event has a known solution and then
implement the solution to resolve the problem. These groups are typically staffed by lower-skilled employees
who might quickly rise into more senior levels after they have acquired enough expertise in a particular function.

The triage operational model can evolve into the next level of basic problem resolution within a short time
period before transferring any events. Generally, these groups have an assigned time limit to either fix or transfer
the event to the appropriate team. These groups are usually staffed at a higher skill level; more senior people
might remain on this team to continue solving problems. These teams also provide input to the automation teams
so that solutions to common problems can be automated as part of the environment. Variations on both of these
models include a help desk to receive all initial phone calls and events. Additional business information can also
be provided to the environment to prioritize by severity and business impact.

Regardless of the operational model, most IT operations centers are driven by events that trigger a call to
action. These can be in the form of Tivoli Event Console™ events or new trouble tickets created through
automation-integration functions. These systems can also prioritize the events, such as time sequenced, priority,
business impact, or geography.

Some organizations have evolved their IT management operations to a resource-driven operational model. The
workflows for these operations are driven by resource state changes. Resources can be real resources,
virtualized resources, or clusters, and they typically are based on CICS, DB2®, UNIX®, Windows®, or capable
network device systems. Operators select the next resource that needs attention and usually prioritize resources
by time sequence or business impact. In these cases, the operations staff is no longer focused on dealing with
raw events but on the states of resources. They have moved from strict problem resolution to some degree of
anticipating or modeling problem scenarios and identifying solutions. Understanding the resource state and
devising the operational tasks in managing the state requires higher staff skills.

9.1.2. Levels of SOA-Driven Management

The next level of IT management focuses on transaction-driven operations, in which transaction state changes
drive the business workflows. Operations select the next transaction that needs attention, which is usually
prioritized by time sequence or business impact. The operators no longer deal with resources or individual
events; instead, they deal with the status of transaction flows. These flows are collections of events based on
live or simulated transactions.

The next higher level of IT management focuses on business service–driven operations, in which whatever
impacts business services drives the workflows. Operators select the next impacted service sorted by business
priority or by service-level agreement(SLA) status. The key challenge in managing at this level is in
understanding the business services and their components.

Many organizations are evolving through these various levels and models of IT management, moving up from
simple event-driven management to more sophisticated models. This progression requires not only education and
training but also organizational and philosophical changes within the organization. The transition to SOA drives
these changes to focus more on business services and processes rather than isolated application views.

< Day Day Up >

< Day Day Up >

Managing the ESB environment requires the following capabilities:

Service view: The capability to discover, visualize, monitor, and manage the message interactions and
relationships that make up a service. For ESB, this includes SOAP, XML, and proprietary message formats
over HTTP, JMS, and MQ protocols.

IT linkage and management: The ESB is hosted by an IT infrastructure that includes a variety of tools and
implementations (WebSphere®, WebLogic, WPM, WebSphere Business Integration Server™, and so on).
An ESB management solution must provide coverage and linkage to the EMS tools to monitor, manage, and
configure the underlying infrastructure. It should also manage the backend connections such as adapters,
connectors, and resource connections.

Security: End-to-end security in the ESB environment is a major challenge. The SOA model will need a
uniform security policy and enforcement for all the elements of the infrastructure to support the ESB. It will
also need credential mapping between disparate security infrastructures.

Service-level management: You need to monitor and record service levels for reporting. Service-level
policies must perform actions, such as activating additional service providers, to keep the system within
policy.

Mediation and version management: Mediation is a new manageable entity in the ESB. Mediations must be
first-class managed resources that can be monitored, controlled, and configured. The SOA model will need
versioning support when new levels of a service are rolled out. You can implement this by controlling and
configuring versioning mediations that can route and transforms message traffic between older and newer
versions of service providers and consumers.

Configuration: The ESB environment contains a large number of infrastructures that must be configured
consistently. You will need configuration support that treats the environment as a whole instead of a set of
individual products.

Provisioning and deployment: The objects that implement a service must be deployed in a repeatable and
coordinated fashion. Again, the system must be able to automatically coordinate versioning support with
the deployment of new levels of a service.

9.2.2. Evolving Standards

Services management data can be collected today through instrumentation in the middleware that supports SOA.
Application response measurement (ARM) is a standard from the Open Group for logging start and stop points
used to denote messages entering and leaving individual services. The management tools assemble the start and
stop information for all the services that make up a system and provide an overall view of that system.

In the case of Web services, another instrumentation standard used to define and provide standard management
data about Web services, as well as other IT resources, is the OASIS Web Services Distributed Management
(WSDM) standard. WSDM should make it easier to manage Web services across organizational boundaries and
in heterogeneous runtime environments, and it therefore offers a good solution to the needs for an enterprise
SOA. WSDM should also provide better consistency and detail in the manageability information that can be
obtained about Web services, such as standard metrics, operational status, and a complete list of relationships
that a Web service has with other Web services and other resources in the environment. IBM's Common Base
Event (CBE) was submitted to WSDM for standardization and is available as the WSDM Base Event in WSDM
1.0. WSDM also depends on the Web Services Resource Framework (WS-Resource) and Web Services
Notification (WS-Notification) set of standards to provide a complete Web services platform for management.
The security management capabilities of Web services management must include support for the following
security specifications and standards: WS-Security, WS-Trust, WS-Federation, and WS-Policy. Chapter 8,
"Securing the SOA Environment," provided details on all these specifications and standards.

A.9.1

A.9.2

9.2. Key Services Management Concepts
Tools for managing services supplement traditional IT management products. The concept of looking at

transactions versus resources across the IT infrastructure is a relatively new one and is better suited for a model
that has loosely coupled components and applications. For example, some parts of the application might lie
within the sphere of control for an enterprise, whereas other parts of the application are controlled by the IT
organizations of its business partners or customers. To successfully deploy and support a services-based
application, an enterprise needs a transactional paradigm as well as a resource paradigm to manage these
interactions. These capabilities must enable enterprises to deploy and ensure the performance and availability of
new service applications, even when parts of the overall application are not under its direct control.

Although introducing service orientation addresses many of the traditional problems of integrating disparate
business processes and applications, deploying services-based applications introduces new complexities that
you need to manage. These include the following:

Monitoring the services layer for performance and availability

Ensuring compliance with service-level agreements

Managing security policies so that service-oriented applications can communicate securely, both internally
and across organizational boundaries

Tracking the dynamic interconnectivity of the loosely coupled components of the system to understand the
performance, availability, and expense consequences

Analyzing the root cause and correcting problems based on errors at the services layer

Developing and testing applications composed of aggregated and already operational services

Deploying, configuring, and updating a distributed, service-oriented application across organizational
boundaries in a secure, reliable, and repeatable manner

Tracking the business impact of the use of services on the business processes

The SOA-based infrastructure and its IT management tools must address these complexities. The following
sections examine the impact of the use of middleware and changing standards on the IT management toolset.

9.2.1. Managing the Enterprise Service Bus

The enterprise service bus (ESB) described in Chapter 3, "Architecture Elements," is a term for the middleware
component that facilitates an SOA infrastructure. It brings together the features of several integration paradigms
into a single element of the infrastructure. The ESB is responsible for delivering messages across the network,
routing them as necessary, with the qualities of service required by the end points.

To achieve this, an ESB can intercept and manipulate the messages as they flow through the bus, interposing
logic that requires intelligent decisions about where to route them, what quality of service to apply, and what
additional message processing might be required. Its capabilities include logging, pattern recognition, metering,
transformation, message validation, customized routing, and policy-driven selection of endpoints. You can apply
policies to the ESB that define which capabilities apply to different services, both in terms of the business and
IT infrastructure requirements.

< Day Day Up >

< Day Day Up >

anagement o t e n rastructure to e p n trou es oot ng operat ona ssues.

Monitoring of transactions provides end-to-end management capability including the various objects that
participate in a transaction, such as a Web service, a session EJB, an entity EJB, or DB2.

Maintaining and managing the relationship between the business process, services, and the IT resources.
The owner of the Web services or SOA application might not control all of the services that make up the
application or might have limited control of the environment in which they operate, as in the case of niche
third-party services that might be integrated.

Managing the potential for federation. The control points to enforce security and management policies
should be deployed in a flexible manner and, in many cases, abstracted as services or as part of the ESB.

Service providers are faced with some unique challenges:

The services that are provided can be utilized both by the internal line of business and by external
customers. If a customer makes several requests, the service might need to block access for that customer,
possibly to anticipate a faulty implementation or a specific problem with that customer.

Usually when the services provided are critical to the customer, the service provider must maintain
agreed-upon levels of service for contractual or legal reasons.

Billing and metering of the services that different customers use.

Enterprises face the following unique challenges:

Defining appropriate SLAs or operational-level agreements (OLAs) for each service that can be
appropriately measured. This is different from a similar need for SLAs between the service provider and
consumer because this SLA or OLA context is defined primarily to provide business-level monitoring to
facilitate internal operational efficiency.

Defining services with the appropriate granularity so that they can be managed and reused in the
organization.

9.3.2. Phases of Deployment

As services are developed and deployed in the SOA environment, these challenges grow increasingly difficult
over time. Figure 9.3 illustrates these deployment phases.

Figure 9.3. Deployment phases and SOA challenges.

Initially, the enterprise faces configuration and deployment issues. During this phase, companies adjust their
infrastructure to support the processes of defining, deploying, optimizing, and refining their services. This phase
is especially important to service providers, requiring them to consider the security, privacy, and configuration
of the services. The further refinement of those attributes is important.

The second phase involves monitoring of the deployed services. During this phase, the challenges include
monitoring the basic availability of the services and their performance. This helps maintain the operational heath
of the systems and proactively rectify quality of service issues.

The third phase occurs when the enterprise has reusable services across the enterprise. In this phase, the
services registries for services deployed in the environment and the management of these registries become more
important. These registries are also used by the service architects to create solutions for the enterprise. This is
where the SLAs become more significant. This phase is also important to service providers that publish their
services to external consumers.

The fourth phase occurs with the full automation of services in the enterprise. During this phase, services
management undergoes policy-based orchestration, configuration, and automation. Automation does not imply a
lack of human intervention; this phase still needs to take into account the process to handle business exceptions,
as described in Chapter 4, "SOA Project Planning Aspects."

9.3. Operational Management Challenges
Services still have the traditional management challenges in areas of security, availability, configuration, and
performance. Although an SOA can be developed with many different methods and technologies, the use of
common open standards enables you to consider any of these services equally as yet another resource in the
management domain. However, there are still some differences from existing management models that arise from
service orientation.

One such difference between services and other managed resources is that the services are application layer
components, whereas most system management tools are oriented toward middleware, network, OS, and
hardware types of resources. SOA services, however, can participate and be reused in multiple different
business process. Thus, the requirements for managing a service vary based on the business process in which the
service participates. To service consumers, the only entity that is exposed and available for them to manage is
the service (an endpoint) itself and not the actual processes and components that implement the service. The
service-oriented application that implements the service will most likely be out of reach for the service
consumer to manage, as this is the domain of the service provider.

Another difference is that in a non-SOA environment, processes and tasks might not be composed along
well-defined function boundaries in their member applications. Therefore, it might not be easy to compose or
decompose these applications. SOA-based services, however, with well-defined interfaces, align the business
process steps closely with an entity (the service implementation) that can then be monitored and directly and
discreetly managed. This difference implies that you might need a different view—likely an easier, more flexible
one—and different tools for SOAs than the functionality available in traditional systems management tools.

To consider how these differences impact your enterprise, you might need to consider the use of different
management perspectives and follow a phased approach to deployment.

9.3.1. Challenges with Respect to Management Perspectives

You can look at services management from either the service provider's point of view or that of the entire
enterprise. There are common management challenges for both enterprise and service provider environments.
There are also unique considerations for management within each environment. The SOA approach provides
additional management challenges that cover the entire lifecycle of the application, from development and
deployment to the manageability and maintenance of the services.

The common management challenges for both views are as follows:

Monitoring and managing the availability of the services.

Providing a service registry that contains information about the services that are deployed in the enterprise
and their descriptions.

Providing the information about the services to the architects. Architects can use this information to
provide solutions to problems using existing services and by defining new services.

Management of rules that help route service requests based on the content of messages.

Maintenance of services from a virtualized location that provides a singular service view.

Managing multiple versions of the same services and managing the service lifecycle.

M f h i f h l i bl h i i l i

< Day Day Up >

< Day Day Up >

9.4. Service-Level Agreement Considerations
Today, most IT departments offer their services to internal or external consumers. Although many such

organizations today have negotiated SLAs in place with their external clients or OLA with their internal clients,
these agreements tend to be technically focused (such as database size and growth in gigabytes, system
availability, and others). More mature organizations have SLAs with their external clients that are more business
focused (for example, response time for a transaction or number of transactions per day); however, these SLAs
might be inadequate in terms of measurement and reporting, or they might utilize manual activities to carry out
the SLAs.

Due to the lack of products supporting the measurement of business-oriented metrics, SLA metrics are
frequently technology oriented and provide little useful indication of the service quality from the consumer's
perspective. Different interpretations of the service quality by the provider and consumer of the service can
cause dissatisfaction among both customers and service providers. Examples of useful business metrics for
services would be assured delivery dates for supply-chain services or approval response times for financial
services.

A key consistent measure for SLAs or OLAs, that both the service provider and enterprises can use, is the
end-to-end transaction time. This is especially appropriate for SOA environments, which can share services and
measure the end-to-end transaction time, both with synthetic transactions and with tools such as IBM Tivoli
Monitoring for Transaction Performance (see Section 9.5). By measuring the end-to-end response time, you can
include the involvement of all components and related services in the measurement. This provides a consistent
measurement across the environment. The consumer does not care what the server availability is as long as the
transactions are completed within the defined time period.

< Day Day Up >

< Day Day Up >

,
eliminates manual data analysis, saving labor, time, and money. When combined with IBM Tivoli Business
Systems Manager software, you can also better align your IT infrastructure with your business processes and
further increase the return on your IT investment.

9.5.2. IT Application and Resource Management

IT application and resource management is similar to existing IT management tools: They focus on the
individual infrastructure elements and resources that constitute the overall IT landscape. In the SOA context, IT
application and resource management also includes the relationship of these infrastructure elements and
resources to business services. This area of management includes event management, provisioning and
orchestration, and security management. There are several IBM Tivoli products that address additional aspects
of the management arena.

9.5.2.1. Event Management

As described earlier in Section 9.1.1, events identify problems at a low abstraction level and thus must be
managed across the many possible types of IT resources. The IBM Tivoli Event Console serves as the hub for
IBM availability and performance solutions. The Tivoli Event Console consolidates and processes thousands of
events that occur daily in the environment. This includes events from network devices, hardware systems,
middleware, and applications. The Tivoli Event Console can provide intelligent, multilevel analysis and
correlation to filter out misleading or redundant events, highlight the essential information, and provide
indications of the root cause of each problem quickly and accurately. It can respond automatically based on the
indication of the root cause, allowing automated correction of problems without the need for involvement by an
individual. This helps reduce costs by reducing the staff required to maintain the systems and by reducing the
time to resolve issues.

The Tivoli Enterprise Console also includes the network management solution, which helps operators track and
resolve problems down to the network layers. It provides a console that shows operations staff members only
those events that they need to react to in the order of severity, and it can be tightly integrated with help desk
systems to automatically create trouble tickets based on events it receives.

9.5.2.2. Provisioning and Orchestration

A provisioning system has the responsibility of directing resources to where they are needed. Provisioning can
be done on many levels to satisfy application service needs, user needs, and system environment needs. A
provisioning management tool defines the rules of how these resources are directed. Orchestration is the process
of redirection of resources according to the rules of provisioning. As previously noted, one central idea of an
on-demand system is the capability to dynamically change the environment and systems as the situation requires.
Therefore, provisioning and orchestration management tools play a key role in enabling such dynamic reaction to
changing situations.

IBM Tivoli Provisioning Manager™ software minimizes the need for just-in-case provisioning and helps you
automate manual provisioning processes. It provisions and configures complete application environments,
including support for servers, operating systems, middleware, applications, storage, and network devices such as
routers, switches, firewalls, and load balancers. This on-demand automation is achieved using workflows that
enable each organization to capture each of its best practices for particular processes or procedures. The
extensible workflows supplied with this software can automate best practices for typical processes that
administration staff members perform when provisioning and maintaining a complex application infrastructure.
You can then customize and extend workflows to follow your own IT best practices.

With automation workflows, administrators can provision IT infrastructure resources with consistent,
predictable, and error-free results. With this software, building or customizing standardized infrastructure
configurations takes minutes instead of days. Rather than permanently dedicating infrastructure to specific
applications, these resources are added to the pools of resources maintained by IBM Tivoli Provisioning
Manager. When you need a resource, it can be obtained from the pool, configured, and deployed into a
production environment under the control of workflows. When it is no longer required, the resource gets returned
to the pool.

9.5.2.3. Security

Service security is critical to prevent fraudulent or unauthorized use of services and to provide audit
capabilities for regulation compliance. The various elements of security that need to be managed have already
been described in Chapter 8. You need to have these functions in a centralized security management context to

allow faster deployment of services.

The products that serve in this area are the IBM Tivoli Access Manager for e-Business™ and the IBM Tivoli
Federated Identity Manager™. These products provide the following key functions:

Support for federated single sign-on and sign-off

Web services security at the message layer

Support for WS-Security, WS-Trust, WS-Policy, WS-Federation, and the Liberty Alliance standards

9.5.3. Other Areas of Management

There are additional areas of SOA management that focus on more specific elements such as transaction
performance, Web service monitoring, and resource monitoring. These are discussed in the following sections.

9.5.3.1. Transaction Performance

During the execution of service invocations, transactions represent the activity in your service workflow.
Therefore, there is a need to monitor the performance level of transactions as they are executed across your
SOA system. Transaction performance management focuses on controlling and directing resources to maintain or
enhance the performance of your transaction-enabled applications. It is also useful in understanding application
user behavior and analyzing the performance under different scenarios and loads.

IBM Tivoli Monitoring for Transaction Performance™ is designed to help IT organizations manage their overall
transaction performance. Using this software, you can record typical business transactions and then play them
back with simulated users or robots to drive real transactions through an environment on a periodic basis. You
can then measure these transactions for overall performance and availability. Additionally, IBM Tivoli
Monitoring for Transaction Performance monitors real user performance and availability.

This software relies on the Open Group standard for application instrumentation, the Application Response
Measurement, or the ARM API. In addition to working with instrumentation that is included natively in leading
middleware and applications, IBM Tivoli Monitoring for Transaction Performance dynamically injects
instrumentation into leading J2EE e-business applications. This approach eliminates the need for application
development teams to insert ARM API calls into source code and allows dynamic discovery of transaction
topologies.

9.5.3.2. Web Services Management

When your SOA implementation is based on Web services, you will also need content-specific management
tools that address the needs of this environment. IBM Tivoli Monitoring for Web Services PRPQ™ provides
understanding of the relationships between services instrumented in the environment. This includes the IBM Web
Services Navigator™, which provides the following key functions:

It discovers and provides topology visualization of Web services and service relationships.

It extracts service patterns from raw service data.

It integrates with the Eclipse platform.

It incorporates IBM Web Services Navigator technology and Tivoli monitoring technology.

It is targeted to service architects and operations managers that need to understand Web services
relationships, flows, and message content.

It provides visual feedback to quickly identify relationships, extract patterns, and highlight problems.

It is a lightweight package with a simplified installation that has no prerequisites.

It automates the process of aggregating Web services log files.

9.5.3.3. Resource Monitoring

As explained in Section 9.1.1, resource monitoring is a necessary element of the resource-driven operational
model. The IBM Tivoli Monitoring and OMEGAMON® (formerly from Candle Corporation, which was
acquired by IBM) family of products provides assets to consistently monitor and manage complex and
heterogeneous resources. Each of these products provides the specific management functions for each of the
particular platforms, middleware, and applications that you need to support.

The IBM Tivoli Monitoring family provides assets to consistently monitor and manage complex and
heterogeneous resources. The base product monitors the availability and performance status of resources to
identify bottlenecks and potential resource problems. It applies preconfigured best practices to the automated
monitoring of essential system resources. The application detects bottlenecks and other potential problems and
provides for automatic recovery from critical situations, eliminating the need for system administrators to
manually scan through extensive performance data.

In addition to the base products, specific add-ons are available to manage the individual characteristics of a
given domain. These monitoring solutions are optimized to identify problems and automate repairs with specific
software applications and middleware. Each solution contains a number of proactive analysis components
(PACs) that describe the best practices for working with the specific application or middleware.

9.5.3.4. Additional IBM Monitoring Tools for IT Resource Management

Additional management tools are available from the IBM Software portfolio:

IBM Tivoli Monitoring for Applications™ provides a powerful set of customizable and extensible
application-level monitoring capabilities to help you maintain the availability and performance of ERP and
CRM suites such as mySAP™ business suite and Siebel™ applications.

IBM Tivoli Monitoring for Business Integration™ offers stable, secure, and proactive monitoring and
management to help optimize the availability and performance within the IBM WebSphere MQ™ and IBM
WebSphere Business Integration™ infrastructure.

IBM Tivoli Monitoring for Databases™ helps simplify backend database infrastructure management by
monitoring multiple types of database software, including IBM DB2, IBM Informix®, Oracle®, Microsoft®
SQL Server, and Sybase™.

IBM Tivoli Monitoring for Messaging and Collaboration™ monitors the status of Lotus Domino and
Microsoft Exchange servers, identifies server and system problems in real time, notifies administrators, and
takes automated actions to resolve server problems.

IBM Tivoli Monitoring for Web Infrastructure™ can help optimize the availability and performance of
critical resources such as Web servers and Web application servers.

9.5.4. External Product Relationships

The IBM Tivoli Enterprise Console provides the capability to receive Simple Network Management Protocol
(SNMP) events from any other products, including the IBM Tivoli Event Integration Facility™ (EIF) that is used
by many vendors to emit events that are receivable using the IBM Tivoli Enterprise Console. By integrating all
management solutions into the IBM Tivoli Enterprise Console, you can correlate any event to provide the correct
view of the environment.

9.5. SOA Management Products
The challenges to IT operations management and the use of business-focused SLAs can be addressed with

different types of tooling. Each of these tool types addresses the needs of a different area of service
management, including business performance and business service management, IT application and resource
management, transaction management, Web services management, resource monitoring, and middleware
monitoring. To detail the functions of these tools by areas of management, we use the example of IBM software
products that fit each area.

9.5.1. Business Performance and Business Service Management

Business performance management is the process of monitoring and managing the overall organization's
business performance results over time. This leads to the popular notion of an executive "dashboard" that
provides presentation and analysis of the overall business metrics of the organization in a real-time or
pseudo-real-time fashion. Business service management is a similar notion that focuses on the level of all
individual business services in the SOA.

The IBM Tivoli Business Systems Manager™ brings the entire enterprise together to provide a business view of
the environment. IBM Tivoli Business Systems Manager software is intended to be a productivity tool for
operations to enable an end-to-end business view of the infrastructure and application management monitoring. It
uses the monitoring software that is currently installed (such as IBM Tivoli Monitoring™), and it maps alerts and
events generated by the various monitoring software products to objects in its database, and these are then
displayed on the product's console.

You can use IBM Tivoli Business Systems Manager to create business views. Usually the operations staff
monitors various products and consoles to complete service obligations that might relate to missed critical
messages. The IBM Tivoli Business Systems Manager console can reduce the number of separate individual
consoles from multiple software products into a single consolidated console. Using this single user interface, the
team can proactively monitor and manage problems, determine impacts, and aid in root-cause analysis. You can
use IBM Tivoli Business Systems Manager to accomplish the following tasks:

To deliver a higher quality of end-to-end services by identifying all impacted areas from a single action.

To manage groups of related applications that form a business system.

To manage groups of computing resources.

To enable true critical path management.

This product represents both the physical resources and the business system representation. The physical
resources are organized in a hierarchy defined by distributed placement rules or default table entries.

IBM Tivoli Business Systems Manager receives events from the mainframe environment using a component
installed in each z/OS® (formerly S/390®) mainframe system and receives distributed events from the Tivoli
Event Console or from other common listener feeds.

IBM Tivoli Service Level Advisor™ enables businesses to easily, proactively, and economically manage
service levels across the entire organization for maximum uptime. This software's user-friendly, Web-based
reporting capability and at-a-glance dashboard show the status of current service levels and predict future trends
so that you can take preventive action now and avoid problems later. When a trend toward a violation is
identified, IBM Tivoli Service Level Advisor software integrates with other Tivoli products and sends alerts to
the IBM Tivoli Enterprise Console®, to the IBM Tivoli Business Systems Manager console, directly to your
e-mail, or using Simple Network Management Protocol (SNMP).

With its automated service-level agreement evaluation capability IBM Tivoli Service Level Advisor software

< Day Day Up >

< Day Day Up >

9.6. Summary
This chapter presented an overview of the management concepts and key operational challenges in an SOA

environment. Enterprise architects must understand the operational complexities in managing and monitoring
distributed services and leverage the appropriate tools and their underlying infrastructure to address them. There
are various technology components and emerging standards that paint the SOA management arena. Adopting an
SOA-driven management to provide business service management propels an enterprise to a higher plateau of IT
management and aligns it to be an on-demand business.

< Day Day Up >

< Day Day Up >

9.7. Links to developerWorks
A.9.1 IBM, Common Base Event Specification.
http://www.ibm.com/developerworks/library/specification/ws-cbe/.

A.9.2 IBM et al., Web Services Resource Framework, IBM, October 2004.
http://www.ibm.com/developerworks/library/specification/ws-resource/.

< Day Day Up >

http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-resource/

< Day Day Up >

9.8. References

Dan, A., et al. Web services On Demand: WSLA-driven automated management. IBM Systems Journal, Vol.
43, No. 1. http://www.research.ibm.com/journal/sj/431/dan.html.

Farrell, J. A . and Kreger, H. Web services management approaches. IBM Systems Journal, Vol. 41, 2-2002.
http://www.research.ibm.com/journal/sj/412/farrell.html.

IBM Tivoli. IBM Tivoli Products. http://www.ibm.com/tivoli/.

Kephart, J. and Chess, D. The Vision of Autonomic Computing. Computer Magazine, IEEE 2003.
http://www.research.ibm.com/autonomic/research/papers/AC_Vision_Computer_Jan_2003.pdf.

Kreger, H., et al. Java and JMX: Building Manageable Systems, 1st Edition. Addison-Wesley Professional,
2002.

Leymann, F., Roller, D., and Schmidt, M. T. Web services and business process management. IBM Systems
Journal, Vol. 41, 2-2002. http://www.research.ibm.com/journal/sj/412/leymann.html.

Naik, V. K ., Mohindra, A., and Bantz, D. F. An architecture for the coordination of system management
services. IBM Systems Journal, Vol. 43, 1-2004. http://www.research.ibm.com/journal/sj/431/naik.html.

OASIS, WSDM. Web Services Distributed Management.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm.

Opengroup. The Open Group Application Response Measurement.
http://www.opengroup.org/tech/management/arm/.

< Day Day Up >

http://www.research.ibm.com/journal/sj/431/dan.html
http://www.research.ibm.com/journal/sj/412/farrell.html
http://www.ibm.com/tivoli/
http://www.research.ibm.com/autonomic/research/papers/AC_Vision_Computer_Jan_2003.pdf
http://www.research.ibm.com/journal/sj/412/leymann.html
http://www.research.ibm.com/journal/sj/431/naik.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.opengroup.org/tech/management/arm/

< Day Day Up >

Chapter 10. Case Studies in SOA Deployment
"Experience is never limited, and it is never complete; it is an immense sensibility, a kind of huge spider-web of

the finest silken threads suspended in the chamber of consciousness . . ."

—Henry James

Case studies help us learn from the lessons encountered during the implementation of other projects in the
industry and help us recognize the concepts and elements of this technology independent of the particular
implementation. The case studies in this chapter are in different vertical industries and implement different
scales of SOA. The structure for each case study is fairly similar.

First we take a look at the scope of the project and the business case for undergoing the project. Next we
consider the issues of development under the SOA paradigm, the goals and objectives of undertaking an SOA
project, and the changes to roles, tasks, and the organization of the project. Then we address the concerns of
business management as well as end users in terms of security, performance, and management of these services.
We then outline the key technologies used in the implementation to achieve the SOA objectives. Finally, we
examine the challenges and lessons learned from the case study.

< Day Day Up >

< Day Day Up >

10.1.2. Solution Implementation

Standard Life's SOA is characterized by the use of application-level design patterns, software frameworks, and
governance and management processes. The services in its SOA are implemented as XML-enabled, reusable
business services available over a messaging hub. The architecture has evolved over a ten-year period (see
Figure 10.1) and, following an independent review, is recognized by industry analysts as class leading and state
of the art.

Figure 10.1. The evolution of Standard Life's infrastructure.

[View full size image]

In 1999, Standard Life's IS department initiated a plan to move to an SOA centered on the IBM MQ Series
Integrator™ (now IBM WebSphere Business Integration Message Broker™), an established technology. Figure
10.2 illustrates this architecture and its subcomponents.

Figure 10.2. Standard Life's hub-centered SOA.

[View full size image]

Because Web services standards and tools were not yet mature at the time, Standard Life built its software
framework according to the following design considerations:

XML schemas for service interfaces, published in a catalog (a WSDL-styled protocol)

A runtime business services directory used for service invocation (a UDDI-styled protocol)

A message protocol to access business services (a SOAP-styled message protocol)

In addition, it decided on the use of Enterprise Java Beans, Java Servlets, and JavaServer Pages; these
technologies by then had attained a sufficient level of stability to support Standard Life's needs. With the
introduction of Application Design Patterns starting in 1999 (see Figure 10.1), by its 2001 checkpoint, it had a
blueprint for a new architectural model. Figure 10.2 also shows ADA, the original application design approach
represented by simple design patterns that was intended as a "how to" guide for designers supported by an
earlier (non-hub-centered) framework code that implemented the pattern. As Standard Life progresses to its
newer HCD direction, ADA-based designs can continue to be supported.

The new model, named the hub-centered architecture (HCA), follows what is described as the hub-centered
design patterns (HCDP), a new patterns framework. The HCDP (see Figure 10.3) is a set of two main pattern
categories:

HCDP SOA—A request-reply pattern to shape the development of internal and external clients that
perform business functions by accessing reusable, channel-independent business services.

HCDP integration hub—A publish-subscribe pattern to integrate applications and packages in
heterogeneous platforms that isolate and decouple applications from one another.

Figure 10.3. Hub-centered design patterns in Standard Life's SOA.

The new HCA provides the following primary benefits:

Reuse: In layers, starting with business application services at the base to framework, infrastructure,
design patterns, and architecture.

Execution time consistency: Applications must behave in a standard, predictable way on a standard
infrastructure. This allows for better systems management (in terms of reliability and availability), makes it
easier to support in production, and minimizes risk when introducing change.

Focal point: Acts as a nexus for application and infrastructure improvement and innovation.

Change management: The new model facilitates and manages changes to the application architectures,
frameworks, and infrastructure in coordinated and planned ways. By implementing change in a consistent
manner using a stable framework, Standard Life can treat all applications the same way, even when mass
change is required (migrating to a new version of infrastructure to adapt to changing currency needs). By
isolating the applications from the infrastructure (via the framework), it can isolate these applications from
lower-level concerns such as cross-platform communications, logging APIs, and other low-level
dependencies.

To understand how business services and applications are built in the Standard Life architecture, take a look at
Figure 10.4, a high-level view of its SOA pattern. Figure 10.4 shows a channel-dependent layer per the
particular client use of the channel-independent business service itself, with a business service interface layer
between the two. The business services use XML interfaces that define recognizable business functions (for
example, Verify Identity, Provide Bank Details, Produce Statement, and so on) and follow standard practices
such as thorough documentation of usage and fault notification.

Figure 10.4. A general service in the HCA.

Standard Life built a software framework around its infrastructure, allowing applications to concentrate on the
business code required within each layer rather than low-level infrastructure concerns. The framework is built
around Java and COBOL interfaces, abstracting the underlying infrastructure through common APIs. In
particular, the framework handles the following aspects of service invocation: operating platform issues,
transport protocols, target message queues, failure handling, and time-dependent responses.

For example, this framework allows applications, when invoking a business service, to request the service by
name and version. The software framework and runtime business services directory takes care of all other
aspects. Standard Life's use of a business services directory (BSD) is similar to that provided by, although
predating, UDDI. The BSD is accessed only through the framework and contains service endpoints with
particular quality-of-service attributes.

Standard Life's SOA implementation enables the company to provide business functions over many business
channels through its business services layer (see Figure 10.4). Standard Life has leveraged its catalog of
reusable business services to lower costs and increase its competitive standing and revenue. New combinations
of services are delivered to agents and customers. Customer service is improved by providing business
functions as reusable business services that can then be deployed into any channel. This delivers on the promise
of a single brand across multiple products and channels.

10.1.3. Impact of the Project

The impact of the move toward an SOA at Standard Life has lead to the following results:

73 service-consuming applications running in production.

40% of the company's backend transactions come through its SOA (an average of 1.6 million transactions a
day).

297 business services in production and available for reuse.

51% of services are reused, and the instances of reuse show a development savings in excess of L2m
(US$3.64m).

Standard Life's SOA implementation spans the major business units of the company. As of this writing, this
includes implementations across all the main U.K. operating companies in the Standard Life Group. The
company's Canadian operations also use the same design patterns, framework, and process. Overall, the
approach was reusable across its environment, allowing production-ready applications to be deployed within six
months.

Standard Life hired Forrester Research to review and checkpoint its approach to SOA, to take an independent
account of the impact. Forrester has endorsed Standard Life's approach as either a best practice or close to one,
across all their criteria for reviewing SOAs.

The concept and implementation of the company's SOA resulted in the visible external or customer-facing
outcomes of this endeavor. Figure 10.5, a small sample of what is in production, illustrates the use of a portfolio
of business services across many channels and applications. For example, Provide Pension Valuation is used in
Folders (supporting teleservicing of customer requests), CSOL (Customer Services Online, Client view—client
and policy servicing delivered for agents through the award-winning AdvisorZone Extranet), and Contract
Enquiry Messaging to Industry Portals and Advisers' Back Office software solutions.

Figure 10.5. Sample Standard Life business services and channel applications.

[View full size image]

The reuse achieved by this project has been measured and represents a development saving of over L2,000,000
(US$3,640,000). This measured figure does not include the additional savings realized in operational support
and service delivery functions that arise as a result of implementing a dynamic, unified enterprise architecture
and the consistency of application behavior that results from building on a common framework.

Standard Life determined the preceding savings—in return on investment on its SOA—as a function of the
following metrics:

How many services are in use?

How many are reused in two or more applications?

How many instances of each application exist that reuse services?

What is the value of such reuse as savings in development costs?

The chief contributing factor to the company's ROI is the reuse of services in multiple applications and
instances of these applications. Therefore, there was a strong focus in facilitating and measuring reuse. To
facilitate reuse, the company implemented an analysis and design-time catalog, added tools for documenting and
publicizing each new service, created business service definitions and interfaces, and identified functional and
non-functional characteristics that impact the services. Much of the metrics data on reuse is automatically
collected from the framework during use (service name, version, used by, used for, and so on), with some data
manually populated by development teams.

Operationally, the following flow of ideas explains how the IT team successfully monitors and manages reuse of
the SOA model:

A common framework enforces standardization.

Applications are built and delivered in a consistent manner using this framework.

Logging events are correlated end to end across different platforms within the framework.

Data-mining tools interrogate these logging events.

Component interaction data is available from the framework.

Impact analysis tools interrogate component interaction information and the support system management.

10.1.4. Lessons Learned

The Standard Life IT team identified six lessons learned from this project:

SOA needs technology, processes, and people. This might be obvious, but SOA isn't just technology; it
also involves processes and people. Standard Life had to shift its culture to become service oriented. The
company changed the skill set and trained 250 people in XML, getting analysts much more involved in the
definition of XML schemas for reusable interfaces. In 2001, Web services technology was not yet mature
enough for Standard Life to adopt in its organization. In its evaluation of Web services, the company
concluded that it would use Web services for external messaging links to make it easier to integrate with
business partners. Internally, its custom software framework masked the applications from the underlying
communication protocols and other low-level concerns. Therefore, there was no need for Web services
internally. Thus, there was no cost case to adopt Web services within the mature SOA that is already
delivering returns.

SOA needs aligned architecture and operational and development groups. Standard Life recognized the
need to align architecture, development, and operational groups. In the company's experience, if any one of
these groups pulled in a different direction, the overall SOA could be undermined. The company had to put
in place processes that ensured a coherent approach.

Use a framework to deliver consistency and achieve flexibility. The framework uncouples applications
from the infrastructure, and it allows applications and infrastructure to evolve independently. Some in the
organization thought that establishing a framework would mean the "de-skilling" of some teams and a lack
of flexibility. However, by decoupling applications from infrastructure, it allows the applications to evolve
and allows the teams to manage change in those applications. This makes the applications, and therefore
the system, more flexible.

SOA needs management of a portfolio of services. The IT team members found that you should not
underestimate the need to manage the portfolio of services and to continually communicate the value of
doing this to the organization. They found that a virtual team can work well. Earlier, when they had a single
central team, they did not get the buy-in they needed to achieve their goals.

SOA can deliver real savings. Although this was not really a true lesson learned, it was nice to get
confirmation on what they thought at the outset. Consider defining a system of metrics during the
development of your business service management and business service catalog.

Establish a system of metrics as part of your SOA project. To keep the momentum, establish a metrics
system as part of the approach and communicate the good news. The IT team communicated the metrics
internally at many levels and even some externally. This lead to popular support of the SOA project.

10.1. Case Study: SOA in the Insurance Industry
The Standard Life Assurance Company is one of the world's leading mutual financial services companies. With

more than 175 years of continuous services to its customer, Standard Life is the largest mutual assurance
company in Europe, with more than 4 million customers and L100 billion in assets under management as of
January 2005. In this case study, the Standard Life Assurance Company evolved its infrastructure from a focus
on the reuse of code at the data layer to a mature implementation of a service-oriented architecture.

10.1.1. IT and Business Challenges

Standard Life needed to meet two main business challenges: enhance its business channels while developing
new ones, and anticipate and adapt to rapid changes in the environment. In the course of business, Standard Life
continues to face new challenges due to the increasing rate of change and complexity of operating its business.
Furthermore, the challenge in 2005 lay in the need to deliver more from less, finding creative ways to manage or
reduce its cost base without affecting its current services.

On top of these two business challenges, the technical implementation for Standard Life's architecture needed to
satisfy a number of design requirements and considerations so that it could achieve the following technical
advantages:

Maintain design consistency

Offer simplicity of design

Provide supportability, scalability, and recoverability

Identify common code patterns

Provide clear guidance on technical models

Support efficient problem diagnosis

Advise business logic placement

Allow impact-free change

Increase system performance

Enable an easy-to-develop environment

Provide useful documentation

Standard Life's SOA architecture plan, and the supporting framework and infrastructure, began with the
introduction of its Application Design Patterns defined between 1999 and 2001, at which time Web services
standards and tools were not yet mature. Therefore, the company needed to build an implementation that could
adapt the available technologies at hand.

< Day Day Up >

< Day Day Up >

10.2.3. Impact of the Project

The MoJ and BRZ had the previous court case management system for over a decade, and it proved to be a
great success in terms of efficiency and ease of access to information. However, with new requirements, some of
the existing solutions needed upgrading. They identified two main problems: proprietary data formats tied to
legacy applications and proprietary APIs tied to the application service provider (xSP) system.

The following applications were affected by the project:

Land register: As a public register, anyone can inquire about the details of the ownership of any given plot
of land. Users have been able to make this type of inquiry over the Internet since 1999.

Commercial register: A service for formally registering a company for business, inquiring and updating
specifics, as well as deleting information is also available over the Internet.

Court automation: As part of a long-running Redesign project, most aspects of court proceedings (3.7
million cases per year) have been automated, specifically in the areas of civil cases (where there are
around 850,000 cases per year), enforcement cases (1,231,000), criminal cases (125,000), and prosecution
proceedings (655,000).

Electronic communication in the legal field: Approximately 2.1 million cases per year are filed
electronically, which includes 85% of civil actions and 60% of enforcement-applications. (Telekom
Austria is used as an Internet service provider to connect key customers of justice like lawyers, banks, and
insurance companies.)

Electronic learning: Interactive multimedia self-teaching modules offer education for end-users of the
system.

Publication of court edicts on the Internet: Bankruptcy cases are published via the Internet in legally
binding form, saving the costs of newspaper advertisements. See www.edikte.justiz.gv.at. Because of the
success of this application, publications for auctions of real estate properties were added, as well as all
other court publications.

The project impacted not just the MoJ and BRZ but also its partners and the general public's access and use of
the system. Changes to the data format and the APIs—while maintaining backward compatibility—affected the
applications within the MoJ as well as five different xSP business partners of the MoJ. Furthermore, it also
affected all Austrian attorneys who work with the MoJ through the xSPs—all this while continuing the goal to
support 3.7 million new cases each year.

10.2.4. Lessons Learned

The Austrian Ministry of Justice learned four lessons from this project experience:

Despite multiple protocol conversions, performance might not always be detrimentally affected. Due to
the nature of the distributed environment and the multiple protocol conversions at different layers, the MoJ
was concerned that it could impact the performance of the actual service. However, despite the
dependencies on an external provider (the xSP), the interactions through a CICS gateway to the mainframe
applications, and the Java RMI invocations, it turns out that the performance impact was not that
significant.

You might need individual solutions for different programming languages. Multiple client technologies
were used by the xSPs to implement the SOAP calls to the MoJ application servers, written in C and
Java—a concern for SOAP interoperability issues. However, it turned out that the major interoperability
problems actually came from the client-authenticated SSL protocol—from Web browser to Web server.
The implementation team found individual solutions for this.

The Apache Axis and Tomcat servers at the time did not have sufficient support for services management.
The Apache Axis Web server running Tomcat, which was used to provide the SOAP service interaction, at
the time did not have sufficient support for non-functional aspects such as logging, metering, and billing the
usage of Web services data. The implementation team had to build a lot of these tools by hand to enable
this level of Web services management.

Deploying services across a firewall in a DMZ requires careful balance. A final lesson learned was that
deploying the services in a DMZ requires a clear understanding of system administration functions in
balance with network security; the access to resources in the DMZ required careful restricted access.

The technical issues of this project turned out to be in the realm of feasibility, although there were a few
unexpected surprises. Essentially, the operation of the system turned out smoother than expected in terms of
performance.

10.2. Case Study: SOA in Government Services
Government systems prove to be some of the most complex types of organizations, involving many variations

on organizational hierarchies (districts, departments, ministries, and so on), legislative or legal requirements, and
a multitude of technical directions. This case study involves the Austrian Federal Ministry of Justice (MoJ) and
its IT services provider, BundesRechenZentrum GmbH (BRZ), in an e-government project in 2002 to modernize
and deliver effective government-to-business (G2B) and government-to-citizen (G2C) services. The Austrian
MoJ has about 7,400 people, consisting of judges, prosecutors, clerks, and other administrators covering the
district, appeals, supreme, and high courts. This does not include the 3,400 other persons who staff the
nationwide system of 28 prisons.

10.2.1. IT and Business Challenges

The main challenge in this project was to connect multiple application service providers to a number of
government databases to improve access to judicial records. In addition to the issues of handling legal document
access and exchange between various agencies and partners, the existing infrastructure also had a specific
proprietary set of APIs, which the new system had to maintain for backward compatibility.

The key goals for the project were to overlay a new, modern, flexible infrastructure over the existing database
systems, improving the interfaces for any type of service provider (an xSP), and still maintain compatibility with
users of the system with older tools—all to better serve the needs of the legal community.

The MoJ created a project stakeholders model identifying the different groups involved in creating this project.
The overall steering committee worked with the project leaders from each team: MoJ personnel, BRZ personnel,
and personnel from IBM. These project teams developed multiple working groups that interacted with experts
from each key user group they intended to support.

The MoJ provided funding and subject-matter experts. BRZ provided development personnel with knowledge of
the legacy application, as well as additional subject-matter experts. IBM provided development personnel,
expertise in object technology, project management staff, and the company's experiences from previous
international court system projects.

10.2.2. Technical Implementation

The previous customer model of the project, which the MoJ intended to continue, provided access to the court
documents through the xSPs, whereby the xSPs were responsible for providing end-user access.

Customers of the system (that is, attorneys and other government-related businesses) pay a certain transaction
fee to the xSPs, a portion of which is recovered by the MoJ. The fees vary by transaction, and the data access is
logged at the xSP, with the customer getting charged according to the number of bytes transmitted.

The change to the technical infrastructure included a new SOAP-based Web services application server placed
in a DMZ between the MoJ intranet and the xSP's systems, accessed through the Internet (see Figure 10.6). The
Web services application server then connects to the MoJs backend systems consisting of IBM S/390®
mainframes. The Web services application server handles SOAP requests from the xSPs described in XML and,
as an intermediary, translates these to Java Remote Method Invocations over TCP/IP to internal applications on
the MoJ intranet. The interfaces to these services that the xSPs access are described in WSDL.

Figure 10.6. The Austrian Ministry of Justice Web services project.

[View full size image]

http://www.edikte.justiz.gv.at

< Day Day Up >

< Day Day Up >

10.3. Summary
These two case studies provided views into SOA projects that are independent of the protocol mechanism; that

is, one project used Web services while the other built its own system. Both examples showed how intranet and
extranet applications can exist in the same architecture. The lessons learned from each project included the
emphasis that SOA needs a combination of technology processes and people to make it work and that it can
deliver real savings with surprisingly smooth performance.

< Day Day Up >

< Day Day Up >

Chapter 11. Navigating Forward
"Following the light of the sun, we left the Old World."

—Christopher Columbus

In this book, we navigated through a broad range of issues that you can expect when building an SOA solution.
As stated at the beginning, to go into detail for all possible aspects that you need to consider when transforming
your business and IT systems is too large a task for a single book. Nevertheless, we think we have provided
necessary and sufficient details on service-oriented architectures and why and how they are important for any
business to operate flexibly in a global economy.

< Day Day Up >

< Day Day Up >

11.1. What We Learned
The foremost lesson to take from our experience in SOA projects is that you will need to deal with the whole

enterprise—not just the IT departments, but anyone in the company involved and working as a service provider,
service requestor, or both. This approach differs from those in the 1980s and 1990s, when the enterprise data
model proved to be an enormous effort, getting people lost in details and minutiae. With service orientation, the
focus is on providing an infrastructure that is as flexible as needed by the agile enterprises of today.

An SOA results in flexibility and not just within your own organization. It paves the way to build
service-oriented business relationships with partners, suppliers, and customers. Another result is a saturation of
sophisticated applications throughout your enterprise, building a competitive advantage that can shift the whole
organization toward quicker reaction to customer needs, anywhere in the world. All this leads to the architectural
principles described in Chapter 3, "Architecture Elements."

As we ourselves discovered more about service orientation, we came to understand that there are success
factors that stem just from having a common understanding across the enterprise—you will need this
understanding and a common language to facilitate the change toward greater agility. Though you can take
incremental steps toward service orientation in many areas of your software, what you really need is a business
transformation process under careful orchestration and guidance throughout the enterprise. On this point, we
described (in Chapters 3 and 4) the aspects related to governance (IT and business), the need for special SOA
project management, and the overall architectural blueprint that acts as an outline for the enterprise. These
factors combined are what provide the real roadmap toward business agility.

Applying technology correctly can pave the way for the flexibility to change and continuous business
innovation. This requires an infrastructure that supports self-defined, loosely coupled interfaces. Additionally, it
calls for the use of tools from emerging technologies that incorporate existing assets through automation,
virtualization, and integration. These tools also need to support self-defining, declarative semantics, as well as
strong analysis and compositional techniques based on software engineering techniques like aspect-oriented
programming.

As outlined in Chapter 4, "SOA Project Planning Aspects," the concepts, the services, and their
inter-communication all need to be standardized in order to achieve loose-coupling and flexible interoperability.
In addition, there also needs to be a change in how the organization develops these SOA-based systems. We
showed that new roles come into play in the SOA model. We also encountered a need for closer cooperation
between IT and line-of-business representatives.

We learned that most existing IT architecture can be a choke point for business innovation, as monolithic
systems and applications cannot be easily reused, and that each generation comes with its own monoliths and
assumptions. Merger and acquisition activities and the requirement for new ways of doing business
electronically have proportionally grown the need for integration. Ad-hoc integration solutions that were used to
link dedicated systems together are often custom-made solutions that create connections that are difficult to
change and maintain.

Hence, a new architecture is required that overcomes these deficiencies. We showed in this book how the
concepts of SOA—though not a totally new approach in principle—can help create an infrastructure, a
development environment, and an integrated approach between IT and business groups within an enterprise and
beyond. These SOA concepts provide the necessary base for flexible IT supporting an agile business.

To a certain degree, a lack of standards limits the capability to deliver meaningful interoperability. However,
our collective experience has shown that the applicability of Web services and related industry standards can
allow organizations to cross the barriers of programming and operating systems built up over the past decades.

The final lesson we learned is that the strength of your architecture is key to its success. A strong plan saves
you from doing a big-bang replacement of systems with potential high risks of failure. Instead, a strategy of
small improvements can help justify cost. Factors that play an important role here are common standards for
communication and description (as given by SOAP, WSDL, and other WS-standards), as well as an
understanding of industry and cross-industry semantics and the taxonomy of services (refer to Chapter 5,
"Aspects of Analysis and Design").

< Day Day Up >

< Day Day Up >

where you should initiate your first SOA project to create the first incarnation. This also means a need for
well-defined processes and documentation and establishing architectural guidelines early on (see Chapters
3 and 5 through 9). In addition, an organizational infrastructure has to be set up to ensure optimal reuse and
integration of all aspects of the application lifecycle including deployment.

6.

The first step is the hardest, so plan ahead (see Chapter 4). For successful project management of SOA
projects, it is key to leverage best practices and patterns experience (such as tooling, consulting) and to use
experienced practitioners to define the first set of infrastructure and business services (for example, to
determine what is the right granularity for services). Finally, a set of integrated tools or an SOA workbench
that allows business and IT people to communicate on common objects can help bridge the "language"
gap—that is, translate business requirements into technical implementations.

7.

Adopt innovative software engineering principles (see Chapters 3 and 5 through 9). This includes
open-source development principles as well as new software engineering techniques such as service
modeling (analysis and design), event-based models driven by business situations, and transformations into
implementations patterns, supported by adequate tools.

11.2. Guiding Principles
This book represents, as with any other printed document, only a snapshot of time based on the accumulated

knowledge and insights from ongoing projects at enterprises, in development, and in research laboratories. As
with any new discipline, service-oriented architecture and the supportive on-demand operating environment will
continue to evolve as subjects of further development.

Summarizing, we can say that an SOA enables flexible connectivity of applications or resources by doing the
following:

Representing every application or resource as a service with a standardized interface

Enabling them to exchange structured information (messages, documents, business objects)

Mediating the message exchange through a service integration bus

Providing on-ramps to the bus for existing application environments

This allows quicker combinations of new and existing applications to address changing business needs and
improve operational effectiveness by managing the topology of the application network.

The principles of SOA might sound like a simple approach; they might indicate a lack of sophistication or a
"boil-the-ocean" approach. But this does not mean it is simplistic. An SOA, rather, is a smart way of allowing
gradual and continuous improvements based on easy-to-understand patterns and a set of commonly accepted
standards.

Based on our analysis of the collective experience of many IBM teams in more than 70 client projects in this
area during the last two years, we can name seven guiding principles to consider when entering the SOA
adventure:

1.

SOA requires CEO- and CIO-level commitment (see Chapters 1, 2, and 4). SOA is not just a product for
which standard IT ROI equations apply, nor is it just a new IT technology to apply. But to justify the
transition toward SOA, consideration of both IT and business benefits are required.

2.

The business team and IT team work hand-in-hand (see Chapters 4 and 5). SOA is all about flexible
business processes that IT offers the means to implement. Adequate forms of business process modeling
and industry or enterprise decomposition are the first critical steps leading to a well-defined set of
services.

3.

Avoid the "big-bang" approach (see Chapters 3 and 4). This means to start small by selecting a
well-defined application or business process area. Then use the SOA blueprint to establish an initial target
architecture, and finally, leverage existing data and backend processes using adaptor technologies.

4.

Fully embrace the use of standards(see Chapters 3 and 6 through 9). Here we especially refer to open
standards (for example, the Web services standards) and open source, providing a new and proven
approach for a collective endeavor toward a greater target to master global business requirements in a
quickly shrinking world.

5.

Governance is critical for success (see Chapter 4). We recommend, as a first step toward establishing or
enhancing the end-to-end implementation process, that you "seed" your SOA center of excellence. This is

< Day Day Up >

< Day Day Up >

assets (as described in Chapter 6, "Enterprise Solution Assets"). Communications between IT and business
groups are becoming more sophisticated and automated, resulting in easier and less error-prone interactions.

11.3.6. SOA Programming Models

As discussed in this book, service-oriented architecture is not new, and its concepts allow gradual
transformation and integration of existing systems. Additionally, with regard to the existing skills in a large array
of programming languages used to build existing IT systems, there is a need to learn how to create services
around and in those systems. This affects not just COBOL or CICS, C++ or C#, Visual Basic® or Java, but in
some cases, it even extends to applications in FORTRAN and PL/1. We expect programming model support for
any such system very soon, even more than the object-oriented aspects have been taken in by those systems in
the past. In this context, there are technologies such as SDO that provide a unified framework for service data
access.

A.11.2

11.3.7. Virtual Services Platform

IT infrastructure might see similar changes toward virtualization of system and network resources so that they
can have business services reach all the way down the abstraction levels to quantifiable storage units and
processing nodes. In this context, grid computing introduces autonomic provisioning of service resources that
leads to actual distributed computing, so that business services can initiate and interact across the entire
corporate network (perhaps even globally).

11.3.8. Event-Driven Architectures

As services become more commoditized and the IT infrastructure allows more and more flexible solutions to be
realized, the notion of events gains importance. We see in the enterprise service bus (ESB), as described in
Chapter 3, a very suitable means to allow event-driven solutions. The loosely coupled nature and the strict use
of self-describing interfaces, service brokers, and common event infrastructures enable you to concentrate on the
events as they occur in real business life. Whether planned and calculated or totally unpredictable, in an
appropriate architecture, they are manageable in a way similar to the emergency plans and rules.

11.3.9. Model-Driven Architectures

Business information itself might need to evolve and integrate to take advantage of the dynamics of SOA. With
the greater emphasis on model-driven architectures, the concepts common in software modeling today can go up
the chain into the activities of business analysts. Building this stronger correlation to business activities allows
the business units of an organization to become more directly involved in the IT architecture and planning of the
SOA.

A.11.3

11.3.10. Utility Services

When services become a common utility globally, business analysts may be asked to find new metrics,
processes, and concepts to quantify and describe the many different types of business activities. What we see
nowadays in strategic outsourcing, in which selected business partners are bound in long-term contracts, will
soon become a market of point solutions that are as easily interchangeable, as seen in manufacturing industries.
It is very likely that due to the globalizing pressures on enterprises, the aforementioned standards, taxonomies,
and semantics will quickly reach a maturity similar to that available in the manufacturing industry today.

11.3.11. Industry Adoption

In terms of reuse and portability across environments, there is a software analogy to the parts market in the
manufacturing industry: The software market can also become one in which standardized service
implementations allow interchangeability and replacement more easily. As specific taxonomies and industry
semantics evolve, industry services frameworks are being developed for vendors and consumers of services,
provided as online services, as "parts" implemented inside an enterprise IT system.

11.3. Future Directions
As of this writing, most of the aspects, tools, methods, and standards described in this book are in a state of

early adoption and, in some cases, have been defined and their usefulness proven.

In the areas of modeling, aspects of security, and service assets development, we will soon see new ideas that
follow the thoughts we have outlined as being based on experiences from real-life projects of various customers.
This shows that the principles of SOA are applicable to many solutions in many industries. However, to become
more efficient and react quickly to business needs, there is still a market to establish of industry frameworks,
common taxonomies, and semantics for specialized services and tools.

With the model of an on-demand operating environment in mind, you can expect to see special services to come
that not only relate to business applications and integration for B2B or electronic markets, but also utility
services that allow you to create an entire market of service providers on the Web. In addition, there are many
ways to implement SOA that are agnostic of the programming platform, with various possible technologies you
can choose to implement.

11.3.1. Technology Standards

Some standards have been well established for a while, thankfully, such as the SOAP messaging protocol and
the WSDL description language. There are others, however, that are still at the proposal stage, while still others
are starting to reach maturity within standardization organizations like OASIS and the W3C. We hesitate to
indicate which proposed standards, due to the fairly rapid rate of progression of standards today. You should
examine the Web sites of these organizations for their Web services proposed standards to ascertain their current
status.

A.11.1

11.3.2. Web Services Monitoring and Visualization

Current research on Web services monitoring and visualization, including event-driven architectures that support
these tasks, is starting to emerge from research labs. More sophisticated policy and management tools can help
the SOA administrators and operation analysts to better care for the flexible, self-organization environment of
SOA-enabled organizations that operate on a large, even global, scale.

11.3.3. Semantic Web Services

Semantic Web services are another topic that is gaining weight, especially when you have to deal with
increasing numbers of connections, foreign units, and periodically emerging new approaches, products, and ideas
that all need to be communicated and tested so that they can be used as designed. Semantic services provide a
deeper understanding and provide context for how the information or the service is supposed to be used. Such
semantic information enables architects and designers to know how to more effectively incorporate these
services into their applications and architecture. A corollary is that new forms of directory and search engines
will likely emerge from this activity.

11.3.4. Open Development Platforms

The development tools for SOA will be based on common, open platforms in which various individuals' roles
can match the instrumentation and cooperate, just as the various SOA roles depend on each other. Open software
development platforms, such as Eclipse, thus will become more integrated with business modeling and business
process tools. This avoids or minimizes locking into proprietary development platforms, a significant obstacle
particularly when engaging multiple organizations or companies in your SOA applications.

11.3.5. Services Assets

There is now an evolution toward support for model-driven development, and for finding and reusing service

< Day Day Up >

< Day Day Up >

11.4. Summary
As you can see, SOA can be a large subject rather than just one specific topic. It reaches across many existing

problems that both business and IT have faced for a long time. Although it provides a paradigm of how the two
worlds can work together, this does not come without significant effort. The promises of overall business agility
and versatility may be the real motivators for this merger. As a departing thought, we would like to reiterate the
true impact of this new paradigm: SOA can transform the very life structure of not just IT but the functions of
the entire organization.

< Day Day Up >

< Day Day Up >

11.5. Links to developerWorks
A.11.1 You can see an up-to-date list of technology specifications and standards related to SOA and Web
services at http://www-128.ibm.com/developerworks/webservices/standards/.

A.11.2 IBM's programming model for SOA enables software developers to create and reuse IT assets, using
component types, wiring, templates, application adapters, uniform data representation and an enterprise service
bus. http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html.

A.11.3 This three-part series by Alan Brown and Jim Conallen explores the nature of Model-Driven
Architectures in depth. http://www.ibm.com/developerworks/rational/library/3100.html.

< Day Day Up >

http://www-128.ibm.com/developerworks/webservices/standards/
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/rational/library/3100.html

< Day Day Up >

An XML-based language designed to enable task-sharing for a service-oriented architecture environment—even
across multiple organizations—by orchestrating and choreographing individual Web services. Using BPEL, a
developer formally describes a business process in such a way that any cooperating entity can perform one or
more steps in the process the same way. In a supply-chain process, for example, a BPEL program might describe
a business protocol that formalizes what pieces of information a product order consists of and what exceptions
may have to be handled. BPEL does not specify how a given service should process a given order internally.

business process modeling (BPM)

An analysis and design activity performed by business consultants within a company to model both the current
state of an enterprise and the intended future state by using BPM tools. Usually, to move from the current state
to the future state requires IT transformation.

business-to-business (B2B)

A set of business processes, usually automated, between trading partners. It is performed at much higher
volumes than business-to-consumer (B2C) applications.

business-to-consumer (B2C)

A form of electronic commerce in which products or services are sold from a company directly to a consumer.

choreography

A mechanism for orchestrating multiple services together by specifying (usually by graphical tools) the linkages
and coordination between them to create a business process. It also defines the flow of information among the
set of services, participants, and activities.

Common Object Request Broker Architecture (CORBA)

A set of industry standards published by OMG that defines a distributed model for object application systems.

component

A modular unit of functionality accessed through one or more interfaces.

component business model (CBM)

An enterprise model consisting of autonomous and manageable components. Each component is a grouping of
the people, technology, and resources that deliver specific business value and potentially are able to operate
independently. This helps decision-makers to "disentangle" the organization, cutting through historical
boundaries arising along organizational, product, channel, geography, and application lines. It is an end-to-end
way of looking at the business through all the layers—not just the business layer but the application layer and IT
infrastructure, too. The consolidated view of all the layers is the foundation for recommendations concerning the
enterprise.

component-based development (CBD)

An approach to the design, construction, implementation, and evolution of software applications. Software
applications are assembled from components from a variety of sources; the components themselves may be
written in several different programming languages and run on several different platforms.

componentization

Decomposition of an architecture into interchangeable pieces or components to assemble an application from
reusable components within frameworks. SOA and Web services go a step further by encapsulating components
in a standards-based service interface that allows components to be reused outside their native framework.
Componentization is not limited to software; through the use of subcontracting and outsourcing, it can also apply
to business organizations and processes.

confidentiality

A mechanism to ensure that data in transit or in storage cannot be read except by authorized systems or people.
Confidentiality for Web services is often achieved using encryption, implemented either at a transport level
using SSL or at a message level using XML encryption.

demilitarized zone (DMZ)

A computer host (called the bastion host) or a small network inserted as a "neutral zone" between a company's
private network and the outside public network. This zone protects the private network from possible intrusions.

digital signature

A type of electronic signature that is used to guarantee the integrity of the data. When linked to the identity of
the signer—using a security token such as X.509 digital certificates—a digital signature can be used for
nonrepudiation since it links the signer with the signed document.

Eclipse

An open platform for tool integration built by an open community of tool providers. Operating under an
open-source paradigm and with a common public license that provides royalty-free source code and worldwide
redistribution rights, the Eclipse platform provides tool developers with ultimate flexibility and control over their
software technology.

Eclipse Modeling Framework (EMF)

An open-source framework based on Eclipse that targets MDA development by providing facilities such as
customizable graphical editors and Eclipse plug-ins.

electronic business using eXtensible Markup Language (ebXML)

A set of XML-based standards for business data sponsored by OASIS and UN/CEFACT, the United Nations'
electronic business unit. ebXML was created to prevent fragmentation of electronic commerce into multiple,
incompatible XML dialects and to provide a migration path for existing users of EDI, the pre-Internet
e-commerce standard.

electronic data interchange (EDI)

A standard format for exchanging business data. A message contains a string of data elements, each of which
represents a singular fact such as a price, product model number, and so forth, separated by a delimiter.

enterprise application integration (EAI)

The software and architectural principles to bring together (integrate) a set of enterprise applications aimed at
modernizing, consolidating, and coordinating the enterprise's IT landscape.

enterprise information integration (EII)

The process of integrating structured and unstructured information sources into a unified information source.

Enterprise Java Beans (EJB)

A specification developed by Sun Microsystems that defines a Java API for server-side enterprise components
that execute within a J2EE-compliant applicant server. The specification also details remote communication
protocols, persistence, transactions, concurrency control, naming services, and deployment descriptors.

Enterprise Service Bus (ESB)

An open standards–based distributed messaging infrastructure that provides a secure, reliable, event-driven, and
interoperable framework for integrating enterprise applications in an implementation-independent fashion by
leveraging the principles of SOA.

enterprise solution asset (ESA)

Architectural assets that are reusable across enterprise projects and that help accelerate solution implementation.
ESAs are used to formalize architectural decisions and articulate best practices.

eXtensible Markup Language (XML)

A general-purpose markup language developed by the W3C for the definition, transmission, validation, and
interpretation of data/information between applications and between organizations. The extensibility allows the
creation of specialized markup languages and domain definitions with their own customized tags by using a
formal grammar and vocabulary (called an XSD).

extract transform load (ETL)

The processes that enable companies to move data from multiple sources, reformat and cleanse it, and load it
into another database, a data mart, or a data warehouse for analysis or onto another operational system to
support a business process.

graphical user interface (GUI)

A mechanism for interacting directly with a computing device using graphical display capabilities (such as
menus, widgets, icons, and controls) to make computer applications easier to use.

grid computing

The virtualization of distributed computing and data resources such as processing, network bandwidth, and
storage capacity to create a single system image, granting users and applications seamless access to vast IT
capabilities. Just as an Internet user views a unified instance of content via the Web, a grid user essentially sees
a single, large, virtual computer.

Hypertext Markup Language (HTML)

A markup language designed for the creation of Web pages and other information viewable in a browser.

Hypertext Transfer Protocol (HTTP)

The underlying communication protocol used by the World Wide Web. The protocol defines how messages are
formatted and transmitted and what actions Web servers and clients (such as browsers) should take in response
to various commands.

Hypertext Transfer Protocol Secure (HTTPS)

A secure version of HTTP in which a secure socket layer that encrypts the session data is used instead of plain
text socket communication.

IBM Rational Application Developer (RAD)

An integrated development environment (IDE) tool to quickly design, develop, analyze, test, profile, and deploy
Web, Web services, Java, J2EE, and Portal applications. Optimized for IBM WebSphere software and
supporting multivendor runtime environments, it is powered by the Eclipse open-source platform so that
developers can adapt and extend their development environment to match their needs and increase their
productivity.

IBM Rational Software Architect (RSA)

An integrated design and development tool that leverages model-driven development with the UML for creating
well-architected applications and services that allow you to unify all aspects of software design and
development. It includes all of the features of RSM and RAD.

IBM Rational Software Modeler (RSM)

A customizable, UML-based, visual modeling and design tool that enables users to clearly document and
communicate various system views to architects, systems analysts, and designers.

IBM WebSphere Application Server (WAS)

See WebSphere.

IBM WebSphere Business Integration (WBI)

The business integration solution suite from IBM for process integration, workforce management, and enterprise
application connectivity.

Insurance Application Architecture (IAA)

An architecture published by IBM for the insurance industry. It includes a business model, a design model of
components, interfaces, and messages, a generic design framework for product definition and agreement
administration, and design models for the creation of data warehouses.

Internet Inter-Orb Protocol (IIOP)

An open-standard protocol published by OMG to be used for communication in CORBA-based systems.

Java 2 Enterprise Edition (J2EE)

A standard from Sun Microsystems for a platform-independent Java environment for developing distributed,
multitier architecture applications. The standard details modular enterprise components, using several
technologies such as EJB, JDBC, JSP, servlets, and XML, that can be executed on a J2EE-compliant application
server.

Java 2 Standard Edition (J2SE)

A collection of Java API that provides an environment for developing Java applications.

Java API for XML-Based RPC (JAX-RPC)

A Java-based programming model for the development of SOAP applications. It simplifies development by
abstracting SOAP protocol-level runtime mechanisms and providing mapping services between Java and the
WSDL. It is also referred to as JSR 101.

Java Connector Architecture (JCA)

A J2EE-based technology standard for connecting application servers and enterprise information systems (EIS).

Java Database Connectivity (JDBC)

A Java API for interacting with any database by providing methods for querying and updating data. It is oriented
toward relational databases.

Java Messaging Service (JMS)

A Java API for interacting with messaging-based systems. The API supports both the point-to-point (and
queuing) and publish/subscribe interaction models. It is the primary standard to provide a reliable foundation for
loosely coupled, asynchronous messaging within a distributed environment.

Java Specification Request (JSR)

A document that formally describes proposed specifications and technologies to be added to the Java platform.
Formal public reviews of JSRs are conducted before they become final and are dictated by the Java Community
Process (JCP).

JavaServer Faces (JSF)

Java-based technology that leverages existing, standard GUI and Web-tier concepts without limiting developers
to a particular markup language, protocol, or client device. It consists of APIs for representing user interface
components and managing their state, handling events and input validation, defining page navigation, and
supporting internationalization and accessibility.

JavaServer Pages (JSP)

A JavaServer-side technology that enables developers to dynamically generate HTML, XML, or other markup
languages. This allows Java code and certain predefined actions to be embedded into static page content.

key performance indicators (KPI)

Quantifiable measurements based on financial and nonfinancial metrics that reflect the critical success factors of
an organization. These are used in the CBM to assess the present state of business and to prescribe the course of
action.

mediation

Functionality provided by an ESB on XML messages and documents that flow through the bus. Mediation
facilities include data transformation and content augmentation, dynamic routing, and customized handlers.

message queue (MQ)

The method by which a process (or program instance) can exchange or pass data using an interface to a
message-based system. It is also used in reference to IBM's WebSphere MQ product, which provides
transactional message queuing and JMS facilities for many platforms.

message-driven bean (MDB)

An EJB designed to handle asynchronous service invocations. It is invoked by a J2EE container when a JMS
message arrives at the endpoint associated with the bean.

message-oriented middleware (MOM)

The term for application communication software that connects systems in a network by carrying and distributing
messages between them. The messages may contain data and/or software instructions. MOM infrastructure is
typically built around a queuing system that stores messages pending delivery and keeps track of whether and
when each message has been delivered.

meta-object facility (MOF)

A set of standard interfaces from OMG that can be used to define and manipulate a set of interoperable
metamodels and their corresponding models.

model-driven architecture (MDA)

Model-driven architecture is a software design methodology proposed and sponsored by the OMG. It defines
levels of abstract, platform-independent models that can be used to generate more concrete models using an
appropriate specification language. The generation from an abstract model (usually represented graphically) to a
platform-specific, concrete model is done by using automated tools.

New Generation of Operation Support Services (NGOSS)

An open standard published by the TeleManagement Forum for business solution framework and architecture.

Object Management Group (OMG)

An open membership consortium that produces and maintains computer-industry specifications for interoperable
enterprise applications. It is aimed at setting standards in object-oriented programming as well as system
modeling.

object-oriented analysis and design (OOAD)

A methodology for modeling an application by representing it as a collection of cooperating objects.

On Demand

IBM's vision of an enterprise orientation whose business processes are integrated end-to-end across the company
and with key partners, suppliers, and customers and that can respond with speed to any customer demand,
market opportunity, or external threat.

On Demand Operating Environment (ODOE)

A comprehensive set of product and solution offerings from IBM that enables an On Demand enterprise. These
solutions are categorized into integration, automation, and virtualization. Integration refers to creating business
flexibility by integrating disparate, unconnected business and IT processes. Automation refers to reducing costs
and increasing business responsiveness through IT and business linkage. Virtualization refers to improving
working capital and resource utilization.

ontology

A formal and rigorous conceptual schema about a domain that is typically represented as a hierarchical structure
containing all the relevant entities and their relationships and rules within that domain.

Open Application Group Integration Standards (OAGIS)

A standard created by the Open Application Group (OAGi) to create a common business language and
canonical model for application integration in organizations.

Open Grid Services Architecture (OGSA)

Standards published by globus.org that represent an evolution toward grid services architecture based on Web
services concepts and technologies. See also grid computing.

operational-level agreement (OLA)

A contract with the focus on operational issues with respect to the maintenance of the service and providing new
services.

orchestration

Interactions and process flow among services in a business process. See also choreography.

Organization for the Advancement of Structured Information Standards (OASIS)

An international consortium that drives the development, convergence, and adoption of e-business standards.
The consortium produces Web services standards and standardization efforts in the public sector and for
application-specific markets.

port type

An interface which is a logical grouping of operations and represents an abstract service type, independent of
transport protocol and data format.

public key infrastructure (PKI)

A system of digital certificates, certificate authorities (CA), and other registration authorities that verify and
authenticate the validity of each party involved in a transaction.

publish

The publish operation occurs when a service makes its service description available to a service requester.
Where and how it is published can vary depending on the requirements of the application.

quality of service (QoS)

A measure of a service's non-functional characteristics such as availability, performance, reliability, security,
and integrity. It is used to match the needs of a service requestor with those of the service provider.

Rational Unified Process (RUP)

An iterative, architecture-centric, software engineering process developed by IBM Rational by incorporating the
software engineering best practices. It establishes four phases of development, each of which is organized into a
number of separate iterations that must satisfy defined criteria before the next phase is undertaken. In the
inception phase, developers define the scope of the project and its business case. In the elaboration phase,
developers analyze the project's needs in greater detail and define its architectural foundation. In the construction
phase, developers create the application design and source code, and in the transition phase, developers deliver
the system to users.

Remote Method Invocation (RMI)

A RPC protocol published by Sun for accessing Java object methods remotely within a distributed application
system.

remote procedure call (RPC)

A protocol used in the client-server model that allows one application (the client) to request a service from
another application (the server) located on another computer in a network without having to understand network
details.

resource definition framework (RDF)

A family of specifications maintained by the W3C for a metadata model that provides an ontology system to
support the exchange of information and knowledge on the Web using XML as an interchange syntax. It
integrates information and content from library catalogues and worldwide directories to syndication and
aggregation of news.

reusable asset specification (RAS)

A set of concepts, notations, and guidelines for describing the reusable assets of business systems. The
specification focuses on specific reusable assets within (and occasionally across) architectural views and how to
document each asset.

RosettaNet

A nonprofit consortium working to create, implement, and promote open e-business standards and services.

Security Assertions Markup Language (SAML)

An XML standard by OASIS for exchanging security assertions between security domains, the identity provider,
and a service provider, for creating and exchanging authentication and authorization information.

service

An application component deployed on network-accessible platforms hosted by the service provider. Its
interface is described by a service description to be invoked by or to interact with a service requester.

service consumer

The role in a SOA played by programs that send service request messages and subsequently consume service
response messages according to the descriptions published by service providers.

Service Data Object (SDO)

A data programming architecture and API for the Java platform that unifies data programming across data source
types (relational databases, entity EJB components, XML sources, Web services, JCA, JSP), provides robust
support for common application patterns, and enables applications, tools, and frameworks to more easily query,
view, bind, update, and introspect data.

service description

The details of the service interface, including its data types, operations, binding information, and network
location. It could also include categorization and other metadata to facilitate discovery and utilization by service
requesters. The service description may be published to a registry such as UDDI. See also Web Services

Description Language (WSDL).

service provider

The role in a SOA played by programs that receive service request messages and subsequently send service
response messages to service consumers according to descriptions published by those programs.

service registry

A repository of service descriptions where service providers can publish their service descriptions. Service
requesters can find services and obtain binding information (in the service descriptions) for services during
development for static binding or during execution for dynamic binding. See also Universal Description,
Discovery, and Integration (UDDI).

service-level agreement (SLA)

A contract between a service provider and a service requester that stipulates a specified level of service. It
could contain agreements on support options, enforcement or penalty provisions for services not provided, a
guaranteed level of system performance, availability, and other QoS.

service-oriented architecture (SOA)

A framework for integrating business processes and supporting IT infrastructure as secure, standardized
components—services—that can be reused and combined to address changing business priorities.

service-oriented modeling and architecture (SOMA)

An IBM methodology that provides in-depth guidance for the identification, specification, and realization of
services. It uses techniques of domain analysis, BPM, CBM, and OOAD.

Simple Object Access Protocol (SOAP)

A XML-based messaging protocol maintained by W3C that is used to encode the information in Web service
request and response messages before sending them over a network. SOAP messages are independent of any
operating system or protocol and can be transported using a variety of protocols, including HTTP and JMS.

single sign-on (SSO)

A user or session authentication process that allows a user to provide one name and password and have
credentials propagated to access multiple systems and applications.

Unified Modeling Language (UML)

An accepted OMG standard that provides a general-purpose modeling and specification language for specifying
and visualizing complex systems. It has traditionally been used to specify, visualize, construct, and document
OOAD-based application projects.

uniform resource identifier (URI)

A generic term for all types of names and addresses that refer to objects on the World Wide Web. A URL is a
type of URI.

Universal Description, Discovery, and Integration (UDDI)

An OASIS standard for a platform-independent, XML-based registry to publish and discover network-based
software components and services.

virtual private network (VPN)

A method of accessing a private network in a secure way over public communication lines and networks.

virtualization

A set of technologies and tools that can help you aggregate pools of resources to achieve a consolidated view
throughout an IT environment. Virtualization technologies provide a logical—rather than physical—view of data,
computing power, storage capacity, and other resources.

WBI Server Foundation (WBI-SF)

A comprehensive edition of the WebSphere Application Server that provides enterprise extensions such as a
process engine to run BPEL, adapters for a wide range of enterprise information systems, and enhanced QoS.
See also WebSphere. Formerly, it was called the WAS Enterprise Edition.

Web Ontology Language (OWL)

A semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed
as a vocabulary extension of RDF.

Web services (WS)

A family of technologies that consist of specifications, protocols, and industry-based standards that are used by
heterogeneous applications to communicate, collaborate, and exchange information among themselves in a
secure, reliable, and interoperable manner. It is the primary technology for enabling and realizing SOA.

Web Services Description Language (WSDL)

A standard language for defining a Web service description. It uses XML and XSD to describe the port type and
its operations, the message formats, and the protocol bindings.

Web Services Distributed Management (WSDM)

An OASIS standard for distributed management by defining specifications to represent manageability interfaces
of resources as Web services (Management Using Web Services) and to describe Web services as resources
with manageability interfaces (Management of Web Services).

Web Services Interoperability Organization (WS-I)

An open industry effort chartered to promote Web services interoperability across platforms, applications, and
programming languages. The organization brings together a diverse community of Web services leaders to
respond to customer needs by providing guidance, recommended practices, and supporting resources for
developing interoperable Web services.

WebSphere

A J2EE-based application server platform that is the foundation of the IBM WebSphere software platform. It
provides support for dynamic e-business and SOA by providing an application deployment environment with
application services that provide enhanced capabilities for transaction management, as well as security,
performance, availability, connectivity, and scalability. Sometimes it is abbreviated to WAS.

WS-Addressing (WS-A)

A specification that defines XML elements to identify Web services endpoints and to provide end-to-end
endpoint identification in messages. This enables messaging systems to support message transmission through
networks that include processing nodes such as endpoint managers, firewalls, and gateways in a transport-neutral
manner.

WS-Federation

This specification defines mechanisms to allow different security realms to federate using different or like
mechanisms by allowing and brokering trust of identities, attributes, and authentication between participating
Web services.

WS-I Basic Profile

This profile is a specification defined by WS-I that provides interoperability guidance for core Web services
specifications such as SOAP, WSDL, and UDDI.

WS-Notification (WS-N)

A family of related white papers and specifications that defines a standard Web services approach to notification
using a topic-based publish/subscribe pattern. It includes standard message exchanges to be implemented by
service providers that want to participate in notifications, standard message exchanges for a notification broker
service provider (allowing publication of messages from entities that are not themselves service providers),
operational requirements expected of service providers and requestors that participate in notifications, and an
XML model that describes topics.

WS-Policy

A specification that provides a general-purpose model and corresponding syntax to describe and communicate
the policies of a Web service. It defines a base set of constructs that can be used and extended by other Web
services specifications to describe a broad range of service requirements, preferences, and capabilities. It
provides a flexible and extensible grammar for expressing the capabilities, requirements, and general
characteristics of entities in an XML Web services-based system. Policy expressions allow for both simple
declarative assertions as well as more sophisticated conditional assertions.

WS-Reliable Messaging (WS-RM)

A Web services specification that describes a protocol that allows messages to be delivered reliably between
distributed applications in the presence of software component, system, or network failures. The WS-RM
protocol defines how to identify, track, and manage the reliable delivery of messages between exactly two
parties, a source and a destination. It also defines a SOAP binding that is required for interoperability.

WS-Remote Portlets (WS-RP)

A specification that defines how to leverage SOAP-based Web services, which generate markup fragments
within a portal application. By defining a set of common interfaces, WS-RP allows portals to display remotely
running portlets inside their pages without requiring any additional programming by the portal developers. To
end users, it appears that the portlet is running locally within their portal, but in reality, the portlet resides in a
remotely running portlet container, and interaction occurs through the exchange of SOAP messages.

WS-Resource Framework (WS-RF)

A family of specifications for accessing stateful resources using Web services. Because Web service
implementations typically do not maintain state information during their interactions, their interfaces must
frequently allow for the manipulation of state—that is, data values that persist across and evolve as a result of
Web service interactions.

WS-Security (WS-S)

A Web service specification that describes security enhancements to SOAP messaging to provide quality of
protection through message integrity, message confidentiality, and single message authentication. It provides
three main mechanisms: security token propagation, message integrity, and message confidentiality. It provides a
foundation for further security specifications such as WS-Trust and WS-Federation.

WS-Trust

A specification that defines a language that uses the secure messaging mechanisms of WS-Security to define
additional primitives and extensions for the issuance, exchange, and validation of security tokens. WS-Trust also
enables the issuance and dissemination of credentials within different trust domains.

World Wide Web Consortium (W3C)

An international consortium in which member organizations develop and build consensus around Web
technologies through specifications, standards, and guidelines.

XML Path Language (XPath)

A language that describes a way to locate and process items in XML documents by using an addressing syntax
based on a path through the document's logical structure or hierarchy.

XML Schema Definition (XSD)

A W3C recommendation to formally describe the schema and elements in an XML document. It defines a
structure for the custom elements and their corresponding attributes, their relationship to each other, and what
types of information/data may be contained in them. This can be used to verify that the content of an XML
instance document adheres to a particular schema.

XML Stylesheet Language (XSL)

A W3C specification for a family of languages, such as XSLT and XPath, that describes how XML documents
are to be formatted or transformed.

XSL Transformation (XSLT)

A declarative language to describe how to convert an XML document from one structure into another structure
by specifying a set of templates and rules.

Glossary
access control list (ACL)

A mechanism for determining the access level and permissions that a given computing resource, such as a file or
database field, provides for a given identity.

agility

The capability to lower the enterprise's center of gravity and move with suppleness, skill, and control. See also
business agility.

application programming interface (API)

A set of routines and function definitions that abstract the implementation details and make it easier to develop
and build software applications.

application server

An application server is a server-side program in a distributed network that is dedicated to hosting the enterprise
application's business logic. It provides the middleware infrastructure as part of a multitier application,
consisting of a user interface server, a business logic server, and a database or transaction server.

Association for Cooperative Operations Research and Development (ACORD)

A global, nonprofit insurance association whose mission is to facilitate the development and use of standards for
the insurance, reinsurance, and related financial services industries.

authentication

The validation and verification of the identity of a user, device, or some other computing entity, often as a
prerequisite to allowing access to resources in a system. Authentication merely ensures that the entity is who it
claims to be, but it says nothing about the access rights of the entity.

authorization

The process of granting or denying access to an individual or computing entity. This allows access to various
resources based on the entity's identity. See also access control list(ACL).

business agility

The capability of an enterprise to respond with speed to market opportunities, external threats, or customer
demands by changing its business processes that are integrated end-to-end across the company and with key
partners, suppliers, and customers.

business process

A set of logically related tasks performed to achieve a defined business outcome. A process is a structured,
measured set of activities designed to meet the business objectives.

Business Process Execution Language (BPEL)

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

< Day Day Up >

< Day Day Up >

authentication credentials
authorization

privacy
WS-Policy
WS-Policy, leveraging

availability, SOA-driven management

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abstraction, service-oriented analysis and design
Component layer
Enterprise layer
Object layer
Process layer
Service layer

access constraints
achieving middleware independence with explicit process state
activities (service-oriented analysis and design)

categorizing services

identifying services

realization of services

specification of services

adapting
operating environment constraints

roles

adoption
enterprise adoption
enterprise-and-partner-network adoption
industry adoption
initial adoption
line-of-business adoption

adoption strategies
agility
aligning

IT with business processes and metrics

IT with business via incremental delivery

IT-to-business services alignment

analysis and design [See also models]
service-oriented analysis and design. [See service-oriented analysis]

application response measurement (ARM)
Application Services
applying SOA characteristics
architects

formalizing architectural decisions

identifying architectural best practices

performing product and package mappings

selecting architectural methodologies

SOA architects

architectural best practices, identifying
architectural decisions, formalizing
architectural methodologies, selecting
architecture

clarifying role of architects

event-driven architectures

model-driven architectures

security considerations

unraveling the concept of architecture

ARM (application response measurement)

asymmetric key systems

Austrian Federal Ministry of Justice (MoJ)

authentication

message authentication

security tokens

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

bandwidth, network bandwidth (performance)
basic security services, implementing
benefits of implementing SOA for business
binding performance
bottom-up synthesis, identifying services
BPM (business process modeling)
bus destination
business

benefits of implementing SOA 2nd

change

change, enterprise reconstruction

change, industry deconstruction

components and services

extinction of

opportunities that will be missed by not implementing SOA

rethinking components for business and applications

SOA value roadmap. [See SOA value roadmap]

value of SOA

when not to implement SOA

why companies need SOA

business analysts
business constraints
business expectations, monitoring
Business Function Services
business partners, coordinating policies between
business performance management
business process modeling (BPM)
business processes, aligning with IT and metrics
business service management 2nd
Business Services

< Day Day Up >

< Day Day Up >

operating environment constraints
technical model constraints
technology constraints. [See technology constraints]

content management
context, ESAs

multitiered disconnected operations
request response templates

contract dimension, loose-coupling
coordinating policies between business partners
corporations [See also business]
credential references
credential stores
cryptographic key policies
cryptography

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

capacity planning, scalability
case studies

SOA in Government Services

SOA in the Insurance Industry

SOA in the Insurance Industry, impact of project

SOA in the Insurance Industry, IT and business challenges

SOA in the Insurance Industry, lessons learned

SOA in the Insurance Industry, solution implementation

catalogs, ESAs
categorizing services
CBE (Common Base Event)
CBM (Component Business Modeling) 2nd
center of excellence (COE)
central governance
challenges to management perspectives
change

flexibility

in business, enterprise reconstruction

in business, industry deconstruction

characteristics of SOA
applying

data formats

information models

invocation patterns

location

platforms

programming languages

protocols

security

service models

service versioning 2nd

checklists for business change agility
client framework, request response templates
clients, solutions (request response templates)
COE (center of excellence)
cohesion, service-oriented analysis
Common Base Event (CBE)
Common Services
companies. [See business]
comparing solutions
Component Business Modeling (CBM) 2nd
component design and development centers
Component layer
components

business
reusable components 2nd

confidentiality
consequences, ESAs

multitiered disconnected operations

request response templates

constraints
access constraints

business constraints

expertise constraints

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data formats
data management
data protection policies
data store
data volume, performance
demilitarized zone (DMZ)
deployment, operational management
design patterns
designers
developers
digital models, creating digital models of business
digital signatures

XML digital signatures
digital signing
disaster-recovery NFRs
distributed governance
distributed service management, event-driven management
DMZ (demilitarized zone)
domains

information management domain
trust domains. [See trust domains]

driving forces

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EAI (enterprise application integration) 2nd
ebXML
EIF (IBM Tivoli Event Integration Faciltiy)
EII (enterprise information integration)
EMF (Eclipse Modeling Framework)
empowerment, governance
encryption

XML encryption
end-to-end transaction time, SLAs
enterprise adoption
enterprise application integration (EAI) 2nd
enterprise information integration (EII)
Enterprise layer
enterprise reconstruction
enterprise service bus. [See ESB]
enterprise services
enterprise-and-partner-network adoption
ESAs (enterprise solution assets)

catalogs
multitiered disconnected operations

consequences

context

forces

problem synopsis

solutions

request response templates 2nd

selecting

solving enterprise architecture problems

ESB (enterprise service bus) 2nd 3rd 4th
managing, with key services management
mediation
quality-of-service-based routing
transport
Web services gateway

ETL (Extract-Transform-Load)
event management, IT application and resource management
event-driven architectures
event-driven management
evolving standards, key services management
examining roles
exceptions, monitoring business exceptions
expertise constraints
explicit process state, achieving middleware independence
extinction of businesses

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

federated security
federation 2nd

implementing
federation services
flexibility
forces, ESAs

multitiered disconnected operations
request response templates

formalizing architectural decisions
format dimension, loose-coupling
Forrester Research, January 2004 survey
funding governance

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

governance 2nd
processes
technical governance
tips for success

governance model, launching
governance principles
granularity, service-oriented analysis and design
guiding principles

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

HTTP

< Day Day Up >

< Day Day Up >

information model/service graphs
information models
infrastructure orchestration
infrastructure services 2nd

orchestration
resource virtualization services
SLA
utility business services

initial adoption
innovation, operating environment constraints
integrating roles
integration
integration challenges
integration specialists
integrity
Internet Engineering Task Force (IETF)
interoperability testers
invocation patterns
IT

aligning with business processes and metrics
aligning with business via incremental delivery
and business services alignment
realigning around services

IT application and resource management
IT governance
IT project manager

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IBM
EMF
ODOE

IBM Tivoli Business Systems Manager
IBM Tivoli Enterprise Console 2nd
IBM Tivoli Event Console
IBM Tivoli Event Integration Facility (EIF)
IBM Tivoli Federated Identity Manager
IBM Tivoli Monitoring
IBM Tivoli Monitoring for Applications
IBM Tivoli Monitoring for Business Integration
IBM Tivoli Monitoring for Databases
IBM Tivoli Monitoring for Messaging and Collaboration
IBM Tivoli Monitoring for Transaction Performance
IBM Tivoli Monitoring for Web Infrastructure
IBM Tivoli Monitoring for Web Services PRPQ
IBM Tivoli Provisioning Manager
IBM Tivoli Service Level Advisor
IBM Web Services Navigator
IBM WebSphere Application Server
identifying

architectural best practices
services

identity
IETF (Internet Engineering Task Force)
IFW (Information Framework)
IFX
impact of security, performance 2nd
implementation requirements for SOA security

cryptographic key policies
data protection policies
managing security policies
message layer security policies
security token policies
transport security policies

implementing
basic security services 2nd
federation 2nd
message layer security services
PoC services
trust services

incompatiblity
incremental delivery, aligning IT with business
independence, middleware independence
industry adoption
industry business standards
industry deconstruction
industry models
information management
information management domain

information management
meta-data integration
meta-data management

information management services 2nd

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE

JMS (Java Messaging Services)

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Kerberos tokens
key services management

ESB
evolving standards

knowledge transfer facilitators

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

language dimension, loose-coupling
languages, WSDL. [See WSDL]
launching governance model
Lawrence, Paul
layers, abstraction. [See abstraction]
legal constraints, business constraints
levels of SOA-driven management
leveraging

WS-Federation

WS-Policy

WS-Security

WS-Trust

Liberty Alliance Project
line-of-business adoption
local
location
loose-coupling, service-oriented analysis and design
Lorsch, Jay

< Day Day Up >

< Day Day Up >

solutions

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

manageability NFRs 2nd
management

business performance management

business service management 2nd

distributed service management

event-driven management

IT application and resource management

key services management

levels of SOA-driven management

operational management

transaction performance

Web services

management perspectives, challenges to
managing

risk, of SOA roadmap

security

security policies

mappings
MDA (model-driven architecture)
mediation layer
mediation, ESB
mediators
message authentication
message layer security policies
message layer security services, implementing
messaging engine
meta-data integration
meta-data management
Metadata Object Facility (MOF)
metrics, aligning, with IT and business processes
middleware independence, achieving with explicit process state
model-driven architecture (MDA) 2nd
modeling, service-oriented analysis and design
models

governance models, launching

industry models

information models

platform-independent realization

platform-specific realization

programming models

service models

SOA enterprise software models. [See SOA enterprise software models]

modularization, reducing impact

MOF (Metadata Object Facility)

MoJ (Autrian Federal Ministry of Justice)

monitoring

business exceptions
Web services

motivation, governance 2nd
multitiered disconnected operations

consequences

context

forces

problem synopsis

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Nadhan, E.G.

names, ESAs

navigators, request response templates

network bandwidth, performance

New Generation of Operation Support Services (NGOSS)

NFRs (non-functional requirements)

business constraints

disaster-recovery NFRs

manageability NFRs

nonruntime qualities

performance NFRs

runtime qualities

scalability NFRs

security NFRs

technology constraints

transactional integrity NFRs

version management NFRs

NGOSS (New Generation of Operation Support Services)
non-repudiation
nonruntime qualities

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

OAGIS (Open Applications Group Integration Specification)
OASIS (Organization for the Advancement of Structured Information Standards)
Object layer
objectives, governance
ODOE (on demand operating environment
OGSA (Open Grid Services Architecture)
OMEGAMON
OOAD
Open Applications Group Integration Specification (OAGIS)
open development platforms
Open Grid Services Architecture (OGSA)
operating environment constraints
operating ranges, business constraints
operational management

challenges to management perspectives
phases of deployment

operations center
optimization, SOA-driven management
orchestration

IT application and resource management
Organization for the Advancement of Structured Information Standards (OASIS)
organizing project offices

component design and development centers
operations center
SOA business transformation architecture council
SOA technical architecture board

owners

< Day Day Up >

< Day Day Up >

scalability
SOA-driven management

public key infrastructure (PKI)
public key systems

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

package mappings, performing
parsing, performance
participants, solutions, request response templates
patterns

design patterns

invocation patterns

performance
binding

data volume

impact of security

network bandwidth

parsing

security

service granularity

transaction performance

performance NFRs, runtime qualities
performing product and package mappings
persistent message confidentiality
PII (personally identifiable information)
PKI (public key infrastructure)
platforms

open development platforms

platform-independent realization

platform-specific realization

virtual services platforms

PoC (point of contact)
transport layer PoCs
Web services layer

PoC services, implementing
policies. WS-Policy
policy-based routing, scalability
privacy
problem synopsis, ESAs

multitiered disconnected operations
request response templates

problems, solving enterprise architecture problems (ESAs)
process flow designers
Process layer
processes, governance processes
product mappings, performing
programming languages
programming models
project offices, organizing

component design and development centers

operations centers

SOA business transformation architecture council

SOA technical architecture board

project phases, roles
project roles. [See roles]
proprietary systems
protocol dimension, loose-coupling
protocols
provisioning

IT application and resource management

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QoS (quality of service), ESB

< Day Day Up >

< Day Day Up >

UDDI administrators
UDDI designers

routing QoS
runtime qualities

performance NFRs
scalability NFRs
security NFRs
transactional integrity NFRs

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RAS (reusable asset specification)
RDF (Resource Description Framework)
reach and range, value of SOA
read-only services
realigning IT around services
realizing services
reducing impact by modularization
reengineering information management into services
request response templates 2nd

consequences

context

forces

problem synopsis

solutions

request template
request template XSD
requirements of services management
Resource Description Framework (RDF)
resource monitoring
resource virtualization services
resource-driven operational models
response template
response template XSD
rethinking components for business and applications 2nd
reusable asset specification (RAS)
reusable components 2nd
reuse, service-oriented analysis and design
risk of SOA roadmap, managing
roles

adapting

and skills

architects

business analysts

developers

examining

functions of

integrating existing and new roles

integration specialists

interoperability testers

IT project manager

knowledge transfer facilitators

process flow designers

project phases

security specialists

service deployers

service developers

service integration testers

service modelers or designers

services governors

SOA architects

SOA project managers

SOA system administrators

system and database administrators

toolsmiths

< Day Day Up >

< Day Day Up >

service modelers
service models
service versioning
service-level agreements. [See SLA]
service-oriented analysis and design

abstraction layers
activities
loose-coupling
modeling
reuse
service encapsulation
service granularity
strong cohesion
well-designed services

services
business
categorizing
identifying
infrastructure services. [See infrastructure services]
orchestration
read-only services
realization of
reengineering information management into
resource virtualization services
SLA
specifying
transactional services
utility business services
utility services
well-designed services, service-oriented analysis and design

services governors
services management, requirements for
services platforms
session management

security tokens
WS-SecureConversation

sessions
signature validation
Simple Network Management Protocol (SNMP)
Simple Object Access Protocol. [See SOAP]
single log-out (SLO)
single sign-on (SSO)
skills and roles
SLAs 2nd 3rd 4th

end-to-end transaction time
SLO (single log-out)
smart service solution
smart stub solution
SNMP (Simple Network Management Protocol)
SOA

adoption strategies
definitions of 2nd
reach and range
value to business
versus previous approaches

SOA architects
SOA business transformation architecture council
SOA enterprise software models

industry models 2nd
information management domain
J2EE realization
platform-independent realization
platform-specific realization
service integration on WebSphere Application Server

SOA project managers
SOA roadmap, managing risk of
SOA system administrators
SOA technical architecture board
SOA value roadmap

aligning IT with business processes and metrics
aligning IT with business via incremental delivery
checklist for business change agility
clarifying role of architects
creating digital models of business
explaining SOA to business people
IT-to-business services alignment
realigning IT around services
unraveling the concept of architecture

SOA-driven management, levels of
SOAP (Simple Object Access Protocol) 2nd 3rd
solutions

comparing
ESAs
multitiered disconnected operations, ESAs
request response templates, ESAs

specifying services
SSL (secure sockets layer)
SSO (single sign-on)
staleness
standards 2nd

evolving standards, key services management
industry business standards
technology

strategic direction, governance
strong cohesion, service-oriented analysis and design
surveys, Forrester Research (January 2004)
symmetric key systems
system and database administrators

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

S&P 500
SAML assertion
scalability NFRs, runtime qualities
secure sockets layer (SSL)
security

architectural considerations for SOA security model

authentication

authorization

confidentiality

cryptography

digital signatures

federation

implementation requirements

implementing

integrity

IT application and resource management

managing

non-repudiation

performance 2nd

privacy

session management

SOA-driven management

trust

WS-Federation

WS-Policy

WS-SecureConversation

WS-Security

WS-Trust

security NFRs, runtime qualities
security policies

coordinating between partners

managing

message layer security policies

transport security policies

security specialists
security token policies
security tokens
selecting

architectural methodologies
ESAs

semantic Web services
service assets
service deployers
service designers
service developers
service encapsulation, service-oriented analysis and design
service granularity

performance
service-oriented analysis and design

service graphs
service integration abus
service integration testers
service integration, WebSphere Application Server
Service layer

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

taxonomies, building
technical governance
technical model constraints
technology constraints
technology, standards
Telecommunications Industry, Telemanagement Forum
time dimension, loose-coupling
tokens

Kerberos tokens
username tokens
WS-Security

toolsmiths
top-down analysis, identifying services
transaction performance
transactional integrity NFRs, runtime qualities
transactional services
transient message confidentiality
transport layer PoCs
transport security policies
transport, ESB
trust
trust domains

WS-Trust
trust relationship management
trust services

implementing

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

U.S. Steel
UDDI (Universal Description, Discovery, and Integration)
UDDI administrators
UDDI designers
UML (Unified Modeling Language)
Universal Description, Discovery, and Integration (UDDI)
upstream filtering, scalability
username tokens
utility business services
utility services

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

value roadmap
aligning IT with business processes and metrics

aligning IT with business via incremental delivery

checklist for business change agility

clarifying role of architects

creating digital models of business

explaining SOA to business people

IT-to-business services alignment

realigning IT around services

unraveling the concept of architecture

version management NFRs
versioning, service versioning
virtual services platforms
visualization

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

W3C (World Wide Web Consortium) 2nd
Web services

managing
monitoring
semantic Web services
WS-Security Roadmap

Web Services Description Language. [See WSDL]
Web Services Distributed Management (WSDM)
Web services gateway, ESB
Web Services Interoperability Organization (WS-I)
Web services layer PoC
Web Services Security Technical Committee (WSS-TC)
Web Services Security, SOAP Message Security (WSS-SMS)
WebSphere application Server, services integration 2nd
well-designed services, service-oriented analysis and design
World Wide Web Consortium (W3C) 2nd
WS-* (Web services)
WS-Federation
WS-I (Web Services Interoperability Organization) 2nd
WS-Policy 2nd

leveraging
WS-Resources 2nd
WS-SecureConversation

leveraging
WS-Security 2nd

leveraging
tokens
XML digital signatures
XML encryption

WS-Security Roadmap

WS-Trust

WSDL (Web Services Description Language) 2nd 3rd

WSDM (Web Services Distributed Management)

WSS-SMS (Web Services Security), SOAP Message Security)

WSS-TC (Web Services Security Technical Committee)

< Day Day Up >

< Day Day Up >

Index
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X.509 certificate
XML
XML digital signatures, WS-Security
XML encryption, WS-Security
XML-DSig (XML Digital Signature)

< Day Day Up >

	Service-Oriented Architecture Compass: Business Value, Planning, and Enterprise Roadmap
	Table of Contents
	Copyright
	Praise for Service-Oriented Architecture Compass
	More Praise for Service-Oriented Architecture Compass
	IBM Press: The developerWorks Series
	IBM Press
	Forewords
	Preface
	Trademarks and Notices
	developerWorks Link Icons Used in This Book

	Acknowledgments
	About the Authors
	developerWorks and SOA
	Chapter 1. Introducing SOA
	1.1. SOA to the Rescue
	1.2. Exploring SOA
	1.3. A Preview of the Service-Oriented Architecture Compass
	1.4. Summary
	1.5. References

	Chapter 2. Explaining the Business Value of SOA
	2.1. The Forces of Change
	2.2. Common Questions About SOA
	2.3. SOA Value Roadmap
	2.4. The Nine Business Rules of Thumb for SOAs
	2.5. Summary
	2.6. References

	Chapter 3. Architecture Elements
	3.1. Refining SOA Characteristics
	3.2. Infrastructure Services
	3.3. The Enterprise Service Bus (ESB)
	3.4. SOA Enterprise Software Models
	3.5. The IBM On Demand Operating Environment
	3.6. Summary
	3.7. Links to developerWorks
	3.8. References

	Chapter 4. SOA Project Planning Aspects
	4.1. Organizing Your SOA Project Office
	4.2. SOA Adoption Roadmap
	4.3. The Need for SOA Governance
	4.4. SOA Technical Governance
	4.5. SOA Project Roles
	4.6. Summary
	4.7. Links to developerWorks
	4.8. References

	Chapter 5. Aspects of Analysis and Design
	5.1. Service-Oriented Analysis and Design
	5.2. Service-Oriented Analysis and Design-Activities
	5.3. Summary
	5.4. Links to developerWorks
	5.5. References

	Chapter 6. Enterprise Solution Assets
	6.1. Architect's Perspective
	6.2. Enterprise Solution Assets Explained
	6.3. A Catalog of Enterprise Solution Assets
	6.4. How Does an ESA Solve Enterprise Problems?
	6.5. Selecting an Enterprise Solution Asset
	6.6. Using an Enterprise Solution Asset
	6.7. Multitiered Disconnected Operation
	6.8. Request Response Template
	6.9. Summary
	6.10. Links to developerWorks
	6.11. References

	Chapter 7. Determining Non-Functional Requirements
	7.1. Business Constraints
	7.2. Technology Constraints
	7.3. Runtime Qualities
	7.4. Nonruntime Qualities
	7.5. Summary
	7.6. Links to developerWorks
	7.7. References

	Chapter 8. Securing the SOA Environment
	8.1. Architectural Considerations for an SOA Security Model
	8.2. Concepts and Elements of Security
	8.3. Implementation Requirements for SOA Security
	8.4. Standards and Mechanisms for SOA Security
	8.5. Implementing Security in SOA Systems
	8.6. Non-Functional Requirements Related to Security
	8.7. Technology and Product Mappings
	8.8. Summary
	8.9. Links to developerWorks
	8.10. References

	Chapter 9. Managing the SOA Environment
	9.1. Distributed Service Management and Monitoring Concepts
	9.2. Key Services Management Concepts
	9.3. Operational Management Challenges
	9.4. Service-Level Agreement Considerations
	9.5. SOA Management Products
	9.6. Summary
	9.7. Links to developerWorks
	9.8. References

	Chapter 10. Case Studies in SOA Deployment
	10.1. Case Study: SOA in the Insurance Industry
	10.2. Case Study: SOA in Government Services
	10.3. Summary

	Chapter 11. Navigating Forward
	11.1. What We Learned
	11.2. Guiding Principles
	11.3. Future Directions
	11.4. Summary
	11.5. Links to developerWorks

	Glossary
	Index
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X

