
Software Project
Management
For Small to Medium Sized
Projects

John J. Rakos
John J. Rakos & Associates Consultants Ltd.

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cateloging-in-Publieotio~~D~~trl

R~KOS, JOHN J.

Software project management for small to medium sized projects I
John J. Rakos.

p. cm.
Includes bibliographical references.
ISBN 0-13-826173-3 :
1. Compvtersafware-Development-Management. I. Tide.

QA76.76.ll47R3.5 1990 90-6745

005.1'068--dc20 CIP

Editoriallproduction supervision: MXIPublishir~g
Cover design: Wartda Lubekka
Manufacturing buyer: Margarer RizzilLori Bulwirz

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research and testing of the theories and programs to determine their effectiveness. The author and
publisher makeno warranty ofany kind, expressedorimplied, with regard to these programs or thedocumentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection wilh, or arising out of, the furnishing, performance, or use of these programs.

0 1990 by Prentice-Hall, Inc.
A Division of Simon & Schnster
Englewood Cliffs, New Jersey 07632

Trademark Information

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1

ISBN 0-L3-82bL73-3

Prenlice-Hall International (UK) Limited, Lorrdon
Prentice-Hall of Australia Pty. Limited, Sydrzey
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
PrenticeHall of India Private Limited, NewDelhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Lid., Sillgapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Jaireiro

All rights reserved. No part of this book may be DEC, CMS, MMS, SCA, P a , DTM, DECSPM, LSE,
reproduced, in any form or by any means, and DECDESIGNareregistered trademarks of Digital
without permission in writing fmm the publisher. Equipment Corporation. ORACLE is a registered

trademark of OracleCorporation. IBM, MVS, and VM
are registered trademarks of International Business
Machines Corporation. Cognos, PowerHouse, QUIZ,
QDESIGN, and PowerPlay are registered trademarks
of Cognos Incorporated. Exceleralor is a registered
trademark of Index Technologies Incorporated.
SUPERPROJECT is a registered trademark oE Com-
puter Associates International Incorporated. Har-
vard Project Manager is a registered trademark of
Software Publishing Incorporated. MICROSOFT
PROJECT is a registered trademark of Microsoft
Corporation. TIMELINE is a registered trademark of
Symantec Corporation. ARTEMIS is a registered
trademark of Metier Management Systems Incorpo-
rated. Project12 is a registered trademark of Project
Software and Development Incorporated. Primavera
is a registered trademarkof Primavera Systems Incor-
porated. PAC I, PAC II, PAC 111 and WINGS are
registered trademarks of AGS Management Systems
Incorporated. FOCUSis a registered trademarkof In-
formation Builders Incorporated.

Contents

PREFACE xvii

INTRODUCTION: YOUR PROJECT CAN SUCCEED 1

What Is a Project? 1

Project Size 2

Why Projects Fail 2
Failure at the Start, 2
Failure in the Development Stages. 2
Failure at the End, 4

Why Projects Succeed 5
Planning and Control 5
A Professional Approach 5

Part 1 The Methodology of Project Management

1 THE SEVEN PHASES OF PROJECT MANAGEMENT:
A CLEAN ORDERED APPROACH

1.1 Introduction 7

1.2 The Phases Table 7
1.3 The 'Building a House' Analogy for Software Projects 8

Comments on the House Analogy, I I

iv Contents

2 THE DEFINITION PHASE: UNDERSTANDING THE
USER'S PROBLEM

2.1 Introduction 12

2.2 The Requirements Document 13

Interviewing the User, 13
Contents of the Requirements Document, I4

2.3 The User's Responsibility 17

2.4 The Go/No-go Decision 18

Feasibilio Study, 18

2.5 Risk Management 18
The Dream World, I 9
Realities, 19
Disqualifying the Project due to the User or the

Project Team, 21
How to Say 'NO' When You Do Not Want to Do the

Project, 22
The Uncostable Factors That Ifluence the GolNo-go

Decision, 22
Project Go-ahead Checklist, 22

2.6 The Four Steps of Risk Management 23

Step I . Anticipating Risk, 23
Step 2. Elimi~t ing the Risk Where Possible, 27
Step 3. Reducing the Risk by Contingency Planning

and Pricing, 27
Step 4. Staying in Control When Things Go Wrong, 28

3 PROJECT PLANNING

Introduction 30

The Preliminary Project Plan (PPP) 3 1

Work Breakdown Structures (WBS) 31
The WBS Numbering System, 32
When Do You Stop?, 32

The Network Diagram 35
The Critical Path and Project Duration, 36

Calculating Project Cost 36

Project Schedule 37

Preliminary Project Plan Outline 38

Conclusions to Planning 40

Contents

4 PROPOSALS: THE FIRST BALL PARK ESTIMATE
AND SCHEDULE

4.1 Introduction to Proposals 42
Proposal War Stories, 42

4.2 The Two Phase Software Project Proposal 44
4.3 Writing a Proposal 45

Preparation, 45
Proposal Outline, 45

4.4 The Informal Proposal 48
4.5 Internal Proposal Approval 48
4.6 Presenting the Proposal 48
4.7 Conclusions to Proposals 49

5 NEGOTIATION AND CONTRACTS: THE LEGAL
ASPECTS

5.1 Negotiation 50
The Science and Art of Negotiating, 50
The Three Negotiables of a Project, 51
You Get What You Pay For, 51

5.2 Contracts 52
Items To BeContracted, 52
The Fixed Price (FP) Contract, 53
The Cost Plus (CP) Contract, 53
Terms and Conditions, 53
Contracts in an Outside Organization versus an Inside

Organization, 54

5.3 Reviewing the Returned Proposal 54
5.4 Conclusions to the Definition Phase 54

6 THE ANAL VSlS PHASE: DETAILING THE PROMISES
6.1 Introduction 56

Analysis War Stories, 57

6.2 The Yourdon Data-Flow/Bubble Chart Method
of Analysis 58
Defining the Users, 58
Defining the User lnte$aces, 59

6.3 The Functional Specifications (FS) 61
Outline of the FS, 61

vi Contents

6.4 Technical Writing for the Non-Technical Reader 65

6.5 Other Uses for the Functional Specification 65

6.6 CASE Software Tools for Analysis 66
6.7 Revising the Plan 68

Training P l m for the Project Team Members, 68

6.8 Conclusions to the Analysis Phase 68

7 THE DESIGN PHASE: HOW IT ALL WORKS

7.1 Introduction 70
Design War Story, 7 1

7.2 Structured Design 72
Top Down Design, 72
Bottom Up Design, 73

7.3 Top Level Design Tradeoffs 74
Design Priorities, 75

7.4 Design Walk-Throughs 75
7.5 Medium Level Design 76

Naming Conventions, 78
Numbering Conventions, 78

7.6 Design Dictionaries 78
Module Dictionaries, 78
The (Common) Data Dictionary (CDD), 79

7.7 Structured Modules, or How Far Do You Break It Up? 79
Leave Something for the Programmer, 80

7.8 File Design 80

Getting Real Performance, 80
Optimizing Files, 82
Optimizing a Variable Number of Items, 83
History Files, 83
Testing the File Design, 84

7.9 Relational Data Base Management System (RDBMS) 84
7.10 Benefits of Structured Analysis and Design 86

Reducing the Number of Initial Errors, 86

7.1 1 The Design Process 87

The Design Team, 87
The Design Meeting, 87

7.12 Technical Documentation 87

7.13 Standards 'Dictated' at Design Time 88

7.14 Outline of the Design Specification 89

7.15 Testing the Design 91

7.16 Changes to Requirements due to Design 91

7.17 Planning the Acceptance 91

8 THE ACCEPTANCE TEST PLAN: AGREEING TO AGREE

Introduction 93

The Trial Period or Parallel Run 93

Solution: A Thorough but Piecemeal Acceptance 94

Ensuring that All the Promises Are Tested 94

Using the Design 95

Writing the Tests 95
The Acceptance Test Plan Checklist 96

Conclusions to the Acceptance Test Plan 97

Conclusions to the Design Phase 97

9 THE PROGRAMMING PHASE: BUILDING THE PIECES

9.1 Introduction 99
Programming War Stories, 99

9.2 Pre-programming Checklist 101

9.3 The Programming Steps 101

Step 1. Plan the Integration, 101
Step 2. Design the Module, 101
Step 3. Walk-Through the Module Design, 104
Step 4. Plan How to Test the Module, 104
Step 5. Code Each Module, 105
Step 6. Test the Module, 105
Step 7. Test the Lowest Levels of Integration. 10.5
Step 8. Save the Resulls of All Tests; Submit Finished

Modules to Integration, 105
Step 9. Get Started on the User Documentation, 106

9.4 Programming CASE Tools 106

The Programming Language, 107
Language Sensitive Editor (LSEJ, 107
Debugger, I07

Contents

Code Management System (CMS), 107
Module Management System (MMS), 108
Test Manager (TM), 108

9.5 Copyrights 108

9.6 Conclusions to the Programming Phase 108

10 THE SYSTEM TEST PHASE: PUTING IT ALL
TOGETHER

10.1 Introduction 1 10
System Test War Story, 110

10.2 The System Test Plan 111
Contents of the STP, I I I
Getting Something Going as Quickly as Possible, 111
The Order of Integratwn. 112

10.3 System Test Tools 114

Code Management System (CMS), 114
Test Manager (TM), 114
Source Code Analyzer (SCA), 114
Performance Coverage Analyzer (PCA), I I5
Module Management System (MMS), I15

10.4 The Integration Process 1 15

10.5 Regression Testing 117

10.6 The Final, Thorough Test 117
The System Test, 11 7
The Case for an Independent Tester, 118

10.7 Conclusions to the System Test Phase 1 1 8

11 THE ACCEPTANCE TEST PHASE: DEMONSTRATION
TO THE USER AND (HOPEFULLY) PAYMENT

11.1 Introduction 120
Acceptance War Stories, 120

1 1.2 Acceptance Checklist 122

11.3 Running the Acceptance 122

11.4 Conclusions to the Acceptance Phase 123
A Success Story, 123

Contents ix

12 THE OPERATION PHASE: THE PROOF OF THE PUDDING 124

12.1 Introduction 124

Operation War Stories, 124

12.2 Providing Warranty 125

12.3 Selling the Next Project 125

12.4 Maintenance 125

12.5 Post Project Review 126

12.6 Operation Phase Checklist 126

12.7 Conclusions to the Operation Phase 126

12.8 Conclusion to Part 1 of the Book 127

Part 2 Practical Methods 128

13 ESTIMATING: THE WEAKEST LINK IN THE CHAIN 128

13.1 Introduction 128

13.2 Estimating Techniques 128

Use of Professional Judgement, 128
Use of History, 129
Use of Formulas, 129
Estimating Programming, 132
Complexity, 133
Productivity, 134
Example of Using Formula 1 , D=Cx (G+ J), 135

13.3 Estimating the Analysis Phase 136

An Example of Estimating Analysis, 138
Explanation, 139

13.4 Ratios 140

How to Use Ratios, 141

13.5 DEC (and Other Large Corporations) Estimating

Rule of Thumb 141

13.6 The Estimating Process 142

13.7 Conclusion to Estimating 144

14 SCHEDULING: PUTTING IT ALL ON THE CALENDAR 145

14.1 Introduction 145

Contents

14.2 The PERT Chart 146

The Critical Path, 146
Float or Slack, 147
The Critical Path May Change!, I47
Free Float and Total Float, 147
Dummy Activities, 148
Activify on Node or Precedence Network, 149

14.3 Resource Allocation 150
Allocating Human Resources, 151
Reducing(?) Task Duration by Adding Manpower, I52
Allocating 'Non-Human' Resources. I52

14.4 The Triple Const~aint 152
Crashing a Project, 152
Conclusions to Crashing a Project. I55

14.5 The Schedule or Gantt Chart 155

14.6 Focus on the Critical Path 158

Calculating the Critical Path, 158
Reducing the Risk on the Critical Path Items, I59

14.7 Conclusions to Scheduling 159

15 PROTOTYPING: WORKING WITH A MODEL FIRST

Introduction 161
Our Greatest Headache: Requirements, 161

The Theory Behind Prototyping 162
Would You Buy a Car from a Sales Brochure?, 162
Advantages of Prototyping, 162

The Prototyping Method 162
The Steps of Protofyping, I62

Systems that Benefit from Prototyping 163

Software for Protyping 163

What Must a Prototyping Sofhvare Package Provide?, 163
Protoiyping as Part of CASE, I65
How k t Should You Be Able to Prototype?, 165

Where Does Prototyping Fit into the Seven Phases? 166

Some Products to Look at 167

Excelerator as a Prototyping Tool, 167
Fourth Generation Languages as Prototyping Tools, 167

Conclusions 167

Contents xi

16 FOURTH GENERATION LANGUAGES: DEVELOPING
APPLICATIONS FIVE TIMES FASTER 169

16.1 Introduction 169
End-urer and Developer 4 G h , 170

16.2 Features of a Good 4GL, or How to Evaluate a 4GL 170
16.3 Developing an Application Using a 4GL-A Case Study 175

The Phases in a 4GL, 175
Developing the Requirements Definition, 175
Define WhaMnalysis, 176
Define Hou-Design, I77
Design the File Structure, 178
Design the User Interfaces (UI), 179
Build the First Protolype (Programming, System Test,

Acceptance of First Prototype), I81
Acceptance and Operation, 184

16.4 Team Organization and Responsibilities in a 4GL
Environment 184

16.5 Time Duration of the Phases when Using a 4GL 185
16.6 Converting a 3GL Oriented Company to a 4GL 185
16.7 Computer Aided Software Engineering 186

CASE from Start to Finish, 186
How a CASE Tool Works, I87
The Miracle of a 4GL Integrated with a Relational Data

Base Management System, 187
Choosing a CASE Tool, I87

16.8 Conclusions 188

17 PROJECT MANAGEMENT SOFTWARE: PLANNING
AND CONTROLLING WITH A COMPUTER 190

17.1 Introduction 190
17.2 Planning Tools 190

Data Input, 190
Work Breakdown Structure (WBS), 191
PERT, 192
Gantt, 193
Resource Planning Tools, 193
Cost Planning Tools, 194
Gaming (What If?), 195
Reports for Planning, 195

17.3 Controlling Tools 196

Gantt Chart as a Control Tool. 196
Cost Control and Earned Value (EVJ Reporting Tools, 197
Other Reports for Control, I98

17.4 How to Evaluate/Buy Project Management Software 198

User Intetface and Documentation, 198
Necessary Features, 198

17.5 Some Products to Look at 200

Personal Computer Products, 200
Minicomputer and Mainframe Products. 203
When to Use a Mini or Maigrame Rather than a PC, 206

17.6 Conclusions 207

Part 3 People

IS ORGANIZATION: WHO DOES WHATAND WHEN

Introduction 209
Organizing the Project Team 209
The Small to Medium Sized Project Team, 209
The Larger Project Team, 210
The Functional Project Organization. 210
The Matrix Project Organization, 212

The Role of the hoject Manager 212
Selling the Projecthfanager Job, 212
General Responsibililies of the Project Manager, 213
Specific Responsibilities of the PM in Each Phase, 213

The Role of the Project Leader 215
General Responsibilities of the Project Leader, 215
SpecBc Responsibilities of the PL in Each Phase, 215

Wearing Several Hats at One Time 216
Running Several Projects at Once 216
The Role of the Programmer 217

Responsibilities of the PM, PL and Programmer in a

4GL Environment 21 8
The Role of the Project Manager, 218
The Role of the Project Leader, 218
The Role of the Developer, 218

The Role of the Line or Functional Manager 219
The Role of the User 219
Conclusions 219

Contents

19 STAFFING: THE RIGHT PEOPLE FOR THE RIGHT TASK

19.1 Introduction 221

19.2 Choosing the Project Team Members 221
The Project Manager, 221
The Project Leader, 222
The Programmer, 222
The Guru Programmer, 223
The Junior Programmer, 223

19.3 Personalities 223

19.4 Assigning Tasks to Individuals 224

19.5 Motivating People and Further Reading 224

19.6 Conclusion 225

20 CONTROLLING THE PROJECT BY MONITORING:
MANAGEMENT BY EXCEPTION

20.1 Introduction 226

20.2 Project Monitoring 226

Monitoring by the Project Leadership (PM and PL), 226
Moniforing by the Upper Level Management, 227
Monitoring by the User, 228

20.3 Detecting and Solving Problems 228
Schedule Problems, 228
Budget Problems, 229
Forecasting Completion Date and Final Cost by Tracking

Earned Value. 229

20.4 Detecting and Solving Problems Up Front (Before
They Occur!) 232

20.5 Detecting and Solving Problems during Development 232

20.6 Detecting and Solving Problems towards the End 233

20.7 Conclusion 233

21 CONTROL USING MEETINGS, REVIEWSAND REPORTS:
COMMUNICATION WITH THE OUTSIDE WORLD

21.1 Introduction 235

21.2 The Status Meeting 235

Purpose and Attendees. 235
When to Hold a Status Meeting, 236

21.3 The Status Report 236

Contents

Purpose and Size, 236
Frequency of the Status Report (SR), 236
Contents of the Statur Report (SR), 237

21.4 Review Meetings 240
Technical (Plan, Design, Code, Test, Documentation)

Reviews, 240
Management Reviews, 241

21.5 Specific Meetings Held on Specific Occasions 241
The GolNo-go Decision Meeting, 241
The Project Kick-off Meeting, 241
The Project Planning (Estimating) Meeting, 242
The Function Specfication Signoff (Milestone) Meeting, 242
The Top Level Design (TLD) Walk-Through, 242
The Medium Level Design Walk-Through, 242
The End of System Design (Milestone) Meeting, 242
Module Design, Documentation and Test Plan
Walk-Through, 242
Code and User Documentation Walk-Through, 243
Acceptance Test Completion (Milestone) Meeting. 243
Operation Completion (Milestone) Meeting, 243
The Post Project Audit Meeting, 243
'Major Problem Cropped Up' Meeting, 244

21.6 Conclusions 244

22 SPECIAL PROJECTS: DOES THE METHOD STILL APPLY? 246

22.1 Introduction 246
22.2 Real Time hojects 246

Requirements, 246
Design, 247
Programming and System Test, 248
Acceptance and Operation, 249

22.3 Very Small hojects 249
Why Tiny Projects Fail, 249
Definiwn and Analysis, 250
Design, Programming, Test, 250
Acceptance, 250
Operation, 250

22.4 Conversions 250
Definition and Analysis, 251
Design, Programming, Test, 251
Operation, 251

22.5 Maintenance Projects 251

Contents

The Seven Phases for a Maintenance Project, 251
Doing Maintenance Along with Development, 252

22.6 Conclusion 252

23 CONCLUSION: IS ITALL WORTH IT?

23.1 Introduction 253
23.2 Can You Be a Good Project Manager? 253
23.3 The Future of Project Management 254

Software Tools, 254
Visibilily in the Organization, 254
Personal Growth, 254

23.4 Conclusions to the Conclusions 254
Applying All of This, 254

APPENDIX A CASE STUDY (AN EXAMPLE OF ALL
PROJECT DOCUMENTS)

Amalgamated Basketweaving Courses Software
and Hardware Project 255
Requirements Document 257
Preliminary Project Plan ABC Project 261

Proposal 269
Proposal for Amalgamated Basketweaving
Courses Ltd. 271

Functional Specification 275
Design Specification 283
Acceptance Test Plan 292

REFERENCES

INDEX

Preface

PURPOSE OF THIS BOOK

Many methods for Software Project Management have been invented and written
about. These methods were developed for large projects on mainframe computers
requiring at least one hundred person-years or more. With the advent of very powerful
mini and microcomputers, the average software project has become much smaller. But
when older methods are applied to small projects, they prove to be so cumbersome that
the cost of the management can exceed the cost of the development! The approach
presented in this book is best used on small to medium sized projects--ones that take
no longer than 15 person-years. This method has worked in Digital Equipment Corpo-
ration and elsewhere to produce some of the world's most successful mini and micro-
computer software. Those who have projects longer than 15 person-years will also find
the book useful since we will see how to break larger projects into small, manageable
pieces.

The development method that I will describe in this book uses the time-phased
approach, but the phases and especially the documentation are greatly simplified. The
approach focuses on planning and control. The book also emphasizes risk
management-knowing what can go wrong in a project and tempering estimates
accordingly.

ORGANIZATION OF THE BOOK

This text is divided into three parts:
Part 1 The Methodology of Project Management covers the phases and ac-

tivities involvedin building a project. Whether you are aproject manager, programmer,
or user, it is essential that you read this section, because the subsequent sections are
based on Part 1.

Part 2 Practical Methods covers the skills and tools required for projectman-
agement, especially for estimating and scheduling. Project management software
products that run on mini and micro computers will be described in Chapter 17. One
tool, which is becoming more and more popular for application design, prototyping and

xviii Preface

development is Fourth Generation Languages. Chapter 16 gives an example of how to
develop a project using a Fourth Generation Language.

Part 3 People describes the responsibilities of the individuals involved, how to
organize the project team, and how to keep your people motivated. Chapters 20 and 21
show how to control aproject with effective reports and meetings. We will also see how
to detect and solve problems as they arise.

Appendix A at the end of the book contains an example of all the documents that
have to be produced in the project. This example is used throughout the book as a case
study.

WAR STORIES
I have introduced some chapters with 'War Stories.' The stories provide you with real
life examples of common problems that can occur. The stories are based onreal events
in my experience, but the details have been changed so that no individual organization
can be recognized.

WHO ARE YOU?

The book is intended mainly for the Project Manager-the person responsible for
planning and controlling a project. Analysts, programmers and even users of software
will cnioy reading it as well, because they will see their role in the process. The book
is geniraily nontechnical, although we go into some depth on certain topics such as
Design and Programming. You can skip these chapters if you wish (the Introduction
will kll you if the chap& is technica1)because I &empteh to make every chapter as
stand-alone as possible.

TO THE TEACHER

This book is intended as a management text as well as a teaching text. It will prove to
be a valuable training tool for use in formal schools as well as for training internal to a
company.

There is anInstructor's Guide available to help teach this book. The guide provides
the answers to the end of chapter questions, andexplains how to run the group exercises,
most of which are related to producing the documents in the project. To order the
Instructor's Guide, please write or call. John J. Rakos & Assoc. Ltd., 14 Palsen St.,
Ottawa, ON, Canada K2G 2V8, Tel: (613) 727-1626.

ACKNOWLEDGEMENTS

I would like to acknowledge the helpful comments of David Reed, Digital Equipment
Corporation; Peny Kelly, Cognos Inc.; Ruth Ravenel, University of Colorado; Charles
Shubra, Indiana University of Pennsylvania.

ln troduction

Your Project Can Succeed

WHAT IS A PROJECT?

A project is any activity that results in a deliverable or a product. Those of us in the
computer field tend to t h i i of a project as a full application system comprised of many
program modules. But software projects vary in scope from the development of large
systems to the programming of a single module. Even a document resulting from a
feasibility study or analysis is a projcct. Conversions, benchmarks, or training courses
are projccts.

Projects always begin with a problem. Theuser approaches the project team with
a request to provide the solution to his or her problem. When a project is completed it
must be evaluated to determine whether four essential elements exist:

First, does the finished product actually solve the user's problem?
Second. was the user satisfied with the develooment urocess? The ~roduct as

delivered may be perfect, but if the uscr is unhappy wi;h the bocess of deveiopment or
method of delivery, he or shemay rejcct thcresults. Theuser must therefore be involved
with the process.

Third, was the project team's upper management satisfied with theproduct as well
as the process? They need to be informed about project progress, profit, and user and
team satisfaction.

Fourth, (and often overlooked), is the project team satisfied? If it was an external
project (formally contracted), the project team must get paid. If the project was for an
internal department, the project team mcmbers must get olher forms of payment: they
may get a raise, a promotion or other type of reward. The team must feel that they have
learned from the experience.

Introduction

PROJECT SIZE

Why the title 'Small to Medium Sized' Projects? There are many publications (Refer-
ences 2, 3) on projects that are over 100 person-years. This size is typical for large,
mainframe oriented applications. Our focus will be on projects developed forminicom-
puters or microcomputers. My experience has been-on projects averaging approxi-
mately 5 man-years. However, the method shown works for tiny projects (one man-
month or less), as well as for much larger projects, with only minor modifications.

It has been proven (Reference 4) that the most effective project teams consist of
5 to 7 people, working on a single problem until it is completed. In Chapter 18 on
ORGANIZATION we will discuss the advantages of breaking larger projects into
many 'small to medium sized' ones. Inotherwords, there should not be projects that are
over 25 person-years. Small is beautiful in the project business.

WHY PROJECTS FAIL

Let us take a look at some of the problems that cause projects to fail. These problems
will all be dealt with in this book.

Failure at the Start

Most projects that fail go astray because they do not 'get off the ground' properly.
People suddenly find themselves programming, without a clear description of why the
project was started and what exactly it is to accomplish; in other words, without a plan.
If you do not estimate what the extent of the effort will be, you will have no idea of the
required staffing, which is the major cost factor in a project.

If no one bothers to clearly outline and get agreement with the user as to what the
project will accomplish, it will not be accepted by the user. There is a saying in the
business:

Projects very quickly reach 90% completion, and stay there forever. (Reference 1)

It is very common in the industry to deliver a project, only to have the user refuse
to pay until some changes and additions are made. He feels that these functions were
promised (explicitly or implied). If there is no written agreement up front, who can
argue that they were not promised?

Unrealistic deadlines and budgets are often foisted on a project team by 'authori-
ties' who are unaware of the importance of an accurate estimate, and the project team
is locked into an impossible committment. (I call this estimates by edict.)

Planning is knowing ahead of time where you are going, how you are going to get
there, and how you will be able to prove that you are there.

Failure in the Development Stages

After you plan your project, you will analyze the problem and draw up a design (see
Chapters 2 and 3). Then the actual building, or development stages, can begin. Projects

Why Projects Fail 3

can fail in these stages as well. If the analysis and design results are not documented
properly, misinterpretation in the development stages will occur.

The responsibilities for project management must be clearly assigned to specific
individuals, or everyone will think it is some other person's responsibility. Nothing will
get done!

The project team must have a thorough understanding of the development tools
available. Structured design, testing, and implementation methods are invaluable.
Software tools such as Fourth ~Cneration Languages, computer terminal screen
handlers and form generators, data base management systems and report generators
reduce development time. Your personal computer can be immensely helpful in
managing your project. Spreadsheets help in decision making, graphics in making
presentations, word processors in documentation. PERT(NetworkAna1ysis) and Gantt
(Scheduling) charting systems are essential for project planning and control. Without
knowledge of these tools the project may take a lot longer than necessary, or not be
completed at all.

You will not be able to approach your word processing secretary on a Friday
afternoon and request that hefshe devote one month to typing your 250 page user
Documentation starting next Monday. One must plan the required resources and
schedule them ahead of time. Otherwise they will not be available when needed. Think
not only of the obvious resources such as computer time and programming staff, but the
less obvious such as clerical help, programs for conversions or simulation, software
manuals, and outside experts for reviews and approval.

Premature coding can be the cause of inferior code or design. It is tempting to get
down to coding-it is what most of us do best. Usually you are reluctant to begin
difficult tasks suchas analysis or design, so you begin with programming. You feel that
after coding a few programs you will know more. Management may find that the pro-
grammers have nothing to do except play Adventure, so they are told to 'code
something'. If you start coding before the SystemDesign is done, you will either have
to design around the existing code (which may not be the best design), or subsequently
alter the programs to fit the design (which may take extensive effort).

Lack of walk-through's and reviews will cause major problems to go unnoticed
during and after development. Walk-through's and reviews give us the opportunity to
have experts outside of the project team walk through (go over each and every detail)
of the results of our activities. Walkthroughs are technically oriented: designs, pro-
grams or documentation can be walked through. Reviews are management oriented:
proposals, budgets, schedules may have to be discussed. These meetings make up for
lack of full time expertise on the project team. For example, if your company has an
expert designer (Mr. or Ms. Designer) on staff, you will be very fortunate if he can
devote full time to your project for several months to do the design. Usually this expert's
time is in such demand that all you can get is a few hours per week. But that is enough!
Mr. Designer can walk through your design efforts weekly to point out faults and
discrepancies that you have overlooked.

Many project failures are blamed on turnover. You must plan on key personnel
leaving the team. It is dangerous to place all your eggs in one basket, which is the case

4 Introduction

when you depend completely upon a 'Guru' Programmer. Any project that I have ever
worked on has experienced turnover if it lasted for six calendar months or more. Plan
for it.

Lack of development standards can cause failure to some degree. The seven
phased development method shown in this book is one standard. But standards must be
drawn up and strictly enforced in the individual phases as well. For example, in the
design phase you should develop standards of structured design, intermodule commu-
nication, structured programming and even documentation.

And lastly, as Brooks showed so well inThe Mythical Man-Month (Reference 3).
when a project is behind, brute force techniques such as 'add more manpower' do not
work. It may slow the project down, instead of speeding it up. This is due to the
additional training, orientation, and extra communication (which creates the opportu-
nity for miscommunication) needed.

Failure at the End

When the due date arrives (or the budget has been exhausted) and everything is not
completed, the requirements are usually compromised. Some feel that three fourths of
a project is better than none. Most users have a total problem to solve, and three fourths
solutions rarely work.

Applications are sometimes delivered without thorough debugging. These sys-
tems will cause so much frustration and intimidation at startup that they will rarely be
used, even if the problems are solved later on.

Some systems do not deliver the promised performance. It is not lack of computer
power that causes poor performance; it is usually caused by 'gold plating'. Theuser asks
for a Volkswagen, and the project team delivers a Cadillac that must fit in the VW
garage. (Or a VW with every power option, 1000 watt stereo, etc.)

Sometimes a project seems successful until someone tries to apply a minor
change, either because a bug needs to be corrected or the user requests an enhancement.
If the cost of making a change, called the 'maintenance cost', is too high the system will
be scrapped. Since the user is usually unable to give the project team all of his or her
requirements ahead of time, very few systems remain unchanged. Maintainability is an
absolute must.

Some projccts are cancelled outright at some point in the dcvelopment. This may
be due to many reasons. The user or the project team may have run out of funds. Major
personnel or business changes on the user side make the project no longer necessary.
Maybe theonly person on the project team thatunderstands theprograms quits, and the
remainder of the team is unable to (or does not want to) continue. This is usually the
result of inadequale documentation standards. Or the development thus far is such a
disaster that it is unwise to continue. This may be the case where you are 'thrown into'
a project partially completed by someone else who has mysteriously left the company.

Be aware that cancelling the projcct or starting over is sometimes the best
alternative. There are many cascs where, arter significant development effort has been
spent, someone really knowledgeable gets around to calculating the real costbenefit of

A Professional Approach 5

the project. He or she may conclude that it is not worth going on. If you can prove that
cancelling or restarting is less costly than continuing, by all means bite the bullet and do
so. It isunwise to throw good money after bad, but be prepared to defend your decision.

In conclusion, cursory treatment of software development can cause overrun in
expense and schedule, unhappy users, damaged reputations and also waste expensive
talent-yours. Some failed products simply fade into oblivion, others are 'flaming
disasters': everyone knows about them and uses them as examples for the 'how not to
do it' portions of Project Management courses. Do not let it happen to you.

WHY PROJECTS SUCCEED

Planning and Control

Successful projects have a clean beginning-a written plan that defines what will be
delivered, and how it will be accomplished. Measurable acceptance criteria are written
down and are used to prove that the promises have been met.

During development there is close monitoring to ensure that the project stays on
plan. The staff is adequately experienced to produce the product. The right documents
for the right people are produced even in a tight situation, bccause the management
realizes that documentation is one of themost important aspects of the project. Frequent
rcviews are held to measure progress against the schedule. When a problem occurs, it
is noticed at once, and solved if possible, otherwise estimates and schedules are
redrawn, and expectations are reset as necessary.

At the end, the user is satisfied because the team has delivered the product as
promised. The cost is 'reasonably close' to the quoted estimates. There is no hassle
about acceptance. The user agrced ahead of time to a precise and detailcd method of
demonstrating that the product functions as requircd. Payment is made where appli-
cable.

A PROFESSIONAL APPROACH

All of these reasons indicate that aprojcct cannot be approachedin a haphazardmanner.
Project management requires a profcssional approach. A professional person ap-
proaches hcr project armed with managcment ~ools that help her plan and control. She
has the discipline to stay with the tools, because she is committed to deliver the product.
The methods presented in SECTION I are part of thc tool kit requircd to producequality
and success.

QUESTIONS

1. What is the traditionaldefinition of asuccessIu1 project? Would youadd any other criteria?

Introduction

2. Groupexercise: List asmany causesforprojectfail~eas youcmhhkoK Decide which
stage of the project the problem effects (beginning, development or end). Can some of
these problems affect more than one stage?

PART 1
The Methodology of Project Management

The Seven Phases
of Project Management

A Clean, Ordered Approach

1 .I INTRODUCTION

To plan and control anything, you must break it up into small, manageable pieces.
Projects in general are broken down by the component pieces or by the jobs the
individuals working on the project will perform. A high-tech project, a research and
development project or a software project is broken up by time phases. Time phases are
a 'first we do this, afterward we do that' approach. The phases should be chosen so that
they are reasonably distinct, and produce one or more milestones - clear events that
prove that the phase is successfully completed.

1.2 THE PHASES TABLE

Figure 1.1 (on inside front cover!) shows the seven phases of a project. The horizontal
scale is time. Appearing left to right, chronologically, are the project phases: DEFINI-
TION, ANALYSIS, DESIGN, PROGRAMMING, SYSTEM TEST, ACCEPTANCE
and OPERATION.

8 Chap. 1 The Seven Phases of Project Management

Reading downwards, the following divisions are made:

ACTIVITIES What we must do in each phase. Certain on-going
activities such as PROJECT MANAGEMENT, RE-
VIEWS, STATUS REPORTS, DOCUMENTATION
anduser TRAINING areindicatcd with horizontal time
lines across the applicable phases.

OUTPUT The documents that must be produced during the par-
DOCUMENTS ticular phase. Milestones, enclosed in [1, that must be
[AND completed.
MILESTONES]

RELATIVE The relative manpower that must be expended. The
EFFORT (PM) heavy line (PM) is the effort expended by the Project

Manager. Note that his or her effort is heavy in the be-
ginning, light in the middle, and becomes heavy again
toward the end.

(TOTAL
STAFF)

The light line is the total relative manpower expended
by everyone on the project. Note that it is light up front,
since only the management is involved, gets heavy in
the middle wheremany designers and programmers are
working, and is light at the end when again only man-
agement is involved.

Time scale or relative duration of the phases is not shown in the diagram.

1.3 THE 'BUILDING A HOUSE' ANALOGY
FOR SOFTWARE PROJECTS

To have an overall understanding of the project dcvclopment life cycle, let us compare
building a project to building a house. If you have ever worked on a house, whether
building a complete house, finishing a basement or perhaps just building a privy, you
were probably not aware that thcre were seven phases involved. Whenever the
terminology used is the same as that in Figure 1.1 (the Phases), the words are bold to
help you reference that diagram.

The DEFINITION phase of building a house. Let us start with a little
scenario. The prospecdvc ;ser of a house comcs to you (the Project Manager of a house
building company) stating his or her problems:

I am living in a tent on an empty lot in lhc north eastern part of the country.

You may ask, "What is thc problem with this arrangement?" The user would answer:

Sec. 1.3 The 'Building a House' Analogy for Software Projects

It is wintertime and it is cold in my tent; in the summer it is too hot. I need
temperature control.
It is too bright inside in the day time, and too dark at night. I need lighting control.
When I need to perform my necessities, I have to go out and shovel a hole in the snow. If
I need to wash, I must heat the water on an open fie. I needplumbing.
My spouse and two children are living with me in this tent. We need privacy and sound
isolation.

And so forth until all of the user's problems are listed. If the user's problems are not
written you may have to help write-them down to produce the ~e~ujrernents Docu-
ment. At this point you may have to estimate how much it will cost to build a house to
suit the user. YOU present this cost, as well as the date for completion, in a Proposal. The
cost and schedule at this point may be very inaccurate. It would be much more accurate
if you could convince the user to wait for the estimate until the end of the Analysis
Phase. In this case you could present here only the cost of the Analysis Phase in an
Analysis Proposal.

The ANALYSIS phase of building a house. The Analyst now produces the
Functional Specification for the house. The Functional Specification contains such
promises as:

Mr./Ms. User, we will build a house for you. This house will have rooms with opaque and
soundproof walls, to provide you withprivacy and sound isolation.
We will put a 'gizmo' on the wall called a thermostat, (include a diagram of a thermostat),
which will provide you with temperature control. If you turn the thermostat to the right,
the house will get warmer. If you turn it to the left, the house will become colder.
In each room there will be a 'gizmo' called a light switch (provide a diagram) to provide
youwithlight control. If youpushtheswitchupward, theroomwillbebright, if downward,
the room will be dark.
Plumbing will be provided in a room called the 'bathroom' with utilities to do the
necessities and for washing. There will be a lever on one utility, which, when pushed
downward, will flush (provide a diagram?). There will be utilities with 'taps'. When you
turn the left tap clockwise hot water will come out. When youturn the right tap clockwise
cold water will come out (provide a diagram).

And so forth.

Note that the Functional Specification lists what the house does for the user: the
inputs, outputs and interfaces between the house and the user. There is no mention of
how it will be built. The Functional Specification lists the promises (deliverables) that
are made in order tosolve theuser'sproblems asstated in the RequirementsDocument.

The DESIGN phase of building a house. The Designer of the house is the
Architect. The goal of design is to divide the system into functional components, and
then interconnect the components efficiently. The design of the house goes on the
blueprint. The Architect may divide the house into a living area, an eating area, and a

10 Chap. 1 The Seven Phases of Project Management

sleeping area. Each of these areas may comprise one or more rooms.
The blueprint contains not only the divisions, but also how the pieces are intercon-

nected. The Architect will design the placement of each room, as well as the doors and
halls for the most efficient interconnection (traffic) between the rooms.

He must design places for the furnace and ductwork so that the promise of
temperature control can be met. He must also design wiring locations so that the light
switches promised will all work. The placement of all the plumbing is detailed so the
facilities Dromiscd will work. In other words. all of the connections are detailed.

The~es ign shows how the systcm works. The blueprint is theTop Level Design.
Some sections of thc blue~rint, such as details ofthe individual rooms or schematics are
lower levels of thc design. All of this goes into the Design Specification document.

ThePROGRAMMING phase of building a house. Theequivalentofprogram-
rning is the actual construction of the house: the work of the contractor, carpenters,
plumbers, electricians and so forth. They all work according to the dictates of the
blueprint, or Design Specification.

The SYSTEM TEST phase of building a house. Systcm test involves putting the
pieces together, and ensuring that everything works together (Integration). In the house
we may bcgin wilh thc basement: we will first put together all the components
comprising the basement and ensure that they all work together. We may then go on to
the first floor, ensuring that all of those components work, and that the first floor is cor-
rectly connected to thc basement. We can then go on to Ihe second floor, and so forth,
and fix any problems that occur. At the end, the Architect and all the trade contractors
must systematically test each component: all the lights, thermostats, plumbing, and so
on to ensure that they all work together according to spccs.

The ACCEPTANCE phase of buildings house. Theuscr(or hermanager)now
sees the complcte house, perhaps for the first time. At a prearranged time, she
systematically tests eachlight switch,faucet, thcrmostat, and so forth toensure that they
work according to the promises made to hcr in the Functional Specification. If any
problems occur, the project team must fix them. Most problems should be easy to fix,
since the projcct team has already gone through the same tests during System Test.
Some problems, such as major requirements problcms, may be difficult to fix. Imagine
if the user said, "I thought you promised to build me a lour bedroom house, not a three
bedroom one! "

This kind of problcm is not uncommon in the software induslry. If the user is
satislied she pays for the house; this was previously agreed to in an acceptance
agreement.

The OPERATION phase of building a house. At operation the real end
user-in our case the user's family-movcs in and lives in the house. The key to
operation is that the Architect and Contractors do not lcave town yet. A period of
warranty (six months to one year is common) must be provided, because may
still be found that need to be fixed. Furthcrmore, most systems are outdated at, or soon

Sec. 1.3 The 'Building a House' Analogy for Software Projects 11

after, implementation. If the project manager is a good salesperson, he will suggest the
building of a bigger and better house (Version 2!) at this point.

Note that this phase does not include maintenance, wherein changes and enhance-
ments are added. The problem with including maintenance as a phase is that the project
will never end! Since you get promotions and raises based upon accomplishments,
cutting the project off six months after delivery gives you a clean, measurable end point
for the project. Major enhancement(s) is a new project.

Comments on the 'House Analogy'

The analogy is valuable because the science of building a house is so close to the science
of building a project. We will be referring to this analogy throughout the book. But the
analogy is inaccurate for two reasons:

First, we know too much about house building. You can ask almost anyone to
describe their dream house. They will be able to describe it down to the color of the last
brick used. How many software users can describe their requirements accurately?

Second, the house building industry is old enough to have standards. In the soft-
ware industry we have not even invented the equivalent of a two-by-four. We have not
yet been able to define a foundation, a floor or a room. So until our industry matures
further and standard building blocks and conventions are established, we may have to
re-invent and build everything down to the last component.

The chapters that follow detail each phase in the life of a project.

QUESTIONS

1. L i t the seven phases of a software project, along with activities and milestones associated
with each phase.

2. List the seven phases of a building a house, and compare the milestones in each phase to
those of a software project.

3. Why is building a house not analogous to building a computer project?

The Definition Phase

Understanding the User's Problem

2.1 INTRODUCTION

The goal of the definition phase is to gain sufficient understanding of the user's problem in
order to estimate cost and time. There are three maior activities that vou must do in the Defini-
tion Phase (see Figure 1.1): First, you must gain an excellent understanding of the user's prob-
lem and what is rewired to solve it (REQUIREMENTS). Second vou must decide whether
or not to do the project. You must e iu re that the project techni&iy feasible and has a good
chance of success before you undertake it (GO/NOGO DECISION). If the decision is to go
ahead, you must analyze all the possible risk items that may beset your project. This analysis
will help in writing the PROPOSAL which details what will be delivered, when and at what
cost. (Including the cost of the risk items!)

Note that the ongoing activities of PROJECI'MANAGEMENT, REVIEWS, STATUS
REPORTING and DOCUMENTATION start here and go on until the end of the project
(Figure 1.1).

You will have to write several documents and reach several milestones by the end of
this phase. Fit of all a Requirements Document (RD) must be written. The RD must be so
clear and complete that the project team (PT) can grasp the full extent of the user's problem
and estimate the cost of the solution. Your first milestone will be the approval orsignbofof
the RD by the user and the Project Team 0.

Next, a Preliminary Project Plan (PPP) will have to be written. The PPP is a 'first crack'
at planning the steps that will have to be taken to develop the product, and the resources that
will be required for each step. The plan outlines how long the resources will be needed and
how much they will cost. This gives you the first 'ballpark' estimate and schedule.

Sec. 2.2 The Requirements Document 13

And last, you will have to give the user this estimate in a PROPOSAL.+ How reliable is
thii estimate? We in the data processing industry have a tem%le reputation for underestimat-
ing our projects. There are a couple of good reasonsfor this. One is that we do not know how to
estimate. The other is that we make our estimate at definition time, when we have little knowl-
edge of the extent of the problem. Refening to the 'house analogy' (Section 1.3) I suggested
that the house builder should not make an estimate right after hearing a simple statement of
the problems. If you are not confident that the user has accurately outlined his requirements in
theRD,Isuggestthatyousplittheprojectintwo: the AnalysisPhase asafirstproject, fol-
lowed by the remaining phases as a second project. At defmition time your proposal will be
for the analysis only, and is called the ANALYSIS PROPOSAL. After the analysis there will
be a DEVELOPMENT PROPOSAL (see Chapter 3). This is called the two-phase proposal
process. The milestone involved here is the purchase of the proposal by the user.

2.2 THE REQUIREMENTS DOCUMENT

The Requirements Document (RD) states the user's problems and the general solutions re-
quired. The language is oriented to the user's business, and shies away from computer lingo.
The RD is sometimes used as a Request for a Proposal (RFF') when the user tenders the project
to outside contractors.

The project team (PT) may be fortunate enough to begin the project after receiving a
good RD.In fact,project management really begins after theRD is completed.However,
user-written RD's are usually inadequate for estimating and development. The reasons for
this are simple. The user may be unaware of what a computer can do, and so the RD is vague.
A user may not even perceive his or her own needs correctly. For example, using the 'house
analogy'- what if the user requests a bigger tent with a good flashlight? Obviously, this user
is not up-todate with house technology.

We also have communication problems. Anon- technical person cannot be expected to
learn computer lingo in order to explain his requirements to the computer analyst. It is up to
the project team to notice and solve the above problems. My experience is that time has to be
spent working with the user to help him write a good RD.

Interviewing the User

Get the proper information from the user and you will have a good RD. A user will tell you
anything you ask about -and nothing more (Reference 1). The onus is on the project team's
interviewer to learn all about the user's business, understand the user's terminology, and ask
all the right questions.

 he biggest problem may begetting to the realend-user-the data entry clerkor the
shipper in the warehouse. Often a manager or s u ~ w i s o r will tell you that the end-user is busy
or G b l e to give reliable information. sometimes managers feel ;hat you are treading on theu
turf if you godirectly to the end-user in their department. For those developing for
sale, you may have only the marketing department's interpretation of the user's needs. The
solution to tdis problekis to educate these-representatives about the importance of talking to
the real end-user. If her input is not taken initially at definition time, changes will occur later

14 Chap. 2 The Definition Phase

and these will be very expensive to implement. Know the politics involved, especially in an
internalproject. Alwaysgetpermissionfrom the appropriatemanagers to interview their
people.

Plan the interview. Learn about the business, write down the questions to ask. Here is
the logical sequence of the interview:

First, find out about the flow of information in the company. Start with the outputs: What is the
information needed to run the business? How must the data flow among departments and indi-
viduals? Determine frequency, timing, and accuracy.

Second, the inputs are then driven by the outputs: What information is required to produce
each of the outputs? What information is available, when, where? What new information will
have to be gathered? Remember the five W s of journalism-Who?, What?, Where?, When?,
Why? Stay away from 'How' for now (unless unique formulas must be used). Plenty of time for
that during DESIGN.

Contents of the Requirements Document

(AppendixA contains an example of a complete RD, as well as examples of all the important
project documents.)

Examples used in the following topics (and in the remainder of the book) refer to the
Amalgamated Basketweaving Courses(ABC) project in Appendix k The reader is encour-
aged to refer to the Appendix whenever full detail on that project is desired.

Following are the sections of the RD:

1. Introduction Identify the Company (user) and the vendor@) to whom the RD is
targeted. State the problems that need to be fixed, the history, examples of the problem
situation, motivation to f~ it, etc. This section is used to introduce the potential vendor to the
user company or department if necessary, describing its culture, environment, the way it does
its business. Give the project team a feel for the user and his problem.

Example:

REQUEST FOR PROPOSAUREQUIREhENTS FOR A MANAGEMENT INFORMA-
TION SYSTEM FOR THE AMALGAMATED BASKETWEAVING COURSEWARE

ABCgivesdifferent types of weaving courses. We have classes in ten major cities in North
America, each course presented at least 4 times per year per city. Students come from all over the
countly, but can register by phoning (collect) our main office. We have no computer expertise.
All expenditures must be approved by our Fearless Leader and CEO, Mr. Bany Sh.awman.

Major problem: General confusion in registration and course admjnistration. Presently, when a
student phones to register for one of our courses, the secretary writes the information on a piece of
paper, thsn transfers it to a course tile (another piece of paper), which eventually gets collated (on
paper).

Sec. 2.2 The Requirements Document 15

Last month alone we lost 3 registrations, told 2 students to go to the wrong course, did not have
enough material for 2 c o r n (twice as many people showed up as we anticipated, and we had no
way of telling who was officially registered) and we forgot to tell the instluctor about one course.
We suspect that we are not billing everyone-our revenues are down but the number of students
seems to be up.

We also suspect that we should give courses in other cities, and that we are giving the courses at
the wrong times of the year.

2. Project Goals A simple statement of why we are proposing the development.
Major constraints of time or money can be mentioned.

Example:

Replace existing manual system at ABC with an automated one that handles:
Registration that is fast (on phone), no losses, with timely notification to student, insbuctor and
the company of appropriate information.
Financial system that accurately produces monthly billing, accounting, and course material in-
formation.
Warehouse system that allows appropriate course material to be sent to courses and reordered
when necessary.
Management information, for better decisions about where and when to hold appropriate
courses, available immediately on request.
Project should be done within 6 months of initiation, for under $200,000.

3. Major Funcliolzlr Simple statements about how the system will function,
based on the Project Goals.

Example:
Registration capability by phone in less than 2 minutes. Registrar must be able to see present en-
rollments (list of students). Automatic confirmation must be sent to student within one week of
registering, and summary of all enrollments every Friday to ABC Administration. Two weeks
before course, enrollments go to Instructor, ABC, and course material warehouse.
Financial system that invoices student after attending course, keeps Accounts Receivables, roll
up of revenues by course type, time period and geography.
Warehouse system notltied two weeks before come of items required for the course, where the
course is, location of items in warehouse, and automatic inventory decrement and re-ordering.
Reporting system on request or at set intervals, report goes to CEO with number of registrations,
courses, revenues. On request, reports detailing courses, enrollments, and revenues by course
type, geography, time of year.

4. General Outputs Simple description of information required from the system.

Example:
On-line enrollments by course, input of all registrant information. Printout of student confirma-
tion (The course enrolled in, when, payment information).
Weekly print-out of all enrollments for the week by course and location, revenues associated
with courses that ran.

Chap. 2 The Definition Phase

Monthly print out of coursesales for the month by type, location, time (for Management).
Reports to Accounting on amnuts receivables, items invoiced, outstanding and paid
Two weeks before a course printout of enrollments, location, course material (for htmctor and
Warehouse). Revenue summary (for management).
One day after a course invoice (to Student), update accounts receivables.
Reports on request on-line reports of registrations, attendance, andl01 revenues by course, by
geography, by time of year.

Detail every item of ir$ormation (not neaxsarily screens or reports) required. You may
simply state it as general requirements: 'Themarketingdepartmentneeds thenumber of
courses sold by geography'; or as a report if you are certain: 'The President needs a quarterly
report of items sold by geography by time'. Remember, it is the job of the computer analyst to
suggest what reports will best provide the required information.

5. Generallnfonnation Inputs (Inputs would not be supplied by an inexperienced
user-it would be filled in later by the analyst.) Go through the list of output items above, and
see what input data b necessary to producetheoutputs. ?his is a good time to ensure that all of
the required data is available at the proper times.

6. Peerfonnance How many transactions are to be pr-d, how much data must
be stored, how frequently must reports be produced, etc. State in terms of averages and
maxima (in a peak day or hour).

7. Growth This may be difficult to foresee, but try to calculate the increase in
business and stipulate the number of years that the system is expected to function. Express the
growth as a percentage or as actual numbers. If you are implementing the system in Phases
(see Chapter lo), this RD describes Phase One only, and the Growth section can d m i the
additional functions in the subsequent phases.

8. Operation and Environment Where the computer will reside, where the interac-
tive terminals are, if any. Who will use it. Any unusual circumstances such as a hostile
environment (intentional or accidental), or endurance requirements. There may be a need for
portability, or for special safety or physical security measures.

9. Compatibility, Inteerfaces State if inter-computer communication is required,
any existing equipment that has to be incorporated or if distributed access is required. If the
system must go on an existing computer, or must be programmed in a specific language,
document these facts here.

10. Reliability, Availability Quote Mean Time Between Failures (MTBF) figures,
Mean Time to Repair (M'ITR) and percentage up-time required. All manufacturers publish
these figures for their hardware. Note that published up-time is rarely over 95%, so no one can
guarantee availability greater than that.

11. Human Interface Outline the computer experience required of the user, state
how the system is to handle the brand new user. This is just a general description of the human
interface; for example, is the system to be menu driven, should on-line help be available, etc.

12. Orgnnizationallnzpact Whichdepartmentswill be affected and how must

Sec. 2.3 The User's Responsibility 17

their work be changed How the new system is to interface to some existing or new manual
systems.

W. Maintenance andsupport Warranties requid: how long, to what extent, how
it will be delivexed. For example, a statement such as: 'The Vendor will fix any problems with
the system for 6 months after delivery, within 2A hours of being notifled.'

14. Documentation and Training List the gencral documents and/or courses that
would be required.

Example:

Vendor must provide documents for Urn, Opcmors, and System Mainfainas. He
must provide training for the Order Processing Clerks to do thcii job completely.

15. Advmages (RFP only) If the RD is an RFP in a competitive situation, solicit
data from thevendors outlining why they feclthey shouldbechosen. Request dataon the
vendor's relevant experience, committment, project methodology, examples of successful
projects, and references that you may call to verify him. (Be sure to get in the gccd h k s of
these people frst!)

16. Term and Condilim (Ts & Cs) (RFP only) State the basis for selection, when
and how the winner will be announced

Example:

ABCcompany has the right to select among vendofs based on its own Qitnia Any submi&
documents will become the mocatv of ABC. The winner will be announced no latcr than X
ABC has he right to accept and/orkject any @on(s) of Ihe proposed systems. Ricing for such
will berenegotiatcd with the vendor.
Although Ts 8: C's are formal only for an external project, an equivalent paragraph benefits
internal projects as well. State your rights vis-a-vis other deptmmts, such as your right to go out
and purchase soflware, use an outside vcndor, and so fonh.
The Requirements Document has all information that will bc necessary for the project team a
assess the limits, functions, complexity and mt of the systcm.

2.3 THE USER'S RESPONSIBILTY

Evcn if the user does not write the RD, he or she has the responsibility to provide the project
tcam's interviewcr with reliable, timely information. The user must therefore find a person
who knows all about the exisling system and what is rcquired of the new one.

This pcrson must be available. The interviewcr will have many questions that need to
be answcrcd even after the formal interviews arc over. This user person must have uuhriry
to make decisions about theproposed systcmand how it will a f k t the organization.The
requirements oltcn involve trade-offs that impact several user departments.

18 Chap. 2 The Definition Phase

For an internal project auser representative is usually easy to access. For contracted
projects, especially ones f a Government deparbmts, there may be the occasional 'sealed
bid' where no contact with the department is allowed. On the surface this appears to assure
eaual fairness to all the bidders. In realitv these de~artments are doine themselves a
&service: they would find that much better 'p'oposals (gnd subsequently systems) would be
delivered if someone were appointed m answer the bidders' questions.

2.4 THE GONO-GO DECISION

Feasiblllty Study

After therequirements are firm, thenext step is todecidewhether or not aprojectis worth
doing. To help make this decisicm, a Feasibility Study is done to answer the question: 'Can this
system be h i t techicalb?' Unfmately, just abut anythmg is technically possible, so the
questions to answer shouldbe, 'At what cost can the system be built, and what will be the cost1
benefit?'

In a Feasibility Study we consider all the possible technical solutions, and attempt to
estimate a ballpark cost for each solution For a larger project, we consider the major decision
of what hardware to use, and whether to build or buy the software. We evaluate the dollars
(pounds, marks, whatever) saved and other benefits of each solution. For a mall-to-medium
sized project a formal feasibility study domnmt need not be written. It is usually enough to
assign someone to study the possible solutions and assess the cost benefits. We then review
our findings with some knowledgeable people and together we recommend the best
alternative. For details on the contents of the Feasibility Study see Reference 18.

The cost estimate that comes out of the Feasibility Study is a 'ballpark'- it may be off
by 200% to 500%. This is not a problem since we use these figures only to see if the project fits
into the general budget comtrahts established for it.

It may be feasible but it should not be done. The project manager (PM) has to
answer not only thc question "Is this project technically 'doable'?" but also the more
important question:

Is thk project &able NOW by ME?

ThePMmustask~Ifa~Ififtheprojecthasa~~of~,aifitwill faildueto
limited resources, knowledge, or risks outside his control. Innumerable projects have failed,
completely or partially, because people ignored the obvious signs pointing to failure. Do not
make plans on pipe dreams -know the risks involved

2.5 RISK MANAGEMENT

Historically, the data processing industry has established a temble reputation for underesti-
rnatingprojects. Whenasked for thereasons, DP 'professionals' defend themselves with
statements such as, "I estimated correctly based on the facts as presented to me. The reason
for the overrun was that:

Sec. 2.5 Risk Management 19

Fi h one or mote: he user changed his mind ... never told me about ... and the other dqalmtmts
promised ... and upper level management dictated the estimate ... in other words, it was not my
fault!

Ifeel that the badestimate was his/hcr fault. Helshe should have foreseen all these
things and weighed his estimates wilh Lhcse risk items.

Following is a list of pipe dreams on which project managers have based their
estimates, and were subsequently surprised when the project ran over:

The Dream World

1. There will bc no changes. The user has thought of everything he nxds for h e next
three yms. His business will not change. Hc will not change his mind

2 Upper Management will do the right things for the project.
They will protect the team, provide thenccessary resources, accept our estimates,
keep h e politics away, and will not intcrfcrc.

3. We will have all the necessary resources.
We will get enough progammers (from othcr departments), or hire knowledge
able people; clerical help will be available at the required time; all the computer
time we need will be available, etc.

4. No limits on time or money. m s is a good one!)
5. No mources or products need be obtained from a 'third party' (outside of the user

and ourselves); we have authority and control over these third parties.
6. Theuser will agree to the two-stepproposal. Heis willing topay us$50,000up

front to do only analysis, and take the risk that he can afford the remainder.
7. Thc hardware manufacturer will deliver thc hardware and the new version of the

operating system and language compiler on time and in working condition
8. The user will all her mpnsibilities. We may have to ask the user ta provide

resources, test data, documentation; to answer all our questions comtly at the
very least.

9. Everyone knows that software projects tend to be late.
PROJECT TEAM: "We'll be six monlhs late."
USER: "No problem; take your time-we want quality."

10. There is no competition. In a contact environment, the client calls only onus; in an
internal department he does not even consider buying packaged software or
having another dcpartrncnt develop i t

Realities

1. Estimates are by edict
UPPER LEVEL MANAGER(ULh4): "You will deliver the product by January
15."
IT "Why Januaryl5?"

20 Chap. 2 The Definition Phase

ULM: "Because we have to demo it at a trade show. And you will do it for
$loo,OOo."
PT: "Why $100,ooo?"
ULM: "Because that's what is in the budget."

2. Managementmarketing signs fixed-price contracts based on your first (ballpark)
estimate.
The Salesman has a 30 minute interview with the user's manager, and you are
asked to estimate based on the sketchy notes taken. Contracts are then signed in
blood based on that estimate.

3. You never get adequate resources.
You will always have to hire more programmers, learn a new language, buy a
bigger computer for development, and do your own word processing.

4. Changes take place.
People transferfresign, user's business changes as do his requirements, your
manager (the originator of the project) is fired.

5. Responsibilities remain undefined.
Everyone thinks it is the other person's responsibility and it never gets done.

6. Estimates increase after the analysis and the delivery date slips.

7. When the project slips, management assigns additional programmers, who slow
the project down.

8. User is not sympathetic to problems.

9. Management panics, gets involved.
Meetings double, management looks over your shoulder, thumbscrews are
tightened.

And the industry standard solutions to aU these problems are:

SOLUTION 1. SEARCH FOR THE GUILTY
SOLUTION 2. PUNISH THE INNOCENT
SOLUTION 3. PROMOTE THE UNINVOLVED
SOLUTION 4 GO TO SOLUTION 1 AND CYCLE THROUGH AD

NAUSEUM

If you look at the 'reality' list above, you will immediately be struck by the fact that very few
of the problems mentioned are in the jurisdiction of the project manager. But it is the project
manager that gets blamedffmd when the project fails. It is therefore very important for the
PM to know what his chances are for s u w , and to be able to say 'NO' to stillborn projects.

On a more positive note, the above problems are risks and contingencies. We will see
(Section 2.6) how some of these risks can be reduced, eliminated or priced into the project.

Sec. 2.5 Risk Management

Disqualifying the Project Due to the User or the Project Team

You need LO look for major problems in two aspects of the project: the user and the project
team.
Searching for problems in the user's area is easy. Ask the following questions:

1. Has the user budgeted enough money for the project?
You do not want the project to be c d e d halfway through due to lack of funds.

2. Is the problem well defmed?
If the requirements can not be f i up, make h e analysis phase the fmt project.

3. Are the user's expectations realistic?
Users may think that the computer will solve all their problems or run the whole
business for them. They may not be aware of the high m t of computer software,
both in tcrms of money and time. Educate your user.

It is always harder to find the problem in theproject team. It is difficult to find fault in
ourselves, but there may beproblems hcre as well. Ask yme l f thesepenetrating questions:

1. Is this project in my busimcps area?
For example, even though our experience is with VAX, VMS, COBOL develop
ing commercial systems, we will bid on a project involving IBM computers
running Analog-to-Digital nuclearreactor controllers (We are fast learners!).
General Motors will not accept building a new space shuttle for NASA no matter
how exciting the project seems. Imagine the liabilities upon failure.

2 Will I have have adequate resources available at the needed time, especially pro-
gramming staff?
Itis tempting to 'grow empires'by hiring staff. But a company or department
shouldnot grow by more than 100% pcr year. This phenomenal growthcanbe
accomplished if you have Ihree resources available:

Hiring potential Does your geographical area have good schools, or other
sources of good programmers? Is your environment
attractive?

Education It may be difficult to hire pooplewhoknow your special
operaling system and languages. Is there training avail-
able at your siteor within a reasonable distance at the
required time?

Good Personnel New employees have to be orientated, made comfortable
and Line wilhmanagement and made aware of m p a n y procedures
Management and cuIturc. This should be done by your personnel depart-

ment and line managers.

22 Chap. 2 The Definition Phase

There arc many cases where largcr g o d has been successfully absorbed, but there is
anoptimumsizeforcvery organization. Ailvemancompany shouldnotbidona30man- - -
yearproject. It is unfair to the client touse his project as; training We tend to be
optimistic about om own capabiities, and it is hearlbrealcing to tum down a project due to lack
of resources, but then: are times when saying 'NO' is the best alternative.

How to Say 'NO' When You Do Not Want to Do the Project

It is simple to say 'NO' inacompetitive environment: donotbid onthe project. It ismore
difhxlt in an internal organization. You cannot simply stand up in front of five high level
managers and refuse to do a project without good reason. Saying 'NO' requires knowledge of
company politics, human psychology, and ample facts and figures for justification.

Obviously, you havc to argue that 'NO' is the correct choice. Know the key people to
convince, and have your arguments ready. Avoid embarrassing someone who is a great
proponent of the project. Present the facts that made you decide to say 'NO' and perhaps that
person will come to the same conclusion

You cannot use the argument that you have a 'feeling' that things will go wrong.
Always defend your decision withfinancial facts-most managers think in these terms. If
you a& huning h e project down because of Ihe risks, translate these risks into possible costs
(SeeScction2.6onRisk). Youmustprovethat what may appeartobeano-risk$100,000
project wiI[twn out &J be a high risk $500.000 one, once yoiadd up all the problem factors.
Don't be afraid to exaggerate the risks a little if necessary. Use the history of what went wrong
on past projects (it is usually available) to back you up. Do not get bullied into doing
something you do not believe in, and if all else fails, try to negotiate a compromise. (See
Chapter 5 on Negotiation.)

The Uncostable Factors that Influence the GoINo-go Decision

Have you cver been in a situation where youprcscnt all theabove arguments to convince
management no1 to do he project, only to have thcm answer, "Propose it anyway?"

Sometirncs there are political factors involved. The client is an 'important user', and
this project may beunpmfitable but management is looking at future business. Or this may be
a highvisibility project-thecompany product will be seen on television, so profit is not a
motivator. Here you may find pressure from very high levels-the president of your
company has something at stake and has edicled that "The project shall be done! "

You may have ulterior motives. Perhaps you wish to gain experience in a special area.
Or youmust do this one to stay in business. Sometimes cost benefit arguments just donot
wash.

Project Go-ahead Checklist

In thisbookchecklists takethe formof a listofquestions. Checklists areitems tolookfor,
thinkabout, haveanswersfor at specificpoints in timebeforeproceeding to thenext step.

Sec. 2.6 The Four Steps of Risk Management 23

These lists should be used as ~minders. Most of the items will pmbably not be applicable, but
there may be something in a l i t that you have overlooked. Use the lists prwided as starting
points only. Alter the lists to meet your own needs. The answers to all the questions should be
'yes'!

Here are the questions to ask before writing h e Proposal:

1. Havc we looked closely at the clicnt?

If we have to program at her site, docs she have adequate facilities?

Does she have the authority to give us the gc~ahead?

Is shc prone to reorganize? Would lhis affcct the project?

Is she mpe~ative?

Is she available and able to answer questions?

Does she have funds for the whole project?
Dces she know what she needs? Is she able to communicate Lhis?

2. Havc we looked closely at ourselves?
Do we know thc application hardware/software?

Do we have the necessary resources, and are they free at the required time?

Have we looked at the competition? Sometimes there are predekmined
winncrs-do not bid if you have no chance at all!

2.6 THE FOUR STEPS OF RISK MANAGEMENT

Every projcct would be on time and on budget if nohing cvcr went wrong. It is imperative to
conantrate on things that can go amiss and try to avoid them. This is called riskmanagement.
Risk management consists of L e e steps:

step 1. ANTICIPATE THE RISK.
Step 2. ELIMINATE THE RISK WHERE POSSIBLE.
Step 3. REDUCE THE IMPACT OF THE RISK.
Step 4. STAY IN CONTROL WHEN THINGS GO WRONG.

Let us discuss each of these points in detail.

Step 1. Anticipating Risk
The first and most important item in risk management is to be aware of what can go amiss.
The best method to identify possible risk items is to look at history and draw up a list of
everything thatcouldpossibly go wrong.Ifyoudonothave history tofall backon,realize
when you are in a risky situation.

Let us look at certain situations that expose your project to risks:

Chap. 2 The Definlion Phase

General Risk Situations

Inappropriatetechnicalpeople. Lackof training and experience on the hardware,
operating system, software packages or the application area pose risks. Lack of experience in
teamwork causes communication~rob~ems. Clientreauirements for excessive securitv. . ,
legalities, statutory regulations (for example ERA) can cause disqualification of your people.
I know of a project that ran into difficulty when a landed immigrant was provided as a
programmer on a Defense Department project. For security reasons programming had to be
done at the client site. On the day that theprogramming was to be& we discovered that he
would not be allowed to enter the client premises: he did not have security clearance. It would
have taken 6 months to obtain clearance.

Impmper working envhnment. A proper programming environment is quiet and free
from interruption. Be especially careful if the programming has to be done at the user site. A
computer with fast response, appropriate compilers and good development software is
necessary.

Thirdparty supplied resources. If there is anything to be supplied by a party over
whom you havenocontrol, youareopen to risk. Try to obtain authority overthese parties.
This can be done by penalG clauses 61 suppliers' contracts, having input into performance
reviews for staff, and so on.

Cmshprq'ects. You can have it sooner if you overstaff, everyone works overtime, and
great gobs of computer power is available. But it will cost twice as much!

Unrgeci$edpayment/budgef. If the user needs approval for funds quarterly, you stand
the chance of being cancelled each quarter. If he is paying you by delivered milestone, you
have the hassle of acceptance and payment at each milestone. If you are using the two-step
proposal process, the analysis may exhaust the user's funds.

Financial Risk Situations

These are the situations where systems end up costing more than anticipated. Lack of good
problem definiton is difftcult to estimate especially when the user does not know exactly what
he wants or is unable to specify it. Bad (unstructured) design and coding methods will cause
testing to take longer than anticipated. Acceptance, especially 'Parallel Runs' can go on
endlessly. (See Chapter8 on Acceptance Test Planningwhere Isuggestasolution to this
problem.) Lack of project team training, demands for excessive documentation, or unusual
standards may cause problems.

DktributedProjectManagement does not work It is best to have all the m e m b e ~ of the
project team, as well as the client, in the same geographical area, otherwise the travel required
will be costly.

Overzealousmanagement can 'overmanage' a project. Keep documents to a mini-
mum. Everyone on think of a better way to report his or her activity. Define a certain small set

Sec. 2.6 The Four Steps of Risk Management 25

of standard documents and use only those. Keep meetings to a minimum. Use the phone and
memos to communicate where possible. Do not interfere with the workers.

Risk is involved when the user is unable to and has no authority to answer questions
quickly. I saw a project (for a large government department) where the answer to every
requirements question had to be decided by a user committee that met once a month. The re-
quirements were estimated at two weeks but actually twk six months to complete!

Technical Risk Situations

These are the technical factors that result in bugs or bad performance.

The wmngsdutbn. Are you building a rocket guidance system using BASIC because
that is what you know best? Is GM attempting to build a space shuttle? Are you attempting to
shoe-horn alarge inventory control system intoaPC?Is the target computer already 98%
loaded and the new Accounting System for 10,000 vendors to be fit into the remaining 2%?
Ensure that both the development computer and the target computer match the requirement,
will be available when needed, and that both the hardware and system software are supported
by the manufacturer. Be especially careful in a multi-vendor environment.

Bad requirements/spee;f;Mtion. Jf anything is unclear or ambiguous, or if the user is
unable to give you firm requirements, changes will occur during or after development.
Changes can be very expensive to implement, and you may not get paid for doing it. Make the
analysis the first project in this case.

Not knowing the user. You must be aware of hav he operates. Union shops may have
special rules regarding computer operators. The amount of computer expertise that the client
has defines the human interfaces that have to be written. Security, audit procedures, rules and
regulations may force a system to be designed in a specific fashion.

Tolerance of data loss defines the backup procedures. Some shops can recover from
data that is a week old. Others cannot tolerate any loss, so transaction recording or duplicate
files may have to be designed into the system.

It is very risky to specify respone, data volumes, and throughput numbers in a contract.
I have been in a situation where a contractor promised that every response would be under
five seconds. The user found one circumstance where a certain response took over five
seconds, and he refused to pay for the system. If response issues must be addressed in a
contract (and most of the time they do), use wording such as: "95% of the responses...", or
"We will design toward all responses to be 5 seconds." We do our best, but we do not
guarantee.

Incidentally, TECHNICAL RISK is the least deadly. This is not surprising since we
tend to have many good technicians in this business.

The Risk Quiz Ask yourself the following risk questions. If you answer 'yes' or even
'somewhat', to any of the questions you are taking a risk. The list is divided into three
sections: LOW RISK, MEDIUM RISK, and HIGH RISK items.

26 Chap. 2 The Definition Phase

LOW RISK ITEMS

AREA QUESTION

Team Size Is thcproject team from 3 to 5 people? (Note that this implies that
the only no risk teamsizc is oneor two people!)

Software/ Arc weusinga language that was not meant for this application? (COBOL
Hardware for bit twiddling, or ASSEMBLER for commercial transactions)
User IS the user a computer neophyte? (It will take time to train him; and as he

learns he will want changes.)
Canshe answer questions quickly?

Training Do WE need training in the targct hardware, system software, languages?
Team Memhcr Do weget along? Arc thcrcany individual pmblcms?(Health, productivity,

personal issues)

MEDIUM RISK ITEMS

AREA QUESTION

Team Size Is IhcProject Team over 5 people?
Softwarel Are there requirements for excessive response/lhroughout or availablity?
Hardware Areweshoe-horning into hardware that is too small? Is assembly /macro

language involved? (Macro is difficult lo learn, dilficult to debug, and it is
dilEicult to find Macro programmers.)
Do we havc to modify the operating system? Is there nelworkinginvolved?
(Networkingis slillthe mmlproblcm prone area in the business.) Are any of
the hardware orsoltware products brand new?

User Are there any communications problems? (User is uncooperaliveor far
away.)

Team Members Is there anyonc on the team over whom the project manager has no
authority?(It iscommon to have user staffon theteam.Thisis acceptableas
long as the PM has inpul into hisher performance appraisal.)

HIGH RISK ITEMS

AREA

Software/
Hardware

Team Members
Third Parties
Deadline
Requirements

QUESTION

In a proposed multi-vendor environment, are any of thevendors unable to
demonstratecompatibility?
Arewe usingsomc hardware, soCtwarc, dcsign or programming methods
that havenever been tricd before? (Do not be a pioneer. Apioncer is the guy
with thcarrow in his chesl!)
Arcsome of us located a longdislance away?
Dosome resources dcpcnd upon parties over whom there is no control?
Is this a 'crash' projecl?ls the estimate 'edicted?'
Does the Requirement Document not exisl, is ituntirm, or does oneof us
(user, project team) not understand it?

Sec. 2.6 The Four Steps of Risk Management 27

In conclusion, you can anticipate the risk by creating lists such as the one above to
remind you of possible risk items. Use the history of projects in your company to customize
these lists. Remember, the risk lists are dynamic-change them as your environment
changes.

Step 2 Eliminating the Risk Where Possible

At this point it is a good idea to prioritize the risk items. Draw up a table such as the one in
Figure 2.1.

R I S K T A B L E

Item Risk Item Probability Impact Priority
N o (1-10) (1-10) (PxW)

1 User not communic-Req't will slip 8 7 56
2 Chief pgr !eavesdes/pgmgslip 2 8 16

Figure 2.1 Riskevaluatinn table

Enter into the table each item in theRiskQuiz to which youanswered 'yes' or even
'maybe'. Translate the risk items into the actual effect on your project-usually an increase in
cost or duration. Decide on the PROBABILITY of the item occurring, and assign it a number
from 1 to 10,lO being the highest probability. Then decide the impact on the project. Assign
IMPACT a number fiom 1 to 10, l being an item you can work around, 10 an item that will
stop the project dead. The high impact items are the MEDIUM and HIGH risk items on the
Risk Quiz, as well as critical path items (see Chapter 14). Multiply the PROBABILlTY for
each item by the IMPACT to get the PRIORlTY.

The RISK TABLE in Figure 2.1 will give you the order in which to attack the risks for
possible elimination. Obviously, the higher the PRIORITY in the Risk Table, the more
attention that item needs. In fact, approach the items in descending order of PRIORITY.

For each risk item, first attempt to remove the cause of the risk. Exert authority, change
staff, come up with better softwarehardware, educate yourself and/or the user. Every item
will require a unique solution.

Step 3. Reducing the Risk by Contingency
Planning and Pricing

For the items where you cannot eliminate the risk, define contingency plans. Ls there another
computer in the building or area that you can use after regular hours in case yours is
unavailable? Is there a method to simulate some software or hardware for testing if it does not
materialize? Is there a backup person who is willing to work on your project in an emergency?
For every risk item involving a resource, try to put back-up resources in place.

28 Chap. 2 The Definition Phase

If there is a high probability that the risk item will occur, you must adjust the price of the
project accordingly. Many of my projects were sucessful because the price was marked up by
a certain percentage. This is sometimes called a 'fudge factor', because the estimator blindly
picks a percentage and increases the total price accordingly.

This percentage is much more accurate if it is based upon calculation of the cost impact
of actual risk items.

You can summarize your contingency plans using the table in Figure 2.2.

CONTINGENCY TABLE

Item Risk Item Action Who Cost
No %

1 User uncommunicalive Weekly mtg/ PM $5K
Prototyping PL $25K, 3 mo.

2 Programmer leaves Back-up pgr. JR $20K

Figure 2.2 Contingency and focus table.

Put the contingency plan in the ACTlONcolumn of the Contingency Table. In the
WHO column put the name of a person who will be responsible for implementing a
contingency plan. For those items that you need to have early warning about, put in the WHO
column the name of an individual who will keep his finger on the pulse of the problem and
warn the team if the dam is about to burst. In the COST column put the cost increase in dollars
andlor the time that the risk items will cause.

Step 4. Staying In Control When Things Go Wrong

And lastly, despiteall yourefforts, some things will still go wrong. I have seen situations
where the poor project manager became so overwhelmed by all the thingsoutsideofhis
sphere of control destroying his project that he threw in the towel and resigned. Expect things
to go wrong. Do not get paranoid (even if everyone is against you), and keep control as well as
you can. Do your best, announce aslipor overrun if necessary, andreport to the world the
cause of the problems, especially if they are outside of your jurisdiction. Things will
eventually settle down, and you will be respected for your ability to keep cool under pressure.

QUESTIONS

1. What is the two step proposal method? Why is it useful?
2 Why can a neophyte user not be expected to write a good Requirements Document? Then how

can we produce a good RD?
3. Group exercise. Section 1 (INTRODUCrrON) and Section 2 (PROJECT GOALS) of a Re-

quirements Document are shown on page 29. Write the remaining sections.

Sec. 2.6 The Four Steps of Risk Management

Requirements for Bell Family Communications System

Section 1 -Introduction The Bell clan consists of five families who live approximately two
miles from one another. Presently we communicate with each other using smoke signals.
Aside from the obvious problems of smell, delay in stalting a fire, and slow communication, the
signal is not private and it is hard to make sure that the intended recipient will be watching. We
need a better method of communicating.

Seth 2 -Project Goals A communication system that will provide:

a Voice communication.
h Fast communication - should be able to talk at normal speed
e A fast way of indicating which family we wish to call.
d Fast start - less than one minute to start taking.
e. A way of alerting the specific call recipient.
f. Privacy.
g Indication to the caller if the recipient is already talking.
h A way of terminating the call from either side.

4 What three items do we require the user's project representative to be able to do?
5. What is the major question answered by the Functional Specification? Why is a 'yes' answer to

this question not enough for a 'go' decision?
6. Wlat two major questions must we ask of the user to quahfy apmject? What two mjor questions

must we ask of the project team to qualify a project?
7. What is required to be able to grow a business really quickly?
8. Which of the four steps of risk management is most important and why?
9. Group Exercise.

To help anticipate risk, list at least 10 risk items due to the situation in your company (or an
imaginedcompany). Make this list into a 'Risk Quiz', that is, formulate each riskitem as a
question that will be answered 'yes' if thee is a risk. Assign a 'Low', 'Medium', or 'High' rating
to each item depending on your opinion of the impact of the item.

lo. Evaluate the ten items listed in Question 9 using the format of Figure 2-1. Using Figure 2.2, list the
highest risk items, and in the WHAT column list actions that will guarantee elimination of the risk
for as many items as possible.

11. For the remaining risk items, put 'contingency plan' actions in the WHAT column

Project Planning

3.1 INTRODUCTION

So you have evaluated the project and decided to go ahead with it! First, you may have
to convince some other parties that the project should be built. This is done with a
proposal. For an external project, the proposal is written to convince the client to buy
the project from your project team. For an internal project as well, management should
insist that the PT produce a proposal. This forces the project team to plan a little.

A proposal is a document that details the cost and schedule for the project, and
outlines the steps that the PT will take to produce the product. How do the members of
the teamcomeup with the cost, scheduleandsteps required? They write the Preliminary
Project Plan. A plan for a software project lists the activities required, how long each
activity will take, when these activities must take place and how much resources must
be spent on each activity to produce the required product.

Planning is an iterative process: the plan will be constantly revised as the project
progresses and as you gain better knowledge and understanding. Planning is very
difficult but it must be done properly-more projects have gone astray due to lack of
planning than all other causes combined. (Reference 3)

If you are using the two phased proposal method (Section 2.1), the plan that you
produce here is for the analysis only; otherwise, you will be planning all of the
development.

A note on the organization of this book: this chapter will teach the management
aspects of planning. It does not detail the use of planning tools such as PERT and Gantt
charts. Chapters 13 and 14will do that. Read this chapter first to learn why we usePERT
and Gantt, and Chapters 13 and 14 when you need detail on how to do it.

Sec. 3.3 Work Breakdown Structures (WBS)

3.2 THE PRELIMINARY PROJECT PLAN (PPP)

The PPP is the first crack at the steps, resources, cost and schedule required to
accomplish the project. It is an internal document: it need not be shown to the user,
especially an external one. Lately, however, I find that wise users, especially govern-
ment departments, insist on seeing the PPP as well as the proposal. They wish to ensure
that the PT knows what they are doing, and what better way than to see the detailed
plans! Here are the major steps in the planning process:

3.3 WORK BREAKDOWN STRUCTURES (WBS)

The key to any plan is breaking the required activities into smaller and smaller pieces.
A WBS begins by listing the major components of the project. This is Level 1 of the
WBS. (Level 0 is just the title of the project.) For a software project the best method of
breaking the project up into the major pieces is to start with the seven phases. Figure 3.1
shows Levels 0 and 1 of the WBS for the ABC project. Lower levels of the WBS are
obtained by breaking down each piece at the level above into its component activities.
In Figure 3.1 we see the Definition phase broken down to Level 2.

LEVEL 0

n
ABC MIS
PROJECT

LEVEL 1

Figure 3.1 Work breakdown structure.

I

LEVEL 2

If the plan is for the whole project, the above WBS would be completed by breaking
each Level 1 entry into at least Level 2, perhaps even into Level 3 components. If the
plan is for analysis only, the Level 1 ANALYSIS component is broken out. It may look
like Figure 3.2.

I I

I I I I I

OPER-
ATION

NEGOTIATE
PROPOSAL

I

ACCEP-
TANCE

DEFINITION

PRELIM.

P"p"cF RISK
ANALYSIS

REQUIRE-
MENTS
DOC.

FEASA-
BILIN
STUDY

SYSTEM
TEST ANALYSIS DESIGN

PRO-
GRAMMING

Chap. 3 Project Planning

LEVEL 2 I
2.1 2.2 2.3 2.4 2.5

1 I

SYSTEMS FUNCTIONS AL SPEC. AL SPECS.

LEVEL 1

1 .O 2.0 3.0 4.0

Figure 3.2 Work breakdown structure for analysis

The WBS Numbering System

5.0

Number the WBS entries as in Figure 3.2: Levcl 0, or project title, is 0.0. Each Level 1
itemis N.0, ie., 1 .O, 2.0 and so on. Each Levcl 2itcm below Level 1 itcmN.0 is numbered
N.1, N.2 and so on. For examplc, below Levcl 1 item Analysis, which is 2.0, we have
items 2.1,2.2 and so on. Each Levcl3 ilem adds a dot and digits to the Level 2 number.
For example, below 2.1 we would have 2.1.1,2.1.2 and so on. The algorithmcan simply
be stated thus: At Levcl N you have N numbcrs and the Nth numbcr varies.

6.0 7.0

DEFINITION

When Do You Stop?

The lowest levcl entries are thc tasks, or activitics in thc projcct. You can stop breaking
down a task if the following is truc:

I

ANALYSIS

1. Some person (or group for a larger project) can take responsibility for the
task, or accomplish thc activities involvcd,

2. You can gct a rough estimate of thc cflort (person-days) needed to perform
the activity (or activities) involvcd. This will have to be done by the
responsiblc person.

3. You can schedule the task. All that you need to schedule an activity is its
calendar duration, and its prccedents-the activitics that must be completed
before the task can be bcyn. The projcct manager or the responsible
individual may spccify the precedents.

DESIGN
PRQ

GRAMMING
SYSTEM

TEST
ACCEP-
TANCE

Sec. 3.3 Work Breakdown Structures (WBS) 33

4. The tasks must be small and able to be completed. Although this will be used
more for controlling than planning, a good 'work package' at the bottomlevel
of the WBS takes approximately one week and there is some method of
proving when it is done.

The 'expert' that you assign to a task to may be a programmer, an analyst or even
the project manager. She may break each task up further in order to attain the above
items, but this is not needed for the planning document yet.

For example, assume that we have an expert analyst in the company. We could
give her the WBS in Figure 3.2 and ask her for arough effort estimate and the precedents
for the analysis. She should, of course, insist on seeing the RD.

Depending on her experience and estimating expertise, she may need only the
Level 1 WBS. Some analysts could simply read the RD for the ABC project (discussed
in the last chapter and in Appendix A) and state, "The analysis for this project will take
25 days." Others may need to break the analysis into Level 2 boxes such as in Figure
3.2, yet others to Level 3 before they could do even a rough estimate.

An example of the Level 3 WBS for the INTERVIEWS and the ANALYZE
EXISTING SYSTEMS boxes could be as in Figure 3.3.

2.2

ANALYSE
EXISTING
SYSTEMS 4

LEVEL 3

2.1 .I

Figure 3.3 WJ3S level 3 items

2.1.2 2.1.3

LEVEL 3

2.2.1

2.1.4 2.1.5

OFFICE
MANAGER

2.2.2

CEO

-
ACCOUNT-

ANTS
(2)

WARE-
HOUSE
SUPER-
VISOR

223

DATA
FLOWS

-
REGIS-
TRARS

(2)

2.2.4 225 2.2.6

REGIS-
TRATION
SYSTEM

WARE-
HOUSE

SYSTEM

CEO's
BUdNESS

ACCOUN'
ANTS

BUSINESS

DOCU.
MENTS

34 Chap. 3 Project Planning

The expert breaks downeachlowestlevel box until heis able to estimate the effort
required. (See Chapter 13 for estimaling methods.) The estimates can be put on the
WBS itself as in Figure 3.4. Note that theTOTAL estimate is the sum of the individual
times. This is called DIRECT time. It is the number of actual work days required to do
the activity. It is not the ELAPSED or CALENDAR time that it would take.

WARE-
OFFICE HOUSE

REGIS- ACCOUNT-

MANAGER SUPER-
VISOR

ESTIMATE(PD) 1.5 2

TOTAL12 DAYS

ANALYSE
EXISTING
SYSTEMS

REGIS- WARE- DATA
MENTS FLOWS

ESTIMATE(PD) 2 2 1 1 3 2

TOTAL3 1 DAYS

Figure 3.4 Analysis level 3 (partial)

He would similarly break out the DEFINE NEW SYSTEM FUNCTIONS,
WRITE FUNCTIONAL SPEC. and NEGOTIATE FUNmIONAL SPEC. boxes and
add up the total time for all of the analysis. He then submits the estimate and the list of
precedents required for the whole analysis lo the project manager.

Thc person reponsible for the plan (probably the project manager for a small to
mid size projcct) thcn collates all the estimates and preccdcnts. He may end up with a
list which looks like this:

Sec. 3.4 The Network Diagram

ACTIVITY EFFORT PRECEDENTS

Definition
Analysis
Design
&'Yogram A

(Control)
Program B
(Registration)
Program C
(Warehouse)
System Test
Documentation
Acceptance
Training
Operation -
TOTAL

20 -
35 Definition
25 Analysis

20 Design

30 Design

25 Design
1 D Programs A, B, C
20 Design

5 System Test, Documentation
10 Documentation
10 Acceptance -

210 person-days

Note that in this example only the programming had sub-components. If there are any
sub-components of any other major activity available, they would also be listed.

3.4 THE NETWORK DIAGRAM

The second step of planning is to draw a network diagram that shows the sequence of
events. The best type of diagram for this is a PERT chart. Figure 3.5 is a PERT chart
for the above project. The sequence of events is driven only by the precedents of each
activity.

Figure 3.5 W R T chart

36 Chap. 3 Project Planning

This form of the PERT is called a Precedence Network. Each box represents an
activity. We have written in each box the name of the activity and its duration. You may
be familiar with the Activity on Arrow format of a PERT, but the precedence network
is better than activity on arrow, and most of today'sgwdproject management computer
programs display this format. For details on how to construct a PERTchart see Chapter
14, and for details on how to use computerized products see Chapter 17.

The Critical Path and Project Duration

We will detail PERT charts and Critical Paths (CP) further in Chapter 14, but it should
be obvious that a number of paths, or a series of sequential activities can be traced on
the above PERTsimply by following the directionof the arrows. The length of time that
it takes to traverse any path can be calculated by adding up the durationsof the activities
on the path. The CP is the longest of these paths, and it defines the minimum time it will
take to do the project. In the PERT in Figure 3.5 the CP consists of the activities:
START, DEFINITION, ANALYSIS, DESIGN, PROGRAM B, SYSTEM TEST, AC-
CEPTANCE, OPERATION and END. The project will therefore take the sum of the
durations of these activities, 135 days.

3.5 CALCULATING PROJECT COST

If the project contract is fixed price, the project manager can calculate a rough price for
labour by multiplying the total number of calculated person-days by an average charge
per day. Do not attempt to calculate in detail which people at what salary levels will be
working on the project-unless you have a good idea of who will be working on it. The
charge per person-day is a 'loaded' charge: it should include overheads of heat, rent,
clerical support and benefits. To this you must add fixed costs such as computer time,
rental of any special equipment and so forth. Fixed costs should be listed by each
estimator for his particular activity.

Example of Price Calculation:

If you have one of the project management software products discussed in Chapterl7, it
is simple to calculate the cost of the project. Figure 3.6 illustrates an abbreviated 'Task
Details' screen from the Superproject 0 software package.(See page 37.)

This computer form can be usedto enter for each task all the resourcesrequiredand their
cost. The software calculates the total task cost, as well as the total project cost. If you are
calculating costs manually, and you are confident in the total estimate of 210 person-days,
price the project by multiplying 210 by an 'average' cost per day, and add the fixed cost
items. It would be better to add more detail by costing out at least each Level 1 box on the
WBS. For example, thecost of Programming couldbe calculated as illustrated on page 37.

A price calculation must be done for each Level-1 task or phase, and totaled to get
project cost. Note that unique costs such as profit and risk can be more easily accounted
for manually than with a computer program.

Sec. 3.6 Project Schedule 37

Figure 3.6 SWERPROJECT task detail screen for task cost calculation

Average Pgr 75 pd @ $1000.00 per pd (loaded) 75,000

Profit 25% 18,750

Risk factors:
User will change his mind on 10% of formats

Cost = 10% extra programming time 7,500

PROGRAMMING TOTAL $101,250

3.6 PROJECT SCHEDULE

The next step is to calculate a dclivery date. To do this h e planner (probably the PM)
must translate the DIRECT days of the estimate to CALENDAR DAYS or duration.
One of thc dilficult tasks hcre is to allocate resources-who is going to work on what,
especially when tasks can be going on simultaneously. Even more difficult to decide is
if the duration of a task can be shortened by adding more resources.

On the PERT in Figure 3.5 only one Level 1 activity has more lhan one resource
assigned and is therefore divided into sub-tasks: programming. The PM must ask the
appropriate estimators if other Level 1 tasks can perhaps be divided. The PM then
redraws the PERT showing the actual duration of each task after it is divided. See
Chapter 14 for details on resource allocation.

38 Chap. 3 Project Planning

Then the PM schedules the whole project on the real calendar. The best method
to do this is to draw a Gantt or time-bar chart such as Figure 3.7 below:

Figure 3.7 SUPERPROJECT project schedule

First, all the known calendar events such as holidays, vacations, training and non-
project meetings are blocked out and all the project activities are scheduled around
these. Each activity is then entered on the chart as a bar, starting at the completion of the
last precedent activity. The completion of the last activity is the project end. See chapter
14 for a detailed discussion of scheduling.

3.7 PRELIMINARY PROJECT PLAN OUTLINE

Armed with all this knowledge, the PM can write up this crucial document. Here is a
suggested outline for the PPP. (Read this together with the example in Appendix A,)

1. The Project Team Detail here the organization of the project team (no
names). Show the structure, who reports to whom, who communicates with whom, and
SO on.

Although Chapter 18 will discuss the organization of a project team in detail,
Figure 3.8 gives an example of a typical project team and the major responsibilities of
the members on a small to medium sized project.

Sec. 3.7 Preliminary Project Plan Outline

IrICURJ3 3.8 Typical project team structure

PROJECT
MANAGER

I

PROJECT
LEADER

I

PROGRAMMERS: (No more than 5) Responsible for the programming.

PRO-
GRAMMER

1

PROJECT LEADER: Supervises Programmers on technical details only.
Responsible for (not necessarily does) technical activites such as analysis,
design and major programming tasks. Major Goal: Technical quality of the
product.
PROJECT MANAGER: Manager of team (leader, motivator, etc. Responsible
for all outside communication (reporting, meetings, userlupper level manage-
ment interface) Major Goal: Successful project. (Plan, Control, Communi-
cate.)

2. Project Cost Include here the WBS's, estimates and calculations that were
used to produce the pricc. You would not want this section in the hands of your
competition--it gives the whole project away. This is why this document shouldbe kept
private in a competitive environment.

PRO-
GRAMMER

2

3. Project Schedule TheGanttfortheproject. If some things arenotobviously
chronological, document why you did Ule thiigs in that order. Detail especially how you
handle the parallelism-sharing the work if here are simultaneous activities going on.

PRO-
GRAMMER

N

4. Reviews In this scction you relate h e approximate dates of the major man-
agement and technical reviews (the schedule will provide this!), the purpose of each
review and who will attend them. List the responsibilitics of the people involved. Try

40 Chap. 3 Project Planning

to put reviews after each major milestone. (See Chaptcr 21 for details on how to do the
reviews and reporls.)

5. Reports The format and content of the s tatus rcports, milestonereports and
other project documents are detailed here. List who receives each report and what his
or her responsibility is after receiving it. Again the Gantt helps to define when you
expect these reports to appear.

6. Documenfation There will be two classes of documents in the~roiect: user
and project management. Outline which documcnts will be produced, ani the respon-
sibilities involved: who writes, types, edits, approvcs, distributes each one.

7 . Assumptions You are basing a price hcre upon a lot of assumptions: most
of them are facts given to you (sometimes vcrbally!) by Ihe uscr. Write down any as-
sumptions still ou~standig that would alter your price if it proved to be untrue. For
example, "The system will have at most 10 simultaneous users." Protect yourself.

3.8 CONCLUSIONS TO PLANNING

Planning is like horseback riding: it looks difficult bcfore you start. But once you are up
there things get progressively easier.

And now for the badnews. Theestimates of costs and dates that project managers
come up with at this point (in Lhe Definition phase) are, on the average, 50% to 100%
off!

QUESTIONS

1. Group exercise. You are a house builder. You must createaWBS for a house project. The
WBS below has Levels 0 and 1, and someLevel2 and 3 items. Complete the WBS below
the box 2.0 BUILD HOUSE. Number the items.

HOUSE D
PLAN BUILD

HOUSE HOUSE HOUSE

FINANCE DESIGN

SELECT SITE BUY SITE APPROVALS

Sec. 3.7 Conclusions to Planning

2. List the four properlies of a work package item found at the bottom of a WBS.
3. Estimate, in persondays, the build house phase (does not have to be accurate). Start

with the lowest level items and work up the W B S .
4. Break 3.0 SELL HOUSE into Level 2 items. Identify the precedents for each task at Level

2 of the WBS for the whole house. Draw a network diagram (PERT) for these tasks only.
5. Estimate the calendar duration for each Level 2 task. Mark this on the PERT. What is the

length of the project? - .

6. Following is an outline of the WBS for PLAN HOUSE. The required resources, days for
each and costs are listed. We need a 33% profit margin. What should we charge for the
PLAN HOUSE item?

TASK RESOURCE DAYS COSTIDAY

Plan House
Finance Accountant 10 300

PM 5 500
Site

Select Site PM 5
Consultant 5 600

Buy Site PM 3
Accountant 3

Get Approvals PM 5
Design
Interviews Client 3

PM 3
Architect 3

Draw Architect 15
Blueprint Architect 2

Blueprinter 2
7. Group Project.

Write a Preliminary Project Plan for the HOUSE project.

1000 (fixed)

Proposals

The First Ball Park Estimate
and Schedule

4.1 INTRODUCTION TO PROPOSALS

A proposal has three purposes: First, it contains the project team's first estimate of the
cost and the delivery date of the project. Second, for an external project, it is a formal
legal document that outlines the project team's intent to provide the required services.
Third, it is a sales tool. It must sell the reader on the costtbenefit of the proposed project.

Although formal proposals are usually required only for an external project, one
should be written for an internal project as well. Internal organizations benefit from a
formal agreement between the user and project team regarding deliverables and costs.
The sales aspect of a proposal should not be ignored internally. A wise user will insist
that the project team 'sell' him on the project: prove to him that it is to his benefit to go
through the pain and aggravation of building it.

Proposal War Stories

As promised in the preface to this book, I will relate war stories throughout the book.
These are stories about projects that have gone astray due to problems with the
particular activity beingdiscussed. Recall that although the stories are basedon fact, the
persons and events are disguised to protect the guilty.

Proposals fail for two major reasons: First, no bid (proposal) where there should
have been a bid; and second, there was a bid but it was lost to the competition.

Sec. 4.1 Introduction to Proposals

No Bid

A large soft drink company invited an analyst from Famous Minicomputer Manufac-
turing Company@MC) to do a feasability study on what, if anything could benefit
from computerization at the soft drink plant. The analyst did his study, but during the
study he had a slight problem with the company accountant. This accountant was afraid
of losing his job to the computer, and made the analyst's life difficult by refusing to
answer any questions.

The result of the study was typical: The analyst recommended that several
computer systems would be helpful. He recommended installing a computer to run the
finances: accounts receivables, payables, inventory control, and so forth. He also
suggested implementing a personnel system to handle the payroll, taxes and such, and
a process control computer to handle mixing the drink, fillingthe bottles, and automated
trackiigof items in the warehouse. Whenasked toquote aprice, due to time constraints,
the analyst detailed only the accounting system price which came to $150,000.

The reaction of the customer seemedviolent. Ina nutshell, he stated that $150,000
was much too high for what seemed like a small fraction of his computer needs. He said
he would not pay more than $50,000 for the accounting system.

The fatal error, however, was committed by the analyst's manager. Due to the
customer's reaction (and probably for personal reasons) the analyst recommended to
his manager that the computer company withdraw its bid. He felt that this customer
would be difficult to deal with, that the customer would not answer questions correctly,
and that FMMC and the soft drink company would never reach agreement. Unfortu-
nately, the analyst's manager agreed and dropped the bid.

Comment: All users feel that your software costs are much too high. Perhapsthis
user could have been won over by some other approaches. The analyst could have
proposed the system in phases - built a smaller portion to get his foot in the door.
Maybe the user had the money, and was only negotiating. Never give up a bid after a
first meeting. There may have been apersonality problem between the fearful account-
ant and the analyst. The analyst's manager should have detected this and perhaps come
on the scene to assist with negotiations.

The preceding situation could take place with an internal project as well-where
the user and the client are two departments of a company. Expect the first reaction to
any price to be negative. Plan to negotiate. Sometimes your opponent is just testing to
see bow convinced you are of your proposal. If you withdraw immediately, he knows
you were not convinced.

Epilogue: The soft drink factory did computerize, at the price quoted by the first
analyst, but not with his company.

Lost Bid

A 'famous' author of Software Project Management (For Small to Medium Sized
Projects) books started hi consulting career as a microcomputer teacher. He went
around the microcomputer stores of his city informing the owners that he would teach
anybody anything. Sure enough, he got a call one day from a government aircraft main-

44 Chap. 4 Proposals

tenance department. Their job was to track who had training on what type of aircraft
across the country.

Six months beforehand a member of the department had bought an obsolete
microcomputer complete with an undocumented data base program (at a fantastic
price!), but he had left the departmenl before any data base was implemented. No one
in the department had any computer experience. So the teacher was hired to train the
department well enough to implement the database on that computer. He obtained the
appropriate information and successfulIy taught the people how to use the particular
computer and data base program.

About a month later the teacher received a call from the head of the department
asking if he could propose the cost for actually implementing their data base. The
teacher interviewed the potential users of the database: there were 25 potential users
with 50 differing opinions on how to use it. In addition thedatabase program would not
handle all their needs-other programs would have to be written (in BASIC). He
figured it would take him three months.

The first opportunity he had to present the proposal was at a board meeting of eight
department managers. All went welluntil hepresentedtheprice: threemonths program-
ming, $400 per day, $20,000 total. The managers were aghast. They had spent only
$1000 on the hardware and packaged software so far, and here was some idiot telling
them it would take another $20,000 to get it going!

Comment: Users are sometimcs unaware of software costs, especially in the
microcomputcr arena where the hardware costs are a small fraction of the total. In this
instance the managers' expectations were not set propcrly for the price range. We will
see in section 4.4 how to avoid this problem.

Epilogue: That micro is still sitting there gathcring dust.

4.2 THE TWO PHASE SOFTWARE PROJECT PROPOSAL

Wein thesoftware industry have established a terriblcreputation for estimating. Inmost
environments where software is produced someone comcs up with an estimate, which
his manager then multiplies by three, then his manager by two and so on. These
managers multiply our estimates due to their lack of confidence in us.

As discussed in Section 2.1, we cannot do a propcr estimate at definition time
because we do not know enough about thc problem. Recall that the suggested solution
to this is the two-phasedproposal process: Makc the analysisphase a small front project;
propose to do it in an Analysis Proposal. After the analysis is done propose the
remainder of the development in a Development Proposal.

There are obvious objections to this two phased approach. Your user will want to
knowhis total costexposureup front: he will bereluctant topay for analysis,only to find
out that he cannot afford thc remainder. No one likcs to fight for money twice.
Nevertheless, the two phased proposal is becoming the rulc rather than the exception
in larger, high risk projects. The Federal Government (which is incidentally the largest
victim of software estimators) will usually contract out the Analysis Phase of a large
software project to several contractors, and thcnhave one (or more) contractor build the

Sec. 4.3 Writing a Proposal 45

remainder. Government departments have learned that software estimates produced at
the definition phase are useless. DEC's Software Services, which is in the business of
writing projects on contract, will almost always insist on the two steps.

The sections that follow will address both the analysis and the development
proposals.

4.3 WRITING A PROPOSAL

Preparation

Proposal writing is difficult. It has to be done correctly, otherwise you damage your
reputation and chances for any future business with your client. Writing a proposal is - - .

also expensive: it may take many resources and much of your item, and you rarely get
paid for writing it. If it involves several people, treat it as a small project-assign a
proposal manager, draw up a plan (use the outline below), assign responsibilities, and
control the activities. If you have to produce many proposals, use a word processor and
change only the items unique for eachproposal, but make sureit appears custom written
for every client. Work with the requirements document (RD), especially if it is a
Request for a Proposal (REP). The format of the proposal should follow that of theRFP,
and if the RD is on your word processor much of the wording can be reused. Leave the
door open for further questions to the uscr as you will have many as the proposal
progresses.

Here is a suggested outline for a proposal.

Proposal Outline

(Appendix A contains a full example.)

1 . Cover Letter A letter directed LO the decision maker, signed by the project
manager (if an account representative is the primary contact with the client he or she
may sign as well). The body begins with introductory text such as, "Thank you for
giving XYZ Software Co. the opportunity to propose ... for your computer system."

The nextparagraph gives asimpledescriptionofthe system such as "...hardware
and soltware to handle ABC's regisuation, finance andmanagement informationneeds
for the next three years."

In the subsequent paragraphs explain whether this is an analysis or a development
proposal, and explain the two steps if it is analysis only. State price and delivery date
if it is a 'fixed price' contract, cost per hour and estimated hours if it is a 'cost plus'
contract. (Acost-plus contract specifies you will work X hours, andgetpaid by the hour,
plus materials used. See Chapter 5 for the details of thcse contracts.)

Close the salc+nd thc letter with statements that force a quick decision in your
favor. You do not wish to wait six months to gct an answer. Closing remarks could be
expiry dates for the price quoted (30 days is customary), or statements such as, "If we
are given a go-ahead in 14 days we can start January 1, otherwise we must do another
project, and we can only start yours on June 1." This latter closing works with internal
projects as well.

Chap. 4 Proposals

2. Title Page This page contains "Proposal", the title of the system, author,
date, revision number, company logo, and so forth.

3. Table of Contents Since the client may not be familiar with your proposal
format, give a brief explanation of the purpose of each section. Here is an example of
the Iormat:

Section 1: SCOPE Describes the business problems addressed by the XYZ
solution, the size, extents and limits of the proposed system ... pg.3

Section 2: Advantages .. ~ g . 4

The remainder of the proposal contains the following sections:
4 . Scope See the paragraph above. A lot of this section comes directly from

the Requirements Document.

5. Advanrages Sell the project team hcre. Prove how your well planned, well
controlled, seven phased methodology will work. Address any requests in the RFP that
your team is particularly adept at answering. You may even consider a few remarks
about your competition's (inferior) solutions, without names of course.

6. Financial State the total price and the delivery date. If hardware is in-
cluded, break down the hardware and operating system price. (Your hardware vendor
will gladly provide adetailedpricelist.)Ifit is afixedpricecontract, quoteonly the final
price for the custom software. Although you have by now estimated thc software costs
down to person-days times costs-per-day, you do not wish to divulge this calculation.
As we will see in Chapter 13 (Estimating), we sometimes multiply our estimates by
'fudge factors' due to some inadequacy in the user (or ourselves!), and we do not wish
to explain this. Furthermore, those estimates may be very valuable to the competition.
Sometimes, though, you have to divulge your calculations. Governrncnt contracts, for
exarnple,usually request suchdata. Youmustsupply it, buthide thefudgefactors.If you
are proposing a cost-plus contract, statc a nonbindingestimateof hours or days required
and the cost per hour or day.

State the expcctcd delivery dale (given a prompt go-ahead).

Draw a pay back graph that shows system cost, system cost savings, and the
number of months or years it will take for the system to pay for itself.

List any non-monetary benefits, such as job satisfaction, good will, customer
happincss, management happincss, etc.

7 . Plan Describe the steps you have planned to develop the project. If this is
an analysis proposal, detail the reasons for using the two step method. Explain that the
analysis phase produces the invaluable Functional Specification document, which will
be used by Lhc clicnt and the project team to specify precisely what the system will do.

Dcscribc the Projcct Team and the project organization. Describe the milestones,
especially thc ones the uscr will have thcopportunily toreview. Show how theuser will
be informcd of projccl progress.

Sec. 4.3 Writing a Proposal 47

Listthcreponsibilities that theuscr will have. This may be peopleor materials that
he must provide, or a task he must perform. He must appoint a project representative
who can answer your questions. He must also provide prompt approvals to certain
documents. The Proposal will be a document signed by both sides -make therespon-
sibilities as binding as possible.

Describe the activities in the seven phases. Show that you know what you are
doing (remember that this is a sales document).

8. Deliverables List what the user will receive:

Hardware, operating system, packaged softwares: List in detail. State why
you chose each onc, its functions, capacity, and dclivcry times.

Custom software: "as detailed above."

Warranties: How long aftcr delivery you intend to fix any problems, and how
you will provide the support.

Documents: List the manuals (User, Operator, Manager, Maintenance) with a
brief description of the purpose and the rcadcr.

Training: List lhccourscs (User, Operator, Manager, Maintenance) with a brief
description of h e purposc and the audience.
Describe the method of delivery: When you willdeliver, whereit willbedeliv-
ercd and how it will be done.

9. Acceptance One of the greatest problems in the computer industry is
system rejection. Thc user refuses to accept the system (and to pay for it) because she
feels that it is not what the PT agrecd to deliver up front. We must implement an
acceptance method that proves unequivocally that the FT has met its commitment. In
Chapter 8, we will discuss a very thorough acceptance method tied almost verbatim to
the promises made in the functional specificalion (FS). In the proposal we warn theuser
that we will agree on (sign) the FS, we will build an acceptance lest plan (also signed)
based on the FS, and if the acceptance is run as prescribed in the acceptance test plan
the user must accept andpay.

10. Alternatives Sometimes you find that an RFP has been written with a
certain vendor (hardwarc andfor software) in mind. This is fine if you are that vendor,
but what do you do if you are not? You must then detail the other vcndor's solution as
an ALTERNATIVE SOLUTION, and prove why your solution is better.

11. Terms, Condirions and Assumptions List here all conditions that you
desire lo work under (even for an internal project). These are here to protect you. Be
especially careful about cost plus projects: you promise to deliver only the hours, not
products.

List all assumptions. There will always be questions that the user was unable to
answer precisely, and so assume the answers. If these assumptions affect the cost of the
project you must protect yourself.

48 Chap. 4 Proposals

12. Terminology Even though the proposal must be written using the user's
language as much as possible, some computer terms may have crept in. If you feel that
these are unfamiliar to the client. define them here.

4.4 THE INFORMAL PROPOSAL

Proposals should not be made in boardrooms. They should be made informally in a
telephone call, on a golf course, over coffee or beer. Recall the war story about the
consultant who shocked his customer when proposing a costly system for the first time
in the boardroom. This is what he should have done, and will do the next time:

After a few days of interviewing the potential users he should already have an idea
of the complexity involved. He should arrange an informal meeting with the client and
say, "You know, this is going to be very complex; fifty screens, 2 to 4 months of
programming. By the way, did you know programmingcosts run around $400-$600per
hour?" The initial jolt is delivered.

Then a week later the consultant has a more accurate estimate. He calls the
manager again, and informally states: "I feel this may be as much as 4 months of
programming. But I would only charge $400per hour." In other words, if you know that
the news will be shocking, inform the user in slow, easy installments. He will have time
to digest it, maybe even take a second look at his budget. At worst, the client will
calculate that even two months at $400 is way out of line with his budget and tell the
consultant to stop wasting his time on further analysis.

A formal boardroom presentation will still have to take place, but the user should
already know what major items will be proposed.

4.5 INTERNAL PROPOSAL APPROVAL

There is a rule at DEC Software Services which states that no proposal may go out
before it is approved by a higher level manager. The level of management approval is
tied into the amount being proposed. This rule has averted countless disasters. Take, for
example, a case where a PM is bidding on a rocket guidance system for the military,
and he needs VP level approval. The PM may ask, "What does a VP level manager
know about such a highly technical system?" Indeed the VP may know nothing about
the system, but he has worked with the military countless times and can warn the PM of
risks that may add to the price, or give advice on how to sell a project to the military.
Even in small companies where few levels of management exist it is wise to show a
proposal to someone else before sending it out. Getting a second opinion isan excellent
risk-reducing tool.

4.6 PRESENTING THE PROPOSAL

Always prepare the presentation. A dry run is best. Prepare and schedule all the required
resources: transparencies, projectors, screens; possibly a terminal and a modem to log

Sec. 4.7 Conclusions to Proposals 49

into a system similar to the one you are proposing. Make the presentation in a proper
room, at your site. At the customer site there will be more interruptions.

The order of events in the presentation should be: First,make the opening remarks.
Introduce everyone, and state the purpose of the meeting. Introduce your proposal by
paraphrasing the cover letter (see Section 4.3). Then distribute the proposal. Allow time
for everyone to read it quickly. Then emphasize the advantages section. Lastly, close
the sale: get the user to buy, and buy quickly.

Prepare for the inevitable negotiation. Have all the pertinent facts at hand. Beware
of the 'hostile user'. There may be individuals on the client team who are against you.
This may be due to fear or ignorance, which can easily be dealt with. The most difficult
issue to deal with is the client who is convinced that your solution is wrong. The classic
example is the user who has always used a certain brand of hardware, and objects to a
different brand. The best defense against this person is to anticipate the objections and
be prepared to answer. Typical objections may be, "Brand X is better hardware, or
better support, or better reputation or will network better with our existing Brand X
mainframe." Have the facts ready that disprove these arguments.

4.7 CONCLUSIONS TO PROPOSALS

Proposal writing and presenting is an art. You may be fortunate and not have to write
proposals. You may be able to simply go to your managers and say, "Let's build this
system; we will make money, everyone will be happy. Trust me." Most people have to
convince their manager using some sort of proposal. Do not fill the proposal with extras.
Emphasize quality, not quantity. Do not promise anything that was not requested by the
client: who do you think will pay for this? Avoid the "We will cross that bridge when
we getto it" attitude when you hit a major stumbling block. That is being dishonest with
both yourself and your user. Plan a solution for all the problems. And finally, for an
external project, a proposal is a legally binding document. It should be treated similarly
for an inside project-with as much respect and formality as if it were an external
contract.

QUESTIONS

1. What are the three purposes of a proposal?
2. What arguments would you expect from a person trying to talk you out of the two phase

proposal? How would you counter these arguments?
3. Group assignment:

Write a proposal for the 'HOUSE' project developed in the QUESTIONS in Chapter 3.
4. What is the main purpose of the informal proposal process? Can you think of any

disadvantages to proposing informally?
5. What is the advantage of getting higher levels of approval for a proposal?

Negotiation and Contracts

The Legal Aspects

5.1 NEGOTIATION

Why is it that when people go to themarketplace in Mexico they will negotiate for hours
on a price of a few dollars, but when they are dealing with a product worth hundreds of
thousands of dollars they are reluctant to 'haggle'? Never beembarrassed to negotiate.
Learn how to do it correctly and you will be able to use the skill in situations ranging
from the world of projects to your neighborhood garage sale.

The Sclence and Art of Negotiating

The key to successful negotiating is knowing the facts. First and foremost, know the
product you are trying to sell or buy. For example, if your management (or user) is trying
to 'bargain down' your price estimate for a software project, have at hand the details of
the methods and formulas that you used to calculate the price. In Chapter 13 we will
discuss estimating and pricing methods, but themajor point that we will learnis that you
must break the project into small pieces and estimate each piece. Armed with these
details, you can turn the tables on those who try to reduce your estimate by saying,
'Whichpiece do you feel can bereduced?" In fact, there should be little or no haggling
on an intcmal project. If you establish a reputation for accurate (and honest) estimates,
you can stand firm on your first proposal.

Before you embark on a negotiating session, decide two things: what you
absolutely need out of the deal, and what you are willing to give up. If you are the
software vendor and the item under negotiation is price, have a good idea of the
minimum price you arewilling to accept. If you are the buyer, know themaximumprice

Sec. 5.1 Negotiation 51

you are willing to pay. It also helps if you know your opponent's needs as well as his
flcxibility.

You should also anticipate how much negotiation there will be. Ifyou feel that the
opposition will believe you without argument, prepare an accurate estimate and state it
as an unnegotiable fact. This is the best way to approach a closed bid contract or
Government RFP where a bid is either accepted or rejected as it stands. In acompetitive
situation or when management is inexperienced, negotiation will usually take place.
Pad your estimate to allow for a slight reduction. Depending on your opponent, there
may evcn be a psychological benefit in allowing him to bargain you down a little.

The Three Negotiables of a Project

The item most often negotiated is the price, but the project duration and funcrions
provided can also be put on the bargaining tablc. As thc saying goes, ''You can have it
cheap, fast or good: pick two." You can sometimes savcmoney by takinga littlelonger.
Or if the price is absolutely unacceptable, consider proposing fcwer features. You can
even deliver the product in releases. Release 1 contains the basic functions for a basic
price, and the subscqucnt releases add more and morc functions. This piecemeal
implementation has advantages for both parties. The user docsnot have to exceed his
present budget, and also has a margin of safety by not having Lo commit to the whole
thing up front. The projcct team gets the first job, and unlcss they bungle it completely
they will usually do the subsequent phases as well. (Sce Chapter 10 for programming
and integrating a system that will be built piecemeal.)

You Get What You Pay For

If you are the buycr of the product, beware of bargaining thcprojcct team down too far,
or accepting an unusually low bid. Imagine the following situation:

ABC company puts their software requiremcnt out to tender. They receive two
bids:Thefirst is from Smart Software Co.(SSC). SSC has doneanaccurateestimateand
bid a priceof $200K, to be donein twelvemonths. The second bid is from Unscmpulous
Software Co.(USC). Thcy bid $loOK, six monlh duration. Thcy may be dishonest,
estimating it to bc $200K and twelve months, but bidding low to "get their foot in the
door." Or thcy may bcstupid andhavcestimatedwrongly. Trying to savc money, ABC
of course acccpts USC.
Six months latcr, and alter payments of S100K to USC, the following scene takes place:

ABC: Thc systcm will bc dclivcrcd today, right?

USC: Wcll, we have somc bad news.

ABC: What bad news?

USC: Unfortunatly, wc have spent the SlOOK, but we have only half the
systcm writtcn. You have LWO choiccs: give us anothcr $100K
(maybe morc,) or takc your half a systcm.

ABC: But wc havc a contract!

Chap. 5 Negotiation and Contracts

USC: I have to pay my programmers, otherwise they will leave. If you don't
pay me I will declare bankruptcy. Please forward all my mail to
Brazil.

The neophyte customer can do nothing with half a system, so he has littlechoice but to
pay the extra amount. Note that this scene could just as well have taken place on an
internal project. Recall the 'estimate by edict' scenario? The dialogue went between the
PM and the upper level manager (UL) like this:

PM: We estimate this project will take $200K, 12 months.

UL: You must do it for $100K in 6 months.

PM: Why $loOK?

UL: That is what is in thc budget.

PM: Why six months?

UL: That is what marketing promised to the customer.

PM: I'll do my best.

The results will be Lhe same. A twelve month project cannot be done in six months no
matter what you do. Justify your price by demonstrating your well planned, well
controlled managemcnt method. Prove that you know what you are doing. If theuser is
confident that she will get a quality product, she will wait patiently and pay a fair price.

5.2 CONTRACTS

The contract for the software product obliges the project team to provide certain
deliverables, by acertaindate, for some kind of remuneration. Unless the project is done
on a very formal basis for an external organization, a special ''contract" document does
not need to be written. Instcad, the following items are addressed in the proposal. Recall
that the proposal is a signed document, and it should be treated as a formal contract.
These items could appear within thc tcxt of thc proposal, or better, under a topic titled
"Terms and Conditions."

Items To Be Contracted

In addition toprice, delivery dale and deliverables, Lhe contract can include other terms
and conditions such as non-disclosure or reproducfion, price holding, licensing, or
warranlies. If failureof the software can cause loss of life or other critical situations, the
liability of the authors must be clarified. If the estimates quoted are based upon verbal
input from the user, an "escape clause" should be included. This allows the project
team to walk away in case of false information. The user's responsibilities, such as
providing accurate and timely information, or cvcn doing some of Lhe work such as
documentation, should be written down.

Sec. 5.2 Contracts

The Fixed Price (FP) Contract

This is the most common type of contract. In the FP contract the project team quotes the
total price for the project up front. The PT, however, assumes most of the risks in a FP
contract. What if certain items beyond their control cause the project to exceed the
quoted price? Use a FP contract only if you can quantify and price in the risks. (See
Section 2.5 on Risk.) A FP contract is appropriate if:

1. You are confident that no major changes will occur.
2. You are working with known software and hardware products.
3. You have good communication with your user.

In fact, the user usually prefers a FP contract. She knows her total exposure, and can
budget better up front. But watch-out, the user will try to get as much for her fixed price
as possible (which indeed she should!)

The Cost Plus (CP) Contract

If the risks are too high to quote a fixed price, the PT should opt for a CP contract. In
a CP contract the PT gets paid a fixed amount per hour or day worked, plus expenses
incurred. Usually no firm promises are made as to how long they will take. The CP
contract is appropriate if:

1. You feel that major changes will occur. (The Requirements Document does
not exist or the requirements are not firm or unclear.)

2. You are working with an unknown operating system, packaged software or
hardware, or you will have to write special development tools, such as
simulators, test beds and so forth.

3. Communication between you and the user is weak.
4. The majority of the activities are human oriented, for example, interviews.

(Try to estimate the task of 'Interviewing someone until all hisher problems
arewritten down.') This is why large software companies such as DEC will
usually try to do the Definition and Analysis Phases in a separate CP contract.

Terms and Conditions

If you are on a CP contract, make sure that the terms and conditions are clear. The
following is quoted from a DEC CP contract:

COST PLUS CONTRACT DISCLAIMER

[We estimate the proiect to take X hours. This1 ... is based upon the project team's present
understanding of the requirements. The project team wil~~rovidd such service up to a
maximum of X hours rat a cost of $Y per hour]. If additional service is required, theproject
team will resume work only after writen authorization from the user, at which time a new
estimate will be mutually determined.

54 Chap. 5 Negotiation and Contracts

Note how DEC statcs the extents and limits of their service in a simple paragraph.
Include all of your terms and conditions-the legal aspects of the way you want

to work with the client. This provides protection to both you and the client, and avoids
difficulties later. Legal items that have to be clarified up front may involve payment
issues, copyrights to the sources and the documentation, liabilities, warranties, and
problems with hardware and software provided by a manufacturer.

Contracts in an Outside Organlzatlon
versus an Inside Organization

Contracts are widely accepted if an external organization or company is providing the
project service. Why is this not so for an inside project? Even in the closest of PT and
userrelationships here should be some sort of formal, written agreement describing the
services the FT will provide. This can be a letter of intent or a formal proposal. Write
il down and you will avoid endless hassles later.

5.3 REVIEWING THE RETURNED PROPOSAL

The user may return the accepted proposal with 'minor' changes. Schedule time for the
technical members of the PT to review the changes-minor 'wording' changes may
mean major effort. Even the price may have to be renegotiated. Watch out for
disagreements in the Tcrms and Conditions. Let higher lcvel management or perhaps
the legal department handlc thcm. Do not start work until all agreements are final. I
know of one project that was cancelled six months after thc PT started it due to
disagreement on copyrights to the software. It may evcn bencfit you to lct your user
know about your terms and conditions before writing thc proposal.

5.4 CONCLUSIONS TO THE DEFINITION PHASE

This brings us to thc end of the definition phase. Let us review the key milestones that
have been reachcd. Recall that thcse milcstones were used to plan the project, and
conlrol its progrcss.

1. Thc Rcquircmcnts Document is complctc and agreed to by both the PT and
Ule user. Look for a formal sign off, such as a rncmorandum stating accep-
tance.

2. A Proposal document, cilhcr for analysis or ior the whole development, is
completed and bought by thc user. Wriltcn agreement is required.

3. Although not considered a mileslonc (pcrhaps a yardstone, or mcterstone in
Canada?), approval of the Preliminary Projcct Plan by those providing the
rcsourccs is ncccssary.

Sec. 5.4 Conclusions to the Definition Phase

QUESTIONS

1. What must you know before you can begin negotiating?
2. What three items can be negotiated in a software project?
3. List three major items (and as many minor items as you can) that may have to be formally

and legally contracted in a software project.
4. What are the differences between fixed-price and cost-plus contracts? Describe two

situations where you would use a fixed-price contract, and two where you would use a
cost-plus one.

5. The client has changed something in the proposal when reviewing it. Under what
circumstances should the project team review the impact of these changes?

6. What are the milestones of the Definition Phase?

The Analysis Phase

Detailing the Promises

6.1 INTRODUCTION

The objective of the Analysis Phase is to define exactly what the system will do for the
user and how it will fit into hisher environment. The major activity (and milestone) of
this phase will be to produce the document that defines the system behavior, called the
Functional Specifications (FS). (See Figure 1.1.)

After the FS is done, you are armed with more knowledge than at the Definition
Phase, so you should revisit your preliminary project plan and initialestimate. Statistics
taken at DEC and other places show that your estimates are on the average twice as
accurate after the analysis as those done before. If using the two phase proposing
method, you plan and estimate the remaining phases at this point.

The third activity, writing the developmentproposal, will be done only if the two
phase proposing method is used. It will be written after the FS. We will not detail how
to write the development proposal. The content and outline is the same as that for the
analysis proposal, except that it proposes to do the remaining five phases of the devel-
opment.

Note in Figure 1.1 that one of the milestones of the Analysis Phase is the top level
design (TLD). If this book were strictly theoretical, I would state, "In the Analysis
Phase you must deal only with what is to be done; stay away from how it will be done
because the Design Phase will deal with that." But this is a practical book, so I suggest
that by the time your analysis is done you must know how the system will do themajor
functions. In other words, the TLD must be done. In fact, you have already done some
of the designin the Definition Phase when you wrote into the proposal the hardwareand
major sofhYare packages that would be used.

Sec. 6.1 Introduction 57

Having an idea of the TLD is crucial so that impossible or extremely difficult
commitments are avoided. The following could be a (exaggerated!) demand of your
user at analysis time: "I wish to twirl a dead chicken about my head, strike the terminal
with it, and have the main menu appear." You may want to talk the user out of this on
the grounds that the chosen hardware and Fourth Generation development language
(part of the TLD) does not support chickens. Would he take a mouse?

Analysis War Stories

Story 1. There once was an Arts Programming Committee whose job was to
schedule and run cultural events in the theater of a large city. The Committee consisted
of 27 individuals with 8 subcommittees. The individuals were not technical except for
the Treasurer, who was also the Vice-President of a Famous Minicomputer Manufac-
turing Company (FMMC). All of the committee's income came from government and
private donations, and since there was always a bit of fighting among the members,
there were a lot of 'politics' involved in every aspect of this committee's business.
Needless to say it was very difficult to make decisions.

A few years ago this committee decided that they should get a small computer to
assist with the organizing, advertising, and accounting. The VP from the FMMC imme-
diately recommended a computer-in fact he gave them a computer free of charge
(good publicity, tax deductible, etc.). So the committee hired an analyst from the
FMMC to help them decide how to use the computer.

The analyst began to interview the members to get the system requirements. He
received a set of suggestions from the first member. The second member asked, "What
are the suggestions of the first member?", then proceeded to disagree with the first
member. The third one disagreed with the two previous ones, and so on. But worse than
that, the previously interviewed members were constantly changing their minds! An
interesting phenomenon takes place when a person goes through his or her first
computer analysis discussion. He usually gets turned on to computers. After the
discussions, the committe members began to read computer magazines and articles.

The poor analyst found himself barraged by requests such as, "Hey, I just read an
article about a computer that could do mouses. Can yours? Yes? Then I want the
function I requested last week changed to ..." Four weeks and 27 interviews later only
three pages of 'final' specifications were written.

Comment: In the industry this is known as "analysis paralysis." The problem is
that you cannot go on to the next step, design, until the majority of the analysis is done.
Although analysis paralysis is usually caused by users who cannot make up their minds,
I have known analysts, managers and even programmers who deIayed progress due to
indecision.

Epilogue: There was some bad publicity about receiving their 'free' computer.
After six months of analysis paralysis the committee realized that they were taking too
long to decide. They gave the computer back. As far as I know, they are still at it ...

Story 2. This story took place in a large data processing shop that was respon-
sible for all the programming for their company. An analyst was assigned to do the FS

58 Chap. 6 The Analysis Phase

for a certain project. He wrote it and gave it to the user for approval. The user read the
firstpage. It was full of computer jargon and technicalities that he did not understand.
He filed it. There was a meeting set up for the analyst to get together with the user to
explain and approve the FS, but this meeting was constantly postponed. Finally the
deadline for approving the FS arrived. It was returned to the analyst with a note to the
effect, "Go ahead and build it, and we'll tell you what's wrong once we see it." At
acceptance time the following scene took place:

ANALY ST(A): Here is your system. The first report we will demo
is the "Sales by Geography Report."

USER(U): This report does not give me the information Ineed
to make a marketing decision based on geography. It
is useless.

A: What do you mean it's useless? We described this
report on page 10 of the FS and you signed off!

U: (Neverhavingread page 10) I did not understand
a word the FS said.

A: How come you never told me that?

Comment: Ifeel that this problem is the analyst'sfault. We will see how to better
ensure that the user understands the FS.

Epilogue: The DP department had to rewrite the system.

6.2 THE YOURDON DATA-FLOWIBUBBLE
CHART METHOD OF ANALYSIS

Edward Yourdon invented a graphic method for documenting and driving the analysis
process that has become very popular (Reference 11). Following is an application of
that method (modified somewhat) to the ABC project.

Defining the Users

The analyst, together with the user, develop a diagram such as Figure 6.1 below. They
begin by listing in circles all the users that will have any interface to the system. Note
that even the indirect users, such as the STUDENT, are listed. Then they draw arrows
for all the inputs from and outputs to each user, marking on the arrows the information
or data that is passed. Note that the arrows can represent informationj7ow (STUDENT
-> REGISTRAR by telephone), dataflow (REGISTRAR -> COMPUTERvia terminal)
or even physical movement of items (WAREHOUSE -> CLASSROOM ships mate-
rial). This is why the diagram is called a 'data flow' chart. Next, the analyst and the user
identify the general information kept by the system (course information, student
information, material information) and write it into the circle. These are not (necessar-
ily) files, just items of information that need to be kept.

Sec. 6.2 The Yourdon Data-FlowIBubble Chart Method of Analysis

/------ -1

Figure 6.1 Yourdon analysis

Defining the User Interfaces

The user and the analyst detail each item represented by the arrows, which are the data
flows between the users and the system. This will drive the description of all the menus,
forms, reports, commands and messages-in other words the 'user interface' to the
system. The purpose of this process is two-fold: first to detail the computer interfaces,
and second, to gainacommonunderstanding of the user's business. Sometimes even the
user learns about her own business from this type of analysis.

For example, analysis of the STUDENT to REGISTRAR data flow may result in
the following mutually agreed upon detail:

60 Chap. 6 The Analysis Phase

STUDENT -> REGISTRAR and REGISTRAR -7 STUDENT
Method: Verbal over phone, or mailed in
Inquiries

Location, dates of courses
Number enrolled/maximums
cost ...

Responses
Course locations, dates [next 6 months)
Number enrolled (next 6 months); maximum allowed
cost
. . .

Changes
Update name, address, payment information of student
Cancel a student from a course

Register a student
Obtain and enter name, address, course [by number)
Payment information

Performance
Must handle up to 3 calls per minute

Analysis of the REGISTRAR to ABC may result in:

REGISTRAR -> ABC
Method: Terminal input
Automatic registrar menu

When registrar logs in with specific account number, menu of
the format in the Functional Specification Figure 3.9 is pre-
sented. To make a choice on this menu, the registrar can use
either the UP and DOWN arrow keys followed by RETURN, or move the
mouse up or down, followed by press on mouse button.
If student wishes information on course

Registrar chooses 1.
Menu of format FS Fig. 3.10 appears.

If student wishes to enroll...

Thus all of the possible system interfaces are addressed. The next step is to detail all the
appropriate menus, forms, reports, and commands. All the menus such as the Regis-
trar's and the Inquire on a Course must be detailed. Granted that some things cannot be
made absolutely final, and changes will have to be made later. But the more detail you
can agree to at this stage the more stable your project definition will be.

Sec. 6.3 The Functional Specification (FS)

6.3 THE FUNCTIONAL SPECIFICATIONS (FS)

The remainder of the analysis effort will be to fill in all the detail required for the
functional specifications document. The FS describes, in narrative and picture format,
all system behavior. The user interfaces defined above-the mcnus, commands, re-
sponses, reports, and messages are detailed as much as possible. All performance
requirements are addressed. Any changes in the user's environment due to the new
systcm are explained. All the deliverables, including hardware, software, training,
documentation and warranties are detailed. The FS is what the system will do for the
user.

In addition to the proposal, the FS is also a contract between the user and the PT.
Largc sums of money may be at stake, and the user requires more detail about his
delivcrables than what was in the proposal. The FS will probably be negotiated and
revised, and when agreement is reached it must be signed off by both parties.

Outline of the FS

(See Appendix A for a full example)
1. Title Page Title 'Functional Specifications,' systemname, author anddate.

Do not forget version number: this document will be revised!

2. Table of Contents Section names with page numbers.
3. System Overview Describe the system. Keep in mind that the FS is a

technical document intended for a non-technical reader (the user). The best way to
describe such a system is to use pictures. Let us take the example of the Amalgamated
Basketweaving Course systcm described earlier. The basis of the system is data
pertaining to Courses and Students. Theuser requires certain inquirieson this data, such
as enrollments, course availability, schedules, accounting details and so forth. She also
requires update capability, such as registration, defining a new course, cancelling a
course, adding new students into the data base and so forth. She requires reports to be
generated, such as invoicing, material order, confirmation, numbers of students en-
rolled by course or geography. All of these parts must interface to the user, so a mouse
driven menu system is to be provided. To cxplain all this, you should start with the
diagram as shown in Fi y r e 6.2.

Fi y r e 6.2 is lruly worth a thousand words. The user can easily see that the five
major functions to be written are INQUIRY, UPDATE, INVENTORY CONTROL,
REPORT GENERATION, and and a mouse driven MENU interface.

4. Major Objectives List the objectives of the system, relating each to the
main modules. For example, INQUIRY will allow immediate response to questions
such as "How many students enrolled in a course."

Describe how thenew system will affect the user's environment: where terminals
will be placed, who will use them, what reports will be generated, when-how all this
will change each person's job. You must warn the user if this system will affect any
aspect of his life. What if the system will put thee clerks out of a job? Although this
is not your problem, you should warn the user now.

Chap. 6 The Analysis Phase

MOUSE 0
TERMINAL TERMINAL

TERMINAL TERMINAL

I MENU I

INVENTORY
GENERATION

STUDENTI
COURSE

Figure 6.2 Major fuuciions of the system

5. Special System Requirements This section addresses system requirements
such as networking, compatibility, security, reliability, and ease of use.

Tricky issues such as response (number of seconds it takes for the computer to
'answer,') throughput (total amount of work that goes through the computer in a period
of time) and growth (requirements several years from now) can be addressed here.
These issues are difficult because you cannot make ironclad promises about them, nor
can you adequately test for them. For example, what if the Requirements Document
contains a statement such as, "The system must respond to every input in 5 seconds."
Even the fastest computer ever manufactured will under certain circumstances take
longer than 5 seconds to respond to certain requests. The FS can make promises such
as, "The computer will respond to 95% of the requests within 5 seconds in a 24 hour
period (or the peak period of 11:00 to 12:00 AM)" or, for a critical system such as a
nuclear power generator, "The crucial requests involving shutting down the reactor

Sec. 6.3 TheFunctional Specification (FS) 63

will be responded to within one second," or cvcn, ' 'Themain dcsign objective will be
system response."

Similarly, do not make ironclad promises about lhroughput or growth. Promises
can bc made in terms of numbers of users, size or files, transactions per minute or the
expansion of the hardware, but these may be dimcult to prove at acceptance time. It is
much too expensive to plug in all the possible expansion dcvices, or fill a disk full of
'garbage' data just to prove that the system will handle it.

6. Comvonent DescriDtions Include here a detailcd description of each box,
or function, shownin the syskmdiagramin~igure 6.2. For example, when detailing the
MENUS, the use of the mouse as well as a picturc of all the proposed menus is shown.

For INQUIRY, all the possible inquiry types and system responses are listed.
Similarly for UPDATE and REPORT GENERATION.

For INVENTORY CONTROL dctail only h e functions visible to the user. There
is no nced to dctail how the system docs the calculations. Do not make the FS technical
-remember, theuser must understandevery word. (Sce Section 6.4, Technical Writing
far the Non-Technical Reader.)

For the DATA kept, list only the dara elements. For example:

Course Data: Course title, date, nurnbcr enrolled, material required, location, instruc-
tor, status (running or cancelled).

Do not describe file oriented information such as filc organization, record and
field-lhe Design will do all this. Do state limits however, such as the maximum
number of courses the system will handle.

7. Other Deliverables Documentation. State the numbcr of documents to be
produced, the intended reader and use, the approximate size and table of contents if
possible. For example:

The User's Guide will show all the appropriate users how to sign into the system,
use their menus, do thcir work, respond to error situations and sign off the system. The
User's Guide should scrve two purposes: first, as a learning tool since all the commands
will be presented in the order that the uscr will sce them in his/her work situation.
Second as a reference since at the end of thc guidc all the commands andmessages will
be prescnted alphabetically. The following is Lhc Tablc of Contents (not final):

1.0 Registration

1.1 Sign into system

6.0 Warehouse

...
15.0 Reference of all Commands

Indexes

Training. Detail the number of courses, their length, the intended students, and
the skills each course will teach. List the modules or topics to be covered in each course,

64 Chap. 6 The Analysis Phase

and the training matcrial to be used or produccd for cach one. A well written User's
Guide can be used as the basis for thc training.

8. Specifcation Changes Nothing kills projccls as quickly as changes. The
FS is a 'baseline'-subsequent items will be built bascduponit. Changes to the FS may
cause changes to all of these other itcms, which may cause expensive overruns and
delivery delays. Changes must therefore bc minimized. Since you cannot stop changes
altogether, put in place a procedure to control the changes, to assess thcir impact and
to rcceive payment for making any changcs. I propose the following change control
procedurc:

Form a 'change control committce', consisiing of at lcast oncpcrson from theuser
sidc (usually the user project coordinator) and one person from the PT (usually the
Project Manager). Inform h e user community that all changes must come to the PT
through Ihe user coordinator. Each weck, or as necessary, the committee meets and all
changes are presented to the PM. The user should prioritize his changes from a rating
of 'critical' to 'desirablc'. The PM then takes the changes to the technical members of
the PT, who classify the changes as 'casy' or 'hard'. An easy change is one that can be
implcmcnted by a person in a few hours without altering a baseline document. (So far
the only baseline we have seen is the Funclional Specification. We will see one more:
the Dcsign Specification.) The PTusually implcmcnts the casy changes without further
ado.

A hard change usually involves a large cost-in dollars of cffort andlor project
delay. The PT calculates this cost and presents it to the user, usually at thenext meeting,
perhaps sooncr if it is a 'critical' change. The user must give written go-ahead to any
change, accepting the impact of a price incrcase or delivery date slip.

9. Acceptance As we saw earlicr, one of the greatest problems in the software
world is that theuser is often reluctant to accept and/or pay for the system. Shemay feel
that problcms will crop up laler and that the PT will not bc around to fix it if she pays
for it all up front. I have even heard of a case where the FS stated that thc system would
handle the user's growth for thc next five years. The user said, "I will pay you in five
years if it still works." We do not buy cars on those terms. We pay for them and the
problems are suppose to be fixed under warranty.

I will propose a mcthod for acceptance that minimizes "mistrust" as well as any
surprises, and ensures acceptance and payment. This method will be detailed in
chapters 8 and 11, but it is essentially a stcp-by-step demonstration of all thc functions
that the systcm is supposed to do. In the proposal we outlined the general acceptance
method to the user (and told her that if all the tests work she must accept and pay). In
the FS we dctail the acceptance method, and get sign off here as well.

10. User and Project Team Inferfaces The user and the project team must
communicate at both technical and management levels. A technical user representative
is required when the PT needs fast and accurate answers to technical questions. These
questions do not stop at the Analysis Phasc, but become more and more complex as the
project proceeds. The uscr should appoint at lcast one person to be available to answer

Sec. 6.5 Other Uses for the Functional Specification 65

questions. This person must know the user's business well, and have authority to make
decisions for every deparlmcnt that thc proposed system will affect. The user and
project team must cornmunicatc at managcmcnt lcvcl as well. This will be done at least
by theuser project coordinator and the Project Manager. They will discuss issues such
as budgets, schedules, major changes orpcople problems. This sectioncontains thefour
(or more) names and the lines of communication. Note that this section, as well as
several other sections in the FS just rciine items in the Proposal and the RD.

11. User's Responsibililies In ordcr to save money and time, or if the user
wishes to be more involved. the F T mav ask him to ~erform ~roiect tasks such as
providing test data, writing the User's ~ u i b e or evcn pla*ing thd a&eptance test. List
in this section all such activities, and the due dates. Remember that the user sims this -
document so he is committed todo these things.

12. Terms, Conditions and Assumptions List here any new rules and regula-
tions by which cvcryonc is to abide. Rcpeat any important assumptions for protection.

6.4 TECHNICAL WRITING FOR THE NON-TECHNICAL READER

The FS is cxtremely difficult to wrilc well. Since it describes a technical system it is a
technical document, but it is written for a non-technical reader. In addition, the bonus
of ensuring that the user understands it is on the analyst. How can you ensure this?

Write from the uscr's point of view-use his terminology. You must thcrcfore
learn the user's business and language. Use simple subject-vcrb-object constructions:
"You do this, the system does that." Usc diagrams whcrevcr possible.

Oneof the greatest reasons for misunderstanding a document is that the words are
ambiguous. Avoid mamby-pamby words such as "can be, could, usually, probably,
most, etc." It is tempting to make no commitment, but remcmber that if you use the
word "some" and mean "minimum," the uscr will assume "maximum." Similarly,
avoid implied commitments that are diCficult or impossible to prove. Words such as
"any, all, every", superlatives (words ending in "est") may cause problems later. For
each promise you make in the FS, ask yourself, "How am I going to prove it?"

6.5 OTHER USES FOR THE FUNCTIONAL SPECIFICATION

A good FS can be used to introduce new members of the PT to the project. Theuser can
use it to introduce the new system to his or her management, or to other interested
parties. But most important, the sections describing the menus, forms, queries and
rcports can be used in the User's Guide. If you intend to use these parts of the FS in the
User's Guide, write everything in the present tense. It is tempting to write in the future
tense. Writing "When the user will type 'X' the following menu will appear (we
hope) ..." leaves you an escape route. But be brave, use the present tense and you will
be ablc to use these sections of the FS verbatim in the User's Guide.

Chap. 6 The Analysis Phase

6.6 CASE SOFTWARE TOOLS FOR ANALYSIS

Computer Aided Software Engineering (CASE) is using a set of software tools in each
phase of the system life cycle. These tools should allow you to produce the required
documents, as well ascomputerreadable products that can be usedas input to the CASE
tools of the following phases.

A word processor is all the software that you need to do the Definition Phase.
There are several excellent software products available to help you do analysis. The
examples presented here are based on a personal computer product called Excelerator
(Reference 2.2). This product, introduced in 1984, has become the most popular
analysis tool in the industry. Excelerator can be used to draw the high level data flow
diagrams as in Figure 6.2, then to 'blow up' the DFD's into lower and lower levels of
detail.

The parameters among the diagrams can be detailed, and Excelerator ensures \

consistency-all parameters passed and received among diagrams must have the same
attributes, and the parameters used by a diagram at a lower level must be the same as
the corresponding parameters at the higher levels.

Analysis tools provide menu, screen and report painting facilities to help describe
the user interfaces to the system. In Chapter 15 we will see how this can be used to
prototype a system. Input and output screen forms can be painted using mouse input.
Similarly, reports and on-line queries can be quickly mocked up (Figure 6.3).

Figure 6.3 Excelerator report mock-up

Sec. 6.6 Case Software Tool for Analysis 67

And the icing on the cake is that these products can then print out all the menus,
screens, forms, and reports. This is most of the Functional Specification! Excelerator
even has a word processor built in which can be used to produce all the other required
documentation, index them, and so forth.

These tools are truly CASE tools because they integrate into other tools used in
subsequent phases. For example, design tools can use the analysis DFD's to draw the
design structure diagrams (or at least ensurc that all the analysis DED items are
designed), and again ensure that all the defined parameters remain consistent.

Tools such as Excelerator can kcep track of all the records and fields defined in
your forms and reports and store these in a Data Dictionary (DD). This is how the tool
ensures consistency in the Definition Phasc, and assists in the design of data and files
in the Design Phase.

On mini computers, tools such as DECDESIGN support the Analysis Phase by
drawing data flow or entity relationship diagrams, as well as the Design Phase by
drawing structure charts and state transition diagrams. Context checking is handled
through the data dictionary. All of thcsc tools are mouse and window graphics driven.

Figure 6.4 DISCDESIGN Entity Relationship Diagrammer

Chap. 6 The Analysis Phase

6.7 REVISING THE PLAN

Planning is an iterative process. Revise the preliminary project plan (PPP) right after
analysis. Remember, weeks, possibly months havepassedsince you wrotethefirstplan
andmuch has been learned in this period. Rc-assess the work breakdown. Are the tasks
still able to beestimated, assigned, scheduled and completed? Most important, askif the
resources assumed for each task are still available when needed. This is an excellent
time to do contingcncy planning. For each resource needed ask, "What if it is late or
unavailable?" Suggest alternative plans. The following is a short list of problems that
can occur in the next three phases (Design, Programming, System Test) along with
suggested contingency plans:

A key programmer or designer leaves. Can you train a backup? IBM has suc-
cessfully used a buddy system whcre a programmer is assigned as a buddy to
a key 'guru' programmer. The buddy's job is esentially to 'carry the water' for
the guru, but also to lcarn enough from him to be able to take over in case he
leaves.

The development computcr is unavailable. Can you find another in the build-
ingtcity to use, perhaps alter rcgular hours?

Special hardware devicedoes not materialize on time. Can you simulate it with
software, or with a Personal Computer?

New release of a software package (or hardware) does not work. Can you use
the old relcase? Call it Phasc 1; Phase 2 comes out when it all works.

A resource provided by a third party does not materialize. Can you exercise
somecontrol to ensure that it is on time? Can you negotiate penalty clauses, get
on their hoard of directors? If it is an internal project and the third parties do not
report to you, can you get input into their performance reviews? Can you get
someone who has authority ovcr them on tlie project Steering Committee (see
Chapter 21)?

Training Plans for the Project Members

When thefinal starf is decidcd, check to seewho nceds training. Your programmers will
be the most likely candidates. Schedulc all training to be done by the end of Design.

6.8 CONCLUSIONS TO THE ANALYSIS PHASE

Expect the FS to be renegotiated and reviscd; schedulc tirnc for approvals and revision.
Sct a deadline for the completion. If disagrcemcnts among individuals or departments
cause 'analysis paralysis,' get everyonc into one room and threaten not to adjourn the
meeting until the issues arc resolved. And last, let us review the major milestones
achicvcd in the Analysis phase:

Sec. 6.8 Conclusions to the Analysis Phase 69

1. The Functional Specification was agreed to and signed off by both parties.

2. If the two step proposal was used, the Development Proposal was written and
bought by the user.

3. The Preliminary Project Plan was revised to include new estimates and
schedules; resources are still committed for all activities.

4. The Top Level Design was done. It may not be obvious, but you have done a
TLD when you thought up and drew Figure6.1. It may not be the best TLD, nor
the final one that will be used, but it is a first stab at how the system will work
and the major pieces that will have to be produced.

QUESTIONS

1. Why is the Analysis Phase the most important phase in the user's eyes?
2. Draw theanalysis data flow diagram for the 'BeUFamily Communications' (BFC) system.
3. Group Exercise.

Write the Functional Specification for the BFC system.
4. What are some methods to ensure that the user will understand the Project Team's

technical documents? Ensure that the FS produced in Question three meets these criteria.
5. What functions should a good CASE tool provide for analysis?
6. Why should you review the Preliminary Project Plan after the analysis is done?
7. What milestones are achieved in the Analysis Phase?

The Design Phase

How It All Works

7.1 INTRODUCTION

For those readers who are technically inclined and who have been less than enthusiastic
about all the 'planning' activities discussed previously, we have finally arrived at one
of the most fascinating technical activities-system design. We can get down to solving _ the re51 problems with real solutions

-gn Phase is creating the top and med
the system design and documenting it in the Design Specification. The se
in this phase will be starting the Acceptance Test Plan (ATP). The ATP i
listing the tests that will be used to demonstrate all the system functions
the Acceptance Phase.

A major milestone is reached when the Design Specification is walked throu
I

- A

(reviewedjand declared error-free. A minor milestone is the user sign
althou-t occur until later.

Note the levels of effort in Figure 1.1. The manager's effort diminishes, but total
effort and therefore cost increases since several designers and walk-through personnel
are involved.

Designing a software system consists of two major steps: First, you divide the
system into its functional components, and second, interconnect these components.
There are many design methods published. Some of the better known are Warnier
(Reference 6), Orr (Reference 7), Nassi-Shneiderman (Reference 9), and lately Object
Oriented Design is becoming popular (Reference 8). Note that Reference 10 is a paper
titled "A Survey of Software Design Techniques." We will not detail any specific

Sec. 7.1 Introduction 71

design method in this chapter except for the simple, hierarchical functional breakout.
It does not really matter which method you use, as long as you m k e one method the
standard for everyone. We will, however, focus on how to do file design because the
way you do input and output will impact your system performance drastically.

Those who are not at all technical may find this chapter a little too involved. If you
are strictly on the management side and have good designers working for you skip this
chapter. If, however, you wish to know how they do their jobs, or you are a technical
manager who has to know about everything related to the project (not uncommon for
a small to mid-sized project) read on. In any case read the War Stories (these are
amusing) and the conclusion.

Design War Story

This story involves two young men who who became good friends while taking a
Computer Science degree at a well known university in Ontario, Canada. After
graduation one became Data Processing Manager for a famous publishing company,
the other became a System Designer for a Famous Minicomputer Manufacturing
Company (FMMC). A few years ago the publishing company decided to install a new
computerized order processing system. The DP Manager could not handle the work
load alone, so he hired his friend from FMMC to help do the design and programming.

I am not certain of the exact details of this story, but I assume the following
occurred: After they did the top level design together, they divided up the major
modules, each one doing the medium level design of specific modules. The Designer
from FMMC designed the first module. Wishing to show off his design talents to his
friend the DP Manager, he made the design very 'elegant' to save a few bytes of storage
or a few nanoseconds of CPU time. He even added a few 'esoteric' features: the ones
that no one requests or understands or ever uses.

The DP manager was responsible for designing the second module. When he saw
his friend's wonderful design he probably thought, "I can do better than that!" So he
made his module a little more elegant than his friend's, and added a few 'bells and
whistles' of his own. He took longer than scheduled and the module was bigger than
planned. The Designer, accepting the challenge, made the third module even more
'perfect,' adding more bells and whistles until the module became twice as large as it
should have been. And the race continued through the Design as well as the Program-
ming Phases.

The system was supposed to handle 16 users. When the system was finally turned
on (50% late!) it worked well for up to 4 users. When six users signed on it became very
slow. With eight users on, it crashed-the programs were so large that the operating
system was unable to handle them.

Comment: Technical people can get carried away by the technical challenge.
There is always a better way to solve the problem, but the foremost challenge must be
to meet the goals of time and budget.

Epilogue: FMMC gave the user a larger CPU at no cost.

Chap. 7 The Design Phase

7.2 STRUCTURED DESIGN

The major goal of structured design is to break the system into small, manageable,
buildable pieces. Several excellent methods have been documented to do this (Refer-
ences 10,ll). The approach we will take is more basic than those methods: we will
simply break the system into smaller and smaller functional components until it is
broken down enough for the programmers to code.

Top Down Design

Top down design begins with the top level design (TLD) such as the one developed for
the ABCsystemduring the Analysis Phase (Section 6.3), reproduced here asFigure 7.1.

MOUSE 0

I
INVENTORY

INQUIRY

I

STUDENTI
COURSE

TERMINAL

1

TERMINAL

I

Figure 7.1 Top level design

TERMINAL

I

TERMINAL

PRINTER b

-

Each major component, or box in the TLD is then broken down into sub-pieces, starting
with the top most level, working down to the next level and so on. In our case we would
start with the MENU and design it before going down to INQUIRY, UPDATE and
REPORT GENERATION which would be followed by further levels, if any.

Sec. 7.2 Structured Design

Bottom Up Design

In certain cases it may be easier to approach the design from the bottom level upward.
This is often the case in process control systems where the hardware device controllers
at the bottom levels determine how the system is put together. For example, let us design
an automobile engine test system. We must begin with the basic hardware involved-
the sensors on the engine (Figure 7.2A).

Figure 7.2A Bottom up design

OIL PRES
SENSOR

I
-

I
I

ENGINE

VIBRATION
SENSOR

The sensors are usually attached to special analog-to-digital devices, which are
attached to unique device driver software modules (Figure 7.2B).

POWER
SENSOR

HEAT
SENSOR

SPEED
SENSOR

DEVICE
DRIVER 5

DEVICE
DRIVER 4

DEVICE
DRIVER 3

-
DEVICE

DRIVER 1
DEVICE

DRIVER 2

A-TO-D A-TO-D A-TO-D A-TO-D

OIL PRES
SENSOR

HEAT
SENSOR

A-TO-D

1 I I I I

ENGINE U
Figure 7 .ZB Bottom up design (continued)

SPEED
SENSOR

POWER
SENSOR

VIBRATION
SENSOR

Chap. 7 The Design Phase

USER INTERFACE
AND SYSTEM

CONTROL

SENSORS DANGER SENSORS

DRIVER 1 DRIVER 2 DRIVER 3 DRIVER 4 DRIVER 5

Figure 7.2C Bottom up design (continued)

The software to control the device drivers is then designed 'on top' of the these drivers
(Figure 7 . 2 0 .

Thus the software system is designed from the bottom levels upward. Bottomup
design is also better in cases where existing software components are combined and
assembled with new modules to make up a system.

7.3 TOP LEVEL DESIGN TRADE-OFFS

There are usually many top level designs that could accomplish the same things in a
software system. For example, the top level design in Figure 7.1 is just one way of
breaking the ABC system into major components. Another method could be to use a
purchased Data Base Management System (for example DATARIEVE, SQL, or a
Fourth Generation Language) to replace the INQUIRY and UPDATE portions, or a
Forms Management System (FMS) to do the MENU, perhaps a Report Generation
system (RPG) for the REPORTing, or a combination of the above. This is a typical
'build or buy' decision, and there are advantages and disadvantages to each combina-
tion of built or bought items. The more packages you buy, the less programming you
have to do; but packages are expensive, and usually less efficient than the custom
written program equivalent.

Other top level designs may suit as well. One suggestionmay be to remove the file
access portions of INQUIRY, UPDATE, and REPORT GENERATION and have a
common FILE HANDLER routine to do all file accesses. The TLD would look like
Figure 7.3.

Sec. 7.4 Design Walk-throughs

HANDLER a
I

I I 1

I

Figure 7.3 (Anotber) Top level design

Here five programs would have to be written, and slight performance degradation may
appear due to the frequent calls to the FILE HANDLER, but the system would be

s anddisadvantages and involves wade-offs

REPORT
GENERATION INQUIRY

~ k l ~ n Priorities \

I

UPDATE

/$our choice of TLD will affect the follo+ing:

System Cost
Time to Build the System
User Friendliness
Performance
System Size
Reliability
Modifiability

re be prioritized, together with the user at system planning
analysis. This makes the choice of TLD much easier.

7.4 DESIGN WALK-THROUGHS

When deciding among several technical approaches to a problem, make the decision
easier by asking the opinion of others. Call a meeting of several experts to do a top level

76 Chap. 7 The Design Phase

design walk-through. At least one week before the walk-through give the attendees
copies of theFS and all t h e m ' s with the list of advantages and disadvantages for each
one. Tell them that the purpose of the meeting is to choose the best TLD. This will be
done by 'walking through', step by step, each suggested design, ensuring that the list of
trade-offs is correct. Everyone should be encouraged to suggest alternative designs, as
well as additional trade-offs that the authors may have overlooked. Let each person on
the walk-through team know that they are-as a team-responsible for determining the
best design.

TLD walk-throughs (and later when we discuss lower level design, documenta-
tion and program walk-throughs) can be extremely valuable if the following rule is
obeyed: "LEAVE YOUR EGOS OUTSIDE." (This was the sign on the door of the
studio when the songs "We are the World" and "Tears are not Enough" were
recorded.) The idea is not to point out faults in the designer, nor is it an opportunity for
the attendee to prove that he could do it better. The designer must also be aware that all
criticism is constructive-he must not get defensive. The objective is to find all
problems, suggest alternatives and make the best possible choice. Some people suggest
that managers not be invited to walk-throughs. Managers can inhibit the free flow of
ideas and discussions.

7.5 MEDIUM LEVEL DESIGN

After the TLD is chosen, you must break each major function or component down to the
sub-functions or components. Let us see how this could be done for the Amalgamated
Basketweaving Company system. Begin by assigning a number to each major compo-
nent on the TLD.

I FILE 1
HANDLER

f+J
Figure 7.4 Numbering system for the TLD

Sec. 7.5 Medium Level Design 77

Top down design dictated that the break down must begin with the MENU box. Let us
assume that this component is called when the whole system is started and it presents
the following 'main' menu to the registrar.

f MAIN MENU \

1. INQUIRE ON A COURSE/STUDENT

2 . UPDATE COURSE/STUDENT DATA

3. REGISTER STUDENT

4. WAREHOUSE

5. REPORTS

6. QUIT

USE UP/DOWN ARROW TO HILITE YOUR CHOICE THEN

PRESS RETURN,

OR MOVE MOUSE TO HILITE YOUR CHOICE, THEN PUSH

BUTTON ON MOUSE

\ PRESS HELP KEY TO GET HELP ON HILITED ITEM J
Then the program waits for the user to move the mouse. The major sub-functions of the
MENU component can be:

1. Start the system up and present the main menu.
2. Handle movement of the mouse.
3. Handle the button on the mouse.
4. Go to INQUIRE, UPDATE, WAREHOUSE or REPORT when chosen.
5. Handle errors as well as on-line help messages for the whole system.
6. Shut down system if QUlT is chosen.

The next level of breakout diagram (or structure diagram) for the MENUcompo-
nent could look like this:

START DRAG CLICK ACTION ERROR

Figure 7.5 Second level of breakout

78 Chap. 7 The Design Phase

The third level of breakout can be seen in Appendix A-Design Specification. You may
consider breaking it down even further. Remember, you go down to a level from which
the programmers can start module breakdown and programming. The lowest level
boxes represent modules. A module is the smallest testable, compilable piece. See
Section 7.7 for what constitutes a good module.

Note that on the structure diagrams (Appendix A) we canshow control flow: solid
lines show module calls. We can also show data flows: the dotted arrows show the
parameters passed.The direction of the arrow shows the direction of the data movement.

Naming Conventions

Modules are named to indicate system, function, or subfunction as necessary (See
Appendix A, Design Specification, Section 6 for the ABC system modulenaming). For
languages where more characters arepermitted, establisha detailednaming system that
clearly indicates the function of both modules and variables. Do not try to save paper
by shortening names to obscure acronyms.

Numbering Conventions

The number on each box is constructed as follows: On each lower level add a dot plus
an integer to the number of the box above. The integer can be sequenced left to right.
The number shows the path down the break out tree, as well as the level at which the box
is found.

7.6 DESIGN DICTIONARIES

Module Dictionaries

As you progress through the design, build the following three dictionaries:

Dictionary 1. Numerically ordered by component number, gives the routine
name and a short description for every module. For example:

0.0 AOOOOOOO Amalgamated Basketweaving System
1.0 AM000000 Menu system
1.1 AMSTOOOO Startup, disp first menu, shutdown etc.

Dictionary 2. Alphabetically ordered by component name, gives the routine
number and a short description for every module. For example:

AOOOOOOO 0.0 Amalgamated Basketweaving System
AMOOOOOO 1.0 Menu system
AMSTOOOO 1.1 Startup, disp first menu, shutdown

This can easily be created from Dictionary 1 using a sort program.

Sec. 7.7 Structured Modules, or How Far Do You Break It Up? 79

Dictionary 3. Alphabetically ordered by the short description, gives component
number and the routine name. For example:

Amalgamated Basketweaving System 0.0 AOOOOOOO
Menu system 1.0 AM000000

Startup, disp first menu, shutdown 1.1 AMSTOOOO

This can also be created from Dictionary 1 using a sort program. You can use these
dictionaries during design, programming, or subsequent testing and maintenance-
anytime you need to find a module, its calls or its parameters.

The (Common) Data Dictionary (CDD)

List in alphabetical order all the parameters that are shown on the data flow arrows. For
each item list the type, length, restrictions and the modules that use it. This CDD will
later contain all other parameters defined in lower levels of design and programming,
as well as the fields defined in files. The CDD ensures that the parameters will be
consistent throughout the whole system. Some operating systems such as VAX VMS
provide a Common Data Dictionary.

7.7 STRUCTURED MODULES,
OR HOW FAR DO YOU BREAK IT UP?

How do you b o w if abox at the bottom level is broken down far enough-or if you have
broken it too far? A box at the bottom must represent a structured module. It will be
coded into a program or sub-program module. A structured module has the following
properties:

1. It performs a single function completely. For example, it could receive, edit,
reformat, and pass on a single parameter.

2. It is small. Some rules of thumb for size state 50 to 100 lines of executable
code, or at most 2 pages of listing.

3. It is predictable. All behavior is visible from reading the code. It is not
affected by hidden flags in other modules or in the operating system.

4. (Most important!) It is independent. A change in the module or in the
parameters that it uses does not affect anything else in the system. For
example, the US Postal Service is changing (1988) the ZIP code from five to
nine digits. Imagine all the programmers that will be employed for years
accommodating systems to this change! Perfect module independence would
allow a programmer to make a change in one module that handles the ZIP
code, and no other part of the system will be affected. Or how about changing
only the Data Dictionary?

5. Although this is not in the strict definition of a structured module, look for
reusability-a module that is complete enough and general enough so that

Chap. 7 The Design Phase

you can use it in other applications with as little modification as possible. For
further detail on modularity read the original article in Reference 20.

Leave Something for the Programmer

If you break the modules down further and further, eventually you will end up
describing the program code in English. Programmers do not enjoy translating this
'pseudo-code' line for line, into program lines. That is boring. Leave several levels of
breakout for the programmer. See Section 9.3 for details of this process, called Module
Design.

7.8 FILE DESIGN

Getting Real Performance

The design of the files will make or break your application. This is especially true when
using Fourth Generation Languages (see Chapter 16). Some designers even advocate
designing the files before anything else. Let us design the ABC file system using an
indexed sequential file system such as IBM's ISAM or DEC's RMS. You begin file
design by looking at the results of the Analysis Phase, the requirements and the top
levels of design produced so far. I recommend going back to the data flow diagram
(Figure 6.1,) and drawing all the 'information types' that are mentioned. The result of
this would be the boxed items in Figure 7.6.

STUDENT Fl
MATERIAL

NAME
ADDRESS
COMPANY
CRS REG'D ON
PAYMENT INFO

COURSE

CRS NAME
DATE
LOC'N
STUDS REP'D

FINANCE

Figure 7.6 Data Types

Now go to the detailed requirements (see Requirements Document in Appendix A) and
try to allocate each data item mentioned (or implied) in a requirement to one of the
boxes. Add more boxes if necessary. For example, the requirement "Register a student
on a specific course" would result in adding the fields listed beside each box in Figure
7.6. Next, consider the processing logic needed to handle the requirement. If the
STUDENT INFO and the COURSE INFO are separate files, they would need to be
related by a key. Add the keys STUD - NO and CRS-NO, and the access logic can be
added as arrows, as in Figure 7.7.

Sec. 7.8 File Design

NAME
ADDRESS
COMPANY
CRS-NO. REG'D ON
PAYMENT INFO

COURSE y CRS-NO.
CRS NAME
DATE
LOCN
STUD-NO.

I

MATERIAL Fl FINANCE

Figure 7.7 Data types, keys, and access

Now we can handlc rcgistcring a studcnt, as wcll as inquiries such as, "Given a student
namc, find all ~ h c courscs hc is registcrcd in.'' (Access STUDENT FILE by name, get
CRS-NO, acccss COURSE FILE by Lhat CRS-NO.)The diagram is continueduntil all
thercquircments arc handlcd. The result could bc Figure 7.8. (For h e sakc of clarity the
arrows are not shown.)

One record
per student
enrolled
on a course
not yet run .

STUD-NO.
STUDENT NAME I INFO I ADDRESS

One record per
unique course/
locationidate

COURSE Fl CRS-NO
CRS NAME
DATE
LOC'N
DESCRIPTION
INSTRUCTOR
MAT-NO Repeated per

item req'd
STUD-NO repeated per

student registered

One record One record
per item per run of a course

MAT-NO. CRS-NO.

QNTY ON HAND AMOUNT OWING
REORDER QNTY PAYMENT INFO
LOCATION INVOICE ADDR
SUPPLIER ADDR

Figure 7.8 Data types, key, and acccss

Chap. 7 The Design Phase

Optimizing Files

The next step is optimizing disk storage by eliminating redundant fields and files.
In the STUDENT FILE, if many students have the same address, such as the same

company, the address fields are repeated. Consider an ADDRESS file with one record
per company, and a COMPANY-NO on the student record pointing to it. This file could
also contain the invoice addresses needed by the FINANCE FILE.

hi the COURSE FILE items such as DESCRIPTION, INSTRUCTOR, and MA-
TERIAL NO list would be constantly repeated since they are the same for each run of
the same course. Split off into a new file called SCHEDULE FILE the items unique to
each run of a course, leaving COURSE FILE with only course type dependent
information.

FINANCE FILE can only be keyed by STUD-NO or COURSE-NO. There are
already files using those keys, which usually indicates that the fields in this file could
just as well be combined into other files, if payment and invoicing information can be
associated with the student. The FINANCE FILE will not be needed. The resultant file
design could be as in Figure 7.9.

One record
per student
enrolled
on a course
not yet run

STUD-NO.
STUDENT NAME

ADDRESS

COMPANY
CRS-NO p7ted per
PAYMENT crs registered

One record
per item

MAT-NO.
MATERIAL DESCRIPTION / FILE I QNTY ON HAND

I I REORDER QNTY
LOCATION - - - -

SUPPLIER ADDR

One record per
unique course/
IocatiorVdate -
I FILE I FE3CXIPTION

MAT-NO Repeated per
item req'd

One record
per run of a course .

CRS-NO.
SCHEDULE DATE I FILE I LOCATION

I 1 INSTRUCTOR
MAX ENROLLABLE
STUD-NO. Repeated for

each student

Figure 7.9 Data types, keys, and access

Sec. 7.8 File Design

Optimizing a Variable Number of Items

In the STUDENT FILE there are two fields, CRS-NO and PYMNT information, that
are repeated for each course in which a student enrolls. Similarly there are repeated
fields in the SCHEDULE and COURSE files. These can be programmed using variable
length files. As items are added or deleted the length of therecord changes accordingly.
This method saves disk space.

Alternatively, if the maximum number of the variables is known, a fixed length
record can be used. For example, if no more than 30 students will ever be enrolled in any
course, each record inSCHEDULE leaves room for 30students.Thismethod usesmore
disk space than the previous one, but it will require less processing time. Futhermore,
fixed length records are easier to design, understand, and therefore maintain than
variable length records. Disk space is getting so inexpensive that I suggest that you use
fixed length records whenever possible.

A problem may arise if the limits cannot be set: for example, why should the
number of students in any course be limited to the same number? To solve this, a
separate file can be used to hold only the variable information. Afile called ENROLL-
MENT can be set up for each run of a course, and each file would contain one record
per enrolled student (Figure 7.10). This may be very expensive both in disk storage and
file handling.

One record
per student
enrolled

ENROLLMENT STUD-NO.
PAYMENT rn CRS I ,
ENROLMENT 7 E."P, I

Figure 7.10 Handling variable informntion

A simple way to handle this would be to make a file called ENROLLMENTS,
which would contain one record per student registered per course. The fields would be
only the STUDENT-NO and COURSE-NO. (Question 8 at the end of this chapter asks
you to design this.)

History Files

What do we do about data on students who have takena course? Neithertheaccountants
northemarketingpeople wish this information to be erased, but wedonotwant working
files to be cluttered by obsolete information. The solution is to define a
STUDENT-HISTORY file, and after a student takes a course his record from the
STUDENT file is transferred to the History file.

Chap. 7 The Design Phase

Testing the File Design

In a design walk-through, each requirement that involves data access must be 'proc-
essed' using the file design. This may indicate improvements as well. For example, a
requirement states, "List all occurrances of an XYZ course, location and price." Let's
go through the access logic. The Registrar converts the course name to CRS-NO
(how??). The records in SCHEDULE are accessed by CRS-NO to give the date and
location of each course, and the COURSEfile is accessed by CRS-NO for price. If this
kind of request is common, perhaps the course name should be made a key on the
SCHEDULE file. Maybe the price can be added to the SCHEDULE file to save
accessing the COURSE file each time. To save disk space a price code could be used.

Ensure that all requirements are feasible. Look for possible future enhancements,
even if the user did not request it. For example, how would you process a request such
as, "List all courses that use materialx," or "Handle a price increase six months from
now by charging one price up to that date, and the new price afterwards." We do not
fix the problems in the walk-through. Someone is asked to take notes and the problems
are addressed later.

7.9 RELATIONAL DATA BASE MANAGEMENT SYSTEM (RDBMS)

In Section 7.8 we assumed that you can get a record from a file given a key. In reality,
there must be a DBMS to accomplish this. Most mini and mainframe manufacturers
include aDBMS with their operating system. RMS and RDB are common for VMS. The
examples used in Section 7.8 made use of an indexed DMBS such as RMS. As a
manager you need not understand how a DBMS works, but you may have to decide
which one to use. Let me make a case here for the relational system.

Relational data organization is extremely simple to understand and to set up (one
of the pros). In an RDB every item is expressed as part of a table or relation. The rows
of the tables (tuples) can be compared to records, the columns (domains) to fields. The
rules for setting up the tables is that each tuple in one table must be unique, and no field
needs to be repeated in any of the tables unless they are needed to 'join' one table to
another. Joining means looking up a record in one relation by a field found in another.
Figure 7.11 is an example of the relations (tables) that could be defined for the ABC
system. Note how close this is to the file design of Figure 7.9 and Question 8. The file
names became relation names, the records and fields became rows and columns. In fact
entering the tables such as in Figure 7.11 is all that is required to create the data base.

Student relations:
Stud-No Stud-Name Company-No all items unique to student
1 JOHN BLAKE 999
2 JANE SMITH 999

Sec. 7.9 Relational Database Management System (RDRMS)

Run of a course relat ions:
Course-No Course-Date Location Instructor C o s t
1 2 3 1 / 1 / 9 0 OTTAWA RAKOS 1000
1 2 3 1 / 2 / 9 0 NEW YORK RAKOS 1500

Enrollment relat ions:
Course-No Stud-No ~ymnt
1 2 3 1 0

Course re la t ions :
Course-No Crs- Name D e s c Mat-No i t e m s unique t o a course
1 2 3 WEAVING INTRO 001

Company relat ions:
Comp-No Addr Ship-To B i l l - T o Tot- Owing
999 FIRST ST. X Y A B 10000

Material re la t ions :
M a t N o D e s c Whse Source C o s t
001 STRAW 1-1 X CO 1 . 0 0

Figure 7.11 Relations in the ABC relational data base

As in the nonrelational method, the DBMS will retrieve a field given other fields. For
example, if you require a list of students on COURSE-NO '123,' the relational system
will search ENROLLMENT for the course number, build a table of the associated
STUD-NOS, then search STUDENT by the STUD-NOS to build the table of STUD
NAMES. The beauty of the RDBMS is that this may be done for you automatically. It
is wise, however, to set up the relations knowing the requirements ahead of time
because there is a lot of overhead associated with constantly creating tables.

The format for this kind of ad-hoc data base query has actually been standardized,
and it is called Structured Query Language(SQL). Most relational data base products
have SQL built in. Oracle (Reference 2.6) is the most well known product for this. For
example, the following will instruct SQL to list what courses 'Smith' is registered on.

SELECT CRS-NAME FROM COURSE
WHERE COURSE-NO I N

SELECT COURSE-NO FROM ENROLLMENT

WHERE STUD-NO I N

SELECT STUD-NO FROM STUDENT
WHERE STUD-NAME = 'Smith'

Unfortunately, SQL as originally defined by IBM has many shortcomings so the
newer products have to extend the language to provide additional features. You could
simply ask a lot of new 4GL's (that support Query By Example[QBE]) to fill in the
following form:

Chap. 7 The Design Phase

f 5
STUD-NAME = Smith
CRS-NAME =

i 1
The major advantage of an RDBMS is flexibility. For example, if you need to access
the same data differently from several applications, the system will accommodate. If
you anticipate ad-hoc queries, (and it is difficult to foresee the exact format), RDBMS
is the best tool to use. In Section 16.6 on Computer Aidcd Software Engineering, we
discuss using a Fourlh Generation Language together with an RDBMS to automate
almost all of the classical computer applications!

The only drawback of an RDB is performance. There is a lot of space and time
required for storing, tracking, and traversing through all the tables. But computer cycles
are getting cheaper-the time saved in user friendliness and flexibility makes an
RDBMS on a powerful CPU a worthwhile investment.

7.10 BENEFITS OF STRUCTURED ANALYSIS AND DESIGN

Reducing the Number of Initial Errors

The following statistics are quoted from surveys done by TRW for large projects, and
DEC's Customer Services Systems Engineering (the department responsible for ensur-
ing that DEC products-both software and hardware-are as bug free as possible).

USING UNSTRUCTVRED METHODS

ANALYSIS REMAINING AFTER
AND PI-IASE OPER.
DESIGN

EFFORT SPENT: 10% 23% 67%
PROBLEMS INTRODUCED: 64% 36%
PROBLEMS FOUND: 19% 27% 54%
DOLLARS SPENT(AV0) 25K 57.5K 167.5K

(TOTAb25OK)

Sec. 7.12 Technical Documentation

USING STRUCTURED METHODS

ANALYSIS REMAINING AFTER
AND PHASE OPER.
DESIGN

EFFORT SPENT: 20% 50% 30%
PROBLEMS INTRODUCED: 32% 68%
PROBLEMS FOUND (1): 30% 33% 37%
DOLLARS SPENT(AVG) 40K 50K lOOK

(TOTAL=19OK)

(1) There were half as many as before

Figure 7.12 Causes and costs of problems

Figure 7.12 proves that even though the up front cost tncreases, structured methods
reduce the overall cost of a system. There are other benefits to finding errors up front
instead of later on in the cycle. Statistics have shown that it is up to 100 times as
expensive to correct an analysis error after acceptance than at analysis time.

7.11 THE DESIGN PROCESS

The Design Team

Choose your best people for the design team. The best designers are not necessarily
your best 'bits and bytes'people. They are the people who can conceptualize the whole
thing. Avoid a perfectionist on the design team. There is always a better way to do it
given enough time-but the limits of time and cost must always be kept in mind. Since
many trade-offs and decisions are made during the design, it is best to have an odd
number of people on the team, or at least a good moderator.

The Design Meeting

Designing is like brainstorming: several people get together in an undisturbed, quiet
room. Evervone is encouraged to 'burst out' their ideas for all the functions to be ..
performed and how toperform them. Since the ideas will flow in random order, provide
a facility to capture the ideas. Write down each idea, and at the end organize all the ideas
and suggestions into unique modules.

7.12 TECHNICAL DOCUMENTATION

The design specification is a very technical document. It is intended to be read and
understood by the programmers. The user is welcome to see it but you need not ensure
that he understands it. Consider the following points when writing technical documents:

88 Chap. 7 The Design Phase

1. Use formal, precise language. The second largest source of errors in a
software system is whcn the programmer misinterprets the design. (The
largest source, incidentally, is when the analyst misinterprets the user's
needs.) Read a law text. It is not gobbledegook. Lawyers try to use language
that can not be misinterpreted.

2. Use pictures-structured diagrams and such.
3. Make the intent of the design clear on the first few pages. Then elaborate.
4. Be consistent in the graphics language and sentence structure. It is best when

oneperson writes allof it. If deadlines force you touseseveral people, besure
that they use a common style.

7.13 STANDARDS 'DICTATED' AT DESIGN TIME

Certain things must be done the same way no matter who does it. This is especially true
in the programming phase where the most parallelism can take place. You may get
frowns for imposing 'bureaucratic' standards but establish rules for the following:

Design Conventions. Methods of break-down, structure diagram formats.
Module and variable naming conventions. This must be used for all the
lower levels.

Parameterpassing. Detail order, length, format, place holder if missing and
so forth.
Error handling. Strictly structured standards suggest that a single error
handler be used. Every module passes context (situation where the error
occurred) and an error number to this handler. The handler displays theerror
message. This guarantees consistent error handling, but the performance
may suffer due to all the additional calls to the error handler.
Programming standards. Structured programming standards such as code
appearance (white space, indenting, comments), constructs allowed, organi-
zation, module sizeland interdependence is detailed. Create a 'template9 or
skeleton containing comment lines for the following:

header (title, author, purpose, date, modification history)
parameters (received, sent)
entry (one only)
variables used
subroutine calls
error handling
exit (onc only)

The programmer starts with this template and fills in the process code.
Seesection 9.4 for programming tools that help format programs consis-
tently.

If you set these standards well you will be able tousethemformany otherprojects.

Sec. 7.14 Outline the Design Specification

7.14 OUTLINE OF THE DESIGN SPECIFICATION

As with other project documents, Appendix A gives an actual example.

1. Title page and table of contents All sections with page numbers.

2. Overview Although the programmers are urged to read the Requirements
Document and the Functional Specs, the Design Specification (DS) should begin by
summarizing the problems, the general solutions and how the system will fit into the
user's environment. This makes the DS into a stand-alone document.

3. HardwarelSofiware List the hardwareon which the system will run; list the
operating system and version, as well as any packaged software, utility programs and
languages that will be used.

4. Design Priorilies List, in descending order of priority, the design priorities
discussed in Section 7.3. Emphasize the trade-offs that may have to be made.

5. Design Diagrams and Module Dictionary Conventions Explain the struc-
tured diagramming conventions: how each box refincs the function of the box above,
and how the data passing among the boxes is indicated. Tell the programmer that as she
breaks down furlher during module design, she must follow the same diagramming and
dictionary keeping conventions.

-

6. Module Naming Conventions Explain the naming convention such as the
one discussed in Section 7.5.

7 . Parameter Passing and Data Dictionaries List the rules for parameter
passing among modules. Indicate where the data dictionaries are to be found and how
they are organized. So far the DD contains all the parameters defined for theTLD and
MLD. The programmer will have to add any new parameters he defines for submod-
ules. Give examples of typical CALL formats.

8. Error Handling Describe how errors are to be handled. If there is a system
wide error handler show how the programmer calls it and gets control back Give
examples.

9. StructuredProgramrning Standards List the standards discussedinSection
7.12. Indicate where the 'template' program can be found.

10. Programming Tools Coding and testing tools such as EditorsILanguage
Sensitive Editors, Compilers, Debuggers, Automated Testers and Source Code Ana-
lyzers will be discussed in Section 9.4. These all make the job of programming and
debugging easier. If these tools will be available indicate how they are to be accessed
and used.

In Section 9.4 we will discuss a Code Management System (CMS) to store
source code and track the changes to sources. If a CMS is to be used, indicate how.

List any source or object code subroutine libraries available, as well as existing
modules that may be reused-do not re-invent the wheel.

90 Chap. 7 The Design Phase

If specific packaged software such as Data Base Management Systems or Forms
Management Systems are used, explain how and when to use them.

11. TopLevelDesign Include the TLD structured diagram such as Figure 7.1.
Briefly explain the TLD, and the general functions to be performed by the five major
components. Explain how the other components fit together, referencing all appropriate
sections in the medium level design.

12. Medium Level Design Include all the MLD structured diagrams. Explain
the general function of each module or box. For example:

Module AMOOOOOO gets control when the operator types ABC at command level. (May
be automatically started by a LOGIN file.) It first calls AMSMOO to open all system files
and do some initializing ..., and so forth until all the general functions of the modules are
detailed.

For the outline of the lower level modules, use the following format:

Module name:
Called by:
Subroutines called:
Input parameters:
Displays:

list all callers
(to be filled in by programmer)
list
the 110 with the terminal or user

Returned parameters: list
External variables used: list
Files used: list
Functions: List in English statements. If you have

pseudocode for each module, it can go here.
And so on until all the medium level modules are detailed.

13. Module and Data Dictionaries Explain the construction and use of the
three dictionaries discussed in Section 7.6. Explain where the CDD will be-for
example if the operating system provides one-and how to use it. Show how to list it to
see what is already in there from the top and medium level design and what is added as
the design proceeds.

14. Files and Tables Recall that in the Functional Specs we listed the data
elements that will be kept. In the design we show how these elements fit into files. For
the ABC system we must provide the details for the files COURSES.DAT,
STUDENTS.DAT and so on. For each file show Organization (e.g. RMS), attributes,
record length, keys and what modules in the system use the file.

Include a record map that details eachfield name, length, restrictions, and so forth.
Indicate which modules access that field and for what purpose.

Do not forgetto include when the file will be created, how large itwill be, and how
expansion will be handled.

Explain any other data structures that are to be used, such as in-memory tables and
arrays.

Sec. 7.17 Planning the Acceptance

7.15 TESTING THE DESIGN

When the design is done, the whole thing must be walked through. The purpose of this
walk through is to ensure the following:

1. All the Functional Specification requirements are met.
Do this by stepping through the FS, sentence by sentence. For any function
promised in the FS, the designer must be able to point to a module and say,
''We handle that here." Conversely, all designfunctions need to becalledfor
in the FS-ensure that no bells and whistles were added by the designers.

2. The design is easy to program and maintain.
This will be the case i€a structured, piece-by-piece approach was used. Look
for small, independent, well understood pieces.

3. It can be implemented on time and on budget.
This is a subjective question that only the Design Leader can answer. Ques-
tions to ask are:

Have all the software and hardwarecomponents that weredesigned
around been shown to work previously?

Is it a simple, straightforward design?

Are the pieces still estimable? Are the estimates still within the
original ballpark?

7.16 CHANGES TO REQUIREMENTS DUE TO DESIGN

Some of thedetailcddesign will invariably lead to rcquirements changes. Yournay have
togo back to theusernow and convince her thatshe does not really want what she asked
foFbefore. As before, your argument has to be based on costmenifit. If the change can
be shown to save money in development or maintenance due to the simplified design
that you are suggesting, the user should agree. If you are stuck in a fixed price contract
use theargument, "Wecando it thepreviously agreed way, and weknow wecan'traise
our price, but we'll take threemonths longer." That is why I suggest that you shouldnot
gct inlo such a contract until after the design is done.

7.17 PLANNING THE ACCEPTANCE

Although Acceptance is a phase on its own later on, planning for acceptance can be
begun after the medium level design is done. Preparing the Acceptance Test Plan is
therefore presented in the next chapter since it is the next chronological activity. It can
be done anytime aftcr this point, as long as it is completed by the Acceptance Phase.

Chap. 7 The Design Phase

QUESTIONS

1. What is the purpose of the Design Phase?
2. What is structured design? What is top-down design?
3. What is bottom-up design? What type of systems are typically designed bottom-up?
4. What may be the adverse effects of setting 'user friendliness' as the highest design

priority?
5. What is the purpose of the top level design walk-through? What can be a major problem

in a walk-through and how can you avoid this?
6. What is a Common Data Dictionary? Why is it useful?
7. Why break a system into structured modules?
8. Referring to the file design in Section 7.8, assume that the two most common requests to

the system will be "How many students areregistered oncourse no. NNN?" and "What
are the courses that studentno. SSS is registeredon?" Can youdescribeafiledesignwhere
both of thcse questions can be answered with access to only one file?

9. What are the advantages and 'disadvantages of using a relational data base management
system?

10. What is the benefit of structured analysis and design?
11. What personality traits would you look for in a system designer?
12. What items must be standardized by the designers and why?
13. What is the purpose of the medium level design walk-through?
14. Group Exercise:

Write the Design Specification for the 'Bell Family Communication's systems'.

The Acceptance Test Plan
Agreeing to Agree

8.1 INTRODUCTION

The goal of acceptance is to get a written statement from the user that the product was
delivered as promised. Getting this statement-and payment if it is a contracted project
-may be difficult unless the user can be convinced that the system works exactly as
promised. The user may be apprehensive at acceptance time: he has to take over the
ownership and responsibility for the system. He may be reluctant to hand over the
check-what if something goes wrong?

8.2 THE TRIAL PERIOD OR PARALLEL RUN

The trial period or the parallel run are the most common approaches to acceptance.
Using the 'trial period' approach the project teamsimply installs the new system for the
user to try. The 'parallel run' approach adds the dimension of leaving the old system
running as well for comparison and backup. In both cases the client uses the new system
for 'Xi days. If there are no problems the user accepts; if there are any problems the
project team is supposed to fix them and rerun the trial for another 'X' days.

These approaches are simple, but they have several major flaws:

1. Small problems can force you to rerun for 'X' days indefinitely. Sometimes
a complex software system is never 100% debugged. You learn to live with
the faults. (Document them as features!)

94 Chap. 8 The Acceptance Test Plan

2. It may be difficult to trace the cause of a problem. If ten users are on an
interactive system and it crashes it is a challenge to find exactly what caused
the crash.

3. There is no guarantee that all the features will be mied within 'X' days. I have
seen one accounting system that was implemented at the start of a new fiscal
year. It ran well during the trial period (six months) only to fail at the end of
the fiscal year when the accountants attempted to close the books. Unfortu-
nately the warranty was over and the vendor would not fix the problem.

4. Letting the end user access a system on the first day that it is implemented is
not alwaysbeneficial. Would you test airplaneslhatway? As inromance,first
impressions are important.

8.3 SOLUTION: A THOROUGH BUT PIECEMEAL ACCEPTANCE

A better approach is to devise a series of tests that demonstrate all of thc promised
functions. The acceptance will be a formal run through of these tests for the customer.
Successful tests are signed off one by one. If a test fails, the PT fixes the problem-
hopefully on site; if it is a major problem thcn the tests are adjourned until the problem
is fixed. In theory only failed tests are repeated, howcvcr the user has every right to
rerun previously accepted tests after a 'fix.' The set of tests and the order in which to
run them is called the acceptance test plan (ATP).

This approach has the following advantages:

1. You can demonstrate all the promised functions.
2. The action causing a problcm is always known-you know exactly who was

typing what when the problem occurred.
3. The user will be less apprehensive about many, 'small' signatures than about

a single 'binary' signature that accepts all or none.

The major disadvantage of this approach is that it takes a lot of work to write the
ATP. In addition theuser may not be familiar with the approach. But youcan familiarize
her with this new method beforehand. It is mentioned briefly in the Proposal, which is
a signed document. It is detailed in the Functional Spccificalion, anothcr signed docu-
ment. She will also see and sign-off the ATP before acceptance. There should be no
reluctance to accept andpay if this mcthod is used.

8.4 ENSURING THAT ALL THE PROMISES ARE TESTED

To ensure that all promises are tested go through the FS page by page, paragraph by
paragraph, and list all the functions that arc testable. Consider a table such as Figure 8.1
as shown on the next page:

Sec. 8.6 Writing the Tests 95

FS FUNCTION TO BE TESTED TEST TEST
REF METHOD NUMBER

SECtPAR

3.1 Main menu appears at start-up T 1 .O
3.2 Registrar menu appears when ... T 2.1
3.3 Manager menu appears when ... T 2.2
7.7 Store 10,000 student records I 7.8

10.2 Students by course by city report T,A 4.5

T - test I - inspection A - Analysis (Hand calc,or use another pgm) N/A - not applicable

Figure 8.1 Fanetions vs tests table

Note that some things will not be tested (NJA). It is not worth breaking a disk just to
prove that the 'Parity error handling' works. Some things such as item 7.7 in Figure 8.1
will be tested by inspection (I) -for example, you can look at the OPEN statement in
the code or the directory listing for the size of a file . The results of calculations,
formulas and totals should be double-checked, perhaps by hand. Reuse tests if possible.
Often a test defined for one function can be reused as it stands or with a slight
modification.

8.5 USING THE DESIGN

You may be wondering why I suggest doing the ATP after the design is done. Strictly
speaking, you need only the Functional Specification to produce the ATP. However, the
design helps to group the tests into test sets that demonstrate major functions of the
system. You can run the tests in the same top down order as the TLD, which is well
understood by your user. Approaching the ABC system in the order of the TLD (Figure
7.1), you can demonstrate all the menus, then all the inquiries, followed by all the
updates and so on. Another way to group test sets is by function. Go through all the
Registrar's functions, followed by the Administrator's and so on.

The TEST NUMBER assigned in the Functions vs. Tests table (Figure 8.1) can
follow the same numbering convention as the Medium Level Design (see Appendix A).

8.6 WRITING THE TESTS

Youhavealready determined how you will test an item whenfillinginTESTMETHOD
in Figure 8.1 above. The following is an example of test number 4.5, 'Students by
Course by City' report. [Notes in square brackets would not appear-these are the
explanations.]

Chap. 8 The Acceptance Test Plan

TESTNO: 4.5
TEST PURPOSE:

F.S. REFERENCE (SECPAR):

SETIJP:

INF'UT:

OUTPUT:

INPUT:

OUTPUT:

Demonsaate the production of the Students by
Course by City report.
10.2, 12.8, 11.3 [Note how one test can demon-
strate several functions.]
Ensure files STUDENT.DAT and COURSEDAT
contain data.Start system.
QlooseSelection 1. from Main Menu usingmouse
click and drag method.
'CHOOSE REPORT TYPE' menu (format per FS
pg 17Jigure8.15) appears. [Refer to the Funtional
Spec. whenever possible.]
Choose Selection 5. (Students by Course by
City report) by UPjDOWNarrow and RETURN
method.
Message 'Report being prepared.' appears. No
longer than 60 seconds later, message 'Report
being printed' appears and the printer starts pnnt-
ing. The terminal can be used to enter any other
command. User will fry up to 3 commands of his
choice.mere is danger in stating, ''User may type
any number of commands." He just may!] When
the report is complete (printer stops,) inspect it to
ensureitis offormatFSpg. 23,Figure 12.12.Total
colunms will be checked by hand calculated addi-
tion of the attendance figures printed.

USER SIGNATURE
PROJECT TEAM S I G N A m
DATE
COMMENTS

Figure 8.2 Typical test

8.7 THE ACCEPTANCE TEST PLAN CHECKLIST

Use the following as a checklist for all the activities required to plan the acceptance:

Functions vs. Tests table produced and all the FS promises are addressed.

Tests and test sets are defined.

Responsibility for writing the tests is assigned.

The client and the PT are aware that the ATP will be reviewed, revised if
necessary, and signed off by the user. The client is aware that successful

Sec. 8.9 Conclusions to the Design Phase 97

completion of the tests constitutes acceptance of the system. Look at the
sample form in section 10 of the ATP in Appendix A.
Responsibility for test data is assigned. Test data should be provided by the
project team and the user. If the user can provide data that is true to life, the
system will get a better test, plus theuser will feel more comfortable with the
accuracy of the tests.

8.8 CONCLUSIONS TO THE ACCEPTANCE TEST PLAN

Encourage the user to write the ATP if he can. It will give him a feeling of control-the
project team must build the system to meet the tests. The project team must have a
signoff on a user written ATP; what if the user tests for something that the PT does not
intend to provide?

You can overdo acceptance testing. Consider the cost of the test versus the cost of
the risk that there is a problem. You can never test everything, especially in a multi-user
interactive system.

8.9 CONCLUSIONS TO THE DESIGN PHASE

At the end of the Design Phase we have reached to the following milestones:

1. The Design Specification document, containing the final top level design and
medium level design is walked through.

2. ATP responsibility is assigned and started. It need not be f i s h e d until the
Acceptance Phase.

3. The project plan, especially the estimates, are revisited. Although you are
estimating only the remaining four phases, the Programming Phase will
probably be themost expensive and time consuming in the wholeproject.The
design gives you an approximate count of the number of modules and their
complexity. By now you probably know who the actual programmers will be
so you can factor their productivity into the estimates. With this information
the amount of programming time required can be easily estimated (see
Chapter 13). Statistics show that at the end of the Design Phase estimates
should be no more than 10% off.

QUESTIONS

1. What is the goal of Acceptance?
2. What are the advantages and disadvantages of a 'trial period' as the acceptance method?

98 Chap. 8 The Acceptance Test Plan

3. What are the advantages of the piecemeal approach to acceptance over the nial run
approach? Are there any disadvantages?

4. List three ways of testing a function. Give examples of functions that would be tested by
each method.

5. Write a 'Functions vs. Tests' table for the Bell Family Communications (BFC) system.
6. Write a test for 'Call a family and communicate' function of the BFC.
7. What are the milestones of the Design Phase?

The Programming Phase

Building the Pieces

9.1 INTRODUCTION

Programming is usually the easiest part-that is what we 'technical types' are most
familiar with. In fact, as Project Manager you may find yourself restraining your staff
from starting to program too soon. There is always pressure to 'do something concrete',
not only from the projcct team but from higher level management as well. Be careful
of a management disease called WISCA: Why Isn't Sam Coding Anything? (Con-
stantine) It worries managers when the programmers are sitting around idle. Never start
coding until the design is firm enough that no rework will be necessary.

Theactivities in this phase will bewriting theprograms. Themilestones will be the
testedprograms, the SystemTest Plan, and at least a start on theuser's documentation.

This chapter is fairly technical, so those who are strictly managers may consider
reading the War Stories, the Conclusions, and then going on to Chapter 10.

Programming War Stories

This story is about a large grain farming co-operative. For those who are not familiar
with the grain farming business, a farmer ususally delivers his grain to the nearest grain
elevator. He gets a receipt for his delivery and payment depending upon the type of
grain, tonnage, quality, and price based on grain futures. The headquarters of the grain
company must keep lrack of h e grain in all the elevators under its jurisdiction, so that
when a large amount of grain is sold the trucks and trains that pick up the grain are sent
to the right locations.

100 Chap. 9 The Programming Phase

A few years ago this grain company, hcadquartercd in city 'A', decided to
computerize its operation. They wcre going to use FMMC (Famous Minicomputer
Manufacturing Co.) hardware and networking software, so the grain company sent its
programmers to FMMC's training ccnter, located in city 'B,' to learn the networking
software.

The grain company was so impressed with the FMMC course instructor that they
hiredhim as a consultant to designthe system. Thedesign was excellent. TheInstructor/
Designer suggested that PC's be placed in each elevator (very little computing power
was needed there) to handle the farmers' transactions and receipts. A minicom~uter at
headquarters would keep the transactions and grain stocks anh automatically dial up
each PC at midnight to get the transactions. It took the instructor three weeks to design -
this and he went home,

But the grain company was so impressed with this design that they hired the
instructor as a consultant to do the programming as well. The programming was to take
placein city 'C,' since it was home to most of thc programmers. The picture at this point
was: instructor/programmer was in city 'C;' The Project Leader (the instructor's man-
ager) was in city 'B;' and lhe Project Manager, who was the account representative from
FFMC, was at the grain company hcadquartcrs in city 'A.' This is called 'distributed
project management.'

The instructor began to program. Despite a schcdule of one module per week, the
first module was not done for eight wceks. Finally the PL received the first module-mailed
electronically to city 'B'-and panicked. The programming was awful: unstructured
and full of bugs. He phoned the instructor at once, and the following conversation took
place:

PL: What took you so long? And why is this program so bad?
PGR: John (not his real name,) I havenot programmed for six years. I thought

it would be fun to get back to it. But I hate it, and I hate city 'C.' Get me
out of here!

Comment: The instructor was not even reprimanded. He was an excellent in-
structor and designer, but a terribleprogrammer. This is common.Theproblem was that
the PL was not supervising. Had they been together, the PL would have noticed the
problem at once and replaced the programmer immediately. For any new or unknown
resource, walk through their work within one week of starting. This is especially
important with outside contractors.

Epilogue: The instructor was moved back home, another programmer was
moved lo city 'C' to replace him, and the project was successfully completed, albeit ten
weeks late.

About three months later FMMC noticed that their new grain control computers
were enjoying an inordinate amount of popularity. After a little investigation FMMC
discovered that the PC's, which were idle 90% of the time, magically grew games and
compilers such as BASIC. Informal computer courses were sprouting up. The farmersand
especially their children-were enjoying the new system immensely.

I

Sec. 9.1 Introduction

9.2 PRE-PROGRAMMING CHECKLIST

Before you start programming, answcr the following:

Did the dcsign reviews suggest any rework? If so, schedule the time and
delay the start of programming.

Are the planned resources and programmers still available? DO not be too
ovtimistic about other ~eoole's ~roiects finishing on time. If there have been . . A -

ky staff changes, have you re-estimated for the productivity of the new
people? Industry statistics have shown that the best programmer can be as
much as eight times as productive as the worst.

Are the people trained? Programmers need to know theoperating system,the
languages, packaged programs, and programming tools that will be used.
They should also be familiar with theuser application and business problem.
Ensure that they read thc Requirements Document and Functional Specifi-
cations.

Is the programming environment good? You need easy-to-use development
software and programming tools (see Section 9.4). The development com-
putcr must provide fast response, must be available when needed, and must
be reliable. Be sure that the warranties provided by the manufacturer as well
as all thc development software documentation are up-to-date. Provide a
quiet enviornment isolated from interrupts.

9.3 THE PROGRAMMING STEPS

Step 1. Plan the Integration

Common sense dictates that you cannot program it all and then throw it all together-
that a step-by-step assembly will be required. Plan the order in which you will put the
pieces together. Chapter 9 details several methods for assembling the pieces, but you
must planthis order of integration now, since youshould be writing theprograms in the
order that they will be integrated. This is callcd the System Test Plan.

The remaining steps pertain to each module:

Step 2. Design the Module

The programmer receives some level of design from the Design Phase. His job is to
break it down to lower and lower levels of detail until he reaches a stage that he can
program. This is called module design. The medium level design such as Figure 9.1
below, was developed in the Design Phase.

Chap. 9 The Programming P h a s e

AMAOWOO Q
1.1 1.2 1.4 1.5

START CLICK ACTlON ERROR
AMAOOOO AMEOOOO

CALL CALL CALL 'OVE
ERROR

CURSOR SUBMENU INQUIRY UPDATE Rzp

ERROW 1 tiE; 1
ERROR & A

Figure 9.1 Medium level design (3rd level)

The programmer receives from the designers a description of the module such as
the one below (see Appendix A):

Module name: AMSTOOOO
Called by: AMOOOOOO
Subroutines called: to be filled in by programmer
Input parameters: none
Displays: none
Returned parameters: if no errors exit code 0. If error, exit
code is error number
External variables used: (list)
Files used: STUDENT-DAT (open), COURSE.DAT (open), MATERIAL.DAT
(open), SYSTEM-DAT (open)
Functions: Open the files STUDENT.DAT, COURSE.DAT,MATERIAL.DAT,
SYSTEM.DAT. If error, exit with code... Initialize variables...

Sec. 9.3 The Programming Steps 103

Check for abnormal shutdown by checking Record 1 of SYSTEM.DAT
file. Byte 1 = -1 means proper shutdown (See module AMSHUTOO). If
not -1, do following ... On error exit with error code ...
Ensure correct status of

Mouse by checking ...
On error exit with error code ...

Screen by ...
On error exit with error code ...

Network by ...
On error exit with error code ...

Normal exit error code 0

The programmer first draws a structure diagram for the module. It may look like
Figure 9.2.

ENTRY 1 ' E r ' 1

Figure 9.2 Fourth level module breakout

I

I I I

The module design is approached top down starting with the topmost box, AMSTOOO
and break it into the appropriate sub-components as in Figure 9.3.

CHECK
SHUTDOWN

STATUS

AMSTOOW Q

CHECK
HARDWARE

Figure 9.3 Fifth level module breakout

OPEN
FILES

1.1.1

AMSTSHCK

C

INITIALIZE
VARIABLES

1.1.2

AMSTHWCK

1.1.3 1.1.4

-

AMSTOPFI AMSTlNVA

104 Chap. 9 The Programming Phase

Then each sub-component can be further divided as in Figure 9.4.

1.1.1

AMSTSHCK u
AMSTSHOP AMSTSHWM AMSTSHCD AMSTSHER

Figure 9.4 Sixth level module breakout

And so it is broken down further and further until a level is reached where it can
be programmed.

A common question is, "At what level does system design stop and module design
begin?" The answer is, "The system design breaks down to the level where the
programmer can begin." This level may vary from project to project and even from one
part of the system to another-depending on the programmer who receives that part.
There are other considerations:

If module breakout is crucial to meet priorities such as response, user friend-
liness or consistency, the designers may go lower.
The level of breakout of the design may be dictated by the contract. Govem-
ment departments such as the Military specify the number of levels.
If the programmers are not known at design time, a median level of program-
mer knowledge can be assumed, and the design is taken to a level that a
median programmer can handle.

But remember thatprogrammers detest receiving a design of such detail thatprogmm-
ming is simply translating English-like statements verbatim into a program language.

Step 3. Walk Through the Module Design

As in the top and medium levels of design, tradeoffs have to be made in the lowest levels
as well. Walk through the design of each module before coding it. This walk-through
is small: only the appropriate programmer, his supervisor and perhaps another pro-
grammer need to attend. The purpose of the module design walk-through is to ensure
that the best design was done, all functions are addressed and all contingencies are
handled.

Step 4. Plan How to Test the Module

The programmer should prepare the test plan and the test data for the module before it
is coded. Test plans done after the code are prejudiced. They tend to test only the 'hard'

Sec. 9.3 The Programming Steps 105

parts of the code. The Project Leader may insist on a test plan walk-through along with
the module design walk through. Do these two walk-throughs together.

Step 5. Code Each Module

Coding standards were set up during system design (See Section 7.12). We will not
discuss here how to program-consult References 12 (this paper discusses design as
well as programming) and 13 for some insights. Here is a summary of what constitutes
a structured program:

It is small. Rules of thumb suggest approximately 100 lines of executable
code, less than two pages of listing.

One entry, one exit.

Minimum global references.

Structured constructs to use: Sequence, IF/THEN/ELSE, CASE, WHILE,
UNTIL, CALL (not GO TO).

Step 6. Test the Module

The programmer tests a module by setting up the appropriate environment, providing
some input, letting themodulego through the processing logic and observing the results.
The input may have to be faked, especially if the module that will actually provide this
input is not available.

Modules should be tested in two phases. Phase 1 is called 'white box' testing. The
programmer knows what is inside the module, and supplies test data so that each logical
path in the program is executed. After this, Phase 2, or 'black box' testing can be done.
In black box testing the programmer ignores the innards of the module-data is supplied
in the order and frequency that approximates real use.

Step 7. Test the Lowest Levels of lntegration

If a main module calls sub-modules, the programmer must integrate and test all these
modules working together. Even if he is not responsible for writing the sub-modules, he
must test the CALLS to and RETURNS from these modules. The best method to do this
is to create a 'program stub' in place of the sub-modules. A stub may be a four line
program which indicates that control was successfully received, shows the parameters
received, and passes control back with some fake parameters if necessary.

Step 8. Save the Results of All Tests;
Submit Finished Modules to lntegration

Test results are used to gather statistics on the causes, cures and costs of correcting
errors. The Project Leader is usually in charge of integration in a small to medium sized
system. Software such as CMS (Code Management System) is very useful for configu-
ration management-keeping track of versions and changes to source code (See
Section 9.4).

106 Chap. 9 The Programming Phase

Step 9. Get Started on the User Documentation

Whether the programmers are responsible for user documentation or not, this phase is
the best time to begin producing it. The following documents may have to be written:

User's Guide. This document can be written by the programmers, a technical
writer or even the user. Recall that the FS has sections that detail the menus, screens,
forms and other user interfaces-do not re-invent the wheel.

A good USER'S GUIDE is divided into sections that represent different users'
jobs. In the ABC system USER'S GUIDE, for example, there should be a chapter
labeled 'Registrar's Functions', another labeled 'Warehouse Functions' and so forth.
The material should be in the order that the user will normally use it. This makes the
USER'S Guide useful for learning the system. Another popular order for USER'S
GUIDES is by a logical trace down the tree of menu commands. At the end of the guide
provide reference sections where each command, menu, form and message appears in
alphabetical order.

Maintenance Guide. How do you get programmers to document the details of
their programs for subsequent maintenance? Most PM's find this very difficult to do: - -
programmers are reluctant to document before the program is written; and good luck
getting them to do it after everything else is done. Programmers think that maintainers
require a detailed explanation of program logic. This is boring to write and totally
unnecessary. There is a simple solution to this: A good, detailed module level design
specification with structured, self documented code is enough for system maintenance.
The MAINTENANCE GUIDE will consist of the Design Specification, the program
listings, and an explanation of how it all fits together, how to approach changes, and how
to link and test it all.

Operator's GuideISystem Manager's Guide. This is the equivalent of the
USER'S GUIDE for the person who brings the system up in the morning, shuts it down,
does backups, handles major problems, does the accounting and so on. The docurnen-
tation provided by the manufacture^ of the hardware and the operating system may be
enough-only the procedures unique to the custom software will have to be written
down.

Training Documentation. If you will provide courses on how to use the
system, plan what form of training material will be required. A good USER'S GUIDE
should be adequate in most cases. You may have to produce training aids such as
overhead transparencies, hands-on exercises, tests and so on.

9.4 PROGRAMMING CASE TOOLS

The following are software products that help the programmer do his or her job better.
These are called CASE (Computer Aided Software Engineering) tools because they
help to automate the programming process. See Reference 2.1 for actual products.

Sec. 9.4 Programming Case Tools

The Programming Language

The programming language and compiler is the most important tool. If it is simple and
well-suited to the application the programmer will be able to learn it quickly, use the
exact construct required, and program without awkward work-arounds, the short
comings of the language. The compiler should be fast, and the error messages clear.

Language Sensitive Editor (LSE)

An LSE provides templates for every statement in the language. For example, in
PASCAL, the user can type 'FOR' and the LSE produces

FOR %{ctrl-var)% := %{exp}% % { T O I D O W N T O) % %{exp}% DO

'%{statements)%
END;

The programmer merely fills in the variables and the LSE ensures that the syntax is
correct. The LSE can also call the compiler. If an error is foundby the compiler, the LSE
gets control back, and the programmer is back in the editor-with the compiler error
message and the source line that caused it on the screen. The LSE can produce the
program header from a template.

An LSE aids in syntax checking, compiling and ensuring consistent source format
throughout the system.

Debugger

A debugger helps detect and correct errors. It should provide program stop, trace, and
step. A good debugger allows setting and displaying of variables at any point, as well
as executing specific parts of a program.

Code Management System (CMS)

Sometimes called a configuration manager, CMS is invaluable for any programming
effort. CMS is the 'librarian' that owns all sources. It can police who updates what and
ensures that conflicts are avoided if two people are updating the same module at once.
CMS keeps track of all changes to all the modules so that a history of a module is easy
to see. And for the icing on the cake, CMS provides easy regression to previous versions
of the sources.

CMS can handle anv ASCIIfile. It is therefore useful not onlv for tracking, source
files, but for storing and ;racking documentation files, test files, and system build files
as well. Imagine the situation at a hardwarelsoftware manufacturer such as DEC, where -
there are usually 20 to 30 versions of an operating system supported, each varying
slightly depending on hundreds of permutations and combinations of hardware and
software flavors. A CMS is absolutely necessary to track all of these versions. (Excuse
me for sounding overenthusiastic, but CMS has saved my life many times.)

Chap. 9 The Programming Phase

Module Management System (MMS)

An MMS is used to automate the compile and link process, or the system build. It can
rebuild only those components that were changed since the last build. MMS can be used
to automatically run a set of tests against a module. MMS is very useful when you are
building a 'release' of a system: assembling all the appropriate sources and executable
images, as well as all the documentation in a package. MMS works hand-in-hand with
CMS where all the sources, document files and command files that run MMS can be
stored.

Test Manager (TM)

ATMisused toautomate the testingof amodule.To use theTM you define a set of tests
to be run against the module along with the expected output. TM will run the tests, and
inform the programmer if the results vary from the expected output.

9.5 COPYRIGHTS

The subject of copyrighting software is still in the courts, but a recent ruling states that
not only is the piece of software copyrightable, but also the 'look' and 'feel' of it
(whatever that means). If you wish to protect your code, add a copyright notice to each
source module and document. "Copyright 0 19nn, Company Name" is all that is
usually required.

9.6 CONCLUSION TO THE PROGRAMMING PHASE

Here are some thoughts on programming:

Programmingusedto be considered to be an art. Programmers were allowed to "do their
own thing." It was very quickly discovered that it is too expensive for that. It has to be
considered as a science--rigorously dictated.
Programming is fun--debugging it is not. Watch out for statements such as "Coding is
done; all that's left is to debug it, so I am 90% done!" Statistics show that the programmer
is only 50% done after coding.

Here are some thoughts on programmers:

Programmers will always underestimate a task. Teach them pessimism-things will go
wrong.
Programmers will enjoy their job if you motivate them with a challenge. Each task should
be just a little bit harder or different than the last. If you wish to learn how to motivate
programmers, read G. Weinberg's book, "The Psychology of Computer Programming"
(Reference 14).
Programmers are easily abused-they will work overtime when requested. But beware of

Sec. 9.6 Conclusion to the Programming Phase 109

constant overtime. Aftera while no extra productivity wiUbe gained and the programmers
will burn out.

At the end of the programming phase look for the foltowing miIestones:

1. The module designs have been walked through and signed off.
2. The individual programs have been coded, tested and signed off by the

project leader.
3. The order for the integration has been decided, written in the System Test

Plan (and programming is progressing in that order).
4. The responsibility for the user documentation has been assigned, and if you

are lucky it has already been started!

QUESTIONS

1. Why do programmers always start codingtoo early (before the designis completed)? Why
is this inadvisable?

2. When does system design breakout stop and module design begin? What factors would
override this?

3. Why should programmers plan the module test before writing the code?
4. What is white box and black box testing? Why use both?
5. List five attributes of a structured program.
6. What two things would a good User's Guide be used for? Why provide both?
7. What is the traditional program maintenance document, and why is this disliked? What

could replace this?
8. List, in order of importance, six programming CASEtools. Explainwhy you chose the first

three as most important.
9. What are the milestones of the Programming Phase?

The System Test Phase

Putting it all Together

10.1 INTRODUCTION

The System Test Phase has two activities. First, the pieces will be integrated into a
composite or system; and second, this system will be tested. The testing is there to
ensure that the pieces work together, and that the system functions as it should.

It is difficult to estimate how long system test will take. You cannot state that there
will be X number of bugs, each of which will take 4 hours to resolve. A rule of thumb
is that system test will take one eighth the amount of time of all that has happened before.
In addition, if the activities so far have taken longer than planned, system test will take
longer as well. Good project managers allow lots of contingency when scheduling
system test.

System Test War Story

Onone large telephoneswitchingsystemproject the Chairman of the Board of the client
company was present at system test time. This switch was supposed to handle 200 lines.
When we first turned it on it crashed after 20 lines were plugged in. The CEO panicked
and suggested an immediate halt to the whole project! He said, "looks like you have
only one tenth of the system ready after all this time and expense, and I cannot afford
another ten fold expenditure!"

It was only a DIMENSION statement that was wrong, but it took the President of
my company to calm this CEO down.

Sec. 10.2 The System Test Plan 111

Comment: I am usually reluctant to allow the client to be present at the start of
the System Test Phase. If the user (or even the PM for that matter) is watching the
integration and test activity, and is not used to the nature of the exercise, panic may
result. It always appears to be in terrible shape at first: hundreds of problems, nothing
works. But things soon fall into place. You may have only one module working on the
first day; but by the end of the second day you will have five more working, and by the
end of the week most of the system may be ready.

10.2 THE SYSTEM TEST PLAN

How do you assemble a large system comprisingof many programs and modules? You
do not first write all the programs, then link all of them together at once and turn it all
on. Obviously some sort of piecemeal integration is needed. We will see the different
orders in which you can integrate the sytem, but in all cases this order has to be planned
in the System Test Plan (STP).

The STP documents not only the order in which the pieces will be integrated but
also the tests that will be run at each stage of the integration (as each module is plugged
into the 'package').

Contents of the STP

1. Test schedule, staff, resource requirements.
2. Configuration management, integration and testing tools to use.
3. Order of integration.
4. Checklist of tests to run at each step of integration, source of these tests.
5. Checklist of 'bad' data and procedures to try.
6. Regression process.
7. Load and perfomance tests.
8. List of deliverables (sources, documentation, etc.)

Getting Something Going as Quickly as Possible

The System Test Plan should be written before the programming begins because the
programs can then be written in the order that they will need to be integrated. This
implies that you do not have to program everything before you can start integrating. In
fact, there are advantages to bouncing back and forth between the programming and the
system test phases. Program several integratable modules, then integrate and test these,
and you have somethingworking to show theuser and your management.Then go back,
program another set of modules, integrate and show off again. Another advantage to this
is that the experience gained during integration helps in approaching the subsequent
programs.

112 Chap. 10 The System Test Phase

The Order of Integration

There are three common orders in which to approach integration:

Q
HANDLER w

FILES f3
Figure 10.1 Top level design

Top down order. The order of assembling the pieces can be done top down
according to the TLD. For the ABC system whose TLD is shown in Figure 10.1, top
down integration would assemble the modules or programs comprising the MENU
portion first. When the MENU is working, the programs comprising INQUIRY are first
integrated, then plugged into the MENU. Then UPDATE followed by REPORT
GENERATION are added to complete the package.

If you wish to get something going as fast as possible, you would first program the
MENU modules, integrate them, and show this to your management. This could be a
small milestone. Then go back to programming the INQUIRY, and show it off when it
is integrated, and so on with the other components.

Bottom u p order and programstubs. It isvery temptingtointegratebottomup,
starting with the FILE HANDLER and working upwards on the TLD-after all, the
FILE HANDLER is probably the least complex component. The MENU is the most
complex, and it is psychologically difficult to begin with the hardest piece. But a major
problem will crop up. When integrating and testing components without the other
components in hand, you must 'stub out' the other components by fake routines that
simulate the presence of these components (See Section 9.3 Step 7 for an explanation
of stubs.) Working top down, when MENU is being integrated, the INQUIRY,
UPDATE, and REPORT GENERATOR must be stubbed out in order to test the CALLS

Sec. 10.2 The System Test Plan 113

these components. For example, the stub for INQUIRY is probably a four line routine
that indicates it received control, shows the parameters it received, pretends to get a
record from the data base by delaying a few milliseconds (if timing is important) and
sends a fake record back in a buffer. This is relatively simple to do. But working bottom
up from the FILE HANDLER, you would have to stub out the MENU as well as the
middle levels. The stub would have to open the files, initialize many things-you would
spend almost as much time stubbing the higher levels out as you would writing them!

For certain systems, especially real time systems, integrating bottom up may be
necessary. For example, the automobile engine test bed discussed earlier (Section 7.2)
had the TLD shown in Figure 10.2.

Figure 10.2 Top level design for engine test bed

USER INTERFACE
AND SYSTEM

CONTROL
I

I I

In this case you would probably start integrating bottom u p n o t because the
stubbing problem is any less serious-but because the heart of the system is the engine
sensors and drivers, and you need to get that portion going first.

Systems that are in large part created by re-assembling existing components or
modules also should be designed and integrated bottom-up.

HANDLE DANGER
SENSORS

Sub-function or Release order. This method is best for getting something
useful going as quickly as possible. For instance, assume that there were 20 different
menus, 50 inquiries, Soupdatesand25 reports promised in ABC. How about getting 10

DANGER SENSORS REPORTS

I
1 I I I I

DEVICE
DRIVER 5

DEVICE
DRIVER 1

DEVICE
DRIVER 3

DEVICE
DRIVER 2

I
DEVICE

DRIVER 4

A-TO-D A-TO-D A-TO-D A-TO-D A-TO-D

I
OIL PRES HEAT

I SENSOR I I SENSOR I I SENSOR I

I I I I I

ENGINE

VIBRATION

114 Chap. 10 The System Test Phase

menus, 20 inquiries, 20updatesand 10 reports going first of all? This sub-system would
be accepted and implemented for the user as Release 1. Then go back to programming
additional menus, inquiries, updates and reports and implement as Release 2. This
approach is used in very complex systems such as operating systems, because the
developers (and users) can start with something simple, learn it, then go to more and
more complex systems.

10.3 SYSTEM TEST TOOLS

Code Management System (CMS)

Did you ever have several developers try to change a module at once? Did you ever wish
for a way of policing the 'midnight code changer'? Did you ever have a module that was
'almost working', and someone applied a change (then a change to the change, and so
on until nothing worked) and you wished you had a way of going back to the old
version? CMS assists in all of these areas by controlling and tracking changes to
sources. CMS can prevent changes entirely, warn a developer that another developer is
working on the same module, or indicate where the changes conflict.

The most useful feature of CMS is ease of regression. CMS never burns its bridges.
If a change is made to a source it is done by coding a 'change file', containing change
commands somewhat like edit changes. Change files are then applied to the original
source. A 'level' is reached when a set of sources work. Changes can be applied
subsequently, but if these changes 'break' something that worked previously, the
Project Leader can easily regress to the old level of the code. A history ofall the changes
to a single source module, a level, or the whole system can be produced. This can be
used to produce statistics on the cost of the test effort, which will be useful for estimating
subsequent systems.

Test Manager (TM)

As we saw in Section 9.4, a TM allows you to define a set of test procedures and data,
as well as the expectedresults. The TM runs the tests and indicates if any of the results
do not match what was expected. With the best TM systems you can even create the
testing files (procedures, data and results) automatically by running the tests once
interactively and storing the results.

The TM makes regression testing (going back to tests run previously because
something 'broke') very simple. TM also allows you to easily organize, summarize and
examine the test results. For those interested in problem causes, solutions and costs (and
who isn't!) TM provides a history of the whole process.

Source Code Analyzer (SCA)

An SCA is a tool for finding a character string throughout many source files. For
example, you can find all the occurrences of a variable name or a routine name. This is

Sec. 10.4 The Integration Process 115

useful when a variable is suspected of causing a problem somewhere, or when all the
CALLS to a routine need to be traced.

Performance Coverage Analyzer (PCA)

APCA traces the sections of the system which are executed and their frequency. This
measurement can be used to improve performance-optimizing should take place in the
sections of code that are executed most. The trace is also useful to ensure that your tests
forced all parts of the code to be executed.

A good PCA can be used to analyze the crucial interfaces from your system into
the operating system such as InpuVOutput and system function calls. One of the most
important items to optimize on a virtual memory computer is paging. PCAshows where
page faults occur.

Module Management System (MMS)

An MMS automates the building of the whole software package. It does the compile and
link of the sources, as well as assembling the appropriate.test sets, data files, and
documentation. MMS saves incredible amounts of time in system test since it can be
programmed to rebuild only the pieces that changed since the last build.

10.4 THE INTEGRATION PROCESS

The first tests in the system life cycle were done by the developer, who developed a set
of tests-procedures plus data-to thoroughly test the module. When submitting the
program to integration, the programmer should provide a smaller set of crucial tests to
the integration manager. This is shown as TESTA in Figure 10.3.

ALL TESTS CRUCIAL TESTS
(used for Integration)

TEST 1

TEST 2 TEST 1
1 TEST3 TEST A
1 TEST4 TEST 6
TEST 5

TEST N

Figure 10.3 Crucial tests retained for system test

When integration begins-for example MODULE-A is integrated with MODULE-B
tests are defined that test the CALLS made from A to B, the parameters returned, and
the functions in A that depend on B (and vice-versa). Let us call this TESTAE3 (see
Figure 10.4). You must also run tests to ensure that nothing was broken in A o r B when
the two were plugged together. The total tests for the lump A-B (called a 'build') will

116 Chap. 10 The System Test Phase

be the tests TESTA, TESTB (the crucial tests for MODULE-B), and TESTAB.

TEST A

TEST AB (test A to B link)
TEST B

Fiyre 10.4 Integration test for MODULES A and B

Figure 10.5 extends this to many modules. When module Cis plugged in, TESTC is run
to check out MODULE-C. TESTABC is run to check out the CALLS to C from A and
B (and vice-versa). To ensure that A and B did not break when C was plugged in, some
or all of the tests in TESTA.TESTE3. andTESTAB should be rerun. The braces inFigure
10.5 show the order of the' integration and the test sets to be run at each stage.

-

RUN 4

TESTA SUBSET\ OFRUN I

SUBSET SUBSET
TEST AB RUN 1 a\ e\
TEST B RUN 2

TESTABC ,-*
TESTC

RUN 3

TEST ABCD

TEST D

TEST ABCDE

TEST E

/
Figure 10.5 Integration test for many modules

Sec. 10.4 The Final, Thorough Test 117

The Test Manager (TM) software discussed above can be programmed to run any of the
test sets automatically.

10.5 REGRESSION TESTING

The TM can also be used for easy regression. For example, what if the tests comprising
Run (3) in Figure 10.5 show that TESTABCD failed? The problem may be in any one
of MODULES A, B, C or D! If the project team cannot identify the cause of the
problem, they must first go backand rerun the Run (2) tests against the build comprising
of Modules A, B, C and D. If the problem still persists, the cause is in MODULES A,
B or C; if the problem is gone then it was in D. They may have to go as far back as Run
(1) or even to individual module tests if necessary. The TM can make this process very
simple, especially if a CMS is used to store all the test files.

10.6 THE FINAL, THOROUGH TEST

The System Test

When the system is all integrated, someone runs through a thorough set of tests to ensure
that the system functions as promised. Following is the order of the tests that should be
run:

1. Unless nothing has changed since integration (hardware, software, environ-
ment, test personnel), run through some of the tests used toward the end of
integration.

2. Devise a set of tests that are true to life-emulating how the real user would
be using the system. Here you would log several users on a multi-user system
to check the interactivity. Try to approximate the typical system load by
issuing the commonest commands. Do not forget to test the operation func-
tions such as system startup, shut-down, backup, restore, and so on. The best
source for this data is the user.

3. Try to overload the system to ensure that the promised performance require-
ments are met.

4. Try to break it by entering wrong inputs, out of range values and simulating
error conditions.

5. The Acceptance Test Plan should be finished at this point. (See Chapter 8.)
Run through the acceptance procedure privately. This provides another
thorough test and ensures that there will be no surpriseswhen the tests are run
publicly during the Acceptance Phase.

6. Do not forget to test the user documentation as well. Make sure the manuals
are clear, useful, and structured according to the format and standards agreed
to up front.

118 Chap. 10 The System Test Phase

All of the above is documented in the System Test Plan.

The Case for an Independent Tester

For a small to medium sized project, the person in charge of system integration and
testing is the Project Leader. For a larger project, or for any project where you can
afford it, put a separate, independent person in charge of a final, thorough test exercise.
Sometimes called IVBV (Independent Verification and Validation), the independence
is needed because developers are prejudiced testers. They look for specific things to go
wrong and test only the 'hard parts' of their code. They look for things working; a good
tester looks for things not working. An independent tester will also exercise the system
as the user would.

10.7 CONCLUSIONS TO THE SYSTEM TEST PHASE

Keep the PM informed of the progress of the system test. Shehe is waiting with baited
breath to announce to the world the major milestone when an integrated, tested system
has been reached.

The milestones to achieve at the end of the system test phase are:

1. The pieces are all problem free and work together. The PM signs off, agrees
that this is so, and calls a party to tell the world that we have a system!

2. The System Test Plan is updated with the results of the tests. Write down
the type of tests that you had to run, the causes of the errors and the cost to
correct these errors. This is not done to police your people; it is done to gather
statistics so that you can better estimate the test effort on subsequent projects.

3. The acceptance test plan has been run (privately) and any problems found
were corrected.

4. The time and place for acceptance has been verified with the user.

QUESTIONS

1. What are the two purposes of the System Test Phase?
2. Why have a System Test Plan? Why write it before programming begins?
3. List the advantages and disadvantages of integrating top down.
4. What types of systems are usually integrated bottom up?
5. What is the benefit of integrating by releases?
6. Which features of CMS are the most useful in the System Test Phase?
7. Which feature of PCA would you consider most useful when testing a system?
8. Modules A,B, and C need to be integrated. Tests A1 and A2 ran successfully against

Module A alone; tests B1 and B2 ran successfully against Module B alone; and C1 and
C2 against Module C alone. Modules A and B were integrated into Section AB and tests

Sec. 10.7 Conclusions to the System Test Phase 119

Al , A2, B1, B2 and new tests AB1 ran successfully. Module C was integrated to make
Section ABC, but tests A1 failed. Is the problem with Module A or Module C? Defend
your answer with examples of error types.

9. Why is an independent tester better than testing by one of the developers?
10. What are the milestones of the System Test Phase?

11

The Acceptance Test Phase

Demonstration to the User
and (Hopefully) Payment

11 .I INTRODUCTION

We saw in Chapter 8 that the goal of acceptance is written acknowledgement from the
user that the project team has delivered what was promised. We also saw that the major
problem in the small to mid size contract is the user's reluctance to pay-not because
the system is bad, but because the user is afraid to lose the control he holds over the PT
when he hands over the payment. To avoid this problem we suggested developing an
Acceptance Test Plan (ATP) which is approved by the user ahead of the acceptance test
phase. In the acceptance test you will merely run through the tests defined by the ATP
at a formal, ordered session to demonstrate the promised system functions.

The obvious but major milestone is the user's signature of acceptance-on the
bottom of a check.

Acceptance War Stories

Story 1. There is a large city in North America that has recently and rapidly
grown to a population of 700,000. The inhabitants of this city still think that they live
in a small town-for example, traffic moves like molasses. Recently, the city council

Sec. 11.1 Introduction 121

decided that they needed a rapid transit system. They invented one: buses. Not ordinary
buses, but computer scheduled buses! They gathered statistics on bus use and traffic
in the city by geography and time. Then they hired programmers to write a statistical
analysis system in COBOL on a large mainframe computer at a time-sharingcompany.
About one year later they decided that it would be better to have their own computer,
so they bought a microcomputer and attempted to install the software, still in COBOL.
They very quickly realized that the micro would not handle the load, so they bought a
computer from our Famous Minicomputer Manufacturing Company (FMMC) and
hired nrommmers from FMMC to convert the system to run on the new computer. . -

Everything went well until acceptance. when the acceptance test procedure was
run all the tests went smoothlv excent that the statistical results of several calculations
were not the same as on the old system. The results were only different by one digit in
the third decimal place, but the client refused to accept.

The FMMC programmers spent hours poring over formulas and algorithms in
their programs but could find no errors. Finally one of the programmers took a hand
calculator and analyzed some data manually. Lo and behold, the FMMC calculations
were correct. It turned out to be a bug in the COBOL compiler on the old system.

Comment: Never assume that anything is correct.

Story 2. There once was an Account Representative (also known assalesman)
whose job was to negotiate the Functional Specifications (FS) for a project with the
client. During the negotiations the client asked, "Could we have additionally the
functions A, B and C for our fixed price?"

"Of course you may!" answered the Account Representative, came back to his
office, and updated the FS to contain the new features A, B and C. He thought, "The
project team has not started the design yet; when they do they will print out this FS and
build the right thing." He neglected to tell anyone about the changes, or even put
'VERSION2' on the fron!page of the FS. Unfortunately, thePThad already printed the
FS and were busy designing.

At acceptance time the following scene took place:

Project Team: Here is your system, Mr. Client.
CLIENT: Very nice, but where are our functions A, B and C?
PT: What functions A, B and C?
CLIENT: The ones on page x of the FS.
PT: Our page x doesn't have that!

Comment: First of all, only the technical people may make commitments.
Second, be sure that all communications are clear among the members of the PT (even
the Account Representatives).

Epilogue: Guess who had to add functions A, B and C free of charge? Oh yes,
that Account Representative no longer works for the company.

Chap. 11 Acceptance Test Phase

11.2 ACCEPTANCE CHECKLIST

Here are the items that must be done before acceptance can begin:

The ATP has been written, reviewed by the user, and revised as necessary.

A specific time has been set aside and confirmed with the client's signing
authority as convenient to run the acceptance.

The PT personnel required to run the acceptance has been advised. These
include thePM, to handleany negotiationand sign off, and at leastthe Project
Leader to handle technical issues, fixes, and so forth.

Any resources required for the acceptance run have been prepared. These
are the software and hardware needed, forms for sign off, and copies of the
acceptance script.

One copy of the user documentation is available. Remember that this is part
of the deliverables. Do not photocopy it yet-there will be changes.

The PThas run through the ATP thoroughly ahead of time and made all the
necessary corrections.

The acceptance procedure has been agreed upon. This includes the order of
the tests, who will enter the inputs, which terminals will be utilized, and so
on. Remind the client of the agreement: he will sign off each successful test
and the whole thing if all the tests work.

Prepare for the acceptance test well. This may be the first time that the user sees the
system. If you are disorganized and ill-prepared, the client will become apprehensive
about paying you.

11.3 RUNNING THE ACCEPTANCE

I usually suggest to the client that a member of the PT type while the client watches.
Invariably the user answers, "I want to type and you watch!" This is understandable
because by now the user is dying to play with the system. So I schedule extra time for
typing. (Whereas I can type with two fingers, the user types with fewer.)

What happens if a test fails? (See next section for the types of problems that may
be encountered.) If the problem is minor and it can be fixed within 30 minutes, the
project team applies the fix and the acceptance is continued. If it will take longer to fix,
the acceptance may be stopped and resumed later, perhaps the next day. In the case of
any changes to the system, the client has the right to rerun allpreviously performed
tests, although you can probably make the case that you do not need to regress to a
previously completed test set. (See Chapter 8 for what comprises a test set.)

Leave time for the user to try to 'break' the system after each test. The ATP tests
only for things working. You must also test for things not working, and this is difficult.
Encourage the user to enter wrong things, use bad procedures, and so on.

Sec. 11.4 Conclusions to the Acceptance Phase

11.4 CONCLUSIONS TO THE ACCEPTANCE PHASE

Problems encountered during acceptance will be very minor or very major. Since you
have run through the acceptance procedure beforehand, all the obvious problems
should be corrected when the user runs it. Minor problems that you may run up against
are incorrect spelling of commands or messages, wrong abbreviations, and so forth.
These problems are easily corrected, or the documentation may be updated to reflect the
change-if the user agrees.

Major problems could be serious misinterpretations of the requirements. The
client may reject a screen or a report because he did not understand the description in
the FS, or despite agreeing to the FS, be realizes only now that it does not solve his
problem. He may have changed his mind about something, or the problem itself may
have changed since the FS was written. Most of these problems are caused by poor
definition or analysis. If the FS was correct, these changes must be part of a new project.
If indeed the FS was incorrect, or ambiguous, or incomprehensible, prepare to make the
change.

The acceptance phase has one milestone-the most important one of the project-the
client signature.

A Success Story

I wish to conclude this chapter with another story to demonstrate how pleasant
acceptance can be.

The FMMC was hired at a recent Olympiad to provide a computer system for the
news media. The system was to provide reporters with immediate event results and to
compare the results to previous ones. There was to be a facility to word process reports
and send the articles electronically to their respective newspapers and TV stations.

FMMC prepared the ATP meticulously-it was extensive. The environment was
set up to do the acceptance and everyone showed up. But the client representative (the
head of the Olympic committee) smiled and said, "FMMC, if you wish to provide a
faulty computer system to dozens of newspaper and television reporters throughout the
world, go ahead. We know that there will be no problems with your system." The
checks were then signed.

QUESTIONS

1. List the people and things to bring to the acceptance session.
2. Why are the tests defied by the ATP not adequate for a thorough test?
3. Discuss several problems, caused by poor definition or analysis, that only become visible

during acceptance.

The Operation Phase

The Proof of the Pudding

12.1 INTRODUCTION

So you are finally ready to turn on the system and let the realuser begin to useit to solve
real problems. Thekey issue here is that the whole project team may not leave town yet.
There will always be problems found by the user, at least there will bequestions which
turn into problems if they are not answered quickly.

Themajor activity of this phaseis the warranty: aperiodof time when them fixes
any problems still left in the system. A minor activity is a post project review meeting
to ensure that any mistakes made in the project are not repeated.

The milestones are a fully operational system and the sale of the next project
(probably Version 2 of the old project).

Operation War Storles
There are so many cases where we turn Lhe system on only to find major surprises, that
I will not relate a uarticular story here-I am sure you have several favorite ones. These
stories usually shbw that you j;st cannot test evc&thing and that faults always remain
in systems. There are documented cascs whcre elections results reporting systems
elected the wrong parties or candidates; whcre reservation systems showed trains full
only to have no passengers riding on them; whcre rocket guidance systems sent rocket
ships into the wrong orbits and so on. Software has been known to kill people. Recently
there was a case where the software in a cancer irradiating treatment machine (kemo-
therapy) produced a lethal dose of radiation when the back-arrow key on the operator
terminal was hit too quickly. The manufacturer's fix (temporary, I hope) was to pry the
cap off the back-arrow key. I collect horror stories. Please send me yours. My address
is in the Preface.

Sec. 12.4 Maintenance

12.2 PROVIDING WARRANTY

Warranty means fixing the problems caused by the authors free of charge for a certain
period of time. Six months to one year is a common warranty period in the software
industry. Providing warranty can be handled in one of three ways:

1. Have someone reside at the user site to address any problem. This person
should be the project leader or a senior member of the teamwho knowsevery
aspect of the system.

2. Have someone who can address the problem be accessible by phone.
Preferably all of the authors of the software should be accessible.

3. Have someone who can address the problem available within a short period
of time after a phone call is received. Again the actual authors are best.

You may consider a combination of the above. How about someone at the user site for
two to four weeks after delivery? She could also do any user training required in this
period. For the next two months guarantee that someone will be available by phone. For
the following three months guarantee to address the problem within 4 hours after the
problem report is phoned in.

Note that in all cases the terms of the warranty state that someone will address the
problem, not fiu it, in a certain period of time.

Manufacturers such as DEC have the following warranty available for both their
software and hardware: When a problem is called in (and it cannot be fixed remotely)
they promise to have a low level technician at the user site within a certain amount of
time, for example four hours. If he cannot fix the problem within eight hours, someone
at the next higher level is called in. This can progress up the hierarchy until the actual
author of the software is called in.

12.3 SELLING THE NEXT PROJECT

Amajormistakeproject managers make is to ignore the fact that oneprojectwill usually
lead to another. If the project team is in the business of selling projects, the Operation
Phase provides an excellent opportunity to sell the next project-Version 2 of the first
project. If there were changes requested but turned down during the development,
Version 2 of the product can incorporate these changes. This is why it is so valuable to
write down all change requests on a form such as the Change Request Form discussed
in Chapter 21. If there were no changes, or the PM sees no new opportunity for another
project with the user, he could offer to do maintenance on the old project.

12.4 MAINTENANCE

There is always a need to change a system in order to improve it, add new features, or
fix any problemsstill left after the warranty is over. Most of the time, the user's business

126 Chap. 12 The Operation Phase

will change with time and so will his requirements. These changes or enhancements are
called maintenance.

Several software development methods include a Maintenance Phase. Mainte-
nance may go on for a long period of time. Statistics from TRW, NASA, and DEC have
shown that maintenance costs could be as much as seven times the cost of the original
development. In order to have a clean ending point to the project, maintenance should
be considered as a separate project that begins after the warranty period is over. See
Section 22.5 on how maintenance projects can be treated as any other project.

12.5 POST PROJECT REVIEW

You should close the book on the project with a meeting called the post project review.
Although this meeting will be detailed in Chapter 21 on meetings and reviews, the
purpose of the post project review is to write down what went well, what could have
been improved, to make suggestions for future projects, and to gather statistics on
actuals versus plans in order to improve your estimating formulas. Do not let this be a
'chat over coffee in the cafeteria' type of get together-it should be a formal meeting
with a written report.

12.6 OPERATION PHASE CHECKLIST

You are done with the whole project when:

The new system is up and running smoothly.

Conversion or cutover from any older systems is complete. Cutover should
be done in phasesif possible.

The end users are trained and comfortable on the new system.
Warranty is provided. The PM should make sure that whatever technical re-
sources were promised are actually made available. This is especially
difficult when the warranty resource is supposed to be available by phone.
(Optionally) The next project is sold.

Apost project review is heldand all items that can benefit future projects are
documented.

The responsibility and method of ongoing maintenance is defined.

12.7 CONCLUSIONS TO THE OPERATION PHASE

Include the price of the warranty in the first proposal for the project. It is much more
difficult to get additional funds for six months of warranty after the system is delivered.
Proper operation is essential for user satisfaction. Remember that first impressions are
critical-hold the user's hand at the start.

Sec. 12.8 Conclusions to Part 1 of the Book

12.8 CONCLUSION TO PART 1 OF THE BOOK

This wraps up the 'theoretical' aspects of the business. At first glance it may seem
'bureaucratic' to do all these steps, write all these documents, and have all these
meetings. But each phase, step, junction, document, and review provides a tool to do one
or more of the following:

1. Plan a smaller chunk.
2. Complete a work package to measure progress. Progress reporting is needed

to make both the client and your upper level management happy.
3. Involve the user at a review point. It bears repeating that the more the user is

involved, the more succesful your project will appear to be, even if it is late
or over budget!

4. Provide a point to stop and look for problems. We must ensure that each step
correctly interprets the intent of the previous one. This is called Validation.
Following are the six major transformations of information in the system
development life cycle, and validation must be done at each transformation:

I The user perceives his own needs. (Mental transformation!)

I1 The user relates the needs to the analyst. (Verbal transformation.)

I11 This is written down as the Requirements Document. (Written
transformation.)

IV The requirements document is transformed into the Functional
Specifications. (Written transformation.)

V The Functional Specifications are transformed into design. (Written
transformation.)

VI The design is transformed into code. (Written transformation.)

Validation is difficult. There are no (good) tools available to ensure that informa-
tion is transformed correctly. The step-wise method allows us to intersperse reviews,
walk-throughs, and inspections throughout the development to ensure that a problem
introduced in one phase is caught as soon as possible, before it is carried on to the
following phases. The next section of the book details the practical tools that make the
development activities easier.

QUESTIONS

1. What are the ways to provide warranty?
2. Why is the Operation Phase a good opportunity to sell the next project?
3. Why should maintenance not be part of the project?
4. Why have a post project review? What is the result of this review?
5. What are the milestones of the Operation Phase?

PART 2
Practical Methods

Estimating

The Weakest Link in the Chain

13.1 INTRODUCTION

Estimating is an iterative process. Recall that the first estimate is done during the
Definition Phase, when you write the preliminary project plan. It is necessary to do it
at that point because you need an estimate for the proposal. But statistics from DEC,
NASA, TRW, and others have shown that anestimate done at that point is 50% to 100%
inaccurate. After the Analysis Phase you re-plan. You have torevisit the estimates and
revise the preliminary project plan into the final project plan. At this point the accuracy
of your estimates should double: You should be only 25% to 50% off. After themedium
level design is done, you revise the estimates again. With the knowledge gained by that
time you should be within 10%. Although not mentioned as an explicit activity in any
other phase, plan to revise your estimate each time some new knowledge alters it.

All of the techniques that we will discuss are crucially dependent upon granulari-
zation: breaking things into small pieces. It is therefore essential to have a good work
breakdown structure (discussed in Chapter 3), before any estimating is attempted.

13.2 ESTIMATING TECHNIQUES

There are threemajor techniques used toestimate:professional judgement, history, and
formulas.

Use of Professional Judgement

Let us say that you know a person who has extensive experience programming report
generation modules. You approach him or her with the design of a report generation

Sec. 13.2 Estimating Techniques 129

program and ask him or her to estimate how long it would take to program it. After
studying the design for five minutes, the programmer closes his eyes for another five (he
is not asleep-he is calculating), and then replies, "Fifteen days." This is pure profes-
sional judgement.

The advantages of this method are that it is fast, and if the person is truly an expert,
the estimates are amazingly accurate. The main disadvantage of the method is that you
need an expert who has experience in the appropriate area and experts are usually hard
tofind. Furthermore, the estimate that you get is for the length of time it would take the
expert to do it. It may not be dependable if someone else must perform the task. It is also
dangerous to rely solely on the subjective knowledge and opinion of a few experts.

Use of History

To get away from depending on a few people and to make the estimate more scientific,
you should keep history. Write down how long each task took to complete and who was
responsible for it. You can then compare the task to be estimated with the actuals of
similar tasks done in the past, and come up with anestimate. This implies that you should
break the project up into tasks that are usually repeated and are easily compared. For
programming this may be the generation of an input form, a report, calculation of a
complex formula, and so forth. Companies or departments tend to build similar types
of projects. Find the basic building blocks and document the actuals required for these.
If y ou are really intelligent, take this one step further and build these blocks in a reusable
fashion. You can estimate a re-use much more accurately than a re-write.

In order to compare apples with apples, you should also write down who
performed the task. Statistics from IBM and DEC have shown that there can be as much
as an 8 to 1 productivity ratio between the best and worst computer professional.

Use of Formulas

There have been many formulas published on software estimating. The best known is
called COCOMO (Reference 15). COCOMOcan beused toestimate project cost, effort
(person months), schedule (months), and staffing (number of staff) for each of the
following four phases:

Preliminary Design (PD) - our Analysis Phase

Detailed Design (DD) - our Design Phase

Code and Unit test (CUT) - same as ours

System Test (ST) - our System Test and Acceptance phases

There are three types of input to COCOMO: First, the monthly cost of the staff
involved. Types of staff can be programmers, analysts, designers, test staff, adminis-
trators, and technical writers. Figure 13.1 shows an input screen that prompts for the
second type of input. These are factors indicating the general level of complexity of
the software, the size and availability of the computer used for development, the
capability and experience of the staff, and the programming practices and tools used.

Chap. 13 The Estimating

< Estimation Mode Form \

Name: Test

Mode: Simple (Intermediate Complex)

outputs :

PDCOST: 5500 (Prel. Des. = Analysis Phase)

DDCOST: 5500 (Detail Des.= Design Phase)

CUTCOST: 5500 (Code&Unit Test)

ITCOST: 4800 (Int. h Test)

Inputs:

Line of Source Code: 10000

Factors (1 - low through to 5 - extra high)
Relability: 3 Exec time const: 1 Analyst cap. 1

Data base size: 2 RAM constrained: 3 Applicat'n exp 3

SW complexity: 3 VM volatility 1 Progrm'r cap 2

Turnaround 2 VM experience 3

Lang exp 4

Modern programming practices: 3

Software tools: 4

Schedule constrained: 3

J
The Factors are:

1 - Very Low 2 - Low 3 - Nominal 4 - High 5 - Very High

Figure 13.1 COCOMO parameter prompt screen, as implemented by VAXSPM
(Reference 2.1)

At this point you probably feel that COCOMO will do a wonderful estimate, since these
items seem to be exactly what determines the length of a project. But here is the rub:
the last item COCOMO asks for is the number of lines of source code (LOSC). I fccl
that by the time you have enough knowledge about the system to accurately pr&ict the
LOSC, you do not need any formulas - you can probably accurately estimate the whole
project.

Function point formulas. The COCOMO approach can be improved vastly by
products that calculate the LOSC given the functions that a product does, and feeds the
result into the COCOMO formulas. One such product is Before You Leap (BYL) by
the Gordon Group (Reference 2.5). Fi y r e 13.2 is the BYL screen that prompts theuser
for the function points as well as the language used. The results given by BYL are
similar to those of COCOMO, except that the output can be presented as graphs such
as pie or bar charts.

Sec. 13.2 Estimating Techniques 131

Figure 13.2 BYL Function Point Analysis screen

Another product worth considering is Estimacs by Computer Associates. CA-Estimacs
allows you to explore cost, effort, schedule, and staffing as in COCOMO, but adds
suggested hardware required (IBM oriented), financial break-even analysis, risk
analysis, and maintenance cost for both single and multi project environments. CA-
Estimacs can take into account modern system development tools such as code
generators and prototypers. It can even estimate for purchasing existing or customized
packages. The types of factors input to CA-Estimacsare listed inFigure 13.3. Note that
these are more detailed and sophisticated than those of COCOMO.

INPUT FACTORS AFFECTED ESTIMATE

Business costs
Tool costs

Payback

Hardware costs
Customer complexily Effort, Function point,
Customer geography
Developer's familiarity
Business function size
Targct system sophistication

Maintenance

Chap. 13 The Estimating

Target system complexity
Development strategy Staff, Cost
Skills Deployment
Rates
Work week
Machine cost

System type Hardware required
Application category
Operating window
Transaction volume
Background workloads
Number of terminals

System size
Project organization
Customer/developer relationship
New technology

Risk analysis

Deadlines
Other projects
Background Workloads

Multi project aspects

Figure 13.3 Table of some CA-Estimacs inputs and outputs

The only fly in the ointment is the cost of CA-Estimacs: over $20K MSL.

Estimating Programming

One formula approach that has been very successful for estimating the programming
phase is a simplified function point approach. Let us detail this in order to understand
how all formulas work. If you go through this exercise for the programming phase, you
will have a much better understanding of all the other phases. Those who wish to skip
technicalities may wish to go on to Section 13.3. The method is this.

There are basically only two factors that affect the duration of a task: the
complexity of the task (C), and the productivity of the person performing it. The
productivity of the person in turn depends on the number of years of general experience
(G) and knowledge of the particular job (J). As a formula this can be expressed as:

D = C x (G + J) [formula 11
Where:

D is the task duration
C is the complexity factor
G is the general experience factor
J is the job knowledge factor

(You may be saying to yourself, "I hate formulas! Is this a math text? This is the
reason I dropped out of math and went into computers!" Do not worry. This

Sec. 13.2 Estimating Techniques 1 33

formula will be very simple and I promise that there will be no more formulas in
the book.)
Let us discuss the factors in formula 1.

Complexity

To derive the complexity factor of a task you must break it down to the smallest possible
repeatable functions within the task, and add up the complexity of each function. For a
programming task, these are called functionpoints. The function points could be user
input, user display,peripheralI/O, restructuringdata, condition checking, calculation,
branching and calling, and so forth. (Sometimes the language constructs such as
SEQUENCE, IF, WHILE, UNTIL, FOR, CASE, and ASSIGNMENT are counted.)
The complexity of the program depends of course upon the language used and the
complexity of each function point. Taking all this into consideration a table such as
Figure 13.4 can be produced.

PROGRAMMING ESTIMATE COMPLEXITY FACTORS(C)

LANGUAGE FUNCTION POINT SIMPLE CMPLX VERY
CMPLX

Interp ' r User Input 1 3 4
User display 1 3 4
Periph. Input 3 6 8
Periph. Output 3 6 8
Restructure Data 1 3 4
Cond. Checking 1 3 4
Calculation 1 2 3
Branching 1 2 3
Calling 2 3 4

High-Level user 1nput 2 4 5
User Display 2 4 5
Periph. Input 4 7 9
Periph. Output 4 7 9
Restructure Data 2 4 5
Cond. Checking 2 4 5
Calculation 2 3 4
Branching 1 2 3
Calling 1 2 3

Assembly User 1nput
User Display
Periph. Input
Periph. Output
Restructure Date
Cond. Checking
Calculation
Branching
Calling

1 34 Chap. 13 The Estimating

LANGUAGE FUNCTION POINT SIMPLE CMPLX VERY
CMPLX

- -

Changing an U s e r Input
Existing Pgm. User Display

Periph. Input
Periph. Output
R e s t r u c t u r e D a t a

Cond. Checking
C a l c u l a t i o n
Branching
Calling

Figure 13.4 Weighting factors for program complexity

These factors were derived by using actual measurement and then adjusted so that the
formula D = C x (G + J) comes out in person-days. The factors in figures 13.4 through
13.6 are based on a paper by IBM (Reference 17), and is only an illustration of the
method. Youshoulddefine factors of your own. You may be thinking, "Boy, will Ihave
to keep detailed time reports!" This is correct.

The total complexity (C) for a program will be the sum of all the factors for the
function points.

Productivity

You need to establish factors for your staff's productivity. This is much more difficult
to do than the task complexity factors, since people's productivity can change depend-
ing on their interest level, mood, and so forth. Recall that productivity is influenced by
general years of experience and knowledge of the job. The following is a list of factors
based on the general experience of the person:

PRODUCTIVITY FACTORS
BASED ON YEARS OF GENERAL EXPERIENCE(G)

Par.TvPe Years of Ex~er ience Factor Range

Senior 5 + 0.5 - 0 .75
Average 1.5 - 5 1.0 - 1.5
J u n i o r 0.5 - 1.5 2.0 - 3.0

Trainee 0.0 - 0.5 3.5 - 4.0

Figure 13.5 General experience factors (G)

Note that the productivity factors are presented as ranges to account for the variety in
people. These figures are also based on IBM papers. (Reference 17). Develop your own
factors by assigning '1' to your average person and fill in the data for the other people
based on their history.

The speed at which a professional will produce a product depends not only upon
the general experience (G) calculated above, but also on how much experience the
person has at the particular job at hand and at related jobs. In addition, the amount of

Sec. 13.2 Estimating Techniques 1 35

knowledge actually required should be factored in. The following table can be used to
quantify this knowledge (J).

PRODUCTIVITY FACTORS
BASED ON KNOWLEDGE OF THE PARTICULAR JOB(J1

JOB KNOWLEDGE KNOWLEDGE REQUIRED
Much Some None

D e t a i l e d knowledge of t h i s job and 0.75 0.25 0.00
d e t a i l e d knowledge of r e l a t e d jobs

Good knowledge of t h i s job and
f a i r knowledge of r e l a t e d jobs

F a i r knowledge of t h i s job and
no knowledge of r e l a t e d jobs

No knowledge of t h i s job and 1.75 1.00 0.25
d e t a i l e d knowledge of r e l a t e d jobs

No knowledge of t h i s job and
no knowledge of r e l a t e d jobs

Figure 13.6 Factors for job knowledge (J)

Again, you must develop your own job knowledge classifications and productivity
factors.

Example of Using Formula 1, D = C x (G + J)

Let us estimate how long it would take to write a particular PASCAL program. The
numbers in ~arenthesis are references to lines in the calculation below.

(1)T'he'program prompts the user for something, (2)reads the user response,
(3)validates it, (4)reads a record from disk. (5)calculates a number, (6)writes a record
back to disk, (7)displays the result to the us&, and (8)calls another module (returns).
(9)The programmer has two years of experience, is a good but average programmer
who has (10)fau knowledge of this particular application, but no knowledge of related
applications. (1 1)Some job knowledge is needed to do this job.

Complexity (C) calculation. The factors are from Figure 13.4, for aHIGH LEVEL
language.

Funct ion F a c t o r

USER DISPLAY (SIMPLE)
USER INPUT(S1MPLE)
CONDITION CHECKING(CMPLX)
PERIPHERAL INPUT(S1MPLE)
CALCULATION(S1MPLE)
PERIPHERAL OUTPUT(S1MPLE)
USER DISPLAY (SIMPLE)
CALLING (SIMPLE)

TOTAL COMPLEXITY C = 23

Chap. 13 The Estimating

Productivity calculation

General experience G. (Factor from Figure 13.5)

(9) Programmer is average (2yrs. exp) G = 1.00

Job knowledge J. (Factor from Figure 13.6)

(10) Fair knowledge of application, no related knowledge, but

(11) some is required J = 0.75

Plugging all this into Formula 1:

Duration = 23 x (1.00 + 0.75) = 40.25

So it will take this particular person 40 days to design, document, code, and test this
program.

Conclusion to the formula method. This method will work i f you develop
accurate factors. The beauty of this approach is that it can be used for any task, be it
programming or building a house. Note that this method, as any other estimating
method, depends upon how well you granularize.

13.3 ESTIMATING THE ANALYSIS PHASE

Estimating analysis is very difficult because it is such a human oriented activity. Here
is one method. Again, it depends upon breaking the task into its components. Figure
13.7 is the Level 2 WBS for analysis. - I ANALYSIS I

Figure U.7 Analysis major components

The worksheet (Figure 13.8) is derived from level 3 of the WBS: each level 2

I

I

. -
component is broken into appropriate sub-components and activites. A multiplication
factor is then assigned to each activity such that the answer comes out in person-days.

INTERVIEWS

ANALYZE
EXISTING

DOCUMENTS &
SYSTEMS

SYSNTHESIS
OF OLD

AND NEW

PRESENTATIONS
AND

APPROVALS

Sec. 13.3 Estimating the Analysis Phase

ANALYSIS ESTIMATING WORKSHEET

TYPE NO. FACTOR DAYS REF. SUB IPTS TOT
Management .5 1 1.2

Supervisor 1.0 I

Technical 1.5
Clerical .5
TOT INTER.

ANALYZE EXISTING DOC.'S, SYSTEMS

TYPE NO. FACTOR TOT
Input forms .5
Output forms
Manual files
Automated files
Tables
Systems
TOTAL EXISTING SYSTEMS

SYNTEESIS

TYPE NO. FACTOR TOT
Interviews 2.5
Documents
Old system functions kept
Old system functions changed
New functions
Alternatives presented
TOTAL SYNTHESIS

PREPARE PUNC. SPEC.

TYPE NO. FACTOR TOT
Interviews .25
Documents and Systems
Synthesis
Other TOTAL PREPARE FUNC. SPEC.

PRESENTATION IINCL. PREP)

Locations
Approvals
Charts/slides
TOTAL PRESENTATION
GRAND TOTAL ANALYSIS

Figure 13.8 Analysis estimating worksheet

138 Chap. 13 The Estimating

The factors in Figure 13.8 come from DEC statistics and can be used as multiplication
factors to calculate how long each activity should take.

An Example of Estimating Analysis

Figure 13.9 below is afilled in analysis estimate. The line numbers in parentheses were
added to assist in the explanation. The items in bold were filled in by the estimator.

ANALYSIS ESTIMATE FOR ABC SYSTEM

INTERVIEWS

TYPE NO. FACTOR DAYS REF. SUB IPTS TOT

(1) Management 2 . 5 1.0 1.2 1.2

(2) Supervisor 2 1.0 2 . 0 1.2 2.4
(3) Technical 1 1.5 1.5 1.5
(4) Clerical .5
(5) TOT INTER. 5 5 . 1 1.25 6.4

ANALYZE EXISTING DOC.'S, SYSTEMS

TYPE NO. FACTOR TOT

(6) Input forms 1 0 .5 5

(7) output forms 20 . 5 1 0
(8) Manual f i les 2 2.0 4
(9) Automated f i l e s 2.0
(10) Tables 2 2.0 4
(11) Systems 1 4.0 4
(12) TOTAL EXISTING SYSTEMS 3 5 2 5

SYNTHESIS

TYPE NO. FACTOR TOT

(13) Interviews

(14) Documents

(15) Old system functions kept

(16) Old system functions changed
(17) New functions

(18) Alternatives presented

(19) TOTAL SYNTHESIS 64 59.5

PREPARE FUNC. SPEC.

TYPE NO. FACTOR TOT

(20) Interviews 5 .25 1
(21) DocumentsandSystems 3 5 .25 9

(22) Synthesis 64 .25 16
(23) Other

(24) TOTAL PREPARE FUNC. SPEC. 104 2 6

Sec. 13.3 Estimating the Analysis Phase

PRESENTATION (INC

TYPE NO. FACTOR TOT

(25) At tendees 10 .25 2.5
(26) Locations 2 .5 1
(27) Approvals 1 1.0 1
(28) Charts/s l ides 5 .5 2.5
(29) TOTAL PRESENTATION 7

(3 0) GRAND TOTAL ANALYSIS (PD) 125.9

Figure 13.9 Analysis estimate example

Explanation

Interviews. (1) 2 managers need to be interviewed, times factor of .5 is 1 (under
DAYS). The REF is overhead for referral: you need to phone him or her, make an ap-
pointment, show up,andso forth. Multiply, and put the result under SUBtotal. ~ i m i l a r i ~
the subtotals for interviewing 2 supervisors and 1 technician are calculated. The total
of the SUBS is added, and mGtiplied by 1.25 for the interrupts during the interviews, to
get the TOTAL INTERVIEWS of 6.4 days.

Analyze Existing Documents and Systems. (6) There are 10 existing manual
input forms, (7) 20 reports, (8) 2 files in a filing cabinet (students and courses), (10) 2
tables (materials vs. courses, cost vs. courses), (11) and 1 system (warehouse). Result
of these lines, when multiplied by the appropriate factors, gives TOTAL EXISTING
SYSTEMS of 27 days.

Synthesis. This is the thinking, discussing, analyzing part. (13) For each of the 5
(NO. from (5)) interviews there is a synthesis factor of .5. (14) Similarly for the 35 (NO.
from (12)) documents. Now comes the hard part. If there is an existing system, manual
or automatic, count approximately how many of the functions in the old system are to
be reproduced in the new system, and put under NO. in (15). Count the number of
functions in the old system that are changed for the new system, and place in (16). NO.
in (17) is the number of entirely new functions to be done in the new system. If several
alternative approaches are to be analyzed, put down in (18). Multiply by the factors and
total in TOTAL SYNTHESIS, in this example 59.5.

Prepare the Functional Specification. This section calculates the time that will
be spent in the actual writing, word processing, proofreading, and correcting of the FS.
In (20) we account for the preparation as a result of the 5 (from line (5)) interviews; in
(21) for the 35 (from (12)) existing documents and systems, in (22) the total synthesis
(from (19)). Put anything else you can think of in (23), multiply it all and add it, which
comes to 26 on line (24).

Presentation. Each attendee is factored in (25) because they ask questions, each
separate location (26), approvals required (27) (I would increase this one!) and factor
in slides or charts that have to be produced for the presentations. Multiply and add on
line (30). The GRAND TOTAL ANALYSIS is the sum of the subtotals on lines (5),
(121, (191, (241, and (29).

140 Chap. 13 The Estimating

Conclusions to using the analysis estimating chart. Obviously this chart will
not give you an accurate estimate as it stands. It is very useful, however, if you develop
factors that work for your applications. If anything, it serves as a checklist or WBS of
all the activities that may be involved in analysis.

It is very important to be able to estimate analysis well. If you are using the two
phase proposal process (See Section 4.2) the first step is the analysis alone. Even DEC,
with all of itsestimatingexpertise, prefers to do the analysis phase of aproject on a Time
and Materials (Cost Plus) basis.

13.4 RATIOS

If you tend to do similar types of projects you will find that your projects will consist of
similar major activities, and that each major activity takes the same proportion of time
from project to project. You should therefore calculate these proportions or ratios for
your past projects. This is especially true if you find that the top levels of the WBS's for
your projects tend to be similar. For example, if level 1 on the WBS of your projects
always consists of the 7 phases (which it should!) you should have a good idea of the
percentage of the total effort each phase will require. Figure 13.10 is a table of industry
averages for a small to mid size commercial project:

PHASE 60% OF 90% O F
PROJECTS PROJECTS

Definition
Analysis
Design
Programming
System T e s t

Acceptance
Operation

Figure 13.10 Ratio of effort in the 7 phases

Figure 13.10 shows that whereas only 60% of the projects fitted into the finer break-
down percentage, a very high percentage fitted into the 40% PLAN, 20% BUILD, 40%
TEST ratio.

Brooks (Reference 3) found that for O/S 360 (huge project, first operating system
in the world, written in assembler) it took 33% to PLAN it, 17% to CODE it, 25% to do
MODULE TEST AND LOW LEVEL INTEGRATION, and 25% to do SYSTEM
TEST. Establish common ratios at lower levels of the WBS as well. For example,
Gildersleeve (Reference 2) found that:

TIME TO DESIGN, DOCUMENT, AND CODE A MODULE
EQUALS THE TIME TO DEBUG lT.

Sec. 13.5 DEC (and Other Large Corporations) Estimating Rule of Thumb 141

How to Use Ratios

You may be tempted to do an accurate estimate for one phase, and extrapolate this
estimate to the remaining phases using past ratios. This is not very dependable, since
projects are always different. Instead, estimate each phase as well as you can, then
compare the new ratios to past ones to see if any item is out of the norm. Revisit the
estimate for that item, taking a better look at the risks and contingencies.

13.5 DEC (AND OTHER LARGE CORPORATIONS)
ESTIMATING RULE OF THUMB

Do large companies such as DEC use these approaches? Yes, they use formulas, but
they keep to the following rules:

Never ask an inexperiencedperson to estimate. Estimating is crucially de-
pendent on experience. Here is how you teach a junior person to estimate:
Either have him work with an experienced person as she is estimating, or
have the experienced person work out all the formulas in detail and give it to
the junior person to 'verify'.
Estimate in a group ifyou can afford the manpower. A meeting of several
minds follows the rule of squares: two minds are four times as effective as
one; three minds nine times and so forth. When I teach Software Project
Management to a class I always include a real case study to estimate in small
groups. I find that a project that would take one person three to four days to
estimate alone can be estimated by a group of three or four people in one to
two hours! Group dynamics are fascinating. The members are motivated to
be productive-peer pressure stops any slacking off. The group usually
comes up with great ideas, identifies all the risks, and everyone on the team
will be committed to the estimate.
Never force an estimate on aprofessional such asaprogrammer. The super-
visor should first ask the programmer how long he figures it will take. If the
supervisor disagrees they must negotiate.
Never take an average of different estimates. For a major product, have two
or more separate groups or individuals estimate. If there is a significant dif-
ference between the estimates, get the people together and come to an agree-
ment. The only reason two people with similar experience will estimate the
same thing differently is that one has thought of something that the other has
forgotten.
Granularize down toone weekor less. Asoftware task of approximately one
week seems to be the most a human being can conceptualize and estimate
well.

Always add (multiply?) for contingency. See Section 2.4 on risk manage-
ment.

Chap. 13 The Estimating

Always quote a range when giving estimates to managers or clients. There
is an interesting psychology to quoting estimates. If you tell a manager it will
take 12 months, she thinks you have an accurate number; if you tell her it will
take 10 to 14 months, she will know it is an estimate.

Use your 'gut feel'. After you develop the estimate, sleep on it one night,
then ask yourself, "Does this estimate feel right?" It is amazing how
accurate feeling becomes with experience. At least it will warn you if the
estimate is way out in left field.

13.6 THE ESTIMATING PROCESS

If you have a good project management software package available (see chapter 17)
you can develop your WBS's on it and enter the estimates for all the appropriate tasks.
The best packages will add up all the estimates and costs, and even roll them up to any
level of the WBS. If you do not have such a package available, develop and use forms
such as the following:

PROJECT ESTIMATE SUMMARY

Project D a t e
Client Author
U n i t s

Definition
Analysis
System Design

Prep. of t h e ATP

Programing (DES, Doc, Code, T e s t)

Prep. of U s e r Manuals

System T e s t

Acceptance
Client Training
Opera t ion (Warranty)

Project Management

Project Meetings
Contingency

Other ()

Tota l

Figure 13.11 Project estimate summary

Sec. 13.6 The Estimating Process 1 43

Note that figure 13.11 has an estimate for the seven phases of the project, as well as
important and costly activities such as ATP preparation, user manuals, client training,
project management and project meetings. This summary form, when completed, is
what you end up with. You start with forms such as Figure 13.12, for granularizingeach
major item on the summary form. See Appendix A Project Plan for a completed set of
summary and detail forms for a sample project.
Task Estimate Detail For Project
Item Author
Date WBS Reference

TASK DESCRIPTION CMP EST. COMMENTS
W(DYS

TOTALS

Figure 13.12 Task estimnte detnil

The field marked CMPLX is task complexity: enter Low, Medium or High. This will be
used later to assign the task to a person with a low, medium ,or high level of experience.
To estimate analysis, use the chart in Figure 13.9. For programming tasks, the major
breakouts should always be DESIGN, DOCUMENT, CODE, and TEST, so a form such
as Figure 13.13 can be used.

Programming Estimate Detail for Project
Item Author
Date WBS Reference

TASK DESCRIPTION CMP ESTIMATES COMMENTS
LX DES DOC CODE TEST

Figure 13.13 Programming task estimate detail

A detail sheet may be the rollup of other detail sheets. There is no limit, although you
should not breakdown further than one half day. Along coffee breakand there goes half
a day!

Chap. 13 The Estimating

13.7 CONCLUSION TO ESTIMATING

Estimating, as the subtitle of this chapter suggests, is our weakest talent. Yet all of our
planning and control depends upon our estimating skills.

Estimating is iterative-expect estimates to change. That is why we must put
milestones into the development of a product. Milestones allow us to stop, assess how
long it took to get there, and re-estimate the dates of the remaining milestones based
upon the experience s o far. Do not allow anyone to hold you to an impossible date.
(Point out to management the definition of the word 'estimate.')

Estimating is still an art. There are no foolproof software or manual tools available
to helpus at the moment. The key to estimating is granularization. Statistics help. If the
tasks are broken into very fine pieces, and if you calculate a best estimate for each one,
on some you will be over, but on others you will be under. It will average out in the end
-and it is only the end point that matters.

QUESTIONS

1. When in the project life cycle must you estimate (and re-estimate), and how accurate are
these estimates?

2. Describe the professional judgement estimating method. What are the advantages and
disadvantages of this method?

3. Why is the historical method better than professional judgement?
4. Using the function point formula developed in section 13.2, estimate how long it will take

to program the following:
COBOL program, prompts the user for a key, ensures that the entry is correct length, gets
a record from a DBMS, structures it into a displayable record, calls a subroutine to display
the record as a screen form. The programmer has 3 years of experience, good knowledge
of this application, fair knowledge of related jobs, some knowledge is needed.

5. Estimate the Analysis Phase of a project that involves the following:
a. Interview 2 managers (referred), one supervisor, and one technician.
b. Theexisting manual system has 10 input forms, 15 output forms, 2 manual files,

and 1 table.
c. 5 old functions are kept, 5 are changed, 10 new functions will be needed.
d. One approval is needed, then a presentation to 3 attendees must be made. 10

charts will have to be prepared for the presentation.
6. What are the two ways to use ratios? Which one is better?
7. Why is estimating in a group worthwhile?
8. Group Exercise:

Some of the estimates for the ABC project in Appendix A are purposefully inaccurate.
Consider each of the estimates in Appendix A and revise any that you disagree with. Re-
estimate the whole project.

Scheduling

Putting It All on the Calendar

14.1 INTRODUCTION

The estimate calculated in Chapter 13 is the number of person-days of effort that will
be required to build the project. This is called direct time. Scheduling maps direct time
onto a real calendar, to give calendar duration or elapsed time.

In Chapter 3 we saw that the actual steps in planning a project are:

1. The planners (usually the PM and the PLin a small to mid size project) details
the Work Breakdown Structure (WBS). Aperson or group is allocated to be
responsible for each lowest level activity.

2. The responsible party estimates the lowest level activities in person or direct
days.

3. The reponsible party also indicates the precedent activities required for each
task, and suggest the resources required for the task.

4. The planners draw the network of activities, usually in the form of a PERT
chart.

5. The PM optimizes the network by allocating appropriate resources to each
activity.

6. The PM produces the schedule of activities.

This chapter details steps 4,5, and 6, the network and the schedule.

Chap. 14 Scheduling

14.2 THE PERT CHART

PERT, which incidentally stands for Program Evaluation and Review Technique, was
invented by the US Navy in 1958 when developing the Polaris missile-a project of
over 300,000 activities! At first PERT was simply used to describe a sequence of
activities using a set of arrows, such as Figure 14.1.

A G

Figure 14.1 A PERT chart

Each arrow represents an activity and is labeled with the activity name, for
example A, B, and so forth. If an activity cannot be begun before a preceding activity
is completed, the tail of the arrow of the second (successor) activity is placed at the head
of theprecedent. In Figure 14.1, for example, E cannot be begun before D is done, G
cannot be begunbeforeboth Cand Fisdone. Starting and endingpoints are callednodes
and are numbered. The chart in Figure 14.1 may seem trivial, but it is worthwhile to
draw up a PERT for any size project, because it forces you to analyze the sequence of
activities.

The PERT also shows which activities may be going on simultaneously. A
sequence of activities, such as A-B-C-G is called apath. If there are paths or sections
of paths running parallel, as path B-C and path D-E-F, then the activities B and C can
be done simultaneously with activities D, E, and F.

The Critical Path

A vast improvement to the PERT chart above can be achieved by putting the duration
of each task on the PERT, as in Figure 14.2. In Section 14.3 we will see how duration
is determined when resources (peop!e) are allocated to the task.

First, the criticalpath can be calculated. This is the longest path in the network,
calculated by adding up all the durations along the path. For example, in Figure 14.2
the top path is 26 days, and the bottom is 25 days, making the top path the critical path
(CP). The double line indicates the complete CP. Knowing the CP is essential to the PM.
It shows the length of the total project: 26 days in our case. It also shows the activities
to watch. If any activity on the CP slips (takes longer than planned) then the delivery
date of the project slips.

Sec. 14.2 The PERT Chart

Figure 14.2 A PERT chart with duration in days

Float or Slack

Activities that are not on the CP havefloat or slack-a periodof time that these activities
can slip and still not affect the CP and therefore the delivery date. In Figure 14.2, for
example, activities D, E, and F have among them 1 day of float. (Calculation: CP
activities B and C take 11 days; simultaneousnon CP activities D, E, and F take 10 days
together; 11-10 = 1 day of float.) Any one of activities D, E, or F, or all three together
may take one day longer and still not affect the CP.

The Critical Path May Change!

What if activity D takes5 days instead of 3?The CP has changed to the D-E-Fpath. This
is why the PM must constantly update the network with any changes. Automation of all
this is recommended of course, and Chapter 17 details the tools available to do this.

Free Float and Total Float

In the PERT chart in Figure 14.3 below the CP activitiesProgram ModuleA and Test
ModuleA are done by Programmer 1. Activities on the center path,Program Module
B and Test Module B, done by Programmer 2 have 5 days of float. Activities on the
bottom path,Program Module C, TestModule C and Integrate are done by Programmer
3 and the Project Leader. The bottom path has 5 days of float as well.

Let us say activities Program Module A, Program Module B, and Program
Module Cwere all started at once and finish on time on April 1st. Programmer 2 comes
to the PM and says, "I have 5 days of float, so I wish to take April 2 and 3 off." The
PM, feeling benevolent, lets him take the days off. Seeing this, Programmer 3 comes to
the PM and says, "I have 5 days of float as well, so I wish to take April 4 and 5 off."
ThePM looks at the scheduleand says "No way. Programmer 2 has5 days of totalf[oat,
but you have 5 days offveefloat. Back to work!"

148 Chap. 14 Scheduling

Total float is the float time that an activity has before it affects the CP. Free flont,
is the float time an activity has before it affects any other (non critical) activity. What
if the Project Leader explicitly set aside April 4 to 6 to work on thelntegrationand Test
of CandD, and she has some other activity planned for the subsequent days? Allowing
Programmer 3 to be late with his activity will cause a major problem.

PGM MOD A TEST MOD A

PGR 1
10D

TEST MOD B

PGR2

Figure 14.3 Free float and total float

Projectfroat (any &at on any activity) is an item owned by the Project Manager,
to be used at his or her discretion. Some PM's even go so far so not informing
individuals about the float on their own activities.

Dummy Activities

ThePERT chart described so far is calledactivity on arrowformat. The major drawback
to this format of the PERT is the need for dummy activities. For example, in Figure
14.4A we have activities B, C, and D-F all starting at the same node and ending at the
same node.

It would be better to have a unique starting andfor ending node for each activity.
For example, if someone refers to the activity between nodes 2 and 3, it is not clear
which activity he is referring to. This is especially true when the network is computer-
ized. We all know how finicky computers are about unambiguous representation of
things.Figure 14.4Aistherefore usually redrawn as Figure 14.4B. Here all activities are
represented by a unique start-end node pair. The activity between nodes 3 and 4 is a
fudge, or dummy (that is, not real) of zero duration and drawn as a dotted line.

Sec 14.2 The PERT Chart

Figure 14.4A A PERT chart

Figure 14.48 A PERT chart with dummy

DUMMY

Activity on Node or Precedence Network

1

Theactivity on node orprecedencenetworkis another format of the PERTchart. Figure
14.5 is the same project as Figure 14.4, drawn as an activity on node PERT.

A E

Figure 14.5 Activity on node PERT

1 50 Chap. 14 Scheduling

The nodes are labeled with the task names, and optionally with task duration. The
arrows indicate precedence only. Note that dummies never need to be used. Precedence
networks are therefore better than activity on arrow networks, and are becoming more
and more common, especially in the world of computer drawn PERT charts.

14.3 RESOURCE ALLOCATION

Figure 14.6 PERT ignoring resources

The next step is to redraw the PERT taking resources into account.

If you are doing the plan manually, the PERT chart is the best diagram to use for
resource allocation. First draw the PERT ignoring all resources. The diagram for a
software project may look like Figure 14.6.

ATP (1 Od)

DEF ANAL DES

- r Fm +x
PGM MOD F (106) TST20d TRNG 15d

)-
10d

USER GUIDE (lad)
ACC

> -
5d

OPER GUIDE (10d)

> -
MAlNT GUIDE (10d)

b

*
PGM MOD A (206)

)*

PGM MOD B (306)
*
PA

PGM MOD C (1 0d)

3-
PGM MOD D (I N)

3-

PGM (5d)
INTBISYS USER OP'N . b

m ,

Sec 14.3 Resource Allocation

Allocating Human Resources

The network in Figure 14.6 has 10 simultaneous activities going on at one point in time,
which may be an option if you have 10 programmers available. (Or one programmer
who will spend one tenth of his time on each one!) Obviously there are better ways to
use your people. Allocating human resources is veiy subjective and depends mainly on
their availability, but the following are things to consider:

Assign tasks to individuals whose skill level suits the task. Do not assign an
expert an insignificant task, nor assign a very complex task to a junior
person.

Assign similar tasks to the same person. This will reduce learning time.
Assign time critical tasks to your most reliable people. A reliable person is
not one who could do the task in three days, but sometimes takes five or ten;
a reliable person is one who says it will take five days and that is how long
it takes.

Assign tasks that communicate to the same individual to minimize people's
interaction.
Do not forget that the Project Leader will need to spend time supervising,
especially at the start of the project.

Level your resources as much as possible. It is better to keep three programmers busy
for five weeks running than to employ five for one week, no one for the next week, three
for the following week and seven the next. The PERT in Figure 14.7 is Figure 14.6
redrawnwith resources assigned. The direct time for each taskis shortened if more than
one resource is assigned.

ATP

PM, USER (112TIME)

Figure 14.7 Resources allocated

152 Chap. 14 Scheduling

Staff allocation decisions were made based on the following: P1 (Programmer 1) is
available throughout the project, but P2 and P3 are only available for a shorter period.
Modules A, B, and Care the most difficult but they are similar, so the Project Leader
(PL) will help P2 code all of these together. Having the PL on the CP will also reduce
the stress on the PM. P1 is a senior person capable of working on her own, P3 is junior
so he is assigned the documentation (somewhat unfair!). Note that everyone works
contiguous periods of time.

Reducing(?) Task Duration by Adding Manpower

As Brooks so aptly proved (Reference 3), adding people to a team does not necessarily
reduce the task's duration. One industry rule of thumb that I have found useful is, "Add
at least 10% to the direct time estimate for each additional member on a professional
team." This implies that if a task takes 10 days for one person to do, with 2 people it will
take 11 person-days, or at best 5 112 calendar days. Add 10% for each additional person
cumulatively.

The task durations were translated from Figure 14.6 to Figure 14.7 taking the
above rule of thumb into account, plus some professional judgement based on how well
the subtasks can be divided, how well the individuals communicate, and so on.

Allocating 'Non-Human' Resources

Non-human resources needed for a software project may be computer hardware,
software packages, operating systems, information, manuals, training, computer war-
ranties, printing services, and so forth. These items were probably listed by the person
responsible for the estimate. Usually we do not bother putting these items on the PERT,
but ensure that they are listed somewhere.

14.4 THE TRIPLE CONSTRAINT

As we saw earlier, "You can have it good, cheap or fast: pick two!" Adding more
resources will reduce the duration, but at a higher cost. Moving a reliable person from
a complex but short activity onto a longer one may reduce the time taken overall, but
may endanger the whole project if the quality on the short task is reduced.

Many options are possible when you assign resources. Always try several
approaches, looking at the effect on resource utilization and cost, the length of the
critical path and the general simplicity of the PERT. The PM must juggle the three
constraints and come up with the best balance depending on the priorities placed on the
three constraints by the user or upper level management.

Crashing a Project

One of the most difficult situations is when time is the highest priority among the three
constraints. Take a scenario where your manager has asked you to estimate a project and
you are presenting the results:

Sec 14.4 The Triple Constraint 153

YOU: If all things go well, we can deliver this project on April 15th.

MGR: Noway! Marketing promised it for April 1st. We have to pay a penalty
of $1000 per day after April 1st. Can you do it faster?

YOU: Yes, but I'll have to crash-buy extra computer time, hire more
people and do overtime. It will cost more to develop it.

MGR: Crash everything! Hang the cost!

YOU: (To yourself: sounds like there are political motivators here.) OK.

Should y ou indeed crash every task? Obviously not-why crash tasks that are not on the
critical path? Figure 14.8 below is an example of calculating which tasks to crash and
by how much:

5,5,0

Figure 14.8A PERT for a project

C r a s h T a s k Days Total
Step f r o m D a y s G a i n e d C o s t Cost

t o D a y s

1. A . 3 2 1 5 0 0 5 0 0

2 . B , 5 -. 4 1 ZOO 2 0 0

3 . B , 4 - 3 1 2 0 0

E , 11 -. 1 0 1 5 0 0 1 7 0 0

4 . C . 7 6 1 1 5 0 0

E , 1 0 - 9 1 5 0 0 3 0 0 0

5. D , 3 - 2 1 5 0 0 5 0 0

Fi y r e 14.8B Steps to crashing the project

Chap. 14 Scheduling

DELIVERY DATE

Figure 14.8C Cost vs crash graph

First of all we must calculate three numbers for each task:
1st number: The normal duration (days). This is the estimate you would present

to your manager at first.

2nd number: The minimum duration (days) into which you could crash (squeeze)
the task.

3rd number: The extra cost per day for the crash.

For example, task B (Figure 14.8A) would normally take 5 days. If the programmers
work overtime it could be done in as little as 3 days (absolute minimum), but it would
take $200per day extra.

Sec 14.4 The Triple Constraint 155

So let us crash the project. The algorithm to use is this: Crash t a s k on the CP, one
day at a time as long as no otherpath becomes critical. If otherpaths become critical,
crash those as well.

Step 1: (See Figure 14.8B.) Crash task A from 3 days to 2. There is 1 day
gained at a cost of $500. No other path is impacted because there
are no other parallel activities. Task Acannot be crashed further (3
is the minimum).

Step 2: Crash B from 5 days to 4, cost is $200. E is on a parallel path, so
check to see if it has become critical. E happens simultaneously
with tasks B and C. With B crashed to 4 days, B and C together take
11 days. E is 11 days, it has just turned critical, hut does not need
to be crashed yet.

Step 3: Crash B to 3 days at a cost of $200. Since E is parallel and critical,
in order to gain the extra day, E also has to be crashed to 10 days at
a cost of $1500, for a total cost of $1700.

Step 4: Steps 4 and 5 are similar so the explanation is left to the reader.

Five days are the most that the project can be crashed. Note that not every task needed
to be crashed, nor were all the crashed tasks squeezed to the minimum. And last, Figure
14.8C is a graph that is incredibly useful to management. It graphs the delivery date of
the project (X-axis)versus the amount of extra dollars that will have to be spent to reach
that date. The points were plotted backwards, from the lowest cost step to the highest:
by taking Step 2 (lowest cost step), you could deliver on April 14, at an extra cost of
$200. Then taking Step 1 (next lowest cost step), delivery can be April 13, but cost is
$700 ($200 for Step 2 plus $500 for Step 1). Then Step 5 and so on until all the steps are
plotted for a total cost of $5900.00. The straight line labelled 'Direct Cost' is a plot of
the penalty charge of $1000 per day. Your manager will love you (perhaps you would
prefer a raise) when you point out that it is only worth crashing to the date where the two
lines intersect-April 12. After this date the crash cost is greater than the direct cost!

Conclusions to Crashing a Project

Several assumptions were made here: First, that tasks can be crashed. Adding man-
power or overtime may not speed things up. Second, that tasks can be crashed in any
order. Third, that tasks can be crashed independently. Crashing one task may affect
others. The best computer packages will do all these calculations for you.

14.5 THE SCHEDULE OR GANTT CHART

A Gantt chart is just a time bar chart. It is called Gantt after its inventor Henry Gantt.
The Gantt chart in Figure 14.9 is a schedule of the project PERT in Figure 14.8.

Chap. 14 Scheduling

MILESTONES: 1 - Proposal 2 - Func. Spec. 3 - Design
4 - ATP 5 - Mid. Pgm'g. 6 - Sys.Tst
7 - ALL 8 - END

Figure 14.9 Gantt chart of a projecl

Sec 14.5 The Schedule of Gantt Chart

The steps to drawing such a Gantt are:

Step 1: Draw in the units of time at the top. Choose time units so that you will
need no more than two such charts. You will see that the Gantt is the
project manager's bible. All calendar dependent information can be
puton the Gantt, and99% of thePM7s life is calendar dependent. Start
dates of the weeks should be marked if space allows.

Step 2: Mark all known calendar events at the bottom. These are the holidays,
vacations, leaves, meetings, training, prior commitments, and so forth
-all events that you have to schedule around.

Step 3: From your PERT such as Figure 14.7, schedule each activity. Starting
with the first activity, Definition, draw a bar equal in length to the
calendar days on the PERT. Mark in the responsible people, and the
percentage of time that you expect each one to work on the project if
it is not 100%.

Step 4: Schedule contingency task by task. For each activity ask yourself, "Is
there anything that could extend the duration of this specific task?"
For example, "What could make definition take longer than six
calendar days?" Note that two days of contingency has been added
to the definition phase, maybe because the user knew too little.
Review the Risk Quiz (Section 2.4) to see if any of the items there
apply. Figure 14.10lists some common project risk items and the tasks
that can be extended because of that risk.

Step 5: Loop back to steps 3 and 4, scheduling all the tasks on the PERT, from
left to right and from top to bottom for the parallel tasks. A task starts
when the contingency for the last precedent task is finished. Add lots
of contingency onto the last private task, the System Test, as a safety
measure.

Step 6: Mark in all other important events. Mark the major milestones indi-
cated by the completion of important events and products. Be sure that
milestones are frequent enough so that the time between each one is
short enough that things can not get out of control. Every two to three
months on a twelve month project is common. This implies that a
'fake' milestone may have to be invented, such as Milestone 3, Mid-
programming review in Figure 14.10. Mark in important reviews and
meetings. The participants at these events will appreciate being
notifiedasfar inadvance aspossible. Markindates when all the pieces
of hardware are required. The longer the lead time that you give the
manufacturer, the better are your chances of receiving the item on
time.

1 58 Chap. 14 Scheduling

RISK TASK@) IT EFFECTS

USER ORIENTED

Poor relationship with user definition, analysis
everything user is
involved in.

Delays of items (e.g. definition,analysis,possibly
Approvals, provided by user) ATP, documentation,

test (data)
User knows too much analysis, design, progamming,

acceptance
User knows too little definition,acceptance,operation
User unavailable (different everything
city)

NON USER ORIENTED

Hardware down time, lack of programming, integration,
system computer time lest, acceptance, operation

Interruptions, illness
Major changes (Functional Spec.
is weak)
Excessive acceptance requirement
Inadequate development software

Hardware too small

Unstructured methods(Eu1l of

bugs)

everything
everything between
design and operation
ATP, acceptance
programming, system
test
design, programming,
system test
design, programming,
system test, operation

Figure 14.10 Table of risks and tasks extended

14.6 FOCUS ON THE CRITICAL PATH

Calculating the Critical Path

If you are using a computer to draw the Gantt, the CP will be highlighted by special
graphics or color (see Chapter 17 for examples). If you are drawing the Gantt manually
you will have to highlight the CP using a character such as the '=' as used inFigure 14.9.
To determine the CP, do the following: If you drew a PERT, calculate it there and
highlight the corresponding critical items on the Gantt. It is simple to find the CP on the

Sec. 14.7 Conclusions to Scheduling 159

Gantt as well. Take the last (rightmost) item and highlight it-it is always on the CP
(Operation on Figure 14.9). Find its predecessor(s) (Acceptance and Training) and
highlight the one with the latest end date (Acceptance). Find this last activity's
predecessor(s) and so forth until the start date of the project is reached.

All the non highlighted or noncritical tasks have float. The float occurs from the
end of the activity to the start of the next successor. If there are several successors, it
goes to the start date of the earliest one. Float is shown as the dotted lines in Figure 14.9.

Reducing the Risk on the Critical Path Items

Although all of the tasks on the project need attention, you should always consider the
CP items first. Look at the resources required for each CP item. Ask yourself, "What
is needed for the task when, and what is the impact ifit is late or not available at all?"
As discussed in Section 2.4, put contingency plans in place. Look especially at items
provided by people outside of your control. See if you can exercise authority over those
providing the resource. For internal staff, the best way to exercise authority is to provide
input into their performance reviews. For external contractors try to negotiate mile-
stones, walk-throughs and penalty clauses for late delivery. Get a second source for the
item they provide.

The later the task, the higher the risk. The earlier tasks use up all the project float
making the later tasks critical. Always add extra float to the latest tasks. The shorter the
task, the higher the risk, since the chances of a short task exceeding its estimate is
greater than that of a longer task. Add extra float to very short, critical tasks.

14.7 CONCLUSIONS TO SCHEDULING

As of this writing, the cost of a Personal Computer with excellent project management
software is equal to the burdened salary of a project manager for one week. Cost is no
excuse to avoid using a computer product to draw PERT'S and Gantt's, tcrcalculate the
CP and so forth. The PC is also useful to redraw the project Gantt into individual
resource Gantt's: for each person, the schedule of activities he or she is involved in. If
you have never drawn a PERT or Gantt manually, do it on paper first to learn the
concepts, then use the PC.

Consider keeping three sets of Gantt's: The first set is for yourself alone with all
the float and contingency visible. The second set is for the individuals involved-it is
their resource Gantt. On this one the length of each task does not include the float or the
contingency you added. Hiding the individuals' float avoids slowdown due to Parkin-
son's Law, which states, "Work will expand to fill the time available." The third set is
for distribution to upper level management. On this one the tasks are summarized; for
example, there is one line per phase. Hide the contingency-the length of eachtask
includes the contingency. This way they will not try to bargain you into a shortened
schedule.

QUESTIONS

Chap. 14 Scheduling

1. What is direct time? What is elapsed time? What is the relationship of one to the other?
2. Draw the PERT chart for the following plan:

ACTIVITY

A

B

C

D

E

F

G

H

PRECEDENT ACTIVITIES

Highlight the Critical Path (CP). What is the length of the project?
3. What are the non CP activities in the plan? What is the float on each one? Why is the float

on D free, but not on C?
4 What is the drawback of dummy activities?
5. What is the 'triple constraint' in a project?
6. Redraw Figure 14.7 with the constraint that there are only 2 programmers available.

Discuss, in terms of the triple constraint, how this could effect the project.
7. Crash the project of Question 2, given the following likely, minimum, and extra cost per

day to crash figures:

ACTlVlTY

A

B
C

D

E

F

G

H

LIKELY MINIMUM COSTIDAY

8. Draw the Gantt chart for the project in Question 2. Mark in the CP and float for each task.
9. What risk items can you think of that could stretch the analysis phase?

Pro to typing

Working with a Model First

15.1 INTRODUCTION

Our Greatest Headache: Requirements

I overheard the following conversation during a recent analysis session. The analyst
was interviewing the potential user, who was a course registrar with no computer
experience. The analyst asked, "While you are registering a student, would you like to
network from your PC into the department mini and seeawindow showing the student's
current registration status, or would you rather network to the corporate mainframe and
see a window of his company's credit rating, or both?" The user answered with a
bewildered look, "I always wanted windows in my office!"

Anvone who has ever done a software ~ ro iec t will agree that the first problem is " -
gettingGoper requirements from the user. Our second problem is basingourigreement
of what to build on the Functional Svecification (FS). The FS attempts to describe the - - . ,
system using graphics and narrative. But a picture and an explanation cannot describe
the way the system will feel, perform, behave, and affect the user's business. In
addition, the FS is usually misunderstood (if it is read at all).

Misunderstandings between the user and the analyst result in expensive changes,
or a system that is never completely implemented or one that is rejected outright. Proto-
typing can solve these problems for certain types of systems.

Chap. 15 Prototyping

15.2 THE THEORY BEHIND PROTONPING

Would You Buy a Car from a Sales Brochure?

Just as you cannot judge a car without a test drive, the user cannot judge from the
Functional Specification how the system will feel and behave. But if the user can see,
touch, and use a 'model' or prototype of the proposed system, he can readily judge the
system's usefulness. If changes are necessary the prototype can be modified, perhaps
several times until the user states, "Yes, this type of system will solve my problem!"
Then the developers have an excellent model on which to base the requirements for the
final system.

Advantages of Prototyping

A prototyped system results in better requirements than those produced by the 'written
specifications' method. Fewer changes should occur. Hopefully, the user has thought
of most of the changes during the prototyping. The prototyping method will result in
more accurate estimates than previously, because the required functions and their com-
plexities are much better known.

Another benefit is a happy user. First of all, he gets a gentle introduction to
computers. By playing with the protototype first (with the analyst holding his hand), he
learns about computers and the application that will be built for him. Second, he will
be involved right from the start and motivated to support the analyst for the duration of
the project.

15.3 THE PROTONPING METHOD

The Steps of Prototyping

The following six steps must be done in order:
STEP 1 Request initialrequirementsfrom the user. With the old method at the

Definition Phase you had to say to your user, "You must give us your
requirements for the next 5 years by date X. If you don't, we must go
ahead with what we assume you need and you will not be able to
change anything (easily)." With the new (prototyped) method, you
can say, "Give us what you think you need. And you can change your
mind as much as you wish (almost)."

STEP 2 Build a prototype system to meet the initial requirements.
STEP 3 Let the user play with the prototype. The analyst must of course teach,

assist, and sit with the user, especially at first. Encourage changes. The
user must look at the functions and behavior of the prototype, see how
it solves the business problems and suggest improvements.

STEP 4 Implement the suggested changes.
STEP 5 Cycle back to STEP 3 until the user is satisfied.
STEP 6 Design and build the final system as before.

Sec. 15.5 Software for Prototyping 163

15.4 SYSTEMS THAT BENEFIT FROM PROTOTYPING

Since requirements (read Functional Specifications) are mostly concerned with the
user's view of the system, prototyping only the user interfaces is enough to check out
the requirements. Menus, input screen forms, output screen or printed reports, queries,
commands, and messages arc ideal candidates for prototyping. On the other hand,
complex calculations, batch updates and real-time and scientific systems are very
difficult to modcl. (You can 'pretend' to do thcsc activities; for example, you print,
"Batch update of transaction file with 10 new transactions has been successfully
completed" without any real processing.) The systems most suited to prototyping are
thc ones most dependent on user input/output-systems with on-line transaction
handling via menus, screens, forms, reports, queries, and commands.

15.5 SOFTWARE FOR PROTOTYPING

What Must a Prototyping Software Package Provide?

A good product must provide the following scvcn things:

1. Quick and easy menu creation Thc menus must be able to call sub-menus,
forms, reports, prototype programs and provide on-line help for any menu selection and
prompt. Figurc 15.1 shows a menu consLruction program in action.

> SCREEN PERSMENU MENU
> DRAW '3.10 TO 7.55
> TITLE 'FUTURE INDUSTRIES INC" AT4.15
> TITLE 'PERSONNEL SYSTEM MENU' AT6.24
> SKIP 5
> ALIGN (28.32)
r SUBSCREEN STAFF
> SUBSCREEN BRANCHES , SUBCREEN POSITION LABEL "POSITIONS"
> BUILD

f \

MODE ACTION:
..
i FUTURE INDUSTRIES INC. i
i PERSONNELSYSTEM i ..

01 STAFF
02 BRANCHES
03 POSITIONS

0 ERRORS 0 WARNINGS HIT RETURN TO CONTINUE

i J
Figure 15.1 Powerhouse menu designer (QDISIGN) (Reference 24)

164 Chap. 15 Prototyping

2. Input and outpur screen form creation You should be ablc to 'paint' a
scrccnform by placingthccursor atthcdcsircdficldlocation (amouseis besttodo this),
type the field narnc, and cvcn spccify edit rules such as field length, required
alphanumcrics, rangc of allowable valucs, crror and hclp messages, and so on. Figure
15.2 shows a field dcfinilion oroeram in action.

Figure 15.2 Excclcrator form dctinltlon screen (Rcfcrcnce 2.2)

3. Similarly, you should be able to casily describe the format of a printed
report. The itcms 10 specify for report gcncration are titles, foolnoles, which fields
to put whcrc (it is best if the program prompts with all the fields it knows), column
hcadcrs, grouping, sorting and sub- and grand-totals. Naturally, one should bc ablc to
rcport on sclcctcd itcms only. Figure 15.3 shows the useof a report gcncrator program.

Figure 15.3 Excelerator report definition screen

Sec. 15.5 Software for Prototyping 165

4. Thc software should automatically produce a data dictionary (DD) The
DD keeps informationonevery knowneniity such as screens, reports orforms; but most
important, it keeps information on every ficld, including length of the field, edits
required, and on which reports and forms the ficld is used. The DD is the heart of the
product, and implemented properly, the prototyping tool can use the DD to check that
a field is used consistently on each screen, and can save repeated typing if the field
appears more than once. In the same way, thc software can kccp track of all intcrrela-
tionships among menus, screens, reports, and data. (See Chapter 6 on how such a tool
can be used for Analysis as well as prototyping.)

5. The software must be able to build a rudimentary database The input
screen definitions such as the one used in Figure 15.2 tclls the tool about the format of
the record. The software must build the database and then allow the user to enter data
using the input forms. The best products allow thc user to optimize the data base by
predefining the format and keys of the rccords.

6. Look for a product with fast on-line query to the datarecordcd on thedatabase.
You should be able to do simple search, sort, select, and display of records.

7. What if the requirements include complex logic or calculations that need to be
prototyped? Althoughnot csscntial, the best programs have a built-in simple structured
programming language to allow you to do special processing, timed events, automatic
procedures, and so on.

Prototyping as Part of CASE

Prototyping is a mcthod of automating theDefinition and Analysis Phases, so it is part
of CASE (Computer Aided Softwarc Engineering). But prototyping feeds nicely into
automating the subsequent phases as well. If the next step is to build the real system in
a third generation programming language, the prototyping product should allow you to
print out all the items that it knows about: all thcmenus (in theorder of their logical tree
structure), all the forms, reports, and commands. Thc best products allow the user to
print a logically organized document, with chapter and section annotation that can be
used as the Functional Specification document. Somc even provide a word processor to
insert explanatory text among the items. The product should also print out the Data
Dictionary. This will save the designers many hours of labor.

If thc design and programming arc using Fourth Generation Language or an
integrated CASE tool (see Section 6.6), you should be able to input the rcsults of
prototyping directly into the tool. The best of these CASE tools will automatically build
the data bases and even the code for the final application.

How Fast Should You Be Able to Prototype?

The prototyping software should be ablc to Ict you quickly build the initial model of the
system. Typically, you can build the first prototypc of a small to mid sized project in
only two Lo three wceks! You must be able to implement changes quickly as well. It
should take a few minutes to make cosmetic changcs such as moving a field on a form.
It should take less than an hour to define a new menu or form, and at most a few hours

166 Chap. 15 Prototyping

to create a new file or restructure an existing file for a new field, key, or access. To
achieve this speed it is essential to have a simple and logical user interface. In fact, if
the prototypingsoftware is simple enough, the developer can train the userto run it. The
user will then develop the prototype and call the developer when it is ready to turn into
the final system.

15.6 WHERE DOES PROTOTYPING FIT
INTO THE SEVEN PHASES?

Youmay now feel that the prototypingmethod cancompletely replace thesevenphased
approach to project development (and may even feel annoyed that I made you read
Section I of the book before telling you about prototyping!) Do not fear-prototyping
replaces only portions of the Definition and Analysis Phases. Figure 15.4 shows the
chronological events in the seven phases of the old method side-by-side with the cor-
responding events in the new (prototyped) method.

OLD METHOD(7 PHASED) NEW METHOD (PROTOTYPED)
PHASE ACTIVITY COMMENT ACTIVITY COMMENT

DeEini- Req't Doc Had to Initial Truly initial
tion be final req'ts

TIME Proposal Estimate Proposal Est. is accurate

is guess
Analysis Initial Know it Not needed Changes to the

Func. Spc will change prototype as

Negotiate
thc F.S.
Final F.S.

Design Des. Spcc Req'ts
changes

' Prog'g Programs changcs
Sys Tst lnt.&Test changes
Acceptnc Acc. Test changes
Operat'n Cut-over,

required
No1 needed

Final F.S.

Des Spec.
fewer
changes
Programs
Int. &Test
ACC. Test
Cut-over,

Prot. prints
most of it. No
negot'n needed
Prot. prints
DD, records, rest
of design is same
Samc-less change
Same-less change
No surprises-fast
No surprises-fast

training training less required

Figure 15.4 How prototyping fits into the seven phases

Opponents of the method argue that if you allow any number of iterations to the
prototype, the requirements could take forever; that at least the old way of doing

Sec. 15.8 Conclusions 167

definition and analysis will take less time than the new way because a deadline can be
set. This argument is not valid-if you like to set deadlines you can just as well set a limit
to the number of prototypes. I have found that if the user and the developer agree to limit
the cosmetic changes to one iteration, the prototype can be built in less than five
versions, with three being the most common. Even if the new way takes longer up front,
you will save time and money over the total life of the project because there will be
fewer changes, the Design Phase will be shorter, the acceptance will be trivial, and the
user documentation and training will be a piece of cake.

One last thought before you throw out the old life cycle. I feel that unless you do
a few projects the old way first, you will not be able to fully understand and utilize the
prototyping methods. Is there any truth to the saying, "You must learn to ride a bicycle
before you attempt to ride a motorcycle?"

15.7 SOME PRODUCTS TO LOOK AT

Excelerator as a Prototyping Tool

In Chapter 6 we saw a good analysis tool called Excelerator (Reference 2.2). But this
tool has features that make it a good prototyping tool as well: It has menu, form, and
report building facilities. It maintains an excellent data dictionary and it can create a
data base using the defined input forms. Most important, it will allow you to print out
a logically organized Functional Specification document consisting of all the items
defined with word processed paragraphs inserted for good measure.

Fourth Generation Languages as Prototyping Tools

Sometimes we need complex screen handling logic, special calculations, automatic
procedures or unique reporting features, and most prototyping tools do not have the
power to do all this. There is a whole clan of products called Fourth Generation
Languages (4GL) that do have this power. We will discuss these in the next chapter as
tools for developing the whole system, but almost all the 4GL's can be used as
prototyping tools as well.

15.8 CONCLUSIONS

Prototyping has been used very successfully to enhance the implementation of many
software systems that involve heavy user interfacing via menus, screens, reports, and
on-line transactions. Business oriented systems typically fit into this mold. Real-time
systems and scientific systems fare less well when using this method.

The question that is probably uppermost in your mind at this point is, "Why go to
all this trouble to build an empty shell? Why could I not have software that allows me
to build all these menus, screens, and forms and end up with a real, working system?"
Indeed you do have that software. Read the next chapter on Fourth Generation
Languages!

168 Chap. 15 Prototyping

QUESTIONS

1. What is the greatest problem with the old (specified) method of getting requirements?
2. Why is the Functional Specification not the best tool to describe a system?
3. Why is prototyping better than specifying the system requirements?
4. Draw a flowchart of the steps of prototyping.
5. What types of systems benefit from prototyping? What types do not?
6. What items should a prototyping tool provide to assist in describing the user interfaces?
7. What internal functions must a prototyping tool provide?
8. Why is prototyping part of CASE? What other tools would you expect from an integrated

CASE product?
9. Would you expect the prototyped definition and analysis to take longer or shorter than the

equivalent specified method. Would the total development be longer or shorter?

Fourth Generation Languages

Developing Applications Five Times Faster

16.1 INTRODUCTION

A new set of tools, called Fourth Generation Languages (4GL), can be used to develop - - . , .
certain typesof applications much faster than third generation languages (3GL) such as
COBOL, BASIC, or FORTRAN. As with any tool that orovides more automation, the
benefit comes at price.

This chapter goes hand-in-hand with the last one on prototyping: you must read
Chapter 15 to understand this one. On the surface, A 4GL provides essentially the same
features as a prototyping tool (see Section 15.4), but with more power and detail. The
best way to understand the 4GL approach to development is to imagine building a
prototype as described in Chapter 15, but instead of building a throw-away model, you
are building the basis of the final working system. In fact, developing an application
using a 4GL usually involves a prototyping approach: a core system is first developed
as a prototype that lets the user see the interfaces of the system and use the basic
functions. The user is encouraged to run thesystem and suggest changes. These changes
are incorporated into the prototype (next iteration of the prototype), and in a few
iterations the prototype itself becomes the final system.

I am assuming that you are familiar with 3GL project development discussed
earlier. This chapter will emphasize only the differences between the third and fourth
generation approaches.

1 70 Chap. 16 Fourth Generation Languages

End-user and Developer 4GLs

There are two major kinds of 4GLs: end-user oriented and developer oriented. The end-
user oriented 4GL emphasizes ease of use; it is intended to be programmed by the end
user. This user friendliness is usually traded for fewer functions and loss in perform-
ance. The developer oriented 4GL emphasizes function and performance, at the cost of
user friendliness. Most of the examples in this chapter use a 4GL called Powerhouse
from Cognos Inc. (Reference 2.4). Powerhouse does not do any one thing significantly
better than other 4GLs, but (in my opinion) it does everything well. It is a developer
oriented tool as opposed to an end-user oriented tool since it does require knowledge of
the Powerhouse (PH) language syntax. PH is completely integrated into the host
operating systems (uses RMS and RDB on VMS diiectl y) and therefore provides good
performance. It is also reasonably priced.

16.2 FEATURES OF A GOOD 4GL, OR HOW TO EVALUATE A 4GL

Following is a lisl of functions that you should look for in a 4GL.
1. Menu Setup The programmer of a 4GL (called developer) must be able to

set up a tree of menus. Menus must be able tocall sub-menus, input screen forms, output
screen forms, reports, processes or functions. One level must be able to pass parameters
to other levels and provide security such as password prompting between levels. The
4GL should provide automatic entry numbering and the user should be able to make a
selection, deletion or correction using the cursor and/or mouse. The best products
provide two levels of help at any entry: a short message at the bottom of the screen or
a full screen. Look for afastmethod of accessing sub-menus and automatic return to any
menu level after something is completed. Fancy cosmetics such as headers, footers, and
highlight (color, shade, inverse video, bold, letter size, blink, framed box) are nice to
have. Figure 16.1 is an example of what a developer would type to set up a menu in
QUICK, the Powerhouse screen design program. Items in square brackets are my
comments.

SCREEN REGISTRAR MENU [Name t h e s c r e e n .]
TITLE " Reg i s t r a r ' s Func t ions" AT 2 ,40 [Wi l l appea r second
l i n e , c o l 401
TITLE " Please e n t e r t h e number o f your choice ." AT 22, lO
TITLE "To e x i t t y p e '"'." AT 23,10
DRAW THIN FROM 4 , 2 TO 20,79 [Draws a t h i n l i n e box. 1
SKIP TO 6 [Sk ip t o l i n e 6.1
SUBSCREEN REGISTER CLEAR ALL REFRESH ALL MODE E LABEL
" Reg i s t e r a S tudent" [F i r s t cho i ce , clears t h e

s c r e e n and c a l l s R e g i s t e r a s t u d e n t '
e n t r y form, i n ENTER (i n p u t) mode.]

SUBSCREEN CANCEL CLEAR ALL REFRESH ALL PASSING STUD-NO LABEL
"Cancel a Student" [Second cho i ce , p a s s e s t o

t h e form p r e v i o u s l y e n t e r e d s t u d e n t no .]

See. 16.2 Features of Good 4GL, or How to Evaluate a 4GL

BUILD

GO

[Command t o Powerhouse t o
'compile' t h i s menu. I

[Command t o Powerhouse t o
a c t u a l l y r un t h i s menu t o see what it
looks l i k e .

Figure 16.1A Building the menu screen

And the result is:

f MODE:E ACTION:- [Cursor is here.] \
Registrar's Functions

01 Register a Student
02 Cancel a Student

Please enter the number of your choice.
To exit type " E . J

Figure 16.1B Resultant menu screen

2. Input Forms You should be able to point to any position on the screen and
specify that a field will be entered thcre. You should be able to specify the name of the
field, its format, edits (range of values, lookup valid values, automatic re-format) and
help messages. Complex functions such as sloring data from one screen into different
filcs, ensuring that there are no duplicates on keys, providing default values, calcula-
tions and conditional i n ~ u t logic should be allowed. Look for the ability to enter
repeating fields in a scrofled region. How about moving a field by pointing to it with a
mouse and dragging it to the new position? The best software can even providc an audit -- -
trail of the input data automatically. Figure 16.2A shows an example of building an
input screen in Powerhouse and the result is shown in Figure 16.2B.

SCREEN REGISTER
FILE STUDENTS PRIMARY [Where t h e d a t a w i l l 90.1
TITLE "Student R e g i s t r a t i o n Form." CENTERED AT 2,40
TITLE " U s e a r row keys t o g e t t o a f i e l d . E n t e r // t o

get t o ACTION prompt. A t ACTION you can e n t e r t h e
f i e l d number t o jump t o a s p e c i f i c f i e l d , o r t y p e
U t o upda te t h e f i l e w i t h t h i s s t u d e n t record."

AT 17,5
DRAW T H I N FROM 4 , 2 TO 15,79
ALIGN (I D 5, LABEL 9, DATA 35) [Format t h e o u t p u t a t s p e c i f i c

columns. 1

Chap. 16 Fourth Generation Languages

FIELD STUDENT-NO O F STUDENTS REQUIRED LOOKUP NOTON
STUDENTS LABEL "Student Number" [First field to display.

Must enter, it must be
unique, and the label to
prompt with.]

FIELD LAST-NAME OF STUDENTS REQUIRED [Next field as above. Prompt
label defaults to name of
the field, "Last Name".]

FIELD FIRST-NAME O F STUDENTS ID SAME [Do not assign new ID number
(see below).]

FIELD STREET O F STUDENTS FIELD CITY OF STUDENTS
FIELD PROVINCE OF STUDENTS LABEL "Province/State" .

[Other fields desired. There
is also a command to auto-
matically generate FIELD
statements for every field
in the file.]

Figure 16.2A Generating an input form

f Student Registration Form. \
01 Student Number 4 4
0 2 Last Name Perry

First Name Kelly
0 3 Street 944 Red Street

City Ottawa
Province/State Ont .

use arrow keys to get to a field. Enter / / to
get to ACTION prompt. At ACTION you can enter the
field number to jump to a specific field, or type
U to update the file with this student record.

Figure 16.28 Resultant input screen

3. Output Forms Output forms display records given a key or other field
contents. Some people design systems of many files that are interrelated by key fields.
Some of us even write down the names of the fields, and the keen ones even spell the
names correctly. When access is to multiple files the 4GL should automatically match
the records by a common key field. When the output form is displayed, update of the
fields should be allowed (with security restrictions) using the same format and logic as
was on the input screen. Tools such as Powerhouse can be programmed to use the same
screen for input and output. At the top of a screen an ACTION is prompted. If the user
types 'E' then Entry mode is assumed and all the fields are prompted. If the user types
'F' then Find mode is assumed. The user is prompted for a key or other fields, and the
record is found and displayed.

Sec. 16.2 Features of Good 4GL, or How to Evaluate a 4GL 173

4. Report Generation The 4GL should allow the developer to format reports
with headers, footers, and columns of data. Grouping, paginating, sorting, and record
selection logic must be available. Complex requirements such as multi-file access,
calculations, totals, and counts must be supported. Report formatting can be a complex
task so look for a simple report generating language.

Some of the 4GLs allow ad-hoc report generation. The user can specify in a very
simple fashion the content and format of the report. Some 4GLs such as Focus
(Reference 2.3) have a question and answer method of specifying the report format.
Cognos' product Powerplay uses mouse and icon graphics under MS Windows to set up
cross tabulated or columnar reports (Figure 16.3). Powerplay takes this feature one step
further by allowing a 'drill down' capability to isolate lower and lower levels of
information. The reports can be displayed in text or graphics format.

Figure 16.3 Icon driven graphic report generator For Cagnos Powerplay

Show Total Page I

2742 8615 4024 All Years 1849

1 74 Chap. 16 Fourth Generation Languages

5. Data Dictionary (DD) and File Definition A 4GL must have a data
dictionary to keep track of menus, screens, reports, records, and the interrelationships
among them. Most important, the DD must be able to store all field related information
such as format, edit, security, and errorhelp messages. As opposed to prototyping
software, a 4GL should not automatically create files and record definitions. (At the
least the developer should be able to override the defaults.) This is because the
performance of an application written in a 4GL is crucially depdndent upon the design
of the files. An automatic system cannot possibly foresee the optimal key relationships,
access rates, and futureneeds of the user.;I"nede;eloper must be able toenter all the file,
record and field definitions, and then optimize the files for the host operating system.

6. On-line Query For pre-defined queries, the 4GL should allow you to
specify multiple files to be accessed, the keys to use for access (the 4GLshould be able
to detect the common keys and automatically access secondary files by those) and the
format of the output. For unforseen queries, some 4GLs insist that a special processing
language be used. For example, using DEC's DATATRIEVE product, the user would
first have to set up links to all the files required using "DEFINE DICTIONARY,"
"DEFINE DOMAIN," "READY" the domain(s), set up the interrelated fields, then
issue a command such as "FIND STUDENTS WITH AMOUNT-PAID EQ 0,"
Needless tosay, thisisdifficult. This complexity may force the usertoask thedeveloper
to write a program, which is one way to achieve some security and performance since
the query applications are controlled by the developers.

The more user-friendly products allow a request in freeform English. Using
rudimentary Artificial Intelligence, the program searches the request for keywords, and
asks questions for clarification until a meaningful request can be determined. The most
powerful products can even 'learn' this type of request and will not ask the same
questions again.

7 . Built-in Programming Language for Special Processing and Calls to 3GL
Subroutines This seems redundant, but why a built-in language in addition to a 4GL
one? This language is used to do complex menu or screen handling logic. The developer
must be able to handle special security requirements (hide fields from certain users,)
take special action depending on input to certain fields, do a special task at a certain time
of the day, evaluate a complex formula and so on. Look for a structured language that
gives you blocks of code that can be accessed at each screen and field. For example, if
a Powerhouse input screen has a field 'AMOUNT-PAID,' there is a procedure called
'PROCESS AMOUNT-PAID' automatically created. If the developer needs to do
something unique when the user enters a value for this field, he or shemerely adds some
statements to this procedure. For example,

IF AMOUNT-PAID < AMOUNT-OWING/lO

THEN DISPLAY "Pay up or we will get angryl"
ELSE.. .

Since some things are more easily done in a 3GL (due to the nature of the problem
or the experience of the developer) the 4GLshould also allow calls to 3GL subroutines.

Sec. 16.3 Developing an Application Using a 4GL-A Case Study 175

8. Slructured Printout As with prototyping software, the 4GL should allow
you to print out all the defined menus, screens, reports, rclationships. This helps in
producingtheFunctional Specifications, and thcuser/trainingdocurnentation. You also
nced a detailed report on all the fields, including thc scrccns and reports that use each
field.

9. Documentation, Consulting and Training A large amount of documenta-
lion will discourage most people. Yet the opposite should be true. In most cascs, the
more manuals thc bctter. Consulting and training should also be provided.

10. Good Performance And most important, look for a product that performs.
No one will publish that thcir product performs poorly, so here are some clues that may
indicate that thc product will not give you the perlormance that you rcquire:

90% of thc installed base is on large mainframe computers.

Too much emphasis on user friendliness. If the 4GL is so end-user oriented
that 'evcn an idiot can program it', there is usually too much overhead spent
on supporting idiols.

The menus, screens, reports are not compiled. ('Compilc' can mean differ-
ent things to different vendors: thrcaded codc is not as fast as object code.)

No direct interface (rcad and write) to thc host operating system files.

The only way to evaluate the performance of a 4GL is to look at working
applications that are similar to yours. Ask the vendor for a list of contacts at installed
sitcs in your arca and talk to those who use them.

16.3 DEVELOPING AN APPLICATION
USING A 4GL-A CASE STUDY

The Phases in a 4GL

Let us see how the ABC system (developed in Appendix A using a 3GLmcthod) would
bc dcvclopcd using the Powerhouse product. The following sections can also provide
a frarncwork for the phases in the development of a 4GL project.

Developing the Requirements Definition

The approach to analyzing the user's problems in a 4GL environment is much the same
as in a 3GL environment. First a R~uirements Document is written to define the user's
problem. The RD for the 4GL development is not as detailed as that of the 3GL one
because thcuser's problems may bc hazy until afirstprototypeis built. Drawing a data-
flow diagram is thc best way to begin, and the result would be the same as before (see
Figure 6.1). As with a 3GL, the next step is to detail each bubble. Figurc 16.4 details the
Registrar bubble.

Chap. 16 Fourth Generation Languages

I STUD. INFO 1

Figure 16.4 Data flow diagram of registrar functions using Excelerator

Define What-Analysis

There are three major differences between 3GL and 4GL analysis. First, with the 4GL
the user must be familiar with the approach: he or she must realize that only a basic
system of core functions will be built first, detailed functions and cosmetic changes will
be added later, and after a limited number of iterations the final system will be ready.
The second difference is that the user will have to be a lot more active in a 4GL
environment than in the 3GL, spend a lot of time with the developers, perhaps even
become familiar with the language. The user should also be aware that the system may - -
not provideevery function exactly asrequested-thedeveloper may suggestalternative
functions (even changes in the business) so that the 4GL may be used most efficiently. -
Third, the analyst required for a 4 ~ ~ n e ; d s to beveryfami1ia;with the language. In fact,
the analyst should be a developer as well.

In the 3GL SDLC the estimates at this stage were 50%-100% erroneous. With a
4GL the estimate should be only +/- 20% in error. Why this improvement? Because you
will have a much better handle on what needs to be done. The 4GL methodology is
based on standard building blocks, plus limits can be put on the first prototype and the
number of iterations. After the estimates are done, a formal proposal should be written
to define project scope, cost and duration and to provide a milestone for this phase.

Sec. 16.3 Developing an Application Using a 4GL-A Case Study

Define How-Design

T h e first i t e m t o d e f i n e in a 4GL deve lopment is the top l e v e l d e s i g n or b a s i c structure
of t h e system. I t i s usua l l y easiest to use the bus iness func t ions of t h e app l i ca t i on as the
bas is of t h e top l e v e l design. T h e TLD in F i g u r e 16.5 follows t h e function b u b b l e s
d e f i n e d in t h e d a t a flow d i a g r a m in F i g u r e 6.1 and others s u c h as F i g u r e 16.4.

REGISTER CANCEL STUD-DATA CHANGE UST HOW MANY?
PAYMENT REFUND HOW MUCH STUDENT TO INSTR. HOW MUCH?
C0NF.- L E E R DO I OWE? INF. CHANGE WHO?
LETER WHERE AM L E l T R S WHERE?

I ENROLLED? WHEN?

I

I I I 1

Figure 16.5 Top level design with business functions

REGIS-
TRATION

SCHED. A CRS. INVENTORY REV.
CANC. A CRS. REORDER EXP.

MATERIAL MKTG.
TO COURSE

FINANCE
ADMIN-

ISTRATION
WARE-
HOUSE

MANAGE-
MENT

178 Chap. 16 Fourth Generation Languages

Thencxt stcp is tolist thesystemrequirerncnts undereachfunction box, shown in Figure
16.5 as the lower cascitems. Read through the requirements document itcm by itcm and
ensure that all the features are listed. Revise the TLD if necessary.

Design the File Structure

Files are designed at the same time as the structure of the system. Design the files Ulc
same way as before: First, detcrmine the data entities and relationships, then define the
fields in such a wav that all the accesses are as eflicient as uossible and the fields are
repeated as little a~-~ossible. (For more information on data base design seereferences
19 and 23.) However, there arc a fcw more rules to he followed when designing files
for a 4 ~ ~ , . e s ~ c c i a l l ~ if an indexed file structure such as DEC's RMS or IBM C~CS is
used.

1. Avoid variable length records.
2. Avoid variable content records.
3. Avoid records that are too long. It is preferable to havemore files with shorter

records than fewer files with vcry long records.

These rules arc more important with a 4GL than with a 3GL because a 3GL such
as COBOL handlcs variable length records with clauses such as the 'OCCURS n
TIMES.' But most 4GLs do not have an easy (default) way of processing records of
variable length or content, forcing the developer to write procedures (which is no fun).

Look at the file structures defined earlier for the ABC system (Section 7.8). We
can redesign these files to removc Ule variable length records as shown in Figure 16.6.

PK = Primary Key, SK=
S WDENT
(One rcc per student)

STUDENl-NOPK)
LAST-NAME(SK)
FIRST-NAME
STREET
CITY
PROVfiTATE
POSTAL-CODE

Secondary Key
STUDENT-COURSES
(One rec per student per
registration)
COURSBCODE(TIC)
COURS&NO(SK)
COURSB-DATE
LOCATION
STUDENT-NO(SK)
AMOUNT-PAYED

C O U R S ~
(Onc rec. per course type)
COURSE-NOPIC)
COURSE-NArn(SK)
DESCRIPTION

COURSES-SCIIED
(One rec. per run of a crs.)
COURSE-CODE(PK)
COURSE-NO
COURS&DATE

LOCATION
PRICE

INSTRUCTOR

Figure 16.6 Filc structure for ABC

Sec. 16.3 Developing an Application Using a 4GL-A Case Study

COURSE-MATERIAL MA-I'RuAL
(One record per course (One record per material)
per material) Material-No(PK)
COURSENO(FK) MIN-INV
MATERIALNO SUPPLIER-INFO

WAREHOUSE-INPO
DESCRIPTION

HISTORY
(Records from STUDENT-COURSES copied here
after a course is run)

Figure 16.6 File structure for ABC (contlnued)

At first glance this figure appears to be more complex than before because there are
more files, but this structure is more straight-forward and allows more flexibility. This
is just a first crack at the design. As we will sce later the structure will have to be
modified because of a new user requirement.

A good test of the data structure is to run through all of the known requirements
and see if the files can accommodate them. For examplc, the requirement, "List all
courses that use matcrial 'MATERIAL-NO"' can only be done using a sequential
search of the COURSE-MATERIAL file. If this is an often needed reauest. makinrr
MATERIAL-NO a secondary key will speed up the search. The analyst m;st determine
the frequency and performance required of each function and alter the file structure
accordingly.

Design the User Interfaces (UI)

In the 3GL we designed the user interfaces (UI) up front in the Analysis Phase. In the
4GL approach wemay prototype the UI up front but it is not final until themajor system
structures are defined. This is because the system design determines in part the
appearance of the UI. The TLD and the list of system functions (Figure 16.5) are used
to define the required menus, screens, and reports. The main menu for this system
prompts for the major functions and can appear as Figure 16.7A.

ACTION:- \
ABC System Main Menu

01 R e g i s t r a r
02 Finance
03Admin i s t r a t i on
04Warehouse
05Manaqement
0 6 0 t h e r

Type t h e number of your cho i ce . To E X I T t y p e 'E ' ,

t y p e ' ? ' f o r HELP /
Figure 16.7A ABC main menu

Chap. 16 Fourth Generation Languages

R e g i s t r a r Menu
S tuden t
Course Func t ions

Figure 16.78 Registrar sub-menu

The '01 Registrar' choice on the main menu can result in the Registrar Menu (Figure
16.7B), and the '01 Student Functions' choice on the Registrar Menu can result in a
screen such as Figure 16.8.

(STUDENT FUNCTIONS
01 S tuden t No.
02 Las t Name
0 3 F i r s t Name

04 S t r e e t
05 C i t y
06 P r o v i n c e / S t a t e
07 Postal-Code

lOCourses f o r t h i s S tuden t

To Find (e n q u i r e) a s t u d e n t recond t y p e 'F'
To E n t e r a new s t u d e n t r e c o r d t y p e 'E'
To De le t e a s t u d e n t r eco rd t y p e 'D'
To Update any i n fo rma t ion on t h e f i l e f i r s t

F ind t h e s t u d e n t , t h e n t y p e t h e number of t h e
f i e l d you wish t o update , change t h e f i e l d ,
and t y p e 'U' t o updaqte t h e f i l e .

To change any cou r se i n fo rma t ion f o r t h i s s t u d e n t
(a s w e l l a s ENROLL o r CANCEL) t y p e '10 '

Figure 16.8 Student function subrenu

/Course En t ry \
Studen t : John Smith S tuden t Number: 123456

Course Data f o r t h i s S tuden t [f o l l o w i n g i s a s c r o l l e d r eg ion]

Course No. Date Locat ion Amount P a i d

0 1 101 1988/Jan/01 TOR 900.00
02 403 1988/Jun/01 NYC 900.00
03
0 4
05
06

To ENROLL use E (E n t e r) and e n t e r t h e cou r se i n fo rma t ion on t h e
f i r s t empty l i n e

To CANCEL use D (De le t e)
To change any i n fo rma t ion simply t y p e new in fo rma t ion and t h e n

U (Update)
J

Figure 16.9 Course entry screen

Sec. 16.3 Developing an Application Using a 4GL-A Case Study 181

The screen in Figure 16.9 was accomplished by accessing from the STUDENT-
COURSES file all the records that match the STUDENT-NO key. Note that the 4GL to
be used (Powerhouse) and the previously defined file structure affected the format of
the user interfaces. The user may have preferred a separate menu for Enquiry on a
student, Delete a student, Enroll a student and so forth. But Powerhouse provides record
enquire-find-enter-delete-update by default on any screen, so we combined all these
functions on one screen. Similarly, we provide one screen to do all course registration.
We have altered the requirements somewhat to use the language efficiently. The user
gets the functions he requested but not exactly the way he requested them. This is where
a compromise has to be reached.

When the user sees the interfaces that the developer defines he or she will
immediately request many 'cosmetic' changes. The developer must ensure that all the
basic functions are accomplished by this first design, and politely defer all low priority
changes by promising to do them later.

A formal Functional Specification (FS) can be now be written and signed off to
provide a clean milestone. Remember that the FS contains the project team's commit-
ment to provide a system with documentation, training, and warranties as well as
adequate performance. The FS will still be the formal mechanism to ensure acceptance.
In fact, the only difference between a 3GL FS and a 4GL one is that the format of the
UI in the 4GL is not final (but the functions are)!

Build the First Prototype (Programming, System Test,
Acceptance of First Prototype)

There are seven steps to programming the prototype:

Step 1. Build the Files. The developer begins by building the Data Dictionary
(DD). Figure 16.10 shows how one would use the Powerhouse DD maintenance screen
toenter information about all files, records and fields (type, size, key type, edits, ranges,
look-ups, help and error messages, etc.). The CREATE command can then be used to
create the empty file.

RECORD SCREEN

0 1 Record STUDENTS
02 F i l e STUDENTS Organiza t ion: INDEXED Type: RMS

Open STUDENTS

Mode:E ACTION: E E l e m e n t A t t r I t e m A t t r i b u t e s

Element Usaqe Tyne S i z e D e c Data type S i z e O c c K e y Seq .No

0 1 STUDENT-NO I D C 5 CHARACTER 5 1 U 1 . 0
0 2
03

C
Figure 16 -10 Creating the data dictionary

182 Chap. 16 Fourth Generation Languages

Step 2. Build the Menus. Menus are built as shown in Figure 16.1. All sub-
menus are built similarly.

Step 3. Build the Input forms. Figure 16.2Ashows how to construct an input
form. All the screen input and output forms are built in a similar way. As we saw, it is
very simple to access information from more than one file. The developer can indicate
a primary file and several secondary files. As each secondary file is accessed the
program looks up which keys match with keys on the primary file and sets up the link
via the key. Optionally, it can show the developer all the fields in the secondary files for
display on the input form.

Step 4. Build the Reports. Figure 16.11 shows a PH program that prompts the
user for the STUDENT-NO and generates a confirmation letter to be printed for that
student.

6 u i z Confirm.Letter [QUIZ is the PH report generator] 7
Access Students Link to Student Courses [Specifies primary

and corresponding secondary file]
Choose Student-no P a m Prompt [Prompt for Student-no and

access Students record with that key
Page Heading Skip 2

Tab 50 SysDate [oatel
Skip 2 Tab 10 ~ i r s t - ~ a m e ~ a s t - ~ a m e Skip 2 [From Students
Tab 20 "Dear ' ' First-Name " , I f Skip2 [From Students
TAB 25 "You lucky duckl You get to go on course "

Description " on date ' ' Date [From Student-COURSES
Set Report Device Disc Name Confirmlet [This file will

\ be queued for printout9

Figure 16.11 Report generated to print confirmation letters

Step 5. Build the OtherFunctions. Add inall therequiredspecialprocessing,
logic, extra programming, timed events, batch runs, and 3GL calls if necessary.

Step 6. Show the User and Solicit Improvements. The user is now encour-
aged to try all the functions in the system, use all the menus and screens, enter test data,
andrun sample reports.Al1 changerequestsarewritten down, their cost is evaluated and
(hopefully) most of them are accepted for the next iteration. Keep up the enthusiasm
-show your user something working within 2 to 3 weeks even if it is just a part of the
prototype.

Step 7. Build the Next Iteration. The next iteration will include all the
changes suggested in step 6 and go through the steps again. Hopefully, you will only
need to cycle back tostep 2, although amajor changemay force you as far backas step 1.

Here is a real-life story about how easy it is to change a 4GL. After the first
prototype of the ABC system was delivered, the user requested a major change: He
wanted the confirmation letters produced automatically when a student enrolled in a
course.

Sec. 16.3 Developing an Application Using a 4GL-A Case Study 183

The first suggestion of the developer was, "We'll generate the letter whenever a
new record is entered into the STUDENT-COURSES file." But a design reviewer
asked, "What if the course DATE or course LOCATION is updated? A new record
would not be entered, but a letter would still have to be sent!" The developer, being a
compromising sort, changed the suggestion to "Generate a letter at all updates to the
STUDENT-COURSES file." Again the reviewer found a problem. "What if we
change a field that does not affect the student, such as the COURSE-NO, or the
AMOUNT-PAID? No letter should be sent in these cases!"

Sometimes the best solution to such a complex problem is to dump the whole thing
into the user's lap. They gave the user the ability to indicate when to send a letter. The
STUDENT-COURSES record size was increased to hold a "Yo or "N" (yeslno) flag,
with "Y" meaning that the student has to be sent a letter. Figure 16.12 shows how the
new course entry screen displayed this flag in a new 'Conf.Let' column (bold items are
new).

course Entry \
Student: John Smith Student Number: 123456
Course Data for this Student [following is a scrolled region]

Course No. Date Location Amount Paid Conf. Let
01 101 1988/Jan/01 TOR 900.00 N
02 403 1988/Jun/01 NYC 900.00 N
03 707 1989/Feb/O3 ONT 1000.00 Y
0 4
0 5
0 6
0 7
99 Print Confirmation Letters Now
To ENROLL use E (Enter) and enter the course information on the
first empty line
To CANCEL use D (Delete)

To change any information simply type new information and then U
(Update)
Choosing item 99 will Print Confirmation Letters for those
records that have "Y" under Conf. Let. You may set any
record to "Y" or "N" J

Figure 16.12 New course entry screen

The Conf.Let flag is set to "Y" by default for any record update. It can be set to "N"
by the user. If item 99 is chosen on the form screen, the system runs a report generation
program which prints a confirmation letter for each student whose flag is "Y," When
the print successfully executes, the flag is set to "N." Just in case the user forgets to ask
for the letters, a batch job can be run daily to search the file for any records with the flag
set to "Y" and print a letter. This way all contingencies are handled.

1 84 Chap. 16 Fourth Generation Languages

It would have beenvery difficult to add this feature using a 3GL program. But with
a 4GL, the complete modification (restructure the STUDENT-COURSES file, change
the Course ~ n t j screen, display the "Y" after an update, produce the new reports,
queue them to print and then change the "Y" to "N") took less than one day to
implement. After all the functional (not cosmetic!) user requested changes are made,
any functions that may have been left out of the first prototype are added. These may
include operation functions such as automatic start-up, shut-down, backuplrestore, and
default log in or accounting routines. The operating system may provide many of these
functions. Set up any required networks and interfaces to existing software. When all
the required functional changes and features are added, then the cosmetic changes can
be applied. Lastly, do not forget to finalize the user documentation-hopefully this has
been progressing all along.

It may take a great deal of effort to make all these improvements. Remember that
there may be several iterationsso break up the work. Usually three to four iterations are
needed before Version 1 of the system can be released. (I suggest that the maximum
number of iterations be limited and agreed upon in the Proposal.) Subsequent enhance-
ments can go into Version 2. As with the first prototype, keep up the momentum by
showing the user some progress every two to three weeks even if the results are
incomplete.

Acceptance and Operation

Despite the fact that the user has been involved in the production of the first prototype
all along, a formal demonstration of the whole system must take place to show that it
functions as promised. As in the 3GL method, an Acceptance Test Plan must be drawn
up and agreedupon to avoid hassles. The FS is the basis for acceptance. Acceptancewill
be simpler and faster in a 4GLenvironment than in a 3GLsince the user is familiar with
the system.

Operation is exactly the same as with a 3GL system. You can do a parallel run or
cutover to the new system after acceptance. Warranty and support must be provided.
There will definitely be an opportunity to sell a new system (Version 2) since many
changes may have been left out of Version 1 due to the limited number of iterations.
User training will not be difficult because some of the users are already 'experts.' Try
to get the 'expert' users to train the others in the company.

16.4 TEAM ORGANIZATION AND RESPONSIBILITIES
IN A 4GL ENVIRONMENT

In Section 18.8 we will detail the roles of the project team members of a 4GL project,
but a summary can be provided here. The PTwill be smaller when a 4GL is used. There
must still be aProject Manager to handle all the administration, but this person will have
to know the language. The Project Leader will be the chief developer. There will no
longer be any 'programmers.' They will be called 'developers,' since they will have to
wear a suit and tie and talk to the users.

Sec. 16.6 Converting a 3GL Oriented Company to a 4 GL

16.5 TIME DURATION OF THE PHASES WHEN USING A 4GL

Figure 16.13 shows typical4GLactivitiesand the time it takes to do eachitem. The ABC
project would fit into the 'SMALL TO MID SIZE APPLICATION' column. The
numbers in the 'COMPLEX APPLICATION' come from a large field service mainte-
nance system, distributed across the country, that handles approximately 500 items and
over 10000 parts. The system has over 50 menus, 150 reports, 18 complex batch runs
and 25 major functions. In the simple application case I would have expected the
equivalent 3GL development to take three times as long, for the complex one twice as
long.

Simple Complex Average Small
Application Application To Mid Size App.

(Person-davs) IPerson-davs) (Person-days)

Initial Requirements
File design
Each menu
Each screen/rorm
Each report
Each batch run
Create data dict.
(incl helpierr msgs)
Up to first prot.
(Sum of above)

For each iteration:
Use &gather
Changes
ImpL changes
No. of iterations
Total iterations

Total for Project 41 511 142

Figure 16.13 Typical durations for 4GL activities

I suggest that you try to break a project into parts so that the timing is approximately
this: initial requirements done in one month, and first prototype ready one month later.
This keeps the user interested. Then plan for three to four iterations at about one month
each, with Version 1 to be implemented in six to eight months.

16.6 CONVERTING A 3GL ORIENTED COMPANY TO A 4GL

Use the following five steps in this order:

Step 1 Start with the upper levels of management. Always use a costbenefit
argument. Show them the statistics in the previous section to prove
that many more applications can be developed in the same time for the
same money. Show the possibility of turning a normally hostile user

Chap. 16 Fourth Generation Languages

departmcnt into friends. Invite the 4GL vendors to make a presenta-
tion to management.

Stcp 2 Get permission to do a quick, one or two person application (the
software vendor may give you the 4GL for an evaluation period).
Advertise the success.

Step 3 If you are not the Manager of MIS, convince the MIS department.
Starting with the top management, prove that a 4GL will leave the
organization unchanged (that MIS will still be in charge). Prove that
the backlog of applications will go down, the programmers will be
happier because they will not be as isolated as before, and the users
will be happier because they will be more involved. The technical
pcople will be easy to convince--they are motivated to learn new
things.

Stcp 4 Gct the Project Team trained. Two aspects of the product must be
Icarncd: the language itsclf and how to develop applications in the
language. My cxpcricnce has shown that a dcvclopcr nccds approxi-
mately six months of training. This consists of onc to two weeks of
language training, followed by one to three months of practice. Then
one to two weeks of advance language and application development
training is needed, followed by one to three months of practice.

Step 5 Educate the users. Before starting the first project the user must be
shown the new approach. Point out that specification will no longerbe
formal (this should bea welcome step),but inrcturn theuser may have
tocompromisemore-mainly incosmctics and somewhat infunction.
Everyone will have to undcrstand that there will be moreof the "wait
until the next version" syndrome, but that thc versions will happen
more frequently.

16.7 COMPUTER AIDED SOFTWARE ENGINEERING

CASE from Start to Finish

The ideal CASE tool is one that will take you from analysis to operation, do everything
you want it to, and do it morc simply than with the non CASE method. Let us describe
this ideal tool and then see where the technology stands.

The tool to do this should allow you to Dcfine the busincss processes and data
flows with a DFD or other logic drawing tool. You should then be able to dcscribe the
user interfaces (Analyze) with a screen lormatling tool. The data clemenls lrom the
DFDs should be reconciled with those on the screens, thcn fed into a DBMS for
automatic creation of records and fields. At the same time the application tomanipulate
all these processes should be built underneath. The result is 3GL code or a 4GL
application with a wealth of features that handlcs all your requirements. We have
alrcady seen tools that acconlplish all this: prototyping tools automate thedefinition and
analysis, and 4GLs automate design and programming. All that is nccdcd is a
combination and wc havc a start to finish CASE tool.

Sec. 16.7 Computer Aided Software Engineering

How a CASE Tool Works
On the front end, a CASE toolkit provides the DFD and the menu, report and form
design graphics. A structured language may be used to define some processing. In the
middle, CASE creates a data dictionary to ensure consistency, and automatically
creates a data base, usually using a relational data base management system. (The
devcloper may have to enhance this data base schema by providing record and Iield r e
lationships.) At the end, out pops the application in a 3 GL such as COBOL or C, or
in a 4GL.

For simple applications, this is all that is needed. We have seen that prototyping
tools and 4GLs automate parts of this developmcnt. Why can't the two be combined?
All we nced is for the prototyper to automalically feed its output into the4GL. In fact,
there is a product from Cognos called Flex, which is Excelerator combined with
Powerhouse.

The Miracle of a 4GL Integrated
with a Relational Data Base Management System

We havc sccn how the4GL automates the life of an applications devcloper. A 4 GL that
incorporates the power of an RDBMS can drastically improve the productivity of the
systcm maintaincr anduser as well. For the systemmaintainer, agood DBMS provides
automatic backup/rcstore, audit trails, and clean up of the data base if there was a crash
during a transaction. If a new application has to be added on to existing data, it may
simply nccd to add a few new relations. The tool may even provide a facility to simply
draw the relationship.

The real benefit is the power provided to the user. Unforseen forms, reports, and
ad-hoc queries will be accommodated without a rebuild of the data. Depending on the
power of the4GL, complcx rcquests can be handled. For example, you could do aquery
of the ABC systcm such as, "CITY=SELECT CITY FROM COURSES WHERE
AVERAGE NUMBER OF STUDENTS>10." Imagine all the programming this
would require in a 3GL.

Choosing a CASE Tool

But what if the application is very complcx? Following is a list of itcrns that arc most
difficult to accomplish with CASE:

a. Secure, mulli-uscr acccss to the application and data.
b. Audit trail, data backup and recovery.
c. High volume transaction handling.
d. Flexible data access, needed to service ad-hoc requests and add new features

without rcprogramming.
e. Network access to application and data.
f. Change management (tracking, control, rclcascs).
g. Data sharing among different applications.

Figure 16.14 Things hardest todo with CASE

Chap. 16 Fourth Generation Languages

h. Transportability of the application bctwc.cn operating systems and
hardwarcs.

i. Decision support, graphics, statistical analysis, complex calculations and
logic.

j. Real-time, process control.

Figure 16.14 Tblngs hardest to do with CASE (continued)

The kcy to solving items a hrough d in Figure 16.14 is a good RDBMS. All of these
features arc built in so that the application need not worry about them. That is why most
CASE tools are based upon a relational data base. Evaluate your needs and make sure
that the product will do what you want.

Solving items e through i in Figurc 16.14 depends upon the specific CASE tool.
There are dozens, and each one does different things dcpcnding on the application that
it was built to suit. You must analyze your needs and choose one that suits you. If the
CASE tool does not automatically provide the fcature, you should be able to manipulate
the resulting application to have it do what you need. As a last resort you should be able
to access a 3GL to do what the CASE will not. This is what you would need to do for
item j in Figure 16.14.

16.8 CONCLUSIONS

Let us summarize the pros and cons of using a 4GL.
First the bad news:

New products must be bought and Icarncd. Old systems may have to be
converted. All this takes time and costs money.
A 4GL in thc hands of many uscrs opens more security leaks. Strong data
administration and security measures have to be devised.

A 4GL invitcs many new users and applications, causing a drop in system
performance.

Real-time, scientific, complex, non transaction oricntcd systems are not
suited to be developed in a 4GL.
More talent is needed to dcvelop in a 4GL than in a 3GL. The simple pro-
grammer (my apologies to all you programmen-surely you are not 'simple')
will not suffice when user interfacing, negotiating, and explaining is re-
quired. Retraining will be needed. (Is this really a 'con'?)

Most important, at this time, a well designed application in a 3GL will out-
pcdorrn the same application in a 4GL. To prove the costlbenefit of a 4GL
you must show that the cost of the additional hardware required to run the
4GL is worth the productivity gained and the increased numbcr of applica-
tions that can be developed.

Sec. 16.8 Conclusions

The good news far outweighs the bad news:
It is easier to manage a smaller project than a larger one, it is easier to divide
a large project into small projects using a 4GL. With a 3GL the usual way to
divide and conquer is to develop one function out of many. But one function
is usually meaningless until all the other functions are done. With a 4GL you
can produce a meaningful small system by developing the core of every
function. The next iteration is another small project and so on.

With the 4GL approach the user is involved, the relationship is friendly, and
all companies benefit from interdepartmental communication.

Most important, the productivity gained when using a 4GL can increase by
three to five fold the number of applications developed in a period of time.

QUESTIONS

1. What are the two kinds of 4GLs and what are the differences?
2. Whatdoes a 4GLprovide that a prototypingtooldoes not? Cana4GLbeused to prototype?

How about vice-versa?
3. Which features of a 4GL are usually not found in a prototyper?
4. Compare the aciivities and products in the Definition and Analysis Phases of the 3GL and

4GL development methods.
5. What items must be designed when using a 4GL?
6. Why is the DFD analysis method especially useful when using a 4GL?
7. In a 4GL, why is the user interface not final until the design is complete? Give an example

of a case where the design may dictate the user interface.
8. Outline the steps of building the first prototype. Which of these should be done together

with the user?
9. What makes the Acceptance and Operation Phases faster in a 4GL than in a 3GL?

10. Who are the people in a typical company that may have to be 'converted' from a 3GL to
a 4GL? List arguments that you would use to convince each one.

11. You are the accountant for the MIS department. You have to calculate the cost of
converting completely from a 3GL to a 4GL. List the items that may cost you (indicate
with -) or profit you (indicate with +) when converting from a 3GL shop to a 4GL one.
Begin like this:

ITEM COST
Have to buy the 4GL
Save on development costs +

12. Show how a CASE tool automates each phase of the development process.
13. What in your opinion are the three most difficult items to program with CASE?
14. Discussion topic: CASE and 4GLs will never replace 3GLs and traditional system

development methods.

Project Management Software

Planning and Controlling With a Computer

17.1 INTRODUCTION

At this time, there are over 500 project management software packages written for
mainframe, mini andmicrocomvuters. In fact. there are comvanies whose onlv business
is to evaluate these products and publish their findings (Reference Section 3). Chances
are that there is a product out there that will do the job for you.

I recommend these productswholeheartedly. There is no reason why a highly paid
project manager has to spend hours drawing and constantly redrawing PERTand Gantt
charts, calculating budgets and evaluating resource allocation strategies when a
$1000.00 micro with a $500.00 software product can produce these items in minutes.

But beware: a software package will not manage theproject for you. It is simply
a tool to speed up some of the mechanical activities of the job.

17.2 PLANNING TOOLS

Data Input

The best products allow you to input on one screen the headers with their sub-tasks, the
resources for each, durations, start dates, stop dates-in fact everything to do with the
project. Most people find that this is the screen they will use to plan most of their
projects.

Sec. 17.2 Planning Tools 191

Figure 17.1 Oulline view of Superproject

Work Breakdown Structure (WBS)

Some products allow you to interactively draw a WBS such as Figure 17.2.

m i - H e l p FZ-Graphs F3-Data F4-Edit FS-Format F6-Compute F7-Other

Figure 17.2 Work breakdown structure using Haward Project Manager

192 Chap. 17 Project Management Software

This is hclpful if you like to plan on linc using a WBS. Thc bcst products can cven
build the PERT by connecting thc lowcst lcvcl WBS boxcs which usually rcprcscnt
activities. Look for a product that also givcs you thc option to omit making this
connection. Sometimes you want to dctail thc nctwork yourself.

PERT

Most of thcprojcct managcmcnt products give you some form of PERT. It is easiest to
work with the 'activity on node' type of PERT as shown in Figure 17.3.

Figure 17.3 PERT created using Superprojcct

Some people find that the PERT chart is thc best graph to use to enter a plan into thc
computer. This is fine for a project of 25 tasks or less, but over this number even thebest
PERTs appear cluttered. The PERT is bcst to see the 'network' of activities. The
soflware should allow you to enter the precedents and successors of a task and
immediately display the PERT network.The program should also allow you tomove the
activity boxes to any location on the screen. Some products use the ASCII characters
to producc the PERT. This means that the connccling lines must beverticalor horizontal
(doncusing thcvcrtical and horizontal barcharactcrs,) or on adiagonal (doneusing dots
or diamonds) as in Figure 17.3. Some products (Project Scheduler 5000 for example)

Sec. 17.2 Planning Tools 193

uses bit mapped graphics. This results in very low resolution on a CGA PC, but quite
acceptable for EGA or VGA. Apple Macintosh products such as Macproject and
Microplanner use bit mapped graphics most effectively. Printout in all cases should
have straight connecting lines.

Gantt

You will use the Gantt more than any other screen. You should be able to add, delete,
link, and modify tasks on the Gantt. The Gantt should clearly indicate the critical path,
the noncritical tasks, floats, and milestones. Some products encourage you to plan your
project using the Gantt (by not giving you a PERT at all) but the best allow you to enter
activities on either one. As a control tool, the Gantt should show progress against a
baseline plan, and portions of tasks actually completed.

Resource Planning Tools

All of the project management products allow you to allocate resources to tasks. As you
enter each task (or perhaps afterwards) you can enter who will be working on it as well
as any non human resources required for the task. The better products allow fractions
of people (preferably the upper parts) to be allocated to several tasks in one project or
across severalprojects. (I highly discourage putting people on several projects simul-
taneously. It takes a person about one half hour to 'switch context' when moving from
one project to another.) Some products even give you a resource usage histogram such
as Figure 17.4.

Figure 17.4 Resource histogram created i~sing Superproject

194 Chap. 17 Project Management Software

Look for a product that can indicate when a resource has reached its limit. For
example, in Figure 17.4 Superproject uses a horizontal line to show that the maximum
of five programmers is exceeded in May. The best products will (optionally please) re-
schedule activities and projects so that no resource exceeds its limit (see Section 17.4).

Cost Planning Tools

Costs go hand-in-hand with resources. As resources are entered for each task, the cost
of the resource canbe entered. Youshould be able to specify that the cost of the resource
depends upon the duration of the task (variable cost,) or on a fixed price independent
of duration. The program calculates costs by taskand resource and rolls it up as the total
project cost. The products that support a WBS should be able to roll up the costs to any
level of the WBS. This can give you an indication of the costs by project phase. Costs
can be incurred at the start or the end of a task, or pro-rated as the task progresses.
Several packages produce line graphs such as Figure 17.5 showing costs, by week and/
or cumulatively, for the length of the project. Others allow easy export of the figures to
graphics packages such as Lotus 1-2-3.

COST ENVELOPE REPORT

PROJECT: FACILMGI
MARCH 1990

DATE: JUN 5.1990 4:09 PM
OCTOBER lSS0

- EARLY START COSTS - LATE START COSTS

[3----0 SCHEDULE START COSTS

5 X 1000

2.4449 WEEKS

Figure 17.5 Cost line graph created using Microsoft Project

Sec. 17.2 Planning Tools

Gaming (What If?)

You will really appreciate a project management product when you try your hand at
gaming: playing 'what if' with the multitude of factors that the product will allow you
to manipulate. As you alter a factor theproduct will instantly show you the results of the
alteration. You can reallocate some or all of a task's resources; alter task cost or
duration; move tasks around thenetwork for optimal sequence; reschedule one or more
activities. There is no better way to study the effect on the three constraints of quality,
duration, and cost. At planning time you can fine tune a project to the best of your
knowledge, and as the project unfolds you can constantly readjust to take the most
efficient course of action. The best products can show two or three scenarios on one
screen.

Reports for Planning

When you finish entering your original plan you may wish to produce several paper
documents for your own records or for inclusion in a proposal. The software should
allow easy printing of the graphic reports such as the PERT and Gantt charts. Make sure
your brand of printer is supported (there is a printer driver provided for it), otherwise
thc printcd graphics may not look like the screen display. You may wish to print
resource Gantts-a Gantt chart for each resource (person or thing) showing only the
activities the resource is involved in. Thcse must be shown to the resource providers to
obtain their commitment.

You should be able to print text reports of all the useful facts about the project.
Figure 17.6 shows a task detail report for the budget planners, and 17.7 shows one
without cost but with float figures for the resource planners.

Task January February March
No. Desc. F ixed Cost Var Cost F ixed Cost Var Cost F ixed Cost

1. D e f i n i t i o n 10000 11000
2. Ana lys i s 20000 25000 20000
3. Design 50000

T o t a l s 100000 50000 150000
Figure 17.6 Task deta i l report - any good package

No. Task S t a r t S top F l o a t F l o a t

Davs T v ~ e

1. D e f i n i t i o n 0 1 / 0 1 01/15 0 C r i t i c a l
2. Ana lys i s 01/17 02/10 0 C r i t i c a l

7. ATP 05 /12 06/17 23 T o t a l

Figure 17.7 Task critical /float report - any good package

196 Chap. 17 Project Management Software

Look for a product that can list any field (entered or calculated) in any column, and
provide selection criteria, sort, subtotals, and totals. The best products allow you to
customize your own report formats. This is usually done by specifying that the report
be broken down by three or more fields; for example, the report in Figure 17.6 was a
request in Superproject to report on all tasks, by month, FIXED COSTvs. VARIABLE
COST.

17.3 CONTROLLING TOOLS

The key to control is measuring progress against plan and reporting to everyone
affected if things are not on track. A project management software product should allow
you to enter the actual start and stop dates for each activity, actual duration and cost,
time spent on the activity by resource, and expenses incurred by resource. Charts and
reports can then be produced to show how the project is tracking against plan in terms
of time and cost. The most powerful packages can track earned value, extrapolate the
trend, and forecast the delivery date and cost.

Gantt Chart as a Control Tool

The best tool to show how the project is tracking against the time plan is the 'double'
Gantt chart such as Figure 17.8.

Figure 17.8 Double Gantt created using Superproject

Sec. 17.3 Controlling Tools

The software must be able to show:

1. LOB (Line of Balance)--a vertical line at today's date.
2. Actual start of any activity that has started (and original planned start).
3. Actual completion of any activity that has ended (and original planned

completion).
4. The portion of any activity that is completed.
5. Planned start of any activity not yet started (and original planned start).
6. Planned completion (and original planned completion) of any activity not yet

completed. The most important item is the planned completion of the last
activity in the project.

The double Gantt in Figure 17.8 shows two lines for each activity. The top line shows
the plan, and the bottom line shows the actuals. LOB and partial completion of tasks is
indicated by shading.

Cost Control and Earned Value (EV) Reporting Tools

Look for a program that can store and report earned value (EV). This can beeither a true
EV in dollars or as percent completed for each task. In both cases you will have to
calculate the true earned value. The software should be able to report earned value
versus budget, and actual expense via text reports and line graphs. For example, Figure
17.9 plots earned value, budget, and actual expenditure.

PLAN
COST

LOB PLANNED
COMPLETION

TIME

budget (BCWS) - actual (ACWP)

p79 earned value (BCWP)

Figure 17.9 Earned vnlue

198 Chap. 17 Project Management Software

See Section 20.2 (Budget Problems) for interpreting this kind of graph. Most
microcomputer software products do not have this kind of graph built in, but some of
the products allow you to create customized plots, and most of them will allow you to
easily export the figures to a graphing tool such as Lotus 1-2-3 or Harvard Graphics.

Other Reports for Control

In Chapter 21 on Meetings, Reviews and Reports we discuss the content of the Status
Report. It should contain a double Gantt such as Figure 17.8, an expense plot such as
Figure 17.9, and for those who wish more details thanwhat the graphs provide (such as
accountants), a report such as Figure 17.6 or 17.7 can be produced. Some companies
require a breakout by resource cost or account codes. The key is to have the flexibility
to enter all of this data and to print it out on reports.

17.4 HOW TO EVALUATEIBUY PROJECT
MANAGEMENT SOFTWARE

Sections 17.2 and 17.3 detailed the basic features required of a Project Manager
program to run a project. The following features distinguish a good product from a
mediocre one:

User Interface and Documentation

I prefer a pull-down menu to the in-line type. The menu choices should be logically
organized into groups under main headings that are visible at all times. If you find that
you are asking yourself, "Where did I see that menu choice?" the organization is
inferior. The most common functions should be accessible by a one or two keystroke
'fast track' method. Some of the products can be set up to run in 'beginner,' 'interme-
diate' and 'expert' modes. The menus and features become more complex only in the
advanced modes. The screen graphics should be clean, simple, attractive, and the use
of color should help, not overwhelm the user. Look for clear, context-sensitive on-line
help.

The product must come with a high quality, clearly written, well organized user
guide. Look for one section of this guide where all the menus and commands are
organized in the order that you would use the commands, and a reference section where
all the commands are listed alphabetically. There should be an index of all the important
words in the document. An on-line tutorial or learning guide should be provided as well.

Necessary Features

The basic features that these products have are listed in Sections 17.2 and 17.3. The
following are optional extras that you may wish to have:

Full Project and Resource Calendars. All the products allow you to set up
working and nonworking days for the whole project. The best allow you to set up a
nonstandard work week down to a specific hour or minute of the 24 hour day. Look for
products that allow this detail to be set up on an individual calendar for each resource
as well.

Sec. 17.4 How to Evaluate/Buy Project Management Software

Cost Charging Flexibility. The best products support overtime rates that can be
different for the same resource from task to task. They provide the flexibility to charge
for a fixed price resource at the beginning or the end of a task, or to be prorated
throughout the task. Every company has its own accounting system. Make sure that
yours will be supported.

Resource Allocation and SchedulingFlexibili~. The good products allow you
to define the duration of each task, and assign resources to work on a task for its total
duration. The schedule that comes out of this calculation is time based. The best
products calculate the duration of each task depending on the availability of the
resources assigned to the task. This is resource based scheduling.

Resource Leveling. The best project management tools allow one resource (or
part of one resource) to be scheduled on several activities of one project or across
severalprojects. Ifthis is the case the software should be able to warn you if the resource
exceeds its limits, and optionally reschedule the tasks or even the projects so that the
resource limit is not exceeded. Some softwares allow you to control the algorithm used
for leveling; for example, moving tasks within their float period only, or moving the
lowest priority tasks first. The product must indicate where rescheduling took place.

Large Limits. The less powerful products limit the number of resources per task
or the number of tasks per project. The more powerful ones have no limits, as long as
the mainmemory (RAM) of your computer is large enough. Ifind that most of the micro
products will hold approximately four to six tasks per kilobyte of free RAM. If you have
over 640K of RAM, make sure that the product you purchase will support extended
memory.

Flexible Reporting. The reporting capability makes or breaks a product. Look at
how many useful built-in reports the program provides, as well as the ability to
customize these reports or to create new ones of your own format. You should be able
to ask that any known field appear on a report. Look for easy sort, search, and select
capability. For example, you should be able to select a specified date range (used to
report only for the past period,) a specific WBS code range (used to report on a certain
level or phase), or a specific float (used to report on CP items only-float is zero). You
should be able to preview all the reports on the screen.

Sub-projects. Many projects involve thousands of activities, but one cannot plan
and control a proiect that has over one hundred activities. It is therefore necessary to . "

break a large project (the superproject) into many smaller projects (sub-projects),
which can be managed more easily. To support this the software should allow one task
in the super-project to represent a sub-project of many tasks. You should be able to
zoom from a task in the superproject into the appropriate sub-project and vice versa.
Several levels of sub-projects should be supported. If a change is made at one level that
affects another, all the appropriate items affected should be automatically updated by
the software.

MultiProject Merge. If the product allows scheduling of resources (or fractions
of resources) across several projects, it should allow a view of all the ongoing projects
together. The best view is a Gantt that includes the activities of all the merged projects.

200 Chap. 17 Project Management Software

In addition, look for a product that can give you schedules and costs for the resources
across all the projects, warn you if a resource is overloaded, and do resource leveling
across many projects.

Data ImporttErport. A spreadsheet program such as Lotus 1-2-3(TM) is much
better than a project management program for manipulating numbers. Similarly, a
database program such as dBase III(TM) can do search, select and report formatting
better. You may therefore wish to transfer the information created on your PC project
management program to other PC products, or even to a mini or mainframe computer.
Look for easy data interchange in bath directions with the software you wish to use.

Networking. If you have a LAN, you will want a product that will share the
program among users. You may desire sharing resources such as printers or disks, as
well as data files. Make sure the data can be secured.

The Icing on the Cake. The following features are not absolutely necessary but
are nice to have:

Full featured report formatting, such as control of column headers, column
location, field size and format, page breaks, and multi level sort.
Gantt chart that shows more than one baseline, percent complete, and a link
to precedent activities. PERT chart automatically arranged so that the lines
do not cross and have arrows on the ends time scaled PERT chart.
Mouse input, particularly if most of your work involves choosing items from
pull down menus or manipulating graphics. This is less useful when a lot of
text needs to be entered. Some people find that switching back and forth
between the mouse and the keyboard is bothersome.
Estimating and statistical tools. Several products have a software estimating
tool such as COCOMO built in. Other products use CPM to calculate project
estimates. You enter a pessimistic, a probable, and an optimistic estimate for
each task, and the program calculates three project estimate ranges: one with
99%, one with 95% and one with 68% probability.
Outlining that allows you to indent sub tasks and sub-sub tasks to indicate
work breakdown. You should be able to collapse the outline to any level,
move major or minor sections at once, and expand only selected sections.

17.5 SOME PRODUCTS TO LOOK AT

Personal Computer Products

At this time, the following are the four most popular IBM compatible PC project
management products (andindeed the four best i n i s in my opinion):~lthough theiare
listed in descending order of my own preference, every one of them is a full-featured.
friendly product. 6 fact, if I were tdgrade the best as 100, the other three would be
graded 99,98, and 97 respectively.

1. Superproject Expert (Computer Associates, 2195 Fortune Drive, San Jose,
CA 95131; also Vancouver, Canada)

Sec. 17.5 Some Products to Look At 201

Pros: Excellent user interface (pull downmenus), best graphics, just about all
the features listed above including a word processor that allows you to make
notes. Every feature that is supported is done well and logically. Computer
Associates is very helpful in support and training.
Cons: Weak on documenting the use of reporting, PERT chart connecting
lines not graphic, no line graphs.

2. Timeline' Symantec, 10201 Torre Ave., Cupertine, CA 95014
Pros: Best user interface, with '/' typemenu tree structure, good on-line help
and tutorial, and a quick pick feature that lists all the possible choices for an
entry. Typing the first few letters of the desired choice reduces the list until
only the selection is visible. Activities can be scheduled down to one minute,
making TL useful as a 'Things to do Today' notepad.
TL allows you to display and print any column of information in front of the
Gantt. Figure 17.10 shows a 'notes' column that may show dates whenaction
needs to be taken. This column can be sorted and the display used as a
reminder list.

Figure 17.10 TL Reminder list with Gantt

I

Chap. 17 Project Management Software

Cons: Lack of resource calendars. Weak PERT-all the activities appear in
a straight line. You must buy an extra package for good graphics printout.

3. HarvardProjectManager(Software Publishing, P.O. Box 7210,1901 Land-
ings Drive, Mountain View, CA 94039)
Pros: Window on two forms at once, good bar and line graphs. Good graphics
including activity on arrow type of PERT.
Harvard has a 'Fast Track' approach to building a single line of activities for
a particular resource. (See Figure 17.11). You can cursor to the spot where
the activity is to appear and simply type in the name of the activity.

El-Help FZ-Graphs F3-Data F4-Edit FS-Format FkCompute F7-Other

Figure 17.11 Hnrvnrd Fast Track screen

Cons: Automatic creation of PERTfrom WBS is more of a hindrance than a
help; PERT easily gets cluttered due to restrictions; it is also difficult to
manipulate the PERT. Not enough activities visible on the Gantt screen.
Harvard is the slowest of the four products listed, especially when doing
graphic printout.

4. Microsoft Project "(Microsoft Corporation,l6011 NE 36 Way, Box 97200,
Redmond, WA 98073)
Pros: Good line and bar graphs, excellent reporting, great importfexport and
networking, least costly of the four products. Microsoft Corporation is also
very helpful and supportive.

Sec. 17.5 Some Products to Look At 203

Cons: Not easy to use unless you are familiar with other MS products.Microsofi
delivers fewer features, such as a limit of sixteen resources per task and no
resource leveling. Also, the PERT is weak.

The above products are all in the $300-600 (US) price range, so price should not be a
deciding factor.

Evaluate more than the products above, because new and better ones are appear-
ing constantly. Personal computer magazines are the best sources for the most recent
product evaluations.

Minicomputer and Mainframe Products

The following products all work on DEC VAX (VMS) and IBM (MVS or VM)
hardware and software. Some of them work on the HP and DG families as well. The
following products have everything a project of any size would require, so it is difficult
to differentiate based on features. Look rather at the company behind the product. Since
you may need answers to questions, consulting, and installation, look for a vendor that
has experience in your type of application, and a good reputation for service. Look for
an active user group in your area. These products are so complex that having someone
with experience on the product, preferably in a similar field as your own, is a godsend.

The cost of these products is a major deciding factor: they range from approxi-
mately $2,000 to $500,000, depending on your computer and the number of modules
and features you buy.

The following are listed in my order of preference. Value for the money has been
considered:

1. Artemis (Metier Management Systems, every major US city; Toronto, Can-
ada; and worldwide. ($27K-$95K)

Metier's only business is project management, and it shows. Artemis
features a thorough cost tracking and reporting system. Cost levels can be
imported from other data bases; costs can be allocated to tasks depending on
early and late start, at the beginning or the end of the task, or using a
distribution throughout the duration defined by the user. Earned value can be
tracked and reported using several algorithms.

Artemis is a flexible system with built in menus, reports and com-
mands, as well as the power to modify any menu, report, calculation or
graphic chart. You can buildledit graphics such as a logo, or overlay charts;
preview portions and print them out.

The user interface is reasonable for a suchasophisticated system, with
input via menus, mouse, or a structured English-like command language.
Interface to other mainframe applications is excellent. Youcan transfer infor-
mation to and from accounting systems, payroll, inventory, time-card report-
ing, budget datasets, and so on. It even has a configuration management
system built in to help track changes to items like drawings and purchase
orders. Artemis uses its own relational database to store all this information
and its performance is second to none.

Chap. 17 Project Management Software

In the past, large customers have asked Metier to implement certain
features required for projects such as plant shutdown, construction, petro-
leum processing and such, and these features are now available inArtemis. It
may therefore6 to your benefit to approach Metier with your project and see
if they have the experience and software for it.

Nit-picks: One of my clients phoned Artemis recently for technical
help. After the fourth phone call he finally got someone who started that day
and was learning the system by answeringquestions. There is aPCversion of
Artemis that is a subset of the full blown one, but Artemis has not expended
the same effort on the PC product as on the Mini. It is very weak in
comparison to the others.

2. DECSPM (Digital Equipment Corporation, Maynard MA., and everywhere
else) ($1K-$54K)
This product is the weakest of all in terms of features. For example Version
1 supports only one project. It isslowandunwieldly inmanipulatinggraphics.
But for the price and if you like the DEC 'feel' it is a good value. DECSPM
(they call it DEC Software Project Manager) is especially suited to the
software project since the COCOMO software estimating algorithm is built
in. Simply call the ESTIMATE menu option and all the pertinent COCOMO
parameters will be prompted. The product produces effort in person-months,
a schedule and the cost for each phase. (see Figure 17.12)

f Estimation Mode Form 7

Name : Test
Mode: Simple (Intermediate Complex)
outputs:
PDCOST: 5500 (Prel. Des. = Analysis Phase)
DDCOST: 5500 (Detail Des.= Design Phase)
CUTCOST: 5500 (Codehunit Test)
ITCOST: 4800 (Int. & Test)
Inputs :
Line of Source Code: 10000
Factors (1 - low through to 5 - extra high)
Relability: 3 Exec time const: 1 Analyst cap. 1
Data base size: 2 RAM constrained: 3 Applicat'n exp 3
SW complexity: 3 VM volatility 1 Progrm'r cap 2

Turnaround 2 VM experience 3
Lang exp 4

Modern programming practices: 3
Software tools: 4

e h e d u l e constrained: 3 J
Figure 17.12 COCOMO parameter prompting screen (adapted)

Sec. 17.5 Some Products to Look At 205

The graphics, mostly line drawings, are adcquatc if not glorious.
PERT, Gantt, line graphs, and histograms are available. Input is orientcd to
graphics using icons and mouse.

All of the DECPM graphic manipulations can be done in a command
mode but thcre arc over 200 commands. The oroduct can automaticallv
create thc commands from era~hic inout. and the user can alter and run the
file commands in batch moie. keep youreye on his product; knowing DEC
(and the developer) subsequent versions will be much more competitive.

3. Projcct/2 @ (Project Software and Development Inc., 20 Univcrsity Road,
Cambridge, MA 021 38) ($50K-$500K)
PSDI has bccnin the project business for over two decades, and has theclient
base to provc it. Project12 is the most powerful of any product, with a price
to match.

The best feature of ProjecfQ is that it has the Oracle data base
managemcnt system built into it. This gives Project12 a relational data base
that integrates all the data on thc project (scheduling, cost, and resource,)
supports an ad hoc reporting system, a slructured query language (true SQL)
and a menu system. The menu system comes with a full tree of predefined
menus, plus gives flexibility to create your own. The data base also provides
cordiguration management and audit trail tools.

Suecial features of ProiecfR include: Discontinuous activity schedul-
ing. An activity can stop (due io network logic, reported progress or resource
Icveling) and restart anytime. Activities can be segmented and resources
assigncd to a segment-only. Consumable resources, as well as created
resources (for cxamplc, one activity crcates funding for another to use are
supported.)

Projecll2 has the bcst costing system of all the products. Cost can be
input and viewed as spreadsheets. Input and reporting can be by account
codes, organization codes, work breakdown structure levels and so on. Cost
rates can bc determined using 'rating factors' such as unit cost, escalation
rates, exchange rates, overhead rates, time-varying rates, rates by account,
organization in the company, and quantity. Risk factors can be built in and
cost trends and forecasts varied accordingly. The costing system can be
integrated with existing systems on your computer.

Project12 has a menu driven graphics editor to customize the graphic
outputs.

PSDI has sold Project12 for large projects such as plant certification,
contract management, equipment maintenance and so on, and they can of
course be hired for training and consulting.

ProjeclE comes in modules (Schedule Manager, Cost Manager,
Graphics Manager, Relational Database Manager, and Screen Application
Manager) and the price varies accordingly.

Chap. 17 Project Management Software

PSDI's PC product is called Qwiknet. It is more powerful than the
products evaluated above, especially in tracking costs, but again the price
puts it out of the range of those products.

4. Primavera (Primavera Systems Inc., Two Bala Plaza, Bala Cynwid, PA
19004) ($4K-30K)
Primavera will do almost everything that the above products will. It has a
menu interface that is somewhat cumbersome, but probably necessary lo get
all the different data input. It has the most sophisticated built in reporting
system of all the products, with excellent support for graphics output to dot
matrix printers.

Primavera also comes on thc PC, and is fully compatible with
Microsoft Project. This gives a good growth path from a $400.00 micro
product (Microsoft Projcct) 10 a $2000.00+ PC product (Primavera PC) to a
sophisticated VAX product without major data modification.

5. PAC IF 11" and III @ (AGS Managcmcnt Systems, 880 First Avenue, King of
Prussia, PA 19406) ($33K for PAC III and WINGS)
Thc low cnd product, Pac I is a single uscr, single project system typically
used on small to medium sizedenginecring, cons truction,manufacturing, and
publishing projects.

Pac II is a widcly used multi-project management system that is
flexible and easy to use. It has full scheduling, resource utilization, and cost
processing capabilities.

The top-of-the-line Pac III and WINGS products are sophisticated
systems with most of the capabilities of the products mentioned above.
Mainly used on IBM mainframes with 3278 type terminals, special features
include: Automatic resource matching and allocation so that the task gets
done as soon as possible, progress reporting on a Gantt conlaining original
plan, revised plan, actual and projected bar for each activity. Costs may be
reported by cost center, report centcr, company department, WBS lcvcl or
box, responsible person, purchase order, contract, change order, and so on.

When to Use a Mini or Mainframe Rather than a PC

Following is a list of items that may urge you to use the mini or mainframe for project
management:

You need multiuser access. If several people must input data,receiveunique
reports and supply updates, it is a burden to run on even a networked micro.
You have a large or complcx projcct. The micro products run out of steam
if there are over several hundred activites. The larger products usually allow
you to specify complex costing, accounting or scheduling calculations.

You nccd uniquc or changing reports and calculations. Most of h e larger
products allow full customization of reports and costing formulas, usually in

Sec. 17.6 Conclusions 207

You need to interface to existing data bases and systems. These products
allow full access and conversion to and from the usual IBM and DEC data
bases for cost, resource, accounting, materials, suppliers and so on.

You need to interface the projcct management system to company wide ac-
counting, job costing, time-card, or inventory control systems.

You need sophisticated project managcrnent tools such as complex resource
leveling, hammocking, work breakdown and cost reporting by accounting
codes or company departments.

You need automatic backup (you are too lazy to back up the PC and you
know the mini will be backed up).

You have a VAX; you arc already familiar with it; it has room on it for PM,
you can afford it.
You have found a mainframcproduct and auser group targeted specifically
to your industry.

You want to stay with one vcndor (training, tcch support).

You necd a huge plotter which is only supported on the VAX. Personal
opinion: At a 1 to 10 price ratio, I suffer and live with thc PC products.

17.6 CONCLUSIONS

There is no qucstion ''if" you should usc a cornpuler project manager: the question is
"Whichonc?" Most vcndors provide a 'denlonstration' vcrsion of thcproduct that will
show you the fcaturcs and Ict you play with the program. Be sure to evaluate three or
four, read the appropriate litcraturc and visit companics that have bought the products
that you are considcring. Choose thc one that has thc fcaturcs that you need and that you
can learn to use and like most quickly.

QUESTIONS

1. List, in chronological order, the automated project planning tools that you would use to
plan a projcct.

2. What two items contribute to thc cost of theprojcct? Why are automated tools useful for
tracking cost?

3. What is gaming? Why is this useful for managing a project?
4. What reports would you send the following pcople when the first plan for the project is

complctc?
a. Dcpartmcnt head who providcs you wilh a programmer for several tasks.
b. Accountant for thc company.
c. Prcsidcnt of thc company.
d. Yourself.

208 Chap. 17 Project Management Software

5. What reports would you send the same people as the project progresses?
6. One of your users asks you torecommend aproject manager PC product. The usm is naive,

hc does not share his resources across tasks, his projects are approximately 200 tasks, he
wishes touse dataalready ondBASE, and he has to r&rt only tohis boss who is interested
in costs. Which product features would you look for in choosing a product?

7. Your manager asks you to recommend aproject manager. He wishes all five programmers
to input their own time, there are 500 tasks in the project, and the existing accounting
system on the VAX has to provide the cost rates. which product would you &ommend?

PART 3
People

Organization

Who Does What and When

18.1 INTRODUCTION

We have all attended meetings where many action items are discussed but no one is
assigned these tasks. These items never get done-everyone thinks someone else will do
it. A major project milestone is reached when everyone knows exactly what they are
responsible for.

18.2 ORGANIZING THE PROJECT TEAM

The Small to Medium Sized Project Team

As mentioned in Chapter 3 (PLANNING), a good team organization for a small to
medium sized project is the one shown in Figure 18.1.

Each person on the team has a specific job. The programmers program. All
technical people need close technical supervision, so the Project Leader (PL) provides
this by leading the technical activities and solving any system problems. The major re-
sponsibility of the PL is product quality. The Project Manager (PM) is there to provide
management leadership and handle all communication between the Project Team and
the outside world. The major responsibility of the PM is to plan and to control.

Chap. 18 Organization

PROJECT
MANAGER

PROJECT
LEADER

PEl GRAMMER GRAMMER ! PRO- I GTF I
Figure 18.1 Project team

The Larger Project Team

Since a technical leader (PL) cannot effectively supervise more than five programmers,
consider organizing larger project teams as shown in Figure 18.2 (on page 210.)

If you attempt this form of organization, divide the large project up in such a way
that the individual teams can treat their portion as a stand-alone project. One of the most
interesting conclusions made by Tom Peters in the book In Search of Excellence
(Reference 4) is that the best products in the world were produced by teams of less than
seven people.

The Functional Project Organization

Most companies are organized functionally. For example, if a software constructing
organization is responsible for several different types of software, there may be a
function or group dedicated to producing each type. The banking software would
always be done by the bank applications group, the process control application by the
process control group and so on. The manager of the banking applications group, called
the functional manager, is automatically the Project Manager for the bank software
project, and the functional manager of the process group is PM for the process control
applications.

Organizing this way has advantages and disadvantages. On the plus side, you can
easily find a home and a manager for a familiar project. On the negative side, projects
usually require experts from outside the group, and problems may occur if people have

Sec. 18.2 Organizing the Project Team 21 1

to be borrowed from another group. These experts are ususally lent 'part time' to the
project, and we saw what happens when people have to devote portions of their time to
different projects-they spend more time switching than producing. It is also boring to
always work with the same people, for the same manager, on the same type of project.

EITHER

LEADER 9 LEADER '3

Figure 18.2 Larger project teams

212 Chap. 18 Organization

The Matrix Project Organization

DEC and other large software producing companies sometimes use the following
method of organizing project teams: Groups of programmers report to a function or
Line Manager (LM). The programmers are in their specific groups only because they
happen to live near a particular office or a job slot was available when they were hired.
When a project is begun, someone with the necessary skills is first found to manage the
project. This PM is usually a senior programmer who has experience with the client and
the application and who knows how to manage people. The PM then decides which
programmers would be best suited to build the project, and negotiates with the
respective Line Managers for the use of these people.

The people are assigned to the project full time for the duration of their specific
task, and at the end of the project the people go back to the LM. The PM pays the LM
for theuse of the people, and the payment is commensurate with the profit of the project.
Thus both the PM and the LM have a stake in the success of the project.

This form of matrix management works best if the PM and the LM have equal re-
sponsibility and authority. This implies they have equal say in project decisions as well
as in the performance reviews of the individuals involved. In most companies, some
managers are more equal than others. In DEC for example, since the LM is the
permanent boss and the PM is the temporary boss, the LM has the final say over the
people involved.

Nevertheless, the idea of organizing the team dynamically to solve the problem is
excellent. Tom Peters found that the best products come out of small, dynamically
organized teams. People are motivated to work with different team members, for
different managers, on different problems, as long as they do not have to reorganize too
often.

Reorganization gives the illusion of progress. In reality, it creates
demoralization and insecurity.

Petronius (Roman General) 66 A.D.

18.3 THE ROLE OF THE PROJECT MANAGER

Selling the Project Manager Job

If you organize a project team as shown in Figure 18.1, you will have no trouble
convincing anyone that there is a need for a Project Leader (all technical teams need
supervision) but you may have trouble selling the need foraproject Manager. Since the
PM's major role is to interface with the user, your user will argue, "Why put a person
in place to communicate with me? I will 'manage' your project!" This may be possible
on an internal project. But there is a lot more to project management than interfacing to
the user. Will the user know how to handle people, interface to upper level management,
obtain resources, and control the milestones? Will this user be impartial when a major
change is requested from the user side and the project team does not want to
implement it?

S ~ C . 18.3 The Role of the Project Manager 21 3

Your upper levcl manager may also argue against the PM position. Showing you
an organization chart, he says," We have lots of managers around-makeone of them
the PM!" This is finc if these managers have the specific skills required to manage a
software project (sce Section 19.2). The skills are not the same as those required for a
personnel or general business management job.

All multi-person cfforts require organization, communication, and firm leader-
ship. Sell project management as a neccssary job, advertise successes from your own
experience, and from your industry. (Or tell the manager to read this book!)

General Responsibilities of the Project Manager

Themaior role of the PM is to interface thc~roicct team to the outside world. Thev are . "
respons-ible for reporting on plans and progress to the client, to upper level management
and to all those concerned. All information from the outside regardine changes. " .
budgets, schedules, people, and company issues-anything that affects the PT-is
communicated to the PM who informs the appropriate team members. The PM obtains
all the resources required to get the job done.

Another responsibility is to manage the project people. The PM is the leader,
motivator and solver of any people problems as necessary.

And, last but by no means least, the PM protects the team from the politics and
bureaucratic baloney showered on it from the outside (and generates any baloney
required to get thc job done). "The project manager is the buffer or screen for the
administrivia." Mctzger (Reference 5).

Specific Responsibilities of the PM in Each Phase

1. Definition The PM may be the one to make the go/no-go decision. This may
involve interviewing theuser and helping in the writing of theRequirements Document.
The PM will probably be the author of the proposal. The PL will help by providing
technical assistance with items such as the preliminary project plan. The PM will plan
the higher levels of the work breakdown structure, then givc the WBS to the technical
people to break the work down and do the estimates. When the detail is done the PM will
calculate the total cost, draw up the schedule, and get tentative commitment for
resources.

The PM will chair any internal or client reviews and approvals, negotiate the
proposal, ensure that the technical team approves all proposal changes, and obtain the
client signoff.

After theproposal is signed, thePM formally initiates theproject by cstablishiig
the Project File (PF). The PF will be the central repository for all the latest versions of
project documents, including status reports, minutes of meetings, nasty memos con-
cerning the project and so on. She calls a project kickoff meeting (see Section 21.5) to
set the objcctives, establish the rules, and set an enthusiastic mood.

2. Analysis The PM should write the following sections of the Functional
Specifications (see Section 6.3): Deliverables, Specification Changes, Acceptance,
User and Project Tcam Interfaces, User's Responsibilities (input from PL on details),
Terms and Conditions, Warranties, and anything about the effects of the new system on

214 Chap. 18 Organization

the user's environment.
The PM will ensure that the FS (or prototype system) gets done on time (mainly

that the user's inout is received in time). negotiates the FS with the client and obtains ,, -
the client sign off. The hard part is to ensure that the user understands the FS, that
changes do not go on forever and that any changes are approved by the technical team.

At this point thePM is heavily loaded down with the planning tasks of the project.
He gets firm commitment from the functional managers for all the resources, especially
for designers and programmers. Courses are set up for anyone who needs training.

Control starts in this phase as well. The PM monitors progress by running all
necessary status and review meetings, writing status reports to all concerned and
handling any problems that crop up. If staff has been borrowed from other departments,
the performance of the individuals must be fed back to the appropriate managers.

Control isvery important when using a prototype or 4GL. The PM ensures that the
model is improving, that there are not too many iterations, and that the developers are
providing the appropriate support, and he may even do some of the hand-holding! The
PM makes sure that the user is involved and motivated.

3. Design Since this is a highly technical phase, the job of the PM is less
demanding. Formal control procedures are established now, and used for the remainder
of the project. The PM sets up regular status meetings, and publishes a regular status
report. Weekly he or she checks time and budget progress against the plan, forecasts
final cost and delivery date and resets expectations if necessary. The PM must detect
any problems, solve them if possible, replan if not. If there are any management
meetings such assteering committee or milestone review meetings, thePM will preside.
Most important, the will ensure that the client is satisfied with the progress of the
product.

The issue of changes to the requirements will first rear its ugly head at design time.
The PM must establish and maintain the change control procedure to ensure that the
impact of changes is reflected in the project price.

4. Programming This phase involves the most people and therefore the most
people problems. The PM will have to monitor the happiness of the team and react
immediately if something is amiss. The line manager will be looking for input into the
performance appraisals, so the PM must be aware of each individual's performance.

This phase can be the longest stretch of time without a clear milestone. The PM
will have to be most perceptive to ensure that progress isbeingmade. The PMmust walk
around a lot now, talk tb programmers, and use his or her intuition to detect any
problems (see Section 20.2 for detail on how to 'walk around').

5 . System Integration and Test The best thing the PM can do in this phase is
to keep out of the integrators' hair. The outside world (client, upper level management)
is probably getting anxious by now, phoning the PM, calling endless meetings and
asking for daily progress reports. This is when the PM is really needed to keep all this
flack away from the PT.

And at last when the PLreports that the system is all integrated and working, the
PM first ensures that the ATP is run through and corrected, and then calls a major
milestone meeting(pizza and beer) to announce to the world that "We have a system!"

Sec. 18.4 The Role of the Project Leader 21 5

6. Acceplance ThePM schedules the time, facility, and theresources required
for the acceptance run, and ensures that the user signs off as agreed.

7 . Operation The PM must ensure that the technical support promised earlier
is available and that the user is satisfied with the o~erational svstem. If she wants to sell
a new project, this is the opportune time.

And finally, the PM calls the post project review meeting to evaluatc the project,
and writes a post project report to close the book.

18.4 THE ROLE OF THE PROJECT LEADER

General Responsibilities of the Project Leader

Thc major goal of the PL is to produce a highquality product. Whereas the PM is
oriented toward theoutside world. the projcct lcadcr is oriented inside the project. If you
arc the PL you will have to make sure that the product is built according to the
specifications and it will not be full of bugs. You will lcad most of the technical
activities, chair any technical rcvicws, assign tasks to designers and programmers,
solve major problems, and perhaps do thc most complex tasks yourself.

Specific Responsibilities of the PL In Each Phase

1. Definilion Thc PL will do most of the Preliminary Project Plan, such as the
lower levels of the WBS and the estimates (or at least supervise thc estimators). If the
user must provide tcchnical details at this point or if thcrc is a prototypc involved, the
PL will be the main interface.

2. Analysis In a small to mid size projcct the PL is thc chief analyst and writcs
all the tcchnical sections of the Functional Specification such as the Overview,
Objectives, System Requirements, and Component Descriptions (see Section 6.3). If
the PM needs technical assistance with the negotiation of the FS or needs to know the
cost of a change, the chief technician is standing at the sidelines ready to help. The PL
should also help choose the remaining members of the project team.

3. Design The PL is the hcad of the design team. They will conduct all the
design rcvicws and walk-throughs, assign tasks to designers, and probably do most of
the design, cspccially at the higher levels.

In this phase, as well as in theProgramming and SystemTest phases when thePM
rcmains in the background, the PL will mcct with thc PM (weekly is best) to report
project status. Since it is the PL who is in direct contact with the workers, he must
provide formal feedback to the PM about the performance of the individuals.

4. Programming This is when the PL wears the T-shirt with the big "S" on
the chest. Thc PL will make all the programming assignments, and solve any problems
that the programmers cannot solve. Shemust approve (walk-through) program designs,
tcst plans, codes and user documentation, and ensure that the programmers interact if
necessary. A very long or complex program can be assigned to a programmer who will
be assistcd by the PL. This allows the PL LO code the complex sections while the
programmer fills in the dctail. The PL may also write entire programs, but not those on
the critical path.

216 Chap. 18 Organization

5. System Test Integration and final test of the product is complctcly the re-
sponsibility of the PL. He plans the integration, controls it, keeps trackof the results and
keeps thc PM informed of progress--perhaps daily.

6. Acceptance The PL will run the lechnical aspects of the acceptance. She
will probably writc the ATP, do a dry run of it at the end of system test, and execute it
for thc uscr.

7. Operacion Although a senior programmer may be adequate, the PLmay be
the resident warranty person, or thc pcrson who is available by phone to answer
questions, or even to do most of the user training.

18.5 WEARING SEVERAL HATS AT ONE TIME

If yours is a five pcrson company or deparlmcnt, thc same person may be PM, PL and
even the programmer on a small project. You may have little choice hcrc, but I suggest
that you try to scparate the administrative job (PM) from the technical job (PL). There
are several good reasons for this: First, if the PL is supervising4 or 5 programmers (and
doing analysis, design, programming and problem solving on the side,) he will find his
time 100% occupied. Project management of a small project is not 100% (industry
standards state that managing a project takes 15% of cverylhing else,) but it is an cvent
driven job. You are constantly interrupted to attend meetings, answcr the phone, and
fight fires. Doing a full timc job (PL) along with an intcrruption driven job (PM)makes
you ineffective on both jobs. It is thcrcforc good to put a 'fire-chicf' in place (the PM)
to handle the administration and the interruptions.

Thc second reason to separate the PM and the PL jobs is psychological. During
definition and analysis theuser and the PL are together interviewing, talking, prototyp-
ing and becoming good friends. User changes are encouraged. But beginning with the
Design Phaseuser changes are discouraged or rejected outright. If it is the PL who has
to say "NO" to these changes, the user will feel that the former friend has suddenly
turned into an enemy, and this may spoil the rapport needed lhroughout the whole
project. If there is a scparate PM and a change control process is in place, the user
changes need not he refused. The PL can simply rcmind the user that all changes must
go through the proper channels and everyone can remain good friends.

18.6 RUNNING SEVERAL PROJECTS AT ONCE

If a Project Manager is supposed to spend only 15% of his time on a project, how can
one possibly justify hiring an expensive full time person to manage the project? The
solution is to give the PM several projects to manage at once. Watch out, Lhough: each
phase of a project places a different load on the PM. As shown at the bottom of Figure
1.1, thcfirst twophases and the last two phases of aprojcct will take most of the PM's

Sec. 18.7 The Role of the Programmer 21 7

time. The center three phases (Design, Programming, System Test) will take the least,
but these three usually take the longest elapsed time. A good PM can in fact manage as
many as five or six small projects at one time, as long as not too many of the time-
consuming phases of the projects occur together.

18.7 THE ROLE OF THE PROGRAMMER

The programmer receives the medium level design for a module, designs the lowest
levels, plans how to test the module, codes it, documents it and then tests it. A
programmer may also be responsible for user documentation and training, although a
good case can be made for hiring professional writers and trainers to do this. A good
programmer is not necessarily a good author or teacher. The programmer must report
progress to the PL, and assist at System Test time with integrating and testing those
aspects of the system that involve his or her programs. Watch out for friendships
between the the user and the programmer. The following scenario is very common,
especially in an internal project:

ACT I, SCENE 1 (Programming Phase, user talking with PM)
USER: I wish an additional field F on Report Y.
PM: Looks difficult, but I will submit it to the PT.

ACT I, SCENE 2 (Next change meeting. PM did not submit change to PT
because everybody was running around like chickens
with heads cut off, project is already late and over bud-
get, and PM will have to take the blame.)
PM: That change will cost you 25% overrun in budget
and a 6 month slip in schedule. Do you still want it?
USER: I guess not.

ACT 11, SCENE 1 (Discouraged by the formal change procedure, User
invitesProgrammer out to a bar. After several drin ks...)
USER: How long would it take you to add field X to Report
Y?
PGR: (hiccup) No sweat. Couple of hours. Consider it
done.

ACT II, SCENE 2 (User meets with PM)
USER: I want field X added to Report Y.
PM: You saw the last time how difficult it is to add fields
to Report Y.
USER: Oh yeah! Your programmer said it would only take
a few hours!

21 8 Chap. 18 Organization

Alternative ACT 11, SCENE 2 (Acceptance time)
PM: Where did this field X on Report Y come from?
USER+PROGRAMMER: Oh, did we not tell you about
that?
PL: Do you realize this puts everything on form Z out of
synch?

Comment: The programmcr is welcomc to fraternize with the user as long as
no commitments are made.

18.8 RESPONSIBILITIES OFTHE PM, PL AND PROGRAMMER
IN A 4GL ENVIRONMENT

Thc team structure suggested inFigurc 18.1 will workjust as well in a4GL environment
with one major change-the teams will bc smaller. Three or four people are enough to
program a small application. The roles will change a little as well.

The Role of the Project Manager

The PM is still responsible for project administration: therc will always be meetings,
reviews, status reports, and sign offs to handle. The PM will have to become a bit more
technical than before. Since the team is smaller, the PM is more involvcd. They will
have to be familiar with thc4GL approach as well as the languageused. This knowledge
is needed because the PM, in the rolc of chief negotiator, will at times have to convince
the user to compromise on ccrtainrequirements in order to reap the benefits of using the
4GL. The PM will have to teach the user about the 4GL and set the expectations: what
can be expected of the f is t prototype, how many iterations there will be, what the time
frames will be and so forth.

The Role of the Project Leader

The PL will be the chief developcr of the 4GL. As well as doing the re~uirements and
the data analysis, they will be &one working most closely wilhtheusei to develop the
prototype and the iterations. The PL will nced new skills: communication to explain the
product, to help draw out the requirements, and to help the PM convince the user to
compromise.

The Role of the Developer

The classical 'hacker' (coding alone in a corner, talking to no one, wearing a dirty T-
shirt,) for the longcst lime on the endangered species list, is now nearing extinction.
Today's 4GL developcr is a competent communicator who looks presentable, because
lhcy must interface with the uscr.

Sec. 18.1 1 Conclusions

18.9 THE ROLE OF THE LINE OR FUNCTIONAL MANAGER

The Functional or LineManagerlends their staff out for projects, and will get them back
when the project is over. Since the FM is responsible for the happiness, growth, and
motivation of his people, he must keep tabs on the projects in which his people are
involved. The FM must make sure that the people are treated fairly, are enjoying the
project and are not burning out. The FM will therefore attend some project meetings,
meet with his people occasionally, and receive the status reports.

As in most matrix organizations, the FM's goals may at times conflict with the
PM's goals. For the FM one project is just part of the overall business, but for the PM
that one project may be the only responsibility. Upper levels of management must make
sure that the responsibilities and authorities of the FM and I'M are clearly communi-
cated and agreed upon by both parties.

18.10 THE ROLE OF THE USER

The user may have explicit responsibilities, such as writing documents or providing test
data. In all cases the user must appoint a user project co-ordinator to interface with the
project team on management matters. The client should also ensure that there is at least
one knowledgeable person available to answer the PT's technical questions.

The user should take the effort to learn about project management so that they
know where user reviews and sign offs fit in. When there is a document to be approved,
the user must read it and return it in time. If users stay out of the technical phases, use
the PM as the sole contact, and abide by the rules such as the change procedures, they
will find that the PT will deliver a fine product.

18.11 CONCLUSIONS

You will find that assigning responsibility for each known task is the only way to get
things done. But what about unforseen tasks? Who does those? Isuggest that you define
the following general responsibilities as well: The PM is responsible for any activity
involving contact with the outside world, as well as for people oriented issues. The PL
is responsible for all technical isssues. This way, if a new responsibility pops up it will
be automatically adopted by someone without any hassles.

QUESTIONS

1. Why shouldn't the PL supervise more than five programmers?

220 Chap. 18 Organization

2. Group Exercise:
Company A, with 25 professional employees, has the following organization chart.(J?xp-tise
in brackets)

CEO
(NOTHING)

P i (NETWORKS)
P2 (NETWORKS)

-LMl - P3 (PC's)
P4 (NETWORKS)
P5

P6
P7 (PC'S) - LM2 - P8 (NETWORKS EXPERT)

(BANKS) P9 (DBMS)
P I 0 (BANKS)

PI1 (PROC. CTL) - LM3 - PI2 (NETWORKS)
(POLITICS) PI3 (NOTHING)

A new project on networks is accepted. It will require aPM, a PL and four programmers.
On the diagram above, mark with an X the people involved if you would organize the
project functionally. Mark with a Y the pcoplc involved if you would organize the project
as a matrix.
List the possible advantages and disadvantagcs of each organization.

3. Why is it difficult to 'sell' the projectmanager job? How would you convince upper level
management to hire a PM?

4. What are the three major roles of the PM? Which is the most important?
5. List the seven projcct phases in descending order of load on the PM. Explain why you

chosc the first three.
6. What arc the major roles of the projcct leadcr?
7. List the scvcn projcct phases in descending order of load on the PL.
8. Is it possible to have one person do both the PM and PL job?
9. What are the reponsibilities of a programmer?

10. How has thc role of a programmer changed with the advent of4GLs?
11. Can thc PL and the programmer job be combined?
12. Why must thc line manager know how the project is faring?
13. List the roles of the user in each phase of the projcct.

Staffing
The Right People for the Right Task

19.1 INTRODUCTION

Staffing is having the right person do the right job. This chapter will be particularly
useful to those of you who must choose individuals fromexisting staff or who must hire
a project team. If you have a five person company or department there will be little
choice as to who gets to dowhat, but one day you may have to make that choice, so read
on.

19.2 CHOOSING THE PROJECT TEAM MEMBERS

If you organize the project team as shown in Figure 18.1, the slots to be filled are the
Project Manager, the Project Leader and the programmers. Let us look at how you do
this.

The Project Manager

The PM is the first position to fill. This job is filled when the project is still a gleam in
someone's eye, since it is the PM that may first have to establish whether or not the
project is worth building.

Upper level managers appoint the PM. They are looking for someone with
excellent communication skills. Other skills they look for are knowledge of project
management, the ability to organize, and lastly they consider technical expertise. It
helps if you know what the techies are talking about-but this is not as essential as
people oriented skills.

At times the PM job requires unpopular actions such as saying "NO" to a

222 Chap. 19 Staffing

divergent change request, announcing a slip, or disciplining people. The PM must know
the people involved as well as the politics and procedures of the user and project

a

companies.Tne skillsrequired for suih a job are iniargeleadership, negotiatingabiiity,
and diplomacy.

The politics of the organization may limit who can be chosen as PM. A large city
government data processing department called me once to help choose a program
manager (the person to whom all the project managers would report). Due to the
political nature of this department I felt that the only person who could get anything
done would be someone who had organization chart authority over every project
manager. I recommended that the City Auditor be appointed. He was the only person
at a high enough level that had any project experience-even though he had no
computer expertise. He made an excellent PM because he could enforce the project
rules by his position of authority.

Be especially careful in a matrix organization where the functional manager has
greater authority than the PM. Here the PM must have leadership qualities that will
motivate the workers even though they do not have the final say in their performance
reviews.

The Project Leader

This is the second position to befilled.It is best if the PMpicks this person. ThePM must
first negotiate with the appropriate functional manager for the PL's services, then
convince the PL to join the team. The PL is signed on at proposal time since a lot of the
proposal detail is done by the PL. This job is highly technical, so choose the best expert.
Do not look for a 'bits-and-by tes' person, rather look for someone who can keep in mind
the general details of the wholeproject.

The PL must have good communication skills as well. She will conduct the major
user interviews and be the day-to-day supervisor of the programmers. Choose someone
who can organize tasks, make assignments, and track progress. This person's reputation
should be such that the programmers will do as asked due to their respect for the PL's
technical knowledge.

The Programmer

Even before the go-ahead is obtained for the project, the PM and the PL should start
thinking about who could make up the programming team and ask the appropriate
functional managers (if necessary) about the availability of these people. (Add some
contingency to their availability dates, as other people's projects are always late.)
Later, when contracts are signed, start assembling your programmer team. If you are
lucky you will get everyone promised to you but more often than not, you will have to
scramble for resources.

Choose programmers first by their programming ability. In addition, look for ex-
perience with the particular application, but not someone who has done the same thing
five times recently-this person will be bored! If the candidate has no experience with
the particular application, background on the operating system or related applications
is the next best thing.

Sec. 19.2 Choosing the Project Team Members

The Guru Programmer

A new life form has evolved since computers were invented. It is the programmer guru,
or 'hacker.' This person works in mysterious ways, at strange hours; is argumentative
and unruly, wants it always their way (we will not mention appearances). But darn it,
the guru can program those complex tasks ten times as fast as anyone else. My
suggestion is that if you have gurus, organize a team with one guru surrounded by
juniors. This will be especially successful if the guru likes to explain things to others
(which they usually do)--the juniors will learn from this person.

The Junior Programmer

Whenever Iran a project at a fast-growing company such as DEC, I was rarely able to
get very experienced project team members-the experienced people were always
managing or leading projects themselves. Most of the time I got people who were fresh
from school with little or no experience on a programming project. But I was never let
down by junior programmers!

Junior programmers are usually talented and eager to prove themselves. There are
two skills, however, that are not always taught in school: team and management com-
munication. There is always competition in school (only the top n people will be
accepted in next year'sclass). Evenona team project students may not assist each other.
They may not be taught to share the work and the knowledge, and to communicate the
vitalissues and problems to the other team members. Ina company a team memberwins
only if the whole team wins.

Along the same lines, students may not be taught that their managers must at all
times know what each one is doing and how their task is progressing. This may not be
requiredfor a school assignment. But if you teach yourjuniors to communicate, you will
have invaluable team members.

19.3 PERSONALITIES

Personalities can impact the project. Here is a list of desirable personality traits for
project staff. (Be careful, because no one will suit this description to a "T." Use your
judgement carefully.)

1. You want a cornn~unicative person who is part of a team and who can share
valuable knowledge and ideas. Not only should this person express ideas
well, but should also be willing to fight for them.

2. You want a good listener, someone who will hear other people's opinions and
be willing to concede if these opinions are better. (There once was a sign on
the office door of a software designer that said, "This isnot Burger King: you
may not have it your way." Mind you, he was in charge of standards.)

3. You want an organizedperson. There will be many tasks to perform, each one
at its appropriate time.'Beware of the person who keeps dropping tasks part
way through to start another. Soon there will be a dozen tasks partly done.

Chap. 19 Staffing

4. You do not want aperfectionist. Choose a person who can meet a deadline.
There is always a better way, but if it works now, get it out in time and save
the improvements for the next version.

5. You want the best technical person, one who is analytical and logical, with
appropriate experience.

19.4 ASSIGNING TASKS TO INDIVIDUALS

In the book The Psychology of Computer Programming (Reference 14), G. Weinberg
states that the greatest motivator of a programmer is learning new things. Always assign
a task that is just a bit more challenging than the previous one. But do not assign a very
complex task to a junior person- it may never get done; and interestingly a paltry task
in the hands of your expert may never get done either.

If there are related tasks, assign them to the same person. Take advantage of the
learning curve. Similarly, if there are programs that communicate with each other, give
them to the same person (or to two that talk to each other).

Assign critical tasks and the most complex tasks to your most reliable person. A
reliable person is not the 'expert' who is capable of completing the task in two days, but
who sometimes takes four, or ten depending on his or her mood! Areliable person says,
"It will take five days," and that is how long it takes.

Never assign tasks so that one person becomes indispensable. IBM has found that
a chief programmer team (CPT) organization is very productive. With the CPTmethod
an expert chief programmer does all the complex code (go%,) assisted by 'juniors' for
the easier code (20%). But if the chief were to leave, the tribe would be sunk. To prevent
this, IBMusually uses a buddy system, where one programmer is assigned to work very
closely with the chief programmer, assist and share the load when possible, and learn
everything that the CP knows.

19.5 MOTIVATING PEOPLE AND FURTHER READING

The PM is the coach of the team; the PL is the captain. The PM leads, motivates, teaches,
and uses the carrots and sticks to get the job done. The PL plays on the team and
motivates by example. The project leadership (PM, PL) must be available and ap-
proachable. Use MBWA (coined in the book In Search of Excellence, Reference 4)
Management By Walking Around.

When a person approaches you with a personal or technical problem, do them a
favour: be quiet and listen. Usually the presenter will solve the problem while
explaining it. Never forget the three basic tenets in the book The OneMinuteManager
(Reference 21): If deserved, praise (one minute), if necessary, criticize (one minute),
and always set objectives (one minute) to communicate exactly what is expected of
each person and how they will be measured for success.

Involve your people in all the important project decisions and they will be
committed. For example, always have each person re-estimate their work and reach a
concensus if your estimate and theirs do not agree. Read The Sol~l of a New Machine

Sec. 19.6 Conclusion 225

(Reference 22) to learn how to get people (hackers!) to 'sign on' to a project.
Send your people to courses (see Reference 3.2 for my Project Management

course)--it is amazing how much can be learned even by the most experienced person.
A period away from the office will foster renewed enthusiasm and productivity.

19.6 CONCLUSION

After all the discussion on how to choose the right people, keep in mind that the
availability of the people will be the first deciding factor.

QUESTIONS

1. Who selects the PM? When?
2. What are the skills, in order of importance, of a good PM?
3. Who selects the PL? When?
4. What are the skills of a good PL?
5. Who selects the programmers? When?
6. What are the skills of a good programmer?
7. Would you rather have five gurus or five juniors on your project team? Explain.
8. List, in the order of importance, the personality traits of a good project team member.
9. Group Exercise:

The following five modules need to be coded:
MODULE DESCRIPTION DURATION PRECE- CALLED BY
NAME (avg pqr) DENTS

M A I N C o n t r o l of w h o l e s y s t e m 12 - -
T A T e s t s h a r d w a r e A 4 - MAIN
TB T e s t s h a r d w a r e B 4 - MAIN

TC T e s t s h a r d w a r e C 4 - M A I N
REPS G e n e r a t e a report 6 - MAIN, after

o n tests TA, TB,
TC done

You can have the following five programmers:

Joe - guru, wrote control systems before, but has trouble
communicating.

Henry - junior, likes to learn, has done well on a small
report generation program before.

Sue - average, does not like anything to do with hardware.
Jane - average, slow but reliable.
John - new hire, junior, no past history.

Who would you assign to program the modules?

Con trolling the Project
by Monitoring
Management by Exception

20.1 INTRODUCTION

Management by exception is leaving alone anything and anyone that is doing well, and
reacting only to problems.

Controlling a project involves only three activities: constant monitoring of project
progress against plan, solving any problems that crop up, and, if the problem cannot be
solved, replanning and warning everyone affected by the new plan.

20.2 PROJECT MONITORING

Monitoring by the Project Leadership (PM and PL)

The PL supervises the day to day progress of the Design, Programming, and System
Test phases. Unless the PL watches over the shoulders of the professionals involved, it
is very difficult to measure progress. Reports by programmers stating, "I am 90%
done," are meaningless. It may take as much time to complete the remaining 10% as
it took to do the first 90%. The only percentages that can be measured in the progress
of a programming task are 0% and 100%. The PL can ensure progress by being close
to the workers and reacting to any major problem that could cause a delay.

How much monitoring should a PLdo? The amount of monitoring will depend on
the expertise of the programmers: junior programmers will have to be watched more
closely. More monitoring will have to be done if there is communication among the

Sec. 20.2 Project Moniitoring 227

programs (and therefore among the programmers). Most of the monitoring will have to
be done at the beginning of each phase or major task.

How can the PLwatch the programmers and not be a pain in the neck? Monitoring
can be informal-walking around, talking to programmers, participating in social ac-
tivities such as having coffee with them. There should be formal monitoring as well
-that is why there are weekly status meetings.
Here are the issues the PL should watch out for:

1. The programmers are building the promisedproduct. Each task is done on
time, functions according to specs and has no bugs or unsolicited bells and
whistles.

2. The programmers are keeping to the prescribed standards for the module
designs, for structured programining and for the user manuals.

3. The work is progressing according to plan. Any problems that may cause
delays are solved.

4. People are generally happy. They are learning on the job, not much overtime
is needed, no one is burning out, people problems are reported to the PM and
solved.

The PM supervises as well, but from the sidelines. The PM must monitor project
progress, time spent, money spent, quality, and people's happiness.They may also walk
around and get informal input from the PLand the programmers, but receive most of the
project status from the team in formal meetings and written reports. (See Chapter 21 on
Meetings, Reports and Reviews.) The PM watches for the following problems:

1. Project progress is less than the amount scheduled.
2. Project expenditure exceeds the budget. This may not be a problem if the

accomplishment exceeds the budget as well. See section 20.3 on Budget
Problems.

3. Peovle nroblems. Even though the PL is the one in constant contact with the
2 * -

team members, they may not be the best person tonotice people problems the
PL is too close to the action and vrobablv suffers from the same problems. The
PM must therefore keep in touch, using intuition to detect these problems.

4. User and upper level management communicationproblems. The PM watches
out for phone callsandmemos that begin with, "Why was1 not told about ..."

In the next section we will discuss how the PM solves these problems.

Monitoring by the Upper Level Management

The PT's umbrella management has a right to know what is going on in the project.
Their theme is, "No surprises please!" They will monitor the following issues:

1. 'Bottom line' issues such as "Will the project be done on time?" and "Will
the project make the budgeted profit?"

2. Overall userhappiness. There may be several projects under construction for

228 Chap. 20 Controlling the Project by Monitoring

the user dcpartment or company. There should be interfaces between the
highest levels of the user organizalion and the Fl"s upper levels of manage-
ment to monitor overall satisfaction.

3. Project team and PM moraleproblems. Upper levels must help the PM if there
is a problem that they cannot handle. What if the PM is having personal
problems?

Upper level management must monitor the project formally: attend meetings and
reviews, bcon the Stccring Commitlee, get copies ofthe status report, andmeet with the
PM. They should not hang around the project team.

Monitoring by the User

The theme of "No surprises!" holds true for the client as well. Although the PT may
disagree, the user also has a right to know how the projcct is going, since the user is the
one most affected by project failure. He will be anxiously checking whether or not the
productwillbeon time,if the finalpricewill be asquotcdandif theproduct will perform
as promised.

The user should also monitor the project formally by obtaining the status reports
to seeprojectprogress, trends, andforecasts. Shccan altend the stceringcommitteeand
milestone meetings. There are specific user reviews and signoffs throughout the devel-
opment that indicate projcct progress. The user project coordinator will also meet with
the PM regularly.

20.3 DETECTING AND SOLVING PROBLEMS

Schedule Problems

The most common problem you will encounter as PM is a slip in the schedule. It is not
difficult to detect when a taskslips: either the person doing the task will report that it will
be late, or the task will simply not be done by the scheduled date. First, check whether
or not the task is on the critical path (CP). If it is not a CP task, and the slip is less than
the float there is no problem. If the slip is greater than the float, or if it is a CP task, the
whole project will slip. The first reaction to this is usually, "We will catch up later
(somehow)." Never bury a slip--you will nof be able to catch up. React like this:

1. If it is an ongoing task that is slipping, you may be able to get it back on track
by management focus. If it is a technical problem that is slowing things down,
get help from an expert (maybe you or the PL can help the programmer in
trouble.) If it is an individual's performance that is causing the slip, see if it
is a personal problem. Communicate, motivate, and use carrots or sticks as
necessary.

2. If management focus does not work, see if additional resources can be put on
the task to speed it up. You may be lucky and find that one task does not need
all the resources assigned to it, in which case the excess resource can be

Sec. 20.3 Detecting and Solving Problems 229

andcrash the taskby using overtimeor hiringmoreresources. Becareful! Not
many programming tasks can be sped up by adding manpower.

3. Look at the CP of future tasks. Are there tasks that could be done in parallel
but are scheduled in sequence because of resource constraints? Re-visit the
resource providers. Maybe their requirements have changed and they can
now spare an extra resource.

4. If it is a future task that is predicted to slip, (and it is not caused by a slip in
an ongoing task) it usually means that a required resource will not material-
ize in time. Focus management, pull strings, threaten or cajole as necessary.

5. If all of the abovefails, be brave and announcea slip. This is themost common
and in some ways the best solution because it is the least risky.

How to announce slips. There is an interesting reaction when people hear
about a slip. To an uninitiated person (read user), weekly reports that the project 'keeps
slipping' implies that the PT is out of control. Yet the opposite is true: the PT is
monitoring the project very closely. Since you get into just as much trouble for
announcing a big slip as for announcing a little one, consider hoarding the weekly slips
and announcing a big slip at the end of the month.

Caution: donot hoard if you arenearing theend of the project. If you are lomonths
down the road on a 12 month project, tell your user about every slip-even the slightest
delay will affect her at this point. To your internal management youmust announce each
slip as you notice it.
Try this approach the next time you have to announce a slip:

There is badnews and good news. Badnews is that we will slip. Goodnews is that we are
telling you now.

Budget Problems

The second most common problem that you will encounter is that actual expenses to
date exceed the budget. To see if this is really a problem, and to be able to forecast final
project price as well as delivery date, you must track Earned Value or accomplishment.

Forecasting Completion Date and Final Cost
by Tracking Earned Value

Consider the Budget and Expense figures in Figure 20.1 (as shown on page 229.) Figure
20.1 shows that the plan was to complete one module a month, at a cost of $100 per
module, so the budget was to spend $100 per month. As of today (April 30) $450 was
spent instead of the budgeted $400. At first glance this may look bad-but we have
compleled fivemodules instead of the budget of four. We have also spent only $450 on
the five modules. How can we report all this good news?

Since wemust report accomplishment indollars, we report that the Earned Value,
(which is defined as the budgeted amount for the five completed modules) is $500. This
is usually reported graphically as shown in Figure 20.2.

230 Chap. 20 Controlling the Project by Monitoring

T o d a y ' s date: A p r i l 30

TASK PLANNED ACTUAL BUDGET ACTUAL ACT.

C O W . COMP. COST COST CUMUL

DATE DATE COST TO
DATE

1 Jan 30 Jan 30 100 100 100
2 Feb 28 Feb 15 100 100 200
3 M a r 31 Feb 28 100 100 300
4 A p r 30 M a r 31 100 75 375
5 May 31 A p r 30 100 75 450

8 Aug 31

Figure 20.1 Task budget vs. actual

TODAY PLAN COMPLETION

LEGEND:

M BUDGET - ACTUAL

C- EARNED VALUE

CONSTRUCTION OF GRAPH:

JAN: BUD = ACT = 100; EV IS VALUE OF 1 MODULE = 100
FEB: BUD = 200, ACT = 300: EV IS VALUE OF 3 MODULES = 300
MAR: BUD = 300. ACT = 375; EV IS VALUE OF 4 MODULES = 400
APR: BUD = 400, ACT = 450; EV IS VALUE OF 5 MODULES = 500
(BUD CAN BE GRAPHED UNTIL AUG)

Figure 20.2 Earned value graph

Sec. 20.3 Detecting and Solving Problems 231

This figure shows that although the actual expenditures are tracking above the
budget, the earned value is even higher than the actual expense. The PM can use such
a graph to evaluate project trend and forecast completion date as well as final price.
Assuming that the actual and the EV line remains straight, the PMcan extrapolate these
lines. Use the following steps (See Figure 20.3):

800

- FCST COST
700

600

500

400

300

200

1 00

PLAN COMPLETION

LEGEND:

BUDGET

ACTUAL

EARNED VALUE

Figure 20.3 Forecast graph

1. The project ends when all eight tasks are completed, or the earned value is
equal to the budget of $800. So extrapolate the EV line (a) until it reaches
$800 on the Y axis. At the end of the EV line, draw vertical line (b). Where
this line meets the TIME axis is when the project is forecasted to finish, in our
case, July.

2. We stop spending when the project ends, so extrapolate the ACTUAL line
until it meets line (b) at point (c). Draw a horizontal line at point (c). Where

Chap. 20 Controlling the Project by Monitoring

this line meets the EXPENSE axis defines the forecasted cost of the project.
in our case $750.

Crashing and uncrashlng. If the actual expenses areunder budget, but the
EV is also under the amount planned to datc, crash spcnd more to get back on track. If
the actual expenses are higher than planned, and the EV is also ahead, uncrash: spend
less furiously. It is usually not worth coming in early, as you will just get your time
estimates bargained down the next time.

20.4 DETECTING AND SOLVING PROBLEMS UP FRONT
(BEFORE THEY OCCUR!)

Remembering that anounceof preventionis worth a pound of cure (substitute gram and
kilo for Canada,) here are some early signs that trouble is brewing.

1. There are noplans If someone says, "The project is too small to plan,"
or, "The plan will happen later," insist that a plan be made. No project is too small to
plan (see Section 22.3), and the PT will be much too busy to draw one up later.

2. TheFunctionalSpecificationsarebadornon-ex Ifsomeoneclaims,
"Theuser does not know what he wants," or "The specifications will change," or you
see that there are too many assumptions made about the requirements, take a look at the
FS. Get the user involved and commited, prototype the interfaces, or use the two-step
proposal to finalize the requirements.

3. The esrimafes are by edict If you hear, "We'll never do it in that time-
frameor forthat amount." someone is forcing an estimateonthePT. Do agoodestimate
and defend it.

20.5 DETECTING AND SOLVING PROBLEMS
DURING DEVELOPMENT

Here are typical problems you will encounter during the development phases:
1. Watch out for requests to change rhe speczjkations Try to say "NO" and

defer user requested (major) changes to the next release. Someone on the PT may
request lo change the specs, after realizing that the product will never be delivered on
time. Scissors are snipping at your specs! This is not allowedunless theuser agrees. Bite
the bullet and take the slip.

2. Documentation is nor getting done The first items that fall through the
cracks in a crunch arc the project documents, followed closely by the user documents.
These documents are themost important items in the project! Ensure that thedocumen-
tation gets done well, even if it means delaying some of the other tasks.

3. Programming or tesfing before rhe design is completed As we saw
earlier,programs written before the design will always have to berewritten. If you need
to do something with idle programmers send them on training.

Sec. 20.5 Detecting and Solving Problems During Development 233

4. Problems are implied in status reports If the status reports arrive later and
later every week (or stop arriving altogether), or if progress is lacking, the projcct may
be stuck. Walk around, find the problcm. Try the solulions suggested in Section 20.3
(Schcdule Problems).

Look for schedule changes in the status rcports. No one can plan to the day all the
activities in amajor project. A status report containing staterncnts such as "We predict
Task X will be 1 week late, and since it affects Task Y making it 1 week later as well,
we are announcing a 2 week project slip," actually means that the PT is controlling the
schedule well.

5. The Project Team is disappearing If project members do not return
phonc calls, refuse to attend meetings, or avoid you in the corridors-thcre is trouble.
Corner them, insist on communication, see what the problem is.

6. The user is dissatisfied If someone on the project team (or on the user
side) claims, "There is no love lost betwcen the projcct tcam and the user," there is a
major problem. The PT may have alicnated the user by condescension, rejecting
changes outright, not involving the user in reviews or not reporting (true) progress.
Since the PM is supposed 10 be the major interface to the uscr, this is a failing on your
part. Do whatever it takes to satisfy the user.

20.6 DETECTING AND SOLVING PROBLEMS
TOWARDS THE END

The end of the project is a crucial stage bccause all thc slack has been used up and
everything is on the criticalpath. Look out for the following:

1. Lack of computer time If someone claims, "We are not gctting enough
machine time," the tcsting is taking longer than anticipated due to bugs. It is too late to
fix this problem. Takc a slip rather than release a low quality product.

2. Too much overtime A sure sign of impending burn-out is constant
overtime. Programmers are willing-ven eager-to work afterhours. Someovertime
can be productive, but after a point you will find that overtime buys no extra
productivity at all. Do not let people work regularly more than two extra evenings per
week.

3. Upper level management 'concern' Toward the end of the project (espe-
cially if it is late) uppcr levcls of managerncnt will become apprehensive. You will
notice thcm hanging around more, asking for more progress reports, calling you more
and asking you to meet with them endlessly. You will just have to spend extra time
convincing them that everything is under control -but this is exactly what thePM's job
is all about.

20.7 CONCLUSION

Kccp your finger on the pulse of your project, react immediately to any problems that
you detect, and most important, stay cool. After all, if there were no problems, you
would not have a job.

Chap. 20 Controlling the Project by Monitoring

QUESTIONS

1. What does controlling a project involve?
2. How does the project leadership monitor the project?
3. What issues does the PL monitor?
4. What issues does the PM monitor?
5. Why does upper level management have the right to monitor the project? What problems

must they watch out for?
6. How can upper level management monitor a project?
7. Why does the user have the right to monitor the project? What problems must they watch

out for?
8. How can the user monitor a project?
9. List three ways you may be able to fix the problem causing a slip.

10. What is the most common solution to a slip? How do you announce a slip to a person who
is not familiar with project management?

11. Draw the earned value graph for the following project report:

TASK PLANNED ACTUAL BUDGET ACTUAL
NO COMP. COMP. COST COST

DATE DATE

1 JAN 30 JAN 30 100 100

2 FEB 28 MAR 31 100 150
3 MAR 31 APR 30 100 150
4 APR 30 JUN 30 100 200

8 AUG 31

Forecast the completion date and cost.

12. What BUDGET-ACTUAL-EARNED VALUE relationship would tell youto crash? What
relationship would tell you to uncrash?

13. Many project problems are easily fixed with knowledge learned from this book. Discuss
one such problem that occurs up front, one that occurs during development, and one that
occurs at the end of the project.

Control Using Meetings,
Reviews and Reports

Communication with the Outside World

21.1 INTRODUCTION

Thc projcct team must communicate with each other as wcll as with the oubide world.
This communication will be done using meetings and reports.

Thcrc arc thrcc kinds of meetings in a projcct. First, there are regular status
meetings to assess project progress. Sccond,U~ereareproductreviewor walk-through
meetings to detect and correct technical vroblems. And last, there are manage-
ment mectings to report progress to management. The management meetings may
occur regularly, such as the stwring committee mcetings, or at major events such as
project Glestone rcviews.

- -

The second form of project communication is via reports. To reach those people
who cannot meet with the team the projcct issues the status report.

21 -2 THE STATUS MEETING

Purpose and Attendees

On a small-to-mid-size project there should be a weekly status mceting, attended by the
whole projcct tcam. This mating provides an opportunity for the project members to
report progrcss and problems to the project leadership. On a larger project, especially

235

236 Chap. 21 Control Using Meetings, Reviews and Reports

if there arc scveral teams involved, I suggest that the status meeting be divided into two
sessions. Fist, the whole group, including the PM meet for a short time (30 minutes) to
discuss issues wmmon to everyone. Then each team meets with their individual leader.
This meeting is also short (30-60 minutes, depending on how close the team leader is
to the project members during the week) and the team members report verbally to their
own tcam leader. A third meetine between the PM and the team leaders or ~roicct - L .s

leadersmay take placelater. At this meeting they discuss progress, trends, and problems
that need the PM's attention, andthev calculate total oroiect stalus. If the PM is incharge . " .+

of many projects he or she may request a written report, otherwise input may be verbal.
Interestingly, the least popular meeting will be the one where the whole group

meets. Some people will claim, ''Why should I meet with them? My work has nothing
to with theirs!" It is amazing how many issues effect everyone, from machine time and
resusable wde to parking and the cafeteria. Always hold group meetings, perhaps less
frequently than the other status meetings.

When to Hold a Status Meeting

Always hold the weekly status meetings at the end of the week-Friday afternoon is
best. If members must report progress by Friday afternoon, they will get busy by the
middle of the week at the latest, shut out non-project interruptions and make progress
by Friday. If you hold the status meeting Monday morning people will only begin to
worry toward the end of the week and work through the weekcnd to make progress by
Monday. Everyone needs their weekcnd to rest or thcy will burn out.

21.3 THE STATUS REPORT

Purpose and Size

The main form of communication from the project tcam to thc outsidc world is a short,
standard project status rcport publishedregularly by the PM. There is a major problem
with status reports, and it is a problcm not only in the sortware industry but in most
project areas as well: The reports arc too long and thcy take too long to prepare. It is
common knowledge that people will read thc first paragraph of any document. If it is
aninteresting paragraph, they may read onepageand skip to thclastparagraph. A status
rcport should contain only one page of narrative, followcd by onc or two pages of
computcr generated reports. It should takc thc PMno longer than30 minutes to prepare
it. You do not nced to rchash past problcms, make long-winded excuses or theorize
about future events in a status report. Do this at informal discussions.

Frequency of the Status Report (SR)

Since it is rewarding to revort measurable oroaress, the freauencv of the status reDorts - -
is dctcrmined by theaveraielengthof the workpackagcs in h e prbject. Weekly ishost
common for small to mid size vroiects, which fils in with the suggestion that your work
bc broken down to tasks that tike a wcekor less. ~fmostof theaiiivities take onemonth,

Sec. 21.3 The Status Report 237

the SR should onlv be published monthly. You could still consider publishing more . -
frequently if there are individuals who wiliget ulcers if they do not see signs of prbgress,
or if the proiect is very dependent on outside resources (the status report can serve as a
weekly reminder thaitheir deadline is approaching).

Contents of the Status Report (SR)

Here are the topics that a status report should contain:

1. Activities and accomplishments during the reportingperiod.
List each activity that was worked on, progress on each one, and the
completion of any.

2. Problems encountered.
Explain any new stumbling block, who or what caused it, who is responsible
for fixing it, and what you are doing about it. Most important, state how it
impacts the project.

3. Problems solved.
Explain the problem (or refer to a past SR), how it was solved, who solved it,
and how this impacts the project.

4. Problems still outstanding.
Remind past offenders that you have not forgotten about an unsolved
problem. Only a phrase or two is needed. Reference earlier SRs for a
description.

5. Scheduleprogress versusplan.
Page 2 of the SR (see Figure 21.2, top) should be a computer produced Gantt
chart showing two lines for each activity: the plan and the actual duration for
past activities, the plan and rescheduled duration for future activities. Explain
all changes from last week's Gantt, especially if the project delivery date has
changed. Underlie the announcement of a slip.

6. Expenses versus budget.
Reference the attached computer generated numerical reports such as the one
in Figure 21.3, or if you are clever, the line graph of budget aligned with the
Gantt as in Figure 21.2, bottom. Summarize the actual expenditures that
occurred and the earned value versus the budget.

7. Plan for next week.
List the planned activities and milestones for the next period.

Figures 21.1 and21.2show anexample ofastatus report. Figure21.3 isan optional
third page of budget reports that may only be required for the accountants. This status
report is from the PM. A copy goes to functional manager X, from whom the project
leader of this project was borrowed, and to the head of department A, who is the boss
of functional manager X. This report does not go to the client. (An edited version does,
in which our personal problems are deleted.)

238 Chap. 21 Control Using Meetings, Reviews and Reports

To: P r o j e c t Team, p r o j e c t F i l e , From: P r o j e c t Manager

Funct ional Manager x Date: June 20, 1990

Head of Dept. A

Subject: S t a t u s Report f o r P r o j e c t ABC, week ending June 16

Page 1 of 3

1. A c t i v i t i e s and accomplishments.

The User 's Guide and System Programers Guide were completed t h i s
week, ahead of schedule. Programs B and C a r e being programmed and
a r e on schedule. ProgramAwas completedbutwas notwalked- through
by P r o j e c t Leader, s o it is one week behind.

2. Problems encountered.

Jane Doe, my P r o j e c t Leader, was pu l l ed o f f my p r o j e c t l a s t week
by Funct ional Manager X. Apparently a major problem was found i n
a program she wrote on a p a s t p r o j e c t , and she has t o f i x it. This
may t a k e a s long a s two weeks. I w i l l meet wi th func t iona l manager
X next week t o t r y and reso lve t h i s . I f J. Doe i s no t r e tu rned t o
t h i s p r o j e c t by next week, each week of delay w i l l slip p r o j e c t by
one week.

3. Problems solved.

None.

4. Unsolved p a s t problems.

None.

5. Schedule p rogress versus p lan .

A s shown on Page 2 w e a r e one week behind schedule. The only change
from l a s t week is a delay of one week i n walk-through of Pgm. C.
We a r e fo recas t ing d e l i v e r y d a t e of O c t . 6, 1990.

6. Expenses versus budget.

Expenditures t h i s week w e r e $2200 on labor and $500 on word
process ing supp l ies (s e e page 3) . W e a r e under budget by $50K t o
d a t e , and a s shown on page 2 bottom, our earned va lue is a l s o ahead
of plan by $50K. W e a r e fo recas t ing a t o t a l c o s t of $950K.

7. Next pe r iod .

W e w i l l go on t o p rograming of modules D and E, bu t un less J. Doe
is re turned, w e w i l l be i d l e by t h e end of t h e following week.

Figure 21.1 Status report page 1 (narrative)

Sec. 21.3 The Status Report 239

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT
LOB 1--SLIP!--1

LEGEND:

BUDGET - ACTUAL

EARNED VALUE

Figure 21.2 Gantt and budget chart (computerized)

240 Chap. 21 Control Using Meetings, Reviews and Reports

S t a t u s Repo r t Page 3 o f 3 (Account ing Dept. Only)
Expense and Budget Repo r t a s o f June 20, 1990
A l l Numbers are $K

Task P lanned A c t u a l Budget A c t u a l P l anned Act .
WBS Comp. Comp. C o s t C o s t Cumul. Cumul .
Ref D a t e Date Cos t TO Cos t TO

Date D a t e

1.1 J a n 30 J a n 30 100 100 100 100
2 .1 Feb 28 Feh 1 5 100 100 150 200
3 .1 Mar 31 Mar 15 100 100 250 300
4 .1 Apr 30 Apr 1 100 7 5 300 375
4.2 May 31 May 1 100 75 500 450
4 .3 J u n 30 May 15 100 100 600 550
4.4 J u l 2 0 J u n 3 0 100 100 700
4 .5

10 .1 Oct 5 7 5 950,000

Figure 21.3 Budget report (computerized)

21.4 REVlNY MEETINGS

Some of the review meetings (for example, the system design reviews and the
management reviews) are very expensive because of the people's time. Run these
meetings efficiently:

Set an agenda with time allocated to the discussion of each item.

Distribute this agenda well in advance, as well as any material that attendees
must review before the meeting.
Schedule a location where there will be no interruptions. Have a good mod-
erator, keep to the agenda and to the time allotments. (Do not overkill this one
-sometimes it is worthwhile to digress a little or take a little longer on an
important topic.)
Keep good minutes with action items assigned; follow up the progress of the
action items.

Technical (Plan, Design, Code, Test, Documentation)
Reviews

A These reviews were detailed in the appropriate project phases, so here we need only
discuss why we have these reviews and who is involved. To review a program, a design,
a document or a test plan you walk through the appropriate product looking for errors

Sec. 21.5 Specific Meetings Held on Specific Occasions 241

and suggesting improvements. Only the author of the product under review, one or two
peers (from the same project or from another team) and the PL need to attend. The only
exception is the system design review where 3 to 4 outside experts are invited.

Management Reviews

The steering committee review. Behind every successful project there is a
steering committee (SC). The SC consists of the PM, the user project coordinator, one
or more functional managers who provided staff to the project, and at least one upper
level manager who has authority over all of the departments that will be supplying
resources to the project. The SC meets at a set frequency-usually every 6 to 8 weeks
on a 6 to 24 month project. The purpose of the meeting is to receive information on
project status and to focus on problems. It is amazing what strings a group of high level
managers can pull to get a floundering project back on track. This meeting also gives
the PT some management visibility which motivates everyone.

Milestone Reviews. Reaching a major milestone calls for a party. Most mile-
stone meetings should have two sessions: One for the technical team to discuss accom-
olishments and oroblems of the last ohase and to olan the activities for the next phase.
The second session is for everyone on the project including the user, management, and
the PT. The PM chairs this meeting and orovides oizza and beer. Before the beer arrives

w L

be sure to discuss general project accomplishments, problems, and resource needs for
the next phases. These sessions are needed to keep up morale and renew enthusiasm.
Each milestone meeting is discussed in the next section.

21.5 SPECIFIC MEETINGS HELD ON SPECIFIC OCCASIONS

Here are major events in a project which call for input from several minds. You could
have a meeting dedicated to each event, or discuss several topics in one sitting.

The Go/No-go Decision Meeting

Anytime you are evaluating risks, call a meeting of those who have experience with
similar projects (or experience with the client if that is where most of the risk appears
to be). This meeting should be held before the proposal is written to decide whether or
not to bother with the proposal and to ensure that all the risks have been evaluated and
priced intoproject. The PM, PL, and outside experts attend.

The Project Kick-off Meeting

Not many people have this meeting. Just as the coach brings the team together before
the game, the PM calls this meeting after the proposal is signed. Have a management
session first, followed by a technical one. For the first session invite everyone who will
be involved in the project (client, resource providers, steering committee, technical
staff) to introduce all the players, set up the interfaces and explain general background
and obiectives. Use this session to establish the required enthusiasm. Have a second
session for the technical people only. At this meeting you can establish the guidelines
(design standards, programming standards,) procedures (reports, administration, hours

242 Chap. 21 Control Using Meetings, Reviews and Reports

of work, place of work) and so on. Find out exactly how much everyone knows and
arrange for any necessary training.

The Project Planning (Estimating) Meeting

As we saw in Chapter 13, estimating is very productive when done in a small group of
three or four people. This group can be used to produce the work breakdowns,
determine the resources required, and put the tasks in order.

The Functional Specification Signoff (Milestone) Meeting

Hold a technical session first to go over the specific problems of the last phase, and to
revise the estimates and schedule, especially if the requirements have changed. Then
hold the management session with everyone as described earlier. Announce any change
in plans, such as a slip in the delivery date or a rise in cost. Get commitment from those
who will provide the design and programming resources.

The Top Level Design (TLD) Walk-Through

The PL chairs this meeting. There are at most five attendees consisting of other
designers, outside experts or the senior programmers on the PT. The design author
presents the alternative TLDs with the pros and cons of each one. Others suggest any
missed pros and especially cons, and any other TLDs that they can think of. At the end
the best TLD is chosen. This walk-through should take approximately 2 to 4 hours.

The Medium Level Design Walk-Through

For a large project, walk through each level of the design as it is completed. In all
projects walk through the complete design when it is done. The purpose of the walk-
through is to find all the problems in the design. The designers present their design; the
PL moderates the meeting, notes any suggestions, and follows up later with the
designers. Depending on the number of modules there may be several sessions, but use
no more than five persons (other designers, outside experts, project team members,) and "
take no longer than 3 to 5 hours per session.

The End of System Design (Milestone) Meeting

The approach and objective is the same as for the FS signoff meeting. Revise the
estimates again, and get commitment for items such as the delivery of the hardware,
staff for programming, acceptance, user documentation and so on.

Module Design, Documentation
and Test Plan Walk-Through

These three items can be walked through together. Only the PL, the responsible
programmer, and perhaps one other programmer need to attend. The purpose of the
meeting is to ensure that the best design approach is chosen and to find any problems.
Consider walking through several modules at once. Take no more than 1 to 2 hours per

Sec. 21.5 Specific Meetings Held on Specific Occasions 243

module, and no more than 4 hours for the session. The author of the module presents,
notes any suggestions, does not attempt to fix the problem there but later reports back
to the PL on the progress of the solutions.

Code and User Documentation Walk-Through

All the comments made for the module walk-through above hold true here. These will
be the most detailed walk-throughs in the project, so more people may attend.

Acceptance Test Completion (Milestone) Meeting

This is less of a milestone than some of the others (plus it probably comes soon on the
heels of the system test milestone) so not that much fanfare is needed. Consider a
meeting of the client and PM only.

Operation Completion (Milestone) Meeting

This session is informal (it is the biggest party) and everyone is invited. Use this session
to let off steam and leave the business issues to the post-project review.

The Post Project Audit Meeting

This is a meeting most people would rather not have. I realize that most of the time you
wish to forget all about the project but this is the most important review. There should
be two sessions here: one with the client, and one without. In the first session, invite the
client, the PT, and upper Level management. Do not let this degenerate into a finger-
pointing session. The objective is to analyze the problems that were under the control
of the user (or the management if it was an internal project), and to avoid this type of
problem in the future. If the user is unhappy, this meeting can be an opportunity to show
him or her all the problems that were not under your control. If the user is happy, get a
letter of recommendation.

The second session is attended by the PT and associated management. Make sure
that this one is also a constructive criticism session. Hindsight is perfect or better.
Analyze what went wrong, determine how thoseproblems can be avoided in thefuture
and write it all down. If there is any finger pointing necessary get it over and done with.

The post project report. The result of thePost Project Audit meeting is a formal
report by the PM. The report is a stand-alone document that will be circulated to many
project as well as nonproject people. Here are the topics to include in the report:

How the project got started, what the original objectives were, and the pro-
posed solutions. This is included to make this report stand alone.
The project method and organization, with recommendations on improve-
ments, if any.
Estimates compared to the actual results, with explanation of when and why
the actuals crept away from the plan.

Chap. 21 Control Using Meetings, Reviews and Reports

Update of the estimating formulas and ratios.

Successful aspects of the project.

Problems that were encountered, with suggestions on how to avoid each one
in the future. Update of the Risk Quiz.
Reusable portions of the product.

Recommendations that answer the questions, "Should we stay in this appli-
cation area?" or "Should we stay in the project business at all?"

'Major Problem Cropped Up' Meeting

There are times when the PM alone cannot solve a serious problem. The issue could be
turnover, major resources not materializing, project wide burn-out or conflict, or user-
PTcommunication breakdown. The PM should call a meeting of all those involved and
those who could provide a solution. Usually higher levels of management in the user
department or project department attend.

21.6 CONCLUSIONS

Reviews are absolutely necessary to ensure the quality of the product. Other meetings
are held to provide project communication with the outside world. But let us not meet
each other to death. A meeting should only be called if two-way communication is
needed. High level managers in North America spend over 90% of their time at
meetings and hate every minute. Use memos, phone calls, and electronic mail whenever
possible before resorting to a meeting.

QUESTIONS

1. What types of meetings must a project have and why? Which of these happen at a set
frequency? Which of these are event driven?

2. There may be three status meetings in a large project. What are they and why separate
them?

3. Why have the status meeting at the end of the week?
4. What is the major problem with status reports? What is the solution?
5. What determines the frequency of the status report?
6. Group Exercise:

Following is the plan for the installation of the hardware for the Bell Family Comn~uni-
cations project:
At the end of February you discover that TECH-2 will be away for the month of March.
Write a status report (2 pages) for the project dated Feb. 28.

Sec. 21.6 Conclusions

INSTALL SWITCH

INSTALL PHONE 1

INSTALL PHONE 2

INSTALL PHONE 3

INSTALL PHONE 4

INSTALL PHONE 5

SYSTEM TEST

TECH-1

TECH-I

TECH-2

TECH-1

TECH-2

TECH-1

TECH-It2

7. List three planning activities that are necessary to run a good meeting.
8. Who should attend a module (code) walk-through?
9. Why have a steering committee?

10. Why hold milestone meetings?
11. Why hold a project kickoff meeting?
12. What comes out of a post project audit? What is the main purpose of this document?

Special Projects

Does the Method Still Apply?

22.1 INTRODUCTION

Certain types of projects require a unique approach. In this chapter we will discuss how
the project management method needs to be changed slightly for real time projects, very
small projects, conversions and maintenance projects.

22.2 REAL TIME PROJECTS

Let us see how the seven phases of project management must be applied to real time
(RT) projects:

Requirements

The major difference in the requirements for a RT project and those of other projects
is that inRTsystems such as process control, response is dictated by something physical
in the environment. For example, if the system is to insert control rods into a nuclear
reactor to stop the reaction, the response is dictated by the speed of the nuclear reaction.

You start gathering RT requirements as you would gather non RT requirements,
in that people are interviewed and existing systems and methods are investigated.
However, in RT you must investigate and measure the physical systems that need to be
controlled as well.

Sec. 22.2 Real Time Projects

Sometimes the final requirements for a RT system cannot be determined until
some tests are run using a working system. Take the case of a new communication
network message routing system. The system design depends upon the types and
frequency of the messages that are to be routed, but there may be no accurate data about
the messages at first. The approach must be somewhat like prototyping-a model
system must first be built based on assumed requirements. The seven phases in the
development are still followed, but some phases are intentionally recycled as shown in
Figure 22.1.

PHASE ACTIVITIES

Definition
Analysis
Design
Programming
System Test

Acceptance
Operation

Define initial 'best guess' requirements.
Specify building o l model based on initial requirments.
Design model.
Program model.
Test model.Determine changes required for final system.Cycle
back to ANALYSIS, DESIGN, PROGAMMING, SYSTEM
TEST for Einal system. Once is usually enough.
User accepts final system.
Final system implemented.

Figure 22.1 SDLC for real time system

An unusual fact of life has to be kept in mind when determining real time
requirements: never believe the quoted time constraints. I have seen a requirement
demanding that the system respond in a few milliseconds to a malfunctioning turbine by
activating a control valve that took 20 seconds to close. (Sometimes the response is to
warn a human operator who is probably asleep!) Obviously a slower response would be
acceptable here. The slower the response time required of an RT system, the cheaper
and easier it is to develop it!

Design

RT systems are usually designed bottom-up. Section 7.2 details such a design for an
automobile engine monitoring and testing system. Another approach to designing RT
systems is to break up the functions bv the reauired resDonse time. For example. there . ,

may be a set of functions requiring less than one second response, another set requiring
one to five second response and so on: the last set mav be the functionsnot reauiringreal -
time response at all. The next step would be to design modules to handle each response
class. Figure 22.2 is another design for the automobile engine control and monitoring
system that we saw in Section 7.2. Note that in this design the system is broken up into
the following four modules:

248 Chap. 22 Special Projects

The first module handles items that require less than one second response time.
If hcat, oil pressure, and engine speed are not reacted to this quickly, the engine will
blow up. This module will probably bc activated by a hardware intempt.The second
module handles items that require between one second and five seconds response time.
Engine vibration, power, and operator commands may be in this class. This module will
probably be activated by a timer, and will poll the appropriate devices to see if service
is requircd. The third module handles items that require between five and twenty
seconds response.

Warnings to the operator or response to operator inquiries are in this class. This
module will probably run when nothiig else requires CPU timc. The last module runs
items that need littlc or no response, such as rcports gencration. This can be serviced in
non real time, such as background mode.

Interrupt Polled When idle Background
Driven

CONTROL
MODULE

1

Figure 222 Real time module design by response time

d SEC
RESP

You may be wondcring what this has to do with thc management of the project.
Plenty, because a dcsign such as this dictates that the project has to be developed in one
of two ways: You either buy an operating system that supports priority levels or
foregroundhackground processing so that these classes of responses can be handled.
Or you buy two computers (or one with multiple processors,) one for the real time
functions and one for Ulc non real time. In both cases the cost of the project is affected.

1-5 SEC 520 SEC NON
RESP RESP RT

Programming and System Test

Programming of a RT system is exactly the same as that of a non RT one. Lower level
languages such as assembler, C or Fortran (morerecenlly ADA) tend to beused because
thesc languages have hardware control capabilities. Integration and test will be
diiicrcnt bccausc it will probably have to be done from the boltomup. Do thc test in this
ordcr:

Sec. 22.3 Very Small Projects 249

1. Start with the hardware: test the sensors, the interrupt rates, and the clocking
of the system.

2. Test the system response to the different interrupt classes module by module.
Use expected or normal data.

3. Test the control modules.
4. If there is a background set of tasks, test those independently first, then put the

background and foreground tasks together.
5. Do not forget to test all the human interfaces.
6. Test the overload conditions: see how the system reacts to multiple (unex-

pected) inputs and rates that are greater than the requirements.

Testing an RT system is difficult because you may not want to try it in the real
environment. Would you test an aircraft control system for the first time on a real
airplane with real users? The environment usually has to be simulated. There may be
simulator tools available or you may have to write software to provide the data. In the
last case do not forget to include the simulator as part of the project.

Acceptance and Operation

Acceptance of an RT system has to be a trial run. Since the environment was only
simulated at system test, there will be many problems found when the system is turned
on for the first time. Operation is exactly as before-a warranty period, user training and
hand-holding must be provided as necessary.

22.3 VERY SMALL PROJECTS

Why Tiny Projects Fail

A single person project that takes two months or less is considered a tiny project. These
projects have a history of failure-they fail because they do not get the full formal
project treatment. Let us say that most of your projects are one month (plan), but you
deliver in two months (actual). One month of slip does not sound too bad until you
consider that the project is 100% late. Will they choose you to build a one year project?

All seven phases must be done even for the smallest project. Keep in mind that to
the user there is no difference between a tiny and a large project. He or she has a
problem to solve, and whether the problem is solved by one report or a whole system
the attitude is the same. Therefore the phases that involve interfacing to the user will
take relatively longer to do than the corresponding phases of a large project.

Tiny projects are easy to start but unfortunately easiest to cancel as well. A small
project does not have the same priority and visibility as a large one, so when resources
run short the small project is the first to suffer. If all of your projects are little ones and

250 Chap. 22 Special Projects

others get the big ones you are the lowest man on the totem pole. Try to fit insome larger
ones. Small projects can still be very successful if all seven phases are there with the
following caveats:

Definition and Analysis

The requirements for a tiny project are usually determined informally. The user and the
analyst sit down over coffee and discuss a report that the user requires. The format is
drawn on anapkin and the analyst says, "This will take acoupleof weeks." The analyst
means three or four weeks, the user interprets one or two. It will take even longer than
four weeks. The analyst is ignoring that even one report will have to be formally docu-
mented, accepted, and the user will have to be trained.

Abetter way to do the analysis is a formal session (it may only take one hour) with
a written FS of three or four pages-the format of the report, the acceptance method
(ATP), and an outline of the documentation and training. The FS is signed off before
development starts.

Design, Programming, Test

These phases may only take two weeks. Do not forget the programming documentation,
especially if it is part of a larger system. Test the new program thoroughly.

Acceptance

The acceptance plan was written in the FS, and a full formal demonstration must be run
for the user.

Operation

This phase will be relatively long. The user must be trained, questions must be
answered, problems fixed, and warranty provided for the usual period of three to six
months.

22.4 CONVERSIONS

A conversion may involve rewriting an application to run on new hardware, a new
operating system (or new version), or a new language (or new version). The word
'conversion' brings fear to any experienced DP professional's heart. There are few of
us who have not been burned by a conversion, yet hardware and software vendors
constantly force conversions on us. Again, the key is to apply the seven phases of the
project methodology. I once agreed to convert a COBOLsystem written in 1964 for an
IBM 7040 (yes, I am that old) to a DEC VAX. Not only was there no documentation for
the application, there was no documentation for the old COBOL compiler! I thought
COBOL was COBOL, so I converted the programs (taking into account the obvious

Sec. 22.5 Maintenance Projects 251

syntax differences), and tried to run the new system. Unfortunately, some of the old
routines were written to get around some quirks in the old COBOLcompiler. Addition-
ally, the files did not contain what the user said they did. The conversion took 100%
longer than I had anticipated.

Definition and Analysis

Youmust begin by becoming thoroughly familiarwith the old and the new systems.The
user will request that the converted system appear to the user exactly as theold one does.
However, the new hardware or software may have features that enhance the old system.
Use the opportunity tosuggest new waysof doingbusiness. Convince theusertochange
his requirements to make the most of the improvements that are available.

Design, Programming, Test

As for analysis, redesign for the new system. Test everything thoroughly. Draw up an
acceptance test plan (ATP)-it should be as thorough as a plan for a new system.
Relatively large amounts of machine time will be required for a conversion. Time will
be needed for source conversion, file conversion, document reprocessing. New pro-
grams may have to be written and compiled as well. When converting old files never
destroy the old copies-you may have to go back!

Operation

Cut over to the new system cleanly. Training will have to concentrate on the differences
between the old and the new systems.

22.5 MAINTENANCE PROJECTS

The Seven Phases for a Maintenance Project

Eventually every system has to be maintained or changed. Consider even the smallest
change as a tiny project:

Define why the old system needs changing and what the difference will be after
the change.Analyze the appearance, performance or function that the change will ac-
complish and write it down. Get agreement from the potential users. Plan exactly what
resources will be required-usually a few hours of your own time and a bit of machine
time is all that is needed, but schedule the time.

Look at the present design of the system. The design of the change will have to fit
cleanly into the system. Make sure that the appropriate function, design and mainte-
nance documents are updated.

Program andtestthe change. If itisaproductionsystem you may havetodo it after
regular hours. When testing a modification, first run test data that exercise the change,
then run real data to mak;sure nothing has been broken by the change. It is wise to
define a thorough set of 'real-life' tests that can be reused with every change. Document
the change in the User Guide, train the user, and provide the usual warranty.

252 Chap. 22 Special Projects

An alternative approach, especially if changes are requested frequently, is to save
up many changes and apply them at once. These would be new versions or releases of
large systems suchas o@ratingsystems. Anewreleaseisconsideredafullproject, with
its own budget and all the phases applied.

Doing Maintenance Along with Development

One of the most frustrating aspects of a dcvclopcr's life is that as soon as you getdeeply
involved in the development of an exciling new system, the phone rings and someone
is asking you to answer a question or fix a bug in some other program. It is very difficult,
if not impossible, to get hack to the point where you left off in the development.

You cannot do development and be expected tofightmaintenance fires at the same
time. One method that successfully avoids this problem is to appoint a fire chief to fight
the fires. This person handles the phone calls, answers any questions and solves the
problems if he or she can. Only if this person cannot solve the problem are the
developers interrupted, but at an agreed upon time of the day-say after 4:00 pm. The
problem is usually solved by the next day. Here are some additional thoughts on this:

This firc chief position should be rotated every three to four months.
The f i e chief wears a pagcr so that hc cannot escape.

It is a good way to train juniors, or seniors who need experience with inter-
facing to users.

It is amazing how many problems disappear if someone has to wait for the
answer until the ncxt day (usually they revert to reading the manuals).

22.6 CONCLUSION

Special projects may need special attcntion, but basically they all must follow the rule
that we started out with-any software activity Lhat results in a deliverable must be
considered a project.

QUESTIONS

1. Compare the project development methodology of a RT project to that of a business
application.

2. Is a small project more prone to failure than a large one? Is the failure of a small project
less of a problem?

3. What is a conversion? What are thc major causes of problems in a conversion and how
would you plan to avoid them?

4. How do you handle simultaneous devclopment and maintenance?

Conclusion

Is It All Worth If?

23.1 INTRODUCTION

Congratulations! You have made it to the end of the book. Before you put it down, I
would like you to leave with some thoughts.

23.2 CAN YOU BE A GOOD PROJECT MANAGER?
In Chapter 19 we detailed the skills and talents of the PM, but here are several important
questions to ask yourself that may tell you whether or not you have got what it takes.

1. "Can I say 'NO'?"
Saying no takes courage and wisdom. It is difficult to do but at times abso-
lutely necessary for a successful Project Manager. Practice saying 'NO'.
Every day when you wake up go to your mirror, smile, and say 'NO' a few
times.

2. "Can I attack problems as they arise?"
If a problem crops up, you must get on the phone immediately, investigate it,
fix it as quickly as possible or it will turn into a disaster. This is especially true
for people problems.

3. "Can I live unloved?"
A PM is not a popular person at the best of times. Every failure is the PM's
fault (every success is due to upper level managers). He or she has to make
unpopular decisions, announce slips, say "NO," crack the whip, discipline
people-all of these things make the PM a pain in the neck, if not an outright
ogre. But it is not the love of your people that you need, it is their loyalty and
respect.

253

Sec. 23.4 Conclusions to the Conclusions

23.3 THE FUTURE OF PROJECT MANAGEMENT
Software Tools

Expect to see better automation. Project management is becoming more and more
important, and software products that make our lives easier are appearing daily. I am
especially excited about the emergence of artificial intelligence (AI) in some software
products. AIwill allow software to solve some of the complex scheduling problems that
the PM is faced with, and to provide an English language (perhaps even voice!)
interface to the program.

Visibility in the Organization

We have seen MBO (Management by Objectives), then MBE (Management by
Excellence), MBWA (...by Walking Around), MBlM (...by One Minute), and many
more. None of these methods have provided significant improvements in the business.
A few years ago someone tried MBP&C (Management by Planning and Control-that
is, Project Management) and lo and behold, profit and business improved.

Many companies have discovered the advantages of organizing by projects. It is
common to see 'Project Manager' as job titles high up the organization chart. In fact,
many companies have appointed a Vice President of Projects. The skills that you have
learned from this book (I hope) will be more and more important for your company, and
you should of course ask for a raise and promotion at once.

Personal Growth

If you think these methods and skills are only used on a software project, you are dead
wrong: they can be applied to any project that you undertake. In fact, project manage-
ment is a philosophy that can be applied to any activity in life. Everything has a good
chance of success if it is planned and controlled, and you will become a better person
if all of your endeavors are successful.

23.4 CONCLUSIONS TO THE CONCLUSIONS

Applying All of This

You are probably thinking, "Boy, will I have to change a lot of things!" But do not go
to your boss and say, "Here are the 500 things we need to change in the next six
months." You cannot move a mountain, but you can whittle away at it. Pick a small (no
more than three month) project, one that will get some management visibility, and use
the proper methods to manage it. Advertise your sucess and soon you will get the
commitment to do a larger project. Slowly but surely, you will turn the world around.
GOOD LUCK!

QUESTION

1. Manage a major software application!

Appendix A

Case Study (An Example of All
Project Documents)

AMALGAMATED BASKETWEAVING COURSES SOFTWARE
AND HARDWARE PROJECT

INTRODUCTION

[This project started wilh the following mcmo: All items in square brackets are
comments by the Author.]

Amalgamated Baskaweaving Courses Ltd. gives dilierent types of weaving
courses. Thcy have classes in 10 major cities in North America, each one
presented at least every three monlhs. Students come from all over the country,
but can register by phoning headquaters (collect) in Rattan.

MEMO
FROM: John Strawman, President
TO: Larry Loom, Technical Department
SUBJECT: Need for Automation

Larry, we have to do somelhing about our registration and information system.
When a student phones to register for one of our courses, Joan takes the
information on a piece of paper, then transfers it to a course file (anothcr piece
of paper), which eventually gets collated (on paper).
Last month alone we lost 3 registrations, told2 students to go to thc wrong course,
did not have enough material for 2 courses (twice as many people showed up as
wc anticipated, and we had no way of tclling who was officially registered) and

255

256 Appendix A

we forgot to tell the instructor about one course. I also suspect we are not billing
everyone--our revenues are down but the number of students seems to be up.
I also suspect we should give courses in Montreal, and that we are giving the
wrong courses for the time of the year.
Can a system be implemented to solve this?

P.S. If we do not have our act together in six months we will be out of business.
P.P.S. We have $200,000 left in our bank account.

Requirements Documents

REQUIREMENTS DOCUMENT

REQUEST FOR PROPOSALS

Amalgamated Basketweaving Courses Ltd.
14 Weaver Rd., Rattan, On., KIM 1L5
Contact: Mr. Case Basket
Controller, ABC.

This document is prepared to provide vendors with information to quote a price
on providing and installing software and hardware for the information system
requiredfor ABC. All bids must be received by date X. Terms and conditions for
selection are outlined in Section 16 of this document.

1. INTRODUCTION:

ABC gives different types of weaving courses. They have classes in the
following major cities in North America [list here].
Each course is presented at least 4 times per year per city. Students come from
all over the country, but can register by phoning (collect) our main office in
Rattan. We have no computer expertise. All expenditures must be approved by
our fearless leader and CEO, Mr. Barry Strawman.
Major problem: General confusion in registration and course administration.
Presently, when a student phones to register for one of our courses, the secretary
writes the information on a piece of paper, then transfers it to a course file
(another piece of paper), which eventually gets collated (on paper).
Last monthalonewelost3 registrations, told 2 students to goto the wrong course,
did not have enough material for 2 courses (twice as many people showed up as
we anticipated, and we had no way of telling who was officially registered) and
we forgot to tell the instructor about one course. We also suspect we are not
billing everyone--our revenues are down but the number of students seems to
be up.
We also suspect that weshould give courses inother cities, and that weare giving
the courses at the wrong times of the year.

2. PROJECT GOALS:

Replace existing manual registration system at ABC with:
Registration that is fast (on phone), no losses, with timely notification to
student, instructor and ABC of appropriate information.
Financial system to accurately produce billing, accounting, and course material
information when needed.
Reporting to management, for better decisions about where and when to hold
appropriate courses, available immediately on a terminal or to be printed on
request.
Project should be done within 6 months of initiation, for under $200,000.

258 Appendix A

3. MAJOR FUNCTIONS:
Registration on-line by a phone operator, with information on all courses such
as enrollments (list of students), cost, location visible. Automatic confirmation
to student, and summary of enrollments to ABC. Two weeks before a course,
enrollments go to instructor, ABC, and course material warehouse.
Course Administration on line. AddJremove courses from a schedule. Change
pricing on a course. Close a course (tell system that a course ran and who
attended.)
Financial system that invoices student within two weeks after attending course,
keeps Accounts Receivables, rollup of revenues by course type, time period and
geography monthly. Warning about students who owe us but want to enroll.
Warehouse system notifies warehouse clerk two weeks before course, of items
required for the course, where the course is, location of items in warehouse.
Enterlalter materials required for a course. Automatic inventory decrement and
re-ordering as well.
Management Information Reporting system: Weekly report to CEO, or on
request, of number of registrations, courses, revenues. On request, reports
detailing courses, enrollments, and revenues by course type, geography, time of
year.
Although not needed at this time, we are also thinking of producing mailing lists,
instructor schedules, and location schedules in the future.

4. GENERAL OUTPUTS:

On line: if a student phones, answer questions such as:
"When are the next 3 XYZ courses, where, what price?"
"I am John Smith. Where am I registered? How many others are registered?
"What is the maximum enrollment?"
"Please register me for XYZ course."
"Please cancel me from course XYZ."
Confirmation: Printout of student confirmation mailed to student. (What course
he enrolled in, when, payment information.)
Weekly print-out: all enrollments for the weekby course and location, revenues
associated with courses that ran.
Monthly print out: course sales for the month by type, location, time (for
management). Accounts Receivables report with items invoiced and outstand-
ing and paid to Accounting.
Two weeks before a course: print out of enrollments, location, course material
(for instructor and warehouse). Revenue summary (for management). List of
materials required and location of the course (to warehouse).
One day after a course: invoice (to student), a diploma (to student), update
Accounts Receivables.
Reports on request: on-line reports of registrations, attendance, andlor reve-
nues by course, by geography, by time of year.

5. GENERAL INFORMATION INPUTS REQUIRED:
[Theproject ream, after further interviews with the user, fills in the following:]

Requirements Documents 259

Registration: Student name, address, course to register on, payment informa-
tion, etc.
Financial: course cost, billing status by student, material cost, etc.
Warehouse: material required by course, minimum inventory, information on
vendor of material, reorder quantity, etc.
And so forth.

6. PERFORMANCE:

Registration or general enquiry phone calls are expected approximately 2 per
minute (maximum 5), registrations one per 20 minutes maximum 10 min; reports
may be requested at most one per 10 minutes. Other reports and requests weekly,
monthly or driven by occurrance of courses as detailed above.
There are at most 15 courses per month.

7. GROWTH:

ABC expects a general 30% growth per year. This system must perform for the
next three years.

8. OPERATION AND ENVIRONMENT:

The computer will reside in room 105 at our Rattan office. Terminals must be
available to our two registrars, one each in the offices of Mr. Case, Mr. Straw-
man, and Ms. Administrator, and 2 in the warehouse. Printout capability is
required in the office area and in the warehouse. The warehouse is full of paper
dust.

9. COMPATIBILITY, INTERFACES:

We are considering opening a branch office on the West coast. There we would
do only local registration functions, with all other functions to be done in Rattan.
We have a Brand X word processor presently. We wish all documents accessible
or converted to the new system.

10. RELIABILITY, AVAILABILITY:

[Quote Mean Time Between Failures (MTBF) figures, Mean Time to Repair
(MTTR) and percentage up time required. All manufacturers publish these
figures for their hardware, except that they are never over 95%, so do not request
anything greater than that.]
We wish the computer to be up 99% of the workday period, and we cannot lose
any information.

11. HUMAN INTERFACE:

ABC has no computer experience. Mr. Strawman's son has this computer that
has a 'mouse'. He wishes our new system to have menus driven by 'mouses'
(meeces?). We wish detailed help at the push of a button.

260 Appendix A

12. ORGANIZATIONAL IMPACT:

[This paragraph will be filled in by the PT. The user may state items such as,
"Due to a strong union in our shop, we cannot reduce the number of people on
our staff."]

13. MAINTENANCE AND SUPPORT:

The vendor must fix any problems with the system for 6 months after delivery,
within 24 hours of being notified.

14. DOCUMENTATION AND TRAINING:
Vendor must provide documents and training for all of the users. The documen-
tation and the training will explain in detail each person's job on the computer.
The vendor must also provide training for one computer operator.

15. ADVANTAGES [RFP ONLY]:

Vendors must supply: Names and phone numbers of 3 locations where they
implemented successful sytems. A description of the project management
method they use, including size and relevant experience of their project teams.

16. TERMS AND CONDITIONS (T'S & C'S) [RFP ONLY]:

ABC company has the right to select among vendors based on their own criteria.
Any submitted documents will become the property of ABC. The winner will be
announced no later than date X. ABC has the right to accept and/or reject any
portion(s) of the proposed systems. Pricing for such will be renegotiated with the
vendor.
ABC will own all softwares implemented, including the right to resell it. The
vendor must guarantee the delivery of the software and hardware 6 months after
signing a contract, or there will be apenalty of 10% of the project price per month
of late delivery.

Preliminary Project Plan ABC Project

PRELIMINARY PROJECT PLAN ABC PROJECT

1. PROJECTTEAM

The Project Team will consist of the following 6 individuals:

PROJECT MANAGER: Jane Flynn
PROJECT LEADER: Jim Bean
PROGRAMMERS (4): Not yet assigned. The levels required are:

1 Level 1 (Senior)
Level 2 (Intermediate)

2 Level 3 (Junior)

PROJECT

PROJECT q
Figure A.1

Time Frames and Responsibilities
Project Manager
Time Required: January 1 to November 30,1990
Responsibilities: Project team management; including input (at least) into salary

reviews of team members.
All communication to and from ABC. All communication to and
from upper levels of management.
Weekly status assessment, scheduling, and status reporting.
Chair all major review (management, milestone) meetings.
Obtain all resources from outside.
Handle any unforseen events.

Project Leader
Time required: January 1 to December 30,1990
Responsibilities: Assist PM on technical aspects of planning, for example

project network and schedule.
Do project analysis.

Appendix A

Lead the design team.
Do the ATP, system test, and spend three weeks at the uscr site for
operation.
Supervise programmers: make programming assignments, and
quality control.
Assist Senior Programmer on major tasks.
Report project status to PM.

Senior Programmer
Time required: April 1 to November 30, 1990
Responsibilities: Program major modules A and B, assist Junior programmers as

necessary.
Report status to PL as requested.

Intermediate Programmer, Junior Programmers

[Supply detail as for Senior Programmer]

2. WORK BREAKDOWN STRUCTURES AND COST ESTIMATES

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Summary AUTHOR: Jim Bean
DATE: Dec 1, 1990 WBS REFERENCE: 0.0 ABC

TASK DESCRIPTION CMP EST COMMENTS
LX DYS

1.0 Definition H 38 Analyst (MR)
2.0 Analysis H 40 Analyst (MR)
3.0 Design H 40 Designer (BB)
4.0 Programming M 80 Pgr's, Designer
5.0 System Test H 15 All
6.0 Acceptance M 8
7.0 Operation L 20 Incl. 1 0 day crs
8.0 Proj. Mgt. & Mtgs. H 53 Proj. mtgs only
9.0 Contingency H 30 Hardware delivery
TOTAL PROJECT 324

Flgure A.2

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Definition AUTHOR: Jim Bean
Date: Dec 1, 1990 WBS REFERENCE: 1 . 0

TASK DESCRIPTION CMP EST COMMENTS

1.1 Requirements Document H 10
1.2 Go/Nogo Decision H 10
1.3 Proposal H

TOTAL FOR 1.0 Definition 38

Flgure A.3

Preliminary Project Plan ABC Project 263

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Requirements Document AUTHOR: Jim Bean
DATE: Dec 1, 1990 WBS REFERENCE:l.l

TASK DESCRIPTION CMP EST COMMENTS
LX DYS

1.1.1 Meet with User M 4 User Mgr. A, Sup.B
1.1.2 Assist in Preparation M 4 User will do most
1.1.3 Negotiate H 1 with User
1.1.4 Approvals M 1 Director level

TOTAL FOR 1.1 Req.ts Doc. 10

Figure Ad

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Go/No-go AUTHOR: Jim Bean
Date: Dec 1, 1990 WBS REFERENCE: 1.2

TASK DESCRIPTION CMP EST COMMENT
LX DYS

1.2.1 Feasability Study H 5 Eva1 build vs buy 2
pckgs

1.2.2 Write Report M 2
1.2.3 Risk Analysis H 2
1.2.4 Approvals L 1 Director level

TOTAL FOR 1.2 Go/Nogo 10

Figure A 3

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Proposal AUTHOR: Jim Bean
DATE: Dec 1, 1990 WBS REFERENCE: 1.3

TASK DESCRIPTION CMP EST COMMENTS

TOTAL FOR

Plan Proposal
Do the Work
Prepare Proposal Doc.
Internal Approvals
Dry Run
Present to User
Negotiate
Technical Revision
Approvals

1.3 Proposal

H 1 JR
M 10
M 2 20-30 pgs
H .5 VP level
L .5
M 1 JR + MR for . 5
M 1
M 1
L 1

18

Figure A.6

Appendix A

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Do the Work AUTHOR: Jim Bean

DATE: Dec 1, 1990 WBS REFERENCE: 1.3.2

TASK DESCRIPTION CMP EST COMMENTS
LX DYS

1.3.2.1 prelim. Proj. Plan M 5
1.3.2.2 Detail Scope L 1
1.3.2.3 Detail Financial H 1
1.3.2.4 Detail Dev't Plan H 2
1.3.2.5 Detail Support Plan M .5 6 mos warranty
1.3.2.6 Discuss T's & C's H .5 with User

TOTAL FOR 1.3.2 Prep. Proposal DOC. 10

Flgure A.7

TASK ESTIMATE DETAIL FOR PROJECT: ABC

ITEM: Analysis AUTHOR: Jim Bean

DATE: Dec 1, 1990 WBS REFERENCE: 2.0

TASK DESCRIPTION CMP EST COMMENTS
LX DYS

2.1 Interviews M 10
2.2 Analyze existing

systems/document 10
2.3 Synthesis M 9
2.4 Prepare Functional Spec

Document 3
2.5 Negotiate H 4 of our time

2.6 Revise M 3
2.7 Approvals H 1 VP

TOTAL FOR 2.0 Analysis 40

Flgure Al

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Synthesis AUTHOR: Jim Bean

DATE: Dec 1, 1990 WBS REFERENCE: 2.3

TASK DESCRIPTION CMP EST COMMENTS
LX DYS

--

3.3.1 Reusability of old
system M 3

2.3.2 Changes to old system M 3
2.3.3 New functions needed M 3

TOTAL FOR 2.3 Synthesis 9

Figure A.9

Preliminary Project Plan ABC Project

Task Estimate Detail for Project: ABC
ITEM: Programming AUTHOR: Jim Bean
DATE: Dec 1, 1990 WBS REFERENCE: 4.0

WBS ACTIVITY CMP ESTIMATE CMNTS
LX DES DOC CODE TEST TOT

4.1 Driver module(A) H
4.2 Module B M
4.3 Module C L
4.4 Module I) L

40 Menu
10 INQ
20 REP'S
10 UPD

TOTAL 8 0

TASK ESTIMATE DETAIL FOR PROJECT: ABC
ITEM: Programming Driver Mod A AUTHOR: Jim Bean
DATE: Dec 1, 1990 WBS REFERENCE: 4.1

WBS ACTIVITY CMP ESTIMATE CMNTS
LX DES DOC CODE TEST TOT

4.1.1 Mainline A1 A 3 1 4 2 10
4.1.2 Subroutlne A2 M 2 1 1 I 5 MOUSE
4.1.3 Subroutine A3 L .5 .5 .5 .5 2 GRAPH
4.1.4 Subroutine A4 L 1 1 1 1 4 ERROR
4.1.5 Subroutine A5 L .5 1 1 .5 4 IFCE
4.1.6 Subroutine A6 L 1 1 3 1 5 I/O
4.1.7 Subroutine A7 L 2 1 1.5 2 5 ENT/EX
4.1.8 Integrating

Driver H 5 1

TOTAL 40

Figure A.ll

COST CALCULATION (Example)
Programming Module A

RESOURCE HRS OVRTI RATE VAR CST FIXED TOT

Senior Pgr 160 0 40.00 6400.00 0 0
Junior Pgr 60 0 25.00 1500.00 0 0
Comp. time 40 0 100.00 4000.00 0 0
Buy Word Proc. 0.00 5000 5000

[A chart like this should appear for all of the estimated tasks.]

266 Appendix A

Rates: Rates quoted include all overhcad, plus a profit factor of 33% for staff
and 15% for fixed price items.

Risk: A risk factor of 0% to 33% has been added to individual tasks in the
estimates. For furthcr dctail see Jane.

3. PROJECT SCHEDULE

Figure A.12 Superproject projcct schcdulc

4. REVIEWS AND MEETINGS

Stccring Committee Reviews (cvcry h e c monlhs, or as necdcd).

March 3, June 9, Scptcmbcr 8, Dcccmbcr 12, 1991 .
Attcndccs: PM; Functional Managcrs A, B, C; Dcpartment Dircclors X, Y, Z;
Client projcct rcprcscntativc; Account Managcr A.

Preliminary Project Plan ABC Project 267

Milestone Reviews: Functional Spcc sign off: February 14; Dcsign finalized:
April 12; Mid programming Review: July 4; Final programming and ATP review:
September 15; Systcm test: November 18; Post project review: January 1,1990.
Attendees: All of steering committee plus appropriate personnel from hardware
manufacturer or technical stalf, depending on the previous and next phases.

Technical Meetings

A status meeting will be held every Friday aIlcmoon f om l:00 to 3:00 with all of the
project team. The PM and PL will optionally meet alone Fridays from 3:00 to 4:00.

There will be amedium level design walkthrough held March 12, and final design
held April 1.

Attendees: PL, Designers A and B.

1/: REPORTS

A Status Report will be published by the PM every Mo-
Tile co'iiints include progress past period, problems encountered, plan for next

period and progrcss against plan. A schedulc produced by SUPERPROJECT will be
included to show actuals vcrsus plans for every task.

The recipients will be: project tcam, stceringcommittce, clients A,B, C (this may
be an edited version); resource providers D, E, F; troublemakers [you may choose a
different word] G, H, I. If any recipient noticcs a problem he must report it to the PM
within one week of receiving the report.

6. DOCUMENTATION

User Documents

DOCUMENT

User Guide

Operator Guide

Maintcnance Guide
User Training Manual

Project Documents

Requirements Doc

Functional Spec

Design
Program in-line Doc

ATP

System Test Plan

RESPONSIBLE PERSON

Junior Programmer 1

Junior Programmer 2
Senior Programmer

Intermediate Programmer

Client, Project Leader assists

Projcct Leader
Project Lcader, Senior Programmer

Programmers

Senior Programmer

Projcct Leader

268 Appendix A

Word Processing

Secretary M. Blink will be available during thc months of February through October.
The Secretary will word process all of the user documents, as well as the FS and the
ATP.

7. CHANGE CONTROL

Since this is a fixed pricc project, any client requested change will he submitted to the
PM on change request form A-3. It will be asscssed by the PL, and the client must agree
to pay extra for any change as per terms and conditions in the contract. Project team
requested changes will also be submitted on change request form A-3 to the PL, who
will deal with cach one.

8. ASSUMPTIONS

a. The personnel mentioned in Section 1 or this documcnt will be available full
lime for thc required periods.

b. Hardware, operating system, and DBMS will be delivered on date X as
promised.

c. All of thc volume, performance, and throughput maxima detailed in the
Rcquirements Document are correct.

Proposal

PROPOSAL

1. COVER LElTER

September 1,1989
Mr. J. Strawman
President
Amalgamatcd Basketweaving Courscs Ltd.
Rattan, Ontario
Dear Mr. Strawman,

Thank you for giving XYZ Softwarc Co. the opportunity to discuss
with you the needs for a new registration system at ABC. As a result of these
discussions, included please find aProposal to implement this system for you.

XYZproposes to implement computer hardware,purchased software
and custom written software to solve your present problems with registration,
course administration, management information and warehousing. The system
should meet your needs for the next 3 years.

The cost of the hardware will be $100,000, the purchased software
$20,00Oand the softwarecustomwrittenby XYZis estimated to be$80,000. The
system can be implemented in six months if we are given a timely go-ahead.

If we are given a go-ahead by October 1, 1990, we can start your
project January 1, and deliver by July 1,1991. This price quotation is good for
30 days. Hardware vendor is raising his prices by 10% on September 30th.. so
a quick decision on your part will save both time and money.

Hoping to blah ..blah ..
Signed by,
Project Manager
(optionally)
Account Representative

2. TITLE PAGE

"Proposal," the title of the system, author, date, revision number, company logo, and
so forth.

3. TABLE OF CONTENTS

Section 1: Scope Problcms addressed by the XYZsolution, the
size, extents and limits of the proposed sys-
tem .. Pg 3

............... Section 2: Advantages Why you should choose XYZ pg 4
Section 3: Financial How the cost and delivery date was deter-

...................... mined, and payback graph Pg 5

270 Appendix A

Scction 4: Project Plan Stcps that will be taken, the project team,
........... how thc user fits into each step Pg 7

... Section 5: Dcliverables List of the items the user will receive Pg 9
Section 6: Acccptance How the system will be demonstrated to the

.. uscr 10
Section 7: Alternatives What other solutions (vendors) theuser could

.. choose Pg 12
Section 8: Terms, Conditions

and Assumptions .. Pg 15
Scction 9: Terminology: A glossary of computcr related tcrms that

... may appear P 16

Proposal For Amalgamated Basketweaving Courses Ltd.

PROPOSAL FOR AMALGAMATED
BASKETWEAVING COURSES LTD.

COPYRIGHT XYZ SOFTWARE CO. 1987

1. SCOPE

The purpose of this proposal is to prove how XYZ Software Co. can solve ABC's
problems with registration, course administration, management decision making, and
warehousing. [The general items that will go in here are:]

Background. [Summarize the problem statement, and how the previous interviews
and/or assistance given to the user in writing the RD gave XYZ a thorough understand-
ing of ABC.]

Solution. [Summarize the hardware/software that youarerecommending,andshow
why it is the best choice. Show proven track record, etc.

Summarize [one or two sentences per department where thenew computer system and
terminals will be located, the departments that will use them and how. For example,
"The registrar will have a terminal and will be able to answer students' queries by
phone as well as register them on-line." Emphasize the improvements that will be
noticed by each department.]

Future growth. [State the growth that will be anticipated as well as future improve-
ments that can easily be added on (you are already selling your next project!]

Limits. [This is not a specific section, but ensure that the user does not read into this
proposal major items that you do not intend to provide.]

2. ADVANTAGES

XYZ has been in the software business for over seven years. We are experts at training-
oriented software. We implemented three such systems in the past, including Mainte-
nance Courses Ltd.

The Brand X hardware and purchased software that we are recommending has
been available for the past five years, and has proven to be one of the most reliable in
the industry. Brand X is the world's nth largest computer manufacturer and has an
excellent reputation for reliability and service. XYZ has extensive experience on this
recommended hardware and software. We used it successfully on products for the past
four years.

XYZ has an excellent reputation for quality and we stand behind every product
that we develop.

Appendix A

3. FINANCIAL

Delivery Date(given go-ahead by July 1): Dec 30,1988
Costing Breakdown

Hardware
Brand X model 123 CPU......nn
Memory
Disks
Terminals
etc. [include manufactorer's quotes]

TOTAL HARDWARE 100,000
Software

Purchased DBMS 10,000
VSM Operating System 10,000
XYZ provided custom software 80,000

TOTAL SOFTWARE 100,000
GRAND TOTAL $200,000

PAYBACK GRAPH
DEVELOPMENT COST = 2 0 0 K

DEVELOPMENT COST

I I I I
1991 1992 1993 1994

YEAR ENDING

Figure A.13

The system will pay for itself in two and one half years, by the middle of 1992.
Other benefits: Reduction of Registrar turnover due to job satisfaction, savings in

warehouse due to fewer losses, better customer relations, and unquantifiable benefit
because you will be able to make better management decisions.

4. PLAN

The following will be the seven major activties involved in your project:

Proposal for Amalgamated Basketweaving Courses Ltd. 273

Analysis. In thorough intcrviews with yourself and all the users of the
proposed system, we will determine and agree upon exactly how the system will
behave.

Design. Our bcst designers will dcterrnine how we will build the system.
[A few words on PROGRAMMING and SYSTEM TEST]

Acceptance. We will demonstrate the system to you before dclivery to
prove that it works as we promised.

Operation. We will turn the new system on at your site, train your users,
and provide someone at your sitc for three weeks to handle any problems.

[Describe the project team and the project organization, as in the Preliminary Project
Plan, but include only the items that will be visible to the user.]

Weuse the following sevenphased, step-by-step projectmanagementmethod that
insures thorough planning and control of your project. [List here the seven phases, and
where the user approvallsign off will appear.]

In each phase there will be milestones that you will be able to review and see
project progress.

In addition, you will have the opportunity to be part of a steering comrnittce ... and
you will attend milestone review meetings ... and you will reccivc a Status Report
weckly ... ctc.

You will havc to provide for our use a project rcprescntative: someone who will
be available to answcr business questions rcgarding your prcscnt operation and the
proposed system. This pcrson must havc thc authority to make dccisions about what the
new system will provide. You will also havc to provide sample data and files that you
presently use. ABC will rcceive certain documents for sign off from XYZ. These
documents must be approved and returned within five working days of receipt.

5. DELIVERABLES

XYZ will deliver t l~e following:
Brand X Hardware, VSM Operating System, DBMS softwares listed above.
Thesc items are available now with a delivery time of three months.
Custom written software lisled above, to be produced in six months.
Warranties. Brand X warrant their hardware and software for one year after
the date of dclivery. Subscqucnt warranty can be purchased for ...[detail]. XYZ
warrant thcir software unconditionally for six months after the date of delivery.
Thcrc will be one pcrson at your sitc for one month after delivery to solve any
problcms. For two months aitcr this, a pcrson will be available to solve any
problems by phonc. He/shc will atlcmpt to solve the problem first on the phone,
otherwise by beginning work immediately on your problem. For three more
months after this period, a person is guaranteed to begin working on a phoned in
problem within four hours of thc call. Subsequent warranty can be purchased
for ...[detail].

Appendix A

Documents. The following manuals will be delivered:
Brand X complete VSM documentation [detail it all].
X Y Z will produce: User Guide: tells each of your users how to use the system
specifically for their job. Operator Guide: tells how to bring the system up, shut
it down, backupfrestore and handlc errors.
Training. We recommend Brand X 'VSM Concepts and Utilities' and 'VSM
System Management' courses for one person.
XYZ will provide. User Course: teaches each of your users how to use the
system specifically for their job.
Operator Course. Teaches how Lo bring the system up, shut it down, backup1
restore and handle errors.
Method of delivery. The hardware and software will be dclivercd and installed
at the user's appropriate locations. One copy of the documentation will be
dclivcred with thc systcm. Training will be delivered at the user's site, on his
computcr.

6. ACCEPTANCE
Acceptance will involve a thorough, stcp by step demonstration of all the system
functions to theuscr bcforc thc actual delivery of the systcm. If ABC agrees that all the
functions work, thcy will pay XYZallfunds still owingless $10,000, which will bepaid
upon successful delivery of the computcr system.

7. ALTERNATIVES
An alternative solution would be to use Brand Y with Lhe IDOT data base. We have not
chosen this one for the following reasons: ...[detail]

8. TERMS, CONDITIONS AND ASSUMPTIONS

Amounts quoted here are good for 30 days after receipt of lhis letter.
XYZ reserves the right to all source code and documentations produced.
XYZ is not liable for any losses due to our software.
This document is copyrighted.
XYZ is not responsible for any problcms with Brand X hardware or
software, or for the delivery dates promised by Brand X.
It is assumed that the uscr responsibilities will be fulfilled as detailed in
Section 7 of this document.
It is assumed that all information in lerms of volumes, throughput, number
of users, and responserequircmcnts are as writtcn down in the Requirements
Document Version 2.1 dated August 30, 1990.

9. TERMINOLOGY

[Glossary of all computer tcrms used.]

Functional Specifications

FUNCTIONAL SPECIFICATION

1. TITLE PAGE

FUNCTIONAL SPECIFICATIONS

FOR AMALGAMATED BASKETWEAVING COURSES

BY

XYZ SOFTWARE COMPANY

AUTHOR: GEORGE SMITH

JULY 8,1990

VERSION 3.0

2. TABLE OF CONTENTS

[Section names with page numbers.]

3. SYSTEM OVERVIEW

Amalgamated Basketweaving Courses Ltd. gives different types of weaving courses.
They have classes in 10major citiesinNorth America. Each course is presented at least
every three months. Students come from all over the country, but can register by
phoning headquarters (collect) in Rattan.

Presently, there are major problems in registration, course administration and
warehousing, and useful data to make management and marketing decisions is not
available.

To solve this problem, XYZ Software Company will implement a system consist-
ing of hardware and custom software as shown in Figure A.14.

The system consists of 4 major components:

1. An INQUIRY component that handles questions regarding students and
courses, such as "When is a course running?", "How much is it?" "Who
is in it?" and so forth. This component also gives management information
for marketing decisions.

2. An UPDATE component that allows changes of any information regarding
students or courses, for example change of course location or status, or
change of student address.

Appendix A

MOUSE 0
I

STUDENT1
COURSE

I
I

I I 1

Figure A.14 Major functions of the system

TERMINAL

I

TERMINAL

TERMINAL

I

TERMINAL

INQUIRY -

3. A INVENTORY CONTROL comuonent that handles the instructions to the

-

warchouse for shipment of material, reordering of material if a minimum is
reached and keeping the appropriate financial data for material.

I I I I
UPDATE

4. A REPORT GENERATION component that handles all requests for print-
out. Reports such as class enrollments, confirmation, attendees by course, by
geography, and so forth are handled here.

5. To make all his easy touse, all conversation with theuser is via MENUS, and
choiccs on these menus is by use of a mouse.

INVENTORY
CONTROL

All of the student and course information will be kept on a disk.

REPORT
GENERATION

Functional Specification

4. MAJOR OBJECTIVES

INQUIRY will allow immediate response to questions on the phone such as "How
many students enrolled in a course." It will also allow fast management decisions to
be made since inquiries such as, "How many students attended course X in the past
year?" can be answered immediately.
UPDATE[... detail]
REPORT GENERATION will allow immediate written confirmation to be sent to the
student, a report on attendees to be printed for the instructor ...
[General description of how each component solves specific problems.]
The new system will improve [do not use 'affect'] the work of the following people:

Mr. Strawman will have a terminal and a printer in his office. He will be able
to access all course data, student data, enrollment data, and revenuelexpense data.
He will not be able to change student or course data though. He will automatically
get a report after each course on ... a report weekly on ... [and so forth,]

Ms. Accountant will have a terminal in her office. She will be able to She
will therefore no longer need the Klunker adding machine in her office. She will
be able to ask for financial information on line ... She will be able to ask for
financial reports ... which will be printed on the printer in the main office area.

Mr. Warehouse Supervisor will be able to This means that only two people
will be needed to staff the warehouse.

[List all the people that will be involved.]

5. SPECIAL SYSTEM REQUIREMENTS

Although no electronic communication is required, Brand X hardware and VSM
operating system can easily be updated with CEDNET computer-to-computer commu-
nication. This would allow another comDuter in another location of the country to store
local information and communicate it to Rattan.

The present GONG word processor files will be converted to Brand X word
processing format by XYZ.

Performance

Although the ABC Requirements Document asks that "The system respond to every
input in 5 seconds," XYZ cannot guarantee this. Even the fastest computer ever
manufactured will under certain circumstances take longer than 5 seconds to respond
tocertain requests. The new system will respond to 95% of the requests within 5 seconds
in a 24 hour period, and the main design objectives will be user friendliness and system
response. As per the requirement that the ABC system suffice for the next three years:
The ABCsystemwill be able to handle up to 25 on-line inquiriesper minute. The system
will keep history on up to 10000 students, 100 courses and keep track of 200

278 Appendix A

registrations at any time. This wouldmore than handle the present requirement of loon-
line questions, 2000 students and 100 registrations. The anticipated growth of 20% per
year for the next three years will also be handled. Although only 10 simultaneous users
are anticipated, the system will handle up to 16.

6. COMPONENT DESCRIPTIONS

Menu System

When the computer is turned on, the ABC system automatically starts up and the
following 'MAIN MENU' appears:

f ABC SYSTEM MAIN MENU \
WHICH FUNCTIONS DO YOU WISH?

1. REGISTRAR

2. COURSE ADMINISTRATION
3. FINANCIAL
4. MANAGEMENT
5. WAREHOUSE
6. OTHER
7. QUIT

USEUP/DOWNARROWTOHIGHLIGHTYOURCHOICE, HIT THERETURNORUSEMOUSE
TO HIGHLIGHT YOUR CHOICE, THEN PUSH MOUSE BUTTON PUSH HELP KEY FOR
EXPLANATIONS 1

Flgure A15 System main menu

The error messages are:

OU HAVE MOVED OUT OF RANGE if user tries to move too low or too hig
INVALID INPUT if a key other than RETURN is pressed [and so forth for
all messages that you can foresee].

The HELP messages that will appear when the HELP key is pushed are:

HIGHLIGHTED HELP MESSAGE \
NUMBER

1. Do Registrar's functions
2. . .. etc. 1

Action taken when '1 ' REGISTRAR functions are chosen:
Registrar Main Menu Appears

Functional Specification 279

REGISTRAR FUNCTIONS \
1. INQUIRE ON A COURSE
2. INQUIRE/CHANGE STUDENT INFORMATION
3. ENROLL/CANCEL A STUDENT
4. QUIT

USE EITHER UP/DOWN ARROW TO HIGHLIGHT CHOICE THEN RETURN, OR MOVE
MOUSE TO HIGHLIGHT, THEN PUSH BUTTON ON MOUSE PRESS HELP KEY TO
GET HELP ON HIGHLIGHT ITEM J

Figure A.16 Registrar main menu

Functions allowed when student phones registrar:

Data. Verbal over phone, or mailed in Inquiries handled:
Location, dates of courses, number enrolled/maximums, cost, skills taught,

Instructor name, Previous knowledge required.
Responses given. Course locations, dates (next 6 months), number en-

rolled (next 6 months), maximum allowed, cost, volume discounts, skills taught
list (max. 25 lines), instructor name (next 6 months), Previous knowledge
required (max. 25 lines) status (running or cancelled)(next 6 months).

Changes. Update name, address, payment information of student, cancel a
student from a course.

Register a student. Obtain and enter name, address, course (by number),
payment information.

Performance. Must handle up to 3 calls per minute.
When '1 ' 'Inquire on a Course' is pressed on Registrar Main Menu, the INQUIRE ON
COURSE menu appears:

INQUIRE ON A COURSE \
ENTER AS MUCH OF THE FOLLOWING INFORMATION AS
POSSIBLE. USE UP OR DOWN ARROW TO GO TO A FIELD
THEN RETURN,
OR MOUSE TO GO TO A FIELD THEN PRESS BUTTON
WHEN FORM IS ALL DONE.

COURSE NUMBER
COURSE TITLE
COURSE LOCATION
COURSE DATE (OR RANGE)
L /

Figure A.17 Inquire on course menu

280 Appendix A

[Thus all of the possible system interfaces for the Regisuar function are addressed.]

Action Taken When '5' WAREHOUSE functions are chosen:
Warehouse Main Menu Appears

WAREHOUSE FUNCTIONS \
1. INQUIRE ON INVENTORY/COURSE MATERIAL
2. CHANGE INVENTORY/COURSE MATERIAL INFORMATION
3. I S S U E MATERIAL FOR A COURSE
4. QUIT

USE EITHER UP/DOWN ARROW TO HIGHLIGHT CHOICE THEN RETURN, OR MOVE
MOUSE TO HIGHLIGHT, THEN PUSH BUTTON ON MOUSE PRESS HELP K E Y TO GET

HELP ON HIGHLIGHTED ITEM
J

Figure A.18 Warehouse main menu

Item X will be reordered at the beginning of eachmonth if amount on hand is lower than
the number specified in '2' CHANGE INVENTORY/COURSE MATERIAL INFOR-
MATION onthis menu. [Detail all the user menus, commands,messages,inquiries, and
reports.]

Data Kept by the System

Course Data. Course title, date, number enrolled, material required, loca-
tion, instructor, status (running or cancelled).

Student Data. Name, address, phone, SIN, course number of course(s)
enrolled in, coursenumber of past course(s) enrolled in, payment method flag, bill
to address, amount owed to us.

Materal Data. [Detail all data items kept.]

7. OTHER DELIVERABLES

Documentation

User's guide. Shows all the appropriate users how to sign into the system, use
their menus, do their work, respond to error situation, and sign off the system. It is
divided into sections, one for the Regisuar, one for the Administrator ...

The User's Guide will beuseful for two areas: First, as a learning tool since all the
commands will be presented in the order that the user will see them in hisfher work
situation. Second as a reference since at the end of the guide all the commands and
messages will be presented alphabetically. Following is the table of contents (not final):

Functional Specification

1.0 Registration
1.1 Sign into system
1.2 Calling up a Course
1.3 Registering a Studcnt

6.0 Warehouse
7.0 Manager
8.0 Accounting

15.0 Reference of all Commands
Indexes

Training

Registrar's Course. This will be a five day course, teaching three registrars
how to get on the sy stem, use all their commands, handle any problem situation, and sign
off the system.

Modules (not Einal)

1.0 Registration
1.0 Signing on the System
1.1 Registrar Main Menu
1.2 Handling Course Inquiries
1.3 Handling Student Information Inquiries ... etc.
2.0 Errors, Problems and Questions
2.1 Error Messages ... etc.

Warehouse Course. This will be a two day course for two warehouse
personnel ... etc.

8. SPECIFICATION CHANGES

Since changes that are requested after the Analysis Phase can be costly and can cause
delivery delays we propose the following change control procedure:

We will form a "change control committee," consisting of at least one person
from ABC (can be the project coordinator), the XYZ Project Manager. All changes
must come to the PT through the user change person. Each week, the committee meets
and all changes are presented to the PM. XYZ should prioritize the changes from a
rating of "critical" to "desirable." The PM then takes the changes to the technical
members of the PT, who classify thechanges as "easy" or "hard." ThePTwillusually
implement as many of the easy changes as possible.

A hard change usually involves a large cost-in dollars of effort and/or project
delay. The PT will calculate this cost and will present it to ABC, usually at the next

282 Appendix A

meeting, perhaps sooner if it is a "critical" change. ABC must give written go-ahead
to any change, accepting the impact such as a price raise or delivery date slip.

9. ACCEPTANCE

Acceptance will be done as follows: Aset of tests, and the expected results of these tests
will be written up. These tests will be designed to demonstrate step by step all the
functions that the system is supposed to do. These tests, called the ATP (Acceptance
Test Plan) will be approved by ABC before acceptance. As each test is run, ABC will
sign off all successful tests. Only failed tests are repeated. If all the tests work, the
system will be accepted and payments by ABC to XYZ will be made as agreed.

10. USER AND PROJECT TEAM INTERFACES

ABC and the Project Team must communicate at both technical and management
levels. At a technical level the PT needs fast and accurate answers to technical
questions. These questions do not stop at the Analysis Phase, they in fact get more and
more complex as the project proceeds. ABC should appoint at least one person to be
available to answer questions. This personmust know the user's business well, and have
authority to make decisions for every department that the proposed system will affect.
We suggest Ms. Jones as the ABC project coordinator, to be in constant contact with
XYZ's Jim Flynn.

ABC and XYZmust communicate at management level as well. This will be done
by at least the ABC project coordinator and the XYZproject manager. They willdiscuss
issues such as budgets, schedules, major changes or people problems. We suggest
ABC's Mr. Administrator to be in contact with XYZ's Project Manager.

11. USER'S RESPONSIBILITIES

ABC must provide test data with which to test the system by Sep-
tember 1, 1991.

ABC will write chapter 3 of the User's Guide by October 12,1991.
ABC will return within one week (if approved) the following docu-

ments (Dates tentative)

ATP October 1, 1991
User's Guide October 30, 1991

This Functional Spec must be returned within two weeks.

12. TERMS, CONDITIONS AND ASSUMPTIONS

[Can be duplicated from the proposal]

Design Specification

DESIGN SPECIFICATION

1. TITLE PAGE, TABLE OF CONTENTS

DESIGN SPECIFICATION
FOR AMALGAMATED BASKETWEAVING COURSES
BY
XYZ SOFTWARE COMPANY
AUTHOR: GEORGE SMITH
JULY 28,1990
VERSION 4.0
[On next page, Table of Contents,
section names with page numbers.]

2. SYSTEM OVERVIEW

Amalgamated Basketweaving Courses Ltd, gives different types of weaving courses.
They have classes in 10 major cities in North America, each course is presented at least
every three months. Students come from all over the country, but can register by
phoning headquarters (collect) in Rattan.

Presently, there are major problems in registration, course administration and
warehousing, and useful data to make management and marketing decisions is not
available.

To solve this problem, XYZ Software Company will implement a system consist-
ing of hardware and custom software that will do the following:

Allow online response to questions from students, registrars, managers, financial
people, etc, regarding students and courses.

Allow online course registration.
Automatic notification of students, instructors, and appropriate ABC personnel

when a course runs, and after a course runs.
Automatic invoicing of students, and accounts receivables/payables.
Automatic notification of warehouse to ship materials for a course, as well as

inventory control with automated material reordering.
Allow on-line or on printer management report generation regarding course

attendance by date and geography.

3. HARDWARE/SOFTWARE

CPU Brand X WAX Model 800
4 megabyte RAM
2 RD50 (75 megabyte) fixed disk drives
1 TX51 streaming tape drive

Appendix A

1 MN terminal controller
2 LP300 Printers
10 TV440 Terminals with appropriate cabling
VSM Version 5.0
Datatrees data base management system
PASCAL V3.0
SETDEC development environment (CMS, MMS, DTM, SCA, with PAS-
CALLSE)

4. DESIGN PRIORITIES

User friendliness, response, cost, time.

5. DESIGN DIAGRAMS AND MODULE
DICTIONARY CONVENTIONS

The design method used is the hierarchical breakout method. In the top level (see
Section 11) each box represents a major component. Each major component is num-
bered N.0 where N is an integer. The medium levels of design (see Section 12) break
out each top level module into functional components. In the first level of MLD the
boxes are numbered N.l, N.2, where N was the number on the appropriate box of the
TLD.

On the design diagrams, a solid line will (usually) represent control flow (proce-
dure call). The dotted arrows represent data flow; the direction of the arrow is the
direction of the parameters passed. The arrows are labeled with the parameters to be
passed.

Please follow this convention as you break down further in module design.

6. MODULE NAMING CONVENTIONS

Modules are named as follows. Every module begins with the letter 'A' for the ABC
system. The next character represents the TLD module name: 'M' for MENU, 'I' for
INQUIRY, 'U' for UPDATE, 'W' for WAREHOUSE, 'R' for REPORT. The next two
characters represent the second level breakout module name, followed by 4 characters
for the general function. For example, the module name 'AMSTMVCR' is constructed
as follows:

A ABC system
M MENU component
ST start function at second level
MVCR - move cursor

At higher levels, fill the module name with '0's.

Design Specification

7. PARAMETER PASSING AND DATA DICTIONARIES

All parameters are passedvia procedure calls. They must be passed in the order that the
subroutine will use them. All parameters arevariables (no indirect or address references
please). If a parameter need not be passed in a particular call that would normally take
the parameter, use ',' as place holder. All parameters used must appear in the Data
Dictionary (Section 12).

8. ERROR HANDLING

Module AMEOOOO is a system wide error handler. If an error is detected anywhere in
the system, exit from your modulewith global variablesERR1 throughERR5 signaling
context to AMEO000. For example:

PROCEDURE ERROR; {error trap)
BEGIN

ERR 1:= 'AMXYABCD'; {name of my routine)
ERR 2 : = ' 2 ' ; { sever i ty code)
ERR 3 : = ' R ' ; {wish return)
ERR 4 : = 'RESUME'; { l a b e l to return t o)
ERR 5 : = -1; {return with code)

, END;

9. STRUCTURED PROGRAMMING STANDARDS

Breakdown your module until there are approximately 50 to 100 executable statements
per submodule.

Attempt to use the structured constructs IF, FOR, CASE, WHILE, UNTIL, or
named Procedure. Avoid GO TO, except for an unconditional exit.

Entry must be at the calledstatement. Exit must beusing asingleprocedure named
'RETURN. '

Comment lines for routine description, author name and so forth are available in
a 'template' program in account [SYSTEM] file TEMP.PAS. You must start with this
and fill in the appropriate code.

10. PROGRAMMING TOOLS

PASCAL V3.0 is available, with all the appropriate tools, to code the project.
The PASCALLanguage Sensitive Editor is available. Call it by ... Using this LSE

will make coding easier and standard in format. For information on how to use this tool
see Document ...

An automated testing tool that allows you to predefine a set of inputs to your
program as well as the expected outputs is available. DTM will allow you to repeat
standard tests, especially in batch mode. For information on how to use this tool see
Document ...

All sources should be kept in the CMS library [CMSIyour name.SRC. CMS will

286 Appendix A

keep your sources, track the changes, and prevent in advertent erasure. For informa-
tion on how to use this tool see Document ...

There is a wealth of source subroutines for parameter handling, 110, and so forth
in [PAST]LZB.PAS. Laok to see if any of these will do some/all your job and use them
if at all possible.

11. TOP LEVEL DESIGN

MOUSE 0
TERMINAL TERMINAL

STUDENTI
COURSE PRINTER cS

Figure A.19 Major functions of the system

The general functions to be performed by the five major components are:
Menu

Automatically calledwhen thesystem isstarted. It handlesallmouse input, and behaves
as the overall system control module, receiving control when nothing else is active. It
handles all the errors throughout the system, on-line help when the HELP key ispressed,
and activates the general INQUIRY, UPDATE and REPORT GENERATION pro-
grams. It also shuts the system down.

Inquiry

[Fill in the detail.]

Design Specification

12. MEDIUM LEVEL DESIGN

MENU Component

MENU

START DRAG CLICK ACTION ERROR

Figure A.20 Menu second level of breakout

You may consider breaking it down further. Example of third level breakdown is
found in Figure A.21.

START CUCK ACllON
AMCOMM A M A O O W

I

MOVE CALL C A U CALL
CURSOR SUBMENU INQUIRY UPDATE

ERROW ~1

Figure A.21

288 Appendix A

Module AMOOOOOO gets control when the operator types ABC at command level. (May
be automatically started by a LOGIN file.) It first calls AMSTOOO to open all system
files and do some initializing. When control is returned AMOOOOOO displays the main
menu, then waits for an asynchronous interrupt from the mouse or the keyboard. On
mouse interrupt, control is passed to AMDROOO with the position of the mouse.
AMDROOO highlights the appropriate entry and returns. If the mouse button is pressed,
control goes to AMCOOOOO with the status of the menu (highlighted item). AMCOOOOO
either calls a sub-menu or takes some other indicated action. [And so forth until all the
general functions of the modules are detailed.]

MODULES:

Module name: AMSTOOO
Called by: AMOOOOOO
Subroutines called: to be filled in by programmer Input parame-
ters: none
Displays: none
Returned parameters: if no errors exit code 0 if error, exit code
is error number
External variables used: (list)
Files used: STUDENT.DAT (open), COURSE.DAT (open),MATERIAL.DAT
(open) , SYSTEM. DAT (open)
Functions: Open the files STUDENT.DAT, COURSE.DAT,

MATERIAL.DAT, SYSTEM.DAT. If error, exit withcode...
Initialize variables.. .
Check for abnormal shutdown by checking Record 1 of

SYSTEM.DAT file. Byte 1 = -1 means propershutdown
(See module AM SHUTOO). If not -1, do following ...
On error exit with error code ...

Ensure correct status of
Mouse by checking ...

On error exit with error code ...
Screen by ...

On error exit with error code ...
Network by ...

On error exit with error code ...
Normal exit error code 0

[The following sections were filled in by the programmer.]

Dictionary 1. Entries added:
1.1.1 AMSTSHCK Handle warm/cold start
1.1.2 AMSTHWCK Check hardware status
1.1.3 AMSTOPFI Open files
1.1.4 AMSTINVA Initialize variables
1.1.5 AMSTMENU Present main menu
1.1.6 AMSTERRO Handle error return

Design Specification

Second level module breakouts:
1.1.1.1 AMSTSHOP Open SYSTEM.DAT f i l e and check r e c o r d 1
1.1.1.2 AMSTSHWM System warm s t a r t h a n d l e r
1 .1 .1 .3 AMSTSHER System c o l d s t a r t h a n d l e r
1.1.1.4 AMsTsHCK e r r o r t r a p p i n g and r e t u r n

1 .1 .2 AMSTHWCK ... [e t c . f o r a l l t h e 1 . l . n modules.1

[End of i n fo rma t ion i n s e r t e d by p r o g r a m e r . 1

Module name: AMDROOO
C a l l e d by: AMOOOOOO
Subrou t ine s c a l l e d : t o b e f i l l e d i n by p r o g r a m e r I n p u t parameters :
mouse p o s i t i o n , i n t e g e r 0-9 Di sp1ays : t u rn a p p r o p r i a t e l i n e t o i n v e r s e
v i d e o
Returned pa rame te r s : i f no e r r o r s e x i t code 0

i f e r r o r , e x i t code is e r r o r
number . . .

E x t e r n a l v a r i a b l e s used: (l i s t)
F i l e s used: none
Func t ions :

C a l c u l a t e b i t map p o s i t i o n of menu e n t r y
I f i n v a l i d p o s i t i o n e x i t with. e r r o r code ...

Turn e n t r y t o i n v e r s e v ideo
On e r r o r e x i t w i th e r r o r code ...

Normal e x i t e r r o r code 0

[And so forth until all the medium level modules are detailed.]

Figure A .23

13. MODULE DICTIONARIES

As you progress through the design, build the following three dictionaries:

Dictionary 1. Numerically ordered by component number, gives the routine
name and a short description for every module. For example:

0.0 A0000000 Amalgamated Basketweaving System
1 .0 A M O O O O O O Menu system
1.1 AMSTOOOO S t a r t and d i s p l a y 1st menu
1 .2 .1 AMDRMVCR Move c u r s o r depending on mouse move
1 . 5 AMEOOOOO System wide e r r o r and h e l p message

Dictionary 2. Alphabetically ordered by component name, gives the routine
number and a short description for every module. For example:

A O O O O O O O 0 . 0 Amalgamated Basketweaving System
A M O O O O O O 1 .0 Menu system
AMSTOOOO 1.1 S t a r t and d i s p l a y 1st menu
AMDRMVCR 1 . 2 . 1 Move c u r s o r depending on mouse move
AMEOOOOO 1 . 5 System wide e r r o r and h e l p message

This can easily be created from Dictionary 1 using a sort program.

Appendix A

Dictionary 3. Alphabetically ordered by short description, gives component
number and the routine name. For example:

Amalgamated Basketweaving System 0.0 AOOOOOOO
Menu system 1.0 AMOOOOOO
start and display 1st menu 1.1 AMSTOOOO
Move cursor dep. on mouse move 1.2.1 AMDRMVCR
System wide error and help message 1.5 AME00000

This can also be created from Dictionary 1 using a sort program.
You can use these dictionaries during design,programming, or subsequent testing

and maintenance-anytime you need to find a module, its calls or its parameters.

The (common) data dictionary (CDD).TheVSM CDD will beused to storeall
data information. Enter into it all new parameters that you define. All the parameters
that are shown on the data flow arrows are already entered. For each data item
(parameter, file element) enter into the CDD the name, type, length, restrictions, and the
modules that use it.

14. FILES AND TABLES
MAIN FILE ORGANIZATION

One record
per student
enrolled
on a course
not yet run

STUD-NO.

ADDRESS

COMPANY
CRS-NO Repeated per
PAYMENT crs registered I on

One record
per item

One record per
unique course1
locationldate

CRS-NO
COURSE CRS NAME

DESCRIPTION
PRICE
MAT-NO Repeated per

item reg'd

One record
per run of a course

MAT-NO. CRS-NO.

QNTY ON HAND LOCATION
REORDER QNTY INSTRUCTOR
LOCATION MAX ENROLLABLE
SUPPLIER ADDR STUD-NO. Repeated for

each student

Figure A.24

Design Specification

COURSE.DAT (RMS f i l e , location ... Primary Key ...
Secondary Key(s) ...

U s e : [a l l modules t h a t u s e a f i e l d from t h i s f i l e]
FIELD NAME TYPE SIZE DESCRIPTION/COMMENTS

NO.
01 CRS-NO A 7 Course no (Primary Key)

02 CRS-NAME A 30 Course name (Secondary key 1)

Special Comments: Each course w i l l b e assigneda uniquecoursenumber,

placed i n the COURSE-NO f i e l d i n t he COURSES.DAT f i l e record. I f a

student r eg i s t e r s on a spec i f ic course, t he f i e l d COURSE-NO i n the

record for t h a t student i n the STUDENTS.DAT f i l e w i l l contain t h i s

course number. The system uses these f i e l d s t o cor re la te t he STUDENTS

and COURSES f i l e s .
[d e t a i l as above.]

MATERIALS.DAT

HISTORY.DAT

[and so on for every file.]
If you must define a new file (discouraged!) or table, show Organization (e.g.

RMS), attributes, record length, keys, and what modules in the system use the file.
Include arecord map that details each field name, length, restrictions, and so forth.

Indicate if a field has a specific system purpose.

Appendix A

ACCEPTANCE TEST PLAN

1. TITLE PAGE

As usual

2. TABLE OF CONTENTS

As usual

3. INTRODUCTION

The following tests are designed to dcmonstratc to ABC that the computcr system
providcd by XYZ functions fully as promised in the Functional Specifications. IE all of
these tcsts function successfully, ABC accepts the systcm.

4. TEST SETS

The tests arc organized into the following sets:
MENU tests
INQUIRY tests
UPDATE tests
WAREHOUSE tests
REPORTS tests

These sets will test the ABC system in h e samc order as dcscribcd in thc FS, Sections
6.1 through to 6.5.

The tests are organized into groups. Thcse groups facilitate setup of the testing: a
single sctup should suffice for all thc tcsts in the group.

Certain items are listed as tested by 'Inspection.' Thcsc arc the file sizes, certain
error messages, and all of the documentation. Tcsts indicated as 'Analysis' are calcu-
lations done tocheckformulas. This will be donc by ABC together withXYZ witheach
appropriate test.

5. MENUTESTS

5.1 Main Menu
Purposc:
FS Relerencc:
Setup:

Action:
Rcsult:

to dcmonstratc ABC System Main Menu
Sec. 2.1, par. 3
CPU wilh ABC software installed, 2 terminals on-
line
Powcr up the computcr
(Within 120 seconds) 2 terminals display MAIN
MENU of format FS Scc. 6.1

Acceptance Test Plan

Action:

Action:

Successful Completion Date:
Client Signature:
Comments:

5.2 Registrar Menu

Purpose:
FS Reference:
Setup:

Action:
Result:
Action:

Action:

UPDOWN arrow keys move highlight of items 1 to
17 up and down ...
Going up beyond item 1 and down beyond item 7
produces error message...
Pressing HELP key on item 1 produces HELP
message ... Pressing HELP at other items produces
messages as per FS Sec. 10.1 ...
... etc.moving mouse up and do wn...

to demonstarate ABC System Registrar Mcnu
Scc. 3.1, par. 3
10 test studcnts on history file, 5 test courses on
course file, each course with 3 test students regis-
tered on it.
on MAIN MENU select ' 1 . REGISTRAR'
REGISTRAR MENU of format FS sec. 6.2 appears
UPIDOWN arrow keysmove hilite of items 1 to4 up
and down.
Going up beyond item 1 and down beyond item 4
produce error message ...
Pressing HELP key on item 1 produces HELP
message ... Pressing HELP at other items produces
messages as per FS Sec.lO.5 ...
moving mouse up and down ... etc.

Succcssiul Completion Date:
Client Signature:
Commcnts:

5.3 Similar explanation of each Menu Test.

6. INQUIRY TESTS

[Detail as required.]

Appendix A

7. UPDATE TESTS

7.1 EnrollICancel a Student

Purpose: to demonstarate ABC System capability to register
and cancel a student.

FS Reference: Sec. 3.1, par. 3
Setup: test course with title 'BASKETS' number B-123-5

is on the COURSE FILE
Action: on REGISTRAR MENU select '3. ENROLL/

CANCEL A STUDENT'
Result: FORM of format FS Sec. 6.6 appears etc.
Successful Completion Date:
Client Signature:
Comments:

8. OPERATION TESTS

8.1 System Backup and Restore

[Detail as required.]

9. MANAGEMENT TESTS

9.1 Set-up of Files and Accounts

10. CLIENT ACCEPTANCE

ABC and XYZ agree that the tests that were run in the ATP detailed here were
successfully completed and verified by both parties:

ABC SIGNATURE:
XYZ SIGNATURE:
WITNESS SIGNATURE:

DATE:
DATE:
DATE:

References

SECTION 1 BOOKS AND ARTICLES

1. GOLUB, H., 1967. Laws and Lore of Computerdom According to Golub. McKinsey &
Company: London.

2. GILDERSLEEVE, T. R. 1974. Data Processing Project Management. New York: Van
Nostrand Reinhold.

3. BROOKS, F.T. 1975. The Mythical Man-month: Essays on Software Engineering.
Reading, Mass.: Addison-Wesley.

4. PETERS, T., & WATERMAN, R. 1982. In Search ofExcellence. New York: Harper & Row.

5. M m m , P. 1973. Managing a Programming Project. Englewood Cliffs, N.J.: Prentice
Hall.

6. WARNIW, J.D. 198 1. Logical Construction ofPrograms. New York: Van Nosirand Rein-
hold.

7. OUR, K.T. 1977. Structured System Development. New York: YourdonPress.

8. Booch, G. 1986. Object Oriented Design. IEEE Trans. on Sofhvare Engineering SE-12,
(February) No. 2.

9. Nnssl, I., & SHNEIDPRMW, B. 1973. Flowchart Techniques for Snuctured Programming.
ACM SIGPLAN Notices 8,8, (August) 12-26.

10. YAU, S., & TSAI, J. 1986. A Survey of Software Design Techniques. IEEE Trans. on
Software Engineering SE-12,, June, No. 2 .

11. Yo-N, E., & CON ST^, L.L. 1979. Structured Design. Englewood Cliffs, N.J.:
hentice Hall .

12. BERGLAND, G.D. 1981. A Guided Tour of Program Design Methodologies. Computer,
October.

13. JENSEN, R.W. 1981. Structured Programming. Computer, March.

296 References

14. Wmmo, G.M. 1971. The Psychology of Computer Programming. New York: Van
N o s m d Reinhold.

15. Born , B.W. 1981. Soffware Engineering Economics. Englewood Cliffs, NJ.: Prentice
Hall.

16. ROETZHEIM, W. 1986. Proposal Writing for Data Processing Professionals. Englewood
Cliffs, N.J.: Prentice Hall.

17. ~ ~ ~ A ~ O N A L Busms MACHINES. 1967. Management Planning Guide for a Manual of
Data Processing Standards, White mains, NY

18. GENERALELB~WC CO. 1986. Software Engineering Handbook. McGraw-Hill.

19. GOLSTEIN, R. C. 1985. Database Technology and Management, John Wiley & Sons.

20. STEVENS, W. P., Myers, G.J., &Constantine, LA. 1974. Siructured Design. IBM Systems
Journal, 13:2,115-139.

21. BIANCHARD, K.H., &JOHNSON, S. 1982. The One Minute Manager. New York: Morrow.

22. KIDDER, T. 1981. The Soul of a New Machine: New York, Avon.

23. MARTIN, J. 1977. Compuler Data Base Organization, 2nd ed. Englewood Cliffs, N.J.:
Rentice Hall.

SECTION 2 COMPANY NAMES AND ADDRESSES
2.1. D~oi-~AL EQUIPMENT C m . Maynard, Mass. (or any office) VMS Product Codes: CMS,

QX007. MMS, QX500. SCA, QXZB2. PCA, QX119. DTM, QX927 DECSPM,
QLA82A9. LSE, QX057. DECDESIGN, QAYFDAAHS

2.2. ECELERATOR, INDEX TECEINOUX~Y CORP. One Main St., Cambridge, Ma.

2.3. Focus, J .mmwno~ BUILDERS k., 1250 Broadway, New York.

2.4. POWERHOUSE, COONOS k., 3755 Riverside Dr., Ottawa, Canada, or 2 Corporate Place,
Peabody, Ma.

2.5. Gordon Group, 1425 Koll Circle, Suite 102, San Jose, CA. 951 12

2.6. Oraqcle Corp., 20 Davis Dr., Belmont CA 94002.

SECTION 3 EVALUATIONS OF SOFIWARE PACKAGES
3.1. Soft Decisions, Mill Valley, Ca.

3.2. John J. Rakos & Assoc. Consultants Ltd., Ottawa, Ontario, Canada.

3.3. Francis M. Webster, Survey of Project Management Sofhvare Packages. Project Manage-
ment Institute, Drexel Hill, PA. (published yearly)

Acceptance Test Phase, 124Ll23
checklist. 122
conversions, 251
fixing problems, 122
maintenance project, 251
making systems fail, 122
milestones. 120
Project ~e~deFres~onsibility in. 216
Proiect Manarrer remmsibilitv in. 21 . .
problem types, 123-
real time project, 249
resources, 122
small oroiect. 250
war sioriL, izo, 123
see also Acceptance

Acceptance Test Plan. 93-97
checklist. %
example. 292
functions vs. tens (table), 95
in System Test phase, 117
tests, 94.95
example, 292

user written, 97
using Functional Specification. 94
see also Acceptance Test Phase

Acceptance, 10,47,64,274,282,294
4GL, 181, 184
demonstration, 94
planning, 91
pro~ect team role, 94
see also Acceotance Test Plan

Accomplishm&t (see Earned value)
Activity
reducing duration. 152
assigning, 221 '

Actuals tracking. software tools, 196
with hudrret and earned value

(graph); 231
in Status report, 239

Adding manpower. 4
Advantages, competitive, 16.46.271
Alternatives, proposing, 47, 274
Analysis phase, 56-69
4GLin, 176
CASE tools, 66, 186
conversions. 251

effon in. 86
estimating, 136
maintenance project, 251
milestones. 56, 68
Proiect Leader res~onsibiliw in. 215
Pr4ect Manager &sponsihiiity h, 213
real time project. 247
small 250

5 top level design. 56. 69
war stories, 57
work breakdown. 32
Yourdon method. 58. 59 . - . - -

Analysis pmposal. 9. 40
Artemir, 203-204
Assumptions. 40. 47. 268

Baseline
documents. 64
plan, project managrment
software. 200

Bottom up design, 73
Budget (see Costing a project)
Build versus buy. 74

Cancelling a project, 4-5
CASE, 186- 188
analysis tools, 66, 186
choosmg, 187
consistency checking tools. 66
DFD in. 186
programming. 106
project management tools. 190207
promtyping tools. 165. 167. 187
RDBMS, 188
system test, 114
toolkit. 187

Case study example of a
project. 255-294

Changes, 64
4GL. 183 -. - - -

control committee, 64, 268
ta Functional Specifications, 281
maintenance, 251
request form. 125
requirements. 91

Checklists

Acceptance test plan, %
acceptance. 122
operation. 126
programming, 101
project go-ahead, 22

Closing the sale. 45
CMS
design, 89
programming. 107
system test, 114
tracking changes, 105

COCOMO. 129. 130. 204
Code (see Programming)
Cognos. 170. 187
Communication, 235-244
Project Manager role in, 212
see also Meetings, Reviews, Reports

Compatibility requirement, 16. 259
Completion
criteria, 4, 5
forccast date, 229
forecast cost, 229
see also Estimating, Scheduling

Computer Aided Software
Engineering (see CASE)

Configuration management (see CMS)
Consistency checking tools, 63
Contingency planning, 27. 28. 68
scheduling, 157

Conkacts, 50-54
cost plus, 53
fixed price, 53, ,
terms and condltlons, 53

Control, 5 (see also Earned value)
cost, 197
by monitoring, 226-233
project management software
tools, 1%

meetings. 235-244
nsk, 28
using Gantt, 1%
see also Monitoring, Meetings

Conversions, 250251
3GL to 4GL, 185
phases, 251
problems. 250

Index

as project, 250
Copyrights, 108
Cost benefit, 46
graph. 272

Costing a projea. 36
with earned value and actuals
(graph), 230
in S m s repon. 239

forecasting final cost, 229-232
overrun problems, 229
in Proposal, 272
softwaretuols, 194. 195. 197. 199
in Status report, 237, 240
see also Estimating

Crashing, 152
Critical path, 36
changing, 147
Gantt. 158. 193
PERT, 146, 192
softwaretools. 193. 195

Cutover, 126

Data diaionary
analysis tools. 67
in design. 79. 285. 290
in prototyping, 165
use in 4GL. 174

Data flow diagrams, 59, 66
in CASE, 186

Date of completion
(see Completion date)

DBMS, relational. 84
Deadlines, unrealistic, 2 (see also
Estimates by edict)

Debugging tools, 107
DEC estimating techniques. 141
DEC Test Mamger, 108, 114
DECDESIGN. 67
DECSPM, 204-205
Definition phase, 8, 12-28
in4GL, 176
activities. 12
eoals. 12
Froj&t Leader responsibility in. 215
Proiect Manaaer responsibility in, 213
rear time pr~jict. 2Li6
milestones, 12, 54
small project. 250
work breakdown, 31

Deliverables, 47, 63. 273. 280
Departments sharing
resources. 211. 212

Design phase, 10, 70-91
in 4GL. 177
bottom up, 73
conversions, 251
design methods. 70
dictionaries, 78, 284
example. 289

effort in, 86
enhancements, 84
file. 80
maintenance project, 251
medium level, 76, 90, 101
example, 287

meeting, 87, 240

milestones. 70, 97
priorities. 75
Project Leader responsibility in, 215
Project Manager responsibility in, 214
real time systems, 73
review. 240
small project, 250
staffing, 70
standards. 71. 88
structured, 72, 103. 284
team, 87
testing, 84, 91
top down. 72, 103
toplevel. 10, 53, 69, 90, 286
sign off meeting, 241

trade off's, 74
walk-through, 75, 84, 91
meeting. 242

war story. 71
Design Specification, 10, 89-91
example. 283

Developer (see Programmer)
Development
with maintenance. 252
tools, 3
standards, 4

Direct time, 145
Disclaimer, 53
Dividing system up. 70, 76
in 4GL. 189

Documentation
baselines. 64
examples, 255-294
Functional Specification. 63, 280
maintenance guide. 1%
managers' guide, 106
operators' guide. 106
plan, 40, 267
project management software, 198
problem detection, 232
requirements, 16
review meeting, 241
technical, 61. 87
training guide, 106
user's guide, 63. 65. 106
walk-through, 243

Dummy activity, 148
Duration, 145
changing by adding staff. 152

Earned value, 229-232
with budger and aauals (graph), 230
used to forecast completion, 229
software tools. 197
in Status repon, 237. 238

Effort, 145
Elapsed time, 145
End user (see User)
Enhancements
design, 84
in maintenance. 251

Environment requirement, 16. 259
Estimocs, 131
Estimates by edict. 2
Estimating. 128-144
in 4GL, 185

accuracy
in 4GL. 176
after definition and anaylsis. 128
after design. 97

analysis. 136
ballpark, 18
COCOMO, 129, 130
contingencies, 141
DEC methods. 141
disagreements, 141
edicted (see Estimates by edict)
Estimacs, 131
examples. 262-265
experience, 141
forms. 142
formulas, 129, 132-136

in projed management
software, 200, 204

funaion points. 130. 133
granularization, 141
group, 141, 242
lines of source. I30
meeting, 242
milestones, 144
professional judgement. 128
programming, 132-136

complexity, 133
programmer productivity, 134

range. 142
real-world, 19
software for, 200, 204
system test. 110
task detail. 262
techniques. 128
use of gut feel, 142
use of history. 129
using ratios. 140
using work breakdown. 34
versus actuals
Status r e p . 237-239
Post project review. 244

Evaluating projea management
software, 198

Example of projectdocuments, 255
Excelerator, 66, 167, 176, 187
Expense (see Costing a project)

Failure (see Project failure)
Feasability Study, 18
Files, 80-84
in 4GL design, 178
design. 80, 84
example, 290

history. 83
normalizing. 82
optimizing, 82,83

Flex. 187
Float/slack, 147
free float, 147
project float. 148
software tools, 193. 195
total float, 147

Forecasting (see Cost. Schedule)
Formulas, estimating, 129
Fourth GenerationLanguages. 169
advantages, 188

Index

calls to 3GL. 174, 188
case study example. 175
phases. 175
estimating, 176
first prototype. 181
iterations, 182
changes. 183

converting company to, 185
management, 186
project team, 186
user, 186

data dictionary, 174
developer oriented, 170
disadvantages. 188
end user oriented, 170
estimating in, 176, 185
features, 170
in~utforms. 171. 182
iterations. i82 '

menus, 170, 179, 182
outpt forms. 172
performance. 175, 188
phase ratios. 185
phases, 175
Project Leader responsibility in. 218
Project Manager responsibility in, 218
programming language, 174
programmer, 188
project team, 184
prototyping in, 181
qucry, 174
with RDBMS. 187
reports. 173. 182
systems suitable. 188
typical phase durations, 185
used for prototyping. 167, 168

Function points, estimating. 130
Functional Manager (see Line Manager)
Functional organization. 210
Functional Specification, 9, 61-65, 130
basis of user's guide, 65
changes. 64, 232
example, 275
problem detection, 232
outline, 58
sign off meeting. 241
used for acceptance, 94

Gantt chart, 38. 155-159
critical path. 158
drawing, 157
resource Gantt. 159
showing contingency. 157
showing float, 158
software tools. 193
in Sbtus report, 239
used for control. 196

GoMo-go decision, 18, 21, 241
Goals requirements. 15, 257
Graphics (see Pictures)
Growthrequirements, 16, 62, 260, 271

Hardware, 283
Harvard Project Manager. 191, 202
History
files. 83

used in estimating, 129
House analogy. 8

Information
flow in an orgadization, 14
inputs. 14. 25d
outputs, 14

bottom up, 11
module. I05
order, i ll
plan, 101
regression testi g,
releases, 113
testing. 115

I
top down, 112

Interface, user (I ee

I17

User interface)

Kidder. T., Soul of a New Machine, 2:

Line Manager

LSE. 107

M a i d r k e projht management
software. 203-207
versus minicohputer or PC, 206

Maintainability, d
Maintenance, I I
batching changbs, 251
with developmknt, 252
guide. 106 '

Project Managdr in. 212. 222
Meetings. 235-244, 266
avoiding unnwessary. 244
golnwgo decision. 241
location. 240 ,
manaeement. 240-241
miles~one, 2411
project kick-oft, 241
review, 240

status, 235

types, 235
unexpected p blem. 244

Menus 1 4GL's, 170, 1 9, 182
examples. 2781
prototyping. 1&3

MicrosoftProject, 202-203
Milestones, 7, 144
Acceptance phase, 120
Acceptance Test Plan, 70, 97
Analysis phase, 56. 68
Def~ition phase. 12. 54
Des~an phase. 70. 97
me&& 241
Operation phase, 124. 126
Programming phase, 99, ID9
scheduling, 157
System test phase, 118

micompuuir proiect managen
software, 20%-267
versus mainframe or PC. 206

MMS. 108. 115
~ o d d e s , 78
description for programmer, 80
example. 288

design. 101, 288
5 meeting. 242

naming. 78. 284
nnmbe>ng. 7 8
structured. 79

Monitoring a project. 226-233
detecting and solving

problems. 228-233
during development, 232
at end. 233
up front, 232
in Status report, 236

earned value. 229 .--- ~ - - ----

methods. 2 2 j - - ~
people problems, 227, 228
Project Leader responsibility in, 226
Project Manager responsibility in, 226
upper level management role in, 227
user problems, 227
user role in, 227

Motivation. 224-225
Multiple p&jects
management of, 216
project management software. 199

Negotiation. 49, 50-54
oremration. 51
i)riEe, 51
three negotiables, 51

Network diagram (see PERT)
~etworkin~;~roj& management
software, 2M1

'NO', how to say. 22, 216. 253

O B 360 phase ratios, 140
Objectives. 58. 2TI
?ration Phase, 124-127
m 4GL. 184
checkli;t, 126
conversion, 251
maintenance project, 251
milestones, 124, 126
Project Leader responsibility in. 216
Project Manager responsibility in, 215
real time project. 249
small project, 250
warranty. 124. 126

Index

Operators' guide. 106
Optimizing
files. 82. 83
pelfomance. 115

Organization. U)9-219
functional. 210
matrix, 212, 218
Project Manager in, 210

Outlining, software tools, 191,
Output requirements. 16. 259
Overtime. 233

Parallel nm. 93
PCA. 115
People, 209-233
managing by Projen Manager,
problems, 227, 228

Peters. T., In Search of
Excellence. 210, 224

Performance
4GL. 175. 188
file design, 80
lack of, 4
requirements, 15, 259, 277

Personal Computers
used to schedule, 159
software, 200-203
versus minicomputer or

mainframe, 205
Personalities. 223-224
PERT chart. 35-36, 146-155
activity on arrow, 36, 146
activity on node, 149
assigning resources, 150
critical path, 36, 146
dummy activity. 148
duration of pmject, 36
float/slack, 147
node, 146. 150
path, 146
precedence network. 36, 149
precedent. 146
successor. 146
software tools, 192

Phases chart, wver
Phases, 7-11
acceptance, 9
activities, 8
analysis. 8
benefits, 127
definition, 8
design. 9
documents, 8
effort, 8
milestones. 8
operation, 11
plan, 273
programming. 9
prototyping. 166
svstem test. 10
table, see h.sidefronl cover
4GL. 185

Pictures, 61
software tools, 195

Planning. 5. 30-40. 145
baseline (see Baseline)

problem detecting during. 232
in Pmposal. 272
review meeting. 240. 242
revising after analysis, 68
showing progress against, 237
software tools. 191. 195

Politics, 22
Project Manager mle in, 213, 222

200 Post project report. 126. 243
Post project review, 126, 215, 243
Powerhouse. 170
Powerploy. 173
Precedence network. 36, 149
Preliminaryplan. 30, 31, 38, 68
example, 261

213 Primavera, 206
Productivity. 101, 134
in 4GL. I89

Problem detection and correction (see
Monitoring)

Problem meeting. 244
Professional approach. 5
Professional judgement
estimating, 128

Program stubs, 113
Programmer
in 4GL, 217
borrowing, 222
choosina. 222
commu~catiou with user. 217
junior. 223
in large project, 210
module descri~tion for. 80. 104 . .
example, 28s

productivity. 101. 134. I89
resoonsibilities. 217
sekor (sum), 223
skills. 222
in small project, 209
training, 101

Programming phase. 10, 99-109
in 4GI.. 181
CASE lools, 106
checklist, 101
conversion, 251
design diagram, 103
environment. 101
estimating using ratios. 140
estimating, 132.136
language, 107. 285
maintenance pmject, 251
milestones, 99, 109
modules. 104
Project ~ e a d e r responsibility in, 215
Proicct Manager responsibility in, 214
real time project, 248
review meeting. 240
premature, 3
small project. 250
standards. 88
steps. 10i
structured. 78. 102-105, 285
test plan. 104
tools, 89. 285
walk-throughs, l a , 243
war stories, 99

Pmject, 1-2
control (see Contml)
cost, 36, 37, 38

tracking software. 197
crashing. 152
deciding to do, 18. 21
definition, 1
deliverables, 47. 273
example documents. 255-194
end criteria. 1
external, 1, 54
failure reasons, 25

development. 2
end. 4~
small pmject, 249
start. 2

go-ahead checklist, 22
goals, 15. 257
internal, 1, 54, 55
monitoring (see Monitoring a project)
organization. 209-219
phases (see Phases)
planning, 3@40, 46 (see alsoplanning)
Post project review, 126
price (see Project cost)
real time, 73, 74, 246-249
schedule, 37, 38, 39, 266
size, 2
small to medium sized, 2
success, 5
team (see Project team)
lriple constraint, 152
version. 2. 11
very siali. 249-250

Proiecti2. U)5-206
Project Leader. 118
in 4GL, 184. 218
acting as Project Manager. 216
choosing. 222
in large pmject. 210
meeting with team. 236
monitoring the pmject, 226
responsibilities in each
phase, 215-216. 261

scheduling, I51
in small project, 209
skills, 222
supervision amount. 227

Project management
distributed. 24
future. 254

Project management software, 190-207
Artemis. 203-204

control, 196
costplanning, 194, 197, 199
critical oath. 193

- r ~~. -~ -

d%~input, 190
DECSPM. 204-205

earned value, i97
estimating. 200
evaluating. 190, 198-200
feamres. 198
float, 193
future, 254

Index

gaming (what-if?). 195
Gantt, 193
Harvard Project Manager, 191, 202
limits. 194. 199
Macproject, 193
mainframe, 203-207

when IO use, 205
microcomputer (see Personal
Computer)
when to use, U)6

Microsofl Project, 193
minicomputer, 203-207

when to use, 206
mouse support, 200
multi project. 193
networking. 200
PERT. 192
planning. 195
Primavera. 206
Projecr12, 205-206
reports. 195. 2M)
resource planning, 193, 199
search and select, 1%
Timeline, 201-202
Superproject Expert, 37, 191, 192,
200.201

see also CASE
Proiea Manager. 212215
i n b ~ ~ , 184: i 18
acting as Project Leader. 216
change control role. 64
choosing, 221
criteria questions. 253
estimating load. 216
growth. oersonal. 254 . . k functional org&ization, 210
in matrix organization. 212, 213
meeting with team, 236
monitoring the project, 227
multt project duties. 216
people problems. 227
responsibilities, 213-215, 222
in small project, 209
skills. 221
user acting as. 212
visibility, 254

Proiect team. 209-212. 261

change&ntml role. 64
choosing members. 221-223
involvine in decisions. 224
large prGect, 211
meetings. 236
motivaiing. 224
personalities. 223
programmers in. 209
planning, 38
project disqualification doe to,
Project Leader in. 209
see also Project Leader
Project Manager in. 209. 212
see also Project Manager

size, 2
skills, 223
small project, 209
training, 68

hoposal. 9. 30. 4250
analysis, 9, 44
approval, 48
cost plus, 45
development, 44
example, 269
fixed price, 45
informal. 48
internal. 42
manager, 45
negotiation. 49
outline. 45
presenlation, 49
review, 54
RFP, 45
two-phased. 13. 30. 44
war story. 42

Prototyping. 161-167
advantages, 162
analyst role. 162
CASE tools, 165. 167
changes, 162
data dictiona . 165
database. 167
language. 165
menus, 163
method, 162
queries, 165
reports. 164
seven phases. 166
software for. 163
speed, 165
suitable systems. 163, 167
useof 4GL's. 167. 169. 181
use of data dictionary. 165
user interfaces, 164

Pseudocode. 80

Rakos, 1.. wii, 2%
Ratios
estimating phases. 140
4GL phases, 185

Real time system
design, 73
phases, 246-249
requirements, 246
response. 246

Records (see Files)
Regression testing, 117
Relational data base. 84. 86
with4GL. 187. 188

Releases, 113
Reliability requirement. 16, 259
Reonanization. 212
-~~

pian: i~
post project. 116, 243
softwaretools. 164. 173,182. 195.
status (see Status report)

Request for a Proposal, 14, 41
examole. 251

in 4GL. 175
problems obtaining, 161
prototyping. 162
real time, 246

Rwuirements Document.
auihm, 13
contents. 14
exam~le. 257

Reson;ces
additional on a task. 152. 228. 229
allocation. 37. 150

human, i51
nonhuman, 152
software tools, 193

assigning on PERT, 150
assigning tasks to. 151, 221
borrowing fmm other
departments. 211. 212

calendar. software tools, 198
Gantt, 159
levelmg. 151
software tools, 199

planning, 3
sharing, software tools, 193

Response, 62
real time. 246

Responsibilities
Line Manager. 212. 218
Pmjectkader, u)9. 215-216. 218
Project Manager, 209. 210. 212,

213-215. 218
Programmer. 209. 217
user. 64. 217. 219

~eviews.'3. 39
management. 240
meetings, 235, 240 (seealso Meetings)
post project. 126. 215
technical, 240
see also walk-thmuhs -

Risk
anticipating, 23
contingency planning. 27
eliminating. 27
estimating, 141
evaluating, 27
financial. 24
low, mehiurn, high, 26
pricing. 27, 37
quiz. 25-27
reducing. 27, 159
risk management. 18-28
scheduline. 157. 159
situationsr.24
steps. 23
technical. 25

SCA. 114
Schedule, 37. 38
Scheduline. 145-159
effort, I&
Gantt chart. 155-159
milestones. 157
off-schedule problems, 228
announcing slips. 229
showing in Status report. 237
see also Completion date

Index

sohvsre tools. 199
using a PC. 159, 199

Scope, 46, TI1
Selling the next projecS 125
Sim-offs
a&ptance test plan. 243
design, 242
Functional Soecifications. 242
proposal, 48: 54
see also Milestoms

Slips (see Schedule problems)
Small to medium size pmjecL 2
see aho Very small project

Software, project management
(see Project management
software)

SQL. 85
Staff (see Project Tenm)
Standards
design, 71
development, 4

Status meeting, 235
progress. 236
when to hold. 236. 237
Project Leader in, 236, 237
Project Manager in, 236

Status remn. 236. 237
exampl;. 238 .
problem de~ection, 233
showing accomplishment, 237
software tools. 198
when to wire; 236

Steering committee meeting. 241. 266
Structured analysis, 86
Structured design, 72. 86
Suuaured modules, 79, 105, 285
Stubs. program. 113
Subprojects, project management
software. 199

Success (see Project success)
Superproject Erpert. 37. 191. 192,
200-201. 266

Suppon (see Wamry)
System functions
dividinn. 70
exarnpg 259
Functional Spwif~cation, 63
ovetview. 275. 283
requirements. 15

System Test Phase, llCLll8
in4GL. 181
convenion, 251
estimating, 110
maintenance project. 251
milestones, 118
Project Leader role in, 118, 216

Project Manager role in, 214
real time project, 248
small project. 250
test plan, 11 1
tools. 114
war story, 110

Task (see Activity)
Team (see Project team)
Technical writing, 65, 62. 87
Terminology. 48, 274
Terms and Conditions
mtracted. 52, 53
disclaimer. 50
in ~unctional S ifications,
Proposal, 47, E
requirements, 16, 260

Testing
design, 75, 84
doaunentation. 117
independent teker. 118
module test plan. 104
program, 165
regression. 117
result statistics. 105
review meeting, 240
System Test Plan. 111, 118
sign off meeting, 241

tools, 108, 114
Third Generation Languages. 169
Throughput, 62
Time and material (see cost plus)
Timeline, 201-2M
Top down design, 72
Top level design (see Design-top level)
Training guide. 106
Training. 63, 68
in Functional Spxitkatioos, 260
in Proposal, 274
requirements, 16. 260

Trial period. 93
Triple constraint, 152
Turnover. 4

Upper level management
choosing the Project Manager, 221
intelface to, 233
meetings. 235. 240
monitoring project, 227

User
acceptance. lack of. 2
agreement with, 2
communication with programmer. 217
communication problems. 227
defining. 58
documents, 106, 267

getting to end us&, 13
guide, 60, 62. 280
interface
in 4GL. 179
Functional Specification, 61. 282
Requirements. 16. 59, 259

interviewing, 13
monitoring the project, 228
problems, 1. 13, 233
project coordina&. 64
projea disqualification, 21
project I& interfaces, 64
rcsponsibili~ics, 17, 47, 65, 219, 282
sign off (see Sign off's)
understanding, 5 9

Validation. I27
Very small projects, 249-250
failure. 249
phases; 249
programmer in, 209
Project Leader in. 209
Project Manager in, 249
project team in. 209

Wak-throughs. 3
design. 75, 84. 242
egos. 76
programming, 104
see also Reviews

War stories
acceptance, 120
analysis, 54
design, 71
operation, 124
programming. 99
proposal, 42
system test. 110

warranty. 11
length. 125
methods. 125
operation. 124
pricing, 126
requirements, 16

What-if, software tools, 195
Work breakdown suucture. 31-35
example. 263-265
numbering, 32
sohwaretools, 191, 194
task criteria, 32
used to estimate, 34

Yourdon
analysis, 58

