Better Software
Project Management:
A Primer for Success

Better Software Project Management: A Primer for Success. Marsha D. Lewin
© 2002 John Wiley & Sons, Inc.

Better Software
Project Management:
A Primer for Success

Marsha D. Lewin
CCP CMC, FIMC

John Wiley & Sons, Inc.

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc. is aware of a claim, the product names appear in
initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

This book is printed on acid-free paper.@
Copyright © 2002 by John Wiley & Sons, Inc., New York. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York,
NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

Lewin, Marsha D.
Better software project management : a primer for success / Marsha D. Lewin.
p. cm.
ISBN 0-471-39555-2 (cloth : alk. paper)
1. Computer software--Development--Management. 1. Title.

QA76.76.D47 149 2002
005.1'0684--dc21 2001023797

Printed in the United States of America.

109 87 65 43 21

To Forrest, for his love and inspiration

Contents

PREFACE Xi

Who This Book Is For / xii

Approaching Software Project Management / xii
Useful Features of This Book / xiii

How This Book Is Organized / xiv

ACKNOWLEDGMENTS XV

Chapter 1: Getting Moving 1

Project Management Quick Start / 2
What’s a Project Manager to Do? / 8
Materials Review / 29

Chapter 2: Mastering the Process 31

Theory of Constraints: The Dimensions / 31
Satisfying the Quadruple Constraint / 33
Taking Corrective Steps / 41

Adjusting to Project Outcomes / 43

Defining Project Types / 44

Applying Methodologies to the Madness / 47

viii CONTENTS

Getting the Lay of the Land: Kick-off / 50

Compiling the Project Bible / 54

Choosing Projects with the Best Chance of Success / 56
Negotiating for Success / 67

Handling the Pressure / 71

The Importance of Project Definition / 77

Chapter 3: Planning the Project 79

Getting There from Here / 80

Risky Business / 81

Defining the Project Work Plan in Detail / 83
Setting Standards / 95

Scheduling / 97

Cost Planning / 109

Practicing the Art of Estimating / 113
Choosing a Project Cost System / 118
Building in Contingency / 121

Risk Planning / 123

Chapter 4: Lewin on Leadership 127

Organizing the Project Team / 128
Knowing Who to Organize / 131
Leadership Guidelines / 135
Talent Searching / 137

Organize a Virtual Team / 139
Additional Notes on Talent / 141
Back to the Drawing Board / 141

Chapter 5: Monitoring 143
Getting and Staying in Control / 143

Financially Speaking / 155

Dealing with Creepy Crawly Changes / 162

Communicating and Publicizing / 169

Chapter 6: Completing 171

Knowing You’re at the Finish Line / 171
The Joy of Reviewing / 175

CONTENTS ix

Life after Completion / 176
In Conclusion / 177

Appendix I 179
Appendix II 197
Appendix IIT 213
Glossary 217
Bibliography 227

Index 229

Preface

Computers may have become commonplace in business, but rare indeed is the
successful implementation of computer software. Despite reduction in cost
and size of the hardware, software costs continue to run out of control. We
may know how to build and install hardware more profitably, but we’ve not
been able to develop software more effectively.

Now that development tools that are easier to use have become available,
more people are being called on to develop software with others—but many
do not have the management skills for doing so effectively and efficiently.
When the fledgling developer is assigned to manage a team, emphasis is typ-
ically on getting the software designed and written quickly; he or she is not
given adequate time to become the best project manager he or she can be-
come. The initial software development effort provides the baptism by fire
that still is the school for software project managers.

That said, after decades of software development projects, there are some
guidelines that can be imparted—some more quickly than others, of course—
to make the process easier, and to increase its chances for success. That’s what
this book does.

With more than 30 years of software project management experience in
private and public sectors, in client/server implementations, as well as in local
area networks (LANs) and mainframes, distributed and centralized, I present
rules of thumb and techniques for bringing your project in successfully.

Xi

Xii PREFACE

WHO THIS BOOK IS FOR

This book addresses specifically the needs of the beginning software project
manager, but also well serves:

« Anyone who finds him- or herself responsible for delivering reusable
software in his or her company or department.

+ Anyone in any department in a business that develops software.

« Anyone interested in increasing the probability of bringing in better soft-
ware within budget and on time.

This is a book on managing software development—the resources, includ-
ing people and budget, the quality of the software developed, the cost, and
risks. While software development methodologies are referenced, this is not
a development method book. You can find many such books referenced in the
bibliography at the end of this book. Instead, this book is about managing the
folks involved in the development of software, and increasing your chances
of success. This is a book about the variety of project types, and how you can
manage them. In particular, this book is geared to managing small to medium-
sized projects, involving the implementation of packaged software (COTS,
commercial off-the-shelf) or small development (larger projects typically al-
ready have an in-house development methodology and project management
approach, with an ISO 2000 requirement).

APPROACHING SOFTWARE PROJECT MANAGEMENT

When 1 first started in software project management (and for many years
thereafter), I found it to be an art, not a science. After all, software develop-
ment wasn’t even regarded as a science then, let alone the management of the
folks who were trying to create the software! I am convinced, in retrospect,
that the successful delivery of the projects I managed back then was due to
my tenacity and to my “people skills.” The ability to lead technical people to-
ward a common objective is still an art, although now we have many tools
that we can use to represent our planning prettily; but they don’t necessarily
increase our chances for a successful completion. Nevertheless, I am still con-
vinced that software project management is more art than science, and it’s an
art that can be learned, should be learned, and it’s what this book tries to
teach.

I believe there’s not just one way to manage a project. A project is, by
usual definition, the bringing together of resources over which we often have
no direct control, to develop something. Just as each software project is

PREFACE Xiii

unique, we need a set of tools in our managerial toolkit from which we can
select according to the needs of a particular project. It’s knowing which tool
to use—and when—that makes this undertaking an art.

My goal in this book is to give you a large set of tools to put into your
own kit. And, hopefully, you’ll use them wisely and appropriately as you
manage your own projects.

USEFUL FEATURES OF THIS BOOK

The hallmarks of this work are its simplicity and emphasis on teaching how
to manage a software project, not just how to wield software tools. While
making the process simple, I also impart a conceptual understanding of the
principles of good project management, thus avoiding the rote of a cookbook
approach. This primer presents more than mere methodology; it addresses the
“people” issues that are critical to successful software project management,
and identifies ways to reduce risk in your project.
Particularly useful features include the following:

* The first part of the book aims at getting you up to speed quickly, fol-
lowed by more in-depth background, described in project management
terms, after I have established context for you.

* The organizing principle is the need for a software project to satisfy si-
multaneously the Triple Constraint (schedule, budget, and quality) within
the context of risk management (the Quadruple Constraint).

* Subject matter is covered chronologically, from a project’s beginning to
its end.

* Typical problems are highlighted, to help you sidestep them; potential
solutions are presented.

* Dozens of sample forms, formats, and checklists are included to help
you visualize what is needed to get started quickly, and to customize for
use in managing software projects.

* Different types of software management are addressed, from traditional
life cycle to prototyping.

* Different types of software projects and the nuances of managing them
successfully are addressed: client/server, LANS, Internet/intranet, main-
frame, existing system conversions, packaged software, new and mainte-
nance projects.

* Political issues affecting project success are addressed, as are technical
issues.

* Methods are identified for managing your project’s risk.

Xiv PREFACE

« The role of managing people and their perceptions is addressed.
o Testing and its role in project management are addressed.

« Examples are drawn from diverse projects—contract management, po-
lice, airport—to provide variety and breadth of applications (and to pre-
vent boredom!).

HOW THIS BOOK IS ORGANIZED

As 1 did in my previous book, The Overnight Consultant (John Wiley & Sons,
Inc., 1995), I have presented a “quick start” in the first part of this book. If
you're suddenly thrust into the position of managing others to get software
developed, this section will give you what you need right away. Project man-
agement in the abstract is far less instructive than using real-life examples.

The next sections give more background in software project management,
providing theory behind the quick start, and expand on those issues that make
every project unique. Checklists are provided for you to adapt over time and
to use in your own projects. Different types of software development method-
ologies are discussed, as are different types of software projects and the nu-
ances of managing them successfully.

And, as no book is complete without its bibliography, you’ll find one here,
too, along with a glossary of techno-babble, and an index. We use Microsoft
Project, the current industry standard, for explanation and demonstration. In
lieu of a list of additional software project management software, I suggest
you do a search on the World Wide Web for the latest and greatest products.

I hope you gain much from it, that you emerge with a perspective on the
task at hand, and a set of tools in your management toolkit that will enable
you to keep your projects moving ahead, to a successful outcome. Please visit
me at my Web site, www.marshalewin.com, to see what’s new, and to ask
questions that you may have.

Acknowledgments

This book is based upon the approach to project management I learned from
my mentor, Milton D. (“Mickey”) Rosenau, Jr. Our earlier collaboration pro-
duced Software Project Management: Step by Step (Van Nostrand Reinhold,
1984, second edition 1988). Mickey’s books on successful project manage-
ment and product development have become bibles in their fields. A complete
list (at least as of this writing) of his publications can be found in the bibli-
ography of this book, and I encourage the reader interested in general project
management to add those books to his or her library and to visit Mickey’s
Web site at www.rosenauconsulting.com. My decades of software project
management experience are placed within that context.

In the nearly two decades since that collaboration, the software develop-
ment world has changed greatly: microcomputers dominate the hardware
world, and everyone with a copy of Microsoft Access has become a devel-
oper. Moreover, everyone with a copy of Microsoft Project thinks he or she
can become a project manager by preparing a multicolored Gantt chart! In
fact, the proliferation of unsuccessful software projects continues, regardless
of the platform, suggesting that more needs to be done to teach good man-
agement techniques, rather than instructing in the use of the project manage-
ment software tools.

I've placed software project management within the context of a method-
ology with which I've worked for many years—Formula-IT, designed by
James E. Kennedy, who specializes in enterprise systems strategy and imple-
mentation. This allows me to relate the art of software project management to
the science of managing the development in a cogent fashion. I've found the

Xv

Xxvi ACKNOWLEDGMENTS

Formula-IT methodology to be intuitive—easy to learn and quickly grasped
by others. It has proven to be scalable to all project sizes, and provides con-
trols that produce desired results according to plan. I encourage you to visit
Jim’s Web site at www.FormulaIT.com for further information.

I've supplemented Mickey’s Triple Constraint framework—budget, sched-
ule, and quality (or performance)—with risk management, which adds a con-
text within which the Triple Constraint must be evaluated. For example, de-
veloping software for a brand-new hardware platform using a new release of
an operating system is highly risky. One of three things will occur: the oper-
ating system and hardware integration will not proceed smoothly, the devel-
oped software will not integrate with the operating system, or nothing will
work together. Successful strategies for handling such situations will have
budget, schedule, and/or quality effects, and you, as the project manager, have
to account for those risks within your Triple Constraint framework.

Representing a Quadruple Constraint, a four-dimensional model, in two di-
mensions is a nontrivial task, so I’ll talk about both the Triple and Quadruple
Constraints throughout the book, depending upon the best application for the
particular situation. You can decide for yourself which construct works best
for you.

The question arises: Can you have good software project management
without a development methodology? The case can be made that just break-
ing a job into smaller tasks in a coherent fashion (such as work breakdown
structure) is a methodology in itself. In the absence of a methodology, I be-
lieve a project can still be well managed. On larger projects, the methodology
will bring you closer to the high level of software quality, to which we all
aspire.

But this is the place to make acknowledgments, so I shall acknowledge
away: to Keith and Jim Kennedy, who have provided not only software de-
velopment methodology (Formula-IT), but their wisdom and counsel over
many years of our collaborative consulting. To Ira Gottfried, who taught me
that the best way to manage in certain situations is not to overmanage. To Bill
Cordo, who gave me my first software development project, and my baptism
by Wall Street’s fire. And my special thanks to the hundreds of clients in more
than 30 years of consulting who had the confidence in my skills to allow me
to manage their software projects and people, and to benefit from the friend-
ships that result from working cheek by jowl (well, e-mail by fax) to achieve
the difficult, if not the impossible.

As always, no book can be created without the collaboration of tireless
professionals who, even in this age of technology, cannot be replaced. My
thanks to my editor at Wiley, Bob Argentieri, who gave me this opportunity
to write again on successful software project management, and whose coun-
sel and patience are greatly valued. My thanks also to the Wiley staff, who
provided the practical guidance and help that make books out of manuscripts:

ACKNOWLEDGMENTS Xvii

to Shannon Egan, my patient managing editor; to Janice Borzendowski, who
superbly edited the copy; and to Stacey Rympa, the assistant who followed
through the nits and crises. Finally, thank you to my family, to Forrest, my
muse; to my children, David, Rozi, Steven, Ron, and Bobbi; to my munchkins,
Leah and Sarina; and to my friends, who patiently endured my absences and
unavailability as I wrote this.

Getting Moving

As the old joke begins, I have good news and I have bad news; which
would you like to hear first? Okay, for you optimists out there, the
good news is that because you have done such a good job at writing
special database applications for the rest of your contract management
department, we’ve decided to make you the departmental analyst. The
bad news is that there will be no increase in pay, no decrease in your
concurrent workload, and you will have to deploy a system over the
company’s wide area network for use by the contracting staff in the re-
mote offices. Oh, and the system has to be ready in six months, for the
start of our capital development cycle (with $8 million in contracts to
be managed).

Though the type of the system to be implemented may change, this
basic scenario is all too familiar in today’s environment: someone is
made responsible for delivering software developed by others to sat-
isfy the needs of those who may not understand the technical dimen-
sion of what they’re asking for, nor the business issues that should de-
termine the resources to devote to this effort. If the responsible person
is you, you’re expected to learn on the job, or through baptism by fire,
because, at best, you have had some software development training
(well, at least a course in Microsoft Access) but the world of manag-
ing software projects is unknown to you.

Better Software Project Management: A Primer for Success. Marsha D. Lewin 1
© 2002 John Wiley & Sons, Inc.

2 GETTING MOVING

PROJECT MANAGEMENT QUICK START

What I do in the following pages is present a set of issues to look at,
introduce some decisions you will have to make, and, finally, offer
some actions you can take to help you successfully bring in your proj-
ect—ideally, on time, within a realistic budget, and in a fashion that
will satisfy your important users. Notice I did not say all users—re-
member, Abe Lincoln warned that you can’t satisfy all of the people
all of the time, and if he couldn’t do it, then surely the rest of us will
not be able to either.

For easier exposition, and for clarity, I’ll use the example of a con-
tract management system. You can substitute document management
system or online purchase requisition system or whatever satisfies your
own immediate needs. One word of caution here: I am not talking
about a multiyear development effort with dozens of people. For that,
you’ll need more than this quick start section: you’ll probably need a
supply of Tylenol, and to read this entire book. Remember, this part of
the book is intended to get you going quickly, and to increase your
chances of success now, when you need it most. The remainder of the
book explores in greater depth the basic theory you’ll need to master
if you decide to stay in software project management, and expands
with examples, checklists, and forms. Of course, your successful first
endeavor will probably determine whether project management is a
proper use of your energies—and if you have the talent for managing
software projects.

Sinking or Swimming

So, what’s a project manager to do to get started? First, don’t panic. I
had a friend who was diagnosed with a dreadful disease, yet when we
spoke about it she was in fine fettle. She was handling her disease as
she would any other project management task, by taking charge.
She was:

Learning about the project.

Identifying any constraints.

¢ Determining what the alternatives were.
* Setting the goals to be achieved.

* Prioritizing the goals.

PROJECT MANAGEMENT QUICK START 3

Her basic goal was to get better, understandably, but she had to de-
cide among many treatments, and that process was confusing. Once
she weighed her alternatives and established the primary goal, she then
scheduled her treatments and executed her plan. Budget was not the is-
sue, although for some in her situation cost might impact the treatment
goal, specifically by limiting the treatment options.

Which brings me to the point of how this analogy relates to your
project management background. Software projects rarely have a sin-
gle user, a single way to achieve the goal, a fixed amount of money to
achieve the goal, and a set time frame. If you’re in that situation, then
you’re among the few fortunate ones indeed. Usually, a project has a
set of choices that have to be made, and, like unwinding a terribly
snarled piece of cord, everything is intertwined, so that making a
choice in one area has consequences in others.

That choice dilemma is the background for the Triple Constraint.
Mickey Rosenau taught me years ago that a project has three dimen-
sions that must be satisfied, and they are not the same for every proj-
ect.! These dimensions are the limits, or constraints, that define your
project and help determine how you’re going to execute your project.’
These are:

* Quality of the software, of what you’re implementing (perfor-
mance)

* Cost to implement (budget)

* Length of time to implement (schedule)

Figure 1-1 shows where different project types would fall along the
constraint axes.

If your project involved, say, a space launch, then clearly perfor-
mance would be the most important. If you had to shoot when Mars
was in its proper, but briefly accessible, orbit, then schedule would also
be important. However, if the software wasn’t ready in time, you
wouldn’t go ahead and launch anyway, and hope for the best, because,
while budget was less important than performance and schedule, it still
would be important—and quite possibly not replaceable.

'Cf Bibliography, especially Mickey Rosenau’s Successful Project Management.

*According to the Project Management Institute’s A Guide to the Project Management Body of
Knowledge (PM BOK Guide), 2000 edition, Newtown Square, PA, Project Management Insti-
tute, p. 43, a constraint is a factor that limits your options, such as contract amount, time, and
the specifics of what you are developing.

4 GETTING MOVING

Performance

Project A

Project B Schedule

Budget Project C

Figure 1-1 The Triple Constraint and the placement of projects within.

On the other hand, if you are developing software for tracking del-
egate activities and needs at the Democratic National Convention, your
major focus in the Triple Constraint would be schedule, because the
software will probably not be current enough in four years’ time for
the next convention!

In many businesses, budget is the primary constraint. This is espe-
cially true in certain public sector projects, where only a certain amount
of funding is available. You must go back to boards of supervisors or
commissioners for additional funding, which never goes well. When
budget is the most important of the constraints, you’ll need to accom-
modate the constraint by changing the performance, for example, by
producing less than originally planned with the project, or, in rare
cases, by using ancillary resources on a limited basis, and taking longer
to deliver the software. (This is generally not such a good choice, as
taking longer generally costs more.)

The point here is that if you are responsible for managing a soft-
ware project, you need to know what’s important to the successful out-
come of this project, and how the constraints rank against one another.

To accommodate doing business in this new millennium, I’ve added
a fourth constraint to this situation, risk: How much risk can you tol-
erate within the project? For example, recent software projects focused
on Y2K issues.> The element of risk posed by older software, which

3Year 2000, when older software might have failed because it couldn’t accommodate the date
change to the new millennium.

PROJECT MANAGEMENT QUICK START 5

would otherwise have had no constraints, made these projects so im-
portant that they were budgeted and scheduled for completion before
the millennium bells chimed. Budget, on the other hand, was not a pri-
mary concern. An estimated $320 billion were spent to reduce the risk
of companies and governments being unable to operate on January 1,
2000.*

Thus, because addressing risk is so important in my view, when I
talk about planning, it is in the context of the Quadruple Constraint.
However, when I address monitoring, I will continue to use the Triple
Constraint, because risk issues are manifested in the budget, schedule,
and performance. Both constraints are addressed in greater detail in
Chapter 2, but they come into play with your contract management
project.

What Are You Trying to Do?

It always improves your chances of success if you understand what
you’re supposed to be doing. Now that you’re called a software proj-
ect manager, what does that mean for you? And while I'm at it, let me
raise here some easy-to-grasp but necessary concepts that should help
you to put your arms around the project and to increase your chances
of a successful outcome (which is what this is all about, right?).

We begin with the question, what is software project management?
Your task, should you decide to take it on, is to manage a one-of-a-
kind effort in the field of software development or enhancement. Proj-
ects are, by definition, unique undertakings, with definable starts and
measurable ends. They differ from ongoing functional tasks, say as an
accounts payable clerk’s repetitive cyclical processing of checks due
vendors, or human resources’ hiring of personnel. In these two exam-
ples, while the payee will change, or the position being filled will vary,
the basic function does not change.

Software project management is uniquely different from other man-
agement tasks in that you don’t see the final result until much later,
and you use tools that might not have been previously tried. This lat-
ter fact is due to a constantly evolving technology, which both gives
us new ways of doing things and new ways of tripping ourselves
up. Additionally, you are dealing with users who, often, have never
dealt with software implementation before, which also means you are

“See Dewayne Lehman, “Senate: Y2K Fixes Worth the Billions Spent,” Computerworld online,
March 1, 2000, at www.computerworld.com/cwi/story/0,1199,NAV47_ST041669,00.html

6 GETTING MOVING

dealing with their perceptions of what you’re bringing to them, since
they cannot know beforehand its impact. Unlike hardware, which is
more concrete—there is something to touch and feel—it is typically
harder to test “soft” specifications of processes that users will have to
incorporate.

As unique undertakings with nonrepetitive goals, software manage-
ment projects present some unusual situations not found in other types
of endeavors. Here are brief introductions to a few of the issues you
need to address (you’ll find more complete descriptions in Chapter 2).

Methodology and Management

There are many existing approaches to the actual development, or
building, of software. These are called methodologies. This is not a
book on methodology, which is the process of building software; this
is a book on the management of the development process, which I re-
fer to as software project management. Common methodologies in-
clude life cycle, or waterfall, models, which are the traditional way of
delivering software. An example of this model can be found in Figure
1-2. Individual steps occur sequentially, from feasibility assessment of
the project, to final installation and acceptance of the software.

As microcomputers became commonplace, users wanted more in-
volvement with the development process earlier on, raising the demand
for prototyping, or evolutionary delivery. This allowed users to see and
use pieces of the software prior to complete delivery, so that they could
offer constructive feedback, thus making it possible to incorporate
changes cost-effectively into the software. An analogy in the con-
struction industry is design-build, where a design is left open for com-
pletion after construction starts, instead of waiting for the detail of the
entire design to be completed before the first shovel is put into the
ground.’

The management of the software development project then ties into
various milestones and monitoring events within the methodology.
However, if your company had a methodology, you’d probably be
given a manual with the description of how to use the method, and the

SThere are many other types of development methodologies. Felix Redmill’s Software Projects
(John Wiley & Sons, Inc., 1997) is a good source for a more complete description of the distinc-
tions between software development methodologies, software engineering, and software project
management.

PROJECT MANAGEMENT QUICK START 7

Initiation \

Analysis

-

Design

N

Selection

~

Modification

~

Implementation

N

Review

Figure 1-2 Software development methodology: Waterfall life cycle model.

automated tools that go with it. You may well need to learn how to
manage rather than wield a tool, but if so, you probably wouldn’t be
reading this section of this book right now.

The point is that the names and sequences of the activities are de-
termined by your methodology, and it is the management of that
methodology that we’re addressing here. So, for those of you who have
neither method nor background, let’s get on with it. Suffice it to say
that you’ll decide which method of development to use as part of your
planning process.

Identifying Your Resources

I’'m sorry to be the one to have to tell you this, but you won’t be
in control of the resources you need. But a unique characteristic of

8 GETTING MOVING

software management projects is that you do not directly control, on a
permanent basis, the resources you need to do your work. Typically,
you are assigned people, allocated money, sometimes even given of-
fice space, on a temporary basis, after which the resources revert to
their “owner” or sponsor (more about these folks below). To quote
from Lewin and Rosenau’s Software Project Management, ‘“Project
management entails working with people you have not chosen, many
of whom have different skills and interests.”®

Sometimes, you will use contract (outside) programmers; other
times, you will use people lent to you from another department. You
will have to motivate them to work for you and with your team, keep-
ing in mind that their primary allegiance is elsewhere. This task is dis-
cussed in greater detail in Chapter 4, but for our purposes here, just be
aware that you won’t truly control the people who may be assigned
to you.

I also have to tell you that just because you’ve been allocated a bud-
get doesn’t mean that you get to spend all of the money. Internal
charges by other departments (the contract administrators have to
charge their time spent on your project back to something, even though
they will be the beneficiaries of the new software system) can quickly
reduce your project budget if you’re not careful to monitor your
resources.

Finally, the basic issue of your office space needs to be addressed.
Say, for example, that you have been allocated space within another
department, or you are piggybacking on other projects. What happens
if they are compelled to relocate? You may well find yourself and your
staff spending time packing, unpacking, and squatting at others’ desks
during critical project times—and without the extra time to do so,
thereby reducing your available resources further.

WHAT’S A PROJECT MANAGER TO DO?

Now that I’ve painted this unpleasant scenario, I want to quickly re-
duce the anxiety of having to develop software to satisfy a group of
users, and using resources you don’t control. You are, simply put, go-
ing to manage.

SLewin and Rosenau, Software Project Management: Step by Step, 2nd edition (Marsha D. Lewin
Associates, Inc., Los Angeles, CA, 1988), p. 7.

WHAT'S A PROJECT MANAGER TO DO? 9

Lead

Define Plan Monitor Complete

[—

Figure 1-3 The project management process.

\ 4

Project management, whether of software, software and hardware,
or my friend’s health, is a simple, five-step process, steps that gener-
ally overlap:’

Define.
Plan.
Lead.
Monitor.

A

Complete.

Figure 1-3 shows the steps in this process.

Because this is a quick start section, I'll leave the details of each of
these five steps until later in the book. In this part, I'll give you just
enough information to get you through the first project, which in this
example is the contract management project.

Define

What are the goals of this project? One of the major problems in get-
ting a project going is that often the goals are not the same for every-
one. As soon as you have more than one user, you have multiple
goals—which isn’t bad as long as they’re not at opposite ends of the
spectrum, which they often are. Answers to the following questions
will help you decide what to do when you’re in the proverbial swamp:
to play with the alligators or to drain the swamp!

"Lewin and Rosenau, Software Project Management: Step by Step, 2nd edition, (Marsha D.
Lewin Associates, Inc., Los Angeles, CA, 1988), pp. 7-8.

10 GETTING MOVING

What Business Need Does This Project Satisfy?

First, for it to be important enough for us to get the resources we need
to accomplish it, software should serve a business need. In our case,
the contract management system (abbreviated from now on as CMS)
is needed to:

* Increase our control over our contractors so that we can keep the
costs of our outsourced tasks low—as well as keep our products
competitively priced. Note: The company intends to outsource
more of its processes, and will have more contracts to manage.

* Reduce the overpayments being made by our company on its prior
contracts.

* Allow us to compare among contractors to determine which keep
closest to budget so we know which to hire.

Once we have a well-established business need, then our project
will be seen as important enough to get people to spend time to help
define and test the system, and to accept change.

What Other Needs Does This Project Satisfy?

In addition to business needs, we may have to meet various other spe-
cific needs:

* The department head wants uniform processing of all contracts so
that the staff is interchangeable among contract administrators.

* Uniform processing reduces training costs, and executive report-
ing becomes easier when all contracts are being managed using
the same software. Subsequently, they can be rolled up more eas-
ily to satisfy “quick questions from on-high.”

* The accounting department wants more timely information. Cur-
rently, the contractors are getting paid too slowly after they sub-
mit their invoices, and the company is having trouble finding con-
tractors willing to do business with it.

* A new accounting system is going in, and the contractor payment
requests must dovetail with the new system.

¢ The Information Technology (IT) department wants Windows soft-
ware to run on its Novell wide area network so that it can reduce
its support costs.

WHAT'S A PROJECT MANAGER TO DO? 11

And so on and so forth. Note that I have not included an individual
employee’s desire to learn, for example, SQL Server, as a requirement.
It might be nice to have, but it definitely is not a requirement.

How Do You Rank the Needs?

If we have measurable needs, so much the better. How much money
do we lose by inefficiently processing contractors? How many con-
tracts do we have in force? Since, as just noted, the company is going
to be outsourcing more in the future, how many contracts does it an-
ticipate having? How many contract administrators does it now have,
and how many contracts can each administrator manage? How many
contract forms does the company have? How will this project be paid
for? Who/which department(s) will pay for this project? I think you
get the picture.

The point here is to quantify as many of the requirements as we can.
This will separate the wish list from the basic needs. When we get into
the planning stage, we will have some firmer numbers to work with
that will help us rank our goals.

Plan

It really is much easier to plan where we’re going when we know
where we’re going. The question then becomes, do we know where we
are going? What are we planning? This is where the Quadruple Con-
straint comes in. We need a framework, a way to lay the foundation,
then build around it, to give order to what we want to do.

Schedule Constraint

I always start with the schedule constraint, but others may choose to
start with cost, performance, or risk. In our case, we need to know
when the new accounting systems are coming in or when the company
plans to start increasing its outsourcing. That information obviously
will limit some of the options we might plan for. Let’s say we have
one year before the number of contracts is going to double. That means
we have a year to acquire or develop, test, implement, and fully train
our staff before the onslaught of new work. Table 1-1 shows the sched-
ule issues associated with our CMS project’s goals.

Next we analyze the goals against cost; this is where the quantifi-
cation helps. For example, it turns out that the company overran

12 GETTING MOVING

TABLE 1-1

Schedule Issues of Project Goals

Project Goal

Schedule Issues

Increase control over contractors.
Reduce overpayments.

Compare contractors.

Reduce costs of managing
contracts.

Process contracts uniformly.
Reduce training costs.

Facilitate executive reporting.

Supply more timely information to
accounting department.

Pay contractors more promptly.

Implement new accounting
system.

Run software on Novell network.

Reach agreement on critical control factors.

Identify payment process and decide how to
reduce steps in process.

Start gathering comparative data immediately to
identify trends; apply results.

Implement earlier to save more money.

Meet legal department requirement that contract
forms be reduced within six months.

Plan outsourcing of personnel for one year from
now.

Reap political benefit of faster implementation.

Produce more accurate reports that reflect activi-
ties within monitored time frames.

Recognize that projects will start sooner and po-
tentially end more quickly.

Prepare test plans for pay requests in new system.

Obtain software certification for Novell, and test on

network early enough to identify any configura-
tion changes needed.

$100,000 last year on the 250 contracts—totaling $4 million—that it
managed. That’s an average of 2.5 percent overrun, which is anticipated
to be reduced by the new system. If we double the number of contracts,
as planned, for a total of 500 contracts, without a new system, we have
the potential for an overrun of $200,000. This can, in short order,
reduce the company’s viability. (Brings to mind the old joke: If we can’t
make a profit on one item, we’ll make up for it in volume!)

Now look at Tables 1-2, 1-3, and 1-4. They add to the schedule is-
sue of our project’s goals the issues of cost, quality, and risk, respec-
tively. Note that not all factors have issues associated with them. Those
that do may have issues associated with the particular project’s con-
tent, while others are related to the Quadruple Constraint.

If we stand to lose $200,000 without a system, we should be able
to spend that $200,000 on the new system, and be in a more controlled
situation. So now we see a budget figure emerging. For now, we won’t
add in the costs of personnel savings or facilities, to keep this simple.
Now that we’ve come up with a broad-brush schedule of a year, and a
potential budget of $200,000, let’s look at another constraint dimen-
sion: performance.

-Bunsey reuonippe 1oy 196png
‘(sweisAs mau pue Bulsixe 0}) sedepalul [BUOIIPPE JO
1uswdojenap 109|401 Aew 109f0id Sy} JO SISO9 1Byl 10N
‘Auedwod 0}
suoneoydwi MOojj Yseo 10} SNSUSSUOD BAIINISXS Uler)
'|O0} UONEDIIISA PJBWOINE WilIdlul
j0 uswdojenap sjqissod 1o} pue ‘spodas jo Aoeind
-oe Ajuan 0} palinbai se djay [eous|d [euonippe aiH
‘9J/eM}jos aseqejep
anIsuadxa aiow aiinbal Aew spodas aaindaxe Bul
-1edaid JOo Spoylaw UMOP-|IP 1y} JUNodJe Ojul 8yel

‘sjenajew Buiuien; mau dojensq
"SWwo}
10B4]U0D pue sjuswaalbe jo Ayebs) suiwialep 0}
pepaeau se souejsisse Bunnsuod jeuonippe aiinboy
‘sainbBiy @say} Ul BpNJouUl 0] SIS02 YoIym aujwialaqd
'S8l p|o
JO yoJeasal [enuew apnjoul 0} aAey |Im 126pnq
10 ‘Appeal pasayieb aq ued ejep Jayleym auiwisieq
‘spoyisw plo
snsi1eA $8ss9001d Mau ajpuey 0} S}S09 Joge| Ajiuap|
*SIy} 10} [9SUNOD [eBa| NSU0D {S10BIU0D
-uod Bunsixe ojul ‘papasu se ‘sainpadoid Mau S

‘pepasu sabueyo
uoneinbyuod Aue Auspl o} ybnouas Aues yiomiau
UO 1S8] PUB ‘||oAON 10} UONEIIISD 9IBMYOS uielqO

‘walshs mau ul sysanbai Aed oy sueld 1sey asedaid
‘Apjoinb atow. pus Ajjenualod
pue J8uoos uels [Im s1oafoid jey; aziubooay

"Sellel) SWI} PRIONUOW UIYHM SaljiAloe
108)481 1ey} suodas 81eINdOE 810W 89NPOId

‘uonejuswajdwi J8)se} Jo Wauaq [eonjod desy

"MOU WO}
1ealk auo Joj [puuosiad jo Buroinosino ueld

"SYIUOW XIS UIYHIM Paonpal aq Swiio}
10B11U09 1ey] Juswalinbas Juswiedsp |ebs| 108N
‘Asuow 810w aAes 0} Jolies Juswa|dw)

'synsai Aldde ‘spuai Ajuapi

01 Ajoreipawiwi eyep aAneredwod Buusyieb pels
'ssao01d ul sdajs aonpal

0] Moy aploap pue ssaooid juswAed Ajusp|

'$10108)} |0J1U0D [BOIIIO UO Juswaalbe yoeay

"}IOM]BU ||OAON UO 81BM}OS uny
‘wieysAs Bununoooe mau yuswaldwy
‘Apdwoud aiow si010enU0D Aed

‘Juswyredap Bununoooe
0} uonewuojur Ajlawi aisow Alddng

‘Buiiodas annnoaxs arel|ioey

's1s09 Buluiel) aonpay

‘Ajuojiun S}OBIIUOD SS8201d

'sjoenuoo Buibeuew jo s}s00 8onpay

's10joelju0d asedwo)
'sjuswAediano aonpay

“S1010BJIUOD JBA0 |0J]JU0D B8Ssealdu|

senss| 1s0)

senss| 9|npayos

|eox) 108loid

sjeoy joafoid jo sanss| 1s0) g-| I19VL

13

‘peslsul sasnejd wioyun o} aaibe
sdead ‘sjoeijuod ualayip Auew 00}
aJinbal swus} oyioads-joafoid fensnun |

‘walsAs Mau uj paulejuiew aq o} aJe
yolym aujwialep pue ‘quswabeuew
10BU0D asudwod Jeyl SR aulyag

"aoualiadxa 81e10d100 P10
-a1 ‘9A0a[go ale eUBID Jey) ainsug

‘seuinbul pue syuswAed jenied

10} Ajleroadsa ‘Apes eueyuo ysigeisg

'SS8U}081100 aInsse
0} pouad uoneoyien Buoj 1oj mojy

"Swio}
10BIUOD pue sjuswaalbe jo Ayeba)
aulWIdlep 0} Pepaau Se adue)
-sisse Buinsuod jeuolippe alinboy

'sainby asay)
ul apnjoul 0} SIS0 YoIym sujwisieq

‘Sajl} p|o JO yoieasal
|enuew apnjoul 0} 8AeY ||}
19bpnq Jo ‘Ajpeas pateyieb

aq Ued Bjep Jaylaym aujuisiaq

'spoylew p|o snsiaA sassadoid
MaU ajpuBy 0} S}SO2 Joge| Ajpuap|

‘[esunod [ebaj
}Nsuo9 ‘sjoenuod Bupnsixs ojul
‘papeau se ‘sainpadoid mau Sl

'SUYUOW XIS UIYIM
paonpaJ 8q SW.Joj JOBIIUOD Jey}
sjuawalinbai juswyedsp |eba| 108N

‘Aeuow
2I10W aAes 0} Jales uswajdw|

‘synsal Aidde
‘spuai} Ayuapi o} Ajgrelipawiwi
ejep annesedwod Buusyieb ueis

'ssao04d ul sdajs aonpal 0} Moy

aplosp pue sseo0id juswAed Ajjusp)

'S10j0R}
|0J1UOD [BONIIO UO Juswealbe yoeey

‘Ajuwiojiun
SJOBIJUOD SS820.d

"S}oBIju0d

Buibeuew jo s}so0o aonpay

‘S10}0BJjU0d w._.mQEOO

‘sjuswhedieno sonpey

*S10]0BJUO0D
J8A0 |0J]UOD 8SEa.oUu|

sanss| Alend

sanssy 1s0)

sanss| a|npayos

jeoy 108loid

sjeoy jodfoid jo sanss| Ayjenp ¢-1 379vVL

14

"J091100 BJE S|and|
Ainoas pue swa|qold oYUM Swiio}
-1od mou aiemyos pajelas reyy Ausp

'soseyd ui Juswadwi ‘Aj@18|dwod
pajuswsajdwi ag jouued sainjes; e §|

‘JuswAed Bupjew aiopeq Aljenb
3JOM JO UOIEN|EAS Ul SI01I8 J19A0OUN

‘uoisioap Aoljod sjqissod pue Buisey
[euonippe 1o} mojje ‘ssaujdwold sia}
-op 9SEes|a) 81049q }pNEe UOHBWIOoU J|

‘palinbal se swajsAs juswa|dw|
10 [auuosiad a1y ‘SUOISIAIP SSOI0E
uoljewoul Jo Ajwioyun ainsua o

‘'spoyiaw pue soido} bujuies
1saq Apusapi o} sdnoib snooy dn 188

"Buiise) [euonippe 1o} Jobpng

'swiv)sAs mau pue Bunsixe 0} sedeus)

-Ul jeuonippe jo juswdojanap 108}}
-2l Aew 108(0id s1y} JO S1S0O JEBU) BION

‘Auedwod o0} suoneodldwi mojy
USEBO 10} SNSUBSU0D DAINOSXS Ulen)

'|00} UOIJBDIIIBA PaJEWOINE WLSjU|
Jo swdojanep a|qissod 10} pue

‘spodal Jo Aoeinooe Ajian 0y palinb
-al se djay |eous|o [euoppe allH

"91BM}JOS 9seqelep oAIS

-uadxa aiow aiinbai Aew spodal

anipnoaxe Buledaid Jo spoylaw
UMOP-||IP JeU} JUNOJJE Ojul el

‘sjeuarew Buiuresy mau dojpreQg

‘pepaau sabueyo

uoneinbyuos Aue Amuspi o}

ybnous Ajes yiomjau uo 1s8} pue
‘||lOAON 10} UONBONILISD 8IBMYOS UleiqO

‘wa)sAs mau
ul sysenbai Aed 1o} sueld 1se) aiedaiy

‘Appoinb
aJow pua Ajrenuslod pue JBuUO0S
uels s108loid 1ey) 8zIUB0DBY

‘sewiel) awn
P8IOHUOW UIYYIM SBINIAIIOR 08|18
ey} siiodas 8)1eINdoE 8I0W 82NPOId

‘uoneusw
-o|dwi Jelse} Jo suaq [eonijod deosy

"MOU WO} Jeak
auo 10} jpuuosiad jo Buoinosino ueld

"}lomiau
JISAON UO 81em}os uny

‘wa)sAs
Bununoooe mau juswaldwi

‘Apdwosd
8I0W SI0J0BIUO0D Aed

uswyedep
Bununoooe o0y uoiew
-lojur Alpwn asow Alddng

‘Buipiodal
BAINOBX8 BJel|10e

's1500 Buluies) aonpay

15

‘paonpoulul aq Aew
slolis alow ‘ayenbapeul
sI Buiures; uaym 1eyy aloN

'sn
yum ssauisng Buiop wouy
S10}0BJUOD BWOS Jalap
Aew 10B1JUOD JO SwJa} Jo

Aypibu panigoiad jey) 1deooy

‘WJs} 1I0Ys 8y} Ul 8seald
-Ul ||IM SIOLIB puUR ‘Ules)
0} piey aq Aew seinped

-01d mau Jey; ebpajmousoy

‘ajgesnun aq Aew

BlEp JOp|o pue ‘Ajjes)

HolsIp Aew sjuswissas
-se aARoalgns jey) aleme ag

'S10119 82NPOJUI 1,UOP
s9sS8001d MU 1y} ¥o8yD

SN YIM ssau
-ISNg Op 10U [|IM SI0}oBI}
-U0D BWOS jey} aziubooey

‘spoyiaw pue soido}
Buiures; 1seq Ayuep!
0} sdnoib snaoy dn 188

‘pesisul sasnejo
wuoun 0} aaibe sdey
-lad ‘s}oenu0d JuBIBYIP
Auew o0} aiinbas swia)

olp0ads-108foid fensnun

‘wieyshAs

MaU Ul paulejurew

aq 0] aJe yoiym auiw

-1a}ep pue ‘uawsabe

-UBW JoBJU0I asudwod
ey} senianoe suljeqg

‘aousauadxa ajelod
-100 pI0daI ‘BAoalqo
aJle eusId Jey] ainsulj

'saunbul pue sjuswiAed
jerued Joy Ajjeroadse
‘Alies euaO ysljgeis]

'SS9UJ08)
-100 aInsse 0} pouad
uoneayan Bbuoj 10} mojy

‘sjeuslew Buiurely mau dojenaqg

'swioj joel}

-u0d pue sjuswaaibe Jo Aleba)

BUIIBIBP O} Papaau Se aoue}
-sisse Buinsuod jeuonippe alinboy

‘sainbyy asay} ul
apnjoul 0} S1S00 YOIYyM sulwisieq

"sa|l} p|o JO yoleasal
|enuew apnjoul 0} aAey
196pnq 1o ‘Ajipess paleyjeb

a0 Ued BlEp Jaylaym sulwialeq

"SpoYlawW pjo SNSI9A sassadoid
MaU 8|puBy 0} SI1S00 Joqge| Ajuspj

‘[suno? |eba|
}Nsuo9 ‘sjoeiuod Bunsixa ojul
‘papaau se ‘sainpadoid mau

"MOU wo.} Jeak auo Jo}
Jjouuosiad jo Buloinosino ue|d

‘SYluoW XIS
UIYIM paonpal 8q SWoy
J0BIUO0I ey} Juswalinb
-al Juswyedeap [eba| 108\

‘Aeuow aiow
anes 0} Jalea uswejdw|

‘s)insal
Aldde pue spuai} A
-uap! 0} Ajojelpawiwi elep
anjesedwod Buusyieb uels

'ssa004d ul
sdals aonpal 0} Moy aploap
pue ssaooid JuswAhed Apusp|

'S10}0B} |04JU0D
[eonuo uo Juswealbe yoeay

's1s00 Buiutes} aonpay

‘Ajwiioy
-lun SJOBJU0D SS8201d

"sjoelu09 buibe
-UBW JO SISO0 20npay

‘S1010B JU0D QLNQEOO

‘sjuswAediano aonpay

"S10}0BIU0D
19A0 0JJU0D B8SBBIoU|

senss| ysiy

sonss| Aljenp

sanss| 1s0)

senss| 8|NpayYos

|eon 108foid

s|eon 108loid Jo senss| ¥siH b1 37GVL

16

'SUMOP INYS MJomiau
apnjoaid pue ‘Aedoid
uni 0} 8IemMyos Ulelulepy

'Jo118 Ul sjuswAed
JO 90UBNSS| pue |0J}U0D JO
sso] s|qissod jsuiebe pseno

Msu
100loid Buiseaiou ‘ioies
wauodwod siy) Juswsa|d
-wi 0} ainssaid Aidde Aew
S19YJ0 puUB SIOPUSA Jey) 810N

"@sealou; 0} sioue Buisneo
‘@jeinooe aq jou Aew uon
-ewloju] 19]se} jey) aremaq

'suoisioap Buoim ul

}Nsal |jIm YoIym ‘uoijew

-lopul BuiApepun jo Ayenb
Buihien jsurebe prenbojeg

1091100
aie sjong| Ajunoses jey)
pue swajqoid 1noyum
swJiopad mou arem

-4os pajejes jeyl Ajuep

-wod pajuswa|duwi
8Q 10UUBD SeINes) e J|

‘JuawAed Bupjew 8104
-aq Ayfenb yiom jo uon
-BN[eAd U] SI0LI9 19A00UN

‘uoisioap Aojjod s|qis
-sod pue Bunse} jeuon
-Ippe 10} MOj|E ‘SSau
-jdwoud sia}op asesjal
210J9q 1pnNe uonBeWIoUI J|

‘paiinbai

se swajsAs uswa|dwi

J1o |jpuuosiad aiy ‘suols

-IAIp SSOJO® UOIjew ol
jo Ajwoyun ainsus oj

‘Bunsa} [euonippe Joj 196png

‘swolsAs

mau pue Buisixa 0} sadepsiul
[euonippe jo juswdojanap 109}48.
Aew 109f0id sy Jo S1S09 JRY) BI10N

‘Auedwiod 0} suoneolduwi mojy
USEO IO} SNSUSJUOI BAIINJSXD Uler)

‘|oo}

UOIIBDIJLIBA pajewolne Wialul
Jo swdojonap ajgissod 1o}
pue ‘spodas Jo Aoeinooe Ajuea
0} djay [eouso [euomppe ey

"9JEM}JOS BSEQRIEp OAIS

-uadxa aiow alinbai Aew spodai
aAnoaxe Buuedaid jo spoylaw
UMOP-||1IP 1By} JUNOJJE OjUl dXe|

‘papasu sabueyd

uoneinbyuod Aue A

-usapi 0} ybnoua Apes yiom

-J8uU UO 1S9} puUE ‘||aAON 10}
UOIBOI1J8D BIBMYOS UIRlqO

‘wialsAs mau u| sjsenbal
Aed 10} sued 1se) atedaid

‘Appoinb a1ow pus
Ajlenuajod pue Jauoos uels
Im s109foud 1ey) aziubooey

‘sewiely
awll} paIoHUOW UIylIiM

SONIAIOE 108|381 Tey) suod

-91 9JBINOOE BI10W 89NPOId

‘uonejusweldw Jsjse}
jo Wouaq |eonijod deay

"}IOM}aU [|8A0N
Uo aIemjjos uny

‘walsAs Buiunoo
-0e mau juswaldwy

‘Apdwoad
aI0W S10}0BNUO0D Aed

‘Juswyredep Bununoo

-0B 0] uoljew.ojul
Ajpwyy siow Addng

‘Bunod
-9l 9AIIND9Xd Bjel|joe

17

18 GETTING MOVING

Performance Constraint

Every project has a performance goal, even if it’s not specified. Typi-
cally, when processing financial information, we aim for 100 percent
accuracy on the amount specified in the reports. The columnar repre-
sentation will vary according to whether it’s an internal report (where
we don’t print in colors) or a report going to clients and customers (in
which case we’ll want balanced columns, attractive type fonts, maybe
even logos). And on invoices, if we produce a tear-off stub to return
with payment, it helps to have all the identifying information located
on the stub so our accounts receivable clerks can properly process the
payment!

Clearly, the performance constraint has many dimensions. How
quickly can the program prepare the information? For example,
in the good old days (that is, pre-PC), it took hours for the stock bro-
kerage industry to process its daily trades. This created situations
where today’s trades might not be ready for the next day’s business.
As computers got faster, this problem went away (fortunately for
today’s Internet-based home traders). But this business sector would
not have prospered if speed could not have been accommodated.
For obvious reasons, in the financial industry, accuracy produced
after the fact would not have been good enough in our software
development.

The plan lays out what we’re going to accomplish, how long it will
take to complete it, and how much we anticipate it will cost. Because
writing things out helps not only to communicate to others, but to con-
solidate our own thoughts coherently, this plan should be in writing (or
e-writing, using contemporary technology).

In our CMS, for example, the plan might look like the one shown
in Appendix I. It:

* Describes the goals of the project.

* Defines the performance the CMS will deliver, in more detailed
terms.

+ Indicates how long it will take.

« Estimates what it will cost, including dollars, reflecting the mix
of human and physical resources needed.

Additionally, because graphics help to illustrate the information
contained in lists of numbers and words, the plan should be accompa-

WHAT'S A PROJECT MANAGER TO DO? 19

nied by a schedule chart showing how long the project will take, and,
perhaps, a management presentation summarizing the critical points
we want the reader to grasp. These are shown in Figure 1-4 and Text
Box 1-1, respectively. We’ll discuss how to accomplish these later, but
for the moment realize that, today, we have available many computer-
ized tools to deliver these materials in professional-looking formats.
But first come the analysis and planning; these tools will later reflect
the good management process underneath.

Management Constraints

The Quadruple Constraint affects out planning process—how we’ll
slice and dice the project to achieve success on the four dimensions
that will define our ultimate success. If no risk is the major goal and
we can find outside vendors with successful records of implementa-
tion of the CMS for clients with our size and technology environment,
then we’re in luck. We’ll simply outsource the project, and our role
will be to manage the external, rather than an internal, staff, for
development.

That said, keep in mind that even with external contractors, we’ll
still need to work with our internal users and management in the steps
that follow.

Lead

As soon as we begin to talk about leading, we enter the human realm
of a project: leadership of the individuals, sometimes those within our
own company, other times those working for outside contractors, to
achieve the project goals. One of the most difficult management tasks
is to take the assembled ragtag group with diverse interests and get them
to work toward a common goal for a limited period, after which they’ll
return to their own departments or to another project. Knowing the
project is temporary, some will always just sit by and wait for the
project to end, offering minimal commitment. As a consultant, I face
this consistently. The good news is that most people want to do a good
job. Often, however, they don’t understand what they’re expected to
deliver, or even what the definition of “good” is for this project. And,
in software projects especially, the intangible nature of much of the
development process exacerbates misunderstandings and ambiguities,
which confuse expectations.

‘BuIT swi| WalsAS Juswebeueyy joBUOCD - ainbi4

Arewwng joafoid

Av auolsaliy dn pajioy

uds dn pajioy

auoisaiN

ssaiboid

00/92/21 @nl :8eg

S syse] [ewax3 yse) dn pajioy nds woysAs swabeuep 10e13U09 J0aloid
I S50.60.1d dn pajjoy Arewwng 3SBL
141 ’
00/24/1 U4 skep o 103rodd SWO 3137dWOD 34
00/21/0L NuL | sAep /9 M3IATH 02
S 00/LL/28NL shep /9 ANIWITdWI 61
00/6/S @nL shep Gp JHYMLIOS A4IQOW/dOT3A3A 81
00/€/¥ UOW skep 92 JopudA yum Juswaaibe aenobaN 1
00/G/€ UOW skep 02 JOpU3A Jo3JeS 91
00/2/L UOW shkep og ddY enss! g aredaid Sl
00/#2/1 UONW skep 9/ JHYMIH0S 103138 vi
00/62/1 Pom | skep sz ubisa@ SND a1duiod €t
00/92/L POM | sAep sz ABojouyoa] ‘Buissasold ‘ereq auyeq 2t
00/92/4 Pom | shep gz SWO NDIS3a L
i 00/S/1 PSM shep 1 juswinooQ sjuswalinbay SIND 99npoid oL
S 00/S/1 POM skep g1 sluawaxnba) aoepBUl BUILLBEQ 6
00/S/1 PaM shep 01 uonoalIp %® SaA0algo walsAs aulwialeq 8
00/5/} POM shep g sjuawyedaq Jasn SO Aoy malnalu) L
00/S/1 POM skep g1 SISATVYNY WHO44d3d 9
66/S1/2) POM | shep 61 Splepuelg SWO aulwiaieg S
o8 66/SL/2L POM | sAep g1 ueld 109l0id SO pajieleq asedald 14
66/91/24 POM | Aep | Bunsap JO-¥I SND 1PNpUod €
66/51/21 POM | shep g1 103rOHd 31VILINI 14
sHg 66/SL/21 POM | SAep 0 103rodd SWO 14V.1S 3
uer [9ag [roN [100 dag [By [1nr unp T Key | udv JeN [gad [uep 29Q uels uoneing eweNysel| ai
LOOk 000V 000€ 0002 000+

20

WHAT'S A PROJECT MANAGER TO DO?

21

TEXT BOX 1-1 CONTRACT MANAGEMENT SYSTEM
MANAGEMENT PRESENTATION

What Is It?

« Common method of managing contract documents and costs
companywide

Advantages

+ Can easily roll up costs across all departments and divisions.
* Can easily compare projects.
e Common training reduces costs.

Project Goals

 Control outsourced tasks to keep costs low.

* Reduce overpayments to contractors.

o Identify best-performing contractors and repeat-hire those.
 Enable executive roll up of all project information without

manual keying.
Acquisition Strategy

 Buy rather than develop.
« Evaluate proven products available off the shelf.
 Develop internal training capability.

Anticipated Return on Investment (ROI)

« Current costs of staff to handle inquiries on late payments
» Costs to retrain staff due to high turnover
« Eighty percent reduction in above costs anticipated.

Conclusion

22 GETTING MOVING

Though leadership philosophies and styles vary, the common thread
running through well-led projects is that the individuals involved be-
come a team, committed to a positive outcome, one on which each
member feels accountable for performance. The project manager only
guides the team to achieve the outcome; he or she does not do all the
work for the team.

In our CMS, who comprises the team? Identifying the constituents
is often the hardest part of the project. Wherever people are involved,
a project becomes highly vulnerable. Great strides have been made in
the technological aspect of project management, but the weakest link
remains human interactions.

Gather the Team

In our CMS, the obvious team members come from the user and the
technical communities—the contract administrators and the program-
mers. Another member is the management sponsor, who can help
move things along faster. The sponsor is typically the executive, or
committee of executives, charged with ensuring the project’s success
through adequate funding and resource allocation. The sponsor ap-
proves the project definition. (See Appendixes I and II for further de-
tail.) Perhaps a representative from the finance or accounting depart-
ment would also be of help, especially if the planned-for system will
feed into such systems.
This brings up two points regarding the teams we form:

* The team should comprise as wide a group as possible.

* The team composition will change over time as the project
develops.

When my team works with our clients, we usually introduce the team
at the start of the project to those who have a stake in the outcome.
Those include downstream users of the system, as well as the day-
to-day users, who will benefit from the efficiencies such systems will
confer. (After all, why bring in a new, less efficient, system?) When peo-
ple who may be affected by the new system aren’t included, we run the
risk of not finding out how other systems will be affected. What good
is a system in one part of a company that requires another system in the
same company to become more inefficient in order to accommodate it?

At project launch, your team will typically be composed of many
users. During the course of the project, some will drop out, because they

WHAT'S A PROJECT MANAGER TO DO? 23

leave the company or because their priorities prevent them from attend-
ing meetings or being heavily involved. It is essential that the manage-
ment sponsor attend the first meeting, to kick things off—because he or
she can give your project the formal company blessing that will make
things easier as you proceed. After that, if the sponsor cannot attend, it
is imperative to keep him or her informed of the team’s progress.

Though the team will decide what needs to be done, they will need
guidance from, for example, technical people as to the technological
consequences of the alternatives being suggested and discussed. Let’s
assume, for instance, that someone knows of a CMS that runs on a
UNIX system, but that your company is an NT shop. That raises the
question: Who will provide the assistance to integrate with your exist-
ing systems? Not only can that cost more money than you have bud-
geted, but you may not be able to acquire the people to complete the
task on schedule. Also, you might end up having to program interfaces
between your system and the NT-based financial system.

When you start to program, you’ll probably need more technical
people at meetings; conversely, at this stage, the users will not be
needed so often. Once the system is ready for testing, however, the
users will again be required to see how well the system satisfies the
goals originally set. A nice complete circle, if you will. A sample proj-
ect team composition is shown in Figure 1-5; the changing nature of

[Steering Committee ‘

‘ Program Manager ‘

[\
User Project Managers Program Office
| | | |

| | [|

t User Project Team Leader 1 ’Information Systems Stﬂ (External Contractors:

Programmers
Technical Analysts
Quality Control

Functional Department Documentation Specialists
Users
User Testers

Figure 1-5 Project team composition.

24 GETTING MOVING

the members is shown in Table 1-5. Chapter 4 has more on leadership
issues.

Monitor

The most important part of project management is to make sure that
everything is proceeding on time and within budget, to achieve the proj-
ect goals. Monitoring may, by some, be misconstrued as nagging, but
it’s a necessary process for determining where both people and events
are in the plan.

To monitor properly, you need to plan properly: specifically, that
means completely and unambiguously. Otherwise, how can you expect
to accurately measure where you are? I emphasize this point, because
so often projects fall behind because the monitoring isn’t done prop-
erly—every week the number of lines of code developed are dutifully
counted, and the team attends scheduled meetings, but the functional-
ity isn’t checked out for the seemingly simple reason that no one in-
cluded the testing step in the project plan. The team will be in for an
unpleasant surprise if they test everything at once and find out it
doesn’t work!

Chapter 5 includes a more comprehensive checklist regarding what
you need to monitor, but, for our purposes here, I identify a number of
items that your plan should specify to monitor. At this stage, the proj-
ect plan should make more sense to you, and you should be fully aware
of how critical it is and will be. Table 1-6 shows in tabular form what,
within the project plan, needs to be monitored, and how often.

Replanning

As you will find out quickly when you manage your software projects,
Murphy’s Law seems to be the guiding force: your prized programmer
may quit; the server you ordered is out of stock until two months af-
ter the project is to be completed; or the vendor you’ve selected has
just decided to close its doors. Or, more typically, you find that testing
is revealing some significant bugs, whose repair will delay the project
implementation. What’s a software project manager to do?

Time for replanning. How often should you replan? If you con-
stantly keep changing the plan, will you lose sight of the original ob-
jectives? In general, the schedule of the project, as originally esti-
mated, is a good guideline for how frequently you should replan. In

X

X

Jebeuep 108foig
sisijeoadg uoneuswnooQ
s191S9] Jasn

X sisAjeuy jonuo) Ayrenp
slawwelboid

X sisAjeuy [ealuyos|
X X s19sM) uilepy
X X

sannejuasalday "1deq |euonoung

X wewsabeueyy Jolueg

Mmainay

swajdw|

AypoN

109188

ubisaqg

azAleuy aremu| slaquiay wea|

abelg 9j9A9 3y Aq jJuswanjoau] wes) 193loid S-1L 31GVL

25

26 GETTING MOVING

TABLE 1-6 Monitoring the Project Plan

Task Frequency Reason

Check on availability At start of each project Key personnel may be involved in
of resources. phase continuing work, or have left
company; cash flow may be less
than anticipated, reducing

funding.
Check on technology = Throughout project Unforeseen infrastructure changes
infrastructure (net- may require changes in your
work, hardware, and project.

systems software).
Verify user availability. Especially during vendor Management often is unaware of
selection, training, and the time commitment necessary

testing at these points.
Get authorization to During and at end of Legal resources often are not im-
proceed. contract/agreement mediately available, and can
negotiations hold up project start if agree-
ment is not signed and ap-
proved.
Acquire hardware. As needed Hardware procurement policies
often introduce delay.
Establish test and Prior to implementation ~ Without adequate criteria definition,
acceptance criteria. implementation may be inade-
quate and not detected until
too late.

your project plan, you will have built in milestones, or checkpoints,
when you will decide whether changes in schedule, budget, or perfor-
mance are required. As a guideline, I suggest the following, but be
aware that in your environment, you may find other frequencies that
work better.

Note:
Another method of replanning is to do it when you reach the end
of each phase in a project. This is detailed in Chapter 5.

As a rule of thumb, I try to keep replanning to a minimum; and if
the project is under 90 days in duration, you probably will not require
any replanning at all. As the length of the project increases, the num-
ber of checkpoints increases, such that you might want to replan every
six months, or annually on a multiyear project.

WHAT'S A PROJECT MANAGER TO DO? 27

Our CMS is only a six-month effort, so I would suggest monitoring
biweekly (every other week). I would monitor costs as frequently as
invoices are paid by the company, or when labor hours are charged.
For example, if labor hours are charged to the project weekly, I rec-
ommend checking weekly. That will tell you if people are spending
more time or less on a given effort, and you’ll have enough time to go
back to them and have them make up any deficits—or to identify why
more hours than planned are being expended. If, on the other hand, in-
voices are being paid semimonthly, a weekly review of the cost reports
won’t be of great help, since there’ll be no change every other week.

If the system is supposed to go into full production (“go live”)
within the month, and users are still finding bugs in programs, that’s a
good time to replan the implementation. Clearly, though, there is no
single rule for how often to check; you’ll need to develop a “feel” for
frequency after you’ve managed a few projects, and after you’ve dealt
with different types of people and situations. If you are going to err on
one side of caution, I suggest erring on the side of monitoring too
frequently.

Complete

All project managers hope their projects will be completed and ap-
proved by the stakeholders on time, so that they can move on to the
next project. But how do we define completion? It’s over when it’s
over? Not exactly. From the point of view of the people who have to
maintain the software, they are just beginning when you think you’re
done. So we’re back to the project definition. There, you should have
defined not only the goals, but the scope of the project: Does it en-
compass the entire life of the software? Or, when the design and ini-
tial implementation are completed, does it move over to the informa-
tion systems (IS) department, where changes to the software are
managed as a separate project? And in your project plan, did you de-
fine what would constitute acceptance of the software? What good is
running a system for two weeks without errors if the software is de-
signed to work with month-end closings, and the two-week period cov-
ered is in the middle of the month?

These questions bring us back to the project plan and statement of
work. The project plan represents the formal, approved document used
to guide the project execution and project control—indicating how it
will be done, what resources are needed to do it, and how it will be

28 GETTING MOVING

accomplished. The statement of work (SOW), on the other hand, de-
scribes the work to be supplied to the project to achieve its objectives.

The plan should have spelled out the acceptance criteria—accep-
tance by all the stakeholders in your project—at the outset. But, since
your knowledge will be greater at the end of the project, the detail of
the plan need not be provided at the beginning. But one of the project’s
milestone events that takes place before the programming even starts,
while the users are deciding what they want, is to establish the test and
acceptance plan.

The project plan will then identify that acceptance comprises the
successful completion of that plan, to remove the ambiguity caused by
not clearly specifying the criteria. At the end of the project, partici-
pants are generally in a hurry to finish up and start a new project, or
perhaps go on that overdue vacation; external contractors want to get
paid, and be free to work with other clients. By not defining, or too
loosely defining acceptance (if you’ve left it until the end), the result
may be software that is unsatisfactory or difficult to maintain, satisfy-
ing no one.

Acknowledging Completion

I strongly recommend that you get acknowledgment of your project’s
completion. This can be handled at a final team meeting, with con-
sensual sign-off by the members. Or you can have each member fill
out an assessment report. You may also want to couple the sign-off
with a “lessons learned” meeting, a review of the entire project, wherein
you identify, and document, things that you might do better next time,
or future enhancements to the system. The folks responsible for main-
taining the software may be able to implement suggestions from this
process.

For example, let’s say the CMS doesn’t roll up estimated costs into
the companywide budget system. The lessons learned meeting reveals
that a planned release of the vendor’s software would allow for export
of those numbers from foreign systems (the budget system) and com-
parison against the CMS figures. Discrepancies are reported—in other
words, a debugging tool will be provided. This will reduce mainte-
nance time, as well as testing time, when implementing enhancements.
That will be valuable for planning subsequent maintenance projects.

More commonly, with software projects, mandatory requirements
often reflect the way people perform their work under the existing sys-
tems. The new system typically introduces more efficient ways of per-
forming tasks. A lessons learned meeting might identify features orig-

MATERIALS REVIEW 29

inally requested that weren’t really necessary, or procedures that can
now be streamlined. In the old system for example, requests for pay-
ments due under the contract may have had to be reviewed individu-
ally by a supervisor prior to being approved, then forwarded to the fi-
nance department for payment. Under the new system, the supervisor
can query all contracts and determine which require approval—all at
one time. Or, instead of having a written transmittal to the finance de-
partment, the approved requests for payment can be forwarded to the
finance department electronically with an accompanying e-mail form.

Go Nitpicking

In 35 years of managing software projects, I've never been involved
with a project that didn’t have a few little “nits” that still needed at-
tending to upon completion. In construction, they call the list of things
to be done at completion a “punch list.” Throughout the project, as you
monitor, it’s a good idea to compile your own nit list, to make sure ac-
tions don’t fall through the cracks. At the end, no doubt you’ll still
have a few “close-out” items, such as final documentation, transmit-
ting electronic files to the records management department, and prepar-
ing a list of contacts for the maintenance staff.

Minor items on the nit list should not prevent you from completing
the project—just make sure you don’t include milestones (such as suc-
cessful acceptance test!) on your list. Remember, the nit list should
contain only minor items that someone else can see to and that do not
affect the completion status of your project.

MATERIALS REVIEW

I covered a lot, quickly, in this chapter, so let me summarize the ma-
terial as a brief review. Your task is to manage the development of soft-
ware. To do that requires taking five interdependent managerial steps,
often simultaneously, though they are sequential in nature:

Define.
Plan.
Lead.
Monitor.
Complete.

SRR

30 GETTING MOVING

The concept of the Quadruple Constraint serves as the framework
to help you plan your project, which constitutes: specification of per-
formance, schedule, budget, and risk. The statement of work in Ap-
pendix II defines the project’s milestones. How you will accomplish
the project is defined in the project plan, as shown in Appendix I, while
the methodology defines the technical steps required to accomplish the
software development. Your project management will monitor how
well you’re proceeding using the methodology to complete the project.

You will be faced with many challenges as you work to complete
your project on time, within the budget, and to meet promised func-
tionality. You may have to alter your original plans to complete the
project, but the changes will still have to satisfy the Quadruple Con-
straint in order to have the project deemed successful. You should doc-
ument any changes to plans, and obtain any approvals necessary to en-
sure you really have completed the project.

Mastering the Process

As promised in Chapter 1, the following chapters of the book go into
greater detail on topics covered quickly there. Presumably now you’ve
got a frame of reference both from the mistakes you made and successes
you achieved during your initial project management foray; and hope-
fully, ideas presented earlier are starting to make more sense. But you
also have more questions now. This part of the book will answer them.
Here, the five interdependent activities of a project are further bro-
ken down and described more fully. Other issues of particular impor-
tance in software projects are highlighted as well. Examples of rele-
vant forms and documents are provided for you to build on. Starter
checklists are included for you to add to (remember, a checklist is an
individual tool—you have to adapt it to your particular situation).
Onward!

THEORY OF CONSTRAINTS: THE DIMENSIONS

All types of projects have constraints, or are limited by many things—
personnel and financial resources, quality, and time, among others. But
I maintain that on software development projects, the risk constraint is
of great importance because software, by its very ethereal nature is
riskier business. I identify risk as a separate constraint because projects

Better Software Project Management: A Primer for Success. Marsha D. Lewin 31
© 2002 John Wiley & Sons, Inc.

32 MASTERING THE PROCESS

will not be launched if their risk is determined to exceed an acceptable
level. Therefore, identifying that level, and building in the safeguards
on the other dimensions of the Triple Constraint, is a critical part of
the planning process.

Monitoring risk is typically done along the three dimensions of
quality, budget, and schedule. There are formal monitoring documents
(test results, cost reports, and project schedule) to reflect the progress,
and risk reports refer back to the three report types. So, for purposes
of planning, I refer to the Quadruple Constraint when I'm addressing
planning issues, and to the Triple Constraint when discussing moni-
toring of software projects. The reason for doing so is because I want

(a) Risk with Cost vs. Quality

COST $ /

RISK
_\
QUALITY
(b) Risk with Schedule vs. Quality
SCHEDULE RISK

I

X gy gy X

QUALITY

Figure 2-1 The Quadruple Constraint. Quality is measured in milestone achievement
(indicated by /) on the X-axis. These examples assume that the particular software proj-
ect has increasing risk as cost increases, while risk decreases as schedule lengthens.
However, a particular project may have exactly the opposite situation.

SATISFYING THE QUADRUPLE CONSTRAINT 33

to convey to you, the reader, the nature of defining and planning proj-
ects along important dimensions.

Software projects can be defined, uniquely, on the three dimensions
of cost, schedule, and performance, as shown earlier in Figure 1-1.
When adding the fourth dimension of risk, graphical representation be-
comes more difficult. I attempt to do so in Figure 2-1, by breaking risk
into two three-dimensional representations. The point here is that you
will alter your risk, sometimes adversely, when making cost and sched-
ule decisions.

By determining what you’ll deliver, and for how much, and when it
will be ready, you establish a baseline against which your subsequent
project management decisions can be measured. To repeat, success-
fully managing a project means delivering what you promised within
the budget and schedule to which you’ve agreed, without introducing
unacceptable risk to the project.

Now, that sounds fairly concise and easy to understand. Unfortu-
nately, satisfying a project’s Quadruple Constraint is very difficult, be-
cause the events that naturally occur during the lifetime of a project
conspire to lower performance below the specification, and to drag the
project behind schedule, which usually makes it exceed the budget and
raise the risk of failure.

SATISFYING THE QUADRUPLE CONSTRAINT

You, as the project manager, must stay alert to the problems, and strive
constantly to satisfy the Quadruple Constraint, if you are to success-
fully manage your project. And it is this book’s purpose to make you
a better manager, so let’s discuss some of the obstacles you may en-
counter and the problems you may face.

I organize them according to the dimension they impact most, al-
though some affect all dimensions (these are, needless to say, the worst
kind). For example, if you spend more time testing because the code
was not developed properly, you’ll not only impact your schedule, but
you’ll probably overrun your budget due to the increased cost of hiring
additional personnel to conduct more testing and do the reprogramming.

Addressing Performance Problems

Probably the most difficult dimension to achieve is the performance
specification. Software professionals have spent decades trying to

34 MASTERING THE PROCESS

perfect this, without success. Indeed, forests have been felled to make
paper on which to print the millions of specifications that have been
written but that have missed the mark.

Cause: Poor Communication

Poor, imprecise communication is one cause of this repeated failure.
Conveying a concept in words is, by nature, imprecise: the words and
figures we choose to explain to another what we mean may instead
cause confusion because each of us has a different perspective; hence,
our words and illustrations mean one thing to us, and only later do we
discover they meant something entirely different to the user. For ex-
ample, let’s assume a user wants a simple data entry screen, to allow
for maximum speed in the inputting process; the supervisor, on the
other hand, wants field-level validation, to ensure that nothing erro-
neous enters the system. The specification developed reads: “easy to
use,” an inherently ambiguous phrase that will result in disappointment
for one or the other party—a simple, rapid entry screen will necessar-
ily become more complicated, and take longer to use, if the supervi-
sor’s needs are also designed into the system.

Cause: Too Much Communication

Too much communication is another problem, causing much to get lost
in the entropic process. Software specifications in any form are merely
an attempt to define as unambiguously as possible an implementation
that will be written by someone else, usually for use by yet another
party or parties. It is inherently difficult to define as-yet unseen, un-
used software to satisfy current and future user requirements. Ambi-
guity creeps in whenever anyone else, for example a programmer, im-
plements a “best guess” of what was meant in the specification.

Cause: Technological Changes

A third problem arises because of technological changes—and their im-
plications. For example, in this era of frequent releases of new versions
of software, a project charged with upgrading an accounting package
may be fraught with unforeseen peril: hardware limitations may prevent
the new version from performing quickly enough; the software may
cause the network to lock up; and so on. It is rare indeed these days
that a workstation does not connect to a network—Ilocal area or the
Internet—and thus is affected by factors not apparent to the user.

SATISFYING THE QUADRUPLE CONSTRAINT 35

Cause: Poor Programming

A fourth problem is caused by poor programming. Software develop-
ment tools have certainly improved over the years, but the abilities of
programmers have not necessarily kept pace. And even the best pro-
grammers can, and do, make mistakes. The resultant software may
have performance deficiencies that prevent achievement of the Quadru-
ple Constraint.

Cause: Variable Situations

Finally, it is essential to point out that performance is multidimen-
sional. Your software must conform to company standards and in-
terface requirements, both of which impose constraints on your
software’s performance. Satisfying everyone is not always—if ever—
possible. Therefore, compromises need to be worked out, so that the
performance delivered is acceptable to all project constituents. For ex-
ample, in using the company-mandated database management system
or servers, a one-second response time may not be achievable for all
types of activities: you may be able to validate within that time, but a
query on an entire database will require 30 seconds. The point is, the
specification must clarify the response time achievable in different
situations.

Identifying Time Problems

Scheduling problems arise for several reasons. The most common one
I've discovered is being pressured to meet a delivery date imposed by
external sources, usually management, without, from the outset, hav-
ing adequate resources to meet that date.

Cause: Overemphasis on Performance

The most insidious cause of scheduling problems is an overemphasis
on the performance dimension, at the expense of a balanced view of
the Quadruple Constraint. For instance, computer scientists (who are
frequently appointed as project managers) tend to concentrate on the
technology, and to strive for technological innovations or break-
throughs. Many are the computer programmers who have spent time
unnecessarily working out a clever algorithm, or wielding a new pro-
gramming language, rather than simply patching an existing program.

36 MASTERING THE PROCESS

This preference for so-called elegant solutions, rather than for practi-
cal implementation, is met at the expense of the schedule, and fre-
quently is accompanied by unfavorable cost repercussions and in-
creased risk. As is often said, “better” becomes the enemy of “good
enough.”

Technically trained people often treat the performance specification
as sacrosanct, while believing the schedule and cost dimensions can be
altered. They’d rather their work be judged as late or expensive, than
as inadequate, quality-wise. They also feel that accomplishing the im-
possible, regardless of risk, is notable.

Cause: Resource Unavailability

A second reason for scheduling difficulties is that necessary resources
are unavailable when required. Unavailable resources may be equip-
ment or personnel. For example, in a recent implementation, needed
workstations and servers for deployment were three months late, be-
cause the vendor did not have the inventory to meet a promised deliv-
ery date. We had no choice but to slip the schedule because other al-
ternatives, such as using temporary platforms, would have resulted in
double conversion work and higher labor costs.

The point is that the unavailability of planned resources forces the
project manager to accept substitute solutions, which may require out-
sourcing the programming. Or, worse, it may mean using marginally
qualified people, who will take longer to do the work and make more
mistakes than the well-qualified technician initially counted on to be
available. Technical people are not interchangeable, not even in the
same labor category—we’ve all known analysts who could do the work
of three other analysts combined. Being very specific as to the resource’s
qualifications—or name—will increase the probability of getting that
resource assigned to your project.

Cause: Disinterest

Third, sometimes a project encounters scheduling difficulty because
those assigned to it are not interested in their tasks. In some cases, they
may choose to work on other tasks, or to work half-heartedly on your
project. This problem is particularly acute in projects that already have
extended well past their original schedule, which usually forces per-
sonnel to work on crash schedules for months at a time.

There is a limit to the adrenaline flow that enables programmers to

SATISFYING THE QUADRUPLE CONSTRAINT 37

work around the clock in the hopes of finally completing the project.
A manager must stay alert to signs of burn-out in team members, es-
pecially those who have been working on the problem for too long.
Generally, their productivity lags, and their errors increase in number
and severity.

Cause: Personnel Changes

Fourth, scheduling problems often occur because of personnel changes
over the life of the project. Any project over six months in duration can
count on personnel changes—at the very least, in the user community,
if not among your team and/or management. This introduces two risks;
the aforementioned resource unavailability, and the task of bringing
onboard and up to speed a new technician or manager who must
assimilate the terminology, task, and personalities involved in the
project.

Cause: Scope Creep

Fifth, you’ll notice schedule slippage when the performance specifica-
tion is raised—often referred to as “creeping scope.” This is common
when features over and above the original specification are added to
the original project—often in answer to the users’ delight at what they
see. Infectious enthusiasm often results in well-meant efforts to add a
few “trivial” bells and whistles. If you give in to this, keep in mind this
means you're agreeing to do additional work, without altering sched-
ule or cost. Certainly, no single item will put the project way behind
schedule, but it doesn’t take many such changes to produce a one-day
schedule slippage, a one-week slippage, and so on until the project is
seriously behind schedule.

Facing Cost Problems

Cost problems arise for many reasons, often related to performance
and schedule problems. When a project is in trouble on its time di-
mension, it often reflects in the cost as well, because resources are not
being used as efficiently as planned. If software is not performing ac-
cording to specification, further unforeseen costs for additional hard-
ware, such as another server, and software, such as an operating sys-
tem or database, may be required to fix the problem.

38 MASTERING THE PROCESS

Cause: Negotiating Games

A second cause of cost problems is the “liars’ contest” that often oc-
curs during contract negotiation, if the project is being done for an out-
side organization. When the organization is mandated to accept the low-
est bid, this is particularly prevalent. Let’s say you bid $500,000 to fully
implement a maintenance management system for a client. During the
negotiations, you are told to “sharpen your pencils,” by at least 10 per-
cent, or they will award the work to another vendor. In your desire to
win the project, you and your managers agree to minor wording changes,
indicating a modest reduction in the scope of work, but with a sub-
stantial cost reduction. When you reduce price without fundamental
work reductions, you have built in a cost overrun at the very outset of
your project. An experienced project manager will never agree to this
kind of negotiation unless he or she knows the money will be restored
in later contract changes or additions to the scope. But for the new proj-
ect manager, this is a potential cost problem to be aware of.

The liars’ contest also occurs internally. When a project must be sold
to upper management or to other divisions, you are competing with
other managers for authorization of a project. In fact, in some compa-
nies and public agencies, you’ll find that management requires internal
departments to compete with external resources on software develop-
ment projects. The assignment is awarded to the best qualified, and is
outsourced or insourced appropriately. You can figure pretty quickly
that if an IS department loses too often to outside sources, it soon will
be only a maintenance shop—and even that can be outsourced!

Whether you’re involved in the liars’ contest internally or externally,
I recommend that you pretend you’re dealing with an external cus-
tomer in all cases, and go through the rigor of defining and planning.
Actually, considering all the internal politics in many companies, a
strong argument can be made that formality is even more important on
internal assignments, where you’ll probably have ongoing contact with
your “customer” and others who lost the project to you!

Cause: Unrealistic and Inestimable Cost Estimates

A third source of cost difficulty is due to estimating initial costs too
optimistically. These estimates simply don’t reflect general practice:
inefficiencies that occur when scheduling resources to perform the
work; substitution of equipment at the projected price, due to unavail-
ability, with more expensive replacements; and labor rate increases.

SATISFYING THE QUADRUPLE CONSTRAINT 39

In certain situations cost problems arise because the work is so new
that the project manager—you!—cannot be sure what will be required.
You may know which hardware components and systems software and
software tools to assemble, but are unsure what you’ll need when you
actually implement. I was involved in such a case recently. We were
switching from an SNA architecture-based service to a TCP/IP service.
The best-laid plans didn’t prevent us from needing both types of con-
nections until the service completed its conversion—much later than
scheduled. Our budget obviously reflected the double installation and
monthly maintenance costs, not to mention hardware expenses.

Reduction of risk is often reflected in cost—for additional layers of
testing, for hiring outside services. The secret is to budget for accept-
able risk, rather than eliminate all chances of risk. That is, however,
impossible in some cases, such as the recent Y2K experience proved.
In general, you can automate 80 percent of a desired project scope
more effectively than the entire scope. Sometimes the last 20 percent
costs 80 percent of the entire project, and the complicated nature of the
resultant software increases the risk to unacceptable levels.

Cause: Human Error

Not even the best project manager is perfect, so sometimes costs esti-
mates are wrong simply due to mistakes. Even in this era of automated
spreadsheet calculations, operator error creeps in—vital columns are
dropped, or the wrong data is used. For example, in justifying the cost
of a new records system, and trying to show cost savings over current
methods, charging the wrong costs for labor will show an overrun very
quickly.

Cause: Poor Management

Another reason for cost problems that is inexcusable, but that never-
theless occurs, especially in smaller projects that are internal to a
department, is poor management: the project manager is not cost-
conscious, or, worse, does not have an adequate cost management
system. With so many tools now available—even a simple automated
spreadsheet can suffice—this should never happen.

Cause: Funding Failure

Sixth, anticipated funding may not be forthcoming according to plan.
This is never a good thing, for a well-planned project has a cash flow

40 MASTERING THE PROCESS

against which the project has been structured. If funds are not avail-
able at anticipated points in the project—say, when hardware is to be
acquired, or additional labor costs are anticipated for testing and train-
ing—rescheduling of the project will be required. And that, as already
discussed, can cause further cost and schedule delays. For a project to
stay within its budget, not only is funding needed, but it is needed as
scheduled.

Cause: Phased Implementation

When a project is to be implemented in phases, larger total project
budgets are generally needed. Because resources are being allocated
phase by phase, without knowing whether people and facilities will be
needed for the total length of time, negotiation for them must reoccur
at each phase. The resources may cost more in the new phase; addi-
tional personnel may have to be trained, to replace those who have left
the project; and certain software features may be necessary for a par-
ticular phase but not for permanent use.

Addressing Risk Problems

Logically, risk increases substantially as problems occur on one or
more of the other dimensions. And because software development is
an inherently risky business to start with, you may find that the proj-
ect is no longer feasible because your sponsor does not want to sub-
scribe to the increased risk.

Cause: Too Many People

A common problem is using too many people on a given task, result-
ing in a greater chance of miscommunications as software modules are
integrated. And those with less development experience may produce
code that is not up to par. This can be avoided by using fewer, but more
experienced and highly qualified, developers.

Cause: Poor Integration

A second cause of risk problems is inadequate correlation of require-
ments and testing, to ensure that what has been asked for has, in fact,
been delivered. This can be relieved by using a software development
methodology that incorporates multilevel testing back to the original
requirements.

TAKING CORRECTIVE STEPS 41

Cause: Schedule Slips

Risk increases when a project schedule slips. And once a schedule
slips, you run the risk that the quality of software developed will be
lower, due to inadequate testing caused by time pressures. Also, the
original users who assisted in defining the system may have left the
company by the time you deliver, and the new users may have new
definitions and may try to alter the deliverable or, even worse, refuse
to accept it at all.

TAKING CORRECTIVE STEPS

With the Quadruple Constraint as your planning guide, you can elim-
inate many potential problems, and mitigate the effect of others. When
you develop software you follow principles that govern the design (for
example, speed of data entry is more important than retrieval speed).
Likewise, in planning your project, you will have greater success when
you follow planning, monitoring, leading, and completion principles.
That’s what the Quadruple Constraint helps you to do.

Step: Solicit User Support

Users are critical to your project’s success, so soliciting their support
in helping you meet the Quadruple Constraint is an important step. In
fact, it’s best to regard this step as mandatory. Systems cannot be
forced on others; systems forced upon others are ultimately failures.
To paraphrase an old adage, you can lead a user to the system, but you
can’t make the user enter data properly, or think like the system. It’s
far easier to make the system reflect the way the user can think!

Users can help you satisfy the Quadruple Constraint in a number of
ways. Here are some that have been successful on my projects:

* Participate in project teams throughout the life of the project.
* Appoint a user to head the team.

* Commit to the project’s success.

* Participate fully in defining requirements.

* Budget adequately, both in dollars and hours.

* Provide adequate clerical and user resources.

* Be receptive to change.

42

MASTERING THE PROCESS

Know what exists, and clear up any ambiguities.

Know what is wanted, and clear up any ambiguities.

Turn around documents quickly, with feedback where needed.
Establish measurable acceptance criteria.

Deliver test data, and evaluate test results promptly.

Adhere to contract.

Control change requests.

Clearly set priorities.

Agree to principles that will guide the system development.
Agree to principles that will guide the project management.

Be advocates of the new system, selling it to the rest of the user
community.

Be patient and tolerant.

Above all, make sure you plan and deliver what the sponsor and
users expect.

Step: Produce a Thorough Performance Specification

You can also increase your chances of satisfying the Quadruple Con-
straint by making sure that the performance specification is well-
written and complete. The performance specification will generally be
composed of, and relate to, many different documents, as explained in
greater detail in Chapter 3. Wherever the information resides, however,
and whatever you call the document(s), you must be sure that the fol-
lowing criteria are met when you specify performance:

Complete, as to all functions to be performed.

Complete, as to all documentation to be furnished.

Complete, as to legal requirements.

Unambiguous, as to meaning and requirements.

Consistent with data inputs and outputs.

Feasible and measurable.

Comprehensible, by users, testers, and trainers, as well as by de-
velopers and managers.

Comprehensible, by individuals who will ultimately maintain the
system.

ADJUSTING TO PROJECT OUTCOMES 43

On some projects, it will be impossible to define all the specifications
completely. For example, recently, when my team was implementing
an enterprisewide geographical information system, we knew that, ul-
timately, we wanted departments throughout the organization to be
able to view common base information, and to develop maps using
their own department-specific information. However, we could not
specify up front which department would implement its own system,
and what departmental information it would need and provide. So we
broke the project into phases, each one with a complete performance
specification appropriate to that phase. The first phase allowed the de-
partments to envision what they needed after seeing the developed
baseline information. The final phase specification was then able to
provide measurable detail that could be properly tested. The lesson
here is, when you are unable to set all project specifications up front,
as happens with longer or more exploratory projects, use phased
implementations.

ADJUSTING TO PROJECT OUTCOMES

It hardly need be said that, rarely, will everything go exactly as planned.
Similarly, not every project will satisfy precisely the Quadruple Con-
straint. Generally, there is deviation within the ranges, as illustrated
earlier in Figure 2-1.

As always, the devil is in the detail; just how much deviation is ac-
ceptable depends upon your specific project’s ranking of the four ob-
jectives, or constraints, which is why each project is unique. You can,
for example, tolerate schedule slippage when accuracy and/or risk can-
not be compromised—you’d wait before installing a bug-ridden police
dispatch system because lives depend upon it. You can tolerate cost
overruns when accuracy cannot be compromised or when a schedule
absolutely must be met. In the former, you’d work as long as it took
to make sure a new banking system accurately posted customer trans-
actions; in the latter, you’d do whatever necessary to ensure the sens-
ing software for your space launch was ready for liftoff.

Just remember, it’s the relative importance of each constraint di-
mension, unique for each project, that will determine whether your
project succeeds or fails.

44 MASTERING THE PROCESS

Essential Points

At the start of any project, failure to clarify the natural ambiguity will
lead to failure. Early and ongoing communication between the project
manager and the project constituencies will help to eliminate ambigu-
ities and to create a common vision. It will also better enable you to
rank the constraints.

The project manager must, at all times, serve as a balance between
the technical personnel’s desire to perfect beyond schedule and cost
constraints, and management’s requirements to conserve costs, control
risk, and produce something rapidly. Writing clear performance spec-
ifications is the only way to ascertain that you’ve done what you set
out to do. You can’t measure software against vaporware.

DEFINING PROJECT TYPES

Software projects can be distinguished by size, by intended use, and/or
complexity. The type will often affect relative importance along the
Quadruple Constraint. For example, a software project might be con-
sidered small if it is being done by a single person. On the other hand,
I know of a two-year project being done by a single consultant, for a
multimillion dollar division with 70 employees. Though I don’t con-
sider that small, it’s being treated as such by the sponsor. (I might add
that it has not been successful, either.)
My guidelines for defining a project type are:

* If the software is to be sold to others, it’s a big project.

* If the software is to be used by others across divisions or large de-
partments in an enterprise, it’s a big project.

« If the software is to be used internal to a department, it’s a medium-
sized project—unless there are multiple groups, in which case it’s
a big project.

« If the software is to be used only by a group, and will be com-
pleted within six months with one to two people working on it,
it’s small; or, if more than two people are working on it, it’s
medium-size.

« If the software is to be used by a single person, will be completed
within a month, and is to be developed by a single person, it’s not
even accurate to call it a project; obviously, it’s small.

DEFINING PROJECT TYPES 45

o If the software has a high level of risk, it is considered a step
larger regardless of the other risk-sizing factors.

* If the software gives competitive advantage, it’s larger by one
level than otherwise.

Small projects generally require less management because there are
fewer resources to coordinate. Medium projects lend themselves to
what is covered in this book. Large projects tend to have additional
unique characteristics, not only because technology becomes perish-
able the longer it takes to develop the software, but also because re-
source availability becomes riskier. Many large projects without a
methodology can be helped by the lessons put forward in this book, as
resource planning is better than none at all!

Perils of Small Projects

The problems unique to small projects include: tight schedules, tight
budgets, small teams, and often, low-priority status. Typically, the
costs of administration and project management will consume a big-
ger proportion of the budget, as the small project needs to be moni-
tored even more carefully.

Also, getting up to speed on any project takes time; this factor is not
directly proportional to the size of the project. For example, if a pro-
gram is to be implemented in eight weeks, and the programmer delays
two weeks, the project will quickly be 25 percent late, and possibly
overrun the budget by a more significant amount than if the project
were 20 weeks in duration. Moreover, because small projects typically
have less funding, they also have less contingency from which over-
runs can be accommodated.

Another hindrance to teams working on small projects is that they
generally have access to content experts only on a part-time basis. As
anyone who has waited for the Oracle guru to consult for two hours
knows, this is often an exercise in frustration. Small projects are often
too low on the technology totem pole to get the attention they need.
The project manager, therefore, must learn to effectively lobby for
such resources. Often, specifying full days, rather than hours, will ex-
pedite the availability, but at greater cost for the project.

Studies have shown that high-priority projects are more likely than
low-priority projects to be completed successfully, because they will

46 MASTERING THE PROCESS

normally win any competition for key resources.' You can obviate
the problem by keeping the decision makers aware of your project and
its importance—or by avoiding managing small projects in the first
place. If a project is important enough to earn early commitment, you
should strive to obtain your resources before sponsor enthusiasm
wanes.

On one project I recall, the project manager failed to request train-
ing resources until he was absolutely sure the programming would
be completed. The project was delayed each time while we waited in
the trainers’ “queue.” Had the project manager prereserved a date, the
resource would have been set aside, and our training could have
occurred earlier, while other engagements were reshuffled.

Managing software projects of any size comprises a number of tasks
that must be performed: definition, planning, monitoring, leading, and
concluding. These tasks will generally take a larger proportion of the
total time on a small project. Therefore, you, the project manager,
should streamline reporting techniques (for example, instead of a
weekly progress meeting, you may want to use e-mail because the
team is small, and progress can be reported briefly, in a paragraph).
You may issue the project schedule only once, rather than at the end
of each phase in a larger project.

The point is, you shouldn’t spend more time managing the proj-
ect than developing the software itself. On the other hand, you must
still be firm about documenting and testing, because no project, no
matter how small, is immune from bugs and problems. And you
must still train, and interface with other system efforts in an orga-
nization. I am reminded of a client who had many small depart-
mental software projects underway. The resulting systems generally
were not well documented, and many died when the current user left
because there was no cross-training. Those systems that did survive
eventually fell into disuse because the interfaces among them proved
too cumbersome. The company had wasted its investment in the
software.

In short, small projects can backfire if the risk is not managed.
When this happens, it can serve to decrease user confidence in future

"Lewin and Rosenau, Software Project Management: Step by Step, 2nd edition, (Marsha D.
Lewin Associates, Inc., Los Angeles, CA, 1988), p. 289.

APPLYING METHODOLOGIES TO THE MADNESS 47

efforts. Finally, small projects can grow into large projects, in which
case more formal methods should be used.

Platform- and Architecture-Specific Projects

Platform (hardware and operating system) and architecture (distrib-
uted, centralized, client/server) decisions are often treated as part of
the design; conversely, projects are often categorized by either or both
of these design attributes. How many times did you hear Y2K projects
classified as COBOL projects, which indicates the language of the ap-
plication, but gives no hint as to the application? Likewise, describing
a project as a client/server project indicates the complexity of the
architecture (multiple applications on the individual workstations with
programs and data on the servers), but it does not functionally describe
the project.

The architecture and platform describe what you are trying to im-
plement, and can be misleading or inadequate in conveying the busi-
ness nature of your project, so it’s best to use descriptive project names
that are meaningful to both management and end users, not just to
technical people; for example, an “online purchase order system,” or a
“document management system.”

Once you’ve selected a design architecture, there are important im-
plications for project management, especially in the testing and inte-
gration stages of the project. You will have to allocate more time for
testing systems that have multiple instances (distributed, client/server),
since failure can happen in any link within the system. Integrating mul-
tiple architectures within the same system raises the risk level because
you increase at the same time the number of connectivities (each of
which requires testing). Networked systems introduce their own com-
plexity, in that the protocols among servers and firewalls must be care-
fully tested along with the hardware and software.

APPLYING METHODOLOGIES TO THE MADNESS

This is a book on managing software projects; its lessons can be
applied to all projects, regardless of how the software will be devel-
oped (the method). A development methodology comprises a model of
how the development will proceed, and includes design, testing, and

48 MASTERING THE PROCESS

ANALYSIS AND DESIGN TESTING AND ACCEPTANCE
Requirements Acceptance
Analysis A\ /> Test

System System
Specification Test

Detailed
Design
Specification

Programming

Figure 2-2 “V” software development methodology.

completion, as well as a manner, or method, of verifying that the
process is proceeding as it should. The most common models are:*

* The Waterfall model, shown earlier in Figure 1-2. The steps in the
design process are viewed as overlapping and iterative, much like
the steps in our project management.

* The “V” model, shown in Figure 2-2. Here, the Waterfall model
steps are rearranged, with the conceptual (design) parts on the left,
matching up to the testing and validation components on the right.

* The Spiral model, shown in Figure 2-3, is Boehm’s risk-based
model. It allows for review at each step of the project to deter-
mine the best method at the end of each step, or quadrant, to min-
imize risk. Each cycle goes through each of the four quadrants
noted.

The Life Cycle Management methodology is used to manage all of
these project models. What they have in common is that they feature

2See Chapter 2 of Felix Redmill’s book Software Projects (John Wiley & Sons, Inc., 1997) for
an in-depth presentation of this topic.

APPLYING METHODOLOGIES TO THE MADNESS 49

Initiation: Analysis and
Define Design
Objectives

R
LY

Plan Next Develop
Iteration and Test

Figure 2-3 Spiral model software development methodology.

stages of the software building process; and the methodology incorpo-
rates review points at the various stages, to ensure that the project is
proceeding properly. This is appropriately called staged delivery.

Another methodology, Rapid Application Development (RAD), is
popular in the delivery of user-based systems. Design continues
throughout the project. RAD is very useful when there is ambiguity in
the initial requirements, or when the requirements keep changing. But
in order to monitor how well you’re proceeding in a RAD method of
development, you will have to test differently.’

Building a prototype in any of these models is particularly helpful
when there is to be a heavy user-program interface, because users ap-
proach problems differently from technicians. For example, in a recent
implementation, the users preferred keying more information into a
single screen rather than invoking multiple screens. This knowledge
saved much programming that had been planned.

In conclusion, you want to select a measurable model that best suits
your particular goals. T still use a staged life cycle model, with user

3See William E. Perry’s Effective Methods for Software Testing, 2nd edition (John Wiley & Sons,
Inc., 2000) for a complete treatment of software testing.

50 MASTERING THE PROCESS

Initiation

N
0\

Modification

~

Implementation

~

Review

Figure 2-4 Formula-IT development methodology.

involvement accounted for in a prototype or pilot phase, as shown in
Figure 2-4, Formula-IT.

GETTING THE LAY OF THE LAND: KICK-OFF

Before jumping into specifying what the software will do—which is
a natural tendency if you’ve entered project management from the
computer technical ranks—ponder for a moment the business purpose
your software is intended to serve. Doing so will enable you to
determine where your sponsorship should come from, how much
support you’ll need for this endeavor, and where on the Quadruple
Constraint your project will fall. Often, you’ll learn that things are not
as they seem.

GETTING THE LAY OF THE LAND: KICK-OFF 51

For example, I worked on a software modification project whose
goal was to upgrade a human resources department’s software, to in-
clude an online benefits registration capability. While middle manage-
ment supported this change, and the employees had been lobbying for
such a feature for years, the human resources director was not in favor
of it. Through a series of discussions with the director prior to the de-
finition of the project, my team was able to not only reassure him that
existing data would remain secure, but that he would benefit from the
availability of such information and help him to reduce his backlog of
paper forms. In planning the project, we added a pilot program, and
solicited his participation.

On another project, my team was charged with automating the
processes of a police force. This was to include cellular entry of re-
ports from patrol cars. Upon study, we found that the officers wanted
to select their own equipment, and that the mechanics wanted to be
part of the team because they had to install the equipment. We had an-
ticipated the officer involvement, but neglected to include the me-
chanics at first pass. Subsequently, we incorporated them on the proj-
ect team, resulting in greater efficiencies in the installation and
maintenance of the system.

The lessons here should be obvious: look both strategically and tac-
tically for people and situations that can contribute to your project’s
success; incorporate those people into your teams, and accommodate
the situations in your planning.

Playing Politics

Fortunately, most projects I’ve worked on have been successes. On
those that were not, I found the most prevalent reason to be a lack of
management support. Simply put, any organization’s leader sets the
pace for the troops. Commitment from the top is essential, to inspire
your team to put in the effort it generally takes to deliver successful
software.

I recall working with an organization whose vice presidents of fi-
nance and engineering disagreed on the use of technology in the com-
pany. Therefore, their IT department was torn between the engineering
applications and the administrative and financial applications neces-
sary to run the company. This meant that project managers had diffi-
culty keeping technical people because they quickly became frustrated
with their inability to get the resources they needed, such as hardware

52 MASTERING THE PROCESS

and systems software, to accomplish their goals. In short, interoffice
politics were rendering the computer department impotent; the com-
puter staff was caught in the middle of an executive tug-of-war.

To avoid such situations, your project must have top management
support, which will be reflected in adequate budget, resources, and pri-
oritization of your project. Not only are your chances for success
greater when you have your management support, but developing the
software becomes easier, too, because the team is happier. And a word
to the wise: when executives move to other positions or companies, as
often happens in this era of mergers and downsizing, check in with the
new leaders to be sure that your project’s position in their strategy has
not slipped in importance.

On occasion, you’ll also be faced with the situation where the re-
sources you need to achieve success are controlled by others, who find
it politically advantageous to withhold them. This obstacle is not in-
surmountable, but requires careful planning and patience. You can
cleave the project into segments, to reflect what can be accomplished
successfully, and eliminate battles over territory.

Let me demonstrate what I mean. Recently, we had the responsibil-
ity of implementing a companywide information system. The goal was
to provide each department with a set of tools that would enable on-
line entry and retrieval of integrated information, such as project costs,
including labor hours expended. The director of finance and the direc-
tor of operations disagreed over sponsorship of the project (both wanted
to claim credit if the project succeeded, though neither would take re-
sponsibility if it failed, which looked like a certainty because they
couldn’t even agree on the day of the week!). The project was stalled.
Finally, taking a Solomon-like approach, we cleaved the project into
two: a data-gathering and coordination portion, which fell under the
responsibility of the director of finance, and a programming project,
for which the director of operations was responsible. This allowed the
projects to proceed, and both directors could claim success for their
portion of the project.

The important issue here is to assess the politics that might affect
your success, then plan around them.

Setting Expectations

The users—not you—ultimately determine whether your project is a
success, based on how well it meets their expectations. You can help

GETTING THE LAY OF THE LAND: KICK-OFF 53

them by setting expectations to realistic—and therefore attainable—
levels.

After identifying the people who are stakeholders in the system, it
is important to work with them to ensure that they have a shared set
of expectations regarding what the software is actually going to do. For
example, whereas the executive vice president may be anticipating an
Internet-based order system directly into his or her company’s parts in-
ventory, the company’s purchasing agent may be imagining using an
online purchasing system to others’ inventories, to save time. Obvi-
ously, the question you, the project manager, must answer is: What is
the scope of the term “online ordering system?”

A team meeting, or one-on-one meetings with the stakeholders
throughout the company, from administrative assistant to executive,
can help you get started answering the question. What will come out
of the process is a clearer and shared understanding of what the soft-
ware is intended to do (and not do). A shared vision from the outset
makes it easier to achieve success.

At these meetings, it’s also a good time to discuss expectations of
procedural and systemic changes. When you bring in new software, it
affects the processes that surround them. I like to think of programs as
the inner core of the total system, circled by concentric rings, as drawn
in Figure 2-5. When you change anything in one ring, it affects the
rings surrounding it; that is, when you change programs, you gener-
ally end up changing the manner in which people and other systems
interrelate with the programs, and with one another. Some people will
be worried about this, so you need to explain at this point that their
tasks will be made easier—and more knowledge-based—which is al-
ways regarded positively.

For example, my team implemented a records management system
for a police department, to replace a home-grown, FoxPro-based data-
base implementation with a vendor’s client/server product. Conse-
quently, the records management staff no longer had to enter officers’
reports into the system, or retrieve information for the officers based
on a mysterious codification that only the clerks knew. Using the new
software, the officers could write up their reports and route them through
workflow to sergeants for approval, after which the sergeants routed the
reports directly into the system—all without human intervention. In
spite of its obvious efficiencies, the clerks were resistant to the sys-
tem because they feared their jobs would become superfluous. To as-
suage their concerns, we worked through their new roles with them,

54 MASTERING THE PROCESS

Procedures

Network

Systems

Application
Programs

Programs

Figure 2-5 Processes in the total system.

setting expectations of managing data, assisting with research, and ad-
ministrating data rather than inputting reports. Ultimately overall, job
satisfaction increased. The clerical function of entering data became a
task of data content coordination and management.

COMPILING THE PROJECT BIBLE

Every project needs a “bible”; that is, a set of the documents that de-
fine and describe the project throughout its life. These documents de-
fine why it was conceived, and what it is intended to achieve; the plans
for achieving the goals; the parties involved, the specifications, and the
schedules; and, finally, the lessons learned, and information for ongo-
ing maintenance after the project is completed.

To compile your project bible, either get out some three-ring binders
with dividers, or set up a new file folder on your computer—or both
(you’ll probably need both if you have any external activities, such as
product deliveries and receipts).

COMPILING THE PROJECT BIBLE 55

Elsewhere in the book I address the specific content of documents;
here I want to show you how the documents interrelate. Whichever life
cycle definition you use, institute a “tree” for your project along which
you’ll set down a document for each life cycle phase. A sample is
shown in Table 2-1.

A phase can be delineated by:

* A unique audience or set of audiences involved

 Completion of milestone documents or products by the end of
that phase

+ Separate and distinct uses of the information prepared

» Dependency on preceding phases

Each phase has a distinct mix of reviewers, milestone documents, and
purposes, throughout which occur the project management steps—
defining, planning, leading, monitoring, and completing.

TABLE 2-1 The Document Tree

Life Cycle Phase Milestone Document Review By

Initiation Project Work Plan, Program Director, Sponsor,
Standards Project Manager,
Senior Management
Analysis User Requirements Users, Vendors
Analysis System Architecture,” Users, Development Management,
Product Specifications,™* Management, Marketing
RFP***
Design General Systems Design, Development
Application Design,
Specifications,** RFP***
Modification Detailed Design, Database Development

Implementation

Review

and Processing
Specifications

Test Specifications,
User Documents,
Operations Manuals,
Training Documents

Lessons Learned,
Final Report

Quality Assurance
Users
Maintenance Staff

Users, Maintenance Staff

*This document is not necessary if you are creating stand-alone software. However, if you are de-
veloping software that will run on a network, even a single page describing how the software will use
network services will be helpful for others—operations staff, for example.

“*These documents are necessary only if you are “productizing” your software—you'll be selling to
others as a software product.

**The RFP can be part of the design phase documentation if you are selecting COTS, or during
analysis if the vendor is to do the design.

56 MASTERING THE PROCESS

I set up my project bible folders to include all such documents, as
well as:

* Sign-offs and authorizations for documents

* Meeting minutes and issues lists

* Vendor evaluations

* Correspondence

* Notes, including records of critical phone calls
* Change orders

More than once, others will refer to the project bible for information
as to why design decisions were made, why change orders were au-
thorized, and what the scope was to have been.

CHOOSING PROJECTS WITH THE BEST CHANCE
OF SUCCESS

You’ll enjoy managing software projects more, and everyone working
with you will be more likely to enjoy the process as well, if you begin
with a feasible and achievable goal that is coupled with a well-
considered work plan to achieve that goal. (Having said that, not every
software project is do-able; and others are workable but miss the mark
for a variety of reasons.) In this chapter, I’ll introduce ways of in-
creasing your chances of working on projects that will succeed.

Requests for Proposals and Proposals

We begin with requests for proposals (RFPs) and proposals them-
selves. Whether you are managing an internal or external software de-
velopment effort, the information you need for RFPs and proposals is
the same; the only differences will be in terms of legal issues that nat-
urally occur when two organizations are contracting with one another.
In an internal proposal, you will still be expected to “spin” benefits of
the proposed project, although you won’t have to give as much com-
pany background as you will when you’re involved in an external bid-
ding situation.

You will also have to learn to deal with proposals submitted in re-
sponse to RFPs that you initiate. Understanding how they should be

CHOOSING PROJECTS WITH THE BEST CHANCE OF SUCCESS 57

prepared will make you a better evaluator, as well as a better proposal
writer.

The proposal itself bridges the definition and planning phases of a
project. A project proposal defines the work that is authorized by a
work order (internal) or contract (external). The proposal defines the
project’s cost, schedule, and performance, subject to final negotiation
and inclusion in the contract.

One Size Doesn’t Fit All

I’ve said it repeatedly: every software project is unique; it stands to
reason then that every proposal will be, too. And, after evaluating
hundreds of proposals over the years, I'm still amazed at how differ-
ent proposals can be even when they’re written in response to the
same RFP!

Furthermore, not all companies respond to RFPs with a proposal,
even though it’s much easier with contemporary tools to recycle parts
of previously submitted proposals. In general, you should submit a
proposal only when:

« The project is consistent with your long-term goals.

* You have distinctive expertise in the requested area.

* You have available technical resources to develop the software.

« The budget, if stated, is consistent with your cost structure, and is
achievable.

* Your costs to maintain the software, or client relationship, will be
consistent with your long-term goals.

* You have a good chance of winning the assignment.

Read the RFP Thoroughly

Well-written RFPs stand out immediately from the unqualified, so it
still surprises me how much time and money companies spend on sub-
mitting responses to RFPs for which they’re not qualified. The motto
is: If you are a sow’s ear, don’t try to pass for a silk purse. We know
the difference.

If you are sure you qualify, rate yourself against your competition.
How distinctive are your capabilities? If resumes of proposed staff are
requested, as is typical these days, do yours match the requested
requirements?

58 MASTERING THE PROCESS

When I write an RFP, I ask for relevant experience; firms that are
selected for an interview are asked to demonstrate their software. If
they are developing software specific to the current environment, ask
that they demonstrate something similar. The point is to verify claims
of competence whenever it’s possible and as early as possible. The risk
of finding out after you’ve contracted with someone that he or she
isn’t all that was promised should be obvious.

When you don your proposer’s hat, you’ll need to ascertain that the
RFP demonstrates a real requirement. Also, find out whether there’s a
budget for the project. Be aware that sometimes an RFP is written to
gather information, not to actually launch a project. In short, it’s not
real. Frequently, the RFP will reveal enough information so that the
company realizes it can take on the project with its own resources. So
it’s important to examine the RFP carefully, to determine the viability
and importance of the proposed project.

Understanding the Proposal Process

Once you determine that you can offer a distinctive capability in re-
sponse to the RFP, then a proposal might be in order. I say “might,”
rather than “is” here, because there are other considerations involved.

The following steps were designed to help you decide when to sub-
mit proposals; that is, to ensure that you submit proposals for projects
you have a good chance of winning. During this process, whenever
possible, review your approach and draft documents with the project
sponsor. Not only will this reduce the possibility that you’ll go off in
a nonproductive direction, but you’ll generally gain greater clarity on
the project at hand, as well as develop more familiarity with your spon-
sor. Figure 2-6 shows the steps in the process.

1. Conduct a background check. Find out whatever you can about
the company (or agency, if you’re dealing with the public sector).
Attend the bidders’ conference, if one is convened. If you know
people who have worked for the issuing company, find out what
is happening (is the company growing, doing well; is it a leader
in its field?). Search the Internet for background on the company
and for any recent news articles on it. Not only will this give you
information as to where the project fits into the company’s goals,
but it can also help you identify a winning theme for your pro-
posal, such as lowering cost, or time-to-market.

CHOOSING PROJECTS WITH THE BEST CHANCE OF SUCCESS 59

No—| Research and 1
Investigate
¢Y es
Analyze Risk
< 2
yYes
Obtain Internal 3
< Approval
e
Select Theme 4
4
Review and Adjust Prepare SOW, 5and 6
7 | Proposal Project Plan
A
h 4
No | Obtain Approval
8
iYes
Submit
9
Follow Up 10
"No Go"
v
END

Figure 2-6 The proposal process.

2. Analyze the risk. Especially in software projects, the risk of fail-
ure may outweigh any profit potential. Risk is addressed in
great detail in Chapter 3, but for proposal purposes, know that
you should go at least to the level of performing a strengths,
weaknesses, opportunities, and threats (SWOT) analysis prior
to going any further. Ask: What strengths and weaknesses does

60

MASTERING THE PROCESS

this project have; what opportunities and threats will this proj-
ect present? (See Appendix III for further detail on a SWOT
analysis.)

. Obtain internal approval. Preparing a proposal takes a lot of re-

sources. Sometimes an RFP is issued merely to satisfy legal re-
quirements (such as rebidding on a job every two years), when
only the incumbent stands to emerge as qualified. Why waste
the time and effort on a proposal that can’t win? The point here
is, evaluate your chances of winning; identify the resources
available to write the proposal; then plan out the proposal effort
as on any other project.

. Select the theme. Which dimensions of the Quadruple Con-

straint will you emphasize in the proposal? If cost is the over-
riding issue for the company, then emphasizing your capability
to deliver the most technologically advanced system won’t help.
If you have many people working on the proposal, their com-
mon emphasis on the selected theme will make the proposal
read better. Too often, in reading proposals, it’s glaringly clear
where different authors wrote different sections. This can be
confusing, and usually dilutes the proposal’s effectiveness. If,
for example, you’ve done similar work before, your theme
might be competence or low risk. Or, if you’ve been pioneers
in networking, you might emphasize connectivity. If you’re an
industry specialist, you can emphasize expertise in dealing with
the industry’s unique problems. You get the idea.

. Prepare the statement of work (SOW). The SOW defines what

you’ll do for the customer. It should be precise and measurable;
it should define who will do what; include acceptance criteria.
If you are delivering software, be sure to specify the operating
system and network infrastructure. A UNIX system requires
vastly different support than NT servers, for example. (A sam-
ple SOW I used recently can be found in Appendix II.)

. Develop a project plan to accommodate the Quadruple Con-

straint. The proposal is, as stated before, a bridge between the
definition and the planning phase. The SOW defines the proj-
ect, while the project plan says how you’ll accomplish it. You’ll
find a sample of the work plan I use in Appendix I. Note that
it contains a schedule; lists deliverables and responsibilities;
identifies resources required; and relates to the SOW. It allows
the requestor to see how well you understand the RFP.

CHOOSING PROJECTS WITH THE BEST CHANCE OF SUCCESS 61

The planning process is described in greater detail in Chap-
ter 3, but suffice it to say here that you must address your
solution to satisfying the Quadruple Constraint in your pro-
posal. First, you address the performance dimension by using
the work breakdown structure (WBS) to identify the tasks to be
performed. These tasks should take no longer than two weeks;
they should have quantifiable inputs, outputs, schedules, and
assigned responsibilities. For example, the statement “imple-
ment system” is too broad a WBS task. Instead, you might
divide it into three tasks: install software at client site; test soft-
ware; accept software. These are distinct tasks that can be mon-
itored more efficiently. You then address the time dimension, by
laying out the tasks according to time, using network diagrams.
You evaluate the level of risk acceptable for the project type,
and include additional tasks and time to accommodate risk-
reduction activities. Finally, you cost each activity, to determine
the budget constraint. A tool such as Microsoft Project enables
you to represent the WBS, the schedule, and the resource usage
for your project.

Be sure to include a project organization chart in your
work plan, not merely a corporate organization chart. While
the latter can help clarify roles in a joint venture, most of the
people evaluating your proposal will never get an opportunity
to meet your company executives, but they will have day-to-
day interactions with the project people and organization you
propose.

. Review and adjust the proposal. You may find that the project
will take too long, and that you’ll have to shorten the time al-
lotment for some tasks. Using your project management soft-
ware tool, you can quickly stage what-if scenarios to determine
the best sequencing of tasks. By the way, if, during planning,
you determine that you really can’t undertake the project, this
is as good a point as any to stop. It’s also a good point to re-
view the proposal for completeness, consistency, and accuracy.
There is never any excuse for misspellings or for failing to in-
sert the correct company name in a proposal template you’re
reusing. I’ve seen too many of those!

Often, you’ll hold off writing the proposal until the last
minute, while awaiting pricing of components, for example.
A word of caution: failure to allow for adequate review time

62

10.

MASTERING THE PROCESS

may result in major errors—such as misquoting hardware to be
delivered, or omitting critical software products, such as addi-
tional copies of SQL Server licenses and server operating sys-
tem software that are also required. Remember, you’ll be liable
for these errors.

Obtain approval. Typically, the company head or marketing di-
rector will approve the proposal; and someone from upper man-
agement usually must sign the eventual contract or agreement
if you win the assignment, so he or she is usually involved in
the proposal review process to prevent any last-minute prob-
lems. To ensure upper management involvement, in our RFPs
we include a letter that must be signed by a responsible execu-
tive. It’s always wise to keep management informed as you pro-
ceed, so that they are not surprised later in the project. You can
get formal sign-off by submitting a brief that describes the pro-
posal scope, the project’s risks and benefits, and the resources
to be committed to the project. Text Box 2-1 has a sample of
such a brief.

Submit the proposal. Today, with overnight express services and
online tracking capabilities, I'm still amazed when a company
spends much time and effort on preparing a proposal, then
scrimps on the shipping costs, resulting in a proposal that ar-
rives too late for consideration. From the outset, plan how you’ll
deliver the proposal, usually in multiple copies, promptly. Con-
firm with the recipient that it has arrived.

Follow up. If your proposal does not win, don’t forget to follow
up with the recipient to find out why you were not selected. It
will provide valuable feedback for the next time you go through
the proposal process.

If your proposal is favorably received, the next step may be a face-

to-face interview, during which you demonstrate your software and
systems. In today’s communications-friendly environment, you can
use a browser through the Internet to effectively display your “soft-
wares,” without having to bring in servers, or limit what you can
display.

Keep in mind, you can rehearse the contract negotiations. Often, I

make up a list of questions I suspect might be asked of us during this

CHOOSING PROJECTS WITH THE BEST CHANCE OF SUCCESS 63

process, and determine acceptable answers. A starter list of possible
questions can be found in Text Box 2-2.

Of course, your goal should be to rehearse your presentation until
it’s perfect—hopefully, perfect enough to win you the project. Then,
of course, you’ll have to negotiate the contract or agreement (contract
for products, agreements for services). By involving your senior man-
agement in the process early, no surprise clauses in the agreement will
preclude authorized signature. (I generally include a sample copy of
the agreement in RFPs to prevent such problems.)

Checklists:

As you go through the planning process, you’ll identify tasks that
need to be performed each time you prepare a proposal. Since it’s
easy to overlook items when you’re hurrying to complete the pro-
posal, you may want to create your own checklist of items that
should be addressed and included in the proposal. A typical
checklist is given in Text Box 2-3.

Facing Proposal Challenges

The following are common challenges you’ll encounter in the proposal
process:

* Balancing your desire to demonstrate your competence in the pro-
posal against doing the entire assignment in the proposal. This of-
ten occurs when you plan the project bottom-up. Plan only to the
level at which you demonstrate that you’ve dealt with problems
of this type before. Include a work plan from a previous assign-
ment, for example.

* Not doing enough planning in the proposal. A poorly planned
proposal will not win you the assignment, and it can damage your
reputation. You should plan for any significant issues to the de-
gree at which you are sure you can do the job properly. Other-
wise, do not submit the proposal.

* Having to rush to complete the proposal and submit it on time.
Prior proper planning can eliminate this problem.

64 MASTERING THE PROCESS

TEXT BOX 2-1 PROJECT SUMMARY BRIEFING

Airport Management System Implementation

Action Requested:

Proposal Approval, Authorization Letter Attached

Project Description:

To implement an automated system to manage airport operations
reporting and concession leases at ABC Airport. The cost pro-
posed is $250,000.

Project Scope:

This project covers the implementation of software to automate
all agreements between the airports and its tenants, including
food, automobile rental, and airlines. It also includes the calcu-
lation of shared-use charges based upon passenger activity, such
as embarkation and debarkation.

The automation of these processes will include the prepara-
tion of billing amounts, but the bills will continue to be prepared
by the existing airport accounting system. A flat-file interface
between the two systems is required until the accounting system
is upgraded, at a later date.

These functions are precisely those provided in our packaged
software. Training and implementation resources are also re-
quested on a fixed-price basis. User acceptance is the standard
30-day bug-free operation.

The proposal to be submitted responds to the airport's re-
quirements, using our standard Airport Billing Management Sys-
tem (ABMS) software. No enhancements are required. However,
the operating platform is Windows NT, and our NT software is
still in beta test until after the proposal due date.

(continues)

CHOOSING PROJECTS WITH THE BEST CHANCE OF SUCCESS

65

TEXT BOX 2-1 PROJECT SUMMARY BRIEFING
(continued)

Benefits and Risks:
The benefits of proposing on such a system are:

* The NT marketplace is increasing, over 10 percent annually
for the last two years.

e If we do not propose, competitors will surely gain market
share by adding this client to their list.

* We do not have a presence in ABC region, and this will fa-
miliarize the airport with our company name, giving us an op-
portunity to follow up on other possible projects.

The risks if we do win this assignment are:

e Our NT implementation will take longer to develop than
promised in the schedule submitted.

* The software will not run as efficiently on NT, and the client
will be displeased, possibly resulting in litigation.

* We will not be able to obtain sufficient technical resources to
initially service the airport.

Resources:

Our new NT development team has surpassed projected sched-
ules, and consistently come in within budget in transferring the
software platform. The number of bugs have been 80 percent less
than forecasted, and staff is available to move the NT version out
to the client. Additional documentation has been consistently
prepared with the project so that additional support personnel
will not be required. The R&D funding required to move plat-
forms is at 60 percent utilization.

66 MASTERING THE PROCESS

TEXT BOX 2-2 SAMPLE PRE-INTERVIEW
QUESTIONS

Why did you propose the mix of services?

How available will your staff be?

Why should we use your software rather than a competitor’s?

How frequently do you release new software?

How do you handle site-specific customizations when you up-
grade?

What is your maintenance charge philosophy?

Who owns the product source code?

Can the source code be placed in escrow?

Do you have a users’ group?

TEXT BOX 2-3 CHECKLIST FOR PROPOSAL
INCLUSION

Letters and forms with proper signatures

Current names, phone numbers, and addresses of references

Accurate number of references

Ownership of software provided

Specific list of services to be provided

Limits to services, especially on fixed-price proposals

Accurate specifications of platforms required

Complete specifications of additional software or hardware re-
quired for proper installation

Availability of key staff

Resumes of key staff to address specific client requirements

Acceptability of client agreement formats and terms

Incorporation of any subcontractor requirements, such as DBE
and WBE

Cost-of-living increases (for projects over two years)

NEGOTIATING FOR SUCCESS 67

* Lacking management support. Support can be lacking from your
own management and from the company for which you’re writ-
ing the proposal. In the first case, you may not be able to get the
resources you need to execute the assignment; in the second, you
may not get the assignment because management has another can-
didate in mind.

* Treating internal assignments casually. Internal projects often
have highly political implications. A manager’s pet project for
which no cost-benefit analysis and planning have been done often
becomes a political liability when that manager is replaced by
someone with different priorities. And if you cannot secure a bud-
get for your project, it is a strong indication that the support you’ll
need isn’t there from the outset.

NEGOTIATING FOR SUCCESS

Today’s litigious environment has made it necessary to scrutinize any
agreement, or contract, from the start of the negotiation process. In the
case of software projects, you should include one in the RFP itself. If
there are exceptions to the agreement provided, it’s best to address
them early. Clearly, if there are unacceptable clauses, such as regard-
ing source code ownership, that cannot be remediated, then don’t sub-
mit a proposal.

For both internal and external assignments, if you cannot provide
the level of service requested, your only choice is either to negotiate
the level of service, or performance, down to a feasible level, or sim-
ply decide not to propose.

The Best Contract Forms

When dealing with external organizations, a written agreement is re-
quired. Always. Without exception. A written agreement unites all in-
volved parties, the specific individuals of which will change over time,
in a common perception of what the union is intended to accomplish.
On an internal assignment, it is also a good idea to specify service lev-
els, even for an information systems department serving as a resource
to the rest of the organization. Doing so helps frame other departmental
expectations—specifying what they can expect from you. Never enter

68 MASTERING THE PROCESS

into an agreement without documenting what the “goes-intos” and the
“comes-out-ofs” are going to be.
The major types of contracts are:

Fixed price (FP)

Cost plus fixed fee (CPFF)
Cost plus incentive fee (CPIF)
Time and materials (T&M)

FP contracts are better for the customer, because the maximum fi-
nancial exposure is clear. CPFF and CPIF contracts similarly limit the
customer’s financial exposure to actual costs, but they include a known
fee or a fee dependent upon achievement of a specified goal. T&M con-
tracts, often called blank checks for the contractor, pay for all time and
project costs. Because approval of a specific amount often is required,
as in public agencies, T&M contracts are often awarded on a “not
to exceed” (NTE) basis. When this happens, you should consider an FP
contract, as you stand to lose any profit you might have made on the
FP basis by bringing in the project with fewer hours and lower cost.

A CPFF contract is better when:

* Project costs are highly variable.
* You have no control over project costs.
* You want to be assured that you lock in a certain amount of profit.

A CPIF contract is preferable when:

* Project costs are highly variable.
* You have no control over project costs.

* You have a high probability of achieving goals valued by the cus-
tomer, such as bringing in the software faster, and/or more bug-
free, and/or at a greatly reduced cost.

Choosing a Contract Type

Regardless of the contract type you use, it will influence the manner
in which you allocate resources to your project. But how do you know
which contract type to use, and when? Here are some guidelines.

NEGOTIATING FOR SUCCESS 69

T&M pricing is better when the project involves:

* A first-time implementation of the software, or a major compo-
nent, such as platform.

A first-time customer.

* A high-level service component, and the term of the assignment

will be more than six months.

Multiple design components, over which you have little control,

such as new communications (wireless technology), or subcon-

tractors determined by the customer, not you.

An FPP contract is better when:

* You’ve performed this type of development or installation before,
preferably with the same staff.

* You’ve worked with this customer in the past, and know the host
environment.

* There is little risk of failure.

* Software is to be phased in, rather than implemented all at once.

* You are involved in the customer design process.

Increasingly, as companies and agencies seek to limit their exposure
on software projects, you’ll be asked to submit an FP. This is particu-
larly useful when dealing with software that has been implemented be-
fore on similar infrastructure. You can establish a per-server and a per-
workstation cost, then extend it by the number of such workstations and
servers in the company. However, keep in mind that risk increases as
the unknowns increase—for example, a new database management sys-
tem, a new backup system on the servers, a new operating system, mov-
ing the software from a UNIX to an NT platform. To accommodate the
risk, you can either charge more or take on a portion of the job on a
T&M basis. You, of course, must balance your risk in providing the
software and service with the customer’s objective to avoid paying
more for the project than originally specified.

The CPIF structure is similar to CPFF, except that the amount of
the fee depends upon some incentive. In both cases, a fee is added to
the actual costs you incur. That means that no matter how much the
project costs, you will always recoup your costs and not lose money;
however, it also means a limit to the amount of profit you’ll make.

70 MASTERING THE PROCESS

Typical incentive fee situations are related to bringing in the software
ahead of schedule, or to a percentage of dollars saved by using the new
software.

The T&M fee structure is least risky for you, but carries the greatest
risk for the customer. Therefore, you may find this hard to implement,
especially in public-sector software projects, where staff is reluctant to
go back to its governing board for authorization to increase budget.

If you are doing research and development (R&D), here too the best
contract form to use is T&M, because the performance and schedule
dimension in such projects cannot be unambiguously specified. If,
however, you can specify the performance dimension, but not the
schedule, then the CPFF or CPIF structure will be best. If, on the other
hand, you can specify the performance dimension, then FP is best.

We use FP for the analysis phase of our projects. The risk is lower
because we are not actually implementing, merely defining, the proj-
ect and the requirements. Depending upon the results of the analysis
phase, we might use CPFF, CPIF or FP. We rarely do any T&M work
because clients are not willing to take the risk of cost overruns.

THE VIRTUAL PROJECT TEAM

The virtual project team concept is a twenty-first century phe-
nomenon, already in wide use in the construction, graphics, and
other industries. A virtual project team is one whose members are
not collocated. The team, in fact, may be scattered throughout the
country or world. Using the Internet, the team exchanges infor-
mation, collaborates, and produces its deliverables as if they
worked side by side.

The implications for contract negotiations of working with a
virtual team are that you will, in all likelihood, be required to at-
tend face-to-face meetings with the customer at various points
during the projects, so you will need to price these meetings in
your proposals accordingly, to include the travel expenses. You
will also need to allocate time for travel, for your project man-
agers and, at critical points in the project, for key architectural or
design personnel to attend, and for trainers to come on-site.
These events should be included in your WBS and in your bud-
get. Chapter 4 has more information regarding virtual teams that
you might want to organize.

HANDLING THE PRESSURE 71

HANDLING THE PRESSURE

The most important point of this section is that you cannot change the
performance specification or the schedule without also changing the
cost. In fact, you cannot change any one of the Quadruple Constraint
dimensions without concomitant changes occurring in the others. Typ-
ically, the customer will try to get you to do more for less—and faster!
You can survive this pressure by making sure you’ve established the
minimum acceptable position your company will take. This determines
how far you can negotiate without rendering the project unworthy.

Unless an increase in scope is agreed to, generally the negotiated
price will be less than what you proposed. To expedite this process,
have a spreadsheet preconfigured with component costs. This will en-
able you to determine the bottom-line effects of changes, and to stage
what-if scenarios during the actual negotiations.

Throughout the negotiations, beware of conceding services or prod-
uct unilaterally. For example, let’s say you have bid $5,000 per server
for software, and you go down to $4,000 during negotiations. The cus-
tomer may take this move as proof you overbid on all components of
the proposal. The effect will be exactly the opposite of what you in-
tended. Generally, if you agree to lower a price, you should also alter
the performance dimension; for example, reduce the on-site training
you proposed, or have customer personnel, rather than yours, train the
remainder of the department staff. And be sure to point to potential in-
creases on the risk dimension of the project, if cost and/or schedule are
severely decreased.

In general, you will negotiate, even for internal assignments, after
your proposal has been accepted. The key to success is to ensure that
you don’t change one of the dimensions of the Quadruple Constraint
without making a corresponding change in the other dimensions.

Managing the Legal Details

The agreement you and your customer sign is a legally enforceable
document; it defines the financial relationship between both parties,
and provides the interpretation of the Quadruple Constraint for the
project. Consequently, the agreement is not a place to misrepresent
your software’s capabilities, your personnel’s qualifications, or your fi-
nancial situation. Doing so can have serious consequences, including
the failure of your company. Certainly you can be held responsible for
the costs of a replacement should you default, and you may be held

72 MASTERING THE PROCESS

responsible for any business losses incurred by your customer as a re-
sult of your software failing to perform as specified.

The issues that should be addressed in the agreement will vary ac-
cording to the type of document, but generally, they should include:

* Ownership of source code

« Ownership of intellectual property and patents, both preexisting
and developed during the course of the project

« Licensing rules and restrictions (servers and workstations)
« Effect of using a third-party to update software

* Delivery schedule

¢ Payment schedule

* Criteria for acceptance

* What constitutes delivery

* Dispute resolution methods

* Security measures, to safeguard software
 Authorized hardware platforms for the software

« Maintenance terms and conditions, and effective date
¢ Insurance requirements

* Bonding requirements

 Authorized individuals

» Laws of state or country under which the agreement is enforce-
able

» Termination of agreement
e Nondisclosure of confidential information and use

You may find additional items to include, depending upon the type
of project you undertake.

Note:

The Internet is extending the areas a project can serve. Someone
in Tel Aviv can download an update to your software as easily as
someone from your home state. Therefore, you’ll need to address
foreign laws if you are going to serve other countries. Hire a
good legal advisor!

HANDLING THE PRESSURE 73

Understanding Both Sides

So far, I've presented the proposal process as if you are the proposing
company, which often will be the case. But you can—and will—find
yourself on the other side of the process, for example, when you issue
an RFP for outsourcing software and/or hardware services as part of
your own project. In this case, you need a process for evaluating the
proposals you’ll receive in response to your RFP.

Prior to the receipt of the proposals, meet with your project team to
determine the evaluation criteria. These criteria should reflect the im-
portant items in your RFP, so that you can later evaluate how well the
respondents addressed your requirements. For example, if proximity to
your office were a criterion, a respondent who lived within the 25-mile
radius you specified would be rated higher than someone whose office
was in a foreign country and who had no local representative. A sam-
ple evaluation matrix is given in Table 2-2. Typically, 7 to 10 cate-
gories are specified in the matrix, depending upon the particular RFP.
This initial round of ratings should select out the best of the proposers,
those you should interview.

Depending upon the complexity of the task, you may want to allot
anywhere from one and a half to six hours for each interview. Gener-
ally, the proposer will want to describe his or her company and team,
and that alone can take 30 minutes or longer. To make the most of
everyone’s time, my company decides upon a specific agenda and
time limit for each team, with an hour or longer in between each in-
terview. Typically, we have similar, but individual, evaluation matri-
ces for the proposals themselves, and for the subsequent interviews.
A sample interview evaluation matrix is shown in Table 2-3. The pur-
pose of the interview matrix is to determine how well the proposer an-
swers questions we may have about the proposal itself, team organi-
zation, actual method of performance of the assignment, and software
demonstration. We’re also interested in the intangibles—the chem-
istry. As we all know, a paper representation rarely tells the true story
of anyone.

For both ratings, with my team, I set down any reasons we found
during the evaluation process that might prevent the proposer from re-
ceiving a perfect score in a given category. We list these reasons in a
separate document, which becomes part of the project documents.
Should a vendor ever inquire about his or her failure to be awarded the

¥8 144 /9 S8 €6 vioL
L € € L 6 asuodsal Jo ssausja|dwo)—
€ S € L VA ueld yiom [jelano sy} jo Auend—
oL € 8 8 o]} spaau Ino jo Bulpuelsiepun pajelisuowsg—
papInOId 8g 0} S92INIBS [
ol 14 6 8 (0] 8 asuodsal Jo ssausje|dwo)—
syuawalinbai
8 14 6 6 ol d-H Speadxe 1o sjeaw aremyos pasodoid sy} ||om MOH—
papinoid 89 O} 81emyos [
(o] 8 14 9 L oL Aupgedeo 1oddns pue Bujurel —
0l 14 6 ol (018 S9oUBISjOH—
(o] € 6 (o] oL swalsAs Jejwis Bupuaws|dwi 9ousiedx3—
9 14 o] 8 ol 8 aouasaid [eo01—
(o]} (o]8 L 6 6 Aujgess |eloueul4—
:Buipnjour ‘uoiedYIEND |[BJOAQ PUE 8dusledx3 SJOpusA [
G Auedwo) y Auedwo) ¢ Auedwo) 2 Auedwo) | Auedwo) lojoe4

Xuje uonenjea3 jesodold z-Z 31GVL

74

S6L1 LL 6'902 ¥8 G'8€C €6 6°'SC [elol
(A 9 9'6 8 cl (013 c't 180D |ej0|
8'8 8 LE ol L (0] 8 L 90U82s9|0Sq0
96 8 cl (0]8 801 6 A ainjoapyose swayshs uado
a4 9 891 A z6l 8 ve juswiojdep jo aseq
02 8 Se ol Se ol §'C Kianodai/Munoes
sel 6 St 0] 8 Sl ol gl 9JeM}JOS SWalsAs pue arempieH
Ie 9 S've yA g'le 6 ge Buluresypioddns Jopusp
8l 9 (¥ L 144 8 € Aynaixel4
Le 9 yx4 9 14 ol S asn Jo ase]
ov 8 Sy 6 St 6 S payloads sjuswsalinbai ayy 1o} siemyos jo Ajjeuonouny
81003 (01-0) 91009 (01-0) 81009 (01-0) (s-0) el
pawbiap 21003 pawybiapn 21003 pawybiopn 21005 Bunybiapy
¢ Auedwo) 2 Auedwo) | Auedwon

XUJBJ UOHEN[EAT MaIAISW] €-Z 318VL

75

76 MASTERING THE PROCESS

Write and issue
RFP.

v

Determine
selection
criteria.

\4
Review
proposals
received.

A\

Select top
candidates for
interviews.

A4

Determine
interview
criteria.

v

Evaluate
candidates.

v

Select
finalist.

v

Negotiate
agreement.

v

Notify other
candidates.

Figure 2-7 Vendor selection process.

job, we can refer to that document, which might reveal ratings such as

these:

Financial stability. 1—Proposer did not provide any information at all;
could have provided something separately in sealed envelope.
Experience. 8—Only one reference was provided, not the requested three.

PREPARING FOR THE NEXT STEP 77

We also include on the rating document any overall strengths in the
proposal, such as:

Overall strengths. Local presence; entire team has worked together before.

After you’ve made a selection and negotiated your agreement, it’s a
good idea to send a letter to the proposers who were not chosen. Of-
ten a candidate not chosen will wish to be debriefed as to why. I gen-
erally review the evaluations with the person, who always finds the in-
formation to be of value. Sometimes the company learns, for example,
that it is dealing with outdated market information; or is unaware that
its platform is no longer current; or that a competitor has additional
features that improve its software significantly.

The entire evaluation process is summarized in Figure 2-7. The main
point is to be sure that your criteria are well-considered, and reflect the
RFP. The proposers put considerable effort into responding to RFPs;
the evaluations should be done just as thoughtfully. Quantifying your
evaluations helps everyone.

THE IMPORTANCE OF PROJECT DEFINITION

We’ve come to the end of the definition process. At this stage, you’ve
defined not only what you can do (your proposal) in response to what
your customer wants (the RFP), but what you will do (the contract).
The contractual agreement comprises one specification, one schedule,
and one budget, with payment milestones, all reflecting an agreed-to
amount of risk.

If you’ve properly planned your project, the contract goals should
be achievable; and the relationship formed should be one that benefits
all involved: your customer will get the software properly installed
when expected, and you will get paid on time and make an anticipated
profit.

I can’t overstate the importance of the contractual agreement. Pay-
ing attention from the outset to the performance promised and agreed
to will prevent unpleasant surprises later. Remember, the definition of
scope to which you’ve agreed is the base of your planning, and your
subsequent monitoring. Changes in scope are additions to the project,
which then need to be defined, planned, and monitored if you are to
properly manage them.

78 MASTERING THE PROCESS

Keep in mind, too, that the scope definition can have unforeseen ef-
fects. Does the definition cover postimplementation efforts? For ex-
ample, if you have acquired unique hardware for this project, who
owns it at the end of the project? I can remember quite vividly trying
to dispose of hardware following a public-sector project for which no
agency was authorized to take the now-outdated equipment. Had we
defined up front the disposition of the assets of the project, we
wouldn’t have spent time later resolving the problem.

Planning the Project

Probably, by now, you recognize that proper project planning is cru-
cial. Planning simulates the project; it comprises the written descrip-
tion of how the Quadruple Constraint will be satisfied. The project
plan is actually composed of four subplans, one for each dimension of
the Quadruple Constraint:

o The work breakdown structure (WBS) defines the performance.
 The Gantt chart, or network diagram, defines the schedule.
 The financial estimate defines the cost dimension.

e The risk mitigation plan defines the risk dimension.

These may all be combined into a single project plan, or treated indi-
vidually, depending upon your organization’s guidelines. And, in the
absence of guidelines, you can do as you wish!

Before you decide which automated planning tool or representa-
tional tool to use, you must understand what these tools are designed
to represent. In short, no tool can improve the quality of the planning
you have put into it. Though it’s true that these tools have improved
greatly in recent years, and there is no need to send out charts to be
professionally printed when technology can do it more quickly, the
thinking behind a good plan still must be done the old-fashioned way.
Hopefully, that’s what this primer will help you to do!

Better Software Project Management: A Primer for Success. Marsha D. Lewin 79
© 2002 John Wiley & Sons, Inc.

80 PLANNING THE PROJECT

GETTING THERE FROM HERE

A plan defines how we’ll get from where we are to where we want to
be. In our case, it will be to deploy packaged software throughout a
corporation, to design a new Internet site, or to replace the hardware
and network infrastructure with the latest Pentium machines and Mi-
crosoft Office 2000. And these objectives are measurable: number of
hours of training; number of hours to configure each machine; and how
proficient employees must be to use the software, as determined by a
questionnaire administered at various points before, during, and after
training.

Without a plan, how will we know when we’ve achieved our goals?
Without a plan, how can we check whether we’re even on the right
path to achieve those goals? The plan is the road map we consult to
progress—though occasionally we’ll have to take detours (not of our
own making) before we reach our destination. Continuing the analogy,
we’ll have many different roads to choose from, but if we’ve planned
correctly, all roads lead to Rome, as the saying goes. And if we’ve
identified our Quadruple Constraint properly, the best road will be eas-
ily identifiable.

For example, my firm recently implemented an airport management
system. On this project, the schedule was the most important dimen-
sion because the manual billing calculations were causing the airport
to lose money on its concessions. The sooner the new software could
be implemented, the more quickly greater revenue opportunities could
be identified and capitalized on. After the project work plan was agreed
to, implementation started with great enthusiasm among the staff who
were going to benefit from the system. The enthusiasm was so great,
in fact, that staff started exploring the possibility of implementing an
online real-time integration with the existing accounting system.

Had we not been guided by the project work plan, which stated that
interfacing data by manual handoff with the accounting system was the
goal for this project, and that integration was a separate project to be
embarked upon later, we might never have accomplished our original
goal. Certainly, we could not have done so while respecting the sched-
ule constraint—and our project might not have been judged a success.

The point is, we must focus on our original goal, and navigate to-
ward that goal. If we keep changing course along the way, we might
never achieve it.

RISKY BUSINESS 81

The Best-Laid Plans . ..

. will often go astray. Working on software projects in particular,
you will encounter unforeseen obstacles. For example, just as you are
ready to implement a new billing package, the vendor announces an
operating system software change, to run on Windows NT and Win-
dows 2000 instead of UNIX; they will support the UNIX-based soft-
ware only for another year. What can you do and what should you do?

This is where the project plan can help. While it cannot eliminate
problems that arise, as they inevitably will, you can refer back to the
plan for guidance; to see how you prioritized the constraint dimen-
sions. In the UNIX case, you can determine from the plan which is
more important, cost or schedule. If, say, you have to get the software
in as soon as possible to satisfy some business reason, then the UNIX
system, even though it will require replacement in another year, will
enable the fastest implementation. It will also give better performance,
as changing to the NT version will require working out the bugs in-
herent in changing platforms. If, on the other hand, budget or risk is
most important, you might want to stop all further work on the proj-
ect, and resume it when the vendor has completed the NT migration
and the product has been satisfactorily deployed elsewhere. You might
also want to reevaluate other products and open up the proposal process
again to other vendors.

RISKY BUSINESS

This is as good a time as any to address the fourth dimension of the
planning process: risk, and the evaluation of the risk, inherent in any
software project. (Remember, because risk can be affected by one or
more of the three dimensions in the construct, I also support the
Triple Constraint approach.) Risk is defined as “any threat to the
achievement of one or more of the cardinal aims of the project.”! Soft-
ware is inherently risky: it reflects an implementation of a vision that
has been interpreted by many parties over time, and is subject to
change due to advances in technology, alterations in the original

'Managing Software Quality and Business Risk, Martyn Ould, (John Wiley & Sons, Ltd., Eng-
land, 1999), p. 42.

82 PLANNING THE PROJECT

vision, or, simply, misunderstandings. Because today’s software must
run on multiple platforms—hardware, communications, operating sys-
tems—and interface with a variety of other types of software, there are
many points of potential failure.

How can you, the project manager, incorporate risk mitigation tech-
niques early in a project, and maintain risk awareness throughout?
And how can you avoid becoming so risk-averse that analysis paraly-
sis sets in, and you fail to reap the benefits of advances? Eliminating
uncertainty means repeating what has worked well before. The soft-
ware industry, like those of the hardware and networks upon which it
runs, is constantly innovating and enhancing its capabilities. Unfortu-
nately, this means that upgrading a version of just one software pack-
age is a situation that can be fraught with peril. As is often said in the
industry, being on the leading edge of technology generally means be-
ing on the bleeding edge—a decidedly uncomfortable place to be!
Clearly, to be safely on the leading edge, you must anticipate longer
implementation cycles, as you discover hidden “features” of integrated
components.

To reduce risk, consider doing one or more of the following:

* Buy software rather than build it. You may have to change inter-
nal procedures, and integrate the purchased software with other
systems already in-house, but you’ll reap the benefit of hundreds
of thousands of dollars already spent on development of the pack-
age. You’ll also have on hand a larger number of people who
know how to use the software, and who can help you.

* If you must build software, prototype it, rather than develop it us-
ing the Waterfall method. This involves the users early, and keeps
them involved; and if you use an incremental prototyping ap-
proach, people can actually use the software earlier in real situa-
tions. That means earlier benefits for the company as well, and re-
duces the risk that the software developed won’t satisfy the users
when it’s finally completed.

* Set the project schedule as short as possible. Especially where
management changes frequently, shorter-term projects mean a
greater likelihood that your sponsor will not change, resulting in
your project being cancelled or put on the back burner.

* If you require a critical resource, such as a subject matter expert
(SME), try to condense the resource use into short time periods.

DEFINING THE PROJECT WORK PLAN IN DETAIL 83

Each time you need the SME, you take the chance that he or she
will not be available, thereby introducing time delays into your
project.

* If you are new at project management, slip the schedule from your
original estimates. As a ‘“newbie,” you probably are not aware of
the many stumbling blocks facing you, so you need to accommo-
date your own learning curve. For example, even though you de-
cide to buy a software package, you discover that the help pack-
age has not been completed for this version, and that it will not run
with existing versions of software found elsewhere on the system.

* Even if you buy a software package, take into account what that
will entail. You will need to train, document procedures, test, re-
vise, administer contracts, and manage the project—and the ex-
ternal vendors.

o Test the software, in particular when you implement changes or
develop it from scratch. A new project manager should add more
time for testing, to deal with unanticipated test results.

o If the software or hardware components have not been integrated
before, allow more time for testing and integration. Try to inte-
grate a few components at a time, so that you can more rapidly
identify where the problem came from. First-time integration is
always riskier.

o If your team is inexperienced, slip schedule and increase cost.
Again, introduce additional tests to detect problems as early as
possible, and to isolate their origin.

* Even if you are not 100 percent sure you'll need a critical resource,
ask for it anyhow. If you wait too long, the odds are the resource
will not be available, and you’ll have to slip your schedule.

DEFINING THE PROJECT WORK PLAN IN DETAIL

I've alluded to it, and addressed it directly, though briefly, in Chapter
2; here, finally, I discuss the project work plan in detail. (A sample
project work plan, using Formula-IT can be found in Appendix I.) I
recommend keeping the plan and any updates to it within a single
binder. However, depending upon project complexity and duration,
it may grow to include many binders. A typical work plan table of con-
tents is shown in Figure 3-1.

84 PLANNING THE PROJECT

—

. INTRODUCTION

2. PROJECT SCOPE

w

. PROJECT BUDGET & SCHEDULE
4. PROJECT ORGANIZATION & STAFFING
4.1. Project Organization

4.2. Project Staffing

wn

. MANAGEMENT CONTROL
6. PROJECT MANAGEMENT

6.1. Project Planning

6.2. Tracking and Monitoring

6.3. Progress Reporting

6.4. Software Support

6.5. Document Management
7. CONCLUSION
APPENDIX I - JOB DESCRIPTIONS
APPENDIX II - CHANGE REQUEST FORM
OTHER ATTACHMENTS:
STYLE GUIDE FOR WRITTEN REPORTS
PROJECT SCHEDULE

TASK SHEETS

Figure 3-1 Project Work Plan Table of Contents.

The project plan covers the entire life cycle of your project, regard-
less of how many phases your particular life cycle may have and what
you name the phases. The project plan expands the Quadruple Con-
straint; it does not restate the design and other document deliverables
produced as part of the project work plan, but defines their content, re-
view processes, and scheduled delivery dates. The plan also defines the
roles that parties related to the project are to serve, although it does not

DEFINING THE PROJECT WORK PLAN IN DETAIL 85

identify them by name. The plan defines the change order process, as
well as the manner in which the project will be managed.

Task Sheets

Most important to the project plan are the task sheets (a sample is
shown in Text Box 3-1). The task sheets are intended to describe un-
ambiguously each of the tasks to be carried out during the plan. Each
task is detailed according to these categories:

* Task description

* Purpose

e Scope

¢ Deliverable
 Content of deliverable
» Work method

» Completion criteria

Note:

Time scales and other schedule-related information are presented
elsewhere in the project plan, so the precise end date of the task
is not listed in this part. That way you need not rewrite each task
sheet when the schedule slips!

Task sheets apply to the planned length of the project, and are a re-
sult of the planning effort required for that phase. Where you have
multiple phases, the specifics of which are dependent upon the results
of earlier phases, you will not be able to describe in detail the tasks re-
quired. You can, however, identify those subsequent tasks in succes-
sive updates of the tasks in the project plan when you provide the up-
dated schedule and, if necessary, updated budget.

A list of tasks for our contract management system is given in Text
Box 3-2. Of course, you may include any additional ones that might
make sense in your working environment.

An important point here is that you should define the tasks before
you embark upon the project, but not before you know the outcome

TEXT BOX 3-1 SAMPLE TASK SHEET
TASK SHEET (TASK 1)

1. TASK DESCRIPTION

Task 1 is to prepare a detailed project plan for the Contract Man-
agement Project. This task is part of stage 1, Project Initiation.

2. PURPOSE

The purpose of this task is to develop a plan defining tasks,
timescales, responsibilities, and deliverables for use during the
implementation of the Contract Management Project at the com-
pany. The purpose of the plan is to provide a clear definition to
all parties of what is to be produced, by whom and by when,
thereby reducing risk to the project.

3. SCOPE
The project plan will cover:

* Tasks

e Timescale

* Responsibilities
* Deliverables

4. DELIVERABLE

A report defining the project plan

5. CONTENT OF DELIVERABLE

The report will be of the format defined in the company’s Stan-
dards for the Implementation of New Systems, reproduced as fol-
lows:

1. INTRODUCTION
An introduction to the project plan.
2. PROJECT SCOPE
A definition of the scope of the project.
3. PROJECT ORGANIZATION
A description of the organization of the project, including the
roles and responsibilities of each of the project participants.

86

(continues)

DEFINING THE PROJECT WORK PLAN IN DETAIL 87

TEXT BOX 3-1 SAMPLE TASK SHEET (continued)

4. PROJECT CONTROL
A description of the approval process for project deliverables.
The description will include the role and terms of reference
of each committee and executive authority.

5. PROJECT MANAGEMENT
A description of the mechanism to be used for managing the
project team and for tracking and monitoring progress. The
description will include the use of project plans, task sheets,
and timesheets.

APPENDIX I: JOB DESCRIPTIONS

Job descriptions for all participants in the project.

APPENDIX II: PROJECT PLAN

The project schedule for the Contract Management Project.

APPENDIX III: TASK SHEETS

A description of each task to be carried out during the Contract
Management Project.

6. WORK METHOD

The Project Manager will develop a project plan based upon:
» Experience of previous implementation projects

* The work plan agreed to by the Contract Management team
7. COMPLETION

On approval by the company Program Manager.

of prior stages of the project. The goal is to provide a management
guideline, not make busywork for yourself. As you will quickly find
out if you attempt to define the tasks before you have enough infor-
mation from early phases, you will find yourself rewriting your
tasks rather than doing the actual work. For example, say you’re

TEXT BOX 3-2 CANDIDATE TASK SHEETS

1. Initiation

* Develop Project Plan, including:
—Resource Requirements
—Job Descriptions

 Define project standards.
2. Analysis
¢ Analyze requirements.
3. Design
* Define data.
* Define processing.
¢ Define technology.
* Define user interface.
¢ Compile system design.
4. Software Selection
* Identify list of potential vendors.
¢ Develop Request for Proposal.
» Evaluate responses.
* Conduct demonstrations.
* Select vendor.
5. Software Development/Modification
* Prepare for development.
* Build/modify database.
* Build/modify processing.
6. Implementation
* Plan system introduction.
» Assemble technology products.
¢ Conduct user training.
¢ Conduct testing.
¢ Migrate data.
* Run parallel/pilot.
* Initiate operations.
7. Review
* Review system.

88

DEFINING THE PROJECT WORK PLAN IN DETAIL 89

going to design and develop the software yourself, and you define your
tasks accordingly. If you then find a package you want to implement
instead, your work plan becomes more targeted to managing vendor
interface, rather than to your own development efforts.

Note:

I tend to keep the budget information—along with pay autho-
rizations, encumbrance reports, and invoices—in a separate
binder, even though they are part of the work plan. I do this be-
cause I do not want financial information to be as widely dis-
seminated as the personnel responsibilities and project tasks. You
can however, make this information part of the project plan.

Who Does What, When

One of the most important purposes of the task sheets is to identify
who will be doing what, and when in the project. When these decisions
are made early enough in the project, users can address such items as
testing criteria to ensure that they prepare their requirements with
testability in mind. Recently, my firm undertook a project for which
we had selected a vendor, who prepared a one-page work plan. While
it addressed the major tasks in a simple bar chart format, it didn’t spec-
ify when the payments would be made, nor what the criteria for pay-
ment were going to be. Working together, we arrived at a work plan
that clearly identified what the payment criteria would be, using the
task concept. (A sample of this is included in Appendix II, to show that
there are many ways of representing the information required to en-
sure smooth execution of your plan.)

Keep Them Straight

Remember, there are separate plans for the performance (the statement
of work and the design specification), the schedule (your bar chart or
other representation), the risk mitigation plan, and the costs (a com-
mitted budget or cash flow) that amplify the project work plan in
greater detail. This discussion, however, addresses the project plan that
ties them all together, as shown in Figure 3-2.

90 PLANNING THE PROJECT

Work Plan

' ! I
Statement of Work Schedule Risk Mitigation Plan
(SOW)
Work Breakdown
Structure (WBS)
A A
Budget Standards Specification

Figure 3-2 Project planning documents.

Keep Them Simple

One danger in writing plans is going too far. Overplanning can be as
much a waste of resources as underplanning. Think of it this way:
spend no more time in planning than you would have to spend cor-
recting the problems that probably would arise from not having a plan.
Of course, if you’re doing this for the first time, you have no way of
knowing when you’re overplanning. In this case, it’s best to overplan
than underplan. A good guideline is that your plan shouldn’t be thicker
than the software specification.

Share Them

When you’ve written your project plan, be sure to share it with the
people on your team. The users, the sponsors, and the developers will
all want to know how the work will proceed, and, more importantly,
what their roles are and what they can expect of others. The project
work plan serves to set the expectations of all the parties involved in
your project. It also allows feedback before the project gets underway,
alerting you to any roles or expectations that are unfeasible or unclear.

DEFINING THE PROJECT WORK PLAN IN DETAIL 91

Statement of Work and Work Plan

As explained earlier, the statement of work, the SOW, is that portion
of the agreement or contract that explicitly defines what the project or-
ganization will do for, and deliver to, the customer or user.” The SOW,
typically, is the basis for the task definitions and your objectives—that
is, what you intend to accomplish through application of the work
plan. In a project internal to your own company, you might include this
same information in a memo or work order rather than in a contract.
And, note, a complete work plan requires a schedule and budget.

The Project Management Institute (PMI) defines the project plan as:
“A formal, approved document used to guide both project execution
and project control. The primary uses of the project plan are to docu-
ment planning assumptions and decisions, to facilitate communication
among stakeholders, and to document approved scope, cost, and sched-
ule baselines.”> PMI defines the SOW as “a narrative description of
products or services to be supplied under contract.”*

Work Breakdown Structure

This section explains how to determine what is a manageable piece of
work. The concept of the work breakdown structure, the WBS, is to
break down the larger task specified in the SOW into smaller work
packages, each of which is understandable, achievable, and measur-
able. If you or someone on the team can’t understand it, you probably
need to break it down into even smaller work packages, arriving at a
level where it’s clear to everyone what has to be done. The purpose is
to be sure that you’ve identified all the required activities, and related
them logically, thus reducing the chances that you’ll have unpleasant
project surprises due to a failure to plan adequately.

For example, when my firm was installing the airport management
system I described earlier, we had many different activities requiring
completion before the system could be implemented. These included
testing and installing hardware, as well as obtaining and testing net-
work services. Text Box 3-3 shows the high-level tasks to be accom-
plished, and Text Box 3-4 shows one of those tasks broken down into

*Lewin and Rosenau, Software Project Management: Step by Step, 2nd edition (Marsha D. Lewin
Associates, Inc., Los Angeles, CA), 1988, pp. 76-77.

3A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 2000 edition, New-
town Square, PA, p. 205.

*Ibid., p. 208.

92 PLANNING THE PROJECT

TEXT BOX 3-3 HIGH-LEVEL TASKS TO BE
ACCOMPLISHED

Define airport system requirements.
Acquire software.

Install software.

Train key users.

Complete data conversion.

Conduct pilot test.

Implement airport system.

Close out project.

Manage project.

RS B o S

greater detail. You can continue breaking down, or decomposing, the
functions within each task until you reach a level that everyone un-
derstands and believes they can accomplish. For example, the task
“evaluate proposals” could be broken down further into:

1. Determine top three.

2. Notify top three for interviews.
3. Evaluate interview finalists.

4. Determine vendor.

Breaking down one of these major tasks into its component parts
revealed to us how the services of others not generally involved in soft-
ware systems implementation would be necessary. Not only did we
realize we required an outside contractor to install hardware comput-
ing components in the police vehicles, but we learned we also needed
to coordinate with the organization’s mechanics to allocate time and
labor, as well as bays in their shops, to make the necessary modifica-
tions on and installations to the vehicles.

How Far Is Far Enough?

As you work with the WBS, you’ll discover there is no one magic for-
mula: too many levels becomes hard to manage efficiently, while an
overly broad WBS accomplishes nothing in terms of allowing you to
monitor your project—you only know when you get to the end, if you

DEFINING THE PROJECT WORK PLAN IN DETAIL 93

TEXT BOX 3-4 WORK BREAKDOWN STRUCTURE

2. Acquire Software
2.1 Prepare system flowcharts.
2.1.1 Document current practices.
2.1.2 Modify current practices.
2.1.3 Receive concurrence from department.
2.2 Select software vendor.
2.2.1 Circulate RFP.
2.2.2 Evaluate proposals.
2.2.3 Interview finalists.
2.2.4 Select vendor.
2.2.5 Execute contract.
2.3 Receive software.

ever do! The rule of thumb I’ve used over the years is to tie a WBS
task to an individual or to a team, to a payment, or to a schedule com-
pletion. For example, if a database server is required to deploy the
application software, I would treat those as two individual tasks within
the WBS. The server will typically be configured and tested by a group
that is separate from the application developers or vendors. And be-
cause the vendor will want to get paid for his or her effort in deploy-
ing the software—regardless of the failure of other activities within his
or her control—by identifying such activities separately, I can better
determine if he or she is entitled to payment.

Completion typically is scheduled at the end of a life cycle phase
(when you’re using the Waterfall model of development, for example),
so the task generally does not cross life-cycle phases. Thus, your WBS
might start with the project phase, with each major task broken down
into smaller tasks. And you would define deliverables at the end of
each phase: a document, test results, and a specification. Just make
sure you have a deliverable. If you don’t have something that can be
measured, how do you know whether you’re where you planned to be?

Another good rule of thumb to follow is to have a deliverable to
mark the move from one project phase to another. This deliverable,
typically written, documents the results of the just-completed phase.
This permits you to move along in your development methodology
with a record of the successful completion of the previous phases.

94 PLANNING THE PROJECT

In software development, these records of accomplishment are very
important; as information being handed off to others, who must act
upon them, they identify any ambiguities, incompletions, or inaccura-
cies that must be addressed. This is particularly important in software
development because the later a defect is found, the higher the cost of
correcting it. Costs can, for example, escalate as much as 10 times
higher after coding, and 100 times higher to correct a production
error.” (Sample end-of-phase deliverables were listed previously, in
Table 2-1.)

If you conduct project reviews—typically at the end of a life-cycle
phase—you might want to identify them as tasks in your WBS as well.

Summarizing, then, your WBS work “atom” should be guided by
the following:

* Any system development methodology is incorporated into
your WBS.

* Tasks do not cross project phases.

¢ Payment milestones can be determined from the tasks.
* Separate management is reflected in individual tasks.
* Document deliverables are milestone tasks.

* Significant project reviews are tasks.

» Completion of a project phase is a task.

* Too many tasks spoil the monitoring.

The WBS is very critical to your project’s success, so it’s a good
idea to have a colleague look it over or draw up an alternative to
compare against. This is especially true if the concept of using a WBS
is new to you, or you're new to managing software projects. This
added input will prevent many mistakes. Just remember to return the
favor!

You should also plan for a variety of tests, to demonstrate how well
your software has been developed, and how well the components inte-
grate. The amount of testing you do will be based upon the currency
of the platforms and programs, as well as the expertise of your devel-
opment staff. If you’ve outsourced the development, you’ll probably

SWilliam E. Perry, Effective Methods for Software Testing, 2nd edition (John Wiley & Sons, Inc.,
New York, 2000, pp. 39-40).

SETTING STANDARDS 95

want to spend more time to test the users’ procedures as well as the
programs.

Finally, it’s wise to make a checklist of the tasks you identify in
your projects. After a while, you will have compiled a pretty complete
set of tasks. Ultimately, you should be able to import your current
WBS into your new project’s schedule. That said, beware of copying,
without appropriate adaptation, one WBS to another project. Never
forget, each project is unique. Use your prior WBS task list as a guide-
line, to be sure nothing falls between the cracks; but you still must ac-
commodate the performance and resource issues that make the new
project unique.

SETTING STANDARDS

For those of you who have developed software yourself, I don’t have
to make a case for ensuring that you have some set of standards against
which your software must measure. You know what it’s like to spend
hours, if not weeks, trying to determine interface (handoff) formats for
databases. I confess that when I started programming, I used geo-
graphical terms for tag names (yes, countries, with cities, streets, even
rivers for levels of indentation). I soon repented after suffering through
programs I took over, where someone had tagged paragraphs and
phrases using random numbers. I quickly realized that not everyone
had the same interest in geography that I did.

So I became a firm believer in standards. In some environments, stan-
dards are called guidelines, because they aren’t enforceable insofar as a
software development Nazi will come and eliminate your code. But as a
considerate, professional humane activity, implementing software ac-
cording to shared standards will make your job and the job of those who
follow you to maintain, interface, or integrate your software much easier.

Standards should cover not only the coding and design of the soft-
ware, but the network and operating systems environment in which the
software is to perform. A sample set of standard topics that my firm
includes as part of Formula-IT is shown in Text Box 3-5. For highly
specialized projects, such as a geographic information system, or for
Internet publishing, we add sections to the basic standards document.
Each supplement extends the basic set of standards only to the partic-
ular subsystem in question. But it saves rewriting the standards for
each project!

TEXT BOX 3-5 IMPLEMENTATION STANDARDS

1. INTRODUCTION i
1.1. Purpose and Scope
1.2. The Benefits of Adopting Standards
1.3. Structure of This Document.

2. DEFINITION, APPLICABILITY, AND RESPONSIBILITY .

3. STRATEGY IMPLEMENTATION MANAGEMENT
ANDCONTROL oo
3.1. Project Planning
3.2. Tracking and Monitoring
3.3. Progress Reporting

4. COMPUTER OPERATIONS.
4.1. Computer Operations Procedures
4.2. System Acceptance Testing
4.3. Logical Security of Applications
4.4. Physical Security
4.5. Backupand Restore
4.6. Archiving
4.7. Disaster Recovery Planning

5. APPLICATION SOFTWARE DEVELOPMENT
5.1. Specification.
52. Construction
5.3. Implementation
54.Review. e

6. NETWORK ADMINISTRATION AND END-USER
SUPPORT. e et
6.1. Network Security
6.2. System Management.
6.3. Service Levels.,
6.4. User SUPPOIt. o v v v v i i

7. APPLICATION SOFTWARE STANDARDS
7.1. Application Software Selection
7.2. Application Software Acquisition.
7.3. Application Software Deployment

8. TECHNICAL STANDARDS.
8.1. Naming Standards
8.2. File System Hierarchies.
8.3. System Availability

96

(continues)

SCHEDULING 97

TEXT BOX 3-5 IMPLEMENTATION STANDARDS
(continued)

8.4. Communications and Network
8.5. Security and Accessibility

9. CONCLUSION e

Appendices

I Structured Systems Development Methodology
II Infrastructure Standards
IIT Documentation Standards

SCHEDULING

The second part of planning is charting the events and activities in-
cluded in your WBS along a timeline—you schedule them. The secret
is to arrange the planned events so that they occur in a logical rela-
tionship to one another. For example, you wouldn’t go live with your
new records management system until you tested it, and before the
user has accepted the system. This implies a natural order of events
that is a critical part of planning.

There are three approaches to scheduling, each with its own form of
representation: bar charts, milestones, and network diagrams. All are
supported by automated systems such as MS Project. That said, I find
that bar charts are the most commonly used, probably because they are
the simplest for people to understand. And simplicity is invaluable
when you are attempting to bring diverse groups together, such as in
most software projects. After reading the descriptions of all three, you
can decide which will work best for you.

Bar Charts

Bar charts (also often called Gantt charts, after H. L. Gantt, the indus-
trial engineer who popularized them during World War I) are fre-
quently used for scheduling. You can create one using any popular proj-
ect scheduling system; or you can even use Excel to create one for
a very simple project. A sample bar chart, representing a plan for
implementation of multiple software projects, is shown in Figure 3-3.

SCHEDULING 99

Unfortunately, in this book, you can’t see the colors available with to-
day’s technology. However, even in this black-and-white presentation,
you’ll note:

* Each activity has its own line, or bar.
* Today’s date is clearly marked.

* Performance against planned schedule can be quickly determined
for each task.

The problem with bar charts is that, while they can be easily un-
derstood by people of diverse backgrounds, they don’t really tell you
all you need to know. For one, you cannot infer the overall project sta-
tus, because there’s no interdependency of tasks shown. For example,
if the hardware being delivered is task 3 and everything else is in place
but the hardware, the project is far from complete. Task 4 cannot be
completed if task 3 is not. Even though everything else might be com-
plete on a task level, you don’t know how your project really is doing.

Milestones

Another way of representing your project is to define its milestones.
This you do by to laying them out along the schedule timeline in the
bar chart format. A milestone is a significant event in the life of a proj-
ect, typically the achievement of an activity (such as testing), or the
completion and submission of a deliverable (such as the design speci-
fication). You will know the major milestones of your project because
you, hopefully, will have defined them, early on, in the contract or
statement of work. And, as I said earlier, for each phase in the life cy-
cle you’ve selected, there is one or more deliverable that you can iden-
tify as a milestone. A milestone schedule is shown in Figure 3-4.
Milestone schedules are helpful on a project or program (multiple
projects that are related) level, but they still do not show you the in-
terdependencies between the tasks and activities. So you will still need
another tool to help you determine where your project really stands.

Network Diagrams

And thus we enter the world of network diagrams, which show the
precedent conditions and the sequential constraints for each activity.
Only with these network diagrams can we determine how the tasks in
our project are truly related. This topic is worthy of a book-length

SCHEDULING 101

explanation, so I refer you to the excellent treatment of the differences,
jargon, and details in the Guide to the Project Management Body of
Knowledge,® and, especially, Mickey Rosenau’s Successful Project
Management.” In my own experience, given the level of today’s proj-
ect management software, you should focus on what works best for
your particular project team members.

Network Diagram Types

There are many forms of network diagrams, the most common being
Program Evaluation and Review Technique (PERT) and the Prece-
dence and Arrow Diagramming Methods (PDM and ADM, respec-
tively). A few words will clarify how these important event or activity
approaches have been merged in today’s easy-to-use charting software.

ADM is activity-oriented, with the arrow representing the activity.
PDM represents the node (a circle or box) as the actual activity, and links
the activity nodes together in a precedence relationship. PERT is a hy-
brid. See Figure 3-5 for an example of how the representations differ.

I want to stress here that diagramming events by themselves isn’t
enough; nor is identifying the length of an activity. However, linking
what needs to be done with the order in which the tasks should be han-
dled will give you a powerful tool with which you can monitor and ef-
fectively control your projects.

In sum, Id say that, using today’s software to achieve the best proj-
ect management practices, the diagram that will tell you the most the
quickest is the time-based precedence bar chart, with activities on the
arrows and the milestones on the nodes.

Diagram Comparisons

A picture, as they say, is worth a thousand words; trying to explain the
advantages and differences of these diagram types would take even
more without an example. So, for clarity, three representations of an im-
plementation schedule for my firm’s airport system can be found in Fig-
ures 3-6 through 3-8. The first is a simple bar chart; the second is a
PERT diagram; and the third is a CPM diagram. CPM (Critical Path

SA Guide to the Project Management Body of Knowledge (PMBOK® Guide), 2000 edition (Proj-
ect Management Institute, Newtown Square, PA, 2000.

"Milton D. Rosenau, Jr, Successful Project Management, 3rd edition, John Wiley & Sons, Inc,
New York, 1998.

102 PLANNING THE PROJECT

Submit
Initiate Perform Formal
Project Analysis Report
ADM
Initiated Performed Completed
O >0 »O
Project Analysis Report
PDM
Project Analysis Report
Initiated » Performed » Completed
PERT

Figure 3-5 Network diagramming conventions.

Method) takes the activities and arranges them with precedence such
that you can determine where in your project schedule you have the
least amount of flexibility. (Now you know what people mean when
they say that their task is “critical path.”) What’s exciting about today’s
technology is that you can represent the critical path by pressing a sin-
gle button to elect that option (as opposed to recharting manually!).
Returning to your WBS, you take the list of major tasks, and sched-
ule them. Note in the example bar chart that I've given the tasks an ini-
tial estimate of how long each will take. I work in the following man-
ner: I take the date on which I want the entire project to end, usually
dictated by contract language or a business requirement for availabil-
ity of the system, and then work backward. I know, for example, that
we cannot test the system until it has been installed; that we cannot
validate the data until it has been entered. In some cases, when I lay
out the events, such as tasks 7 through 10 in Figure 3-9, the events

00/62/2 ®nL | 0/92/L PAM

shep Gz €l

ubiseq SV ardwo)

‘saoepaju| g ABojouyoa)
‘BuIssa001d ‘E1eQ BUYeq

ueyD 1434 L-€ 8anbi4

vels

[rovon] [Frmms] [romomn] foma]

al

?_EEE T:o.&.__z_ _ [_ auEN

007¢/4} @nL -aleq
wasAs uswabeuep uodiny 1elold

00/0}/LUON | 00/6/G 3NL

102 L/L ud 10/21/4 U [0/24/0L NuL
12 shep /9 02]g 8l
103rodd h 3HYMLH0S
SWV 3131dWOD MIIATY ININT TN AJIGOWdOT3AIA

00/8/S UOW | 00/E/¥ UOW

00/6/€ U4 }00/v2/} UON
shep 0¢ S

10puaA

yum Juewoaaibe ayenobeN

10PUBA 108(8S

ddy anssi g Qama_

00/B/S UOW 00762/ VO
ep 9, vh
3JYVMLIOS 1OF13S
00/12/L U | 00/S/L POM.
shepel [
Juswinooq siuswasinbay
SV 80npoig
00/52/1 @nL | 00/5/) POM 00/b/1 onL | /51/2) POM
skepgi 6 skep g | S
SUBWBINbaI
‘808Ul BUILLBIEQ SpfepuelS SNV auluiaiag
00/81/1 3NL | 00/S/) POM 00//L 3nL | /S1/2) POM
skep 01 8 skep I 13
uoyoa.Ip B SeARdaIGo ueld paloid
wayshs suiuualeq SWY pajieiaq aiedald
00/b4/k @01 | 00/S/L POM
shep g L
sjuswypedaq Bugeaw
185N SV Ao mawiawu| HOOR SV 1NPUOY
——
00/62/2 anL | 0/92/) POM 00/52/1 N1 | 00/5/L POM 00//1 onL | /S1/2) POM 6/51/21 Pom | G172t Pom
p 62 1y p 6L 9 Skep gt Z shep o L
SWY NDIS3a SISATYNY WHOH3d 103r0OHd JLVILINI waloid SWY UBiS

104

SCHEDULING 107

don’t take up identical amounts of time. Any excess amount of time on
the shorter leg is called slack. I could actually start and complete that
task later, without impacting the schedule, because I can’t finish the
task anyhow. (Note: MS Project represents slack as a thin line.) Before
automated scheduling systems, all of this had to be done manually.
Now you can appreciate why people are so enthralled with automated
scheduling packages!

One more term needs defining here: a dummy task. A dummy task
is not one on which a person of little knowledge can work; rather, it’s
a “kludge” in the diagramming that indicates two activities for which
no additional work is required but for which the arrows need to be con-
nected. A dummy activity can be considered one that takes no time at
all. You might want to use it to satisfy a precedent condition. It usu-
ally is represented with a dashed line to distinguish it from “true”
activities.

Scheduling Summary

The best scheduling representation to use, in terms of your time and
your team’s understanding, probably will be the bar chart, in conjunc-
tion with precedence-based dependencies indicated. You will note ac-
tivity durations on the bars, and indicate the milestone events on the
nodes. Arrows tie the tasks together, so that you can tell, by dropping
a vertical line for the current date, what should be happening at any
point in time (and perhaps what has not happened when it should
have). Refer to your project management software manual for more of
the nuances, but “keep it simple” is a rule you should not violate.

I find that on small projects we seldom go back and redo the proj-
ect schedule. While it’s quite easy to do, the truth is that the other
methods of project monitoring tell us quickly how well we’re doing.
The schedule reprinting only indicates what has happened; it does not
identify which remedial actions need to be taken to bring things back
in alignment—if that’s possible at all.

Beware of . . .

Probably the most egregious errors I've seen in software project man-
agement were related to scheduling. Since a project is, by definition,
a one-time occurrence, scheduling how long it will take is always a
guess, at best—an educated guess, to be sure, using previous experi-

108 PLANNING THE PROJECT

ences of a similar nature, but nothing you can count on 100 percent.
Every element of the performance specification can vary as you esti-
mate the schedule on a project: late hardware and software deliveries,
personnel out sick, unavailable servers, and so on. Here are some
lessons I've learned over the years that might be of help:

* Build on the experience of others. When scheduling, include your
team, your managers, and your peers, who may have had similar
experiences of one or more of your work tasks.

* Be conservative in scheduling external dependencies. For exam-
ple—and not meaning to bad-mouth the phone company—when-
ever I need a network circuit, I double the estimated time . . . and
sometimes even that’s not enough!

* Be conservative in scheduling new technology. Remember, lead-
ing-edge is also often bleeding-edge, so don’t get “cut” when
you’re installing new software, new server models, or new cable.
Even though it might have been successfully done elsewhere,
each installation has its idiosyncrasies, all of which take time, and
affect your schedule.

* Be conservative in scheduling work from new technicians. Be they
programmers or analysts, if they’re new to the application, the lan-
guage, or the company, then add more time for them to deliver their
product. One programmer with whom I had the pleasure of work-
ing for many years always took longer on the development side.
Therefore, I always tripled his estimated time for completion.

* Don’t take on impossible projects. If you are given a deadline, and
after scheduling and analyzing the tasks, you determine there’s no
way you can deliver the project as required with the resources you
have at hand, don’t take on the project. (You can, however, first
try to scale down the project or request additional resources, but
even then your chances of success are not assured.)

» Determine your project calendar. Today’s project management
software allows you to create your own calendar, against which
the schedule can be created. However, not all team members may
follow the same time frame. For example, unions may limit work
to a maximum number of hours daily, weekly, or in a given pe-
riod; or refuse to work weekends. Balance these differences against
the need for having separate calendars for your programmers,

COST PLANNING 109

who work 24/7 via the Internet, with the users who may belong
to a clerical union that prohibits such scheduling. You’ll then need
multiple calendars for resources.

* Don’t forget to factor in vacations. Especially on long projects—
more than six months’ duration—remember to allow time for your
team members to take their vacations. Also, add in sick days,
“Murphy’s Law events,” and holidays. If you don’t have to use
them, so much the better, but schedule them anyway.

o Allocate time for additions to the project team. If the project team
members change, you generally will have to add time to bring the
newcomers up to speed. An overly ambitious schedule precludes
such an opportunity, in which case the project will get into sched-
ule trouble because of the inexperience and lack of team knowl-
edge on the part of the new members.

* Practice rubber-band management. When I schedule a project, 1
generally treat myself as an elastic commodity. That is, I don’t
add in the time it takes me to manage the project. I just work
longer, if necessary, as there’s no cost impact to my clients be-
cause I manage on a fixed-price basis. By now, I’ve learned that
there will be random events that will keep me involved through-
out the project.

* Change the schedule when you change cost and/or performance.
Remember that the entire project management process is iterative.
If you change what the software is going to do, or add to or sub-
tract from project personnel or budget, revisit the schedule. You
may be able to accommodate the changes within the schedule al-
ready developed, but more than likely you will not be able to do
so, in which case you need to alter the schedule. (See Chapter 5
on monitoring for more information.)

COST PLANNING

The third project dimension is budget. Planning out how much the proj-
ect is going to cost, and how much funding you’ll need at each point
in the project, helps you determine your real costs. Today’s project
management software allows you to determine your budget, and sub-
sequently to monitor your costs, more easily than ever before.

110 PLANNING THE PROJECT

Cost Types

Your project will have many types of costs: labor, for different cate-
gories of human resource; software and hardware; network services,
plus rates added to those charged by your company and its internal ac-
counting structure. Many project planning methodologies allow you to
identify these different resources and budget for them while you are
planning the project.

Laboring over Labor Rates

In my experience, the cost of labor usually is the largest component in
a software project. Whether that labor is needed to install the network,
configure the servers, customize the application software, input the
database, train the users, or test the system, the fact is, you’ll need peo-
ple throughout the project. And almost without exception, you’ll re-
quire people with different skill sets, and these differences are re-
flected in different rates for their labor. For internal projects, you can
get your company’s current labor rates from the human resources de-
partment, if they’re not available elsewhere. On external projects, you
can use recent project plans with similar labor categories to derive your
hourly rates. However, as I noted earlier when addressing schedule,
be careful in extrapolating someone else’s estimates for your own

purposes.
Typical labor categories on a software project might include:

* Systems analyst

* Programmer

* Data entry personnel

¢ Test analyst

* Network analyst

* Documentation analyst

* Trainer(s)

* Help desk personnel

* Project manager (of course!)

» User department personnel (managers, clerical and analytical
staff)

COST PLANNING 111

You also need to determine who will defray the labor costs for user
departments. This can be a sticky issue, as new software requires sig-
nificant user involvement—and hours spent—for success. This effort
can reduce the apparent productivity of the host department during de-
velopment and implementation, despite the benefit of increased pro-
ductivity down the road. The user department may have to defend its
decreased productivity, and will want to charge back the hours spent
to your project.

For example, in an enterprise MIS automation project, committees
of 15 people spanning 30 departments met four days weekly every
other week for two months to configure their parameter-driven system.
At even a $50 hourly burdened labor rate (defined below), $96,000
was suddenly added to the project cost ($50 X 4 weeks X 32 hours
weekly X 15 individuals). This can impose a considerable burden on
the project, and put a crimp into the use of planned contingency.

In addition, you generally will have “burden” added to your labor
rates. Essentially, a burdened labor rate contains a percent added to the
actual hourly rate to accommodate the contribution made to overhead
and/or administrative costs. So, for example, a burdened labor rate
might be 140 percent of the nonburdened labor rate. This can come
back and bite you during your estimating process if you’ve estimated
only the nonburdened rate. For example, when you get charged for the
labor hours in your internal accounting system, you’ll see $56,000—
or $16,000 more than the $40,000 (400 hours @$100, for a total of
$40,000) you estimated! If you haven’t estimated properly, you’ll
overrun your budget very quickly, without accomplishing the tasks
necessary.

Another problem you’ll confront is that often accounting systems,
which calculate burdened payroll rates, don’t hand off the data in a
timely fashion (perhaps six weeks later), so you won’t have a truly ac-
curate cost status. In that case, you can do one of two things:

* Rely on your estimate of labor hours.

* Obtain promptly the hours-worked figures, reenter them sepa-
rately, and calculate your own burdened dollar amount.

Still, in neither case will you have the precise cost, just a working
estimate.

112 PLANNING THE PROJECT

Hard Costing

In addition to your people costs, you’ll have costs for hardware and
software. These typically include:

* Telephone
¢ Travel

* Direct administrative costs, such as for supplies, media, and
overnight deliveries

¢ Hardware (workstations, servers, routers, and modems)

* Application software

* Systems software, including additional licenses for server soft-
ware and workstations

* Application software, indicating concurrent licensing limitations

Other costs might include chargebacks in the amount incurred, or
with burden, for the following:

* Training rooms

* Test environments

* Documentation and training materials
* Quality assurance

* Help desk

The goal, using the WBS tasks, is to identify any and all costs you
might incur. You then take those tasks and spread them out across the
time you’ve scheduled for your project. This is important because your
project will have a cost plan that will reflect the way in which the bud-
get will be expended over the duration of your project.

If you’ve contracted with an outside source to deliver services, be
sure to include in your contract the schedule of payments clearly spec-
ifying what amount is due your contractor upon the completion of each
payment milestone (a task that, when completed, has money paid
against it). (See the payment milestones shown in Appendix II.)

Synchronizing Cost Reporting

Each organization reports costs differently. If your accounting or fi-
nance department is reporting only biweekly, for example, then updat-
ing your records weekly with cost reports will waste your time. The

PRACTICING THE ART OF ESTIMATING 113

cost figures won’t change in the intervening weeks. Keep your budget
reporting cycles and the budget breakdown to the level of granularity
that can be readily supported. However, if you can obtain labor hours
actually worked from your payroll system, you can calculate an ap-
proximate cost yourself. But, note, this is appropriate only where the
risk outweighs all the effort you have to put in yourself.

PRACTICING THE ART OF ESTIMATING

If you take each task in your WBS, figure out which resources, both
labor and nonlabor, will be required to complete it, and calculate the
cost of each element for that task, it will bring you to a closer estimate
of the cost for that task. The emphasis here is on estimate. Needless to
say, there is no guarantee that the costs will turn out as you calculate,
due to circumstances beyond your control—increases in mailing costs,
charges for phone lines, to name just two. Your goal is to come as close
as possible in your estimate, by including as many components as pos-
sible, so that the project plan is meaningful. Of course, the total proj-
ect cost is the sum of the component task costs. A sample project bud-
get, broken into component costs, can be found in Table 3-1.

In the public sector, most project budgets need to be approved by
the governing boards or bodies. If the project is not properly scoped
and budgeted, the body cannot award the proper funding for it. And if
it is awarded, but then you, as project manager, keep going back for
additional funding, questions regarding the viability of your project, or
even worse, your management ability, may be raised. One way to pre-
vent this, of course, is to always make such high estimates that you
seldom have to go back for additional funding. However, that can
also result in wasted resources, as project budgets tend to be consumed
over time.

Improving Accuracy

Working with the WBS tasks, costing each one, and then summing
them up is a bottom-up estimating process. An alternative is to do a
gross estimate of the project budget, from a top-down basis. The top-
down estimate is the amount derived when the project was conceived,
typically, before the detail was planned out. In my experience, top-
down budgets generally have little bearing on either the scope of the

114 PLANNING THE PROJECT

TABLE 3-1 Sample Project Budget

Cost Category Project Costs
Application Software $134,000
Database Software $4,000
Other Software $33,000
TOTAL SOFTWARE $171,000
Design Services $34,095
Delivery, Installation, Configuration $113,650
Software Development/Modification $22,000
Data Migration $40,000
Training $34,095
Other Services $5,460
TOTAL SERVICES COST $249,300
Travel/other expense $30,000
TOTAL SOFTWARE COSTS $450,300
Year 1 cost $27,600
Year 2 cost $29,808
Year 3 cost $32,193
TOTAL MAINTENANCE—SOFTWARE $89,601
TOTAL 3-YEAR COST—SOFTWARE $539,901
Workstations—15 $60,000
Servers $12,000
Other Commodity Hardware—6 printers, 2 faxes $8,000
Proprietary Hardware—routers, switches $18,000
TOTAL HARDWARE COST $98,000
Year 1 cost—hardware $6,000
Year 2 cost—hardware $7,000
Year 3 cost—hardware $12,000
Monthly communications costs—3 years, $800 @ month $28,800
TOTAL MAINTENANCE—HARDWARE $25,000
TOTAL 3-YEAR COST—OTHER $123,000
GRAND TOTAL COST $662,901

ultimate project or its realistic cost. Not only do resource costs change
over time, but, invariably, as the detail of a software project is devel-
oped, the cost estimates become higher. In rare instances, the costs de-
crease, such as when a commercially available software product can
replace one that initially was thought had to be custom-developed.
For example, we had one client for whom $900,000 had been esti-
mated for systems three years before the mega-project was even scoped.
The estimate included everything related to technology: fax machines,
network costs, phone line charges, and clerical assistance. The origi-
nal number didn’t reflect internal cost structures, chargebacks, or a
common definition of what was to be included in the budget. But
the $900,000 figure stuck in everyone’s mind as the total funding

PRACTICING THE ART OF ESTIMATING 115

available—which, after all the ancillary costs were subtracted, left in-
adequate amounts for the actual systems. As a result, the actual cost of
the project, totaling $1.2 million, was perceived as overrunning the
budget, rather than a reasonable cost.

As you gain greater experience in estimating, you’ll be able to eval-
uate similar tasks to see if their costs are comparable. Perhaps there
has been an incorrect assumption on the actual work to be done. This
can occur when different people have estimated the tasks.

Parametric Cost Estimating

There is an old saying that people who don’t learn from history are
doomed to repeat it. Parametric cost estimating is based upon using
historical data for similar projects as the basis for estimating the cost
for your current project. Unfortunately, learning from history to esti-
mate costs can be misleading. By using a statistical relationship be-
tween historical data and the variables, an estimate is generated. Sim-
ilarities that might render cost information useful for similar projects
could include:

* Project size. How big is it?
« Software application/business environment. What is its character?

» Level of new design and new code. How much new work is
needed? How many new lines of code will be generated?

* Resources. Who will do the work? How experienced are they?
o Utilization. What are the hardware constraints?

 Customer specifications and reliability requirements. Where and
how are these used?

» Development environment. What complicating factors exist?
» Complexity of effort. How difficult are the various modules?

However, even having the answers to all these questions is no guar-
antee that the estimate will be accurate; it can, in fact, be misleading
if your input data have themselves been poorly estimated.

Experienced-Based Estimating

Experience-based estimates really do work best, for the simple reason
that you can take into consideration what you have learned about the

116 PLANNING THE PROJECT

environment in which the project will be conducted and about the
goals it is set out to achieve. As with schedule, costs will likewise be
affected by these factors, both as to the achievable degree of accuracy
and to the accuracy itself. The lesson here is to always use common
sense when estimating, which means considering these factors:

* Newness of the effort. If this is a first-time development effort, ob-
viously you can’t know what it will take to get you to completion.

* People working on your project. New people will cost you more,
in the amount of time they spend completing their work (as com-
pared with experienced people who are typically more produc-
tive); you’ll also need experienced people to mentor them. When
you have human resources you’ve worked with, you can better es-
timate how long they’ll take to accomplish a task.

* Transferability of facilities and environment. If you are using new
hardware, architecture, systems software, or languages, the risk in
your project increases. Generally, this will introduce greater cost
to your project as well. If you’re using the extant development
platforms and language, you can better estimate how long it might
take on this project.

* Length of the effort. In my experience, longer projects tend to cost
more than originally estimated. This is often due to the difficulty
of keeping productivity levels high for long time periods, or to the
personnel turnover that naturally occurs in a project over time.
You probably know whether your organization can respond to
short deadlines, or if there is entropy built into the system that will
cause productivity decreases partway into the project.

* Project complexity. Your company has probably shown you over
time the critical level at which it can efficiently handle a compli-
cated project. For example, it will take your staff longer to con-
figure and install a system with three servers, as opposed to in-
stalling one server for three separate systems. Above that, there is
a degradation in the performance of all resources. Once you know
that level, you can better estimate your project costs in that area.

Using Outsourcing to Control Costs

One of the best ways to reduce the risk of overrunning the budget is
to outsource the project, or pieces of it, for a fixed price. This increases

PRACTICING THE ART OF ESTIMATING 117

your chances of bringing in the project within the stated budget. How-
ever, as in managing any internal resource, you must include the costs
of managing the outside contractor in the budget. These include:

* Project or contract manager (internal)

* Quality assurance staff

» User training

* User design team

* Accounting services (for processing payments)
» Legal services (for contract review)

Caveat Estimator

When a cost estimate is done prematurely, often the project team has
to live with poor results. You can minimize that possibility by working
backwards; that means, take your WBS and, before scheduling the
tasks, check to make sure you have adequate budget for all of the crit-
ical tasks. Perhaps you can do a partially phased implementation. For
example, recently a client had preliminarily allocated $1 million for an
infrastructure data management system. The costs of gathering the data
were unknown, but after an initial assessment phase, the estimate to
complete the project in its entirety nearly doubled the original esti-
mate. Since this was leading-edge work, and the benefits of gathering
and processing all of the data were unclear, we broke the project into
an initial implementation for $.5 million. Depending upon the outcome
of this initial implementation, the scope of the final implementation
would be determined. At the end of the initial implementation, the
client would still have a usable database with which to work, even if
funds for the final implementation were not added to the project. We
squeezed into the budget the tasks that could fit.

Labor hours, as I mentioned earlier, are typically used in planning.
However, not all labor hours are equal—as anyone who has had to use
a junior programmer when a senior analyst was called for can attest.
Estimates of 4,000 labor hours in toto does not mean that you’ll need
only two analysts (at 40 hours weekly for 50 weeks each). Clearly
identify the specific talents of the staff you need.

Finally, remember to alter the costs over time on long projects as
appropriate. While today’s inflation rates are nothing like the 15 to 20
percent inflation experienced in the ’80s, you still can expect that your

118 PLANNING THE PROJECT

salary structure will show increases over time, and that your external
contractors will raise their prices biennially if not more frequently.
Consult with your peers and your company’s finance department to get
their cost growth estimates, then multiply your costs by that figure.

For example, if your project budget is initially estimated at $1.2 mil-
lion over three years, and your hedge for the future inflation is esti-
mated at 2 percent per annum, your actual budget should be submitted
at $1,224,160, or $24,160 more, based upon a linear expense pattern
of $400,000 annually:

Year 1 $400,000
Year 2 $400,000 X 2% + $400,000, or $408,000
Year 3 $400,000 + $400,000 X 4% or $416,160

CHOOSING A PROJECT COST SYSTEM

You will need a project cost accounting system against which to mon-
itor your project budget. Your company’s finance systems may have a
project cost component, in which case you can use those numbers, as
long as you understand their derivation and limitations, if any. Be care-
ful of financial systems that carry annual operating costs only, not proj-
ect costs, which can span multiple fiscal years.

Your accounting systems need to capture the information in such a
manner that you can monitor effectively. That said, be aware that in
most organizations I’ve seen, project costs typically have a “phantom”
entry that comes from the finance department as a result of allocation
of overhead costs among the rest of the organization. That’s the over-
head burden, or general and administrative (G&A) burden. Whatever
it’s called, it’s clearly a burden on you—because your project budget
will be diminished by it.

More important, you need to understand its role within your orga-
nization: not only will you have a burden on labor that you directly use
for your project, but you will get charged back a proportion of the
costs the company incurs to keep the business going—accounting, hu-
man resources, and so on.

There are four basic ways of arriving at the costs, all of which can pro-
duce different charge back amounts to your project. The basic compo-
nents of your project costs are labor (direct and indirect), overhead bur-
den, nonlabor direct costs, and G&A burden. G&A can be allocated

CHOOSING A PROJECT COST SYSTEM 119

based upon your department’s revenues, or on costs plus revenues (less
common). Overhead typically is the cost of running the department, less
any revenues. Some companies charge a department, or project, both
G&A and overhead. And because you don’t have any control over the
allocation, you must check with the finance department so that you can
allocate the amount when you calculate your initial budget. Setting up a
spreadsheet to note the costs or acquiring a job costing system will help.

I emphasize so-called phantom labor costs because they can ruin
your budget estimates. As alluded to earlier, how you get charged back
is a function of your finance department’s process. You need to be
aware so you can plan properly. For example, ask:

* Are special charges made for material handling?

* What costs comprise the G&A? Do staff bonuses go into it?

* What costs are computed as part of overhead?

* How frequently are they computed?

* What is allocated in proportion to your expenditures, and what as
a single sum?

* Especially in technology-related departments, everyone uses your
services. Do network maintenance and new network infrastructure
costs go into your G&A? Your overhead?

A critical element of project cost accounting is to be able to prohibit
unauthorized departments from charging to your project. Newer proj-
ect accounting systems limit such entries to authorized people. How-
ever, errors can still be made, and you will have to spend the time to
figure out where the money went—and, if necessary, how to complete
your project within the original budget!

Holding Back

Did your family ever have a dinner party to which more people came
than had been invited? Your mother probably told you to hold back
from eating too much until all the guests had taken their share, and you
could be sure there was enough for everyone. Well, when you’re man-
aging projects, and especially when you’re competing with others in
your company for the same set of resources, you may be put in the sit-
uation of having to take a back seat and wait for critical resources your
project requires while other projects take “their share” first.

‘MOj4 YseD QL-€ ainbld

Syluon
€L ¢t LLOL 6 8 L 9 S ¥ € 2 |
+ 0$
/ /4 /« 000°'02$
/\ V 000'0v$
p— 000°'09%
000088 o
HLNOW SIHLIVLIOL = / 000°001$ S
31va O1 103ro4d V101 —— / 2
\ 000'02+$
\ 000°071$
—— 000'09+$
000'08+$
- 000'002$
0008 0 0 0000S 0 0 000Se 0 00052 0$ 0$ 000'S¢c$ | 000°07$ HLNOW SIHLTVLOL
000°€Z1$ | 000°G91$ | 000°G9+$ | 000°G91$ | 000'SHHS | 000°GHLS | 000°GHES | 000068 [000°06$ |[000°598 |000°59$ 000's9$ |000°'0v$ 31vad OL 1O3rodd TLOL
paja|dwo) 109f01d SNV
000'8$ pamainay 100loid
000'0S$ pajuswajdw| a1emyos
000°Se$ paiyIpojy/padojanaq aiemios
000°G2$ Po108|as aIemMyos
000'S2$ paubisaq SNV
000'G2$ pawliopad siskleuy
000'G1$ pajeniu| 108loid
18lo1d SWY Heis
l0-Uer | 00-96Q |00-AON |0000 |00-deS |00-Bny [oo-unr | oo-unr [oo-Aew [00-idy [00-FeW |00-994 | 00-uer

120

BUILDING IN CONTINGENCY 121

I’ve seen development projects for which critical resources were not
available when needed, and the project was put on hold until the re-
sources could be freed up. Unfortunately, when those critical resources
were finally freed up, some people, necessary to the project’s success-
ful outcome, had left the organization or had become involved in other
efforts. You can use contemporary tools, such as MS Project, to per-
form leveling of critical resources for you. But note that all of the
projects using that resource must be available for the tool to properly
do a resource-leveling calculation. Clearly, you need to be able to “roll
up” multiple projects in order to forecast workloads and demands on
critical resources.

Spreading the Wealth

Generally, a project spans many periods—months, quarters, and years.
When financing for your project is issued on a periodic basis, you may
find that your planned expenditures don’t gibe with the availability of
funds. This is where a time-based cash flow is handy. You can see how
much your project will need at critical points in the project. For ex-
ample, if funding is available at the start of each fiscal year, you want
to be sure you don’t go over budget specifically at that time. Running
a quick cash flow report will show your cash needs by month or quar-
ter. If you find yourself getting perilously close to running over bud-
get, you can slip the schedule, and the cash resource needed, to make
sure you don’t end up in a sudden budget crunch.

A spreadsheet that shows planned expenses over time can be quickly
turned into a graph, showing you where the belt needs tightening. A
sample of this is shown in Figure 3-10. Note that expenses are highest
in month 10. If that conflicts with other expenditures, you might want
to adjust the schedule or break down the task into multiple payments
to eliminate budget pressure.

BUILDING IN CONTINGENCY

All project plans should have contingency built into them. Because the
best-laid plans can, and usually do, go awry, you would be well-served
to build contingency into both your schedule and your budget (since
budget is generally affected by delays in your schedule). In my firm’s
software projects, especially for those in the public sector, we build an

RISK PLANNING 123

overall contingency into our initial request for funding. That way, we
can issue changes within that contingent amount without having to go
through extensive rebidding and reapproval processes for funding
within the foreseen amount. Generally, we plan for 10 to 15 percent
contingency, depending upon the project complexity (as explained in
Chapter 2).

But there are two problems with contingency that you should be
aware of: it can be no more accurate than the underlying schedule
and budget calculations, and it is not a substitute for the planning
you and your team need to do. Having said that, however, you can
“backload” your schedule with an additional task toward the end of
the project, as noted in Figure 3-11. The purpose of task 7 is to
accommodate any “cracks” that have developed in earlier tasks and
need repair.

Of course, these software cracks—such as the need for additional
testing, subject matter experts to resolve a recurring network problem,
and an additional piece of software—cost money and take time. Pre-
identifying the separate task reduces your chances of being under bud-
get and behind schedule more than other contingency calculation meth-
ods, such as adding a predefined amount of time and money to each
task. In that case, you’ve taken your estimates, padded each to make
them all more inaccurate, and introduced inaccuracies into those tasks
for which you had a measure of precision.

RISK PLANNING

In general, there are three steps to take to reduce risk to a project:
First, you identify the most likely risks your project faces, based
upon the political, technological, technical, managerial, and person-
nel unknowns; second, you assign each one a likelihood of occur-
rence; third, you decide on a method for mitigating the likelihood of
occurrence.

For example, if you have an inexperienced staff, the likelihood of
discovering bugs during unit testing probably is 100 percent. Mitigat-
ing methods might include additional unit testing, mentoring sessions
by more experienced programmers, and the replacement of one or
more juniors with an experienced programmer for the most critical
software modules. Then you assign a number, such as:

124 PLANNING THE PROJECT

TABLE 3-2 Risks and Likelihood of Occurrence

Likelihood of Impact of

Potential Risk Occurrence Occurrence

Inexperienced programmers may cause lengthy and 3 C
costly testing.

New operating system release may create 2 C
integration problems.

Financial system vendor will not support product any 3 D
longer.

Customization of accounting package may create 3 C
integration difficulties with other products.

New system will not be supported by users, due to 2 C
personnel turnover, with no one here when system
is finally implemented.

Highly volatile rate calculations may cause 1 D
inaccurate invoices.

Hardware vendor will go out of business. 2 B

Purchasing system will not be ready for user training 2 B

as scheduled.

Probable = 3

Possible = 2

Improbable = 1

Impossible = 0 (Why is this on the list in the first place?)

I plan for the 3s and 2s, which are the most likely. And for each of
those, I evaluate the impact of their occurring and assign another rank-
ing. For clarity, I like to use letters:

Catastrophic = D

Difficult = C

Inconvenient = B

Irrelevant = A (Why is this on the list in the first place?)

The situations to plan for are the 3s and 2s that are also Ds and Cs.
Anything ranked lower can be dealt with if and when it occurs—
unless, of course, you have such resources, including your own time,
that allow you to develop plans for the impossible. Recall Y2K soft-
ware issues: even for those, not every possible situation was accounted
for in corporate contingency planning, just those that would be most
critical if they did occur.

RISK PLANNING 125

You can’t always predict which unforeseen events will occur, but
you can plan for them, so that when they do, you can swing into
remedial mode promptly. My method is to prepare my plan, review it,
and identify those events most likely to occur. Then I look at the
threats to my plan, and come up with solutions or action plans to mit-
igate those threats or to deal with the unwanted situation should they
arise. A sample list can be found in Table 3-2. You will come up with
your own list over time, but this is a good place to start.

Lewin on Leadership

Perhaps your most important task as manager of a software project is
leading your team members. Well-developed leadership skills will en-
able you to motivate your team to work long past quitting time when
necessary, and will inspire them to generate and sustain the adrenaline
needed to work nonstop during the testing and implementation phases.
After more than three decades of project management, I have seen
projects succeed that everyone thought would fail. Conversely, I've
also seen projects whose success appeared guaranteed, fail—the
Quadruple Constraint was reasonable, the risk assessment was low; the
team members were talented and appropriate for the task. The weak
and fatal flaw in the projects that failed was inadequate leadership.
This problem is more acute in project organizations than in line orga-
nizations because a project manager can influence an individual’s fu-
ture in a less direct fashion. For example, in many organizations, the
project manager can, at the completion of the project, write an evalu-
ation of performance. However, the line manager may not include it in
his or her evaluation of the individual. And in some organizations, not
even that can be done.

I perceive the leader of a project as the rudder on a ship, guiding his
or her team through the narrow waters of political intrigue and per-
sonnel changes, through the mishaps of hardware and software snafus,
and through the straits of user misunderstandings and demands. Lead-
ing a project team is, in my experience, much more difficult than

Better Software Project Management: A Primer for Success. Marsha D. Lewin 127
© 2002 John Wiley & Sons, Inc.

128 LEWIN ON LEADERSHIP

leading a functional department or group. In the latter case, evaluations
are done on a regular basis, the reporting structure is more static, and
the goals are clearly aligned with the enterprise’s goals. A project team,
on the other hand, has typically been assembled for this one endeavor,
after which each member returns to his or her own department, to await
another project or departmental assignment. The project leader, unfor-
tunately, has little authority over where the next assignment will be.

ORGANIZING THE PROJECT TEAM

The project team is your human resource that will assist you in taking
the project from inception through completion. It will comprise any
number of people from different parts within the organization, and its
active composition may—very likely, will—change during the life of
the software project. (Note: Anyone who participates in your team is
considered part of the team, even if another department administers
that person.)

We include users in our project teams extensively, as we’ve discov-
ered that only users can successfully implement a system in their
environment. On our recent airport project, for example, our team
comprised the following:

» Users from airport division management

Users from critical internal groups (both supervisory and clerical
levels), such as operations, development, and facilities

Technical network expert from the IT department
Finance department account manager

* IT program office
* Audit and risk managers

* Vendor developers and account manager (after selection of the
software product)

Individual participation varied over the life of the project, following
that shown in Figure 1-5 earlier. The program office served as facili-
tator and coordinator, but the project team leader was, ipso facto, the
leader. The program office wrote documents, raised issues, and helped
the project team navigate the maze of technical issues as the project
took shape; but, the project team leader was the critical resource: she

ORGANIZING THE PROJECT TEAM 129

set the pace, held team members accountable for assigned activities,
and insured that internal departmental needs were met. She also intro-
duced a project management methodology to the project to make sure
that all resources required, both internal and external, were accounted
and planned for.

This type of departmental user organization, with expert assistance,
is particularly good for situations where packaged software will be im-
plemented, and where users already have a system. The users know
what they want better than anyone else, because they’re familiar with
the problems at hand.

User-Led Team Issues

As a consultant, I prefer user-led teams. The users know best the po-
litical and communication paths to take within the organization, and
are best situated to identify potential problems before they arise. How-
ever, problems may still arise because the leader might not have worked
on a software project before, let alone led a team. Problems I've noted
that can arise are as follows:

* Collateral duties. Users often are assigned to a project team with-
out being relieved from their normal tasks. For example, in a re-
cent enterprisewide task force, the technology purchasing agent
was also on the project committee. His purchasing tasks suffered
because he had to attend so many meetings, and no one had been
assigned to back him up in the purchasing department.

* Inexperience in leading meetings. While good intentions abound,
first-time project leaders often don’t know how to make meetings
productive. Rather than arrive at decisions, meetings become gripe
sessions, or are, simply, unfocused; specifications give way to
subjective judgments. In such situations, users often give up and
drop off the team.

* Subjective judgments. When selecting packaged software, some
users prefer a particular vendor. For example, they value sales-
manship over substance. And, when the development team re-
places the salesperson, who is never seen again, user enthusiasm
is often dampened. To get through this, an evaluation matrix, such
as that shown earlier in Table 2-2, is recommended. Team mem-
bers should agree to the evaluation criteria first, then complete the
matrix for each candidate.

130 LEWIN ON LEADERSHIP

e Lack of quantification of training. Training is imprecise because
individuals learn at their own speed, despite the teacher. It’s often
hard to determine whether attendees at training sessions really un-
derstand the importance of what they’re attempting to learn. Thus,
an evaluation instrument, such as that shown in Figure 4-1, quan-

The purpose of this evaluation form is to determine how well the training satisfied your
needs. Subsequent actions will be based upon your response, which is appreciated.

Please complete and return this form by Thursday close of business, 1/27/02, to Marsha
Lewin at marshalewin@acm.org or via interoffice mail to Marsha Lewin.

1. How would you rate the training, assigning a number from 1-10, where 10 is best and
1 is worst, on the following aspects:

content pace of instruction

facilities relevance

overall instructor effectiveness
2. Do you understand your role as department trainer?

Yes No

If please indicate what areas require further understanding:

3. Do you have questions, for example, how the Contract Management Product applies
to your department’s needs?

Yes, No

If please indicate what these questions are:

4. Do you want to form an internal trainers’ Users Group to meet on a continuing basis
to resolve interdepartmental and intradepartmental issues such as: to identify sharable
codes and databases, common procedures, training materials, and standards for field
labels; to streamline screens; and to answer questions that arise?

Yes No

If please indicate why not:

5. When will you initiate the use of the system in your department?

Figure 4-1 Training evaluation form.

KNOWING WHO TO ORGANIZE 131

tifying understanding of the materials is very helpful. Not only
does it evaluate the material and its presentation, but it can also
be used to improve subsequent training sessions.

* Lack of rigor in change control. Often, users don’t understand the
need for controlling changes in an orderly fashion. Users tell the
developers what else they’d like to see, or where to tweak what
they’ve presented, and the obliging developers spend countless
hours, even days, producing something that bears little resem-
blance to the software expected by the rest of the organization.

e Inability to think “out of the box.” Users, especially those who
have been in the same organization for a long period of time, of-
ten have difficulty visualizing how the new software will change
the current processes and procedures. As a result, they may eval-
uate or design the software to replicate existing inefficiencies in
their systems. The team leader should act as the visionary, to help
the team imagine how new tools can change their roles and re-
sponsibilities for the better.

* Inexperience planning along the Quadruple Constraint. It goes
without saying that planning budgets and schedules is easier when
you know your resources and have worked with them
before.

* Failure to keep line managers informed as to time commitments
and progress. Since user teams are formed at the behest of their
sponsoring management, the team leader must keep these man-
agers in the information loop so that they are up to speed on ac-
tivities that may require more time—or less time—over the life of
the project. This prevents the project team leader from having to
renegotiate the time commitment with each manager through each
phase of the project.

KNOWING WHO TO ORGANIZE

Where do project team members come from? You already know that
often they come from user departments; this is always the best way,
but it’s not always possible because today organizations run leaner and
meaner, resulting in fewer available resources for project organizers to
choose from. So now is the time to bring up outsourcing, the use of
external resources to perform all or part of your project’s software
development.

132 LEWIN ON LEADERSHIP

Going In-House or Out-of-House?

Increasingly, I see organizations going through an RFP process and
outsourcing the entire effort. The in-house users help only with the re-
quirements determination and during the final testing. This way, the or-
ganization does not have to support a large internal development staff.
The internal/external involvement is divided as shown in Figure 4-2.
Though certain tasks still must be shared, a clear division is drawn be-
tween many user and outsourced tasks. Note that additional project
management is required with this model, as the vendor will have its
own project manager to monitor its resources, while you will safeguard
your company’s interests. Unless someone is managing the project in-
ternally, you may be faced with erroneous invoices, resulting in pay-
ment for services not rendered.

In spite of requiring additional management, outsourcing software
development has a great deal of merit in this era of multiple platforms,
languages, and delivery systems. By outsourcing a project, an organi-
zation does not have to hire expensive and difficult-to-keep technical
expertise. It also doesn’t have to spend money reeducating its own per-
sonnel. The emphasis is on training the users, who ultimately are the
ones who have to know how to work with the system.

ANALYSIS & DESIGN TESTING & ACCEPTANCE

INTERNAL
TASKS

Requirements
<

Acceptance
Analysis A/>

Test

System
Specification

Detailed
Design
Specification
OUTSOURCED
TASKS

V

Programming

Figure 4-2 Outsourcing of tasks.

KNOWING WHO TO ORGANIZE 133

The secret to outsourcing without causing more problems for your-
self is to ensure, as stated earlier, that the contract, or performance
specification, is unambiguous and complete. If you outsource software
maintenance, a service-level agreement (SLA) is also appropriate. The
SLA must specify response times, performance criteria, and responsi-
bilities, to ensure that not only will the project be feasible to accom-
plish, but that both the outsourced company and the customer organi-
zation will have incentives to perform well.

To describe the internal software project team, let’s assume we’re
developing software. The team should comprise at least the talents rep-
resented in the organization chart in Figure 4-3. Certainly, one indi-
vidual might be able to serve multiple functions during the life of the
project, but generally you won’t have that luxury. People with unique
talents just are not available to do lower-level tasks; their talent—such
as network design—is in demand on other projects. Even though they
might be very helpful in documenting the system, they’ll rarely be
available to do more than contribute their expertise.

And that brings up the question of support staff, people who do an-
cillary jobs that are required for completion of your project, but who
do not report directly to you—for example, computer operations staff,
network staff, documentation and software services, or as they’re called
in some organizations, the help desk. You’ll need all of these resources
in order to complete your system. But these individuals generally are
part of an ongoing departmental organization outside your project con-
trol. This means that if your project is not on their radar screen when
you need them, you will experience significant delays.

For example, in the police system my team installed recently, we
needed the network expertise from the IT department to connect mo-
bile computers in patrol cars to and through the state’s Criminal Jus-
tice Telecommunications Network. IT had enormous lists of other
tasks, and could easily have put us on the back burner and delayed our
project. But because we got on their list early, and stayed in commu-
nication with them as the critical dates approached, when we were
ready, they were, too. They had been given prior notice, and had been
reminded, and hence, were not taken by surprise. And, of course, after
they’d made their contribution to the project, we thanked them and re-
inforced their importance to the project success.

The point here is that your team will be made up of many individ-
uals with different talents. Some of the team will stay with you through-
out, and others will be part of the team for short periods of time. Still

poddng Jawoysn)

L'y uoneziuebip 10sfoid g-p ainbi4

Buures |

1de@ ypny

siapjoyayels Jofepy

1daq Bununoooy

$90IN0SaY [BUIBIU| JOPUBA

wea| j09loid

$90IN0SAY [BUIBIU| JBLIO

s92In0say uoge.bau| B 1S9 |

$801n0s9y Bujures |

$801N0SaY YOMION

1abeuepy jo8lo.d J0pusp

1

T

]

Jopea] Joslold Jasn

T

1abeuepy aloid

134

LEADERSHIP GUIDELINES 135

others will never be part of the team itself, but will serve to support
your project. No matter what their role, you must communicate with
them, so that they can do their best for your project.

One final word about the importance of communicating: Don’t for-
get to be clear when you assign a task to your team members. Meet-
ing notes are an effective way to make sure each team member gets
the same information. Appoint a scribe, who is also responsible for dis-
tributing the notes after each meeting. Identify action items to each in-
dividual. Write down (or use e-mail) as specifically as possible what
action is required, and by what date. Then, if you subsequently have
to reassign a task, for whatever reason, all you have to do is cut and
paste. Of course, finding someone else to assign it to will be more
difficult!

LEADERSHIP GUIDELINES

While I haven’t yet encountered the Pied Piper leading his or her team
off piers to watery doom, I have seen managers who started with mo-
tivated teams, then inexorably ground them down with poor leadership.
A number of lessons I’ve learned from these examples might help you
to avoid making the same mistakes:

* It’s not about you; it’s about them. One manager I remember lost
interest, then staff, and, finally, much-needed support because he
was worried more about his own political value than his team’s
welfare. He ignored his team’s personal problems, intraoffice is-
sues, and scheduling conflicts. Ironically, when his staff resigned,
and the project failed, he lost any political clout he might
have had.

* You set the pace. The best projects to work on have a sense of ur-
gency and commitment, and the project manager imparts those
qualities. If you don’t seem to care, then your team will not. If
you doubt the success of the project, your team will assure its
failure.

* Reinforce the Quadruple Constraint with your actions. If you in-
sist that schedule is most important, but repeatedly delay in re-
sponding to the team, your example tells them that time isn’t that
important. Pretty soon, they’ll be slowing down their deliveries,
and the project will fall behind schedule.

136

LEWIN ON LEADERSHIP

Run the political offense for your team. Especially on cross-
functional and cross-departmental teams, you’ll have conflicts to
resolve. That’s particularly true today, as software becomes more
enterprisewide, to achieve process reengineering efficiencies. De-
partmental managers tend to defend process turf from shrinking
data fiefdoms. Proactively address these issues with the affected
managers, to be sure your project succeeds.

Feed the rumor mill with truth. If you don’t publicize your proj-
ect, others will—with inaccuracies and innuendo. So be sure to
maintain enterprisewide visibility on project status—major suc-
cesses as well as interim achievements, even glitches.

Be positive. The best project managers I know act as though
there’s always a silver lining in the clouds. They keep on moving
forward; they don’t lose faith in the outcome. No matter how
many bugs you discover when you test, it’s that many fewer bugs
that would have been discovered after implementation. You can
look at it as too many bugs, or as good testing. The team typically
reacts better to positive reactions, even in the face of bad
situations.

Support your team members. 1 recall a project where some team
members were caught in the middle of turf wars between their
managers and the IS department, the sponsors of the project.
Team performance suffered, as did the project. Approaching the
managers and clarifying their concerns released the members
from the political vise, and the project went on to achieve success.

Be on the lookout for burnout. Especially in projects of longer
than six months’ duration, even the most energetic of individuals
can fall prey to the stress of overload. In such cases, enforce va-
cations. Both the health of the individual and the health of the proj-
ect will be the better for it. Be prepared for resistance, as one
symptom of burnout is the inability to let go of responsibilities.
Hold fast to the need for a hiatus.

Empower your team. That doesn’t mean let them make decisions
without your following up. It does mean checking to see if they’re
proceeding according to the decisions they’ve made, or if they
need help in their decision-making processes. With you backing
them up, they’ll better support their own decisions. And, in the
longer term, they’ll learn to make better decisions.

TALENT SEARCHING 137

TALENT SEARCHING

Now that I’ve explained the importance of strong leadership, I’d bet-
ter tell you where to find the talent you need when you need it. For
software projects, there are three main avenues to pursue: seek “in-
side” sources; train your own staff; search the Web. Let’s explore them
one at a time.

Seek Inside Sources

An often-overlooked pool of talent is from the team who worked on
the project proposal. In my experience, however, most organizations
want their proposal writers to keep proposing, so rarely are they avail-
able for actual project work. And in situations where outside vendors
have been awarded a contract, generally, their system installers have
been named in the actual proposal, and will be part of the project im-
plementation team; but others may have contributed only their resumes
to the proposal.

My project teams typically are made up of the company’s employ-
ees, strongly represented by user departments, with various technical
talents added according to the particular project’s needs. This way, we
have people who are familiar with how the company does business,
and we can use their past experience to our advantage—they already
know to whom to address questions within the organization.

Train Your Own

When you can’t find the precise talent you need within the organiza-
tion, you may be able to find willing students. For example, in our con-
tract management system, we had contract administrators who under-
stood inspection, but not the technology. We sent them to classes in the
internal systems of the company. Though we spent more on training
than we might have if we had used others who already knew the tech-
nology, these administrators understood the company processes, and so
were able to contribute good ideas for system efficiencies. The project
turned out more successful, and was implemented more rapidly, than
might otherwise have occurred.

138 LEWIN ON LEADERSHIP

If you decide to go this route—train your team—remember, you
need to allow time and budget for both the training and the staff’s
learning curve. You will also need an additional mentor resource.

Search the Web

On occasion, when I've needed a specific talent for short periods, I've
had success acquiring help via the Internet. I recommend this option,
especially if you need specific talent, such as an Oracle programmer
or a UNIX-to-NT conversion consultant, for a limited period of time.
Just be sure to ask for references, and, specifically, confirm that there
are no conflicts of interest. In the latter case, it would be embarrass-
ing to find out that your newly hired Net talent had a day job working
for one of your competitors.

In the software development profession, using remote resources for
programming and for such tasks as documentation has been in vogue
for decades now. In the eighties, I recall technical resources from In-
dia who programmed in COBOL. The results were sent via overnight
mail as tapes or disks; and, in later years, the results were uploaded to
customer sites that could accommodate file transfers (FTP sites).

Since names and e-addresses of such resources change frequently, I
suggest you use a search engine to locate the talent you need, and
choose from the results.

My firm has been using Internet technology for many years for
common development, eliminating the need for on-site space for all of
the development teams. We always use it for project communications
and project management. I no longer hire anyone for our project teams
who cannot communicate through e-mail, whether on- or off-site. Our
documents, scheduling, and tracking are electronic, so anyone without
such capabilities would slow down the decision-making and commu-
nication processes too much to accomplish the project’s goals.

Electronic Security

An aside about remote access to your development team is in or-
der here. In today’s networked environments, firewalls are in
widespread use to ensure that network security is not compro-
mised by hackers. One of the major issues that should be ad-
dressed by any project planner is how the external members of

ORGANIZE A VIRTUAL TEAM 139

your team will communicate during and after the development
of the software. Common solutions are Citrix servers or
PCAnywhere, which allow file access and manipulation by out-
siders (hopefully, only to those authorized). Most vendors require
such access for ongoing support of their software.

You can establish a restricted access site on your company’s
Internet to accommodate external contractors and companies; or
you can use your corporate intranet so that members of your
team can be assured confidential communication of project in-
formation. You can also publish project status enterprisewide on
an unrestricted basis.

Be aware that if your company does not already support such
external access, implementing it will become a mini-project of
its own, and resources must be allocated for this infrastructure
to ensure that firewalls are not compromised. Furthermore, de-
pending on the network and e-mail organization, you may also
need to create accounts on your network for your external—and
even internal—project staff. There generally are rules for doing
so, which are enforced by your IT department to ensure that only
authorized individuals share project data. However, especially
with a team from many different departments and organizations,
the rules may cause conflicts, so be sure to check with your net-
work support staff to minimize technical communication prob-
lems later in the project, when you least can afford them!

ORGANIZE A VIRTUAL TEAM

I touched on the topic of virtual teams in an earlier chapter, but I want
to go into more detail here. I’ve used virtual teams for more than 15
years, since e-mail allowed easy access through telecommunications.
To reiterate, a virtual team is one where the individuals comprising the
team are not collocated, although they may physically convene on oc-
casion. Communication is through electronic means, often using, in
addition to, e-mail and discussion groups, collaborative tools, such as
Lotus Notes, to create and revise documents.

Obviously, one benefit of using virtual teams is that it greatly
reduces travel costs. For software development, which has clear spec-
ifications and tasks that can best be performed by individuals who

140 LEWIN ON LEADERSHIP

require little interfacing with others, virtual teams work extremely
well. Moreover, integrating external vendors and contractors into your
virtual team can further expedite your project.

Tips for making virtual teams work effectively include:

* Minimize the interfaces with others when you assign the tasks. For
example, make one person responsible for programming an entire
module, rather than splitting the programming among many people.

* Keep the time for delivery short. That way, if a team member is
in trouble, you’ll know quickly and may have enough time to rem-
edy the problem.

* Build your team using professionals you’ve worked with before.
They are familiar with a virtual work environment, and you can
more accurately schedule their time. You won’t have to spend
your time (and theirs) bringing them up to speed on the process.

* Use individuals who work well alone, and don’t require the stim-
ulation of others in close physical proximity.

* Make sure your sponsor is comfortable with an “invisible” staff.
This is less a problem today with most people connected via
e-mail in homes and offices. But more insecure managers often
need the reassurance of seeing “their” people at the office, re-
gardless of the cost to the project.

* Be very clear about project assignments, reporting structures, and
reporting methods. Indicate clearly to whom each virtual team
member should go with questions.

* Use e-mail liberally. And make sure that you, as the project man-
ager, are copied on all e-mails. For you this will mean a full
e-mailbox, but it will keep you apprised of how all your team
members are progressing, and where they may run into snags and
need future assistance. Also, use your e-mail’s Forward capabil-
ity; or use Novell’s Groupwise or a similar product to set meet-
ings, delegate assignments, record tasks, and track due dates.

* Where possible, have an initial in-person meeting with the team,
to break the ice and to make future communications easier. To be
sure teleconferencing is an alternative, but the technology gets in
the way of getting to know one another on a more personal level.
This face-to-face meeting will help establish deeper relationships
of trust that will reap benefits during tight spots later in the
project.

BACK TO THE DRAWING BOARD 141

* Know when to step in—in person. Sometimes, the e-mail tech-
nology can cause problems, too, and you may need to spend some
one-on-one time with one or more team members to work through
an issue or to brainstorm a solution to a problem.

ADDITIONAL NOTES ON TALENT

If you cannot find the human resources you need when you need them
through the three main venues I've discussed, you might have success
the old-fashioned way: use temporary agencies that provide technically
trained professionals. Often, companies have established agreements
with one or more such temp agencies, which can provide resources
more quickly than is possible through internal human resources (HR)
departments.

Be prepared, however, to pay more than you otherwise would to ob-
tain critical subject matter experts (SMEs), no matter the source. But
if you tightly craft your agreement with such SMEs, you can use their
time wisely and add value to your project—without unnecessary cost.

However and wherever you find your staff, make sure that you are
indeed acquiring falent—individuals capable and desirous of working
on your project. Especially on user teams, I have found that some in-
dividuals being released by their departments to serve on these tem-
porary projects are those who provide the least amount of value and
benefit to their own departments. Their managers, understandably,
don’t want to give others their better performers, so you may be forced
to blend less qualified staff into your projects. Generally, such indi-
viduals rarely contribute much at the project team level either. More-
over, their inaction and, often accompanying, negativity can infect
your project team, rendering the entire team less effective. In some
cases, you may be better off doing without such “donations,” espe-
cially on a project of short duration. On longer projects, where the user
contribution is essential, it’s best to negotiate with the department
manager to get someone else.

BACK TO THE DRAWING BOARD

Staffing issues may cause you to realize there is an overwhelming
need to replan: team members have departed; unplanned corporatewide

142 LEWIN ON LEADERSHIP

reorganizations have affected who your system users will be; or new
management has been unable to come to a consensus. These are just
a few situations I've encountered. There’s nothing wrong with replan-
ning. Just make sure you’re not constantly replanning to address small
issues, in which case you’re not really replanning, you’re reacting to
the normal random events that make projects lively and exciting!

When you do need to replan, however, be sure to communicate the
changes, then process the changes through the change control process,
as described in Chapter 5.

Monitoring

As the project progresses, the idea is to monitor, or control, what is
happening, to avoid surprises in one or more aspects of the Quadruple
Constraint. Control, by the way, is not a nasty word: that’s why you’re
in charge, to control the software process—or, in more politically cor-
rect terms, to ensure adherence to the plans you’ve established, as de-
scribed in the preceding pages. Therefore, you have to keep checking
the plans. And here’s an important reminder: you plan along the
Quadruple Constraint; you monitor along the Triple Constraint—the
work plan, the schedule, and the project budget.

GETTING AND STAYING IN CONTROL

Today’s automated project management systems make it easy to push
a couple of buttons and print out a multicolored chart showing how far
ahead or behind schedule your project might be, and how you’re do-
ing against your budget. However, such reports tell you this informa-
tion after the fact. Your goal should be to avoid problems by knowing
about them in advance. If you’ve properly planned, you’ve included
activities and milestones that allow you to detect problems early. For
example, if you have enough levels of testing in the construction
management (CM) software package that is being integrated into your

Better Software Project Management: A Primer for Success. Marsha D. Lewin 143
© 2002 John Wiley & Sons, Inc.

144 MONITORING

corporate accounting system, you might detect internal inaccuracies in
the CM system early enough to correct them quickly and easily.

Reporting to the Right Reader

Like any well-written document, a report should be designed for the
audience it is intended to serve. And therein lies the rub. Many con-
stituents are interested in a project’s outcome. If it’s an enterprisewide
system, or if future software is to be built upon it, then clearly the proj-
ect’s progress is important to others outside the project.

For example, my team implemented a strategic information systems
and data communications plan for a client. The first system was a hard-
ware, software, and network infrastructure system. There were three
dozen subsequent projects, all of which depended upon the successful
outcome of that initial project. Reporting was necessary not only to the
executive committee that sponsored the entire strategic project, but to:

o The entire company, because each desktop was disrupted when
equipment was installed.

« The receiving department, because large shipments were coming
in from diverse sources and had to be efficiently deployed for
installation.

« Security, to monitor the steady stream of subcontractors perform-
ing the installation.

o Customers, whose phone and existing computer lines might be
disrupted.

« The accounting department, who needed to know where to charge
equipment expenses, where to charge back labor, and so on.

1 know you get the point.

Granular Reporting: Leveling Detail

Less obvious is that different levels of details are required in the re-
porting process, depending upon who will read the report. Getting the
right level of information to the right people will enable your project
to proceed more effectively. The higher up the organization you go,
generally, the less detail is required in a project report because your
project report is often combined with others. On the other hand, as proj-

GETTING AND STAYING IN CONTROL 145

ect leader, you will need more detail so that you can quickly identify
where a problem is now or might arise in the future. You will need to
have enough information at your fingertips to solve it quickly.

The result is a pyramid like that shown in Figure 5-1. This depicts
the number of projects being managed at different levels within an or-
ganization, and the different levels of detail required to manage at that
level. Using today’s technology, especially the power of cut and paste,
you can put an executive summary paragraph at the beginning of your
detailed report, for copying into your department or division manage-
ment’s high-level summary. An example of such a summary paragraph
is given in Text Box 5-1. The detail appropriate to the project, how-
ever, should follow for each project.

You can also prepare a one-page chart showing an overview of
progress at the program level (multiple projects loosely related by
common funding, location, and/or sponsorship, and coordinated).
Though you will need less detail on each project, you will have to

ENTERPRISE (EXECUTIVES)

Less More
lr A
Detail Number ol
DIVISION Projects
MANAGERS
v v
More Less

PROJECT (PROJECT MANAGERS)
Figure 5-1 Report detail hierarchy.

146 MONITORING

TEXT BOX 5-1 SAMPLE EXECUTIVE SUMMARY
Information Systems Implementation Plan

The implementation of the 25 component technology projects is
proceeding according to plan. Fifteen projects are ahead of sched-
ule, five are on schedule, and five are between two and four
weeks behind schedule due to delayed hardware deliveries. None
of the delayed projects are on the critical path, and no impact is
foreseen to overall timely program completion. The program
continues to progress within budget, showing 10 percent less ex-
pended than forecasted for this period. There are no performance
issues, and hardware deliveries are anticipated in the next re-
porting period.

“drill down” to more detail to provide the reader with more informa-
tion. See the overall schedule in Figure 5-2.

Report Types

This is the chapter on monitoring, so I emphasize here that these re-
ports are to inform concerned individuals on the status of the project—
that is, how well you are progressing against the plan. 1 can’t stress
enough how important it is to relate back to the original planned per-
formance, schedule, budget, and risk.

Progress Report

My teams summarize our program-level report to our sponsor and
submit the report biweekly. A sample is shown in Figure 5-3. Pre-
pared in MS Word, in an easy-to-update format (you update only the
areas where there have been changes), this report gives a quick
overview. It’s also an opportunity to get senior management’s attention
if needed.

The progress report takes little time to prepare and to read, so the
likelihood of it being read by senior management is high. It is intended
to be read on its own, without attachments, although you could include
the schedule and budget reports. However, in my experience, a thicker
report is not read as promptly.

148 MONITORING

TO: Program Manager
FROM: Project Manager

SUBJECT: Periodic Progress Report

1. INTRODUCTION

This report covers the period March 1-15, 2001, for the Police Project
Implementation.

2. TASKS IN PROGRESS

. Installation of Automated Field Reporting
. Testing of Records Management System Changes
. Integration of Field Reporting and Records Management Systems

3. TASKS COMPLETED

The installation of the initial mobile equipment order of 9 systems was
completed this period. The CDPD communications from the patrol cars
has been completed.

The team met for a progress review on 3/14.

4. TASKS SCHEDULED (during the next two weeks)

Training of Officers: will start 3/20
Project team meeting on 3/24

Training materials ready for review 3/16
Test results due 3/20

s. OTHER ISSUES

The sign-off sheets for the Dispatch System have been approved and
forwarded to the Accounting Department for payment per contract. We
have not yet received confirmation of its receipt.

Figure 5-3 Sample progress report.

Active Issues List

From project inspection, there will be design and procedural issues
that require making one or more decisions. Often, you're into the de-
sign phase, and even into development, before enough information has
been gathered to make these decisions. A danger is that with so many

GETTING AND STAYING IN CONTROL 149

activities going on, such issues may be overlooked or decisions may
not be made in a timely fashion.

To prevent the oversight, we keep a simple Excel spreadsheet list of
active issues, as shown in Table 5-1. It has detail on the issue—such
as when it was first raised and who is responsible for responding—and
summarizes progress to date. The thread of discussion shown in the
rightmost column is important, in that anyone reading the report can
see the evolution of the issue. Due dates are also specified so that the
decisions can be made when needed.

It is common for many issues to arise and exist during the initial
project stages. We typically encounter issues related to:

Procedures. How will information in the new system be acquired,
supported, and communicated to others?

Database conversions. How will different field sizes be handled,
and new fields be derived?

New features. How will features not currently available be imple-
mented? How will current features be implemented using the new
system? What gaps will exist?

Interfaces. What data formats and other handoff criteria must be
satisfied with the new software?

Technology. Are middleware products needed? What network in-
frastructure is required?

Authorization. Have the necessary specification document ap-
provals been received?

As the project moves ahead, items move off the active issues list to
a closed issues list, and are archived as part of the project records. At
the end of the project, all issues should be on the closed issues list. I
eyeball the open issues list frequently during the project—its length
quickly indicates to me the progress being made on the performance
aspect of the Quadruple Constraint. A thick report indicates there are
too many unresolved issues and that the project might be heading for
trouble.

This report is particularly useful for the development team and for
contractors on your team. There is enough detail so that the issues can
be understood, and addressed individually or in a meeting.

"PaAIaoal BUIYOB :GZ/9 Jawolsn)
'e2/9 uo paddiys sem aulyoe :00£290 JOPUsA

"aulyoeWw [euon}

"GL# Wa)| pasojo woij sajeubuo waey siul 1002090 JopusA G2/9 0€/9 4 0 yojedsiqg diys pue ainbyuo) 29 €6
+19;:] ‘MOS
"Gp# W) Pasojd wolj sajeulblo way Siy1 ‘005 LS50 JopuaA 05/9 € A 0} SUOO3S JOJOBNUODANS PPY SL/S 26
*(19A @191dwod
10U SI g6#) pamainal Buiaq ||ns aie swiod :0060.0 JOPUSA
‘paajdwod
s1 26# [nun paje|dwod aq Jouued wal SiYyl :000290 JOpudA
-21/S Aq eyep apirold 8ep anp aepdn 0} paaN :00£0S0 Jawoisnd
“way SIy} oI pajjol, pue
PasO|0 SeM Z|# Wa}| 9NSS| SAIDY 'S|Iejep 810w 0} OL# Solou SL/6 ‘Juewnooq 9ads jeuonouny
Bunosw aYs g/z 99S "2’ v# PUB ‘v L'v# ‘CL'L'E# Ve TH 06/9 Bunsoday pjel4 perewoiny
MaIneY S |1 "uer wouy sereulbuo enss| 1008220 Jawolsnd [e7-71"% 2 A jo [eaoidde ureiqo pue dojaasd 2R €S
‘s|iejep aIow 1o} 8#
pue ‘/# ‘9# ‘G# sejou Bunesw ays g/g 89S 1008220 Jowolsnd 0€/8 ‘Bunesw g/z buunp passnosip
"(44v) bunioday piaid 06/9 JUSWINOOG 084S jBUCHOUNS
peyewolny JO UORIPPE 8y} SpNJoUl PINOYS SIY L 002020 JaWoIsnd S5 4 A yoredsig o) sebueyo axeN 22 L2
"}021100 dJe S8|qe} UOHEPIEA 8y} eyl AJlIaA ued am
21059q paje|dwod 8q o} spesu spjat} yoredsig o) Buiddew pjai4
‘paAIgoal sem (sojqel
uoneplfeA aseq Yum) aping dnyels 8y :005 190 Jewoisno
"JaIsea way}
JO uonEDNUSP! d)ew O} Ul pajouad ag o} sabueyd io} payse SL/8 *UONBONLIBA 1O} JOWIOISND
lopuap ;pejoadxe oq asayl Wybiw usym 00k L L0 Jowolsnd LS 4 Wd A 0} so|qe} uoneplleA puds GL2l €1
uolnisodsig/siuswwo)/sniels dwop eong Awoud ol uonduosag uadp #
sleq e9ed ubissy areq

Y10gq = g ‘IOPUBA = A ‘Jawo}snd = O :pusbe

0002/01/20 :®1epdn 1se1

i1 senss| sidwes |-G 37EGVL

150

GETTING AND STAYING IN CONTROL 151

Bean Count

I’ve worked on many projects where project status was summarized
to a count of issues, late activities, or modules completed. For
example, a project summary might show:

This Period Last Period
Open issues 25 22
Modules completed 3 5
Testing completed 2 3
Bugs discovered 25 10

This quick look at a project is an attempt to show a trend, but it
doesn’t give a true picture of the project, for two reasons:

* Without reference to the planned numbers for the two periods, we
can’t tell whether the performance was better or worse than
anticipated.

* Since not all modules, tests, or bugs are equal in complexity and
importance, the categories tell us little in terms of whether we
should be relieved or worried with the information.

We could add another column, such as Planned or Forecasted, to in-
dicate the monthly trends, then graph them (which is always more
helpful to communicate a trend). However, the more we add to bean
counts, which are intended for a quick indication, the more time they
take to comprehend, thus defeating the purpose.

Bean counts remind me of those mock thermometers used during
fund-raising campaigns for charities: as the percentage of completion
(100 percent participation) rises, the level of paint—usually red—in
the thermometer goes higher and higher. What it doesn’t indicate is if
the amount of money being contributed is meeting expectations. A bet-
ter indicator would be percentage of financial goal, say $10 million,
that has been achieved.

Bean counts can, of course, be used to motivate the team, but the
problem still exists that, for example, having a lower-than-anticipated
number of detected bugs does not mean you’re doing well. It may
mean you just haven’t found all the bugs yet and that you and the proj-
ect are in for a few surprises! In short, I don’t recommend the use of
bean counts for software projects.

152 MONITORING

Verbal Debrief

There is no substitute for sitting down and talking with your spon-
sors, with your team, and with your vendors or contractors. In this
e-everything era, don’t forgo entirely the value of oral presentations.
They can help to:

« Deliver bad news with a positive spin.
» Answer questions that arise.
* Maintain team enthusiasm.

Rather than wait for a milestone review, as described shortly, I try
to have informal meetings with sponsors to keep them updated on
progress. If there is an issue, such as an alternative design implemen-
tation or a staffing alternative with departmental impact, an informal
meeting allows for freer discussion and timely decision making. And
to address sensitive issues, such as personnel problems, you may want
to hold an informal verbal management debriefing without benefit of
written materials.

Report Frequency

Reports should not be prepared more frequently than you have mean-
ingful information to report. As mentioned earlier, if your accounting
system issues checks on a semimonthly basis, a weekly report will not
contain enough new information to be worth the reader’s time. Since
schedules generally have activities covering a two-week period, bi-
weekly is usually often enough.

However, on very short projects, of, say, eight weeks’ duration,
you’ll be halfway through the project on your second biweekly progress
report, making any remedial action harder to take without affecting
schedule or budget. So a second criterion for reporting is never report
less frequently than you can take action upon the findings. On projects
lasting two months or less, report weekly if you can, on schedule; oth-
erwise, reporting every two weeks on all project components is
adequate.

Rolling Up Multiple Projects

Often, you’ll find yourself managing a project that is part of another
project. For example, in our program-level reporting, we would want

avoolnvy

v

SONIMVYHA
avoolinv

TIVI-3
Xv4
03aiA
SONIMYHA
S133HSAV3YdS
HOO/ONIOVINI
HVYAN3TVO
ONISS300Hd
adom

viva
31vHOdHOD

'sposfoid ajdinw oy Yo aumosyyote weibold -G ainbly

W3LSAS
S3LvY

ONIIOVHL
ANV ONID901
LN3INNDO0A
MOTINHOM

ONILHOd3H
JANIL
ALIALLDY

ejeq |joihed
pue sajen

ejeq Bupjoes]
pue buibbor

sa|yoid pue
sjuswnaoq

samApOY
painpayos

saIARdY

VALY feN pue pio

NOLLYNO1NY
301440

A

ONITNA3HIS
ALIALLDY

A

AN3IWNdO0a

V— aNv 39VHOLS

A

»§ saonvho
— ALIALLOY

A

wdysAs uonewJoju] Juswabeuepy

109load uononssuon

153

FINANCIALLY SPEAKING 155

to include not only how any individual project is progressing, but how
the program as a whole is progressing. That means rolling up all proj-
ects into a single schedule, consolidating the budgets for all projects,
and, typically, including a systems chart to show the interrelationships
of the projects. See the architecture diagram in Figure 5-4.

A quick way to represent progress on a program level is to color-
code the systems interrelationship diagram: use different colors for the
three states—complete, unstarted, and in process. This gives a quick,
high-level understanding of the overall project status. However, as
noted earlier, this is an overview for management or introductory pur-
poses; the detail should be supplied in the project-level reporting. A
sample of such a chart is given in Table 5-2.

FINANCIALLY SPEAKING

Since project costs typically relate closely to the companywide ac-
counting practices and systems, I’ve found the hardest part of monitor-
ing project budgets is getting the necessary information from the finance
and other departments in a timely manner. For example, in one com-
pany, the purchase requisitions for hardware, software, and installation
services seemed to disappear into the ether; no copies were available of
the final purchase orders, receipts of delivery, and invoices for the in-
stallations. For us, trying to keep accurate records of how much had
been expended against budget was like working with a ouija board.

Because enterprisewide accounting departments have to be con-
cerned with issuing audited data, they need additional time to verify
against internal checks and balances that monies to be paid were in-
deed paid. By the time you learn you’ve exceeded the budget, it’s too
late to do anything about it. So to extend a project budget report’s use-
fulness, you can add a column for an encumbrance, or obligated,
amount. There are three columns for each expenditure type:

Budgeted Obligated Paid

In project work, it’s best to work with the obligated amounts: this
reflects the amount you’ve already requisitioned or contracted for,
whether or not the vendor has been paid. Table 5-3 presents a sample
encumbrance report. When the invoices have been submitted and paid,
you move the amount to the paid column and reduce the obligation.

156 MONITORING

TABLE 5-3 Sample Encumbrance Report

Sample Encumbrance Report

Project: Police Management System

Vendor: 64532

Date Budget Obligated Paid Document No.
06/01/00 $250,000

01/04/01 $25,000 P.O. 23465
01/20/01 $25,000 check 2766
01/07/01 $14,000 P.O. 23468
Total $250,000 $39,000 $25,000

Unused Amount: $250,000 — $39,000 = $211,000

Cash Available: $250,000 — $25,000 = $225,000

Recently my team worked with a client whose project management
staff was close to rebelling: they couldn’t tell if the hardware order had
been properly placed, or identify the final cost of the software ordered.
That caused a delay in making subsequent purchases, because while
they didn’t want to exceed budget, they needed to get as much hard-
ware and application software as possible. As a remedy, we suggested
that no purchase order be placed or payment be made until someone
on staff had personally signed the order and the pay request. Though
this, too, introduced delays in the system, it allowed the project man-
ager to log in to his or her own cost control system (in this case, a sim-
ple spreadsheet) the obligated and paid amounts. At any point, the
spreadsheet was more accurate than the accounting records.

Determining Project Status

To determine how your project is performing on the budget dimension,
you must know how far along you truly are. In the past, percent com-
plete was used as the defining factor; if, say, you’d expended 80 per-
cent of your total project budget, then you were 80 percent complete.
But if you were only 20 percent into your project schedule, did that
mean you were 60 percent ahead of schedule? Unfortunately, it meant
only that you were 20 percent into the project, and had spent 80 per-
cent of the budget. Unless you had additional project management in-
formation, such as how the resources were planned to be expended

FINANCIALLY SPEAKING 157

over time—say, a cash flow—you didn’t know if you were where you
ought to be.

I recall on one assignment that the expenditures were well above
where the project was in schedule. The project manager observed that
the project had been heavily “front-loaded,” meaning that more monies
were anticipated to be spent early in the project. But in software proj-
ects, the total budget amount can easily be exceeded if the developed
software, upon testing, turns out to require extensive reworking. So
frontloading in software projects may not be of any help.

Taking the Earned Value Approach

This problem of you’re-not-really-complete-until-it’s-over led to the im-
plementation of earned value approaches to cost and percent complete.
Earned value compares the amount of planned work with that actually ac-
complished, to determine whether cost and schedule performance are on
target. However, since it does not address the quality of what has been
developed, you may have spent both time and money to stay in the same
place. Nevertheless, earned value analysis is the most commonly used
method of measuring performance.’ It is a percentage of the total budget
equal to the percentage of the work actually completed. This figure is
then compared with the anticipated schedule and budget to determine
variances from the plan.

I think the entire area of earned value for software development is
overkill, due to the uniqueness of each software project, which makes it
hard to determine what value in your situation 700 lines of untested code
might produce. I don’t recommend it for software projects. Instead, the
project manager should emphasize testing at early project stages.

Tracking Expenditures

A difficulty in cost reports is ensuring the accuracy of charges made
to your project. Emphasis should be placed on those financial charges
that are well beyond your control but that affect your project budget.
Remember the G&A and overhead rates explained in Chapter 3? Peri-
odically, the rates may change, and your project charges will reflect
them accordingly. There is nothing you can do other than try to com-
pensate by saving monies elsewhere.

"A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 2000 edition
(Project Management Institute, Newtown Square, PA), p. 123.

158 MONITORING

Figure 5-5 shows an estimated expenditure curve over time, with a
line specifying the actual expenditures incurred. From this, you can
readily determine if you’re above the planned curve, hence spending
more than you should. But what this representation doesn’t tell you is
if you’re just racing through the project, when, in fact, you should be
spending more because you’re accomplishing more. That might be the
case if your programmers are performing above expectations, and as a
result you’ve moved further into testing and implementation than orig-
inally scheduled.

What do you do when you find your project is ahead on spending
but not on schedule? The distance above the planned expenditure line
gives you a hint of the trend that’s emerging: at 15 percent, perhaps
it’s time to rethink where the project is, and come up with a plan to
bring the costs back in line with the schedule, so that you don’t end
up “throwing bad money after good.”

Presuming you need additional funding, how do you get it? That’s
where the contingency helps. By having that 15 percent contingency I
alluded to earlier, you have some funds to use to bring the project back
into line. Of course, if the project requires still more funding, perhaps
for additional programming or new platforms, then you’ll have to ask
your sponsors for more monies—in which case you’d better be ready
to fully explain why they should grant you more funds to accomplish
the same goal.

ACTUAL
VARIANCE

BUDGETED
$$

“d

TIME
Figure 5-5 Planned versus actual costs curve.

FINANCIALLY SPEAKING 159

Conducting Periodic Reviews

When a project gets into trouble, it’s time for a review, of course. But
there are other reviews you should plan during the life of your project.
The need for written reports does not obviate the need for periodic hu-
man interchange in a project meeting. These interim meetings during
the life of the project are separate from the postproject or project com-
pletion reviews, covered in the next section. The primary purpose of
these reviews is to discuss progress and keep your team motivated.

Whatever the primary purpose of the review, you should make sure
that you have created an agenda and distributed it to the attendees; and
don’t forget to send copies to their managers if the political situation
in your company warrants it. Prepare for the meeting by creating hand-
outs of critical information; and use a Proxima-type projector to dis-
play a PowerPoint-type presentation to the attendees. If you are unsure
of how to prepare a presentation, look for a wizard in your presenta-
tion program. Usually, many helpful templates are provided. For ex-
ample, Text Box 5-2 shows a presentation agenda for a review.

At the outset of each review, restate the purpose of the review: de-
cision making or progress reporting. If you have to do both in a single
meeting—which you should avoid whenever possible—separate the
actions into two segments (typically, follow progress reporting with
decision making). That way you’ll be able to make specific decisions
after the attendees know where they are and what the significant issues
are. For example, if you have an architectural decision to make re-
garding which platforms to implement, first determine where the en-
tire project is, lest you decide something that will make the project
more precarious.

Reviews are meetings with specific purposes, so following these
rules for productive meetings will stand you in good stead:

 Stay on the subject.

» Stay on schedule.

* Avoid letting discussions become personal.

* Identify and reinforce the critical issues.

* Assign knowledgeable people to work on identified problems out-
side of the meeting and to report back by a specified date.

* Assign every action item a due date and a single responsible in-
dividual, although you may appoint others to assist.

160 MONITORING

TEXT BOX 5-2 SAMPLE REVIEW MEETING
AGENDA

1 Police Project Progress Review
Company, Project, and Project Manager Names
2 Status Summary
o Is project on track for implementation as expected?
* Identify outstanding items needing resolution.
3 Progress
o List achievements and progress since last status update was
given.
* Review last meeting’s action items due for completion.
e List delays, problems, and corrective actions since last sta-
tus update was given.
4 Schedule
o List top high-level dates.
e Distribute more detailed schedule if appropriate.
5 Implementation
* List main critical deliverables.
* Identify test progress and results.
6 Costs
* List new projections of costs.
o Identify change orders: amounts and reasons.
* Identify future cost trends.
7 Technology
e List technical problems that have been solved.
* List outstanding technical issues and impact.
o Identify any dubious technological dependencies for project
and backup plans.
8 Resources
» Summarize project resources.
e Identify any shortfalls or surplus.
9 Goals for Next Review
* Assign date of next status update.
* List goals for next review.
* Summarize action items.

FINANCIALLY SPEAKING 161

* Distribute critical documents prior to the meeting, so that atten-
dees can come prepared to contribute and participate.

* Don’t dictate “from the chair.” If you have strong feelings, hand
the chair to someone else when you express them.

* Appoint a scribe to take notes during the meeting; and instruct
that person to distribute the notes promptly thereafter to attendees
and identified third parties.

* Reserve in advance whatever equipment you require for the meet-
ing (projectors, computers), as well as the conference room, so
that attendees spend time working, not wandering around looking
for a place to work.

Milestone Reviews

Milestone reviews should be planned into your WBS, and included on
your project schedule at the end of a project phase. Depending upon
the project life cycle in your company, your phases may be different
from those shown in Figure 2-4 earlier. Since a specific document or
set of documents is produced at the end of each phase, an appropriate
agenda item is to review the content of the document set.

Each review may include different individuals who are appropriate
to the milestone under review. For example, at the end of the require-
ments phase, your users should be heavily represented. At the end of
the implementation, you should have user participation, along with
your developers and/or vendors. The project team typically comprises
the primary attendance, with other groups and departments repre-
sented, such as quality assurance and network services. Keep in mind,
usually it’s better to invite more people than less, so that you have a
wide range of views in an appropriate forum.

How does the project team relate to the design review? Typically, it
is a subset of the attendees: all users may attend, though only a few
are from the original team.

The format of the review, however, should be consistent, and should
aim to:

* Identify any issues requiring resolution, prior to moving on to the
next stage.

* Gain consensus.
* Share lessons learned that might be helpful for future activities.

162 MONITORING

Management Reviews

Like reports, reviews need to be granular, with different levels of man-
agement represented, especially executive levels. Usually, the execu-
tives are the ultimate sponsors of your project, although they may have
little time for frequent interaction during the course of a project. Re-
porting along the Quadruple Constraint of cost, schedule, performance,
and risk, at a high level, will make these reviews meaningful to the ex-
ecutives, and ultimately to your project team.

Management meetings may be more difficult to arrange due to
busier schedules at that level in the organization, but they are impor-
tant for maintaining visibility in the organization. Often, I’ve learned
about political changes in the offing that will affect both sponsorship
of the project (managerial issues) and processes involving the project
(technical and interface issues). Hearing about them early enough is
the only way to adequately plan for them.

Who attends these meetings is generally determined by the execu-
tives, but usually they are limited to the project manager and, possibly,
the lead architect or designer. Shorter meetings are better than length-
ier ones, for the simple reason that they are easier to squeeze into the
busy executive schedule.

Note:

Don’t confuse management reviews with technical reviews, which
are called for in many design methodologies, such as a structured
walkthrough. In the latter, programmers read and critique one an-
other’s code. This is part of the design process, not the project
management process. While the technical review should be an
activity in the WBS and on the project schedule, it is not a proj-
ect management review.

DEALING WITH CREEPY CRAWLY CHANGES

Lewin’s Law of Random Perversity states that there will always be
more changes in a project than you want.” You cannot avoid them, so

2 Lewin and Rosenau, Software Project Management: Step by Step, 2nd edition (Marsha D.
Lewin Associates, Inc., Los Angeles, CA, 1988), p. 238.

DEALING WITH CREEPY CRAWLY CHANGES 163

you must learn how best to deal with them. Recently, a client of ours
awarded a contract to a highly qualified vendor in response to a com-
plete proposal. Later, changes in telecommunications technology and
new software releases required altering the original proposal. There
was no way these changes could have been foreseen, because:

* The length of the contract was longer than the vendor’s software
release cycle; the content of the release was not known at
contract-signing time.

* The telecommunications capabilities themselves had advanced
over time.

* No one had prior experience in marrying the hardware, software,
and telecommunications.

In this case, fortuitously, the increases in costs were offset by de-
creases in components originally budgeted for and no longer needed.
The change order was actually a net credit to the contract.

The really difficult changes to deal with, however, are those that oc-
cur because the project was inadequately planned, or because poor es-
timates were made. That said, even the best estimates today will have
some error because the technologies change so quickly. In short, it’s
better to plan for change rather than resist it. Resistance in this case is,
indeed, futile!

Issuing Change Orders

How often should change orders be issued? Typically, change orders
can be put through whenever the contracting parties agree. As a prac-
tical matter, however, unless the budgetary impact is going to be se-
vere, grouping change orders together is more efficient. It’s also better
to ask the approving body to authorize changes infrequently, regard-
less of the actual amount being requested. A single aggregated change
order for $100,000 on a $2 million dollar contract (5 percent) costs less
to process, and isn’t as annoying to the approvers as eight changes of
$12,000 each! Don’t nickel and dime your executives to death!
Having said that, I recall a consultant who started in the field when
I did. We shared the same client, and every time the client asked him
to tweak a report or add a feature, he charged the client. I chose to do
small changes without increase. He nickeled and dimed the client,
and built a flourishing national business for himself and hundreds of

164 MONITORING

employees, while I enjoyed the time I saved writing change orders.
You can judge for yourself which style you prefer.

Change orders are also best prepared after the underlying impact of
changes has been assessed and fully scoped out; typically, this occurs
within a project phase. Subsequent phase cost impacts can also be re-
quested at that time. For example, if you decide to switch to an NT
Server instead of a UNIX box, in your change order, you might need
to include workstation hardware upgrades for better performance, as
well as the cost of the server and additional vendor involvement for
testing.

A sample change order is shown in Figure 5-6. Your company may
prefer a different format; the key is to have the necessary information
on the change order to clearly define any schedule, budget, perfor-

Originator: Vendor Project Manager
Date of request: 3/15/01
Need/return by: 4/1/01

NOTE: This will be Change Order #1 for the client.

Client Name: Client Company
Client Contact: Marsha Lewin
Client Address: 255 Main Street
Everytown, CA 90025
Description of Change: REMOVE
- From Exhibit A, Software, remove Server Queuing Software
($3,500.00)
- From Exhibit A, Services, remove Master File data conversion.
($7,500.00)
- Reduce License and Maintenance fees accordingly.
ADD .
- In Exhibit A, under Services, add Master File format customization
($2000)
CHANGE

- Change Payment Milestones accordingly using credits and/or fully
changed amounts.

Change Amount: -$9,000.00 one-time cost, -$300 Annual fees
Change From (check one) Original Contract X __or Prior Change Order or Other
If Change from “Other” Description of Other:

Figure 5-6 Sample change order format.

DEALING WITH CREEPY CRAWLY CHANGES 165

mance, and risk impact. The change order should be signed by the con-
tracting parties.

Controlling Changes

One of the wonderful aspects of a software project is seeing users in-
volved in the design of the software in a prototyping environment. But
they can become so excited about, and pleased with, their own creative
participation that they sometimes forget that prototyping is not an eter-
nal process. Throughout the implementation, they consistently suggest,
and often feel they must have, more changes. My team generally in-
stitutes change control when the functional design specification of the
software has been agreed to by the users and the development staff or
vendor. We call this a design freeze. A critical issue with design freezes
is that unless you stop making software changes long enough to finish
developing the software, you’ll never be able to test it fully and com-
plete the project.

You can, of course, also institute change controls when the require-
ments have been determined, but by doing so, you often end up mak-
ing more work. Today’s packaged software may not satisfy all your re-
quirements precisely, but you can often eliminate some by utilizing
other packaged features you hadn’t previously considered. When you
take this route, you then should draft a document that maps how the
requirements were satisfied by the vendor’s product. File it away with
the other project documents to provide a complete audit trail of changes
suggested. An example of such a document map can be found in Table
5-4. Such a document is important should you ever be asked why cer-
tain features were not included in the final implementation.

The sources of changes are many: internal, due to process, political,
or technology changes, and external, due to technology or changes in-
troduced because of interfacing requirements with others’ systems.
Some are within your control; most are not.

Implementing Change Control Systems

Every software project should have some method of accommodating
requests for change throughout its life. The method should suit the
company and the project’s scope and duration. A change control sys-
tem may be thought of as a formal approval cycle for changes to any
approved milestone document. That would include program code, op-
erations procedures, and functional design specifications, for example.

"2# lopiO ebuey) Ul patanod si sy

(e# 19p10 9buRYD
a9s) Buipuny [euolippe 10} apiroid |IM JOPUBA
‘uonng
U9810S-U0 YlIm wajsAs jey) 0} adepajul
Aiddns [jim JOpUBA *|0JUOD UOISIBA Bjpuey
M wiaisAs Juswabeuew Juswnoop sjusi)
"|dV dojenap |im 1opusp 108loid
layloue se pajuswaldwi Buieq welsAs
Buibewipuswabeuew juswnoop sey jualD
"ajqe}dedoe S| Wiidjul Ul PUNOIE}IOM
lenuepy "alep .8l ob, pajnpayos o} Joud
a|qgejiene aq jou Aew pue uawdojaasp Jopun
lIns SI suooesuel Jo |iel} Jpne a1ejdwo)

Aunq
-edeo aney swajsAsqgns |ie 10N
‘paiinbal si uonew.oul
[euomppe Inq siyl yum Ajdwod
0} ajge aq Aew Jopusp ‘uondaox3y

"JUBWINOOP BWES JO SUOIS
-19A UlBjUIBW JOU SBOP IOPUBA
‘waisAs buibew syeredas

pasodoid sey Jopusp ‘Aldwo)

‘pelpne
ale suonoesuel} ||y ‘Aldwo)

"9]0U 99|0A
1o ‘oapin Buirow ‘sainjoid ‘saydlexs
‘sabew) pappaquwa yum ‘podas Aue
jo Buimain mojly—~Alinbul pue Buimeip 601

‘pajesauab spodal jo abed yoes
UO 92110U JBpUIWBI BINSOOSIPUOU BPINOId 8l

"SJUSWINOOP IBA0 [0JJUOD UOISIBA BPIAOId Ll
"Sayoleys pue

sojoyd Buipnjour ‘esed 0} sebew yur 6

‘usym pue ejep Jsurebe painbui 1o
paisjua oym 108|jal O} ‘ied} pne apinoid /

uomsodsiq feuld

asuodsay lopuap [eulbuQ

wswsaiinbay 444 # Juswalinbay 444

sjuswiaiinbay d44 Jo lledL upny -5 379VL

166

DEALING WITH CREEPY CRAWLY CHANGES 167

The purpose of change control is to ensure that any changes made to
schedule, budget, risk, or performance are consistent with the project
goals, and worth the additional expense and/or delay incurred as a re-
sult. The scope of change control includes determining if the change
is beneficial and monitoring the approved change until completion.

At a minimum, users should be instructed to initiate changes using
a paper or online change request form, an example of which is shown
in Addendum 2 of Appendix I. The form should indicate what benefit
the change will provide, such as: increase data entry time by 3 percent;
eliminate manual calculation errors on chargeback rates for airport
concessions. The more detail the change originator can provide, the
easier it will be to scope out the potential change—in terms of cost,
length of time it will take, and any reduction in risk to the project.
Good change control systems are integrated, meaning they consider
the effect it will have on all project dimensions.

In some organizations, the change request is then submitted to the
technical staff, to identify the scope of other changes that might snow-
ball from the first. Hardware, software, documentation, and a rough
schedule of implementation and cost might be provided. In other or-
ganizations, the change is not scoped out more fully unless it is ap-
proved by the change control board.

The change request is next submitted to a change control board,
which is composed of individuals capable of assessing the justification
for the change and approving its functionality. (Cost may have to be
approved by a separate budget committee.) During the development
phase, the change control board is typically made up of the project
team. When the project is complete, generally a user board is set up,
spanning all software being supported by the IT department. Any
changes subsequent to completion of the project are submitted to that
entity for approval through a similar process. Wherever possible, users
should be part of the change control process, as in the design process.

The change process flow is shown in Figure 5-7. The change re-
quest, in many ways, is a request for a miniature project, and when ap-
proved becomes a contract in miniature, specifying the Quadruple
Constraint of performance, cost, risk, and schedule. The change process
should also include updating all relevant documentation and any train-
ing necessary.

Depending upon company size and the level of software sup-
port available, changes can be managed with sophisticated computer-
ized systems, a simple spreadsheet, or manually. A report of changes

168 MONITORING

Determine importance
of need for change.

A 4

Determine Quadruple
Constraint impact.

v
Assign change to
qualified parties.

4
Update relevant

documentation to
reflect changes.

A 4

Record change
when complete.

Figure 5-7 Change process flow.

proposed and their disposition (approved, denied, or in process) is gen-
erally prepared for departmental management, so that everyone knows
the disposition of their requests.

If there are significant changes to your project, you may want to im-
plement them after the base software has been delivered so that users
gain some benefit from the system. I recall on one system, the primary
user was reluctant to leave well enough alone, and kept requesting ad-
ditional changes long after the system was completed. These changes
were of the nature of eliminating a single keystroke or changing the
color of a screen or an icon—not significant enough to warrant the
cost. Unfortunately, the sponsor approved such changes without
the necessary cost and benefit justifications, resulting in avoidable ex-
penditures of thousands of dollars.

Finally, changes should be made in writing and be well documented.
Then, if you ever have a project that overruns its budget or is delivered

COMMUNICATING AND PUBLICIZING 169

late, you’ll have a record of what occurred, why, when, and on whose
authorization. And if the performance has changed from what was
originally specified, you’ll also have an audit trail.

COMMUNICATING AND PUBLICIZING

A few words about spreading the word about your project. Occasional
e-mail to interested parties within your organization, either under your
e-signature or your departmental manager’s, lets others know what’s
happening. If your company permits it, sending global e-mails on a
well-planned, infrequent basis may also be appropriate. Often, a process
will be altered by the implementation of new software. When person-
nel know about the changes, they can help institute the new processes
more efficiently.

Undoubtedly, you will not always have good news to spread—the
project is not satisfying its Quadruple Constraint, for example, and
there will be obvious overruns. While there is an understandable and
natural tendency to hesitate to publicize bad news, the sooner you get
the information out there, the better. Delaying only makes the bad
news worse. The best course of action is to promptly replan and pre-
sent it in the most positive way possible.

In closing, let me say that all project managers at one time or an-
other will fall prey to Murphy’s Law—everything that can go wrong
will go wrong. Typically, this will happen when least convenient. My
best advice is to face these challenges with tolerance, understanding,
and a sense of humor. You can control changes, but not eliminate them.

Completing

It’s not over ’til it’s over. We all know that. But with technology al-
ways changing, vendors offering frequent upgrades, and users always
requesting more, it’s more difficult than ever to come to closure, as I
like to call it, on a software project. Still, to everything there is an
end—followed by the birth of new projects.

KNOWING YOU’RE AT THE FINISH LINE

Assuming you have cleft your project into a Waterfall model, with the
phases indicated earlier in Figure 2-4 (the Formula-IT life cycle model),
recall the initiation phase. You monitored along the Triple Constraint
the plans you developed along the Quadruple Constraint. The project
plan you penned guided you through the deliverables, processes, and
challenges of implementation. Most important, at the end of imple-
mentation (phase 6), you were able to measurably deliver what was
promised in the planning stages.

You have your satisfactory testing results and quality assurance re-
port. The change control board has convened. Users have their proce-
dural documentation, the system has its technical documentation, and
any maintenance materials have been gathered and organized for hand-
off to the IT maintenance crew, help desk, and/or user department. In

Better Software Project Management: A Primer for Success. Marsha D. Lewin 171
© 2002 John Wiley & Sons, Inc.

172 COMPLETING

short, you feel you have little more to do other than clear out your be-
longings and move on.

Making Sure Your Sponsor Feels the Same Way

Whether you’ve managed the project internally or externally, you have
a customer or sponsor who must sign off on the project, verifying that
you have satisfied the performance requirements. You dealt with sched-
ule and budgetary requirements along the way, so there should be no
surprises on those constraints. I generally ask the customers to autho-
rize in writing that they are assurning responsibility for the system, and
that it runs satisfactorily, as they had agreed in the design specification
stage. If, instead, the sponsor wants additional features that were not
part of the specification—to make the system more usable, for exam-
ple—this is the time to indicate that there’s a basis for another project,
now that this one is complete.

You’ll also work on projects where the customer is really many in-
dividuals, who cannot agree that they are satisfied with the project. You
can try to reach consensus by suggesting they work with the system,
and assure them you will check with them during the review phase.
I’ve found taking this tack often works. When you cannot get every-
one to agree no matter what you try to do, partly because of “fiefdom”
issues and partly because some folks are never satisfied, as long as
you have the acceptance by the team leader and critical user person-
nel, proceed to project completion.

On occasion, you’ll realize the users are simply fearful of taking
ownership of the project. They have become accustomed to your man-
agement quarterbacking, and feel rudderless. You can ease any qualms
by making sure that they understand the future service-level arrange-
ments and that they know whom to contact for future support. This
may take additional time, but it’s worth the investment, as a dissatis-
fied customer, internal or external, will not help you win future man-
agement roles.

Shaking Hands and Saying Goodbye

By the time your project is coming to a close, many of the team mem-
bers will probably have started returning to their other tasks. Likewise,
your technical staff will probably have dwindled, already at work
on their next programming tasks. And if you contracted out the

KNOWING YOU'RE AT THE FINISH LINE 173

development, your vendor is chomping at the bit to get his or her final
payment and move on to other clients.

Saying goodbye to a vendor is easy: the contract states—hopefully
in unambiguous terms—the payment criteria for each step through
the assignment. The tests have either been satisfied or not. Well, not ex-
actly: typically there are little nits, such as a field size too small or a
missing CD backup that’s in the mail. But the contract has essentially
been satisfied. The contractor wants final payment, and will pressure
you for it.

In general, I delay payment approval until all substantive elements
have been satisfied. Experience has shown that no matter how well-
intentioned they are, contractors move on, new management takes
over, and old promises become meaningless unless they appear in writ-
ing (even e-written is preferable to nothing at all!). In one mega-
installation of infrastructure, not one key person was left in the ven-
dor’s employment 18 months later, let alone working on our project.
The point is, only after you have all your documentation (typically the
last item), and no tasks are left on your open issues list, should you cut
the final payment check—but then do so promptly.

Saying goodbye to your own team, however, is different. This is a
wonderful time to write letters of recommendation that can be routed
to members’ line management, and ultimately become part of their per-
manent personnel record. (In fact, letters of recommendations for ex-
ceptional vendor personnel serve a similar purpose within their orga-
nization.) A letter of recommendation is also in order for ancillary
personnel who performed exceptionally on your project, such as the
purchasing agent, or the receiving clerks who repeatedly gave up their
lunch hours to bring over hardware.

Archiving Project Documents

Make sure that records you will need for subsequent project financial
audits are archived appropriately according to your organization’s poli-
cies. Archive project documents in both hard and electronic versions.
Today, using CD technology requires the fewest disks. You can also
scan hard copies and archive them on CDs. It’s best to archive final
approved copies of electronic documents in accordance with your or-
ganization’s records management policy to scan documents. More
widespread use of document management systems will facilitate the
archiving of proj-ect and other documents in the future.

174 COMPLETING

All meeting minutes become part of the project documents, as do
all the milestone deliverables you’ve amassed during the project. These
include:

* Work plan

* Design specifications

* Progress reports

 Test plans

* Test results

e Meeting minutes

» Updates to any of the plans
* Significant memoranda

» Additional reports that may be of future interest during main-
tenance

¢ License and warranty information

You may also want to prepare a handoff document that delineates
any information that you feel would be of value to the maintenance
and user staff.

You can see that a single project’s archives may take up consider-
able space. On a larger project, the handoff documents can fill many
boxes. Therefore, you should also provide a packing list, or contents
sheet, with the documents. (The final destination of these documents
should have been determined during the project planning process. The
disposition of any hardware or software procured for the project, but
not needed anymore, should also have been decided early on.)

Running the Last .2 of a Mile

As any marathon runner will tell you, at the twenty-sixth mile, there
is still .2 of a mile to go to complete the race, and that .2 of a mile is
always the hardest! On a software project—which often feels like a
marathon—you may well find that getting the attention of your team
and any resources to close off your project may be difficult, if not im-
possible. However, you’ve persevered this long, so hang on for that last
.2 of a mile.

Learning Lessons

As I’'ve said many times throughout this book, every project is unique,
but there are also many similarities that you can learn from. I like to

THE JOY OF REVIEWING 175

hold a lessons-learned meeting at the end of the project of all the in-
volved parties. Everyone is solicited to bring comments, positive or
negative, that can be recorded and used as guidance for future projects.
No holds are barred; this meeting is not for the faint of heart, and de-
fensiveness is not allowed.

You may want to have someone else chair the meeting, so that you
can participate. Remember, it’s better not to chair a meeting when you
have strong views to promulgate.

Afterward, minutes of the meeting should be distributed as widely
as possible, especially to future project management and development
staff. In fact, there’s generally something of value to come out of these
meetings for anyone connected with similar projects, including users.
You may find comments, such as the following, of great help in the
future:

* The vendor was nonresponsive.

* The software was too buggy to be deployed.

* The hardware supplier provided valuable free consulting.

* The electric outlets at the branch office were inadequate for com-
puter use.

* Fiber optic cable took too long to install.

* Server components were not available promptly.

* We couldn’t find an Oracle programmer.

* The new system changed the way we communicate with other
departments.

* We need to change our manual processes to get the most out of
the new system.

THE JOY OF REVIEWING

The final project phase is review. The purpose is to visit the stake-
holders, from users of the system to executive management, to find out
how the project has fared since completion. Informal meetings gener-
ally work well for this part of the project. Any project goals and
lessons-learned documents can also form the basis of questions to ask
when you meet with the stakeholders.

The result of this final phase, which generally occurs one to three
months after the project has been handed off, is to see how well the
project has “taken” in the organization. Have any problems cropped up

176 COMPLETING

that aren’t being dealt with? Does line management provide the sup-
port and resources that every new system requires? Have any unfore-
seen consequences arisen?

Preparing a brief report for the project sponsor can often reveal:

 Opportunities for additional uses and time savings.
* Need for a full-time data administrator.

* Need for user groups to help share knowledge and provide tips on
system use.

* Trainer has left the company and no one has been appointed to as-
sume the training responsibilities.

 The vendor takes too long to answer questions, so the system can-
not be used all the time.

» Additional software has been put on the server, and the system
seems to run more slowly now.

» Additional licenses are needed, as people often are not able to log
on because all available licenses are being used.

 The vendor has issued a new software release providing better re-
porting that would help the department reconcile its payroll
entries.

The fact that you, during your project management task, opened
communication paths and forged relationships with others in different
parts of the organization will enable you to suggest solutions to such
problems uncovered during the review meeting. In some cases, this
may mean identifying the need for subsequent projects.

That said, the objective of the review is not to solve all problems
presented, but to uncover them. The change control board can take
your suggestions under consideration, as appropriate.

LIFE AFTER COMPLETION

As a result of the implementation, you may find that the organization
of the company or departments changes. This is quite common. Sys-
tems change the way information flows in an organization. You may
be tapped to be a permanent part of the new organization, as a result
of your successful project accomplishment and intimate knowledge of
the systems! More typically, your mission, should you decide to accept

IN CONCLUSION 177

it, will be to fill up your desk with new binders and reports for new
projects.

IN CONCLUSION

I’d like to summarize here what I think is most important to know
about managing projects. First, most problems you’ll encounter will be
people issues, not technical issues—users may be unreasonable, the
team may exhibit dissension, and you’ll become exasperated. Be pre-
pared to deal with these so-called soft issues that can make or break
your project.

My advice is, never shoot from the hip. Despite the fact that your
role will be to make quick decisions at various points in the project,
you will be doing so with the ammunition of much planning and fore-
sight. While any decision you make along the way may not be what
had been originally planned, your careful planning and project moni-
toring throughout will keep you on target to the best course of action.

Here are some other guidelines I think you’ll find useful in your ca-
reer as a project manager:

 Keep your eyes on the objectives and your feet firmly on the
ground. On many projects, you’ll witness moments of sheer panic
in one or more parties due to job insecurity, a bad hair day, or any
of myriad reasons. These are mere bumps in the road to success-
ful completion, and no matter how hard it may seem, as the pro-
ject manager, you're responsible for leading your “bad camper”
to safer grounds.

o Learn to overcome the inevitable user resistance. Listen to the
concerns, quantify them, then respond. You’ll be surprised how
users can be encouraged to come around. Most people really do
want to do a good job. When faced with a new situation in which
they feel unsure, they worry they will not be able to do a good
job. You can ease that concern with your attention and interest.

o Hold hands. Stakeholders often have difficulty seeing the final
goal, not so much out of obstinacy but out of ignorance of the
software development process. Take the time to explain what will
be happening before and during the process. Doing so can ensure
your project’s success. Failure to make that time investment will
almost certainly cause delays, if not project failure.

178 COMPLETING

* Beat the drum. Projects with high profiles get resources more
readily. Create a sense of positive importance and urgency for
your project. People want to participate in successes.

* Recognize and deal with ambiguity. No matter how hard you try,
at some point, there will be a lack of clarity—in the contract pay-
ment arrangements, in how the program will interface with the
WAN, and so on. You’ll have to spend additional hours clearing
things up. Don’t take this as a personal failure. Management is not
a black-and-white process. Your skill is in being able to surf the
gray areas successfully. Software projects are, by their nature,
more ambiguous than other types of projects. You can reach a suc-
cessful outcome by applying rigor to the management process, to
reduce ambiguity as much as possible, while allowing for the cre-
ative juices to flow.

* Quantify decisions. Wherever possible, establish objective mea-
surable criteria. For example, assign a numerical value to vendor
proposal features, to training, to online help, and to other docu-
mentation. This reduces the subjectivity that can cause a project
to go awry when parties are not held accountable. It also pre-
cludes value judgments, which cause decisions to be taken per-
sonally, and often destroy the team spirit so necessary to success-
ful project completion.

* Put everything in writing. File e-mails on critical subjects. Con-
firm critical phone calls with a follow-up e-mail or memorandum
to decrease chances of errors due to misinterpretation or omission.
Keeping a document trail doesn’t eliminate problems, but it can
help to minimize them, and it will assist in resolving the problems
that do arise.

* Renew yourself. You may think you’re ready for the next adven-
ture, but take time to make sure you are. Particularly on long-term
projects, I've discovered that I become insulated from the rest of
the technological world. Go “surf” the industry and see what’s
new. Especially in technology, today’s LAN is tomorrow’s server.
It’s best to keep abreast of your ever-changing tool set!

And there you have it. Another project, another challenge. So it
goes. Hopefully, you’ve learned some tricks of the trade from this
book, so that, regardless of the specific technology you work with, you
will be better able to manage the process effectively and successfully
in the future. Live long and manage well!

Appendix

Project Plan

Better Software Project Management: A Primer for Success. Marsha D. Lewin
© 2002 John Wiley & Sons, Inc.

Project Plan

This appendix is intended to provide an example of information to in-
clude in a software project plan. Items in italics are variables for you
to consider and complete.

1. INTRODUCTION

This document describes the plan for implementing a Contract Man-
agement System (CMS) for a Sample Corporation (Company). It sets
out the following for the project:

* Scope

Project budget and schedule
* Organization and staffing

Control
* Management

Job descriptions
 Task descriptions
* Project standards

An overall project schedule, prepared using MS Project, is provided.
A form for requesting a change to a project deliverable is included, as
are task descriptions.

Better Software Project Management: A Primer for Success. Marsha D. Lewin 181
© 2002 John Wiley & Sons, Inc.

182 PROJECT PLAN

2. PROJECT SCOPE

Include here any limitations on the project, and an assessment of risk.

The scope of the CMS project encompasses the implementation of
a common system, to provide document and cost control for all Com-
pany projects. Particularly, this would involve the selection of a pack-
age, or suite of packages, that best satisfies the Company’s needs to
monitor its construction and design projects.

This project’s risk has been assessed as low, and the impact of a fail-
ure is assessed as inconvenient. Manual procedures can be utilized on
an interim basis if necessary.

3. PROJECT BUDGET AND SCHEDULE

The preliminary cost estimate for this project is $250,000. This com-
prises:

Software $100,000
Installation $ 20,000
Development/configuration $ 65,000
Training $ 15,000
Hardware $ 50,000

Software maintenance, estimated at $15,000 per annum, is not included
in the project budget. It is noted only for future budgeting purposes.

The schedule for completion of this project may be found in
Figure 1-4.

4. PROJECT ORGANIZATION AND STAFFING

4.1. Project Organization

The CMS project will encompass seven distinct stages:

1. Initiation

2. Analysis

3. Design

4. Software selection

5.
6.
7.

PROJECT ORGANIZATION AND STAFFING

Software development/modification
Implementation
Review

183

Each of the stages is further broken down into tasks. Each stage has
one or more associated deliverable. Detailed descriptions of the tasks
are as shown in Text Box 3-1.

1.

Initiation

+ Develop Project Plan, including resource requirements and

job descriptions.
* Define project standards.

. Analysis

* Analyze requirements.

. Design

* Define data, processing, and technology.
* Define user interface.

» Compile system design.

Software selection

* Identify list of potential vendors.

» Develop Request for Proposal (RFP).
» Evaluate responses.

* Conduct demonstrations.

¢ Select vendor.

Software Development/Modification

* Prepare for development.

* Build/modify database and processing.
Implementation

* Plan system introduction.

» Assemble technology products.

¢ Conduct testing.

» Migrate data.

e Run parallel/pilot.
* Initiate operations.
Review

* Review system.

Instruct trainers to conduct end-user training.

184 PROJECT PLAN

4.2. Project Staffing

The project participants will be:

* Executive Technology Steering Committee Members
* Program Manager

e Program Office

* User Project Teams

* IS team

Figure L1 illustrates the organization of the project participants. This
is shown from the project perspective.

The responsibilities are as shown in Figure 1.2, Project Roles and
Relationships. This shows the management hierarchy that affects the
project.

The Steering Committee has the responsibility to approve the proj-
ect deliverables. Once approved by the Steering Committee, project
deliverables will come under change control procedures. The Steering
Committee is also responsible for periodic review of project through
progress reports from the Program Manager.

The CMS Project Team is responsible for completing the project
tasks, resulting in the production of the project deliverables within the
time frames indicated in the project schedule. Production of the proj-
ect deliverables will involve a high level of coordination between the
Project Team and Company staff.

Detailed job descriptions for the roles of the CMS project partici-
pants can be found in Addendum 1 of this document.

I Steering Committee I

I Program Manager I

| Assistant |—
| |
LCMS Project Team Leaderl I Program Office I
1
1
I CMS Project Team l l IS Staff] [Extemal Contractorsl

Figure I-1 Project Organization Chart.

MANAGEMENT CONTROL 185

CEO

Authorizes expenditure

Steering Committee

Approves

Program Manager

Endorses

Program Office

Facilitates

Project Team

Recommends and
implements

Figure I1-2 Project Roles and Relationships.

5. MANAGEMENT CONTROL

Define who is responsible for writing and approving documents, from
both content and standards conformance perspectives.

Responsibility for management control of the project ultimately
rests with the Program Steering Committee. This responsibility is ex-
ercised through periodic (approximately bimonthly) review of progress,
and approval of project deliverables. This acceptance of project deliv-
erables by the Steering Committee is deemed to be acceptance by the
Company.

Each completed CMS project deliverable will be given to the Pro-
gram Manager for approval. The Program Manager will check com-
pliance with project standards, including adherence to the task de-
scription and style. The Program Manager will also arrange for any
review by the appropriate parties, as necessary.

For interim products (as opposed to project deliverables), this will
generally involve approval by the CMS Project Team, with the assis-
tance of the Program Office. The Program Manager will not be re-
sponsible for checking the quality of content; this is the responsibility

186 PROJECT PLAN

of the CMS Project Team, who, in turn, are not responsible for check-
ing compliance with project standards.

When a document is circulated for review by the CMS Project Team,
the document should have attached a covering memo that includes:

* The author of the document
* A list of the reviewers
* The time and date by which comments should be received

Documents should be circulated two days before comments are re-
quired for individual design products. Project deliverables should be
circulated to Steering Committee members two days before the date of
the Steering Committee meeting.

The author should be notified of any required alterations or amend-
ments to the design products, either by a markup of the original prod-
uct or at a meeting between the author and the reviewer.

In the case of a project deliverable, each component of the deliver-
able will have been checked by the process described above. The final
deliverable need, therefore, only be submitted to the Steering Com-
mittee for approval without further quality assurance. The Program
Manager will review the integration of the components for consistency
and adherence to project standards before submission.

Where changes to a deliverable are requested by the Steering Com-
mittee, the nature and form of the changes will be agreed to at the
Steering Committee meeting. The author will then make changes to the
document, and the document can be signed off at the sole discretion
of the Program Manager.

In this manner, each design product will receive four levels of review:

* By the Project Manager, to ensure compliance with task descrip-
tion and project standards

* By user representatives, as an individual design product
* By the Steering Committee, as part of a project deliverable
* By the Steering Committee, as a part of the final design report

Once a project deliverable has been accepted by the Steering Com-
mittee, it will come under formal change control, as described by the
change control procedures in section 6.5.2, Document Change Control.

PROJECT MANAGEMENT 187

6. PROJECT MANAGEMENT

The CMS Project Team Leader is responsible for overseeing the CMS
project. The Project Team leader will liaise with the Program Office
on matters of day-to-day management of the project. However, the ul-
timate management of the CMS project rests with the Program Man-
ager. The essential features of the project management process are:

¢ Project planning
* Tracking and monitoring
¢ Progress reporting

6.1. Project Planning
A project plan will be developed to identify:

* Phases and stages

Start and end dates for each stage

Tasks

Fixed milestones for the project (e.g., deadlines for deliverables)

+ Approximate schedule for execution of tasks

The plans will be presented in the form of a list containing the
above information and a Gantt chart. Plans will be prepared using the
MS Project software tool (version 4.0).

In addition to the Project Plan, task sheets will be developed at the
start of each phase of the project. The general format of the task sheets
will be:

Task description
Purpose

Scope

Deliverable

Content of deliverable
Work method
Completion

Nk L=

188 PROJECT PLAN

Upon commencing each new task, team members will review the
appropriate task sheet and make appropriate amendments with the ap-
proval of the Program Manager. The Program Manager will report task
sheet amendments to the subsequent Steering Committee meeting for
ratification.

6.2. Tracking and Monitoring

The Program Office will update the CMS project plans prior to each
monthly Steering Committee meeting, and provide them to the Pro-
gram Manager.

The Program Manager will monitor the plans to identify:

* Any slippage to the project
* Additional resource requirements
* Alterations required to the scheduling of tasks

Any findings will be reported to the Steering Committee as part of
a progress report.

6.3. Progress Reporting

The main, ongoing planning and control document will be the Progress
Report, prepared by the Program Office every two weeks. The report
will set out the progress in the previous two weeks, and the plans for
the next two weeks. The report will highlight particular problems, es-
pecially those relating to time and cost, and will report significant de-
viations from the overall Project Plan. The Program Office will pro-
vide the Progress Reports to the Program Manager for distribution.

Each report will be circulated to all members of the Steering Com-
mittee. At each Steering Committee meeting, the previous two Progress
Reports will formally be approved.

The general format of the interim progress report is:

Introduction

Tasks in progress (during the previous two weeks)
Tasks completed (during the previous two weeks)
Tasks scheduled (during the next two weeks)
Other issues

Sk L

PROJECT MANAGEMENT 189

In addition to the Progress Report, the Project Manager will produce
an updated Project Plan for each Steering Committee meeting, showing:

» Baseline start and end date of each task
» Actual start and end of each task
* Progress to date in completing each task

The Steering Committee will formally approve the updated plans at
each Steering Committee meeting.

6.4. Software Support

Define all standards for documents.

All reports, papers, and textual documentation will be developed us-
ing MS Word version 7.0. Other materials will be produced using the
following software:

Spreadsheets MS Excel version 7.0
Graphics and presentations MS PowerPoint version 7.0
Flowcharts Visio version 5.0

Project plans MS Project version 4.0

Requirements for the use of other software should be determined in
conjunction with the Project Manager.

6.5. Document Management
6.5.1. Version Control

Each document will start with a version number of 0.1. This version
will be incremented by 0.1 each time a new version is released; that is,
the second version will be 0.2. Once a document has been approved by
the Steering Committee, it will become version 1.0, and will be updated
accordingly in the footer of the document. The approved version will
be republished only at the explicit request of the Steering Committee.
A copy of the updated document will be held in the project files.

Subsequent amendments of the document will incremented by 0.1;
for example, 1.1 is the version after the first approved document. Sub-
sequent approvals by the Steering Committee will result in versions
2.0, 3.0, and so on.

190 PROJECT PLAN

Prior to approval by the Steering Committee, a document will bear
the description DRAFT in the title of the document and at the center
of the footer. Thus, any version other than 1.0, 2.0, 3.0, and so on, will
be issued as a draft.

Versions of documents subsequent to that approved by the Steering
Committee (i.e., all draft documents after version 1.0) should have
changes indicated using revision marks as follows:

* Newly inserted text should be underlined.

* Where possible, sidebars should be used to highlight the changes.

MS Word 7.0 provides revision-marking facilities that highlight
changes automatically. Substantial changes to the document should be
described for each new version in the modifications record at the front
of the document.

6.5.2. Document Change Control

Once a document has been accepted by the Steering Committee, it will
come under formal change control. The purpose of a formal change
control is to ensure that changes to formal deliverables are carried out
in a controlled manner such that the dependencies between subsequent
documents are recognized. Changes to one deliverable can have sig-
nificant implications for subsequent deliverables, and may involve re-
working of some documents.

A request for change can be made by any project participant, and
must be made on the Change Request Form, attached as Addendum 2
of this document. The form should be completed and submitted to the
Program Manager for authorization and submission to the Steering
Committee.

7. CONCLUSION

This plan will be refined and added to during the course of the project
as required.

CONCLUSION 191

ADDENDUM 1: JOB DESCRIPTIONS

The individual job descriptions will vary according to the structure of
your company. Your department head may be responsible for tasks al-
located here to the Steering Committee; you may have the Program
Manager and Program Office consolidated in a single individual. Ad-
Jjust tasks and descriptions accordingly.

A. Program Steering Committee

1. Main Purpose of Job

The Program Steering Committee will make the executive decisions re-
quired to ensure that the project serves the best interests of the Com-
pany, and is consistent with the other projects comprising this program.
2. Position in Organization

The Program Steering Committee has ultimate responsibility for the
project.

3. Scope of Job

The Program Steering Committee will make all executive decisions re-
garding the management, conduct, and control of the project.

4. Responsibilities

The Steering Committee is responsible for:

* Overall management and control of the project
» Approval of project deliverables

* Approval of Progress Reports

» Approval of Project Plans

» Approval of changes to project deliverables

B. Program Manager Job Description
1. Main Purpose of Job

The Program Manager is responsible for overseeing the implementa-
tion of the projects on a day-to-day basis.

192 PROJECT PLAN

2. Position in Organization

The Program Manager reports to the Program Steering Committee.
The Program Office and the User Project Team Leaders report to the
Program Manager.

3. Scope of Job

The Program Manager makes day-to-day decisions about the conduct
of the project, but defers to the Steering Committee on issues of:

* Changes to scope
» Changes to cost of the project
* Changes to the overall time frames of the project

The Program Manager may make executive decisions regarding:

* Scheduling of tasks

¢ Content and method of execution of tasks
¢ Content of deliverables

* Allocation of resources to tasks

4. Responsibilities

The Program Manager is responsible for developing the Quality Plans,
Project Plans, Job and Task Descriptions, companywide communica-
tions, and executive briefings.

This includes:

* Managing the Project.

* Converting data.

* Providing the infrastructure (hardware and systems software).

* Providing training and a user help desk.

* Assuring quality.

* Communicating Project information throughout the Company and
externally.

* Allocating project tasks to Company staff.

» Presenting Progress Reports, Project Plans and Deliverables, and
changes to project deliverables to the Steering Committee.

CONCLUSION 193

 Verifying compliance of deliverables with project standards.

e Identifying the appropriate system user Project Team Leaders to
carry out reviews of design products.

* Completing review of deliverables by system user Project Team
Leaders and Steering Committee.

* Releasing RFPs.

* Providing (recruiting) IS staff.

* Establishing policies and procedures.

 Successfully implementing each of the projects.

C. User Project Team Leaders
1. Main Purpose of Job

The Project Team Leader is responsible for the detailed planning and
management of his or her respective project through to a successful
conclusion. '

2. Position in Organization

Each Team Leader reports to the Program Manager. Each team will be
composed of system users, along with IS staff, outside vendors, and a
Program Office consultant.

3. Scope of Job

The Team Leader may make day-to-day decisions regarding the con-
duct of his or her individual project, provided that these decisions do
not affect changes to overall scope, cost, and/or schedule. Decisions
regarding overall scope, cost, and/or schedule must be brought to the
Program Manager for overall project decisions or for subsequent pre-
sentation to the Steering Committee.

The Team Leaders may make such recommendations regarding their
specific project with regard to:

¢ Analysis
* Design, in accordance with overall project standards
* RFI/RFP preparation

194 PROJECT PLAN

* Evaluation of vendor proposals and preparation of recom-
mendations for approval by Program Manager and Steering
Committee

» User testing and reporting of results
* User training and education

* Test scripts and test data

* Pilot testing

» User acceptance

* Cleaning up user data and documents

4. Responsibilities

Each Team Leader is responsible for developing the detailed work
plans, job and task descriptions, and standards for his or her specific
project. The Team Leader is also responsible for producing the plan-
ning of the project for each stage.

The Team Leader is responsible for selecting the members of his or
her specific project team, and for convening meetings until the deliv-
erables, as outlined in subsequent task descriptions, are completed and
accepted.

D. Program Office
1. Main Purpose of Job

The Program Office’s purpose is to provide support for:

* Managing the program

* Assuring quality

* Building awareness and acceptance of the projects in the
program

* Assisting with the implementation of the projects comprising the
program

2. Position in Organization

The Program Office reports to the Program Manager.

CONCLUSION 195

3. Scope of Job

The Program Office provides resources and expertise to the Program
Manager and the user teams.

4. Responsibilities

The Program Office is responsible for:

Defining the organization and roles of each project participant.
Monitoring adherence to the organization and roles throughout
the project.

Coordinating all Project Teams to ensure focus on task sequenc-
ing, schedule, and effective resource deployment.

Defining job descriptions for each person working on the project.
Assisting in the preparation of task sheets that define each task in
each project.

Updating project plans and providing them to the Program Manager.
Assisting the Program Manager in preparing the Progress Report.
Monitoring plans to identify potential problems, issues, or slip-
pages; additional resource requirements; changes to scheduling
and/or allocation of tasks; changes in risk; and reporting any find-
ings to the Program Manager.

Preparing high-level designs for each part of the total integrated
system.

Assisting in evaluations of proposals of outside vendors and con-
sultants who join the Project Teams to work on each project.
Assisting in the development of any RFPs.

Assisting the Team Leaders of each project to plan and control the
project.

Managing change requests.

Reporting to the Steering Committee and the Program Manager.

.Building awareness and acceptance of the program throughout the

Company and with Company constituencies.

Reporting to the Program Manager on work in progress and de-
tailed goals.

Assisting in the preparation of project standards.
Assisting in assuring quality.

196 PROJECT PLAN

ADDENDUM 2: CHANGE REQUEST FORM
REQUEST FOR CHANGE TO A PROJECT DELIVERABLE

REQUESTOR DETAILS Serial Number:

Name: Date Prepared:
Tel No/Ext:
E-mail:

REQUEST DETAILS

Deliverable to be changed: Current Version:

Description of change requested:

Reason for change:

EFFECT OF CHANGE

Design products requiring updating

as a result of change: Estimated effort required:
1 days

2 days

3 days
Total estimated effort required: days

Total estimated cost: $
APPROVAL

Program Manager: Date:

Steering Committee (Chair): Date:

Appendix 11

Sample Statement of

Work (SOW) Between
Client and Vendor

Better Software Project Management: A Primer for Success. Marsha D. Lewin
© 2002 John Wiley & Sons, Inc.

Sample Statement of

Work (SOW) Between
Client and Vendor

This appendix is intended as an example of items to include in the
Statement of Work (SOW). Payment milestones should be noted on de-
liverables, to help in project monitoring. Tasks and dates will vary, of
course, according to the specific project. Items shown in italics are
variables for you to consider and complete.

Be sure to specify date of contract signing, customer name, and date
of this Statement of Work document. Add any other identifying infor-
mation, such as Client document number, that may help in identifying
payments and queries regarding this SOW.

KEY ASSUMPTIONS

The following key assumptions are included in this Statement of Work
(SOW).

1. Locations where the work will be performed.

2. Vendor will designate a Project Manager, who will be the pri-
mary contact for all communications with Client.

3. Client will assign at least one knowledgeable staff person from
project initiation, who will work with vendor staff for the dura-
tion of the project. The Client personnel assigned to this project

Better Software Project Management: A Primer for Success. Marsha D. Lewin 199
© 2002 John Wiley & Sons, Inc.

200

SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

will have the technical/functional/accounting skills necessary to
participate in the project.

. All work is predicated on Vendor’s proposal dated 5-01-2001 as

submitted to Client. Specify agreements, such as vendor agree-
ment with Client, approved specifications, and approved State-
ment of Work, and sequence of documents, so you know which
supersedes and overrides the Proposal, in case a discrepancy in
functionality or work to be accomplished occurs. For example,
the order of precedence for these documents is that the Vendor
Agreement supersedes all other agreements, then the Functional
Specifications Document(s), then the Statement of Work and
then the Proposal.

. Any changes to the scope of the project or equipment to be de-

livered will be managed through the Change Order Procedure.
The Change Order Procedure is described in Section 2 of this
document.

. Both parties agree to a reciprocal 48-hour turnaround for response

to most business or technical issues. Both parties agree to a recip-
rocal 96-hour turnaround for response to business or technical is-
sues of a more complex nature.

VENDOR

Vendor will perform the following tasks for Client in accordance with
the terms and conditions of the contract:

. Vendor will provide project leadership services for the tasks in

this Statement of Work.

. Vendor will appoint a Project Manager, who will have explicit

responsibility for the administration and technical direction of
Vendor’s activities. Project leadership duties include:

* Responsibility for communications with Client

« Establishment and administration of project leadership
procedures

* Development and implementation of project work plans

* Measurement and evaluation of project progress against proj-
ect work plans, budgets, and schedules

* Report progress of project tasks

CHANGE ORDER PROCEDURE 201

» Documentation, maintenance, and update of project issues
and their status

TABLE OF CONTENTS

I Timeline 201
2 Change Order Procedure 201
3 System Overview 202
4 Initial Site Visit (Delivery, Installation,
and Configuration)—Payment Milestone 202
5 Statementof Work 203
6 Inventory and Needs Analysis 204
7 Table Input (Application Software)—Payment Milestone . 205
8 Data Input (Application Software)—Payment Milestone . . 206
9 Data Migration—Payment Milestone 206
10 Provide System Training—Payment Milestone 207
11 Conduct Pilot Test (Application Software)—
Payment Milestone, .. 208
12 Vendor System Name “Live” (Software
Modification)—Payment Milestone 209
13 System Acceptance (Design Services)—
Payment Milestone 210
14 Annual Maintenance—Payment Milestone 211
1. TIMELINE

The tasks outlined in this Statement of Work are expected to be finished
on or before the dates shown in the project schedule of 7-25-2001.

2. CHANGE ORDER PROCEDURE

The Change Order Procedure applies to all changes to the Agreement
dated 6-10-2001 and signed 7-10-2001, the approved Functional Spec-
ification Document(s), the approved Statement of Work, and all Change
Orders. The Change Order Procedure is defined as follows:

Any extension or amendment to the Agreement, the Functional Specifi-
cation Document(s), or the Statement of Work will require both parties to
mutually agree to extend or amend these agreements to cover the changed
obligations, terms, and conditions. Change orders that are above the
amounts allocated for software modification or development, or that alter
the scope or the total Agreement amount, will be handled by Vendor as a

202 SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

separate change order request. Client shall have the right to request that
Vendor make modifications, changes, or additions to the program mate-
rials. If so requested, Vendor shall evaluate such change order request to
determine whether such modification, change, or addition can be pro-
vided. All such requests and responses shall be in writing. If Vendor de-
termines that it can provide such modification, change, or addition, Ven-
dor shall prepare a formal change order proposal describing such
modification, change, or addition, setting forth any additional charges, ef-
forts required, an estimated time for completion, and any impact upon the
existing time schedules. In the event Client desires to alter the scope of
work relating to any change order once it is executed by both parties, an
additional change order must be executed between Client and Vendor pur-
suant to the above procedure. With respect to correspondence and ap-
provals of change requests, each party shall have thirty (30) working days
to respond to the other, with the exception of complex specifications,
which by their nature may require more time.

3. SYSTEM OVERVIEW

In this section, place a brief but complete overview of the system be-
ing delivered to the Client.

4. INITIAL SITE VISIT (DELIVERY, INSTALLATION AND
CONFIGURATION)—PAYMENT MILESTONE PAYMENT:
($2,000)

Description

This is the first site meeting between the Client representative(s) and
the Vendor Project Manager; it includes:

1.
2.

Review of application software and interfaces

Review of current policies and procedures related to specify ap-
plication functions

Identification and documentation of questions, issues, and/or
mutual concerns

Roles/Responsibilities
Client:

1.
2.
3.

Provide access to central server system.
Provide network administrator to assist in the installation.
Decide which Client desktops need the application.

STATEMENT OF WORK 203

Vendor:

1. Install the application software on the central server.
2. Configure individual desktops for running the program.
3. Ensure program runs on all desktops.

Deliverable(s)

1. Application files and one CD-ROM with the application for In-
formation Systems Department

Completion Criteria

1. The task will be completed when the application is loaded and
functional on the server and individual desktops in the Client
offices.

2. Client will sign off that application is functional.

5. STATEMENT OF WORK

Task Description

The Statement of Work (SOW) is a chronological list of project mile-
stone steps, and is the mutual plan that the project is expected to fol-
low. The SOW will have a Task Description, Roles/Responsibilities,
Deliverable(s), and Completion Criteria for each payment milestone
and other major tasks.

Roles/Responsibilities
Client:

1. Provide an authorized representative for the review.
2. Review the SOW, and approve, or make, changes.

Vendor:

1. Facilitate the SOW review.
2. Provide SOW draft for review.
3. Secure approval or document changes required.

204

SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

Deliverable(s)

1.

The approved SOW and two signed original approval documents.

Completion Criteria

L.

This task will be complete when the Client and Vendor approve
the SOW.

6. INVENTORY AND NEEDS ANALYSIS

Task Description

Collect data on department procedures and practices before beginning
input of program reference tables. Collect relevant reports for com-
parison to existing program standards.

Roles/Responsibilities
Client:

1.

4.

Provide departmental procedures manual or relevant documents
relating to agreement management procedures.

Allow access to current agreement management system.

Allow access to departmental personnel responsible for agree-
ment management and accounting.

Compile current reporting tools for agreement management.

Vendor:

L.

Compile all procedures needed for software application
management.

Review and compare existing agreement management applica-
tion to data migration information.

. Compile relevant reports and compare to vendor product name

system tools.

Deliverable(s)

L.

2.

3.

Client will deliver necessary reports for inclusion into the ven-
dor product name system.

Client will compile any necessary procedural manuals related to
agreements.

Vendor will provide any necessary enhancements to reports as
needed in the vendor product name system.

TABLE INPUT (APPLICATION SOFTWARE)—PAYMENT MILESTONE 205

4. Vendor will provide a report summarizing any reports being en-
hanced or other changes being made.

Completion Criteria

1. The task will be completed following the kick-off meeting and
remittance of a report containing an analysis of Client’s current
reports and procedures during the first meeting.

7. TABLE INPUT (APPLICATION SOFTWARE)—PAYMENT
MILESTONE (PAYMENT = $83,750)
Task Description

Review relevant abstract agreement data with specify appropriate de-
partmental or class of personnel in order to begin inputting specify
data type. Train personnel to input into Reference/System tables.

Roles/Responsibilities
Client:

1. Define Client responsibilities to prepare the data.
2. Specify any sequences of activities required.

Vendor:

1. Work closely in define assisting tasks here.
2. Specify any validation services.
3. Work with personnel to inventory system variables.

Deliverable(s)

1. Client will complete all input of specify tables and any sequences
of activities.
2. Ensure reference/system tables are complete.

Completion Criteria

1. All specify number and types of tables are complete and correct.
2. Vendor submits a sign-off that tables are complete and correct.

206 SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

8. DATA INPUT (APPLICATION SOFTWARE)—PAYMENT
MILESTONE (PAYMENT = $21,250)

This is similar to previous task in nature, but specifies any input data.
Task Description
Input of specify data required.
Roles/Responsibilities
Client:

1. Input of specify approximate number of datasets and ancillary
information.

2. Input of approximate number of historical datasets.
3. Generate sample test data and validation information.

Vendor:

1. Assist in inputting dataset information by remote viewing and
periodic on-site evaluation.

2. Assist in inputting specify other information (specify approxi-
mate number of items) by remote viewing and periodic on-site
evaluation.

3. Assist and train for one month specify testdata generation.

Deliverable(s)

1. Vendor will train in specify areas for training.

2. Vendor will review specify datasets for errors and completeness.

3. Vendor will submit periodic progress reports, indicating what has
been, and what remains to be, completed.

Completion Criteria

1. All specified number and types of data are inputted and complete.

2. Progress report submitted stating that all have been completed
and verified.

9. DATA MIGRATION—PAYMENT MILESTONE (PAYMENT =
$10,000)

Task Description

Data migration of specify types of data into specify name of system.

PROVIDE SYSTEM TRAINING—PAYMENT MILESTONE PAYMENT 207

Roles/Responsibilities
Client:

1. Provide access to specify any systems to which access is required
to perform task.

Vendor:

1. Migrate specify datasets, with any qualifications, such as num-
ber of fields, number of months, or years of historical data.

Deliverable(s)

1. Specify dataset name migration of data.
2. Report summarizing data migration process and activity.

Completion Criteria

1. Specify dataset to be verified as complete.
2. Sign-off by Client that information has been successfully migrated.

10. PROVIDE SYSTEM TRAINING—(PAYMENT MILESTONE
PAYMENT 4 @ $3,500 = $14,000 [SEE DELIVERABLES
SECTION FOR BREAKOUT])

Task Description

The purpose of this task is to provide operational training for the vendor
system name users and the system administrators. If you are having “train
the trainer” training, follow that theme throughout the items in this task.

Roles/Responsibilities
Client:

1. Schedule the users.
2. Provide a list of the users of Vendor’s system.

3. Provide facilities and basic equipment (chairs, desks, computers,
etc.) for the end-user training sessions.

Vendor:

1. Conduct end-user training. Specify the length of time in days and
hours per session that the training will require, the maximum

208 SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

number of students per session, and any specifications for class-
rooms and/or materials reproduction.

2. Conduct system administrator training. Specify the length of time
in days and hours per session that the training will require, the
maximum number of students per session, and any specifications
for classrooms and/or materials reproduction.

3. Provide copy of syllabus and agenda. Specify any time require-
ments in advance of training for distribution to attendees.

4. Provide one copy of the end-user training manual for each user
to be trained (10 maximum) and one copy in PDF format or any
other materials reproduction needs.

Deliverable(s)
1. Provide training on program operation at initial installation of
program (payment = $3,500).
2. Provide training on specify datasets and tables input (payment =
$3,500).
3. Provide training on specify functionality process (payment =
$3,500).

4. Provide final training and user manuals to all end users and sys-
tem administrators (payment = $3,500).

Completion Criteria

Each task will be complete when the associated deliverable is deliv-
ered to Client.

11. CONDUCT PILOT TEST (APPLICATION SOFTWARE)—
PAYMENT MILESTONE (PAYMENT = $20,000)
Task Description

Test specify the items that constitute a systems test, including the length
of time system must be run, and any specific functionality to be demon-
strated. This includes prior development of a written test plan and agree-
ment between the parties as to the types and levels of test and acceptance.

Roles and Responsibilities
Client:

1. Select test environment data in conjunction with Vendor.
2. Provide test and acceptance criteria in conjunction with Vendor.

VENDOR SYSTEM NAME “LIVE” (SOFTWARE MODIFICATION)—PAYMENT MILESTONE =~ 209

3. Conduct test scenarios in conjunction with Vendor for: specify
each criterion and/function to be tested.

4. Evaluate pilot test in conjunction with Vendor.
5. Review test plan.

Vendor:

1. Provide assistance in processing test and acceptance criteria in
conjunction with Client.

2. Provide test and acceptance criteria in conjunction with- Client.

3. Make modifications as needed in conjunction with Vendor.

4. Write test plan.

Deliverable(s)

1. Written test and acceptance plan.
2. Processing pilot test without errors.
3. Client approval of test plan.

Completion Criteria for Pilot Test

1. Vendor signed approval of pilot testing completion.

12. VENDOR SYSTEM NAME “LIVE” (SOFTWARE
MODIFICATION)—PAYMENT MILESTONE
(PAYMENT = $30,000)

Task Description

The purpose of this task is to “advance” the Client from the testing en-
vironment to the “live” environment. The “live” environment will en-
able Vendor to evaluate the structure of the system and make changes
as necessary.

Roles/Responsibilities
Client:

1. Provide authorized representative for review and acceptance of
the installation.

2. Provide formal list of remaining issues before base system
acceptance.

210 SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

Vendor:

1. Monitor testing environment for any necessary changes.
2. Test system data.
3. Evaluate and correct bug fixes and any change orders.

Deliverable(s)

1. Base system installed and fully operational.
2. Report summarizing all changes made, plus approvals.

Completion Criteria

1. The base vendor system is installed and operating on the central
file server(s).

The Client applications are installed and operating.
Client has begun “live” data entry.

Changes report is submitted.

Sign-off by Client.

kWD

13. SYSTEM ACCEPTANCE (DESIGN SERVICES)—
PAYMENT MILESTONE (PAYMENT = $15,000)

Task Description

The purpose of this task is to demonstrate to Client that the Vendor sys-
tem will meet or exceed the requirements of the contract, during a 30-day
period. Acceptance of all tests and program operations will be finalized.

Roles/Responsibilities
Client:

1. Utilize the specify vendor’s system name system.
2. Review and accept the acceptance test plan.

3. Report any discrepancies to Vendor for corrections.
4. Assist in the resolution of any issues.

Vendor:

1. Review and accept the acceptance test plan.

2. Correct any reported program problems within a time period mu-
tually acceptable to both parties.

ANNUAL MAINTENANCE—PAYMENT MILESTONE 211

3. Maintain support communication with Client to ensure proper
operation of system for the life of the program.

Deliverable(s)

1. Accepted acceptance test plan.
2. Report summarizing results of testing against acceptance criteria.

Completion Criteria

1. This task will begin immediately after the completion of the
prior going-“live” task, and will be complete after (30) consecu-
tive calendar days, during which the software will function per
the contract and RFP specifications.

2. Delivery of acceptance test report, summarizing any changes,
problems, and their resolutions.

3. Sign-off by Client of acceptance against acceptance plan.

14. ANNUAL MAINTENANCE—PAYMENT MILESTONE
(PAYMENT = 3 @ $18,000)

Task Description

Provide annual maintenance of Vendor program, including any up-
grades and version changes throughout the periods specified. Also in-
cluded are program user manual changes and any necessary changes
to operate the system within the parameters of the proposal.

Roles/Responsibilities

Client:

1. Utilize the Vendor’s system.

2. Maintain the system as instructed by the User’s Manual.
3. No custom changes made by the Client.

4. Assist in the resolution of any issues.

Vendor:

1. Provide upgrades and version changes with CD installations.
2. Correct any reported program problems within a time period mu-
tually acceptable to both parties.

212 SAMPLE STATEMENT OF WORK (SOW) BETWEEN CLIENT AND VENDOR

3. Maintain support communication with Client to ensure proper
operation of system name for the life of the program.

Deliverable(s)

This section should specify the length of time and any deliverable dur-
ing paid maintenance that the client can reasonably anticipate, ac-
cording to Vendor policy. Media, frequency, and any limitations or re-
strictions should be specified. For example:

Year 1

1. Provide upgrade/custom and/or version changes with one CD de-
livered to Client.

2. Provide one color copy and one copy in PDF format of User’s
Manual changes with every version change.

Completion Criteria

1. Client is fully operational with upgrade/custom and/or version
changes for each period described in Deliverables section.

Appendix 111

Strengths, Weaknesses,
Opportunities, and

Threats (SWOT) Analysis

Better Software Project Management: A Primer for Success. Marsha D. Lewin
© 2002 John Wiley & Sons, Inc.

Strengths, Weaknesses,
Opportunities, and

Threats (SWOT) Analysis

The purpose of a strengths, weaknesses, opportunities, and threats
(SWOT) analysis is to identify strategies to implement that may in-
crease your chances of success. This is accomplished by listing the in-
ternal and external positive and negative factors affecting the situation.
By subsequently identifying strategies for dealing with the negative
factors, and for maximizing the positive, you increase your chances for
a positive outcome. You can avoid getting into situations where nega-
tive factors predominate, and your chances of succeeding are small,
and can make better use of resources that might otherwise be wasted.

To accomplish a SWOT analysis, make a four-box grid in which to
classify attributes of a company or situation, such as investing effort in
preparing a proposal. The classifications are:

Strengths. The positive internal factors, such as a strong and loyal
labor force; strong brand-name recognition; innovative new prod-
uct development; large investment in research and development.

Weaknesses. The negative internal factors, such as poor financial
condition, new management, recent incomplete merger.

Opportunities. The positive external factors, such as strong buyer
relationships, industry position, advantageous government policy.

Threats. The negative external factors, such as market demograph-
ics, declining industry trends, technology trends in the industry,
adverse tax law changes, competitor activities.

Better Software Project Management: A Primer for Success. Marsha D. Lewin 215
© 2002 John Wiley & Sons, Inc.

216 SWOT ANALYSIS

Use the intersection to identify four sets of strategies to:

* Use your strengths to take advantage of identified external
opportunities.

* Use your strengths to overcome external threats.

* Overcome identified weaknesses, and take advantage of
opportunities.

* Minimize weaknesses and overcome threats.

Note that the same fact may be a weakness in some situations, while
being a definite strength in others.

Glossary

Acceptance Test Typically, the final test on software, which, when
successful, indicates completion of the software implementation and
reckoning of payments due the developer (or implementor).

Activity A single task of work within a project.

ADM (Arrow Diagramming Method) A method of network dia-
gramming wherein the arrows represent the activities, which are
linked in a precedence relationship.

Agreement A contract between two or more parties to deliver a prod-
uct or service. In government, an agreement is often used for a ser-
vice-delivery contract, while a contract applies to product delivery.

Application Software Software designed for a particular departmen-
tal or functional purpose, for example, word processing or accounting.

Architecture The high-level systems design; that is, the allocation of
basic functions across applications, systems software, networks, and
hardware.

Bar Chart A scheduling representation where the time span of each
activity is shown as a horizontal line, the ends of which correspond
to the start and completion of each activity.

Baseline A standard by which things are compared. In a schedule,
for example, the baseline would be the first published schedule; as
it’s updated over time, consecutive schedule iterations would be

Better Software Project Management: A Primer for Success. Marsha D. Lewin 217
© 2002 John Wiley & Sons, Inc.

218 GLOSSARY

compared to the original (baseline) to determine how much behind
or ahead of schedule the project truly is.

Bean Count A numeric count of the numbers of items in predefined
categories that have project importance and implications. The actual
detail is not included, however, merely the total of such item:s.

Brief A (usually) written document summarizing the pertinent infor-
mation, issues, and decision desired, generally for decision making
by the recipient.

Browser A program that.accesses and displays information available
on the World Wide Web. The most common browsers are Netscape
and Internet Explorer.

Burden As in burdened labor rate: The percentage added to actual
hourly labor rates in an enterprise, to accommodate the contribution
made to overhead and/or administrative costs.

Business Need A requirement that is intrinsic to the existence of an
enterprise. For example, a restaurant would need to keep track of its
food usage, so that it might price its menu appropriately. A non-
business need would be to have the menu printed in blue because
it’s a pretty color. Typically, systems are best when they satisfy busi-
ness rather than personal needs.

Change Control The process by which changes to existing or
planned software may be recommended, approved, and implemented
to software throughout its life.

Change Order A document reflecting recommended and approved
changes to existing or planned software, indicating the benefits, re-
sources required to implement, schedule, and costs of the change.

Citrix A company whose technology provides access to server-based
applications over networks, client devices, and platforms. The appli-
cations are executed on the server, so that the network traffic is re-
duced, and higher application performance is generally achievable.

Client/Server A network configuration where a computer (server)
provides services, such as file access, e-mail routing, or sharing of
peripherals, to other computers on the networks (clients). “Fat”
clients tend to have lots of programs and data on them, while “thin”
clients rely on storage at the server.

COBOL CO(mmon) B(usiness) O(riented) L(anguage) A pro-
gramming language used for business applications. Used exten-
sively during the days of larger computers, it defined procedures,
unlike modern languages, which are object-oriented.

GLOSSARY 219

Constraint Something that limits choice of action. In the project
management sense, it indicates a restriction in the choices we can
make in the areas of costs, schedule, software quality, and risk.

Contingency An amount of resource (time, money, or design mar-
gin) inserted into the respective plan (schedule, budget, or perfor-
mance) to accommodate unexpected occurrences during the project.

Contract Formally documented agreement of parties, specifying
the terms and conditions that serve as proof of the obligation be-
tween them.

Cost Plus Fixed Fee (CPFF) A contractual form of arrangement
whereby the customer reimburses the contractor’s actual costs and
pays a negotiated fee over and above the costs.

Cost Plus Incentive Fee (CPIF) A contractual form of arrangement
whereby the customer reimburses the contractor’s actual costs and
pays a fee based upon a specified result, such as timely delivery.

COTS (Consumer, Off-the-Shelf) Pre-packaged software, some-
times called “shrink-wrapped” because of its packaging.

CPM (Critical Path Method) A network diagram in which activi-
ties are arranged with precedence. The CPM identifies where the
schedule has the least amount of flexibility.

Critical Path In a network diagram, the longest path from start to
finish, or the path without any slack. This is the path representing
the shortest time in which the project can be completed.

Design Freeze The point in a project when no more changes can be
made to the design without approval by the change control board af-
ter going through the change control approval process.

Drill Down The process of passing through successive layers of in-
formation to arrive at the detail necessary to support or explain a
higher level of abstraction or summary data.

Dummy Activity An activity that takes no time or resource but is
needed for representational purposes, such as connecting activities
to indicate a precedence condition.

Earned Value Analysis A performance measurement method that
compares the anticipated schedule and budget against the percent-
age of total budget and percentage of work actually completed, to
determine variances from the plan.

Evaluation Matrix A method of comparing products or services ac-
cording to predetermined prioritized and quantified ratings, to de-
termine the most appropriate candidate.

220 GLOSSARY

Executive Committee (or Executive Steering Committee) A sub-
set of the senior executives in an enterprise who are responsible for
making the policy decisions on a program or large project level.

Firewall A security scheme that prevents unauthorized users from
penetrating a computer network.

Fixed Price A contractual form in which price and fee are predeter-
mined, regardless of the amount of effort and/or cost actually incurred.

Formula-IT The Enterprise Systems Strategy and Implementation
Methodology, designed by James E. Kennedy, and used in this book
to demonstrate how project management and methodology interre-
late. Further information may be obtained by contacting Mr.
Kennedy at www.FormulalT.com

FTP (File Transfer Protocol) A communications protocol governing
the transfer of files from one computer to another over a network.

G&A (General & Administrative) Expenses The amount of bur-
den added to labor rates, to reflect the costs incurred for supporting
the department, division, or service. There are many formulae for
calculating the G&A in enterprises.

Gantt Chart A bar chart named for H. L. Gantt, the industrial engi-
neer who popularized them during World War 1.

GroupWise Novell Corporation’s e-mail, calendaring, and contact
management software product.

Hardware Tangible computer and the associated physical equipment
enabling the performance of data-processing or communications
functions.

Integration The process of combining subsystems, so that they have
a uniform presentation to the user or to other software/hardware
components of a system. Typically, the goal of integration is to pro-
duce a seamless interface to a user.

Interface As a verb, the way in which systems, their hardware and/or
software components, and/or people communicate or interact with
one another. As a noun, the point at which any of the components
interact with another, such as when a user uses a system.

Internet The worldwide network of computer networks using the
TCP/IP network protocol.

Intranet A private internal computer network accessible only by au-
thorized persons, typically members of the organization that owns
it. An intranet is separate from a company’s Internet site, although
it uses the same browser software to view data on the intranet.

GLOSSARY 221

ISO 2000 The standard for quality software development and inter-
face as agreed to by the International Organization for Standards
(ISO), a worldwide federation of more than 130 national standards
bodies. ISO 2000 replaces the prior series, ISO 9000, into a single
standard for both quality management and quality assurance.

Issues List (Active, Closed) A list of issues affecting a project that
require timely resolution between parties prior to completion.

Lessons Learned A review or document whose purpose is to sum-
marize the experience of a project with things to do or not do in sub-
sequent projects.

Life Cycle In software project management, successive stages in the
building of software from concept to completion.

Maintenance The last stage in the software life cycle, during which
software may be modified after delivery and acceptance, to improve
it, adapt to it changed requirements or environment, or fix bugs that
were not found earlier.

Methodology A way of building or delivering software, usually
based upon a model, such as life cycle or Waterfall; definition of the
technical steps to develop or build the software.

Milestone A significant measurable event in a project, typically the
completion of an activity.

MIS (Management Information Systems) Also called IT (infor-
mation technology) or IS (information systems). Typically, the or-
ganizational department or division responsible for implementation
and maintenance of the hardware, software, and network resources
of an enterprise.

Network A system of computers interconnected to share informa-
tion. Networks can be LANs (local area networks, typically internal
to a department or building, which can be hard-wired) or WANs
(wide area networks, which generally use telephone lines, satellite
dishes, or radio waves to cover a larger area than a LAN does).

Network Diagram Scheduling tools comprising diagrams that show
precedent conditions and sequential constraints for each activity,
laid out over time. Common types are PERT, PDM, and ADM.

NT Microsoft’s operating system, both server- and client-based.

Object-Oriented Programming Contemporary language/technique
that looks at data structures (objects) that have an allowable set of

procedures (methods) that can be performed on the object(s) within
a given class. This approach, compared to the procedural approach

222 GLOSSARY

of earlier languages, defines the interfaces between objects tightly,
which requires only that the interfaces remain constant, and allows
the internal code to be changed.

Obligated Funds Also called committed or encumbered funds, these
are the monies already contracted for. Their dollar amounts reflect
purchase orders, agreements, and contracts with other individuals
and organizations to pay money at some future time.

Oracle A worldwide provider of business-to-business software and
services, which include Internet-enabled database, tools, and applica-
tion products, along with education, consulting, and support services.

Organization Chart A hierarchical diagram representing the lines
of authority and responsibility within an organization, such as a
project.

Outsource The process of contracting with an external organization
to provide services for all or some portion of a task that can be per-
formed internally.

Parametric Cost Estimating A method of estimating using relevant
historical data to generate the estimate for a (future) project.

PCAnywhere A software product from Symantec that enables a
computer to remotely access other computers’ files to perform re-
mote troubleshooting and help desk support over a network, and to
access information.

PDM (Precedence Diagramming Method) A form of network dia-
gramming wherein activities are represented on the nodes, which
are linked in a precedence relationship.

Pentium Intel’s name for its PC chip. The successor to its 80846
chip, it has been called, to date, the Pentium, Pentium II, and Pen-
tium III chips, respectively, to represent faster speeds.

PERT (Program Evaluation and Review Technique) A form of
network diagram wherein events are shown as nodes, and connect-
ing arrows indicate the precedence constraints.

Private Sector Generally used to refer to nongovernmental businesses.

Program Multiple projects loosely related by common funding,
goals, location, and/or sponsorship, and coordinated. Also refers to
software, as in a set of software instructions causing specific func-
tions to be performed in given situations.

Progress Report A report summarizing achievements during a spe-
cific time period against preagreed goals, schedule, and budget.

GLOSSARY 223

Project An organized undertaking using human and physical re-
sources, performed once, to accomplish a specific goal.

Project Plan Defines the way in which the project will achieve its
objectives, using resources, satisfying schedule, goals, performance,
risk, and cost constraints; defines how the statement of work will be
accomplished. Defines the entire plan for the project, but sometimes
is taken only to mean the network diagram.

Proposal A document, often in response to an RFP, submitted to a
prospective customer by an organization describing the work the or-
ganization offers to do for the prospective customer.

Protocol The rules regarding the formats, sequences, and rules for
transferring data between computers. Standard communications
protocols include TCP/IP and SNA, for example.

Prototyping The evolutionary delivery of software, allowing user in-
volvement in the design of the software. The user’s ability to model
pieces of the software during the design can often improve the ca-
pability of the delivered product to meet user expectations.

Public Sector Typically refers to governmental and quasi-
governmental agencies, as opposed to private or nongovernmental
organizations.

Punch List List of items remaining to be done before a project can
be considered totally complete.

Quadruple Constraint Expands upon Milton D. Rosenau, Jr.’s Triple
Constraint construct by adding risk to the other three objectives a
project must satisfy: budget, schedule, and performance.

R&D (Research & Development) An effort whose primary goal is
to learn, rather than to develop a finished product to bring to mar-
ket. The results of an R&D project, however, may be incorporated
later in the subsequent product development.

Rapid Application Development (RAD) A software development
methodology wherein design continues throughout the project. Par-
ticularly well-suited for heavy user involvement.

RFP (Request for Proposal) A document issued by an organization
defining work to be done, and requesting the submission of re-
sponding proposals in a specified format. The proposals are then
evaluated against one another, and the most suitable, based upon the
selection criteria delineated in the RFP, is selected.

RFQ (Request for Qualifications) Similar to an RFP, but qualifica-
tions are asked for. A slate of candidates satisfying the necessary

224 GLOSSARY

qualifications may then receive RFPs. Also, RFQ (Request for
Quotation) Similar to an RFP, except that the desired procure-
ment is for stock items or products. In this case, only price and de-
livery time need to be responded to.

Risk Any threat to the achievement of project completion according
to the project plan.

Risk Management Overseeing the threats to the successful project
completion such that these threats are minimized and the Quadruple
Constraint is not affected adversely.

Roll Up Typically done on a program level, this involves consoli-
dating multiple project schedules to show an overall program-level
schedule. Costs may likewise be “rolled up.”

Scope The extent covered by the project, typically in terms of time,
general functionality, and to whom provided.

SLA (Service-Level Agreement) An agreement between two orga-
nizations, or departments within an organization, to assume speci-
fied responsibilities, and to deliver specified services according to
specified measurable performance criteria.

SME (Subject Matter Expert) A project participant used in a lim-
ited capacity for his or her expertise in a specified area, such as a
software product, network configuration, and so on.

SNA (Systems Network Architecture) An IBM-developed commu-
nications protocol that ties mainframes together. Developed in the
1970s to provide reliable communications capabilities, SNA works
with centrally managed devices rather than remote devices.

Software Project Management Management of the process of de-
veloping or delivering software (computer programs).

Sponsor The individual, department, or group funding the project,
and under whose aegis the project proceeds.

SQL Server A Microsoft relational database management system
(RDBMS) designed for client/server use and accessed by applica-
tions using SQL.

Staged Delivery Implementation of software in multiple stages. Al-
though the requirements and design are done for the entire system,
the software delivered is usable at each step.

Standards The accepted level used as a measure for developed or

GLOSSARY 225

delivered software, hardware, procedures, and so on. Standards may
exist at many levels—industry, enterprise, departmental.
Statement of Work (SOW) Description of the milestones, or pieces
of work, the project is to deliver, and when.
SWOT Analysis The process of identifying the strengths, weak-
nesses, opportunities, and threats relevant to a given situation to de-
termine future actions.

Systems Software The software or programs used to allocate sys-
temwide resources.

TCP/IP The standard protocol used to transmit data over networks,
and as the basis for Internet communications.

Time & Materials (T&M) A contractual form whereby the cus-
tomer pays the contractor for all time spent and for all materials
directly attributable to the project. A fee may be charged as a
percentage of all costs incurred if this has been negotiated before-
hand.

Triple Constraint The term originated by Milton D. Rosenau, Jr., to
describe the three key project objectives that must be simultane-
ously accomplished: performance specification, time schedule, and
monetary budget. This concept is further explored in his books on
project management, the most recent of which is Successful Project
Management (3rd edition, John Wiley & Sons, Inc., 1998). You can
also visit his Web site at www.RosenauConsulting.com

UNIX An operating system developed by Bell Labs, and adapted to
many different hardware platforms.

Virtual (Project) Team Group of individuals working on a project
but from different locations. They communicate, typically through
the Internet, as if they were collocated for project purposes and
management.

Work Breakdown Structure (WBS) A tree-shaped representation
of the work tasks necessary to accomplish project objectives.

Workstation Typically, desktop microcomputer designed for use by
a single person. Often used interchangeably with microcomputer,
although it generally is more powerful (in capabilities and process-
ing power) than a standalone microcomputer.

World Wide Web The interconnected sites (servers) and files (doc-

226 GLOSSARY

uments) on the Internet supporting the HyperText Transfer Protocol
(HTTP), which supports hypertext and multimedia.

Y2K (Year 2000) Commonly refers to the problems that were antic-
ipated to occur in older program code due to the millennium change,
and the risk of those older programs being unable to distinguish
19xx from 20xx because only two digits of date had been included
in the older databases or the code.

Bibliography

Bennatan, E. M. On Time, Within Budget, 2nd ed. New York: John Wiley & Sons, Inc.,
1992.

Frame, J. Davidson. Managing Projects in Organizations, revised ed. San Francisco:
Jossey-Bass, Inc., 1995.

. The New Project Management. San Francisco: Jossey-Bass, Inc., 1994.

Ginac, Frank P. Creating High-Performance Software Development Teams. Upper Sad-
dle River, NJ: Prentice Hall PTR, 2000.

Kemps, Robert R. Fundamentals of Project Performance Measurement. Mission Viejo,
CA: San Diego Publishing Company, for Humphreys & Associates, Inc., 1992.

Kennedy, James E. Formula-IT Methodology. At www.FormulalT.com, 1998.

King, David. Project Management Made Simple. Upper Saddle River, NJ: Prentice
Hall PTR, Yourdon Press Computing Series, 1992.

Lewin, Marsha D. The Overnight Consultant. New York: John Wiley & Sons, Inc., 1995.

. The Consultant’s Survival Guide. New York: John Wiley & Sons, Inc., 1997.

Lewin, Marsha D., and Rosenau, Milton D., Jr. Software Project Management: Step
by Step, 2nd ed. Los Angeles, CA: Marsha D. Lewin Associates, Inc., 1988.

Lowery, Gwen, and Ferrara, Rob. Managing Projects with Microsoft Project 98. New
York: John Wiley & Sons, Inc., 1998.

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft Press,
1998.

Ould, Martyn. Managing Software Quality and Business Risk. West Sussex, UK: John
Wiley & Sons, Inc., 1999.

Perry, William E. Effective Methods for Software Testing, 2nd ed. New York: John
Wiley & Sons, Inc., 2000.

Better Software Project Management: A Primer for Success. Marsha D. Lewin 227
© 2002 John Wiley & Sons, Inc.

228 BIBLIOGRAPHY

Project Management Institute. A Guide to the Project Management Body of Knowl-
edge, PMBOK Guide, 2000 Edition, Newtown Square, PA: Project Managment In-
stitute, 2000.

Redmill, Felix. Software Projects Evolutionary vs. Big-Bang Delivery. West Sussex,
UK: John Wiley & Sons, Inc., 1997.

Rosenau, Milton D., Jr. Successful Project Management, 3rd ed. New York: John
Wiley & Sons, Inc., 1995.

. (Editor). The PDMA Handbook of New Product Development. New York:

John Wiley & Sons, Inc., 1996.

. Managing the Development of New Products, New York: John Wiley & Sons,

Inc., 1993.

. Successful Product Development: Speeding from Opportunity to Profit. New
York: John Wiley & Sons, Inc., 1999.

Whitten, Neal. Managing Software Development Projects, 2nd ed. New York: John
Wiley & Sons, Inc., 1995.

ARTICLE

Lehman, DeWayne. “Senate: Y2K Fixes Worth the Billions Spent.” Computerworld
online, (March 1, 2000): (www.computerworld.com/cwi/story/0,1199, NAV47_
STO41669,00.html)

Acceptance, 27, 28, 208-209,
210211, 217

Activity, see Task

ADM, see Arrow Diagramming
Method

Agenda, 159, 161

Agreement, see Contract

Ambiguity, 28, 34, 44, 49, 94, 177

Analysis, 183

Architecture, 47, 217

Archiving, 172-173

Arrow Diagramming Method,
101-102, 217

Audit trail, 165-166, 169, 172

Authorization, 149, 169

Bar chart, 79, 97-99, 101-102,
103, 107, 187, 217, 220

Bean count, 151, 218

Brainstorming, 141

Briefing, 62, 6465, 152, 218

Browser, 62, 218, 220

Budgets, 8, 109, 113, 115, 155,
167

Index

Burden, 111, 218

Calendar, 109

Cash flow, 39, 89, 120-121, 157

Change control, 131, 165-169,
175, 186, 190, 218, 219

Change order, 85, 163, 164, 200,
201202, 218

Change request form, 196

Changes, 162-169

Checklists, 31, 63, 66, 95

Client/server, 47, 218

COBOL, 47, 138, 218

Commercial off-the-shelf, xii, 55,
219

Commitment, 135

Communication, 34, 135, 169

Completion, 27-28, 170-175

Conflict, 136

Constraints, 19, 31-33, 171, 219

Consultants, 19, 193

Contingency, 111, 121-123, 158,
219

Contract, 57, 67, 72, 77, 91, 167,
172, 217, 219

Better Software Project Management: A Primer for Success. Marsha D. Lewin 229

© 2002 John Wiley & Sons, Inc.

230 INDEX

Control, 143, 185
Conversion, 145
Cost:
accounting system, 118-119,
156
estimating, 38-39, 111, 113-118
hard, 112
problems, 3740, 116
reimbursable, 68-70, 219, 225
reports, 113, 157
COTS, see Commercial off the
Shelf
CPFF, see Cost Reimbursable
CPIF, see Cost Reimbursable
CPM, see Critical Path Method
Critical Path Method, 101-102,
105, 219

Defect, 94

Definition, 9, 55

Deliverable, 86, 93, 94, 99, 173,
186, 190, 192, 193, 196,
203-212

Design, 41, 48, 69, 162, 183

Design freeze, 165, 219

Design reviews, 161

Distributed, 47

Documentation, 54, 161, 167-168,
170, 172-173, 177, 200

Document management, 189-190

Document tree, 55

Dummy activity, 107, 219

Earned value, 157, 219

Empower, 136

Encumbrance, 155, 156, 222

Estimating, see Cost estimating
and time estimating

Evaluation, 73, 74, 75, 77, 129,
130, 219

Events, 124

Executive steering committee, see
Steering committee

Executive summary, 145, 146
Expectations, 52-53

FFP, see Fixed price

Firewall, 138-139, 220

Fixed price, 68-70, 109, 220

Float time, see Slack

Formula-IT, xv, xvi, 50, 83, 95,
170, 220

FP, see Fixed price

FTP, 220

G & A, see General &
Administrative

Gantt chart, see Bar chart

General & administrative, 118, 220

Implementation, 117, 161, 170,
183

Information systems, 38, 136, 221

Information technology, 51, 128,
133, 139, 167, 170, 221

Initiation, 170, 183

Integration, 40, 47, 80, 83, 95

Internet, 53, 58, 62, 70, 72, 80,
109, 138, 139, 220, 225, 226

Interview, 62, 73

Intranet, 139, 220

IS, see Information systems

ISO 2000, 221

Issues, 12, 13-17, 148-151, 172,
221

IT, see Information technology

Job descriptions, 181, 191-195

Kennedy, James E., xv, 220
Kickoff, 50

Labor rates, 110, 111, 117, 118

Leading, 19, 127-142

Legal, 71, 72

Lessons learned, 28, 136-137,
161, 174, 221

Letters of recommendation, 172
Leveling, resource, 121
Life cycle, 48, 49, 93, 221

Maintenance, 211-212, 221

Management reviews, 162

Matrix, evaluation, 73, 74, 75, 76

Meetings, 28, 46, 53, 129, 135,
140, 152, 159-162, 174

Methodology, 6-7, 40, 47, 48, 221

Microcomputer software, see
software

Microsoft Project, 61, 97, 107,
121, 187

Milestone, 6, 26, 99, 161, 165, 221

Milestone reviews, 152, 161

Modification, 209

Monitoring, 24, 27, 146, 167, 188

MS Project, see Microsoft Project

Murphy’s Law, 24, 169

Negotiations, 38, 67, 71
Network diagrams, 61, 79,
99-107, 221, 222

Not to exceed, 68
NTE, see Not to exceed

Obligated, see Encumbrance

Organization chart, 61, 222

Outsourcing, 11, 19, 73, 116-117,
131-133, 222

Overhead, 118-119

Parametric cost estimating, 115,
222

Payment, 112, 172

PDM, see Precedence
diagramming method

Percent complete, 156

Performance, 18, 42, 71, 149

Performance problems, 33-35

Periodic review, 159-161

INDEX 231

Personnel, 37
PERT, see Program evaluation and
review technique
Phase, 40, 43, 93, 161, 187
Pilot, 50, 208-209
Plan (The), 18, 146
Planning, 11
cost, 158
Platform, 47, 69, 81, 159
PMI, see Project Management
Institute
Politics, 51-52
Precedence diagramming method,
101-102, 222
Presentations, 21, 152, 159, 160
Program, 99, 145, 222
manager, 184-185, 188,
191-195
office, 128, 188, 194-195
Program evaluation and review
technique, 101-102, 222
Progress report, 145-147, 188, 223
Project:
Bible, 54-56
cost accounting system,
118-119
defined, xii, 223
documents, 172-173
life cycle, 6-7, 161
Management Institute, 91, 101
organization, 132, 134, 182,
184, 185
phase, 55, 93, 164
plan, 27, 60, 79, 90, 170,
181-196, 223
process, 9, 109, 187
reviews, 94, 159-162
small, 39, 44-47, 107, 141
software, see software
team, 22-23, 51, 70, 109,
128-130, 133-134, 137, 141,
161, 193-194
types, 44-45

232 INDEX

Proposal, 56, 57-77, 223

Prototype, 6, 49-50, 82, 165,
223

Punch list, 29, 223

Quantify, 11, 177, 178

Quadruple Constraint, xvi, 5, 11,
12, 19, 30, 32-33, 35, 41, 42,
43,71,79, 84, 131, 135, 143,
149, 162, 167, 168, 169, 170,
223

RAD, see Rapid application
development

R and D, see Research and
development

Rapid application development, 49,
223

Replanning, 24, 26, 141-142,
169

Reports, 18, 144-158

Request for proposal, 56-77,
165-166, 193, 211, 223

Requirements, 11, 40, 161, 165

Research and development, 65, 70,
223

Resource, 35, 36, 45, 52, 83, 115,
116, 119, 121

Resource leveling, 121

Review, 94, 159-162, 183, 186

Review phase 171, 174-175

RFP, see Request for proposal

Risk, 31-33, 39, 69, 71, 79,
81-83, 123-125, 224

problems, 40-41

Roll up, 152153, 224

Rosenau, Milton D., Jr., xv, xvi, 3,
101, 225

Schedule, 11, 181
Scope creep, 37
Security, 138

Service level agreement, 133,
224

SLA, see Service level agreement

Slack, 107, 108, 219

SME, see Subject matter expert

Sign-off, 210

Software, 173, 177, 183, 224

Software project management,
5-6

Source code, 66, 67, 72

SOW, see Statement of work

Specification, 34-35, 37, 42, 44

Spiral model, 48

Sponsor, 22, 23, 171, 175, 224

Staffing, 184

Staged delivery, 49, 224

Stages, 182—183

Standards, 95-97, 189, 194, 225

Statement of work, 28, 60, 91,
199-212, 225

Steering committee, 184—185,
186, 188, 189, 190, 191, 192,
220

Structured walk through, 162

Subject matter expert, 82-83, 123,
141, 224

Support team, 133, 134, 135

SWOT analysis, 59-60, 215-216,
225

Task, 92
Descriptions, 181, 183-184
sheet, 85, 8687, 88, 183, 187
Teams, see Project team
Technical reviews, 162
Testing, 40, 41, 47, 48, 83, 89,
143, 208-209
Time:
problems, 35-37
T & M, see cost reimbursable
Training, 130-131, 137-138, 167,
207-208

Triple Constraint, xvi, 3, 4, 5, 32,
81, 143, 170, 225
Turnaround, 200

Users, 22, 41, 110-111, 128, 129,
134, 141, 176

Variance, 158

Version control, 189-190

Virtual team, 70, 139-140,
225

INDEX 233

Waterfall model, 6-7, 93, 170, 221

WBS, see Work breakdown
structure

Work breakdown structure, 61, 79,
91-95, 112, 113, 161, 162, 225

Work order, 57

Workplan, 83-85, 90, 91

World Wide Web, see Internet

WWW, see Internet

Y2K, 4, 39, 47, 124, 226

