CORPORATE
SOFTWARE PROJECT
MANAGEMENT

Bt rs by - oo anig T
it hash (o Bcliy sl e

abpir kT (CAm BNSTTI
P Ay B B OF Dol

& Fimiurees onf § e Bheice feond
impsalhi il ol masl PR
CTRNCTINE UECTCTSl, gualsy
aned Clsrnd feksinsns

s Loy poiios nughs @

e a L ERITEI A Pt 5 L S T
wumle, O gl Lamgugse © Dol
et 8 AR B oy £ Bt sad il sl
Sl e

& P s e C0ROEA wpidy i emnliiics
fosr e) ellirendng s nopsrt g
WHE sl W ioeos, Lhildgd padty
sl ey, Sl Sl the desies (s
i DT

CORPORATE SOFTWARE
PROJECT MANAGEMENT

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

THE CD-ROM THAT ACCOMPANIES THE BOOK MAY BE USED ON A SINGLE PC
ONLY. THE LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF ANY
KIND). YOU FURTHER AGREE THAT THIS LICENSE GRANTS PERMISSION TO USE
THE PRODUCTS CONTAINED HEREIN, BUT DOES NOT GIVE YOU RIGHT OF
OWNERSHIP TO ANY OF THE CONTENT OR PRODUCT CONTAINED ON THIS
CD-ROM. USE OF THIRD-PARTY SOFTWARE CONTAINED ON THIS CD-ROM
IS LIMITED TO AND SUBJECT TO LICENSING TERMS FOR THE RESPECTIVE
PRODUCTS.

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN
INVOLVED IN THE WRITING, CREATION, OR PRODUCTION OF THE ACCOMPA-
NYING CODE (“THE SOFTWARE”) OR THE THIRD-PARTY PRODUCTS CON-
TAINED ON THE CD-ROM OR TEXTUAL MATERIAL IN THE BOOK, CANNOT AND
DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED
BY USING THE SOFTWARE OR CONTENTS OF THE BOOK. THE AUTHOR AND
PUBLISHER HAVE USED THEIR BEST EFFORTS TO ENSURE THE ACCURACY AND
FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS CONTAINED
HEREIN. WE HOWEVER, MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, REGARDING THE PERFORMANCE OF THESE PROGRAMS OR CON-
TENTS. THE SOFTWARE IS SOLD “AS 1S WITHOUT WARRANTY (EXCEPT FOR
DEFECTIVE MATERIALS USED IN MANUFACTURING THE DISK OR DUE TO
FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, DEVELOPERS OF THIRD-PARTY SOFTWARE,
AND ANYONE INVOLVED IN THE PRODUCTION AND MANUFACTURING OF
THIS WORK SHALL NOT BE LIABLE FOR DAMAGES OF ANY KIND ARISING OUT
OF THE USE OF (OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE, OR
TEXTUAL MATERIAL CONTAINED IN THIS PUBLICATION. THIS INCLUDES, BUT
IS NOT LIMITED TO, LOSS OF REVENUE OR PROFIT, OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY
LIMITED TO REPLACEMENT OF THE BOOK AND/OR CD-ROM, AND ONLY AT
THE DISCRETION OF CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARIES FROM
STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

CORPORATE SOFTWARE
PROJECT MANAGEMENT

Guy W. LEckY-THOMPSON

CHARLES RIVER MEDIA, INC.
Hingham, Massachusetts

Copyright 2005 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of
any type, or transmitted by any means or media, electronic or mechanical, including, but not
limited to, photocopy, recording, or scanning, without prior permission in writing from the
publisher.

Acquisitions Editor: James Walsh
Cover Design: The Printed Image

CHARLES RIVER MEDIA, INC.
10 Downer Avenue

Hingham, Massachusetts 02043
781-740-0400

781-740-8816 (FAX)
info@charlesriver.com
www.charlesriver.com

This book is printed on acid-free paper.

Guy W. Lecky-Thompson. Corporate Software Project Management.
ISBN: 1-58450-385-8

All brand names and product names mentioned in this book are trademarks or service marks
of their respective companies. Any omission or misuse (of any kind) of service marks or trade-
marks should not be regarded as intent to infringe on the property of others. The publisher
recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Lecky-Thompson, Guy W.

Corporate software project management / Guy W. Lecky-Thompson.

p. cm.

Includes index.

ISBN 1-58450-385-8 (pbk. with cd-rom : alk. paper)

1. Computer software—Development—Management. 1. Title.
QA76.76.D47142 2005

005.1’068—dc22

2004025343

Printed in the United States of America
057 654 32 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions,
user groups, corporations, etc. For additional information, please contact the Special Sales
Department at 781-740-0400.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc,
your mailing address, telephone number, date of purchase, and purchase price. Please state
the nature of the problem, and send the information to CHARLES RIVER MEDIA, INC,,

10 Downer Avenue, Hingham, Massachusetts 02043. CRM’s sole obligation to the purchaser
is to replace the disc, based on defective materials or faulty workmanship, but not on the
operation or functionality of the product.

This book is for my son, William,
who slept and cried his way through most of its writing.

= Contents

Preface

Part| The Product Development Mix

1 The Liaison Center
Introduction
The Role of the Liaison Center
Internal and External Clients
Key Tasks
Client Communication
Scheduling
Resource Management
Team Coordination
Project Database Maintenance
Knowledge Management
Contract Management
Personnel
Communication
Documentation
Management
Implementing the Liaison Center
IT Infrastructure
Selling the Liaison Center
Supporting Media
Industry Standards

Layout and Document Structure

XXi

L=REY =T~ R RS TS = R = S D T ¥

e e e e e e e e
C- VST S = =

14

vi

Contents

Information Management and Document Information Systems

Summary

2 Standards and Guidelines
Introduction
Defining Standards

Date Standards

Time Standards

Version Standards

Other Measurements

Staff Initials, Usernames, and E-Mail Addresses
Spelling and Grammar

Document Writing Style

Currency and Value Representations
Volume Organization and References
Minuting Style

Agenda Style

Project Documentation

Project Phases

Proposal Phase: Proposal Document

Planning Phase: Detailed Plan

Planning Phase: Contract

Planning/Execution Phase: Requirements Definition
Planning/Execution Phase: Functional Definition
Execution Phase: Functional Specification
Execution Phase: Acceptance Test Plan
Planning/Execution/Completion Phase: User Guide

Completion Phase: Maintenance Contract

Coding Standards

Comments

16
18

19
19
20
20
20
21
21
22
22
23
23
24
25
26
26
27
28
28
29
29
29
30
30
30
31
31
32

Contents ix

Block Separators 33
Function Size 33
Data Collection Standards 34
Reporting Templates 35
Communication Documents 35
Development Documents 36
Summary 36
Specifications 39
Introduction 39
Involved Parties 40
The Client 40
The Technical Staff 42
The Management 42
The End User 43
The Technical Writers 44
Common Mistakes 44
Technical Competence 45
Terminology 46
User Interface Design 47
Diagrams 48
Notation 48
Designing the Problem Area 49
Data Design Diagrams 51
Process Flow Diagrams 53
Timing 54
Phases 54
Summary 57

References 57

Contents

4 Product Development

Introduction
Product Development
Choosing an Appropriate Paradigm
The Software Development Life Cycle
Augmented Waterfall Model
Specification
Design
Development and Testing
Delivery
Summary

References

5 Testing

Introduction

Testing Procedures
Specification Testing
Program Testing
Unit/Module Test Procedures
System/Integration Test Procedures
User Acceptance Test Procedures
Generic Test Procedure

Test Result Documentation
Reporting
Compliance Sheets

Automated Testing
Program Testing
GUI Testing

Command-Line Testing

59
59
60
61
61
63
65
66
67
67
68
69

71
71
72
72
73
74
75
75
76
77
77
77
78
78
81
82

Contents

Test Data

Dates

Scalar Variable Limits

Memory and Memory Corruption
Storage

Summary
Part Il Principles of Corporate Software Engineering

6 Requirements Definition
Introduction
Skeleton Requirements Definition Document
Requirements Capture
System Context
Operating Environment
End-User Services
Supporting Services
Documentation
Maintenance
The System Model
The System Boundary
Requirements and Definitions
Functional Requirements
Nonfunctional Requirements
Glossary
The Software Requirements Document
Living Reference Document
System Behavior
Summary

References

82
83
84
86
87
88

89

91
91
92
95
95
95
96
96
97
98
99
99

101

101

101
102
103
103
104
104
104

xii Contents

7 Requirements Specification 107
Introduction 107
Skeleton Requirements Specification Document 108

Functional Requirements Specification 110
Nonfunctional Requirements Specification 111
Hardware 112
Database Requirements 113
Internetworking and Mass Storage 115
Program Definition Language 119
When to Use a PDL 119
What Is a PDL? 120
What a PDL Is Not 120
Examples of PDLs 121
Validating the System 123
Summary 126

8 Functional Specification 127
Introduction 127
Process Descriptions 128

Process Diagrams 128
Function Definitions 130
Data Dictionary 130
Data Entity Description Format 131
Notation Standards 135
Nonsystem Functional Specifications 137
Technical Specifications 138
Nontechnical Specifications 139
From Requirements to Specification 142

Summary 143

9 The Object-Oriented Paradigm
Introduction
Choosing a Paradigm
Data Structure Diagrams
Process-Oriented Design
Objects and Communication
Object-Oriented Design
Encapsulation
Defining the Objects
Granularity
Aggregation
Inheritance
Diagramming and Notation
Object-Oriented Programming
Languages
Objects vs. Modules
Object Testing
Interfaces

Summary

10 Reusable Code Guidelines
Introduction
Reuse as a Policy
Documentation
Searching and Using
Feedback
System Granularity
Fine-Grained Repository Artifacts
Coarse-Grained Repository Artifacts

Object Reuse vs. Component Galleries

Contents

167
167
168
168
173
175
177
178
179
179

xiv Contents

The Open Source Revolution
Open Source Code
License Types
The Open Source Advantage
Open Source Ethics

Summary

11 The Object and Component Archive
Introduction
Creating an Object Repository
Tools
Implementing Tools
Directory Structure
Closed Systems and Proprietary Interfaces
Making Source Code Searchable
Filenames and Comments
Variable, Object, and Class Names
Constants
Documenting Objects
Programmers’ Guide
Design Documents
The Component Gallery
Directory Structure
Documentation
Searchable Executable Code

Summary

12 Coding and Language Choice
Introduction
Language Layers
Machine Languages

Compiled Languages

180
180
181
184
185
185

187
187
188
188
192
193
195
196
196
198
200
200
201
202
204
204
205
207
207

209
209
210
211
212

Contents

Interpreted Languages
Scripting Engines
Specific Languages
Document Definition Languages
Data Management Systems
Communication Languages
Choosing the Glue
Compiled Glue
Scripted Glue
Comparison of Modern Languages
Expertise
Support
Frameworks and Environments
Portability
Performance

Summary

13 The First Prototype
Introduction
Designing the Prototype
Design Criteria
Documentation
The Prototype as a Skeleton
Implementing Skeleton Prototypes
Prototype Layers
The Interface
The Logic
External Dependencies
The Demonstration

Active Prototypes

213
214
215
216
216
217
218
218
219
219
220
220
221
221
222
222

225
225
226
226
227
228
229
229
230
233
233
233
234

xvi Contents

Assimilating Client Feedback 234
Passive Prototypes 234
Pre-Delivery Conferencing 235
Limited Redelivery 235

Recording 236

Summary 236

14 Adding Functionality 239

Introduction 239

The Building Blocks Approach 240
Sourcing Blocks 241
Cross Coding 242
Iterative Development 243

OO Development Revisited 245
Specification 245
Testing 246

Unit Testing 247
Functions 247
Objects 248
Functional Areas 249

Of Menus, Glue, and Simulating External Dependencies 250
The User Interface 250
Glue Code 251
External Dependencies 251

Summary 252

15 Delivery 253

Introduction 253

Preparing the Application 254
Media 254
Installation Routine 255

Pre-Delivery Testing 255

Contents

Delivery Overview

Security Mechanisms
Supporting Documentation

Installation Guide

User Guide

Problem Report Procedure
Additional Customization

User Customization

Change Request Procedure

Effect on Maintenance
Training

Training Staff to Train Others

Summary
Part Ill Principles of Software Quality Control

16 Promoting Corporate Quality
Introduction
Projecting Quality
Communicating Quality
Documentation
Rewarding Quality
Managing Quality
Quality Reviews
Quality Checklists
Total Quality Management
Quality Circles
Documenting Quality
Process Description Documents
Benchmark Reporting
Badges

Summary

256
257
258
258
259
261
263
264
264
265
265
266
266

269

271
271
272
273
274
274
275
275
277
278
279
280
281
282
283
284

Xviii Contents

17 Testing Procedures
Introduction
Consequences of Weak Testing
Weak Testing
When to Use Weak Testing
Weak vs. Strong Testing
When to Use Strong Testing
Testing Implies Quality
Correctness
Robustness
Correct Behavior and Fitness for Use
System Dependencies
Prevention and Cure
Testing vs. Certification
Why Certification?
Certification Test Cases

Summary

18 Feedback Techniques

Introduction

Reporting Line
Documenting the Reporting Line
The Reporting Line Document

Central Communication—The Liaison Center Revisited
Quality Management
Quality Measurement

Supporting the Reporting Process
External Documentation
Motivation via Improvement

Summary

287
287
288
289
290
294
295
297
298
299
299
300
301
304
305
305
306

309
309
310
310
312
314
315
317
321
322
323
324

Contents

19 Client Satisfaction
Introduction
Testing for Client Satisfaction
Pre- and Post-Project Surveys
The Goal of Software Engineering: Quality Products
Planning for Failure
Poor Quality Requirements Capture
Poor Quality Implementation
Lack of Testing and Quality Control Procedures
Managing Client Dissatisfaction
The Problem Domain
Poor Quality Specifications

Summary
Appendix A: Implementation Strategies and Guidelines
Appendix B: About the CD-ROM

Index

XX

325
325
326
327
329
331
332
334
335
336
337
339
340

343

363

365

E Preface

t has long been accepted in the software industry that projects will be late, over

budget, and lacking in agreed features due to technical or time limitations. In

part, this has been due to the neglect of the people involved in the design and
implementation of large-scale software development projects. This problem is
compounded by what has become known as the “intangibility” of software. It can-
not be touched, felt, or viewed in a physical way—it exists only as an abstraction of
what it represents.

All these problems taken together conspire to make the project appear more
complex to manage than perhaps it should be. By using rigid communication lines,
and well-defined relationships between different parties, much of the complexity
that stems from the need to integrate different people’s specialties can be removed.

This leaves management to worry only about what must be done at a technical
level, and improves relationships between different departments. On top of this,
there is also an increase in client-corporation communications, which in turn, re-
duces the possibilities of making errors in judgment that can be costly to track
down and fix later in the project.

Besides the rigidity of the approach taken in the book toward managing large-
scale development teams, there is also the built-in flexibility to define standards at
a corporate level. Guidelines are given as to the type of standards that need to be
created, and what they should cover, but the actual implementation details are left
largely to the corporation’s own staff members.

Aside from the management aspects, the technical side of software engineering
is also dealt with. This part of the book illustrates the decisions that need to be made
when planning the implementation phase of the project. In addition, there are also
examples of ways in which the software can be designed so that the reuse of code is
maximized for future projects.

xxii

Preface

Throughout the book, the focus is on three main points: management, quality,
and client relations. The key to success in the corporate software engineering field
is in effective management of the tasks that need to be performed, ensuring that
they are correctly performed, and that they accurately reflect the needs of the client.

This book presents methodologies and paradigms that can be applied in the
real world to ensure that these three main aspects are catered for. However, no
book on this topic would be complete without a discussion, however brief, on the
technical issues behind implementing the designs agreed on with the client.

In recent years, models and paradigms for software development have stabi-
lized, and in some cases stagnated. Computer language development has likewise
reduced to the point that enhancements are being made infrequently, and the lan-
guage cores are not changing at all.

This latency in the market means that for the first time, concrete guidelines can
be set out that will not change as innovations become available to the general pub-
lic, in the way they once did. As more and more companies become involved with
the development and deployment of large-scale software projects, it has become
necessary to define ways in which control methods can be applied to ensure that a
quality product results.

In Part I: The Product Development Mix, we deal with the relationships between
the various teams that contribute to the finished product. We concentrate on of-
fering new insights into the way process control and communication in the area of
corporate software engineering can be achieved by attempting to break the tradi-
tional top-down team structure into a collection of intercommunicating units.

One of the key principles is in using a central point of contact, coupled with
clearly defined processes and responsibilities, and well-documented process control
defined by rigid guidelines. Much of the actual implementation decisions are left
with the organization itself; this book gives an indication of best practice but is care-
ful not to impose rigid solutions. That is up to the way that the implementation is
carried out.

What is also important is that the organization realizes that the techniques must
be used in a way that is conducive to good results, taking into account the relative
size of the organization. It makes no sense for the management of the processes re-
quired to be allowed to grow into a resource that is the greatest part of the com-
pany—if this means that some staff need to perform two functions, so be it.

The central theme of this book is described in Part II: Principles of Corporate
Software Engineering, which uses material developed in Part I to establish the inter-
actions required to specify and implement a high-quality end product. Here again,
we concentrate more on the processes that need to be in place, and a template for

Preface XX

their implementation, than we do on ground-level technical issues. It is assumed,
for example, that the programming team knows how best to implement a design,
and is equipped with the tools to do so. Any information pertaining to design and
programming is given at a high level.

With this in mind, it is not necessary for the readers to be fully acquainted with
the intricacies of software development, since enough introduction is given for them
to be able to follow, manage, and set up a well-functioning development center.

Part of the innovation in Part II revolves around code reuse and taking advan-
tage of new paradigms such as Open Source software and advanced scripting lan-
guages for integrating existing components. Indeed, in the same way that
communication and standards are the key to Part I, reuse and documentation are
key to understanding the driving force behind Part II.

Finally, in Part III: Principles of Software Quality Control, we discuss ways in
which the quality of the end product can be ensured and the steps to take if the
client becomes dissatisfied in some way with the progress being made. Quality
Assurance and Control usually gets short shrift in software engineering books,
since the assumption is that adequate testing is enough to be able to deliver a high-
quality result.

Where corporate software engineering is different is in realizing that software
creation today is not so much production, as delivery of a service. As such, it is only
fitting that some service quality assurance paradigms be adopted for the control
and auditing of the quality level of an organization involved in software engineer-
ing as their primary business. In addition, in Appendix B, “About the CD-ROM,”
the various resources are listed:

B Tools and Resources for project and quality management
m Templates for use in real-world situations

..... -
|

= The Product
Development Mix

idea and turning it into a product. The initial idea may come from a response
to a Request for Proposals (RfP), or it may be an internal idea that services
an existing market need.

In either case, certain procedures can be put in place, and an infrastructure can
be installed that helps to perform the tasks needed to create a well-conceived, high-
quality product based on the initial input.

Much of the details are common to both on-spec projects and those created
with a commercial venture in mind. It is important from the outset to realize that
there are two types of client—internal and external—and that both are equally im-
portant in the product development life cycle.

The various theories and solutions that are put forward here exist in other in-
dustries, but the aim of this part of the book is to gather and reuse techniques in a
way that is appropriate for use in a high-tech industry such as software development.

In Chapter 1, “The Liaison Center,” the reader will learn about the way in
which different teams can communicate with each other through a central point of
contact, and how this can be used to achieve higher quality results in a more effi-
cient manner.

Chapter 2, “Standards and Guidelines,” lists various ways in which the organi-
zation can be sure that every team member performing a similar task is doing so
with respect to a set of organization-wide standards. These are important in order
to perform the various tasks in the most efficient manner possible, including effec-
tive communication.

In Chapter 3, “Specifications,” we discuss how to define the product in terms
that can be understood by technical staff and the end user, and are yet unambigu-
ous enough that no misunderstandings on either side occur. It also provides a basis
for ensuring that, using a combination of communication and standards, the
process of developing the specifications yields a high-quality return early in the
process, which will enhance the final delivery.

This part of the book centers on the teams that will be involved in taking an

Corporate Software Project Management

Chapter 4, “Product Development,” pulls together the previous three chapters
into a model for software development that is scalable in both directions, and
adheres to existing guidelines for producing software.

Finally, Chapter 5, “Testing,” defines how, after development has started, dif-
ferent testing methodologies can be applied to ensure that the result is worthy of the
investment made in it.

B

= The Liaison Center

In This Chapter

Introduction

The Role of the Liaison Center
Key Tasks

Personnel

Implementing the Liaison Center
Supporting Media

Summary

INTRODUCTION

Software projects often comprise many and diverse teams, all with their own sched-
ules and goals. The key to effectively managing the relationships between all the
teams involved in software development on a large scale is establishing a central
point of contact, the structure of which is outlined in this chapter.

Before we begin with our analysis of the ideal structure for the Liaison Center,
we should first take a moment to look at what teams might be involved during the
Software Development Life Cycle (SDLC). While this may vary from company to
company, it is probable that the reader will find a comparable entity for each of the
teams that we list here—albeit under a different name. In trying to list teams in this
way, it is also inevitable that we will miss some, misname others, and arrive at a

4 Corporate Software Project Management

model that may not fit exactly into the organizational paradigm employed by a par-
ticular software engineering company, but this is also due to the intangible nature
of software. In other production environments, such as the automotive or elec-
tronics industries, where a tangible product emerges from the production line, it is
often easier to round up the teams responsible for the manufacture of the item in
question.

Quite often, it is almost a “pick 'n mix” approach that is used to build a Soft-
ware Engineering team, taking only those people required to produce the desired
results, without actually creating a formal framework to drop the staff into. This is
best avoided, and a rigid structure put in place by areas of responsibility with clearly
defined boundaries. In this way, a more formal team structure can be built up with
reporting lines that can be documented and followed.

While there may be a temptation to read this chapter as if the paradigms and
processes that we discuss apply to a large organization, it is assumed that the vari-
ous pieces that make up the Liaison Center are assembled in a manner that fits the
resource availability of the target organization.

In other words, some of the functions will need to be appended to the job de-
scriptions of other staff members, and in many cases the roles will be fulfilled in a
way that may be secondary to their roles as secretarial, technical, or management
staff.

It is the introduction of the controlling processes that are managed by the
Liaison Center that is important, not the staff operating it. Indeed, it is more of a
virtual department than an actual office in the building. We need it because com-
munication on software engineering is important, and because in a small organiza-
tion, staffed by technical personnel, there is a danger that it will become neglected.

In a large organization, other pressures are at work, which means that the Liaison
Center will be more of an actual office, and less of a virtual structure. Nonetheless,
the principles that apply to a small organization will also apply to the larger ones.
It is a concept, and as such, is scalable.

THE ROLE OF THE LIAISON CENTER

One of the most important concepts behind the Liaison Center is that it provides a
communication hub between all the different parties that will be involved through-
out the development cycle of the product. This is not restricted to any given project,
since the Liaison Center may be involved in many different projects at any given
time, and will be responsible for maintaining good communication across depart-
ments and areas of responsibility.

The Liaison Center 5

Since the Liaison Center staff are responsible for much of the inter-project
communication in the target organization, they also need to be appraised of all
relevant project information. Thus, it also makes sense for the Liaison Center to
manage the information flow and storage of that information. Since the Center
holds all of the project information, the role will also include a certain amount of
management responsibility.

The first level of responsibility is in scheduling the project staff, both across
projects and within each project team, in accordance with both the wishes of the
client and the management of the organization itself. Above this, there is a certain
amount of resource management with which the Center will become involved, a log-
ical progression from performing the scheduling aspects of project management.

At the highest level of responsibility for the effective central management of all
projects is the contract and client management. Contracts should pass through the
Center, since they will know if the terms can be met in a timely fashion, and what
cross-pollination between projects (if any) can be achieved.

In a large organization, where many projects are being undertaken, it is clear
that the role of the Liaison Center will require at least one, and probably more, full-
time member working to ensure that the communication between projects remains
intact. We assume, however, that smaller organizations will be working on fewer
projects, and therefore that the role outlined previously can be split across multiple
staff members.

Internal and External Clients

Sometimes, project teams will be servicing other project teams, all working toward
a common goal. These should always be treated as internal clients; that is, they must
be treated with the same level of respect as other, external clients. In this way, we can
be sure that the work that is performed is of the same quality across the board—be
it high or low. In large organizations, running multiple projects, some teams might
not even know if the client is internal or external.

Programmers reading this probably think that they would know if they were
working on a piece of code for an internal project simply by the nature of the task
that they have been asked to perform. In a similar fashion, if it is just a piece of code
to be bolted onto something else, then the task will be of a different nature than
writing a full application (or even application “glue” to hold multiple components),
thus it must be for an internal client.

This way of thinking can be eradicated by using the Liaison Center concept,
and effectively modular code. Each piece of software should be viewed as a collec-
tion of components, all glued together by a piece of code that gives the external

6 Corporate Software Project Management

appearance and interface to the application. If the Center is used to its maximum
potential, along with the other aspects of the Product Development Mix that we de-
tail in this part of the book, then it should be almost impossible for a given team to
tell if they are working for an internal or external client, removing the temptation
to treat them differently.

Of course, the smaller the organization, the less this will apply, and it is likely
that every client will be an external client. However, each programmer is creating
something (or reusing something) that is designed to be integrated with something
that has been created by somebody else. This means that, without explicitly realiz-
ing it, the Internal Client role has been fulfilled, and using the Liaison Center as
a concept rather than a physical body can help deal with this aspect of software
creation.

KEY TASKS

Having detailed the role of the Liaison Center, and how it fits in with the strategic
clients and the vague form that it might take, now we should try to isolate what falls
into the scope of responsibility linked to the Liaison Center, and how these tasks
might be accomplished.

One important facet behind the Liaison Center is that it must be flexible
enough to take on additional tasks where necessary, and yet relinquish some where
they might not be needed, or indeed relevant to the role of the Liaison Center
within the target organization. In other words, there will be times when particular
tasks otherwise assigned to the Liaison Center might be better given to the project
team proper or simply not performed at all.

This will also be the case in small and medium organizations using the lowest
scale Liaison Center: as a concept, and not an actual department. In such cases, the
key tasks that we outline need to be placed under the responsibilities of staff mem-
bers in a best-fit approach.

For example, communication between clients and technical teams might be best
interfaced by a member of the central secretariat, or an accounts manager. Leaving
such a task to a highly technical person may result in communication difficulties,
since technical staff do not generally communicate very well with nontechnical staff
in a working environment.

Client Communication

The Liaison Center provides the first point of contact between the client (be they
external or internal) and the project teams involved in serving the wishes of the

The Liaison Center 7

client. In a traditionally structured organization, this will typically fall to the Project
Manager. By transferring some of the communications away from this power base,
it is possible to add an additional reporting level between the project team and the
client.

This has two direct consequences. First, the client only deals with a single point
of contact, which is a bonus, because over long projects, or those with problems, the
project team, including the manager, may change.

The second consequence is that a new level of complexity is introduced. Nor-
mally, this is to be avoided within software engineering projects, but we will spend
a large proportion of this chapter seeing that by adding complexity, and by default,
reporting levels, we can retain a hold on the project by controlling each aspect sep-
arately. This is in stark contrast to the way in which some smaller software houses
operate, where the project manager is burdened with all the responsibility of man-
agement and clients alike—often resulting in conflicts of interest.

Scheduling

One of the principal pieces of information that clients often want to be informed
about is the progress of the project. Nothing is worse than the client being kept in
the dark regarding how much, or indeed how little, work has been performed, and
how much remains to be done.

When there are several teams involved—often with one controlling Project
Manager, several Team Managers, and a collection of regular programmers, docu-
menters, and even artists in some cases—scheduling the visible aspects of the proj-
ect toward the client can sometimes become obscured.

In severe cases, even the project teams themselves might find it difficult to know
the exact state of the project. Clearly, taking away this aspect of the engineering task
will ease both their jobs, and improve the efficiency of the entire endeavor.

Therefore, the Liaison Center can also be used to translate the wishes of the
client into scheduled tasks with clearly defined milestones and target dates. Close
monitoring of these targets can then be converted into information that can be re-
layed to the client, which will ease their minds, or at least allow them to reflect upon
decisions that might need to be made regarding the ongoing project.

Such decisions might result in reducing the overall complexity by altering the
nature of the deliverables according to the amount of progress being made, or in-
deed allowing bonuses to be paid for advance completion of various milestones, or
the entire project.

Resource Management

Coupled with scheduling the projects that are being serviced, there is the allocation
of resources needed to achieve the goals set by the scheduling requirements. Smaller

8 Corporate Software Project Management

organizations will find that if they concentrate solely on one large project, they
may find the infrequency of payment that this entails forces them to overspend and
increase corporate debt levels.

To counteract this, they may find that taking on smaller projects with some
synergy toward the larger, more lucrative (long-term) projects becomes the only
way to increase cash flow to the point that the targets can be reached. This includes
reducing staff idle time across projects and project teams, so that one project team
might complete one task and begin another, while waiting for other teams to reach
their own milestones.

Knowing which staff are available for which tasks is another responsibility that
falls to the Project Manager, who suddenly finds that he is in demand as the num-
ber of smaller projects increases. This will place unnecessary strain on the Project
Managers, and in turn reduce their efficiency. Thus, the Liaison Center can help
reduce their workload by simply requesting resource information from them, and
shuffling work around to meet all the milestones in place under the various con-
tracts being serviced by the organization as a whole.

Team Coordination

Each project team will have its own Project Manager. Larger teams will be split into
subteams, with their own Team Leaders, reporting to the Project Manager. Fol-
lowing existing practices, each project team will typically coordinate via the Project
Manager to check that their statuses are conducive to the timely completion of the
project on which they are working.

This approach is perfectly satisfactory when there are a few project teams work-
ing toward a common goal, but in the days since the hi-tech bubble burst, it is
simply not profitable enough to sustain growth in a diminishing market. As noted
previously, larger projects must often be subsidized by smaller ones, in an effort to
match incoming funds with outgoing costs without increasing debt. The harsh
reality is that investment in software firms is becoming difficult to come by as the
number of industry failures rises.

Following the Liaison Center approach, it also becomes apparent that the co-
ordination between teams, across projects, with reference to available resources
and schedules in place, should be performed centrally. Those making the decisions
become those with the best information, and those who are most appropriately in-
formed about the status of all projects being serviced by the target organization.

Project Database Maintenance

Besides the actual deliverables that the project teams should be required to gener-
ate as a matter of course, a fair amount of information about the projects will be

The Liaison Center 9

generated during their life cycle. There will be costing information, including
staffing and equipment, all the information relating to team efficiency, and per-
sonal development of staff members during the life of the project, much of which
is passed back to the Liaison Center from the various project and team managers.

This information needs to be collected, referenced, and stored in an appropri-
ate manner. If ever there comes a time when other departments within the organi-
zation need some guidance when preparing quotes, or deciding to move into a new
market, the Liaison Center should be the first place to which they turn.

Even the human resources department might require some data on staff per-
formance, to help in rewarding employees for a productive year, if the company is
doing well, and perhaps administering suitable penalties toward those unproduc-
tive staff members should the need arise.

The database should be able to allow ad-hoc queries of this nature, as well as
some form of routine reporting that will be used as a guide to the general health of
the software engineering department. It will need to store various pieces of infor-
mation, both quantitative and references to qualitative data, probably indexed in a
manner that allows easy retrieval.

Naturally, the role of the Project Database is one that in smaller organizations can
be partially automated. In other words, the smaller the sets of data that are introduced
(probably by various people), the easier it is to manage without human intervention.
Where large numbers of projects are involved, it becomes necessary to employ a
member of staff to clean up the collection of data and ensure its correctness.

Knowledge Management

Besides the information that is project related, and entirely a result of passing em-
pirical data between the project teams and the Liaison Center, there will also be a
vast amount of knowledge gained by the employees as they perform their daily
tasks. In cases where the organization is acquiring large amounts of specialist
knowledge relating to a niche field, the question often arises as to what the effect on
the project would be, should an employee become suddenly unavailable.

Ideally, the employee should be replaced within a short timeframe, but the re-
ality is that this will probably prove impossible. Instead, there is a requirement to
store reference points to the knowledge that is being accumulated, such that re-
training of an employee with the correct background becomes a much less arduous
and time-consuming task.

Contract Management

Finally, it is necessary to ensure that the contracts that have been signed are being
honored. Someone also needs to know when contracts are due for renewal (main-
tenance contracts, for example), or closing contracts that are no longer required.

10 Corporate Software Project Management

Then there is the signature management itself—a standard contract might need
four separate signatures, and if work has begun before all four parties have signed,
then it may not be legally binding.

[t may seem to be a trivial task, but again, if the Liaison Center paradigm is to
be followed, it makes sense to ensure that those in possession of all the facts re-
garding progress and scheduling are those who actually watch over the contracts
that have been signed, and enforce them where necessary.

As a bonus, the client still only has one point of contact, even at this level. Such
transparency of communication enables the client to develop a rapport with the
target organization that is not possible if they are constantly trying to communicate
with several heads of the corporate monster.

PERSONNEL

The role and tasks performed by the Liaison Center must be driven by its personnel.
Choosing staff to manage the Liaison Center, whether it is in a small organization
employing the conceptual (virtual) approach or a real office within the organization,
will be constrained by the departmental and management model of the target orga-
nization. This is because a one-project outfit will probably incorporate much of the
work of the Liaison Center within other project groups and subgroups.

It may not be profitable or desirable for the target organization to separately
staff and run an effective Liaison Center, preferring instead to allow the projects
to liaise together without a formally staffed structure in place. Of course, various
secretarial duties must still be performed, including maintaining a professional and
effective audit trail and full set of documentation.

Whether the Center itself is a separately managed business unit or a shared re-
sponsibility, it is important to ensure that the staff chosen to perform the duties
outlined in this chapter do so effectively. Software engineering processes in general,
and in the corporate environment in particular, are akin to a machine comprised of
parts having a delicate relationship that is based on reliance on each other. If one
breaks, or is missing, the entire machine functions at a less effective level—often
leading to expensive mistakes.

While some of the responsibilities will be shared, three main areas need to
be serviced, which reflect the role and the tasks that the Liaison Center needs to
perform.

Communication

One of the most difficult tasks is communicating toward both the client and the
employees in a manner that achieves the best results. One has to be firm toward the

The Liaison Center 11

employees, but give credit where it is due, and at the same time pacify, when times
are bad, or appear meek toward the client when times are good.

Choosing an effective communicator is as difficult as the task itself. Not many
people have the mix of a technical background with effective communication skills.
This may be why much software documentation is very hard to read for most non-
technical users (keeping a professional tone; less humor).

The result of this paradox is that it may just be easier to pick a good commu-
nicator, and train him in the technical side of the job while he is performing it,
rather than try to make a good communicator out of a highly technical specialist.
If a budding human resources manager is lucky enough to find such a gem, she is
advised to hold onto that person—he is a valuable commodity.

Toward the employees of the organization, it is often tempting to underplay the
importance of diplomatic communication skills. The usual attitude is that they are
there to perform a task, and they should get on with it, with a little praise if they do
well, or often an outright verbal assault should they make a mistake.

Admittedly, these are extremes, but almost never the correct approach to take.
Never mind the oft-repeated adage of “a little praise goes a long way”; most tech-
nical employees will require gentle handling. This not being a textbook about
human resources, or employee psychology, many different tacks can be taken when
dealing with staff from a management point of view, but the Liaison Center com-
munications staff will not necessarily be well versed in advanced management skills
either.

In short, then, effective communicators should be obvious in interview, and
even role-playing, or in their regular job. If they are not, then they may not be the
ideal choice for the position.

Documentation

Much of the Liaison Center’s responsibilities revolve around producing, reading,
storing, analyzing, and generally managing various pieces of documentation. Some
will, as we shall see, be standard, company issue documents that have a structure that
has been well defined in advance. Others will be ad-hoc documents that need to be
read and understood, or converted to adhere to those same company standards.

Clearly, one of the members of the Liaison Center, whether it is his primary
function or in addition to his usual tasks, needs to have an affinity for the written
word. A merging of the tasks allocated to him as a member of the Liaison Center
and his regular job would be ideal, in cases where the Liaison Center is a shared
responsibility.

Of course, if setting up a Liaison Center becomes a company objective, it is
slightly easier to recruit someone who enjoys writing, reading, and organizing

12 Corporate Software Project Management

documents. With the aid of the standard templates that we will discuss later, and
some software, the person responsible for documentation needs to be able to store,
retrieve, and report on all manner of documents supplied by both internal and ex-
ternal sources.

Some fairly high-level issues can only be handled by “management.” However, this
does not necessarily mean that the persons serving the management role in the
Liaison Center need to actually hold the same status as the manager of Human
Resources, or MIT, for example. However, it will help if there is a member of staff
with the respect and experience accorded to a senior member of the organization.

Within the Center, the management is responsible for ensuring that their staff
perform in an effective and productive manner, and that there is effective commu-
nication within the Center. Information is the key to the success of the Liaison Cen-
ter; therefore, the flow of information needs to be carefully monitored, and any
shortcomings dealt with in a timely manner.

The personnel selected to manage the Center need to service the relevant tasks
with a clear management perspective—in terms of scheduling (and time manage-
ment) and resource and contract management skills.

Thus, they need to have relevant experience, a clear sense of judgment, and
above all, the ability to communicate effectively with staff, management, and clients.

IMPLEMENTING THE LIAISON CENTER

From the three previous personnel descriptions, it is clear that much of the work
that the Liaison Center does is actually nontechnical, although all staff should have
a basic understanding of the processes involved in creating software. Even if the
Center becomes a shared responsibility, the skeleton service should include three
full-time members of staff as a minimum—a secretary, librarian, and manager—
although these can be shared with related tasks in nontechnical areas.

Depending on the protocols in place in the target organization, these three
should be placed in an open-plan office, in an attempt to increase verbal commu-
nication. There is nothing worse than isolating staff involved in the tasks outlined
in this chapter in little cubicles. This is only, however, the opinion of the author,
based on his own observations.

Staff can be added to the Liaison Center in an ad-hoc basis as the needs arise.
In certain circumstances, the secretarial duties and documentation management
tasks can be merged, leaving a staff of two. This approach should only be used

The Liaison Center 13

when the number of projects is small enough that the workload would not be
sufficient to occupy two separate members of staff.

IT Infrastructure

Usually, the target organization will have certain policies that dictate the distribu-
tion of IT equipment, from workstations to servers, networking equipment, and
so forth. However, due to the quantity and nature of the information that will be
accumulated, stored, and referenced, it is advisable to allocate a separate server
for the Liaison Center, with sufficient storage capacity, backup procedure, and
robustness.

If electronic mail is used for communication within the organization, mail-
boxes should be created for project management and documentation. These will be
used as a depositing point for information pertinent to the progress of projects, and
associated documents. On the server, a folder needs to be created for each project
that is being serviced by the organization.

In the course of this book, we will be adding information stores and subfolders
to this initial structure, assuming that the bare bones of the IT Infrastructure are in
place.

Selling the Liaison Center

Currently, times are hard in the software development industry. In such times, it
can become increasingly difficult to sell something that has every appearance of
being a cost center as opposed to part of the revenue machine that keeps the orga-
nization afloat.

However, it is a cost saver; without it, the software development process can be
in danger of losing its way, and individual software engineers, designers, and pro-
grammers may not be working within an infrastructure that makes the best use of
their time.

Part of the guiding philosophy of software development that we will be cover-
ing later in this book relates to practices promoting code reuse as a means to reduce
time to market and increase overall product quality.

Managing code reuse and the standards that need to be put in place to ensure
that it is conducted in a manner that leads to satisfactory results requires that there
are members of staff responsible for both the artifacts themselves (being both doc-
umentation and code) and the supporting infrastructure.

If the production of software is the core business of the target organization,
then creating a team of two people (as suggested previously) as a way to reduce the
substantial costs associated with quality failures in the software industry begins to
make sense. It should be presented as facilitating an improved software develop-
ment paradigm.

14 Corporate Software Project Management

The other side is the client-facing emphasis that the Liaison Center promotes
as a key working principle. If the organization is involved in any way as an out-
sourcing partner, then it will benefit from the added processes that are in place to
ensure effective communication between the project team and the client.

Added to this is the possibility to realize synergies between or across projects,
which leads to even greater cost savings. Arguably, it would not be possible to
achieve these synergies without the guiding hand of the Liaison Center.

SUPPORTING MEDIA

All of this relies on being able to effectively pass and store information between the
involved parties. To facilitate this, it is necessary to devise a system of standard tem-
plates for documents that can be used to transfer knowledge from team members
to the Center and on to clients where necessary.

Industry Standards

There are a number of standards used in the technical writing industry, ranging
from simple word processor template sets that can be reused in corporate docu-
mentation guidelines, to complete document engineering standards that require
substantial training to use effectively.

They are all based on one simple principle: the ability to effectively identify the
problem domain (that which we want to document) and then break it down into
pieces that can be logically grouped in order to create a structured final document.
This is much like the mechanisms that are needed to perform software engineering,
and so it is logical to assume that good software engineers can also make good doc-
ument engineers and technical writers.

Unfortunately, where this connection falls down is in the realization of two
basic differences between technical writers and software engineers or program-
mers. The first is that programmers are generally not very good at conveying com-
plex ideas to a third party as a collection of simple ones. They assume that the
reader has the same level of technical competence as they do, which is not neces-
sarily going to be the case.

The second difference is that, unlike technical writers, programmers and soft-
ware engineers do not enjoy writing documentation, since they would much rather
be writing programs, designing complex systems, or debugging—anything other
than writing documentation.

It is, however, easy to use software engineers in an informal workshop situation
to help the technical writers to break down the problem domain and organize the

The Liaison Center 15

general structure of the document that is to describe the system that needs to be put
into place. It is basically the same set of skills, and much the same work needs to be
done to engineer the system and to document it.

Even if the investment in a specific industry standard is deemed out of reach for
the target organization, there are still basic principles that can be adhered to when
creating documentation that revolve around psychological research, such as the fact
that the human mind can deal with about five pieces of information in short-term
memory at a time.

Thus, the document should be written in such a way that in order to under-
stand a given key concept, it should not require the readers to hold more than five
other concepts in their minds at once. These supporting concepts may be key, or
they may be throwaway pieces of information that enable understanding but can be
discarded almost immediately once the concept that they support is understood.

If one follows this theory to the letter, any system should be broken down such
that it is comprised of five or less key concepts, each of which can be explained until
comprehension by five or less supporting concepts, which, in turn, can be sup-
ported by five or less subsidiary concepts, and so on, through the system.

Another accepted principle of document construction is that no one idea
should require more than a single page to express. Moreover, each page should only
consist of a certain amount of text—techniques for cheating, such as reducing the
font size to an almost unreadable 8 points, narrowing the margins, and removing
header and footer information are all strictly forbidden.

The idea is that the coverage should not exceed one-third to one-half of the
paper width, or three quarters of the available page height, after the printing mar-
gins are taken into account. The rest of the space is divided into four areas: the
header and footer (which contain vital document information), a left-hand margin
designed to contain labels for each concept and subconcept, and a right-hand mar-
gin that is wide enough for the reviewer to write notes in.

If these principles are borne in mind, the resulting document should be well
thought out, easy to read and interpret, and communicate the information in a way
that makes understanding less of a chore and more of a pleasant reading exercise.

Layout and Document Structure

A structured document should consist of the following sections:
Document Information
References

Table of Contents
Glossary of Terms

16 Corporate Software Project Management

B Main Document
B Appendixes where appropriate

The document information section is there to inform the reader as to the
audience, subject material, layout, and style of the document, and as such needs to
include headings such as:

m Change History
®m Overview
B Section Summaries

The Change History subsection needs to contain details of each revision of the
document, along with the reason for the changes, date, and author. The overview
simply addresses the intended audience with a management summary of the infor-
mation contained within. Each section summary is then a single line designed to
convey, in one sentence, the exact nature of the information it contains.

Following on from the Document Information section is a list of other docu-
ments that are referenced within this particular work. Each entry should follow the
accepted standards for citing sources that the organization has chosen to adopt.

The Table of Contents, following the References, will likely be the result of an
automatic feature of the word processor used to edit the document, as will the
Glossary of Terms, although the latter will need to be annotated by the author of
the document. Any acronyms used in the document should also be referenced in
the Glossary.

Following all the introductory sections is the main document, which can be laid
out in a variety of different ways, although it is best to retain a Chapter, Section,
Subsection approach, with a depth of no more than three levels. This is a flexible
rule of thumb that the author has found to work well when constructing technical
documents with the help of software engineers and information management staff.

Finally, there are the appendixes, which need only be present if there is infor-
mation such as forms, diagrams, or software user manuals that are presented as
supporting documents for the information presented in the main document sec-
tion. It is usually easy to decide whether a particular piece of supporting documen-
tation should be put in an appendix. As a rule of thumb, information that supports
a decision presented in the document but is not required in order to understand the
effect of that decision should be placed in an appendix.

Information Management and Document Information Systems

The reason for investing time and effort in creating a collection of documents for
use in the corporate environment—whether they be specifications for software

The Liaison Center 17

systems, user guides, service descriptions, legal references such as contracts, or sim-
ply descriptions of modules or object code that exists for use in future projects—is
so they can be referred to when a decision needs to be made.

This is useless if the documents cannot be found. Eventually, such a complex
mountain of documentation will exist that, should a single document need to be
found, a good indexing system had better be in place; otherwise, it will be like look-
ing for a needle in a haystack.

Therefore, it is vital that the indexing, referencing, and search mechanisms
are put into place before the document collection is begun, since trying to retro-
fit a good system after the fact will be expensive and the results will be less than
satisfactory.

Should the readers find themselves in the situation where there is a vast moun-
tain of documentation that is unsorted, badly indexed with no possibility to search
by keyword or perform a full-text search, it will be much more efficient to begin a
new document archive, and slowly bleed the existing documents into it, after they
have been reformatted.

Each document needs to contain a set of keywords that identify the subject
matter in an abstract fashion. If the word processing package does not support
document properties that enable this do be done in a way such that they do not
appear in the text, then a separate text document containing the keywords should
be created with the same base name as the document to which it refers.

In this way, a person who needs to locate information on a given topic can per-
form a two-tier search: first by keyword, resulting in a set of likely candidates, and
then a full text search to unearth the exact information he might require. This has
been found to work with greater efficiency than a full text keyword search by itself
or a simple keyword indexing system.

With the advent of the Internet and World Wide Web, much research into doc-
ument organization and search mechanisms has been performed, in an attempt to
create the best search engine, capable of finding the most relevant Web pages to dis-
play to the user. One of the by-products of this research is the glut of various search
systems that are available for document organization.

Good though these are, in the end, the title of the document is one of the best
ways for someone browsing the document archive to find the information she is
looking for. Hence, organizations should be wary of using strictly numerical in-
dexing systems. In the past, filenaming conventions on operating systems have led
to restrictions (such as the DOS 8.3 format), which meant that giving filenames to
documents that conveyed meaning was impossible.

With long filename support existing in almost every operating system in the
field today, there is no excuse for using strange numerical indexing when we can all
use plain-text names that will help the user determine whether the document is

18 Corporate Software Project Management

likely to be of interest. In creating the document archive, this should be taken
advantage of fully. Be aware, however, that if a backup to CD-ROM of the archive
is to take place, certain restrictions in the CD-ROM format mean that some file-
names will probably be truncated.

SUMMARY

This chapter laid the foundation for the rest of Part I of the book, in the sense that
it outlined the container into which the information generated by implementing
the rest of the Product Development mix, and their associated teams, will be placed.
In addition, it provided the coordinating facility that underpins the key processes
that support creating software in a scalable fashion.

The preceding statement is important, since most companies involved in
creating software start out small. Even Microsoft began as a two-person operation.
At some point, it will become necessary to implement controls that will increase the
effectiveness of the operation. This includes increasing quality, reducing costs, and
operating profitably enough to promote expansion.

Without a good operating structure, one of three possible scenarios could
ensue. First, the company could fail to operate effectively, and thus not survive.
Second, the company could grow to a size that is not manageable within the con-
fines that bind it, and implementing a suitable structure once the organization has
expanded might prove expensive.

The final scenario is one in which the quality of the software created by the
company does not meet client expectations, or in which the efficiency of the pro-
duction process is impaired such that, although the company survives, it cannot ex-
pand in an efficient manner. This may or may not actually matter; however, most
heads of companies prefer growth to stagnation.

The Liaison Center may seem like a simple concept, even redundant, but it
does provide an alternative framework that can remain an effective anonymous
control and coordination point in the organization, leaving the technical staff free
to perform their tasks unfettered. This is also the case where it is they who are pro-
viding some service to the Liaison Center; the processes and structures involved will
mean that they will spend less time worrying about issues dealt with by the Liaison
Center than if it was not there and they had no template for performing those tasks.

.'. Standards and Guidelines

In This Chapter

Introduction

Defining Standards
Project Documentation
Coding Standards

Data Collection Standards
Reporting Templates
Summary

INTRODUCTION

Without corporate documentation standards, communication and information
storage in an effective, efficient, and profitable manner will prove difficult, if not
impossible. Standardizing the kinds of information to be stored will mean that data
entry can be automated (at best), or rendered much more efficient (at worst).

In addition to standards within which information can be gathered and stored,
there should also be guidelines that detail the processes and procedures governing
the collection of the data, along with ways of tracking what has been collated, and
reporting to other parties.

It is also important that the standards be used to improve readability and in-
terpretation. No matter who has written the document, the client should be able to
recognize the culture of the target organization through the documentation that

20

Corporate Software Project Management

has been produced. They should not, for example, need to try to maintain a list of
ambiguities by document author—the style guide used to write the documents
should remove any possible ambiguities if followed by all staff.

DEFINING STANDARDS

Within the documentation, there will be specific ways in which the information
should be represented; and the way in which we define this presentation is detailed
in a single document that indicates the standards that must be adhered to when re-
porting within the target organization. There are many reasons for defining a set of
reporting standards, but key reasons include ensuring that there is no ambiguity on
the side of the reader and the author of the document.

Since miscommunication is one of the main causes of project failure in the early
stages, it is important to remove any ambiguities in the documentation. However
trivial some of the standards that need to be defined may seem at first sight, over-
looking some of the details could lead to problems with far-reaching consequences.

The following are simply suggestions, and the target organization may want to
adopt different conventions than those listed here. This is not a problem, as long as
it is clear that there is one way to represent information in a given situation, and
that the guidelines are published to all staff responsible for writing documents,
memoranda, or even internal messages. Currently, this will probably include all
staff.

Date Standards

Since documents are often referenced by date, it is important that document titles,
section titles, and references to decisions or meetings all follow the same format. In
general, there are two frequently used styles: the European and U.S. variants.

In Europe, the accepted short form is Day-Month-Year, as in 31-12-2004, with
titles and ad-hoc references being of the form 12 December 2004. This is different
from the U.S. convention, which is usually Month-Day-Year (12-31-2004), and
December 12, 2004 for the longer form.

Since the year 2000, many organizations have abandoned the two-digit year
in favor of its full four-digit format. Furthermore, the use of either a hyphen or
forward slash should also be indicated, again simply to offer a uniform feel to
information representation.

Time Standards

Naturally, the first question that needs to be answered is whether to use the 12- or
24-hour clock to represent time information. In the case of the 12-hour clock, a

Standards and Guidelines 21

time in either the morning or afternoon is indicated by the use of the common ab-
breviations AM or PM, usually following the time. Standards usually dictate that
the granularity of time information should not exceed hours and minutes, except
in technical documentation where more accuracy is required.

A discrete piece of time information, such as the start of a meeting, is usually
written as 1:30 PM (12-hour clock) or 13:30 (24-hour clock). Quantities of time
may be represented by 2h45m (2 hours and 45 minutes), and ranges as 13—13:30
(for a meeting lasting 30 minutes). Where an increased level of detail (or granular-
ity) is required, SI conventions should be followed.

Version Standards

Unlike date and time standards, version information does not seem to follow such
widely accepted and rigorous formatting conventions, except where software
version numbers are concerned. Here, it is widely accepted that the format should
be major.minor. Therefore, a piece of software in its first release will be numbered
1.0, with the first minor modification being denoted by a version of the same soft-
ware carrying the number 1.01.

Similarly, it has long been accepted that major version numbers indicate the
addition of functionality, and minor version numbers simply show that various in-
consistencies within the software (bugs) have been repaired. Any version before the
arbitrary 1.0 level is often called “beta,” although the simple addition of the letter b
after the version number can also indicate this (as in 1.01b).

The actual version number can be mixed with the release date (formatted ac-
cording to the target organization’s standards) to give additional information to the
end user.

Other Measurements

Besides measuring date, time, and version histories there will also be occasion to
measure other values such as distance (measurements), area, or metrics represent-
ing the productivity of staff members. We will cover specific coding measurements
in other chapters of this book; however, it is worth noting some conventions for
indicating sizes of values are already widely accepted.

First, the target organization needs to be sure that everyone is using the same
basic units of measurement, such as choosing British Imperial (inches, feet, miles) or
SIunits (centimeters, meters, kilometers). In addition, groups of staff members such
as graphic artists usually have their own particular units, like DPI (dots per inch) or
pels (pixels per meter), which need to be respected. There is little harm in choosing
to mix units where the problem domain dictates, but such exceptions should be
noted in the style guide developed and published by the target organization.

22

Corporate Software Project Management

Staff Initials, Usernames, and E-Mail Addresses

In cases where the target organization does not reference users by number (archaic
and impersonal), it is necessary to reduce their name for practical reasons. Smaller
organizations will be able to simply adhere to the common three-initial rule. The
author, for example, has always been referred to as GLT, although this could
equally have been GWL, or even GWT, if required.

Larger organizations will of course run into problems where staff members
have names that closely resemble each other, leading to the adoption of a two-
three-four convention. Thus, the author could be referred to as GL (or GT), GWL
(GWT), or the full four-letter initial GWLT. Hierarchical conventions may also be
applied. For example, those higher up in the structure of the company may be re-
ferred to by more or less initials, reducing the probability of initial overlap and con-
veying status information in a simple manner.

Besides referring to staff members by initials, they will also probably require
usernames for access to their computers on the target organization’s network.
Again, acommon convention requires taking the first x letters of the staff member’s
surname, plus his first initial. Using the author as an example, a six-one convention
would lead to leckytg. More common, however, seems to be an eight-one conven-
tion. The exact convention used is not important, so long as everyone is aware that
a convention exists.

Finally, all staff members will probably need an electronic mail address. This
can take the form of the username plus domain (as in leckyth@company.com), but
this has drawbacks such as being a little difficult to remember for potential clients,
and appearing less professional on business cards. The preferred standard is usually
the entire name, as it appears on the staff member’s business card, plus the com-
pany domain.

Spelling and Grammar

Most modern word processors have built-in spelling and grammar checking tools.
Usually, these can be set to follow a specific standard, but can be altered by the user
to reflect the working language of the document. Should the target organization de-
cide to dictate the working language for all documents, then the word processors
should be set up to reflect this decision. By a similar token, all staff members must
be made aware of the decision to follow a specific language standard.

This is particularly important where variations of a language (such as U.S. vs.
UK English) exist. It should be a conscious decision to choose between variations
of a language to remove ambiguity through the corporate document set.

Similarly, grammar checkers can also follow the company ruling on language
use; however, the majority of grammar checkers have proven to be ill equipped to

Standards and Guidelines 23

deal with technical, legal, or specific language usage. Thus, their use is not recom-
mended, except in cases where the software manufacturer specifically supports the
style of language in use.

Document Writing Style

This is a book about software engineering, and so the style reflects the subject
matter. Similarly, the writing style dictated by the guidelines of the target organiza-
tion should be a reflection of the readership, which will change depending on the
document being composed. Thus, several styles should be defined, ranging from
memo styles, letter writing styles, and the all-important contract writing style.

To aid in the definition of style guidelines, a good reference manual such as the
Chicago Manual of Style can be used to define the boundaries within which the doc-
uments should be structured, and the level of language used. The tone is also im-
portant, as it will either aid or hinder the transfer of information, which is the aim
of documentation in general.

We will be covering specific kinds of documents later in the book, along with
the style that they should use, but a general style should be adopted depending on
the industry. In the games industry, a more dynamic tone might be appropriate,
whereas clients being approached for financial software might appreciate a some-
what drier approach. In any case, the target organization needs to establish its own
personality through the writing style guidelines that it establishes.

Currency and Value Representations

The currency convention might seem superfluous at first glance; however, it is nec-
essary to decide which currencies are used in which circumstances. Although office
supplies might be quoted and invoiced in the local currency, it may well be the case
that clients in different geographical locations require work to be quoted in differ-
ent currencies, with different levels of sales tax.

The accepted currencies should be listed, although this might be a dynamic list,
along with the use for each currency. Where conversions are necessary, the rate
source also needs to be established, and the same source for currency conversions
used by all staff members when quoting for work toward clients, or requesting
budget for items purchased outside the target organization’s immediate geograph-
ical location.

Following currency conventions, there also needs to be a strict set of guidelines
that details how values are to be represented, again to ensure that there is no ambi-
guity or misunderstanding. Commas, for example, may be used to separate orders
of magnitude:

24

Corporate Software Project Management

1,000 10,000 100,000 1,000,000
or as a decimal separator:

1,00 100,00
So, what happens when both are needed? Clearly:

100,000,00
does not make any real sense. In which case:

100,000.00
might be more realistic. Choosing the correct separator is a matter of convention
and a logical decision, tied to the norms of the geographical location of the target
organization, the currencies in use, and the problem domains addressed by the

software being produced. In brief, a standard needs to be decided on, and passed on
in the style guidelines.

Volume Organization and References

When deciding how sets of documentation are to be organized, and what naming
convention is to be used, it pays to think about how they will end up being refer-
enced. For example, it is well and good to organize documents in a hierarchical
manner—this will ease the filing and management of the documents—but doing so
can often lead to some strange references, such as V2D3XA. For internal docu-
mentation, this kind of reference is probably acceptable; what a client will make of
it is an entirely different concern.

For those pieces of documentation destined for a third party, who may not be
clued in to the exact operational and development environments of the target or-
ganization, titles in references are much more readable than esoteric number and
letter abbreviations. For example, “Programmers Guide, Data Dictionary” is better
than “D3XA,” although the programmers may refer to it in this way once they be-
come familiar with the convention.

However, even if we are to assume that the programmers will eventually be-
come completely happy with referring to documents by their volume reference, the
style guide should lay out some kind of convention for the preparation of specific
document sets. The Functional Requirements, for example, is likely to be a multi-
part document, if not an actual volume. It pays dividends to try to ensure that

Standards and Guidelines 25

every Functional Requirements document is laid out in the same way, such that any
XA refers to a glossary of some kind, for example.

Minuting Style

Projects tend to be made up of two distinct work areas: meetings and actual work.
Each meeting is usually required to discuss some aspect of the actual work, and
probably take a decision. Internal and external meetings should be treated with
equal amounts of respect; in the same way that Chapter 1, “The Liaison Center,”
showed how internal and external clients were equally important.

Thus, writing minutes becomes an important part of the project documenta-
tion. All meetings need to be minuted, be they telephone conferences, progress up-
dates, or more formal meetings. The minutes must then be circulated, commented
on, and then agreed to (accepted) by all parties. Only one person should provide
the initial minutes.

The way in which the information is presented and the detail of information
contained will vary depending on the meeting subject, participants, and outcome.
However, the style guides relating to staff initials, dates, times, and so forth must all
be respected, and there should be additional guidelines indicating how the minutes
should be approached.

Some organizations prefer the verbose to the terse. Some only require that de-
cisions are noted, others that the entire discussion is transcribed (making record-
ing the meeting a necessity), along with the feelings and personal notes of the
person taking the minutes. The bare minimum will probably be the meeting title,
location, date and time, a participant list, and agenda, all on the first page.

What follows is essentially a series of comments under each of the agenda
points (agendas are discussed later in this chapter), with a brief note as to who
made what comment. Depending on the style chosen by the target organization, the
level of detail used to report the input of the participants will change, but the basic
elements should remain the same.

As before, it is paramount that the style guide is respected across all minuted
meetings, so that they all represent the meeting at the same level of detail. Since all
participants will be required to sign off on the minutes, there is no danger of miss-
ing anything of great importance, since each participant will be trying to place his
own view within the context of the minutes themselves.

One final point: Beware of verbose accounts of the proceedings. Reading the
minutes of a meeting is almost as tiresome as writing them, and the fewer pages that
need to be scan-read, the better. Minutes should also appear within 48 hours of the
meeting taking place, where possible, making Friday afternoon the worst possible
time for a three-hour progress update.

26

Corporate Software Project Management

Agenda Style

Finally, all meetings need an agenda. This is to communicate the goal of the meeting
to the participants, and is usually set by the meeting organizer. It should probably not
exceed one page, preferably one side only. The contents will be, at a minimum, the
title, location, date and time of the meeting, participant list (anticipated), and a series
of points detailing the topics of conversation.

Each organization will probably have its own sets of agenda templates, de-
pending on the meetings that are to take place. For example, a team progress report
is likely to always contain broadly similar topics, with specific entries cropping up
in cases where a particular problem has reared its head.

An “Introduction and Welcome” point is always good, especially if the partic-
ipants do not know each other, and is followed by “Acceptance of Previous Min-
utes,” in cases where the meeting is a recurring event. The meat of the meeting
follows, and the topics will vary due to circumstances; however, the last two should
always be “Any Other Business” and “Next Meeting.” These last two give a chance
for last-minute agenda points to be covered, as well as formally deciding whether
another meeting on the same topics will be required.

Naturally, the Agenda will form part of the audit trail and project documenta-
tion as will the Minutes, and they should be collected, referenced, filed, and stored
as with any other piece of project documentation.

PROJECT DOCUMENTATION

By and large, the exact mix of software development project documentation will be
dictated by several factors. The first is whether the project is a new development, an
integration project that ties together two pieces of legacy software (especially when
merging two existing products or services), or the enhancement of an existing piece
of software.

Second, the paradigm chosen by the company will also affect the exact docu-
ments that are required, since those projects that follow an incremental approach,
including a phase of prototyping, will have a different document set from those
following a more traditional model. Data-driven applications will also have a dif-
ferent document set from real-time embedded systems, for example.

The problem domain will also play a part in choosing what documents should
be included, as will the end-user profile. Internal clients and external clients may
also have different documentation requirements, and the level of client involve-
ment will affect whether there are pieces of documentation specific to a given ex-
ternal organization that need to be included, for audit purposes, within the
document set.

Standards and Guidelines 27

Finally, there is a difference between those pieces of documentation that are
handed over to the client as deliverables, and those that are retained for use inside
the target organization only, and are not distributed to a wider audience. The
following discussion, therefore, is a global approach that can be used as is, or in-
tegrated with the existing guidelines offered by the target organization. It tries to
be all things to all people, and as such will seem too heavy for some projects, and
inevitably will be missing some parts for others.

Project Phases

We will assume that a project follows a set of phases, which have, as part of their
deliverables, a document set that supports the completion of that phase. Generally
speaking, a project performed for a third-party client will follow phases resembling
the following:

Proposal: Usually a result of the client issuing a “Request for Proposals,” this
phase requires that the contractor details the solution, cost, and a time frame.

Planning: Feeding in from the Proposal phase, once the Proposal has been
submitted, the contractor should begin to establish how he will service the pro-
posal, regardless of whether it is accepted by the possible future client.

Execution: Once the project has been planned, and subject to the client ac-
cepting the terms of the proposal, the project is executed within the terms of
the proposal document.

Completion and Maintenance: Once the project is completed internally, with
a finished, and tested, product ready to be delivered to the client, it must be for-
mally packaged, submitted, and maintained within the agreed terms.

This last phase could also be called Handover in cases where no actual mainte-
nance agreement has been contractually arranged. This is a rarity, especially since
the chances of the project delivering on all agreed functionality seems to be difficult
to achieve within the budgets agreed by software contractors. Since the goal of this
book is to ensure that this risk is minimized, we could claim that maintenance
agreements are indeed unnecessary. However, there is always the possibility that the
client will require enhancements to the software within a reasonable time frame
from completion of the main project, under an extension to the main contract.

Bearing the previous phases in mind, we can now look at the kinds of docu-
ments that are going to be produced for each of the four phases that we have out-
lined. The categorization of each document is not rigid, since it is impossible to
predict the exact timing and resource constraints of individual organizations. It is

28

Corporate Software Project Management

important to note that each document is a deliverable toward the client, and that
the organization should indicate how each project’s documentation set should be
structured, resulting in a section of the organization’s style guide.

Proposal Phase: Proposal Document

Generally speaking, the proposal reflects the request made by a third party, and
needs to include an Introduction that details why the target organization is a good
choice for servicing the contract, their strengths, and some basic financial data
supporting their position in the marketplace and offering accountability of their
financial position.

The bulk of the document reflects the approach to the problem domain that
will be used, emphasizing, where possible, other successfully completed projects
that used similar techniques. The structure of the “Request for Proposals” (RfP)
document should be mapped to the solution. If, for example, the RfP is broken
down into areas of desired functionality, then the solution guide should be, too.

Finally, a brief section detailing cost, licensing (where appropriate), ad-hoc ex-
tension prices, training, and expected time frame to completion should be outlined.
Further to this, it might also be a good idea to break down the entire project into
anticipated person hours of work. If the client does not require this, at least it can
be used to back up the time frame plan, or adjust it as necessary, so it is a worth-
while exercise to perform.

One final detail is that a management summary should be attached to the Pro-
posal, along with a cover letter that details the nature of the proposal, documents
enclosed, and future steps.

Planning Phase: Detailed Plan

Following the breakdown of the project into anticipated person hours carried out
in the Proposal phase, a detailed planning document needs to be written, which
substantiates the overall plan, and indicates to the target organization where the
resources need to be concentrated in order to achieve the goals promised in the
Proposal.

It is also a good idea to build in a double contingency. This means that there is a
certain contingency communicated to the client, in the proposal, to allow for
changes of direction, new requirements, or human resource problems. The amount
taken (which will be spread over the different parts of the resource plan) should then
be doubled, and resources adjusted within the target organization accordingly.

A double contingency is a safeguard that ensures that toward the client, the
time is built into the schedule, but within the target organization, resources are

Standards and Guidelines 29

increased to ensure that the promised delivery dates are kept. It has no bearing on
the eventual cost (the additional person hours are “free”), and in the best possible
scenario, will result in completing the project ahead of time, rather than late.

Planning Phase: Contract

Usually a mixture of legalese and absurdly long sentences, the official contract
needs to reflect every possible contingency, while protecting both parties. A stan-
dard contract can usually be established that covers most projects, and is the docu-
ment that is signed, once the law professionals have deemed it acceptable.

While the contract will be binding, it will also be difficult to read. One has to
make sure, however, for the well-being of both parties, that all deliverables, includ-
ing documentation, are detailed properly, along with milestones and target dates.
Penalties for missing milestones or targets should be clearly stated so there is no
ambiguity.

Planning/Execution Phase: Requirements Definition

This document is the personification of the wishes of the client, whose signature
appears on the contract, in a language that can be understood by both parties. By
this, we mean that there is a minimum of technical terminology and professional
vernacular. After all, both parties are going to sign off this document as embodying
every possible function that the client will want to perform with the finished
product.

Once signed, it is set in stone, except where the contract allows for modifica-
tions, and must therefore be complete, unambiguous, and easy to read. It need not
be lengthy, just as long as is necessary so that the client agrees that the contractor
has understood the goal of the project.

In the event of a dispute, both parties will be held to the contents of the Re-
quirements Definition. As such, it will probably go through several iterations in an
attempt to translate the RfP into a working document for the project.

Planning/Execution Phase: Functional Definition

Another document that should be accepted, if not contractually agreed, by both
parties, the Functional Definition breaks down the entire system into pieces, each
of which is designed to fulfill a specific task. The Requirements Definition might
state that the spacecraft needs to be able to correct its own trajectory, and the Func-
tional Definition will break this requirement down into subgoals (detect trajectory,
check trajectory, fire rockets, etc.) that are designed to satisfy the requirement.

30

Corporate Software Project Management

The reason why this document may not form part of the contract is that it
moves toward the technical domain of the problem solution. As such, it may not be
adequately understood by the client to form part of the overall agreement. How-
ever, if both parties are willing to invest the time to explain and understand, then
there is no reason why it should not be used as a basis for agreement.

Execution Phase: Functional Specification

The Functional Specification is the design document, or blueprint, for the finished
software application. It needs to be technical enough to provide the bridge between
the Functional Definition and actual program code, from the point of view of the
programmer. In addition, it should detail all the other nonprogramming require-
ments, such as data storage, operating system, and so forth that will be required to
service the contract effectively.

Due to its technical nature, it will probably not be appropriate to include the
Functional Specification in the set of documents that form a contractual agreement
between the two parties. In certain circumstances, however, it may be desirable,
especially if some work is being subcontracted, and both parties are technically
competent to review the document.

Execution Phase: Acceptance Test Plan

Once the software is written, there will be a need to prove to the client that it fulfills
their requirements, as laid out in the legally binding supporting documents out-
lined previously. This is distinct from the usual unit testing and other quality con-
trol methods that we will also be covering in this book, as it provides the only way
for the client to formally accept that the contractor has fulfilled the terms of the
contract.

As such, the document will also form a part of the contract, and should there-
fore be accepted formally by both parties, and again, signed off by their legal repre-
sentatives. The language must therefore be nontechnical, although certain portions
may need to contain data sets that by their very nature will be written in a technical
manner.

Thus, the Acceptance Test Plan needs to be formulated as a result of the Re-
quirements Definition document, and include parts of, or references to, the Require-
ments Specification. Therefore, it will need to be at least begun before the formal start
of software development.

Planning/Execution/Completion Phase: User Guide

In brief, the User Guide enables the end user to lever the power of the software ap-
plication to achieve the desired result. In addition, it provides the only instruction

Standards and Guidelines 31

for installation, removal, and operation of the software package. Naturally, the
client needs to be able to verify that it covers all the functions that appeared in the
Requirements Definition, as tested during execution of the Test Plan.

As one might expect, signing off on this document constitutes formal accep-
tance of the entire software package, associated tools, and probably the implemen-
tation of the software at the site determined by the client in the contract. In sum, it
is the solution to the problem laid out in the original RfP.

The document carries a lot of weight, and should be treated with an according
amount of respect—something often forgotten by the developer in the haste to
meet the deadline set forth in the original contract.

Completion Phase: Maintenance Contract

The last document that forms the complete root set is the guide for maintaining the
product once it has been released into the production environment. Changes to the
software, whether a reflection of the inevitable pace of change within the client’s
organization or as a result of finding small errors within the package itself, need to
be catered for, budgeted, and priced accordingly.

Each of the previous documents needs to be written taking into account all the
standards that have been defined as a result of the first section of this chapter. The
organization should also be prepared to hand over a copy of the style guide to the
proposed client so they can familiarize themselves with the documentation stan-
dards laid down by the organization.

CODING STANDARDS

Trying to persuade programmers to adhere to standards that impose restrictions on
their own particular coding style is often akin to extracting water from a rock. Pro-
fessional programmers also tend to have egos that fill the room they’re working in,
and do not take criticism easily. Establishing coding standards, in the target orga-
nization, is going to fail if it is done overnight. It needs to be folded into acceptable
working practices over time—unless, of course, they are just joining the organiza-
tion from an educational establishment, and have yet to create much of a style of
their own.

Bearing all that in mind, several books are available (e.g., Code Complete, pub-
lished by Microsoft Press) that deal with specific coding practices, and how they can
be deployed within a corporate software production environment. While it is un-
likely that every programmer will stick to every rule the books offer, some basic
standards can be implemented that make the code easier to read, maintain, and im-
plement, while watering down programmers’ personalities a little, without seeming
offensive to them.

32 Corporate Software Project Management

One of the most frequently quoted coding styles available under an Open
Source agreement is part of the Linux kernel source documentation; specifically, a
document that covers the way in which coding styles should be applied by those
programmers wanting to contribute to the Linux code base.

If developers are following the Open Source mentality of software creation, and
plan to release their code to the public (under the terms of the license that is applied
to the Open Source components that they have chosen to use), then this provides
an excellent starting point for a coding style manual. It has the advantage of being
widely applied, stems from plenty of programming experience in the field, and is
reasonably brief and easy to follow.

A good description of this document can be found in the Kernel Korner part of
the Linux Journal Web site (www.linuxjournal.com/article.php?sid=5780).

Comments

In a discussion of the various metrics that M Squared Technologies uses to measure
code metrics (http://msquaredtechnologies.com/m2rsm/docs/rsm_analysis.htm) for
their RSM software used for benchmarking and producing code metrics, they note
that a ratio of 10-percent comments to code is a suitable minimum. They also point
out that the quality is important, and that the comments should provide a reason-
able summary of the code that they describe.

Three kinds of comment are very useful, and do not impose upon the pro-
grammer too much. Each function (method) should contain a comment that de-
scribes what it does, and what the inputs and outputs to the function are, along with
any return value. These comments should be of sufficient quality to include in the
official project documentation, and a tool like RSM can extract them in a variety of
useful ways.

The second set of comments should reflect any modifications that have been
made to the code since it was originally written, and must be identifiable using a
code to identify the author, and reason for the modification. Finally, there should
be a comment for each block of code that performs a separate step in solving the
immediate problem.

There needs to be a set of keywords established by the organization that detail
the type of comment that is being made, so that an automatic documentation pack-
age can extract them. Functions, for example, can have lines of comments that are
labeled indicating input, output, or operations performed. Areas of code dealing
with specific parts of the software should also be clearly marked to aid in the cre-
ation of programmer documentation such as data dictionaries.

Standards and Guidelines

Block Separators

Many keywords require that a set of statements be grouped by using separators to
encapsulate the statements, or keep them together. Conditional statements, loops,
and function block separators all adhere to these principles. Languages such as
Modula-2 and Pascal use the keywords BEGIN and END to keep the statements to-

gether, while C and C++ use braces ({ and }).

Some style guides allow the programmer to place block separators on the same
line as the keyword to which they refer; however, in the interests of clarity, it can
make more sense to place them on lines by themselves. For example, if we take ad-
vantage of the C-style block separator placement rules to keep the number of lines

to a minimum, we can end up with code such as:

void MyFunc (int nRepetitions) {
int nCounter;
for (nCounter = 0; nCounter < nRepetitions; nCounter++) {
// Do some interesting things

P}

Indeed, C guidelines note that line breaks are entirely optional, which can lead
to some particularly difficult to read code samples. The preceding code snippet can

be rewritten in an easier to read fashion as:

void MyFunc (int nRepetitions)
{
int nCounter;
for (nCounter = 0; nCounter < nRepetitions; nCounter++)
{
// Do some interesting things
}
3

However, this does take up much more space, which is sometimes frowned
upon by programmers. There is likely to be a trade-off between the two factors.

Function Size

To maintain readability, it is a good idea to set a limit on the number of lines of
code that make up a function. Not to mention the fact that it has long been estab-
lished that human short-term memory can contain around five pieces of informa-
tion at any one time without inadvertently forgetting one of them. This, it would

seem, is a better, more qualitative approach to limiting function size.

34

Corporate Software Project Management

The Coding Standards might indicate, for example, that any time a function is
in danger of containing more than five logical blocks, it has grown beyond the
readers’ ability to adequately comprehend, or validate. In addition, allowing blocks
of code to nest by more than five blocks, or having more than five possible out-
comes to a given operation will all detract from the readability of the code.

DATA COLLECTION STANDARDS

Part of the way in which the progress, efficiency, and overall productivity of staff
members can be monitored is by collecting relevant pieces of data. These can be
anything from working hours, lunch breaks, and coffee pauses, to counting the
number of lines of code produced per hour worked; however, any data collected
needs to be of sufficient quality to be used for drawing conclusions.

Besides the Big Brother style of corporate data collection that is used to moni-
tor employees’ behavior and productivity, the employees themselves might have
cause to collect data in order to perform their job; programmers, for example,
might decide that the performance of the code they have written is suspect, and
want to measure it in some way.

Whatever the actual use of the data that needs to be collected, it should always
be done in a way that is standardized across the organization, and respecting the
guidelines for empirical representation set out in previous sections of this chapter.
At its most obvious, a guideline might state that, when measuring time, guessing is
not acceptable, but that a quartz-based timepiece has to be used, or that the system
clock is to be initialized to a granularity that measures discrete processor counts.

Similarly, when counting lines of code, the organization might choose to
exclude lines that only contain block separators, or comments, or even keywords.
Referring to RSM again, M Squared Technologies has identified three code line
counts:

LOC: Lines Of Code (all nonempty lines of code)
eLOC: Effective Lines of Code; all LOC that are not comments or block
separators

ILOC: Logical Lines of Code; complete code statements

The authors of RSM state in their user guide that the eLOC metric most accu-
rately represents the amount of processing work that the source code performs, and
is the metric that software engineers naturally arrive at when asked to perform a
similar estimation of work performed.

Standards and Guidelines 35

Clearly, the organization needs to establish which measurement they need to use
in order to gauge staff member productivity or performance. While this is the most
immediately obvious kind of data that needs to be collected, many more can be iden-
tified by the organization, and it is up to the guidelines of the organization to make
clear how the data should be collected, and against what baseline it is measured.

REPORTING TEMPLATES

An integral part of ensuring that communication between all parties is carried out
in an effective, timely, and productive manner is making it as easy as possible to
perform the more mundane reporting tasks. For example, all organizations in-
volved in providing consulting services will have a standard time sheet that all em-
ployees should fill out, and standard accounting documents that are used to
calculate the cost of the project, so that the project manager can keep the costs
under control and provide important information to the payroll department.

From earlier parts of this chapter, it seems that much of the style guide makes
the task of reporting more difficult. After all, there are plenty of guidelines for
effective language use and restrictions on style, all of which at first glance are not
designed to make it easier for staff to write documents. Much of the standards,
however, revolve around making sure that everything that needs to be in the re-
porting document is present, and that the key pieces are in a standard format.

This is where the templates come in. The virtual corporate library should
include reporting templates for all aspects of project management and software
engineering. They should be stored in a central place, and used by all staff. The staff
should be instructed, when creating a document for the first time, to check whether
there is already a template for the document, and if not, ask the relevant authority
(librarian) to provide one.

Communication Documents

The basic document set includes templates for letters, faxes, e-mail, memos, and
those pieces of documentation that we discussed previously for managing meetings.
Each will be adorned with essential corporate information such as the title, logo,
address, and contact information. They will also contain areas for inserting (possi-
bly automatically) the version, and document reference numbers.

Software packages such as Microsoft® Word allow for the easy creation of tem-
plates that can be used as a basis to make documents. At the very least, skeleton
documents should be prepared to cover the major document types. Most modern
word processors allow the creation of fields within the document, which can aid in
automatically generating document references.

36

Corporate Software Project Management

Using the power of today’s office suites of software, document references can
be stored in a spreadsheet, which automatically numbers them, and the title and
author/recipient information from the document can be fed back into the spread-
sheet to provide a list of all documents. This list can then be exported, sorted, and
generally monitored as staff create an auditable paper trail.

This requires some fairly technical linking together of documents, using the
capability of most suites of software to integrate functionality, thus providing a
method of sharing information between them.

Development Documents

All of the specification, definition, and general preparation documentation needs to
have templates also, if only to provide a shell in which to place the relevant pieces
of project information. We have already discussed what information should be
present, in a very vague way, and we will revisit these documents later in the book.

Slightly more unusual is the possibility to use templates for coding as well.
Most developers probably do not actually follow such a rigorous procedure, but it
helps if templates for source code are established that include a copyright state-
ment, licensing information, change history template, and author information—at
the very least.

More advanced templates for use when creating classes, and implementing
their various methods, as well as general utility and library code can be created.
Most development environments, and word processors (which can be used to de-
velop source code), allow for the use of macros that will facilitate the use of stan-
dard coding conventions for creating all the various pieces of code that will be
needed to create the software application.

SUMMARY

Implementing the advice that has been put forward in this chapter will probably
not make the reader many friends. Somehow, many staff members do not react well
to being told how to write documentation, and that it comes before what pro-
grammers consider the fun part of their job.

However, having a set of corporate standards that are documented and en-
forced helps to ensure that the project is successfully completed. The aim of this
book is to arm those involved in software engineering in a corporate environment
with the tools to increase their success rate. Standards, documentation, and effec-
tive management are all key to achieving this goal.

Standards and Guidelines 37

Therefore, following the advice laid out in this chapter should lead to a visible
increase in uniformity, productivity, and effectiveness, by itself. However, merely
implementing a set of standards will probably not be enough to fully lever the po-
tential of the organization; they are merely the foundation upon which the other
principles are based.

.

B Specifications

In This Chapter

Introduction
Involved Parties
Common Mistakes
Diagrams

Timing

Summary
References

INTRODUCTION

Traditional Software Development Life Cycle (SDLC) paradigms usually involve
one or more steps designed to translate what the end user needs into something
that technical specialists can implement. This is particularly true when defining
software that is custom built to match the needs of the client, who is usually not
part of the organization performing the development.

Often, this translation of client requirements into documentation that forms
the basis for the design of the software solution is neglected in favor of actually be-
ginning the software development project itself. However, the root of many prob-
lems associated with late, incomplete, and overspent software projects can be traced
back to neglected documentation in the early stages of the entire project.

39

40

Corporate Software Project Management

The early documentation phases of a software development project are often
given names such as “Requirement Specification” or “Requirement Definition,”
but the names themselves are not very important. What is important is that there
is a phase that attempts to encapsulate the wishes of the end user in a document that
can be agreed on by both parties, and a stage for turning this nontechnical docu-
ment into a set of more technical specifications that may or may not be understood
in detail by the client.

Certain measurements have been taken based on real projects that indicate
errors that have not been isolated in the definition and specification stages become
more expensive to fix, sometimes on a scale of many orders of magnitude. Thus, it
is very important to try to pin down the underlying documentation. It is worth
spending more time on these phases than seems necessary, and holding back the
start of the development part of the project until such a time as the supporting doc-
umentation is agreed to be complete, by all parties involved.

As a brief aside, it is worth noting that, in principle, each part of the software
development chain could be performed by a different subcontractor. This is one
reason why, as we describe the approach and theory behind creating specifications,
we always make a point of separating what the system is supposed to achieve from
how it is to achieve it.

In theory, at least, we could have different subcontractors to define the require-
ments of the client, specify the problem domain, define the solution, implement it,
and then test it—five separate third parties in all. In practice, this will rarely be the
case, but it is always worth putting in the extra effort to ensure that the documents
are written as if this were the case.

INVOLVED PARTIES

It is worth taking a moment to try to understand which parties will be involved in
a typical custom software project, since technically minded project teams often
neglect certain aspects that later prove to be important. One such example, as we
will see, is the misunderstanding that can often result from not understanding the
point of view of a nontechnically minded end user.

The Client

Clients fall into several categories. First are those who present the problem and ex-
pect the developer to produce a solution. These are the easiest clients to work with,
since they do not have any preconceptions and will likely adapt to the developer’s
way of approaching the problem.

Specifications 1

The second category is those clients who already think that they know the
solution to the problem. In other words, they believe that they know what they
want. Software engineering courses taught often point out that these are difficult
clients to work with, who can be resistant to being advised as to the correct solution
in favor of asking for specific features they think will solve the problem.

Finally, there are those clients who see a technical solution from the start, and
believe that they are simply hiring a team of programmers to realize the project on
their behalf. These will be the most difficult clients to deal with, particularly if they
believe that they are adequately qualified to suggest how the solution can be imple-
mented, while not being technically competent to do so.

Even in cases where the client is perfectly competent to present the problem,
solution, and expected technical implementation, the developer should be pre-
pared to spend some time at the start of the project explaining that the solution will
be of a higher quality if the developer is allowed to work through the problem
individually.

This is not to bestow some kind of super arrogance on the developer, nor to
belittle the technical competence of the client. It’s simply a warning as to how
things can go horribly wrong when the developer tries to fit the client’s world view
into his way of working, rather than the other way around.

Each developer will attack the problem in a different fashion. This is why, in
hard real-time development (such as space shuttle control), several development
teams are approached to create the final product. In the case of extremely im-
portant control systems, the resulting applications are run in parallel, and each
decision they reach is fed into yet another system that works out where all the
systems agree, and recommends the appropriate decision to take.

This way of working illustrates two things. First, all developers are different,
and the client cannot simply assume that their way of solving the problem is the
same as everybody else’s. Second, even when the end result is supposed to be stan-
dardized, different systems may produce different results.

However, it is only natural that the client makes suggestions. They need to be
involved so they understand why the developers made certain decisions. There is
nothing worse than a client who is kept in the dark, and believes that they could
have done a better job, should problems be found at a later stage in the develop-
ment cycle. They may simply assume that the developer is incompetent, cancel the
project, and move on.

Therefore, the specifications of the problem and suggested solution provide an
insight into the decision process that leads to the final implementation. They pro-
vide a vehicle by which the client and developer can effectively communicate their
wishes and come to a common understanding of the problem domain.

42

Corporate Software Project Management

The Technical Staff

All projects need to rely on the technical opinion of the experts during the specifi-
cation phase. These technical experts will probably create the final product, and
need to be consulted during the creation of the specifications. There is a tempta-
tion, however, of technical staff to underestimate the complexity of a solution, or
overestimate their own capabilities.

The reason for this is twofold. First, they might not want to appear less com-
petent than their peers. There is usually a healthy element of competition among
hardcore programmers, which can lead to good, solid code. Many organizations
tend to encourage competition for this reason, but need to be aware that doing so
can have a negative impact on the accuracy of resource estimates as programmers
attempt to exaggerate their competences.

The second reason is that they can feel persecuted, as if they are always at fault
when a project runs over time, over budget, and is delivered with errors. A cynic
might add that they have good reason for this, since they are ultimately responsible
for the quality of the final product. However, it is equally true that poor specifica-
tion, and poor quality control, could also be blamed for a project with problems.

This is why the opinion of the technical staff is vital. It prevents the manage-
ment from making promises to the client that the programmers cannot fulfill, and
ensures that the programmers have a hand in defining the solution to the problem
that the client presents. Therefore, they can be confident that the specifications
match what they can actually deliver.

Technical staff often have the advantage of an outside view. When they first be-
come involved with a project, it will be without the initial account management
contact that the developer has already had through the sales team. Therefore, they
will have no preconceptions as to the problem domain.

As such, they might recognize problems in the specifications and in the de-
scription of both the problem and proposed solution that would make it difficult to
realize an effective implementation.

Part of this is also coupled with the education and natural problem-solving dis-
position of programmers and software designers. The specifications, then, provide
a way for technical staff to be appraised of the problem and proposed solution,
while giving them the possibility to correct and refine the documents accordingly.

The Management

The project management can be seen as the internal client, as they need to be satis-
fied in the first instance that the final product matches the wishes of their client.
This puts them in a slightly peculiar position, since they need to be sure that they
have really understood what the client is looking for, not only so they can try to win

Specifications 43

the bid, which will lead to the project, but also that they can be sure that the proj-
ect team delivers on that promise.

Therefore, the management needs to be sure that the specifications are correct,
constantly checking that the client is aware that what they want may not actually
have been effectively communicated to the project team. The specifications really
need to reflect the agreement between the client and the management as to what the
system needs to be able to do.

This will then naturally lead to a set of documents that state how the system is
going to perform the tasks that will satisfy the specifications. If the specifications are
incorrect, either because the client has not communicated effectively with the man-
agement or the management has not communicated effectively with the project
team, then it will be difficult to achieve a positive result.

Therefore, the management is the bridge between the developer and the client,
ensuring that the specifications represent a system that solves the client’s problem,
and can be delivered by the project team within budget, on time, and following
the specifications. Of course, they should not be afraid to reduce the scope of the
system to ensure that this is so—even if it means possibly not being awarded the
contract, which is better than having to deliver on false hopes.

The End User

In many cases, the end user will be a part of the client’s organization, although there
will also be occasions where the end user is an outsourced service provider used by
the client to provide technical services to them. However, end users should always
be treated as a separate entity from the procurer, whom we generally refer to in this
book as the client.

The end users will use the final system on a regular basis, so they must be sure
that the specifications identify all areas of the final system that will make their jobs
easier, or even achievable. It will not always be necessary to include their point of
view in all aspects of the specifications, since the system will likely also consist of
parts that will not affect the job of the end user.

However, in areas such as user interface, input from the end users will be in-
valuable in ensuring that the specifications lead to a system with which they can
work. There are those who will say that the specifications as agreed between the
client and developer should not actually address the user interface, since that rep-
resents the “how” and not the “what” of what the system should be able to achieve.

However, ignoring the end user in the specification stage may lead to an un-
derspecified system, which, once built, will become expensive to operate, and even
more expensive to change in order to satisfy the requirements of the end user.

44

Corporate Software Project Management

End users will typically be nontechnical and therefore unaware of the conse-
quences of some of their requests. They will strive to communicate a Utopian view
of the final system, in which all their needs will be catered for in the best way pos-
sible, regardless of the cost of implementing such a system.

Hence, their point of view will need to be filtered by the technical staff and
proj’ect management such that when it appears in the final specifications it is closer
to something that will improve the quality of life for the end users, rather than solve
all of their immediate problems.

The Technical Writers

Finally, after all the meetings between the client and management, roundtable dis-
cussions between the end users, client, and developer, and the inevitable diagrams
that will be drawn as part of the reporting process on the evolving system view, a
meeting will have to be held with the people who are actually going to write the
specifications themselves—the technical writers.

In fact, they will have to be involved from the very beginning. Trying to com-
municate the final shape of the system will require yet more checks to ensure that the
technical writers have understood what the client and end user are expecting from
the system within the bounds of feasibility. The issue of the price that management
will need to charge to make the venture worthwhile must also be understood.

The technical writer has to try to convey the ideas of all parties to paper such
that the specifications are concrete enough to form part of the contractual agree-
ment between the client and developer. Hence, it will be a document of some legal
weight, carrying the signature of all parties, written accordingly.

The effectiveness of the whole chain from client to technical writer is summed
up by the accuracy with which the specifications match the vision of the client—not
so much what they think they want, as what they actually need.

COMMON MISTAKES

The client can be singled out as the culprit in cases where there have been misun-
derstandings leading to inaccurate or incorrect specifications, which in turn lead to
problems with the final implementation. The technical staff will claim that they
have carried out the wishes of the client as laid out in the specifications, and the
technical writers will claim that they accurately described both the problem domain
and proposed solution.

It is important to realize that both the technical staff and the client have reason
to feel that the blame should be shared. Unfortunately, the client will usually blame

Specifications 45

the incompetence of the developer, and the developer will usually claim that the
client withheld information that might have made a difference in formulating the
solution.

Since the client also agreed to the specifications with the developer, the devel-
oper might also have a valid complaint in that the client should have been able to
recognize potential errors and misunderstandings when they read the final draft.

Ultimately, the client and developer both have very different views on the prob-
lem and solution, not to mention different skill sets. Since we, as software engi-
neers, desire to offer a service to clients, the onus is on us to try to minimize the
impact of any mistakes that might be made during the early stages of the project.

Technical Competence

People of a technical leaning often forget that other people may not share the same
experience and competence as they do. They may also assume that they can discuss
topics that fall outside their immediate area of expertise, and still be competent to
make decisions in that area.

It is said that a truly wise person knows what he knows, and what he does not.
Technical staff sometimes need to be reminded that there are things about which
they need to seek advice.

This would not matter, except that these assumptions often find their way into
the specifications because the technical person concerned made an estimation with-
out finding an expert and asking him directly, and because he failed to communi-
cate the fact that it is a best guess. Finding these errors requires some form of review
of all the technical facts in the document. This is a time-consuming, but often nec-
essary, task.

Peer review will help enormously in trying to ascertain where there are as-
sumptions or estimations that have been presented as facts, in two key ways. First,
if those involved in creating the specifications, or providing input to the process
where specialized technical writers are creating the documents themselves, know
that there will be a peer review process, they are more likely to check their facts.

Second, when a reviewer sees a fact that is presented without premise, and
cannot trace the origin of that fact, he will call it into question. It may be that the
person who has written the fact into the specifications knows where it came from,
but that a third party would not.

This may not matter, except in cases where the reader has to try to guess at the
origins of the fact, where doing so affects his understanding of the document. There
is the danger that if the fact is based on a premise that differs from what the reader
has assumed, his understanding of other related areas will be incorrect.

46

Corporate Software Project Management

Hence, all technical specifications need to be checked for accuracy, consistency,
and proofs, where necessary, and where such proofs aid in the understanding of the
problem domain. Asking technical staff to back up every fact that they communi-
cate with a reference to existing documentation is not usually necessary, depending
on the system complexity.

Terminology

Many mistakes can potentially stem from misuse of technical terminology. Part of
the problem is that the language spoken by all the parties involved may not be of the
same technical level, and miscommunications often occur when two words carry
different meanings for two people of different technical competences.

The word database, for example, might mean a simple Microsoft® Access cre-
ated nonrelational database to the office staff, but a fully relational SQL-compliant
database system, such as Oracle, to a programmer.

The difference may not seem that important to a third party observing the
evolution of the specifications. However, an Access database can usually be in-
stalled on a standard workstation, and can be used by anyone with a little experi-
ence with Microsoft® Office products. Typical Oracle installations, however, may
require a Unix (or Linux) server, dual processors, plenty of memory and hard drive
space, and specialist knowledge for installation and maintenance. The choice of
definition, therefore, in such cases, is important.

There are many more examples of this kind of misunderstanding, and one of
the key criticisms that can be made of specifications is that the language used is
too vague. The word database in the previous example would not be sufficient for
use in the specifications of a system designed to manage payroll transactions, for
example.

However, it can sometimes be obvious to technically minded people as to what
kind of database, for example, is applicable given the system being specified, the
expected performance of that system, and the resources available to it. This is one
of those assumptions that we pointed out in the preceding section, where it might
be stated that a database is required, but two readers might have different under-
standings of the capabilities of a database.

Without the evidence to indicate exactly what services the database will be able
to provide, one reader might assume a different level of performance for the system
than another. If the client assumes that the system is capable of providing adequate
performance for their needs, but it turns out not to be the case, the chances of find-
ing the error before the system is put into production is slim.

The worst-case scenario in this situation is that the system proves inadequate
simply because there was a misunderstanding about the underlying capabilities of

Specifications 47

the supporting database. This could lead to redeveloping either the database or the
software, once the entire system has been put into place—which could prove very
expensive.

The way to remove any ambiguities that might be the result of misunderstand-
ing a particular technical term is to include a glossary of terms with every docu-
ment, or a global glossary for all project documents. Each time a staff member
writes a phrase such as “the database,” he needs to verify that it has been defined in
the glossary.

If such a phrase indicates a part of the system that is being built to specifica-
tions, and is not a third-party or retail product, then the definition of its capability
should also exist as part of the specifications.

User Interface Design

Technically minded people are traditionally not well equipped to design the user
interface, which is the user-facing side of the system being created. The only clues
as to what the system is capable of, from the user’s point of view, are communicated
via the user interface. Therefore, it is sensible to try to ensure that the key features
of the system are exposed via, for example, the menu system, and not hidden in an
obscure dialog box deep in the software application.

When programmers try to design user interfaces, they have a tendency to as-
sume that the user has extensive knowledge of the underlying system. There are
many examples of this in office automation history—from esoteric text editing
software such as vi that has no user interface to speak of, through the slightly less
difficult to use WordPerfect™ for DOS, which was driven by a contextual menu
system, to today’s fully graphical menu systems in applications such as Microsoft
Word.

One might say that the main driving force behind this evolution in user inter-
face design has been the change from text-only operating systems to ones highly
graphical in nature. However, early versions of WordPerfect for Windows, for
example, showed that although the underlying GUI elements were present in the
operating system, the designers of WordPerfect failed to take advantage of them.
There are more examples: GIMP (the freeware graphics processing package) as
compared to Paint Shop Pro or Adobe Photoshop, among others.

These products are typically designed by technically advanced programmers
and created with intimate knowledge of the underlying capabilities of the system.
However, they are very difficult to use because the GUI reflects how the designers
use the system, not how a typical end user might want to use the system.

This leads to a slightly strange situation in that the features asked for by the
client and communicated correctly to the developer through the specifications

48

Corporate Software Project Management

might be present in the underlying system but difficult to get to, leading to the
client being less than satisfied with the end product.

To avoid this, end users need to be involved in the specification of the user
interface, and not just the technical development team. If they are, there will be no
finger pointing in the final acceptance testing of the delivered product, and the
project is much more likely to be completely successfully.

Some software engineering paradigms allow the user interface to be created
with a rapid application development tool such as Microsoft Visual Basic®. The
result is a prototype that can be used to ensure that the end user is satisfied with the
proposed look and feel of the user interface.

Screen captures annotated with text can then be inserted into the specifications
by way of communicating this look and feel to the software developers. Of course,
it is a policy decision to make as to whether the user interface represents the im-
plementation (the “how”) or the specification of the solution (the “what™).

Some software engineers might point out that the actual modeling of the user
interface does not belong in the specifications at all, since it is part of the final im-
plementation. However, it is clear that there might be substantial gains to be made
for those systems with a high degree of interactivity to be created around a modeled
user interface.

DIAGRAMS

Specifications need to contain both text and an adequate number of graphical rep-
resentations that illustrate the principle requirements inside the problem domain,
and their proposed solutions. We will look at the kinds of diagrams that should be
present in the various documents that make up the specifications of a product, and
how they can be used to remove ambiguity in the specifications.

Notation

Many technical schemes can be used to represent various parts of the system, and
all have their place in the set of specifications that make up the system description.
However, different documents will be destined for different audiences, and it is
important to realize that those who have not had the benefit of formal technical
training will not necessarily understand some of the symbols used in diagrams pre-
pared by, for example, software or system architects.

Consequently, the notation used in each diagram should be chosen to reflect
the anticipated audience, which may sometimes lead to diagrams that are less visu-
ally rich than the author intended. That’s fine, as long as the concept being

Specifications 49

conveyed is done so in a way that is unambiguous and compact, and uses textual
annotations rather than advanced pictorial representations.

Designing the Problem Area

One of the first diagrams to be created may not find its way into the formal speci-
fications since it is designed to aid the understanding between client, developer, de-
signers, and end users. From this general understanding, the formal specifications
will be created, so it is an important, if informal, diagram.

The best way to construct the diagram is in the guise of a brainstorming ses-
sion, with all parties mentioned in the preceding section present or at least repre-
sented. The reason for this is that they will each have a different way of looking at
the system, and each should contribute his view of the problem area to the initial
diagram that represents a collation of all the separate views.

If one draws a series of bubbles on a piece of paper, each with a specific aspect
of the system in it, suggested by representatives of the various groups (end users,
client, management, project team, and so on), it will quickly become apparent that
there are many different ways to look at the problem, and solutions to it.

The result will be a reasonably chaotic collection of ideas, which will need to be
organized into clusters of ideas that belong together. It is possible to short-circuit
the process in the interest of trying to establish different areas of the system and
reduce the need to spend a lot of time writing on white boards. The following
groups of ideas crop up repeatedly:

Data: The abstract objects in the system.

User: Representation of different user groups.

Function: Required features and processes within the system.
Commercial: Concerns such as price, size, and equipment required.
Service: Maintenance, diagnostics, etc.

If a sheet of paper is prepared to contain these five areas, perhaps in five
columns, it will be faster to fill the various categories. However, this level of prompt-
ing might lead to undesirable effects, such as individuals trying to suggest ideas that
are outside their own areas of expertise. In addition, those who are responsible for a
given area might try to fabricate items so their column seems fuller, or worse, ignore
key problems in the interest of having fewer entries in their column.

The idea of a more freehand approach is that, since nobody knows what will
happen to the collection of ideas, those involved will be more likely to come up with
anything that is on their minds, within their area of expertise, without the element
of competition that can creep in by trying to streamline the process.

50

Corporate Software Project Management

There are some loose rules, or principles, that should be adhered to when cre-
ating the list of viewpoints. There will need to be a member of the brainstorming
session, with a good grasp of viewpoint analysis, who decides what a valid view-
point is, and is not, using these principles.

Viewpoints represent functions, or collections of functions, that are a feature or
service that the system needs to offer. Each function must be completely contained
within a viewpoint. Any information that flows around the system must do so
between two viewpoints, such that only viewpoints can provide a source of input
information, or a point at which information leaves the system.

As such, each viewpoint that information visits should perform some kind of
operation on that data. In fact, we can take this a step further and say that the
purpose of each functional viewpoint is to perform some kind of operation on the
information that exists within the system.

This is different from the nonfunctional viewpoints that usually represent the
boundary conditions, or constraints, of the system, and can include items such as
cost, performance, and resource requirements. Each of these can be considered a
separate viewpoint, but should be grouped under the appropriate heading.

With the various contributions in hand, they need to be organized further into
those parts of the system that define what it is supposed to do, those that define
other systems with which it will need to interact, and the abstract concepts, such as
price, that identify the constraints within which the system has to be built.

In the Procedures for the 5th International Workshop on Software Specification
and Design, [Finklestein&Fuks89] suggest a name for this—viewpoint analysis.
They begin in the same way, and take the process further by creating a structured
diagram for each of the viewpoints that are proposed by the people involved in cre-
ating the initial description of the problem domain.

[Somerville92] suggests that a mixed object- and function-oriented approach is
appropriate when taking this last step, known as viewpoint structuring. The aim is
to create a diagram in which all the viewpoints proposed are linked together in a hi-
erarchical diagram of different levels of related functionality. Figure 3.1 shows part
of the viewpoint structure diagram for a simple accounting system.

Constructing the diagram serves two purposes: to have a working pictorial de-
scription of the system that needs to be constructed, and as an input to the creation
of diagrams that describe exactly what functions the system needs to support. The
act of creating the diagram also helps to provide input to the creation of these sub-
sidiary diagrams, which will make up the bulk of the specifications.

Large systems, potentially containing hundreds of viewpoints, will need to be
spread across multiple diagrams. It will not be possible to fit all the viewpoints on
a single page, either because of the physical size of the paper, or simply because the
resulting diagram cannot be absorbed or understood by the reader.

Specifications 51

It is much more effective to layer the diagrams such that they only show a col-
lection of viewpoints that are contextually related. During the structuring process
that leads to the diagrams such as that in Figure 3.1, each collection of viewpoints
will be grouped according to the level at which they appear in the diagram.

Invoice Generation
Reporting
Payment Tracking
Order Processing

Customer
Management

FIGURE 3.1 Viewpoint structure for a basic accounting system.

Account
Maintenance

Stock
Management

This means that the higher up the diagram the viewpoint appears, the more
likely it is to be an object within the system, and the lower down the viewpoint ap-
pears, the more it will tend toward an actual function of the system. In performing
this analysis, it may become necessary to split up viewpoints so that the diagram can
be constructed in the most efficient way possible, in terms of communicating the
required information.

Data Design Diagrams

At the base of the system will be the information that the system is designed to
manipulate, and part of the system specification needs to deal with a complete
description of this data. This process is known as data modeling, and the result
should be a set of diagrams that show the structure of the information that the sys-
tem will need to process.

This is different from the diagrams that will show the actual design of the data
within the software system, but the difference between the two is admittedly slight.

52

Corporate Software Project Management

The aim of putting data models in the system specification is to try to impose re-
strictions on the problem domain, but when the actual design is done, the aim is to
create actual data objects that can be implemented by programmers.

These data diagrams will be a result of looking at the various viewpoints that were
collected under the heading of Data in the viewpoint analysis. The titles within the
Data collection will be abstract concepts such as log files, databases, and documents.
For example, if one is defining an accounting package, we might expect a document
such as the Invoice to be specified as part of the data collection of viewpoints.

When we try to convert the abstract notion of an Invoice into something more
concrete in the specifications, we should model it as having various attributes:
customer, amount, tax, due date, description of products or services rendered, and
so on.

The diagram that we construct for use in the specifications that form a part of
the contract between the client and developer will show an Invoice object, and the
various attributes that it will need, with the emphasis on the what and not the how.

Once the specifications are accepted, and the whole system moves into a less
abstract design phase, these diagrams will be enhanced to show how the system is
to store and manipulate the various objects and attributes.

The viewpoint technique that we looked at in the previous section was built
around the premise that each functional viewpoint operated on system data in
some way, but we did not actually define what that data was, or how it should be
represented.

Therefore, the data design diagrams complement the viewpoint diagrams in a
description of the entire system. Without the data design diagrams, the specification
of the system is not complete; by themselves they do not offer enough information
to build the final system.

Figure 3.2 shows a typical data design diagram for a customer object, which will
be needed by the accounting system for which we constructed a viewpoint diagram
in Figure 3.1.

We have chosen an easy to understand notation for the data design, showing
that the object in question (customer) has a collection of attributes. The central
object, the customer, is shown as a box, with further boxes connected to it by lines
that indicate the attributes (name, address, telephone number).

These attributes are then broken down further, and the final pieces of data are
represented by ovals connected to the attributes by lines. Therefore, the address
attribute has several components that refine it—number, street, town, and zip
code.

We could go into even further detail, by defining each of the address compo-
nents; however, this would begin to take us into the “how” area of the design, and
the point behind the specifications is that they define “what” it is that we are trying
to achieve.

Specifications 53

Customer
Object

Salutation

FIGURE 3.2 Data design for a customer object.

Process Flow Diagrams

Sometimes known as Action Diagrams [Somerville92], process flow diagrams show
the various operations that the system is required to carry out, along with the data
that will be required at each stage in order to perform the various functions re-
quired by the client.

The key to creating these diagrams is in isolating each functional viewpoint,
and then expanding it to include the various operations, along with decisions as to
what action to take depending on the outcome of each process, or action. This
could be as simple as a binary possibility of success or failure, or it could result in a
piece of data to be passed to another process.

This might, at first glance, be at odds with our viewpoint definition principles
that we looked at earlier in the chapter. However, while each viewpoint must oper-
ate on a piece of data that belongs to the system, this does not necessarily mean that
it needs to pass that data back out again.

The process behind isolating the processes that make up a specific viewpoint is
called functional decomposition. We effectively push down on each process, and
expand it into subprocesses that provide a graphical description of the functional-
ity they are designed to provide. Figure 3.3 shows the first step in the functional
decomposition of the simple accounting package that we have been using as an
example.

54 Corporate Software Project Management

1 2 3
Invoice Order Customer Customer

Generation Details Processing Management

Unpaid

Accounts

FIGURE 3.3 First order functional decomposition.

Figure 3.3 shows only the first level of the decomposition of the facilities that
the system is designed to provide: Invoice Generation, Order Processing, and Cus-
tomer Management. These are three key viewpoints in the functional domain.

Each has a data path associated with it, which shows how the information flows
around the system. We call this kind of diagram a data-flow diagram, and it is more
usually associated with the design of the solution, rather than the specification of
the problem.

However, it is such a useful concept that we have borrowed it for use here since
it should clarify the purpose of the system, and help the client to ensure that the
eventual design will deliver software that matches their needs.

As we push down each process, we need to remember that we must stay away
from areas such as GUI design, and interfaces with peripherals, such as printers. It
is sufficient to state that, as an action, we want to print an invoice. The layout, how
it is printed, what devices are compatible, and so on are part of the design and the
system constraints. As such, they have no place in the specifications.

TIMING

As important as the specification of the requirements, definition of the problem
area, and resulting formal functional specifications of the end product are, they are
a small part of the overall software development life cycle, in terms of elapsed time.
Indeed, the specifications may need to be flexible enough to allow changes to be in-
troduced as the environment surrounding the system changes over time.

The traditional software development model can be broken down into very rough
phases:

Specifications 55

Specification
Creation
Validation
Maintenance

At each phase will be the necessity to create one or more sets of formal docu-
mentation (specifications) that define the exact nature of the tasks that must be
performed to realize, or accomplish, that phase. Without an adequate description
of exactly what needs to be done, the chance of the phase being successful is slim.

Indeed, in developing certain systems, the time required to perform the speci-
fication phase may exceed that needed in the creation phase by several times. It is
worth taking the extra time so that the developer and client are in agreement as to
what is about to be developed. The reader should pause to consider that if the spec-
ification phase is planned to require twice the elapsed time of the creation phase,
this does not necessarily mean that there has been any wasted time.

If only half the time was used than had been allocated—thus squeezing the
specification phase into a planned elapsed time that does not exceed that of the cre-
ation phase—the reader should be aware that this would probably turn out to be a
false economy. There is a tendency in the industry to believe that the implementa-
tion phase should always require the bulk of the total planned time for the project
to be completed, which often leads clients to try to save time by reducing other
phases, most notably the specification and validation phases.

However, this will probably have a different effect, namely that by halving the
specification time, one might double the creation time. In effect, the developers will
have to do the same job twice, since the first attempt will probably result in a prod-
uct that is not what the client wanted.

It is worth taking the time to get the specifications right.

The same applies to test specifications, which are part of the validation phase.
If these are not complete, or inaccurate in some way, due to having not spent the
time to ensure that they are correct, the creation phase may inadvertently also be
extended as the final acceptance testing performed by the client reveals further
faults in the system.

There is an inherent cost associated with finding and repairing any error in the
system, and we mentioned in the Introduction that the earlier we find such an
error, the less it will cost to repair. Figure 3.4 shows a graph that indicates the esti-
mated cost of repairing errors against the time in the project at which they are
found.

Corporate Software Project Management

Design Development Tast Maintenance

/
/
/

/

Estimated Cost

._/

FIGURE 3.4 Estimated cost of fault removal.

Time

While Figure 3.4 looks a little alarmist, it is arrived at by looking at the amount
of work required to repair a fault in terms of what work has to be redone to fully fix
the error. For example, if we find an error in the specification phase, all we need to
do is update the text and possibly adjust a few references.

The same error, found during testing, requires that we fix the specifications, the
design, and then redevelop that portion of the software, before retesting the affected
area. Potentially, this represents a fourfold increase in the amount of work needed
to fix the fault.

If we then take into account the fact that the interactions between the different
pieces of the system increase exponentially as we progress through the SDLC, we ar-
rive at the conclusion that, at each stage, there will be double the amount of areas
affected by the same error in a given phase as in the previous phase.

Therefore, if we catch the error in the design phase, we will probably need to re-
pair the error, and then retroactively fix something else as a result. If we only locate
it in the development phase, we will probably need to fix other things too, say four
of them, which will in turn have repercussions in the design, and specification
phase. Finally, to locate something during testing is to start a sequence of events
that could end in needing to validate an entire area of the system, which will cost
much more than if we had found the error in the specification phase.

Specifications 57

Of course, should we only find the error in the maintenance phase, once the
software has been fully deployed, it becomes impossible to even guess at what
the impact will be. The point is that it is well worth the effort to make sure that the
system is as well specified as it can be before the design phase starts, because it is
here that fixing errors will be the cheapest.

SUMMARY

Specifications are the bedrock upon which the foundation of the software project
is to be built. Therefore, everybody needs to be involved: the client, so that they
have a chance to put forward their requirements; the developer and technical team,
so that they can comment on these requirements and try to better understand what
the client actually needs; and the end users, so that they can see if the resulting
system is something with which they will be able to work.

Producing specifications should not be viewed as a potential time sink. The
time spent talking through the various aspects of the system, preparing documents
that detail the most important parts, and agreeing on the wording of those docu-
ments, creating diagrams to enhance them, and generally trying to arrive at the
same view of what the system is supposed to do is time well spent.

Software developers are fond of saying that an error in understanding costs one
cent to fix on paper, but about a million dollars to fix in a live system. The key to
avoiding these million-dollar problems is in being very aware as to what the system
needs to be capable of with respect to the wishes of the client, and being able to
effectively communicate this vision to those responsible for delivery of the system.
This is performed by creating specifications.

REFERENCES

[Finklestein&Fuks89] Finklestien, A., Fuks, S. “Milti-party Specification,”
Procedures for the 5th International Workshop on Software Specification and
Design, Pittsburgh, PA. 1989.

[Somerville92] Somerville, lan. Software Engineering, 4th edition, Addison-
Wesley, 1992, p. 73.

: Product Development

In This Chapter

Introduction

Product Development

The Software Development Life Cycle
Summary

References

INTRODUCTION

The first three chapters of this part of the book dealt with establishing a framework
for the communication and management activities that need to take place in order
to arrive at a point when the development of the product can begin. We also looked
at the way in which the product should be specified and what controls should be in
place that attempt to guide the development team into producing a product that is
naturally of high quality, the assumption being that quality is expensive to force on
a product once the development phase is over.

Before the actual software creation process can begin, we assume that a good
quality set of specifications exists, and that the client has agreed that these docu-
ments do indeed describe the system they want to be built. Without this agreement,
the development team has no guarantee that they will not have to rebuild pieces of

60

Corporate Software Project Management

the code because somebody misinterpreted the clients requirements early in the en-
tire process.

To clarify, the more time that is spent getting the team cohesive, establishing a
good pattern of communications, and a near-perfect specification document will
ensure that less time is spent coding the product, largely because the first imple-
mentation is of such high quality. Some coding teams will approach the problem in
an “implement and fix” approach, eager to get on with the coding, even if the spec-
ifications are incomplete, or not signed off, and then have to go back and “repair”
the code. This means that the code has been reworked at least once before it is even
tested.

Avoiding this will reduce the code, and ensure that any errors are caught in the
early phases of creating the product—even before actual programming has begun.
Sometimes, it is a very difficult to persuade the client that it is cheaper to spend time
early in the project, not making much visible progress, than to begin writing the
software straight away. It is up to the project manager to ensure that the client un-
derstands that industry sanctioned statistics show that the cost of error removal
rises exponentially the closer the product is to final delivery.

PRODUCT DEVELOPMENT

The building, assembly, or programming phase of any project is the final chance to
get it right; however, building software is not like building a house or assembling a
television. It is so difficult to go back and alter a house once it is standing, or recall
thousands of television sets because they have a design fault, that much of the
process is taken up with ensuring that there are no faults in the specifications
(architects plans, circuit design) that will result in the product not meeting the
client’s expectations.

These types of products also reuse bits and pieces of previous products, tried-
and-tested technology, and third-party creations (such as bricks). All of the manu-
facturing procedures for creating such products are equally applicable to creating
software, a point that most developers forget.

The reason why they forget, or choose to ignore this facet of software engi-
neering, lies in the fact that it is only now reaching a point at which some of the
components that can be used to create new products, coupled with the possibility
of backtracking and altering the product once it has been delivered.

On the one hand, this is a powerful mechanism for creating prototypes, reengi-
neering the product as the client’s needs change, or just tweaking the user interface
so that the end product meets the client’s expectations perfectly. Indeed, there are
paradigms for software engineering that rely on the ability to incrementally create
the final product.

Product Development 61

On the other hand, it should not be chosen simply because it results in visible
progress being made. It may well be that the client is pleased when the developer
can show progress, but attempting to fit other products into a new development,
especially in a very specialized field, can sometimes lead to errors creeping in that
are a result of a bad fit between the specifications and available components.

Choosing an Appropriate Paradigm

Rapid prototyping, used to create an initial version of a product, is a very useful
technique when the product is mainly visual, resting on a framework of established
components—not to mention its use for creating the graphical user interface (GUI)
that the end user can employ to control the product. It is not acceptable when
building real-time systems that control spacecraft.

Obviously, different paradigms will be used under different circumstances, but
this book chooses to try to situate itself in a natural stance somewhere in the mid-
dle. If you want to build a hard real-time system, then the controls need to be
slightly more rigid than those presented here. If a GUI-based system for collecting
data (such as Web questionnaire programs) is closer to the product style, then
some of the points can be relaxed slightly.

In Chapter 3, “Specifications,” we saw how the creation of high-quality speci-
fications can be achieved, by ensuring that all of the interested parties are involved
in the creation process, following a paradigm that treats the process in terms of dis-
crete phases, specification, design, development, testing, and deployment.

In some cases, however, it may be desirable to proceed with the development in
favor of postponing the specification phase. This usually applies to high technology
or innovative projects where it is necessary to establish whether something is pos-
sible before designing a vehicle for its deployment.

In such cases, the development work that is done can be considered part of the
formal specifications, which is an aspect of rapid prototyping that makes it very
attractive for use in software development.

THE SOFTWARE DEVELOPMENT LIFE CYCLE

We will be referring to the Software Development Life Cycle (SDLC) frequently in
the middle part of the book, in which we deal with the software engineering part of
the development mix. There are plenty of different views of how the SDLC should
look, ranging from the classic “Waterfall” model, to more recent innovations such
as the Spiral model proposed by [Boehm98], which attempts to factor risk analysis
into the equation.

62

Corporate Software Project Management

Generally speaking, methodologies have, in the past, been split into two
camps—development and management. This means that we have one process
model for doing the development work that leads to the final product, and another
for managing the development process. Clearly, this is an inefficient way to develop
any product, and the Spiral model is currently the only alternative that attempts to
roll the software creation and management processes together.

Before we look at a workable, scalable variation of the Spiral model, we should
analyze what it is about the Waterfall approach that has ensured that it is still one of
the most widely used development paradigms for large-scale development projects.
The answer is documentation; it is the only paradigm that lends itself to generating
sufficient documentation to be able to gauge success and hence effectively manage
the process, while remaining accessible to both technically minded and nontechni-
cally minded personnel.

Briefly, the available options are:

Waterfall: A process of stages, in which the supporting documentation is
signed off before the next stage can begin.

Exploratory programming: The final product is a result of trying various
approaches.

Prototyping: Developing a well-specified prototype and adding functionality
as appropriate.

Formal transformation: Producing a provable specification that is turned
into a software product using a set of provable transformations.

Object reuse: Gluing a set of components together to create the final system.

The reality is that different paradigms are going to be useful in different situations.
We are aiming at a Utopia in which we develop components using an augmented
Waterfall model, and then use the components to create systems via a mixture of rapid
prototyping and object reuse. This may sound complicated, but it is much easier to put
into practice than it might first seem.

Exploratory programming and formal transformation methods are best left to
experimental or cutting-edge projects, such as advanced Al or gaming applications.
The three that remain all have their relative merits, and we will use prototyping and
object reuse to augment the traditional Waterfall model to arrive at a paradigm that
has the advantages of each, and minimizes the risks associated with them.

The Spiral model addresses this in a different way, by performing risk analysis,
producing prototypes, performing verification and validation frequently, but still
leaving the bulk of the testing until the end of the project, where it will prove most
expensive to fix.

Product Development 63

Augmented Waterfall Model

The traditional iterative Waterfall model looks similar to Figure 4.1, which is
adapted from a similar diagram in [Somerville92].

Specification
A l

Design
A v
Development
A v

Iterative return paths
resulting from failed
validation

Testing

Y

Delivery

FIGURE 4.1 Iterative Waterfall process model.

We have chosen not to include the Requirements Analysis and Definition
phase in our Waterfall model because it is not part of the software development
process, but a prerequisite to the product development process itself. Return paths
are included in Figure 4.1 that show logical recourse to modify the product at cer-
tain stages. It makes no sense, for example, to move from the Delivery phase back
to the Testing phase if the client is not satisfied—at this point, it is only logical to
either redevelop or redesign.

The problem with the Waterfall, and another reason why the Spiral model was
proposed, is that it does not provide any indication of where verification and vali-
dation takes place, and the consequences of failure. The return paths in Figure 4.1
go some way to addressing this issue, but they do not provide a complete picture.

In Figure 4.2, we have added steps in the process for validation and verification,
as well as introducing a phased approach, and the possibility to remove the Design
and Development stage such that it may be replaced with something else, like
component selection and integration, for use with the reuse paradigm of software
development.

64

Corporate Software Project Management

Requirements
lysis and

Specification PRE DEVELOPMENT
&
(AR EE IR RNl R R R R R R R R R R R R R R R R R RN RRRRRRRRRRRRNN]
v
Software
s Ingl. Prototype
ry y Implementation Phase
Design
ry
Development
Validation
Validation Testi
Verification esting
System
B Delivery
(AR RN
A
Operations and
P Maintenance
POST DEVELOPMENT

FIGURE 4.2 Augmented Waterfall model.

In fact, there is only one Verification return path—as a result of failure during
component testing. All other failures are due to Validation exceptions. This is be-
cause each other phase will fail because we have not chosen to implement the cor-
rect product features, not because we have incorrectly implemented a correctly
specified feature. The Augmented Waterfall model typifies the simplification of the
process, generates enough documentation to satisfy project management require-
ments, and is flexible enough to embrace other, nontraditional approaches to soft-
ware development.

We have dealt, or will be dealing, with the two areas that lie outside the scope
of the actual development—Analysis, and Operations and Maintenance—else-
where in this book. The remainder can be split into four key areas, which we will
now discuss in some detail with reference to the underlying philosophies of the
Augmented Waterfall approach to software development.

Product Development 65

Specification

Assuming that the Requirements Analysis has been performed, and the Require-
ments Definition and Specification documents generated (see Chapter 6, “Re-
quirements Definition,” and Chapter 7, “Requirements Specification”), the first
phase of developing the product that will satisfy the client’s demands is to create a
set of formal Specifications that will provide input to the implementation phase of
the project, and allow the result to be validated correctly.

Of course, this relies on the fact that the Requirements have been correctly
identified. Should this not be the case, then when the client sits down with the
developer to validate the Specifications, they may conclude that there have been
some misunderstandings that need to be corrected before the next phase can be
attempted.

One of the key strengths of the Waterfall approach is that the client has to sign
off documents that are generated as a result of a specific phase, so that the risk of
passing into the next phase is minimized, as long as the client has well understood
the documentation provided as evidence of good understanding. This mechanism,
coupled with the iterative mechanism driving the Augmented Waterfall model,
provides a similar safeguard to the risk analysis phases built into the Spiral model.

Part of the Specifications could be an initial product prototype, which should
show the capabilities of the system without actually implementing any of the
true functionality. This gives the developer a chance to try to apply some of the
requirements to a real system, and gives the client a chance to catch any of the obvious
errors in understanding before any programming work has been done. It is also much
easier for the client to understand a prototype than some abstract definition of a
product that might satisfy their requirements.

The idea of the Specifications is to provide an abstract description of what is to
be built rather than how the various features are to be implemented in the final
product. They are discussed in more detail in Chapter 8, “Functional Specifica-
tion,” but at a minimum, they need to contain a description of the information that
is to be manipulated by the system, and the processes that are to manipulate the
data, in black box terms.

Black box specifications give information as to the input data, and resulting
output, or effect, but give no indication as to how the process achieves the desired
result. Hence, the software is specified in terms of connected processes that can be
validated by looking at the sum effect of these processes, which is appropriate given
the intangibility of software products.

Once the Specifications have been accepted, the implementation phase can
begin, which contains Design, Development, and Testing processes. These, as can
be seen in Figure 4.2, are further grouped, which indicates the possibility to deviate
from traditional development paradigms and apply others, such as object reuse.

66

Design

Corporate Software Project Management

The design phase translates the Specifications into documents that provide descrip-
tions of how the input data is transformed into either output data or some kind of
effect. It is at this stage that we can either create a design that reflects each of the
pieces of functionality contained within the Specifications, or one that contains de-
signs for components that do not yet exist, and definitions of how components from
the object library can be glued together to provide the required functionality.

This is one of the key reasons why we have spent so much time defining a good
document repository and retrieval system—so that when we have a need for a cer-
tain component, and the specifications derived from clients’ requirements, we can
find one that has already been designed, developed, and tested.

The advantage is clear; every time we create a piece of software using object
reuse, we create a product that has higher quality than if it was redeveloped from
scratch. This returns benefits to the client, and helps to maintain the object library,
as we might need to extend existing objects slightly in order to satisfy new require-
ments. If the changes to the object are correctly documented and the object checked
back into the library, we also enrich the set of components available, providing
future benefit to clients.

The reader will note that there is no failure return path for the Design process,
but there is one for the entire implementation phase as a whole. This is where the
Augmented Waterfall and the more traditional Waterfall and Spiral paradigms dif-
fer. Almost all the other paradigms offer Verification and Validation possibilities
for the Design process. This begs the question, how do we actually Validate or
Verify a design that might be incorrect?

The answer is almost a book in itself, and necessitates a detailed academic
understanding of the various processes that is outside the scope of this discussion.
Instead, we will assume that a failure in the validation of the Development and
Testing process equates to an informal validation of the Design process: if the result
of implementing the design is incorrect, then the design must be at fault. This is
supported, as we will see, by the fact that the Development and Testing processes
have their own relationship based on Verification of the code.

Hence, it is only after repeated failure of the client and developer to come to a
validated implementation that the whole process is aborted and the Specifications
reengineered. The assumption is that if the software that has been built does not
appear to fulfill the client’s requirements, there has been a fault introduced in the
Specifications.

The Design process should yield a document that can be signed off, which in-
dicates the mix of components that are required to make the software work. These
are either completely new components or existing ones that can be used as is or
after some form of enhancement. There is always a possibility that the client is un-
able to actually validate the design due to the technical nature of the document.

Product Development 67

In such cases, they should be invited to validate the relationship between the
prototype that has been agreed as part of the Specification phase and the compo-
nents that have been isolated as necessary to complete the various tasks as required.
Essentially, the client is being asked to reconfirm their validation of the prototype,
and to state that they agree that if a certain set of components can achieve the de-
sired result, then those are the components to use, in terms of input and output
data or effect.

Development and Testing

The Development and Testing process is again contained within its own box in
Figure 4.2. This indicates that it is another process that can be substituted for a
nontraditional software implementation methodology—in this case, likely to be
object reuse. It will probably be replaced with many instances, one for each of the
components (or objects) that have been isolated in the design document, of which
some will be reused, and others created from scratch.

Each piece of development that is performed needs to be tested, and the result
of the test will mean that either the object or component can be added to the
system, or that it needs to be altered in some way because the verification process
has failed. As we mentioned before, those components that make up areas of the
system that fail validation but have passed verification probably have flaws that date
back to the design process, hence the return path in Figure 4.2 from the Develop-
ment and Testing phase to the Design process.

In the Spiral model, reference is made to a test plan which is presumably signed
off by the client, and which we have not made explicit reference to in the Aug-
mented Waterfall model in the interests of simplicity. However, such information
should be determined before the actual development is performed, and so the in-
tention is to suggest that the test plan be part of the design documentation.

This also has the advantage that the client is probably best placed to know what
the external boundary, exception, and normal operating conditions are likely to be,
and hence can validate the test design much more easily than the developer. The
Testing process is an attempt to verify that the software has been correctly imple-
mented with respect to the design; again, this may or may not be what the client
actually needs, but that is a design fault and not an implementation fault.

Delivery

The final part of the Development process is the Delivery phase. This is often over-
looked, or only included as a milestone to be reached in an ever-changing project
plan. In fact, it is a very important part of the entire development process if only
because it is the first time that the developer hands a completed system to the client,

68

Corporate Software Project Management

along with all the documentation required to support it, and any training that
might be required in order to use the system.

The Waterfall model as proposed by Somerville overlooks the Delivery phase
entirely, with a phase for Integration and System Testing leading directly into
Operation and Maintenance.

The Spiral model proposed by Boehm allows for an Acceptance Test phase that
is closest to what we have chosen to call Delivery in the Augmented Waterfall model.
The reader will note that there is a return path activated in case of Validation failure
that leads from Delivery right back to the Requirements phase of the project.

The suggestion is that, after all the checks and balances that we have put in
place to try to ensure that the final result will match exactly with what the client has
asked for, should the process have failed to the extent that they are unable to accept
the final product, then there must be something fundamentally wrong with the un-
derstanding of the client’s problem in the first place.

It may not be desirable, or necessary, to work through the entire process again,
but there may well be areas of functionality that have been badly misunderstood,
and need to be reengineered. The exact consequences for the rest of the system will
vary, but if the structured documentation guidelines have been followed, it should
be fairly easy to establish exactly which parts of the system have been affected.

The process can then be followed for those parts of the system that have been
identified as containing faults, and the new software system delivered once again to
the client. Hopefully, few iterations will be needed before the client is willing to ac-
cept that the Development phase of the project is complete, and the system can be
safely placed into live operation.

Hence, successful completion of the Delivery leads to Operation and Mainte-
nance, which is concerned with the long-term life of the software system. There is
also a return path to the Requirements phase, which deals explicitly with changes in
the operating environment that will require alterations to the system that has been
delivered.

By the lack of a similar return path to any other stage, we are indicating that the
client expects the developer to be capable of delivering fault-free software—which
should be the goal of all developers. This is not such an unlikely condition as it
might at first seem. After all, we have allowed ample scope for discovering errors in
the Augmented Waterfall model, and the software that is eventually put into pro-
duction should, indeed, be fault free.

SUMMARY

The readers are encouraged to find their own Augmented Waterfall approach to
software development. By using the Augmented Waterfall approach as specified

Product Development 69

here, many of the problems inherent in software design and development will be
tackled in a way that is designed to ensure a high level of success.

This is not to say that the traditional Waterfall or Spiral models are not appro-
priate for software development, because they are. However, they do have issues,
which means that they may not be a good fit with the philosophy of corporate soft-
ware engineering that we present here.

The Spiral model, for example, may prove too overburdening for use in small-
scale projects, as it contains many checks and balances that are only necessary in
certain, extreme circumstances. The Waterfall methodology scales well in both
directions, but provides no formal verification or validation, and does not adapt
itself easily to the component reuse driven paradigm that object-oriented design
and programming promotes.

Hence, the Augmented Waterfall model is a best fit for the circumstances—we
need something that is scalable, allows verification and validation, promotes both
the idea of prototyping and object reuse, and is easy to understand and apply.

There is also the question that comes up repeatedly in industry: How many
times do we attempt to fix something before deciding that it is beyond repair?
In other words, how often do we go through a cycle (such as the Develop—Test—
Develop cycle) before we admit defeat and move back to the previous phase?

The answer is that there is no hard and fast rule, and that it will always be a
question of feeling. As a good rule of thumb, however, one can take the initial esti-
mate, and halve the allotted time for performing the process again at each verifica-
tion or validation failure. When there is no time left, we assume that it will never be
right, and throw it back to the preceding phase.

Thus, if we say that the development of component X will take four weeks, and
verification fails, then the next attempt must be completed within two weeks. If it
fails again, one week is allotted. If that fails, the component is abandoned and passed
back to the design phase. By adhering to this principle, we can be sure that the proj-
ect will not be extended indefinitely, and we have a good idea of how much extra
time should be tacked on to the end of the project plan to allow for contingency.

REFERENCES

[Boehm98] Boehm, A. W. “A spiral model of software development and en-
hancement,” IEEE Computer, 21 (5), 61-72, 1998.

[Somerville92] Somerville, Ian. Software Engineering, 4th edition, Addison-
Wesley, 1992, p. 7-8.

= Testing

In This Chapter

Introduction

Testing Procedures

Test Result Documentation
Automated Testing

Test Data

Storage

Summary

INTRODUCTION

Left to its own devices, a typical programming team will probably eventually find
itself in a loop that takes it from thinking about a problem, implementing a first
solution, testing it, and then going back to recode pieces that do not quite work as
planned. A proportion of these errors are a result of the way in which the entire
project has been conceived, often related to an abstract data type, which requires
that much of the modules dealing with that data type need to be reworked; an
expensive error that should have been caught in the design phase.

A company called SPR has spent much time discovering what successful soft-
ware companies classify as their development activities, and testing plays a large
part. Requirements testing, design testing, function testing, unit testing, integration

7

72

Corporate Software Project Management

testing, and system testing are all mentioned. Some of these will be immediately
familiar, others less so.

Broadly speaking, testing falls into the same category as documentation; pro-
grammers often resent spending too much time doing it, because they prefer to
write code, and believe that they can go straight from a concept to actual computer
code without writing anything down, and that it will work the first time. Of course,
they probably will not admit to this, but every programmer is guilty of delivering
untested code to the customer, often code that was not part of the original, “offi-
cial” design documentation.

The approaches in this first part of the book are designed to compartmentalize
the entire process, such that everybody, as far as possible, gets to spend as much
time as possible on the activities that they enjoy, without sacrificing quality due to
skipping, or being left out of, other activities that they might not enjoy but are
needed to provide sufficient input to their principal job function.

Testing, it seems, usually falls quite late in the development cycle. It should start
when the client first submits a Request for Proposals (RfP), in order to try to as-
certain whether the logic presented by the prospective client or the team preparing
the RfP response is adequately specified and correct. Errors, as we point out often,
are much easier to catch if they do not exist in the finished product.

TESTING PROCEDURES

Before we can look at how to support testing, we need to determine what kinds of
testing are required to ensure that the system has been correctly implemented. The
purpose of the tests has also to be determined—is the testing taking place to ensure
that the system is robust, or is it necessary to decide whether the system is capable
of delivering the functionality that will solve the clients’ problems?

The answer to this question will dictate whether the client is involved in the
creation of the test data and philosophy driving the various scenarios that the de-
veloper needs to cater for.

Specification Testing

You can test the specifications in one of two ways: they can be tested against the
client’s perceived requirements, or tested for consistence with themselves. The
latter testing can only be done if a formal specification exists; something we have
not touched on in this book, because it requires that both the client and the devel-
oper have an in-depth understanding of a formal specification language, such as Z.

Testing 73

These languages allow the specification of the system in discrete terms, which
effectively model the target system in a way that can be proven for correctness since
each component is specified using mathematical semantics. Since these building
blocks can be mathematically proven, the resulting system is guaranteed to be cor-
rectly specified, and, more importantly, unambiguous.

This does not help with testing the specifications against the client’s require-
ments, unless the client is able to read the formal specifications. The only way to
validate the specifications is by first validating the requirements, and then being
sure that the transformation from requirements to specification has been correctly
performed.

Thus, both the requirements and the specification need to be expressed in non-
abstract terms; otherwise, it can be very difficult to visualize the proposed system.
The developer needs to weigh the value of producing such robust and formal
requirements and functional specification documents against the cost of their
production, validation, and communication to the client.

Program Testing

Various types of test can be performed on implemented computer code, and while
none of them deals effectively with conceptual errors relating to the design of the
product, they will catch errors in the underlying implementation.

Unit testing: Individual functions are tested in isolation with a variety of
inputs.

Module testing: Complete modules are tested in conjunction with likely and
exception scenarios.

System testing: The entire system is tested for robustness in exception tests.

Integration testing: The system is tested within the context of likely opera-
tions and existing systems.

User acceptance testing: The end user or client is invited to examine the
complete system.

One UK company has a policy that each line of code that has been written must
be witnessed to have executed by the programmer responsible for that line of code.
This is probably overkill in that programmers will have a tendency to find such an
approach tedious enough that they will naturally shy away from it, not to mention
the fact that just because a line of code executes does not mean that the system will
work correctly, just that it will not halt during operation, whether it is behaving
correctly or not.

74

Corporate Software Project Management

Therefore, program testing exists to see if both the mapping of input to output
data is correct—that is, the code performs the function that it was specified for—
and that it performs well under error conditions, using accepted mechanisms for
reporting that such a situation has been encountered. The interface testing, and
mapping from a set of input data to a set of output data, needs to be performed in
conjunction with a set of test data where the mapping is known and can be vali-
dated. We cover this later.

Unit/Module Test Procedures

In line with our philosophy for reuse at all levels, there should be one set of docu-
ments that deals with the procedures for testing specific implementations. Each
module that is tested and has its quality affirmed will be placed at the disposal of
any project requiring the functionality it offers. It will find itself being used in dif-
ferent situations, and test procedures need to be defined that determine how, why,
and using what method testing is to occur.

Unit testing occurs on the smallest possible implementation unit, which means
that each function needs to be validated in terms of data mapping, bounds check-
ing, and exception processing. For example, imagine that we have specified that
there needs to be a class for reading a file in a given format, and that it should re-
port errors via an exception mechanism, then at some point there is likely to be a
function to read a single piece of data from a file.

The test procedures need to specify that testing is required to test possible ex-
ception cases, such as files that are not open, files that do not exist, files that exist,
can be opened, but are not in the correct format, and finally, files that can be
opened, are in the correct format, but are corrupted. They also need to cater for
cases where the file can be correctly read, but there is a problem with the internal
representation that makes it impossible to store the read data in memory.

These are all exception cases, but we need to be sure that the implemented
code, when executed correctly, leads to correct results. It is not sufficient to simply
test all the exception cases, and assume that if they are handled properly, then the
normal processing must, by inference, work. Therefore, the procedures must allow
for ranges of correct cases to be tested as well.

The companion to Unit testing is Module testing, which needs to be performed
to determine that, in the preceding example, the file reading class works to correctly
parse an entire file of data and store it somewhere, as well as being able to clean up
after itself when the data is no longer required.

When putting the procedures into place, it is safe to assume that the Unit test-
ing has been correctly performed, and so we do not need to explicitly revisit cases
that have already been tested as part of the Unit testing cycle. Taking the previous

Testing 75

example, if we assume that we have validated the function to read in one piece of
data, we can assume that, barring problems with internal (memory) storage, read-
ing a series of pieces of data is going to work.

Therefore, we need only concentrate on testing the exposed interfaces of the
class, such as the ability to read an entire file, because we know that the internal
functions have been adequately tested. Of course, if the Unit testing procedures
have not been followed, then the Module testing will fail, and could ultimately
cause the downfall of the entire system.

System/Integration Test Procedures

Once all the modules (classes or objects) have been tested, complete portions of the
system can be verified to work within the boundaries set by the environment. There
is no need to go back and test all the exception cases, since we have done that dur-
ing the Unit and Module testing, and we can concentrate more on the functional-
ity of the entire system.

This does not mean that we can ignore the data validation functionality of the
system, but that we do not need to check out-of-bounds exception cases such as
memory corruption, file system errors, or input and output data mismatches, and
can instead look at likely operating circumstances.

The System test procedures need to respect certain sets of test data, and certain
sequences of events, and verify that if the system was to be running, it is capable of
performing correctly. These will be covered later, but should be agreed upon with
the client before development begins.

Integration testing is probably the first time that the entire system is put to-
gether and placed in an environment that approaches the eventual production
system. The interfaces to all other external systems (databases, networks, print
devices, etc.) need to be validated, and as such there will be very little scope for re-
visiting any of the key test data sets that will already have been looked at during
Unit, Module, and System testing.

User Acceptance Test Procedures

Finally, once the developer is satisfied that the system is robust and meets the cri-
teria agreed upon with the client, it can be handed over to the client for Acceptance
testing. At this stage, it is the client’s responsibility to validate the resulting system
and ensure that it meets their requirements, as it is the last time they will be able to
make changes before the final handover.

The procedures should make it clear that it is not the time for clients to submit
requests for new functionality, but only for pointing out where there are errors in
understanding. The system will be robust, having been verified at several points to

76 Corporate Software Project Management

ensure that it is, but it may not meet with the client’s expectations, despite all the
checks that we have put into place throughout the Requirements Specification,
Functional Specification, and Development cycles.

Generic Test Procedure

The diagram in Figure 5.1 shows how the flow of control moves around the devel-
opment system for a typical development project involving the creation of code
from scratch. In cases where prebuilt objects are simply glued together to produce
the final result, those parts in gray can be left out of the test process, as it is assumed
that reused objects have already been tested fully. However, should they need to be
altered before they are used in the context of the new project, they do need to be

retested.

Requirements /
Specification Testing

l

Design and
Development

=i Module Testing

Lo System Testing - Integration Testing e

—

Acceptance Testing

FIGURE 5.1 Test cycles.

The return paths in case of validation failure are shown with dashed lines. In
some cases, it will be necessary for the code to be returned to the Requirements,
Specification, or Design and Development phases of the project depending on what

the exact problems were that caused the validation failure.

Testing 77

TEST RESULT DOCUMENTATION

The only way to make sure that the programmers follow test procedures is by defin-
ing specific documents to record the success of tests as well as guaranteeing a cer-
tain level of compliance with the specifications by using a series of compliance
sheets. These sheets may also have been used during the RfP process to ascertain
whether the proposed system is capable of fulfilling the client’s requirements.

Test reporting simply identifies that a given test has been carried out, when, and by
whom, and whether the test was successful. The level of test reporting required will
depend on which phase the tests are being conducted in, and by whom. Generally
speaking, Unit and Module testing is performed by the actual programmers, while
additional Module, System, and Integration testing will typically be carried out by
the quality assurance department, with help during Integration testing from the
client. Acceptance testing will be carried out by the client, with help from the end
user.

Therefore, during Unit testing, the only document that will be issued will re-
flect the success of the tests, since the programmers will correct items that are not
implemented satisfactorily as they go along. Module testing carried out by the head
of the programming team responsible for that module will probably need to pass
back test result documents to the programmer whose code produced the error, but
it will probably not be more widely circulated than that, except during an audit.

The results of System testing will be passed from the QA team back to the
development department, in case of error, so these must remain a formal part of the
project documentation. If the client becomes involved during the Integration test-
ing phase, the test reports need to be sufficiently well thought out to provide
information sharing between the client, developer, and QA team.

Finally, the Acceptance Test Report needs, as its title suggests, to be a single
document in its own right that isolates only those areas of the system that do not
live up to the client’s expectations, with reference to the original requirements. Part
of this document will be a set of Compliance sheets that will help to isolate exactly
where the problem occurs.

Compliance Sheets

A Compliance sheet is a special kind of reporting document that shows a specific
test been carried out, and it has been validated against the original requirements of
the client. Of course, it is understood that the client needs to be involved in the

78 Corporate Software Project Management

creation of Compliance sheets, and because they can exist at different levels, a hier-
archy of Compliance sheets is entirely possible.

At the very highest level, the Compliance sheet should fit on a single page, and
needs to contain a single line for each area of functionality that the client wants the
system to exhibit. As each line is validated, it can be expanded to indicate what un-
derlying Compliance sheets have contributed to reaching the specific goal that is
listed.

These underlying Compliance sheets will have to be created at the same time as
the design of the system, because it is at this stage that the various tasks are isolated
and described sufficiently to know if the particular feature has been delivered. A
completed top-level sheet indicates that the system has been correctly built, while
the intermediate reporting ensures that the system is robust.

Therefore, by specifying and documenting tests via the use of direct reporting
and Compliance sheets, we have satisfied two major components of quality control:
robustness and fitness for use for a given purpose. This assumes, as always, that the
purpose has been correctly isolated in the first place.

AUTOMATED TESTING

Before we look at specific test data sets that can be used to exercise a software
system, we need to point out that many areas of testing can be automated. It is easy
to forget this, and the developer needs to be prepared to make some investment
in tools, procedures, and probably additional staff whose sole responsibility is to
ensure that testing is correctly carried out.

The purpose of automating testing is to release the programming team from
the requirement to spend valuable programming hours trying to verify that their
code works in every conceivable situation, and some more that could not possibly
be planned for. To do this, we need to use some clever techniques to simulate many
hours of protracted use of the software system; both at the program level and user
interface level.

Program Testing

Ideally, we would like to write a function and then be able to pass it to a program
that would know about the function, the inputs and outputs that it is supposed to
be able to deal with, and test all possible combinations of values and spot where
potential problems exist. While this is probably impossible to implement for all
software projects, it is reasonably easy to provide a generic test harness that can be

Testing 79

used by the programmers to verify that their function fulfils the requirements for
robustness.
Such a test harness needs to provide:

® Extensive primitive testing (numbers, strings etc.)
B Uniform exception handling and reporting to catch errors
B Adequate result reporting

The test harness itself should be compiled into a separate program, which will
run and generate a report that reflects the results of the tests carried out. This will
become clearer with an example. Suppose we need to implement a function to copy
one string into another:

int CopyString (char * szSource, char * szTarget);

For those readers not familiar with the C language, the preceding line of code
defines a function CopyString that takes two pieces of memory, of type character as
arguments and returns an integer value, which can be used to indicate success.
When dealing with strings in memory, there are a number of areas that we might
like to test, including:

® Invalid memory blocks
B Destination smaller than source (memory overflow)
®m Invalid string data

We will expand this set when we look at the test data section of this chapter
later. For now, let us just assume that we want to validate the CopyString function
with reference to passing invalid memory blocks. As programmers, we might con-
struct a test harness that looks akin to the following:

/! Check for invalid source memory block
nReturn = CopyString (NULL, szTarget);

if (nReturn != ERROR_CODE)
printf(“Error — NULL source string not caught\n”);

/! Check for invalid target memory block
nReturn = CopyString (szSource, NULL);

Corporate Software Project Management

if (nReturn != ERROR_CODE)
printf(“Error — NULL target string not caught\n”);

Again, nonprogrammers are going to be at a slight disadvantage when looking
at the preceding code, so we should explain that all the code does is call the func-
tion with an invalid argument, and then verify the return code. If the return code
does not indicate that an error has occurred, then we report this fact.

So far, so good, and it does not look like a lot of code to have to write. How-
ever, having to do it for thousands of functions represents a significant amount of
code. Each line could potentially contain errors, and would need to be verified, so
it is much better to either generate test harness code, based on the function defin-
ition, or at least have a generic template that programmers can adapt to test their
functions.

One step further from this is the requirement to verify ranges of possible, and
exception case values. Remaining with the idea of verifying a string copy function,
we need to be able to check that:

m Different sizes of strings are correctly handled (from minimum to maximum).
®m Al possible string values are correctly handled.
® The string copy function is correctly implemented.

To do this, we might like to be able to construct code that looks like:

// Check an incredibly large source memory block
nReturn = CopyString (BIG_STRING, szTarget);

if (nReturn == ERROR_CODE)
printf(“Error — Function returned an error\n");

// Check that the source block is the same

// as the target

if (CompareString (BIG_STRING, szTarget) != EQUAL))
printf(“Error — Big string corrupted\n”);

We are cheating slightly, because we assume that the comparestring function
has been correctly implemented, and it would have to be verified before use. Since

Testing 81

string handling is going to be an integral part of most programs, there is a good
chance that this function will need to be part of the standard test suite anyway. All
implementations of C include a function stremp as part of the standard libraries
that essentially performs this function.

Test harnesses of this nature can be constructed for all cases where we are not
passing user-defined types as arguments. In cases where user-defined types are
used, then we need to be able to verify them by creating a test library that is project
specific, which we shall see later in the section Test Data.

GUI Testing

Testing the graphical user interface (GUI) of software packages used to be a case of
putting a tester in front of the screen, and asking him to press many buttons, man-
ually enter many data strings, and generally be a guinea pig for the system under
construction. This is a very labor-intensive way to verify that the user interface
operates correctly.

However, it validates the underlying system operation too, so it does have some
value. It is worth bearing in mind that, as a general rule, if we replace an aspect of
human activity with a piece of software, we will generally lose the specific advan-
tages that having a human do the job brings—such as flexibility to respond to
errors in a way that adds value to the process.

Nonetheless, many of the mundane testing activities can be replaced with a
piece of software that can be programmed (scripted) to press buttons and enter
data as if it were the user, and record what has happened in the system. The soft-
ware should also be able to verify that the operation of the system is correct with
respect to the buttons that it has pushed, or data that it has entered. To do so, some
kind of result needs to be passed back from the underlying system to the GUI.
Since human users need also to be informed about the status of their last action,
this is likely to already be in place.

This approach to GUI testing still requires human interaction to create the test
scripts, validate that they have been correctly carried out, and look at the results.
The actual doing of the tests is where the advantage lies in using automated testing,
as it becomes much less labor intensive, and hence less expensive to perform.

We can also create test data automatically, as we already noted in the preced-
ing section—we need only know what types of input are required in the system. Ac-
tually testing the interface requires that a further piece of software is created that is
capable of simulating the user. Commercial software exists that can be scripted to
do this; for example, WinRunner™ for the Microsoft Windows operating system.

82

Corporate Software Project Management

Command-Line Testing

Software and tools that are executed from the command line, with a variable num-
ber of arguments, can be tested much more easily by creating scripts or batch files
that can exercise the software application. These scripts can be created manually or
automatically, using the principles outlined in the following section for the creation
of test data sets.

It is also necessary to verify any files that might have been created as a result of
the software running, as well as any screen output.

TEST DATA

Test procedures will be made or broken by the choice of test data used to exercise
the specific application area being tested. Several levels of test data can be created,
from the most extensive that verify the behavior of the system in all possible cases,
to the most abstract, designed to test the flow of control and logic of the system
without paying special attention to the kind of data being supplied to the system.

In general, the smaller the piece of system being tested, the more detailed the
test data needs to be. If we take date testing as an example, we might have a date
object that needs to be verified. One set of tests could be to check that the date
object can validate supplied dates successfully. We would start with basic numeri-
cal verification, such as supplying negative integers for day, month, and year data,
and work our way up to verifying that it correctly identifies cases where the num-
ber of days for a given month supplied is not correct, and performing leap year
calculations.

We could break down these kinds of test data as follows:

B Memory allocation (including array bounds checking)

m Data type validation (ranges of data, from maximum to minimum, and every-
thing in between)

B Argument validation (for use with functions)

B Logic validation (verifying cause and effect relationships with a variety of data)

Following on from this, we can isolate cases when each of the test data set types can
be used as in Table 5.1.

Testing 83

TABLE 5.1 Test Data Set Types by Phase

Type of Test Data/

Test Phase Memory Data Type Argument Logic
Unit Testing X X

Module Testing X

System Testing X

Integration Testing

M o o X

Acceptance Testing

The reason it is important to select the right kind of data for the situation is
simply because testing is very resource intensive, and we do not have time to check
every possible combination of values at each stage of development. If, however, we
can be sure that we have tested correctly at each level of abstraction, from the data
objects through to the various pieces of the final system, we can limit the total
number of hours we will need to spend actually testing, while also being sure that a
high level of quality is maintained.

Testing date data is such an important, and often neglected, area of software vali-
dation that all organizations involved in software application development need to
have a policy for date testing that can be reused every time a project is created that
manipulates date information. This was particularly highlighted in the move from
the year 1999 to 2000, where many errors were found, stemming from the use of a
two-digit year representation, and coupled with the fact that many engineers had
chosen to use “00” as an error condition. Hence, when the software moved from
31-12-99 to 01-01-00, strange things began to happen.

Testing this proved difficult—without looking at every line of code, it was im-
possible to know exactly how the system would react. Instead, many organizations
decided to create test cases to cover moving backward and forward across date
ranges from 1998 through to 2010, covering everything from leap year calculations
to day of week determination.

Operating systems were forced to move backward and forward in time, and
known sets of test data were built that were designed to verify that the software was

84

Corporate Software Project Management

capable of working correctly both before and after the dawn of the new millen-
nium. Of course, all the tests needed to be run after the changes had been made that
fixed the errors that were found, to be sure that no new bugs had been introduced
as a result of the testing process.

The best way to create the test data is by filling a document with values that re-
late to a given moment in time and by using a piece of software to generate the
usual cases:

m Date thresholds (1999-2000; 2000-2100)
B 29 February in nonleap years

It may seem a little odd to think of dates that are 100 years in the future, but in
some specialist applications, such as spacecraft, where a satellite or traveling space-
craft may need to last for a considerable length of time, or insurance, where policies
can last many decades, it is important to ensure that the same errors that were
made in the 1970s and 1980s are not repeated in the 2070s and 2080s.

Scalar Variable Limits

All programming languages use variables to store data in, and some of the usual
kinds of storage types are:

® Character
® Integer
® Floating-point

Character data includes any one of the 255 possible characters from the ASCII
set, or indeed, any one of the ANSI or extended character sets. Integers are whole
numbers, possibly negative, and floating-point numbers are those with a decimal
point, again both positive and negative.

These are known as scalar values. They have an upper and lower limit, which
varies depending on the exact representation required by the software application.
Scalar variables need to be treated with some degree of respect, since any of the val-
ues that they can possibly represent could be passed to the software. If a function
takes, as a parameter, an 8-bit integer, which allows representation from 0 to 64k,
or —32k to +32k, then the function must be prepared to accept values in this range,
even if it is only to report that the value handed to it was invalid in its context.

For a particular project, test case data can be constructed that tests the lower
and upper bounds of acceptable scalar data values, as well as the out of bounds

Testing 85

values associated with a system that has possibly begun a downward spiral toward
failure. This being the case, test data needs to be created for all possible combina-
tions of information, during unit testing, to ensure that the unit processes correct
data correctly, and reacts intelligently to data passed to it that falls outside its abil-
ity to cope with it.

Therefore, by way of example, let us assume that we have a function, in C that
has a prototype:

int Difference (int a, int b);

which is designed to calculate the difference between a and b. To be sure of
the behavior of pifference in all possible cases, we would need to create a set of
function calls to put every possible value of a and b into the function, and verify the
return value. If we only wanted to test the boundary cases, of which there are:

® Jowesta lowest b
®m highesta lowest b
B lowesta highest b
® highesta highest b

then the test code will be reasonably straightforward. What happens, however, if we
decide that we want to add the mid-range values to the data set? We now need to
add some more test cases:

B lowesta lowest b

B midrange a lowest b

® highesta lowest b

B lowesta midrange b
B midrange a midrange b
® highesta midrange b
® lowesta highest b

B midrange a highest b

® highesta highest b

Now we have nine test cases, instead of four. Astute readers will have worked
out that to determine the number of test cases that are needed to test all combina-
tions, we need to apply the following formula:

<scalar range)numher of arguments

86

Corporate Software Project Management

Applying this to our previous example, we realize that we will need 65,536 test
cases, which is about 4 billion—a tough assignment if you have to create them by
hand, so the test data will need to be generated automatically. We can reduce the
amount of actual test cases by applying some environmental knowledge; for exam-
ple, since all the values are unsigned, a must always be less than b.

Once this has been done, we need to know how we can automatically test for
the success of the function, since expecting a person to trawl through millions of
results is unreasonable. Generally speaking, this will be a simple matter if this kind
of testing is restricted to the lowest possible form of testing. The higher up the test
ladder we go, though, the more difficult it will be to analyze the results.

The steps required to create scalar test data are, then:

1. Identify the set of all possible cases.

2. Use environmental (language and algorithmic) knowledge to pare the test
set.

3. Create (automatically) the set of test data.

4. Decide how to validate the results.

From these steps, we should have a document of test case descriptions, along
with some test case data, for entry into an automated system, or custom-built test
harness.

Memory and Memory Corruption

Most software applications will need at some point to work with collections of
scalar information, known as arrays. An array is a limited amount of memory set
aside to store a finite number of items, all of the same type. Memory can also be
used to store an almost infinite number of items, of differing types. This is why it is
important to test memory handling. This comes in three main forms:

B Array bounds testing
® Dynamic memory allocation testing
m Storage/retrieval comparison testing

In the first form, we are simply validating that the software reacts properly if a
function is asked to access an item in an array that is outside its known size. If, for
example, we have a string of character values, which we know to be defined with a
length of 255, the software must be able to react correctly if one part of the system
attempts to put 256 characters into the array, or retrieve the 257th character, since
these are known to be “out of bounds.”

Testing 87

Testing array bounds is simply a variation on the scalar value checking we
looked at in the previous section, so no further explanation is necessary.

Dynamic memory testing requires a little more thought, but is again just an ex-
tension of the scalar tests with which we are familiar. We need to be a little careful
in trying to estimate at what point we should stop allocating memory—in case the
system has begun to over-allocate due to an error occurring elsewhere—and test-
ing for that, as well as the possibility that the memory could not be allocated.

The third form is another example of needing a huge set of test case values,
since we need to be sure that any kind of data that can be stored by the system can
be placed into memory, and retrieved correctly, and that memory corruption does
not occur when the system is in operation. To do this, we need to create test data
sets that store as many different objects as possible, and as many different kinds of
those objects. Again, this will have to be done using an automated solution.

STORAGE

The author has had the experience of software that was aborting for no apparent
reason during operation, and later found that it was doing so simply because it had
run out of disk space. This meant that the subsystem that was supposed to be log-
ging errors was unable to do so, and in trying to report that an error had occurred
(no more disk space), told the system to stop because it could no longer report
errors.

This sequence of events led the debugging team to (incorrectly) surmise that
there was a problem stemming from the last known operation that was logged by
the reporting subsystem. Thus, the investigation that ensued started on the wrong
premise, and many person hours were spent looking at the wrong part of the system
until it was pointed out that it was impossible to save a file on the system because
there was no disk space left. The disk space was upgraded, and the error could no
longer be reproduced.

At the other end of the spectrum, there is the case where the system runs on a
piece of hardware that supports extremely large disks, and the operating system
incorrectly reports the size, causing the software to behave erratically. This can
happen on PCs where the BIOS has not been upgraded to allow it to reference
disks greater than a certain size.

In fact, the root cause of this is linked to the scalar variable limits, and is one of
data representation. If the BIOS only sets aside a small number of bytes to contain
the drive information, it will be unable to address larger volumes except by some
clever mathematics. Memory addressing under the Microsoft Windows operating

Corporate Software Project Management

system used to suffer from the same problem, which is why it was eventually bro-
ken down into two pieces: a segment and an offset.

These days, of course, we are more used to multi-gigabyte disk and memory
storage possibilities, and so the problem is unlikely to crop up except when there is
arequirement to interface with a legacy system, at which point special care needs to
be taken, which is the key to good system testing.

SUMMARY

In this chapter, we looked at all manner of different test data sets that can be cre-

ated when we need to validate a system, and the stages in development when they

need to be carried out. We did not speak in any detail about the actual methodolo-

gies that can be used to apply these tests, and should briefly mention them now.
Traditionally, testing is spoken of as being one of:

White box testing
Gray box testing
Black box testing
Certification

White box means that the internals are exposed, and is an equivalent to unit
testing. The tester knows exactly what the unit is supposed to do, and how it does
it, and can therefore target the test cases to be sure that all the logical variations are
catered for. Gray box testing treats the code as opaque, but the data as trans-
parent—testers know what data goes in and comes out, but not how the transfor-
mation works in detail. Hence, they need to create larger test data sets because they
do not have intimate knowledge of the internal system. This is akin to function
testing.

Black box testing treats the system purely in terms of inputs and outputs.
Testers need to be sure that all possible data sets are catered for, because they do not
even know how the data is stored internally. They are almost looking at the system
as an end user, although it is usual to conduct black box testing prior to integration
testing to be sure that the output of one piece of the system, when provided as input
to another, is correctly handled.

Certification is a special kind of testing that is performed at the end of the
cycle—rather like acceptance testing—and treats the system as an entity that is
tested only by what it exposes toward the end user. The purpose is to ensure that the
system is ready to be placed into a production environment, and will react in an
appropriate manner no matter what the situation.

Part

II L Principles of Corporate
Software Engineering

way that is both powerful enough for large-scale projects, and scalable such

that it can be used for humble projects as well.

The reader will learn everything from how to define the product, specify it in
unambiguous terms, develop the software, and finally test and deliver it. We have
chosen the Object-Oriented paradigm since it most accurately reflects the natural
thought processes of solving a real-world problem in an abstract manner.

Chapter 6, “Requirements Definition,” begins with the tasks that must be ac-
complished before any other work may be done in order to produce a high-level
document that describes the end product and what is expected of it. The potential
pitfalls of natural language in defining a nontangible deliverable are highlighted, as
well as ways in which to extract the notion of what the client requires from what
they think they require.

Following on from this, Chapter 7, “Requirements Specification,” deals with
how to specify, again at a high level, how the requirements will be satisfied. This
goes hand in hand with Chapter 8, “Functional Specification,” which defines in un-
ambiguous terms what it is that the developer will actually aim to deliver. In this
chapter, besides defining how the document should be written, the time is taken to
specify how the client can be involved, even at the technical levels, thus reducing the
probability of failing to deliver what the client thought they specified.

In Chapter 9, “The Object-Oriented Paradigm,” we discuss how Object Orien-
tation can be used to produce a code base that is easy to maintain, read, and extend.
This chapter details the advantages of the OOP, as well as languages and tools that
support it.

Following on from this, in Chapter 10, “Reusable Code Guidelines,” we discuss
reusable code and how to build it into the strategy of the development cycle almost
from the start. We also discuss how to choose the correct definition of Object that
enables practical reuse to be applied in the future.

In this part of the book, we approach the problem of software engineering in a

90

Corporate Software Project Management

Chapter 11, “The Object and Component Archive,” defines a scheme for facil-
itating the storage and reuse of these Objects, such as practical techniques for in-
dexing and storing objects so that they may be made available across multiple
projects.

Once the basics are in place, we look at Chapter 12, “Coding and Language
Choice,” indicating, with the currently available languages, the options to consider
when choosing the development language, or for some projects, language mix.

Chapter 13, “The First Prototype,” describes the steps that should be taken to
implement the correct features in the prototype, so that the client has a first im-
pression of the look and feel of the product, while reducing the initial investment.

Following on from this, Chapter 14, “Adding Functionality,” is designed to
illustrate how the various components can be glued together to provide the func-
tionality that has been defined, and provides a discussion of the various object and
unit testing philosophies that may be applied. Finally, Chapter 15, “Delivery,” de-
scribes how the final delivery is to be made, and provides a checklist of things that
should be examined before the product is considered to be fit for release.

. Requirements Definition

In This Chapter

Introduction

Skeleton Requirements Definition Document
Requirements Capture

The System Model

Requirements and Definitions

The Software Requirements Document
Summary

References

INTRODUCTION

While Part I of this book dealt with the organizational aspects of software engi-
neering, Part I aims to provide guidance for actually performing the tasks that
result in the creation of a product, or delivery of a service, to the client.

The Requirements Definition document is the result of the first task to take
place once the contract has been won. It aims to accurately define what the system
needs to do to solve the problem presented by the client. Key inputs and outputs
need to be agreed upon, and defined, as well as the results of the various processes
that the system needs to perform such that it provides a useful function to the
client.

91

92

Corporate Software Project Management

The document needs to be agreed upon by both parties before work on the
product can begin, and as such, it must be expressed in natural language—or at
least a representation of the system that can be understood by both parties. This is
important because without mutual agreement, forming the basis of a contract, it is
impossible to gauge whether the developer has delivered that which the client
requires.

There are two problems to address: first, that natural language is an ambiguous
means of communication at best; and second, the concepts that we are trying to
convey are abstract and define an intangible product. This intangibility is charac-
terized by the fact that the end result cannot be touched or viewed in any conven-
tional way, and exists only temporarily as a program inside the memory of a
computer.

The document might define what is to be achieved, but does not address how
these results are to be achieved. Selecting the correct level of detail is vital at this
stage, since while the system must be broken down into smaller pieces to correctly
define the requirements, if too much detail is rendered there is a danger that the de-
finition will begin to approach the “how” and not just the “what” of the system.

SKELETON REQUIREMENTS DEFINITION DOCUMENT

Many different approaches can be taken to the Requirements Definition Docu-
ment, but simplicity is likely to be the key. It is easy to become entrenched in a doc-
ument that is too complicated and attempts to cover every contingency, but the
document structure should be rich enough that a precise collection of require-
ments can be collected.

The language of the document needs to be understandable by both the software
designers and the client, and, being essentially a reference document, must be an
integral part of the project documentation, and lodged as such in the library. The
document becomes part of the collective knowledge of the organization that we
described in Chapter 1, “The Liaison Center.”

[Somerville92] lists a possible structure for the document, which we repro-
duce here:

Introduction

The system model

System evolution

Functional requirements
Nonfunctional requirements
Glossary

Requirements Definition 93

He also places a number of items in appendixes to the Requirements Definition
Document, such as the Requirements Specification, which are better kept as sepa-
rate documents, and not merely appendixes to the Requirements Definition. The
reason for this is that we are working around a model for creating software that
relies heavily on correct documentation, and as such, although it creates more
individual works to be managed, it is better to have a great many smaller docu-
ments rather than a few multipart ones.

Part of the reasoning for taking this approach is also that it is easier to target
documents if they cover a very specific subject matter. This is particularly well
illustrated by placing the Functional Requirements Specification as an appendix to
the Requirements Definition. As [Somerville92] points out, the Definition is aimed
at the client, and should be written with them in mind.

The Requirements Specification, however, needs to be created using more
formal language, in a much more precise manner, and therefore needs to be written
in such a way that it should not be open to misinterpretation by the client or
developer.

There are two points to be made here. The first is that the two documents
should be kept separate, since, while the first will be readily accessible by the client,
the second may not even be written in a way that they can read easily. Hence, to
avoid clouding the issue, the client should only be invited to read the Require-
ments Specification under the advice of a technically minded third party, in the
event that the client is of a nontechnical leaning.

The second point is that the Requirements Specification can form the basis of
the contractual agreement between the client and the developer. In this case, if the
client is unable to understand the language used, it may be impossible for them to
sign a contract for development without seeking the advice of a third party.

This can be used as an effective check if the two documents are kept separate—
simply invite a suitable qualified third party to read the Requirements Specification
and then describe what they have understood, in natural language, to the client. As
long as the client is able to agree with what they say, the contract can be signed. If
not, then perhaps there has been a problem during the requirements capture
process.

[Somerville92] also lists some other “appendixes”

Nonfunctional requirements specification: If these are important enough to
have an impact on the system, they are important enough to have their own
document dedicated to them. However, in the interests of effective communi-
cation, we have chosen to integrate them with the Requirements Specification
Document.

94

Corporate Software Project Management

Hardware: Again, we have chosen to make this a part of the Requirements
Specification Document, since it will likely be referenced in terms that are tech-
nical by nature.

Database requirements: Since these will include a data model, and relation-
ships between both internal and external data that the system needs to manipu-
late, these have also been moved to the Requirements Specification Document.

As a footnote, unlike Somerville, we choose here to refer to a Requirements
Specification Document, and a separate Functional Specification. The reasons for
this are that, as we saw in the previous discussion, we have chosen to include some
technical items in the Requirements Specification that he places as appendixes to
the Requirements Definition, and some nonfunctional items besides.

The document structure we present here is more in tune with the concept of
the Liaison Center communicating via documents with all involved parties in line
with particular standards and guidelines. In brief, the complete skeleton Require-
ments Definition Document now looks like this:

Introduction: Places the need for the system in the context of the wider tar-
get organization (client).

The system model: Shows the relationship between system and environment,
paying particular attention to where the environment and proposed system
need to interface.

System evolution: States the way in which the environment is expected to
change during both the lifetime of the product and the time span of the related
project.

Functional requirements: What the system needs to do.

Nonfunctional requirements: Constraints, imposed by the operating
environment.

Glossary: Summary of technical terms and explanations thereof.
Index: Reference into the document of keywords and phrases.

We place more emphasis on the Introduction, System Model, and System
evolution than we do on the actual Requirements because if we situate the product
correctly with respect to the target environment—essentially putting ourselves in
the client’s shoes—we will be much more likely to get the requirements part right.
This is not to say that we are neglecting the requirements, merely that we, as soft-
ware designers, understand them better than we do the less technical aspects of the
system; so we need to spend more time to try and understand them.

Requirements Definition 95

REQUIREMENTS CAPTURE

The art of interviewing, collating information, and presenting it for approval is
known as requirements capture. The work that has to be done to turn the results of
the requirements capture exercise into a set of formal descriptions of what func-
tionality the system needs to offer is called the requirements analysis phase, and
feeds into the Requirements Definition Document.

System Context

The system context defines the place of the system to be developed within the
operational and organizational structure of the target organization. All systems
need to have a role, with interfaces with other pieces of the organization that the
system is put into place to serve.

It is a logical context, and a result of how the client sees the software with
reference to the existing systems and processes that have been put in place to solve
the particular business problems with which the clients find themselves faced.

Unless the developer understands how the client sees their universe, and how
the system fits into it, they will find it difficult to create a system that will provide
the functions that the clients require. This includes knowing how the end users
relate to the rest of the organization, and the business circumstances that will cause
them to use the system.

Therefore, the first part of the requirements capture process is to find out what
all the various related business processes are, and how the system fits into that
world view.

Operating Environment

The system context gives the logical environment into which the system will be
placed, and the operating environment looks at the actual physical location of the
system within the organization. If it is to be a server-based application, the operat-
ing environment will be very different than if it is to be a desktop application em-
ployed throughout the organization, with one copy per user, while the end result
may be logically very similar.

Indeed the advent of internetworking applications and the maturity of the
client server model mean that understanding and defining the operating environ-
ment can be quite a difficult task. In the end, the best result will be if the client un-
derstands that, from a software point of view, the actual operating environment
may be very different from the way it appears to the end user.

96

Corporate Software Project Management

Real-time systems, or those that are required to be available on a 24/7 basis, will
be particularly affected by the operating environment due to possible conflicts with
other applications. For example, it is no good if a system monitoring the filtering of
air on a spacecraft crashes one night because another system has used up all the
hard drive space. This may be an extreme example, but it does illustrate the im-
portance of understanding the interdependencies of different systems in the same
operating environment.

End-User Services

A vital part of capturing the requirements is knowing what the system is supposed
to do, and what services it needs to offer to the end user for it to be of use. This may
seem obvious, but many times it is assumed that the system is defined in a black box
way, by the way that it interfaces with the environment and the end users. Some-
how, the exact functions that it is supposed to offer are implied by the way in which
it is to be used.

This may be true for a hammer, but it is certainly not true for a piece of soft-
ware. It is the responsibility of the developer to ensure that they have managed to
write down every single service that the system is required to offer to the end user.
Then, the client can read them and understand that, if all goes according to plan,
this represents the entire capability of the system, and they should not expect any-
thing more.

The approach to take is rather like designing a word processor. Everyone who
has ever used one knows that it has to have an area into which words need to be
typed. They also know that it should be able to print out on a printer, and have
some basic editing functions such as search and replace, and perhaps a good spell-
checking module. How many people would say that an absolute requirement is the
horizontal scroll bar?

Most systems designers would overlook the scroll bar in favor of looking at de-
tail into all the advanced services, such as the possibility to create Web sites at the
click of a button, simply because it is a more interesting aspect. Once the software
is in the field, and a user begins to type a report with the software and finds that it
is missing a horizontal scroll bar just at the moment he needs it, it becomes very
difficult to add one.

Supporting Services

Supporting services are those functions that are required by the system to ensure
that it continues to run smoothly. They include things that are needed for day-to-
day management of the system, and ancillary functions that are not part of the end-

Requirements Definition 97

user interface, but are there in the event that some form of routine update or check
needs to be performed.

This might include functions such as adding a new printer to the system or
performing a backup of the data (or, in dire cases, a restore of the system data).
They are functions that the client might not actually have thought of, but need to
be asked if they should be included on the grounds that not including them might
cost more later to put in retrospectively.

The way to approach the requirements capture for such items is to look at all
the points at which the system interfaces with external hardware or software, and
try to imagine whether these aspects will ever be changed, or what happens when
they become compromised in some way.

The requirements will be different depending on a number of factors. For ex-
ample, it should be obvious that the automatic housekeeping required for a space-
craft that is destined for another planet needs to include functions for managing the
hard drive space. After all, if it runs out, nobody is going to be able to drive over and
fit a bigger one. If this causes the system to crash, the results could be catastrophic.

Documentation

Since the Requirements Definition should form part of the understanding, if not
the actual contract between the client and developer, it needs to include provisions
for nonsystem-related deliverables, such as documentation.

Besides the User Guide, which is destined for the end user as an aid to using the
software on a daily basis, there should also be documentation relating to the devel-
opment and development process. What level of documentation the client wants to
receive as deliverables will depend on their technical competence.

Hence, the Requirements Definition should clearly state a cut-off that dictates
when a piece of documentation is not required to be signed off on. Both the devel-
oper and the customer need to be aware of two things.

First, although one would like the opportunity to sign off on every piece of
development documentation, this will invariably hold up the entire process, and
cost money. Each time the documents have to go back and forth between the client
and developer in the hope of achieving perfection will cost time and money on both
sides.

However, liability becomes hard to establish if the client has not signed off on
a piece of documentation that later proves that the developer did not understand a
key part of the end system.

There is, therefore, a balance to be struck between reading and signing off on
every piece of development documentation, and choosing the vital pieces that need
to be examined carefully to be as certain as possible that the project will be com-
pleted successfully.

98

Corporate Software Project Management

The Requirements Definition should then allow for:

Design Documents: To show understanding of the basic problem and solution.
Development Documents: To show good software design principles.
Administration Guide: Optional, depending on system design.

User Guide: For the end user.

API Reference: Optional, depending on system design.

Training Guide: For re-educating existing users or training new ones.

with a loose description of what is expected at each level. Not forgetting, of course,
that the Requirements Definition and Requirements Specification need to be
included in the final list. All of the preceding document areas should be self-
explanatory, with the possible exception of the two optional ones.

The Administration Guide only applies to client-server software, or software in
which there are different levels of users, each with different responsibilities or per-
missions. Some examples are operating systems, problem reporting, escalation
tools, and project management and tracking utilities.

The other optional item, the API Reference, only applies to those systems that
can be extended by further development. In such cases, the future developers who
might be extending the system could be different from the original team, or even
a different developer altogether. In such cases, it is useful to have a guide to the
Application Programming Interface so that it is clear exactly how future develop-
ment can be done.

Maintenance

There is a tendency to leave the Maintenance arrangements out of the initial Re-
quirements Definition and to rely instead on the developer’s standard contractual
terms to indicate and enforce liability in the event that changes, either correctional
or evolutive, need to be performed at some point after the system has been delivered.

However, maintenance is an important part of the development life cycle if
only because a system may be in service for such a long time that errors will be un-
covered that were not discovered in the initial release. Moreover, new errors may be
introduced as a result of changes made to the system that are also not found until
much further down the line.

Therefore, it is wise to include some form of maintenance definition in the Re-
quirements Definition Document. This should include a schedule for determining
the cost of both corrective (changes made to fix errors in the initial system) and
evolutive (changes made due to a shift in the client’s requirements) maintenance.

Requirements Definition 929

THE SYSTEM MODEL

We previously offered the following definition of the System model:

“Shows the relationship between system and environment, paying particular
attention to where the environment and proposed system need to interface.”

In essence, we need to be able to define the requirements of the entire system,
in terms of its inputs, outputs, processing, and control functions. After all, to para-
phrase the late Douglas Adams, a computer system allows you to interface with the
universe and move bits of it around, and so the system model needs to reflect which
bits to move, and by how much they are to be moved.

The System Boundary

The logical point at which the system interfaces with its environment is known as
the system boundary, and deciding which parts of the entire model fall on which
side of the boundary is a time-consuming and difficult task. It is also very impor-
tant to be sure where the line is drawn, since it is difficult to enlarge the scope of the
system model once the system design has begun.

On the system boundary, there will also be the opportunity for the system to
interact with its environment, which is loosely called the interface by system
designers. Across this interface, information and actions will flow in both direc-
tions—the aforementioned inputs and outputs—and are represented either as data
or control paths.

Possibly the most natural and informative representation of the system model
is to use a mechanism that [Somerville92] calls the “tabular collection diagram,”
which represents the system model as a horizontally aligned set of headings, de-
signed to be used to represent the system from various different viewpoints.

We will borrow this theory and couple it with the idea of a system boundary
to state that we will represent the System model as a set of interacting ex-system (or
environmental) objects. For each object, we will state its interaction with the pro-
posed system via a tabular collection diagram that contains its interface points
(input and output), action, and effect.

By way of example, if we are designing a word processor, we might decide that
the keyboard is essentially outside of the system boundary—we have no control
over it, but need to interface with it to receive input from the user. This gives us one
viewpoint of the proposed system, and so we ought to be able to design a tabular
collection diagram to contain its definition, as in Table 6.1.

Corporate Software Project Management

TABLE 6.1 Keyboard Viewpoint Tabular Collection Diagram

Source Input Action Output Destination

User Key press Add letter Modified document Screen
to document

Of course, Table 6.1 is not exhaustive; we are more interested in the layout than
the actual content of the table. Somerville adds another column to the right—
Destination—which is the target viewpoint. This may or may not be appropriate,
depending on the designer’s point of view.

Data Storage

One particular part of any system model is going to relate to data storage—since
most computer programs seem to deal with the acquisition and processing or
analysis of data, it is logical to spend some time trying to establish where the data is
to be stored.

The Data Storage requirements part of the System model need to deal with the
following areas:

m What kind of data needs to be stored?
® How much data is to be stored (working data, reference data, and archived data)?

Answering these questions will lead to a number of propositions as to where the
data should be stored, and the likelihood is that each type of data, from the set of
working data, reference data, and archived data, will be stored in different places,
and hence fall in different parts of the system model.

Working data is most likely to be stored as part of the system itself, inside its
boundary; reference data may be stored either as part of the system under con-
sideration, or outside as a facility offered by the environment. Data archival is,
except in specialized cases, always going to fall outside the system boundary, and
be something that has to be dealt with as part of another system. This is more for
convenience than anything else.

The volume and type of data will lead to further decisions as to how the data
will be stored, both internally and externally. Once it has been ascertained at what
point the data moves between the different forms, the decision as to what facility is
to be used to store it will probably be reasonably obvious.

Requirements Definition 101

Working data, for example, is usually stored in memory, since it needs to be
rapidly accessed and will exist in relatively small quantities. At some point, proba-
bly after some processing, the data will have changed into a form that is ready to be
stored in a more permanent fashion—as a file on the hard drive, for example—at
which point it has become reference data. It still needs to be accessed in a timely
fashion, but probably only to be consulted, modified, and put back again.

At some point, the data will no longer be current enough to be needed in a
timely fashion and can be archived, only to be consulted at irregular, unpredictable
intervals. This will usually lead to the data being stored on some kind of removable
media, the exact type depending on the volume of information that is to be
archived.

REQUIREMENTS AND DEFINITIONS

At first thought, the difference between functional and nonfunctional requirements
seems obvious: functional requirements clearly relate to the functions that the
system must offer to satisfy the client, and nonfunctional requirements relate to
everything else. Of course, it is not always that simple.

Functional Requirements

When we are creating a Requirements Definition Document, we are trying to set
out the specific requirements that we are placing on the system from the point of
view of the client. Suppose, for example, that we are trying to set out the require-
ments for a new mode of transport that is to replace the automobile, but offer
advantages to the end user over and above that of the existing solution. This is how
most consumer software applications begin their lives.

A functional requirement of this new product might be that it is capable of con-
veying the end user from point A to point B.

Nonfunctional Requirements

All the constraints that define the operating environment that the system needs
to be designed to fit into, and around, fall into the category of nonfunctional re-
quirements. Anything that is part of the system can be worked around, using a set
of functional requirements. Anything that cannot be altered by adding some

102 Corporate Software Project Management

functionality to the system is a nonfunctional requirement. This does not pre-
clude a system-oriented solution, but does preclude a functional requirements
definition.

For example, if our application software needs to be able to run on a computer
system that is resource limited (e.g., it has limited electrical power available) in
some way, then this becomes a nonfunctional requirement. There is nothing we
can do in terms of functional definitions that will minimize the effect of having to
execute on slow hardware.

The eventual software application design will have to get around the problem,
but at the requirements level we cannot require that the code is more efficient than
it might otherwise be, we can only indicate that the target system is less powerful
than one might possibly like.

This is the essential difference between functional and nonfunctional require-
ments. Functional requirements deal with everything that the system must do,
while nonfunctional requirements indicate the circumstances under which the
functional requirements will need to be satisfied.

Glossary

Loosely speaking, a glossary is a set of definitions of standard known words, which
are specialized, but common knowledge to those dealing with the problem domain
on a regular basis. It might also contain some terms that are specific to the system
being debated. There are some who feel that these entries might be better housed in
the formal requirements definition, rather than in a general-purpose area of the
document.

The contents are less important at this point than the way in which the glossary
is used. Of course, each entry must adequately convey the required meaning, but it
is also important to take into account how the terms are identified in the text of the
requirements document, and how the glossary is referenced elsewhere.

The glossary is likely to be worked on by different parties, probably at the same
time, because it is a central reference work for the entire project. Therefore, there
must be a mechanism by which project members are able to update and refer to it
while being sure that their changes are not being lost, nor are they overwriting
other people’s updates.

This can be achieved by various standard mechanisms, such as ensuring that
the document is locked while a project member has it open, or providing for an au-
tomated glossary updating system via some form of proprietary software solution.

One final practical note—the glossary will grow as the project progresses. As
such, the page number for specific entries will change as new entries are added. This

Requirements Definition 103

means that if a specific reference exists elsewhere in the documentation, it should
be in the form of a “live” link that is updated whenever the glossary changes to
ensure that the page numbering remains current. Naturally, this applies to all
documents that are centrally managed in this way.

THE SOFTWARE REQUIREMENTS DOCUMENT

A Software Requirements Document is an extension of the Functional Require-
ments. [Somerville92] quotes [Heninger80] with a list of points that such a docu-
ment should cover, although they both refer to it as simply the Functional
Requirements Document.

1) It should only specify external system behavior.

2) It should specify constraints on the implementation.

3) It should be easy to change.

4) It should serve as a reference tool for system maintainers.

5) It should record forethought about the life cycle of the system.
6) It should characterize acceptable responses to undesired events.

— — — — — —

Arguably, we have dealt with many of these points with documents such as the
System model (which covers point 1) and nonfunctional requirements (covering
point 2), but only at a reasonably abstract, system-oriented level. For our mind, the
Software Requirements Document should go further, almost to the point of system
specification, in detailing exactly what the system is to do.

Living Reference Document

If we look at the qualitative points from the six noted by Heninger, 3, 4, and 5 are
almost entirely to do with the style of the document rather than the actual content
that should be present. Point 3 indicates that the document is to be “living” for the
duration of the definition process, and hence should be easy to change. This re-
quires a minimum of references to itself that would require updating every time the
document changes.

The layout that most facilitates ease of change is to ensure that each thought,
diagram, table, or definition can be contained on a single page. If the end of the
subject is arrived at before the end of the page, then a new one can be started. In this
way, we can be sure that there is plenty of space for additions, and that information

104 Corporate Software Project Management

will always be easy to find. Of course, it makes for large documents that, if printed,
will waste considerable amounts of paper.

However, the counterbalance is the ease of reference, which helps us to satisfy
point 4—it is, after all, a reference tool for those who have the unenviable task of
trying to maintain the system once it is in production. Unenviable simply because
it is very difficult to maintain someone else’s system, and good reference docu-
mentation is essential in being able to do a good job.

System Behavior

This leaves us with three points relating to the actual system definition itself.
Clearly, since this is a document that defines a system in terms of interaction with
its environment, only the external behavior of the system is to be noted—as in
point 1.

This interaction includes the various ways in which the system is constrained
by external influences, again a topic that we have covered in an abstract way, but
again something that needs to be elaborated on in the actual Software Require-
ments Document. For example, the System model might state that there are re-
strictions on the memory available, but it is up to the Software Requirements
Document to stipulate exactly how this will affect the software.

Finally, we need to be able to state what should happen if the constraints are
breached in some way; to be able to stipulate the acceptable behavior of the system
in cases where it is operating, or attempting to operate, outside its immediate
boundary conditions. To continue the previous example—should the system at-
tempt to use more memory than is available, it should recognize this fact and react
in a way that is acceptable.

SUMMARY

The Requirements Definition Document, therefore, covers everything that is
needed to specify how the system is supposed to react with its environment, in
essence, defining its behavior by way of the effect that it has on the operating envi-
ronment. It also defines everything that will be needed when the Requirements
Specifications are written.

The relationship between the Requirements Definition and Requirements
Specification is that it is supposed to give a natural language rendition of what the
system is supposed to do. The Specification is a more technical document that can

Requirements Definition 105

be validated. The Requirements Definition needs to be the basis of understanding
between the client and developer about what services the system is supposed to
deliver.

REFERENCES

[Heninger80] Heninger, K. L. “Specifying software requirements for complex
systems. New techniques and their applications.” IEEE Trans. Software
Engineering, 6 (1), 2—13.

[Somerville92|Somerville, Ian. Software Engineering, 4th edition, Addison-Wes-
ley, 1992, p. 51-53, 86.

. Requirements Specification

In This Chapter

Introduction

Skeleton Requirements Specification Document
Program Definition Language

Validating the System

Summary

INTRODUCTION

The previous chapter dealt with a natural language document that serves as an in-
formal agreement of understanding between the two parties as to what the system
is supposed to do. However, due to the inadequacy of natural language, and the ab-
stract nature of what it is we are trying to define, it is much more useful to produce
a technical document to define exactly what the system must achieve.

A good requirements specification can also be proven correct, and while it may
not actually satisfy the requirements of the client, it will at least be consistent within
itself. However, unless the client is technically minded (very rarely the case), they
will not be able to understand it, making it useless as part of a binding contract.

107

108 Corporate Software Project Management

It is therefore necessary to strike a balance between the over-flexibility of a
natural language representation and technical nature of a precise, mathematically
formal language. Such a compromise can be found in using a Program Definition
Language (PDL), which will allow the specification of the customer’s requirements
to be precise, correct, and unambiguous.

This chapter leads the reader through the structure and content of the docu-
ment, which will find its place alongside the Requirements Definition detailed in
the previous chapter, as part of the contractual agreement between the client and
developer. Once again, we present a skeleton layout that will help the readers to
formulate their own version that can be reused and refined as more projects are
undertaken.

Many professionals and academics seem to fall into one of two camps—either
they group Requirements Definition and Requirements Specification together in
one document, or, like Somerville, they separate the two, but then use the terms
Requirements Specification and Functional Specification interchangeably.

The reader will have noticed that we have three separate chapters in this book:
Requirements Definition, Requirements Specification, and Functional Specifica-
tion. The reasoning is that the Requirements documents should be a contractually
binding expression of the requirements that the client has in order to produce the
system they require.

The Definition document needs to be understandable by both parties, and is a
natural language rendition of the requirements, which makes it useable as a bind-
ing contract; the Specification document need not necessarily be directly under-
standable by the client, which, as we explained previously means that it might not
be acceptable as a contractually binding document.

The Functional Specification, however, should detail, in a technical way, the
exact nature of the functions that will be implemented, in terms of the data that
they will need to manipulate, and the inputs and outputs for each function that
needs to be implemented.

This is why there are some parts of the Requirements Definition document that
we have brought forward into the Requirements Specification since they are tech-
nical in nature and therefore should not be included in the Requirements Defini-
tion, which is essentially a nontechnical document.

SKELETON REQUIREMENTS SPECIFICATION DOCUMENT

In compiling our list of sections for the Requirements Specification, we have drawn
items from two sources. The first is the list of Appendixes that Somerville attached

Requirements Specification ~ 109

to the Requirements Definition document, and which we have carried through
from the last chapter.

The second source of inspiration has been various functional specifications
with which the author has been involved. Some of those have contained informa-
tion that, in the author’s mind, would have been more appropriately included as
part of a Requirements Specification, in the interests of keeping the Functional
Specification purely function oriented.

Functional Requirements Specification: This is a formal elaboration of the
Functional Definition of the system; as such, it details the exact nature of the
facilities that the system needs to offer to satisfy the real-world requirements of
the customer.

Nonfunctional Requirements Specification: A formal description of the
boundaries and constraints under which the system will need to perform.
While the Requirements Definition might state, for example, that the system
needs to provide functionality within reasonable bounds, the Non-Functional
Requirements Specification will detail the exact nature of those bounds.

Hardware: A description of either specialist hardware that is needed for the
system to perform the functions required by the client in order to serve the pur-
pose that they have identified, or a tight specification of the actual hardware
that the system will be required to operate on (the platform).

The latter might more appropriately be placed under the nonfunctional re-
quirements, depending on the exact nature of the system under development.

Database Requirements: Again, details that are probably too technical to be
included as part of the Requirements Definition, but will have an impact on the
way the Functional Specification is written.

While the Functional Specification will include a Data Dictionary to specify
exactly how the data that is required by the system will be manipulated, the
Database Requirements will specify what data is needed, and show the logical
relationships between those data.

Internetworking and Mass Storage Requirements: These two items might
need a little explanation. It is clear that they are of a technical nature, and there-
fore can be alluded to in the Requirements Definition (using phrases such as
“must have e-mail capabilities” or “must support large removable media”),
but whose exact technical specifications mean that, following our philosophy
on these matters, they belong in the Requirements Specification document.
On the other hand however, one might argue that they do not need their own
section, and could be integrated within the Nonfunctional Requirements,
Functional Requirements, or even the Hardware section of the document.

110 Corporate Software Project Management

Since large-scale software development first began, the landscape of computing
in general has changed somewhat. First, the advent of the Internet, and explosion
of two of its most important components—electronic mail and the World Wide
Web—have led to a whole glut of different applications, all taking advantage of
what we call here internetworking.

The price per megabyte of mass storage devices such as huge (terabyte) capac-
ity hard drives, high-capacity tapes (8 to 18 gigabytes), and regular-sized optical
disks such as DVDs (4 gigabyte) and CDs (700 megabyte) means that we have a
whole new area of functionality to deal with. This comes with its own special set of
concerns, as well as rich features we can exploit.

The floppy diskette (1.4 megabyte), once the only removable storage and backup
possibility, fades into insignificance alongside today’s mass storage heavyweights.

Since both items rely heavily on external specifications and industry standards,
we have chosen to place them in their own section. While the facilities that they
offer might form part of the desired behavior of the system, they can be said to be
on the boundary of the functionality that the developer is expected to provide, and
as such are considered in a separate category to the rest of the system specifications.

The remainder of this part of the chapter will look at each of the previous sec-
tions in detail, showing how they relate backwards in the document chain (to the
Requirements Definition) and feed into the Functional Specification that provides
the developer with a guide as to what the system is actually supposed to do.

Functional Requirements Specification

This section of the Requirements Specification needs to formally define the func-
tionality that the system must provide, but not the actual functions that will sup-
port that functionality. By way of example, we should consider a small accounting
system, which contains one part allowing for the input of invoices.

The Functional Requirements Definition might state that the system must be
able to support the input of invoices, detailing the various pieces of information
that must be retained by the system. It might also provide a description of any sort-
ing, retrieval, and reporting mechanisms.

When this becomes part of the Functional Specification, each of the operations
that need to support the entry of data into the invoice must be catalogued and un-
ambiguously specified in such a way as to represent the clear movement of data
through the system, not to mention a definition of the data that needs to be stored.

The Requirements Specification becomes the bridge between the highly tech-
nical and concise Functional Specification and the contractually binding but
nonetheless imprecise wording of the Functional Definition.

Requirements Specification 111

As can be seen in Table 7.1, each time a specific part of the system is defined—
starting with the reasonably vague Definition, through to the contractually binding,
but still nontechnical but precise Requirements Specification, and finally to the
technical description of what the system must do, the Functional Specification—it
becomes expanded from an idea into a concrete set of precise features.

TABLE 7.1 From Definition to Specification

Requirements Requirements Functional
Definition Specification Specification
Needs to store Invoices stored alphabetically, Invoice storage supported
invoices by family name, then by first by:
name, where applicable. —Savelnvoice
Company names are stored Purpose ...
as family names with status Input ...
(LLC, etc.) in place of Output ...
first name. —Sortinvoices
Purpose ...
Input ...
Output ...
. e,

One might argue that the steps in Table 7.1 are unrealistic; that is, that the
client would not ask for an invoice storage system, and not think to directly instruct
the contractor that it should also be capable of sorting them, allow searching, and
SO on.

It is true that the progression shown in Table 7.1 indicates that the process
seems to expand the problem domain dramatically with each step, but it would be
unfair to suggest that this is an exaggeration. Quite often, an abstract wish of the
client can turn into a substantial part of the project, and as the project team at-
tempts to arrive at an all-encompassing definition, they cover parts that the client
has not considered, but will find useful enough to be willing to pay for.

Nonfunctional Requirements Specification

The system will need to be designed to operate within a certain environment, and
the Nonfunctional Requirements Specifications need to detail, in precise terms,
what that environment will be.

112

Corporate Software Project Management

This can include everything that will have an effect on the system, but does not
form part of the system itself. If we want to be completely formal about the project
specifications, we would need to indicate areas such as the contractual conditions
under which the system will be required to operate and any other, possibly more
technical considerations.

However, specific pieces of hardware with which the system is designed to in-
teract, and other pieces of software that will provide services to the system under
specification can be considered elsewhere—in the Hardware, Database, Internet-
working, and Mass Storage sections of the Requirements Specification.

The reader will note that there is a column missing in Table 7.2 with respect to
Table 7.1, which showed the progression of the Functional Requirements—which
would be the equivalent to the Functional Specification.

TABLE 7.2 From Definition to Specification

Nonfunctional Requirements Nonfunctional Requirements
Definition Specification
Should run on an office standard PC Platform will be the minimum

requirements for Windows XP

In Chapter 8, “Functional Specification,” we elaborate on a section called Non-
System Functional Specifications that include, among other things, a definition of
some of the Nonfunctional Requirements, but only where they offer functions that
the system is able or required to use.

Where in Table 7.2 we indicate that the platform requirements will be the same
as for a Windows XP workstation, we might then insert in the Nonsystem Func-
tional Specifications the exact specifications of a Windows XP system as used by
clients in a similar office environment.

Hardware

In a given system, there will be various types of hardware—ranging from that which
the system needs to run on, often called the target platform, to any hardware with
which the system must interface, and does not have any standard way of doing so.

One might choose to place the internetworking and mass storage requirements
in the Hardware Requirements. Both need to use hardware devices to provide the

Requirements Specification 113

ancillary services for which they are designed. If there is nothing else of note in the
Hardware Requirements Specifications, then this approach is quite acceptable.
However, it is always possible that the Hardware Requirements Specification
will already be filled with entries relating to the target platform, and specialist hard-
ware interfaces, at which point it becomes cumbersome to mix this information in
with other, unrelated entries that one might reasonably expect to be found elsewhere.

Database Requirements

Many systems require some form of database support, and it is quite likely that this
will come from a third party, either in the form of a separate component or libraries
that can be built into the application to provide the support that is required.

In order to decide which route to take, it is necessary to specify exactly what the
features and boundaries of the database system will be. In the Nonsystem Func-
tional Specification, which we will look at in Chapter 8, there will be a certain num-
ber of features that will be required of the database system, but it is in the Database
Requirements section of the Requirements Specification that we will detail the re-
quired capacity of the system, as well as the functions it will need to provide.

Functional Requirements

One of the most important aspects to consider is whether the database system will
need to travel with the software under development, or whether it may reside on a
separate machine, and be used in a client-server environment. The central storage
as opposed to distributed storage debate will hinge on the system requirements.

Central storage is only really required if the data stored has to be constant
across all clients connected to the system. For example, a contact list in an office
automation package (such as Microsoft® Exchange) should be accessible by all,
and be updated by a subset of the users, but always current, no matter who accesses
it, and from where.

However, this may only mean that the central storage is encapsulated in a
server application (as in the case of Microsoft Exchange), which in turn may use a
local database, as opposed to client access to a database server such as Oracle.

This then leads to another potential requirement—a database that uses a lan-
guage such as Structured Query Language (SQL) to interface with it, or one that can
only be accessed via a specific Application Programming Interface (API) such as
that provided in Visual Basic toward the Microsoft Access database software.

Using a language such as SQL becomes a requirement if ad-hoc access to the
database, programmed by the user, is part of the system definition. This may be
necessary in systems that are designed to collect data, in the expectation that the

114

Corporate Software Project Management

users will extract and report on that data. If an API-based database system is used,
then a programmer will need to extend the system to allow the user to query the
database in a specific way, should the need arise.

There are also a number of specific functions that might be required of the
database system, some of which are reasonably standard, but some of which can be
considered advanced functions only offered by the high-performance, enterprise
database management systems.

These might include the ability to search the database by using a function of the
database system as opposed to retrieving records on a sequential basis, and either
retrieving the data or discarding it and moving on to the next inside the software
system. Clearly, it is much more convenient to have the database perform the
selection—but this might conflict with other requirements.

Another aspect of database systems relates to the fact that they hold the most
important business commodity—information. The amount of importance that the
client places on the information being stored in the database will depend on what
the system is designed to do.

Most modern database systems allow for some form of basic data preserva-
tion—such as not actually deleting records until the system undergoes mainte-
nance (such as the compression function offered by the FoxPro™ programmable
database system)—and even some protection against system instability.

Another useful function that might be required is the possibility to offer auto-
matic reporting features; not necessarily arranging the data contained within in a
specific way, but also reporting on the state of the system, and the interactions
between it and the various users of the system.

All of the preceding can be specified in very precise terms, using industry stan-
dard terminology to specify the exact requirements that the database system chosen
in the implementation needs to satisfy.

Performance

Performance is usually measured using some reasonably standard definitions—
similar to those used in specifying the performance of hard disk drives. There tend
to be four main criteria for specifying the performance of a database system—
capacity, search speed, access time, and update time.

The capacity refers to the number of records of a certain size that can be in-
cluded in the entire database. While this might be limited in theory by the memory
or disk space attached to the system, most database systems are built such that
there is a practical maximum beyond which the other three criteria will begin to
suffer.

Requirements Specification 115

The search speed should be indicated in a meaningful measurement that rep-
resents the requirements of the client in an unambiguous fashion. Simply stating
that the database should be searchable within a reasonable wait time for the oper-
ator tells us that we would prefer not to be kept waiting, and is acceptable for the
Requirements Definition.

The Specification, however, requires that more precise terminology is used—
possibly something stating the number of results returned per second within a cer-
tain time of submitting the query. For systems designed to be used in environments
in which response time with complete information is important, such as the retail
sector, this is obviously not the correct measurement to use.

In such cases, a more useful way to define the requirement is in terms of
returning enough meaningful information within a certain time span. For example,
100 customers, by name and first initial, to be returned within five seconds of issu-
ing the search command. This is also a useful approach when specifying search cri-
teria that could possibly result in many records, but which it will be easy to spot
straight away if the set is too large, and the query can be modified.

The last two, access time and update time, are related. The access time, mea-
sured by a single value indicates the amount of time that is required to retrieve a
single, indexed record (or to insert or delete one). The update time indicates, as a
single value, the time taken to change a record as a result of a query.

Nonfunctional Requirements

Anything that does not affect the operation of the database is a nonfunctional
requirement. This will inevitably include requirements that relate largely to non-
technical issues, such as price, target platform, and various availability criteria, such
as platform, documentation language, and so on.

It is important to include such items as constraints on the purchase of equip-
ment; a client may require a database system that they will be unable to accommo-
date on their existing hardware systems, but be unwilling to acquire new hardware
to provide a platform for the database.

Internetworking and Mass Storage

At a certain moment in time, connecting two or more machines together in a net-
work, or connecting heterogeneous networks together, would have presented
enough of a challenge to be part of the product itself. The ability to read and write
large quantities of data to CD, DVD, or similar would also have fallen into this
category.

116

Corporate Software Project Management

Since the advent of consumer-driven technologies such as audio CD and DVD
movies, the implementation of these features has become part of the state of the art,
in the same way that large, multi-user relational databases have.

For this reason, the Requirements Definition and Specification will not cover
these items as part of the discussion of the main product. There will simply be
references to the product being “Internet ready” or that it must be able to “back up
to CD.”

To accurately describe the requirements, we must consider key areas of their
functionality that will constrain the end system, in terms of the features that the
technology offers.

Multi-User Requirements

Many non-IT professionals tend to think of software as being either single- or
multiuser. In other words, it is used either by a single individual on a single
workstation, or by multiple individuals on different, possibly interchangeable,
workstations.

Increasingly, however, industry is redefining the relationship between the user
and the software, which has led to many different layers of single, nonsimultaneous
multiuser and fully cooperative multiuser distinctions. The client needs to be aware
that, while it is possible to change between these once the development has begun,
the design will usually depend on the number of users, and simultaneous users that
they expect to be able to use the system.

If, for example, a system has been designed for single users each with a single
workstation, and local database, then expecting it to be extended, once created, to
include a simultaneous multi-user, centrally managed database is going to be a
very difficult proposition.

There are four discrete levels of multiuser capability, based on whether there
are multiple users, multiple machines, or both:

Single user, single machine
Multiple users, single machine
Single users, multiple machines
Multiple users, multiple machines

For each of these levels, we must also consider, in cases where multiple users or
machines are foreseen, whether they will do so in a simultaneous or nonsimulta-
neous fashion. The exact mix will vary depending on the product being designed,
as will the consequences.

Requirements Specification 117

Those applications that do not require a database or other kind of information
store will be impacted less by a move from single to multiple users (or machines),
while systems that make use of peripherals, external databases, networks, and other
facilities will be impacted in a much more important manner.

Network Protocol

Part of the multiuser, multi-machine debate is solved by deciding on the network
protocol that will be used by the end system. There are basically two choices—In-
ternet ready or LAN/WAN oriented. Network engineers might argue that the actual
networking landscape is much more complex than this, but at this stage, we can
ignore much of the underlying intricacies of network engineering.

For each of the two key network system types, there are multiple possibilities;
Internet-ready applications can either be server based, or client/server oriented.
They can also be used in a browser, or through a proprietary application serving as
an interface to the back office system.

Systems that are networked but not Internet ready can use direct connections
supported by the underlying operating system, or they can use techniques such as
file sharing to provide the illusion of peer-to-peer interaction.

If the application needs to make use of Internet technology, but not on a peer-
to-peer basis, such as allowing for backend connections to Web servers, allowing
electronic mail messaging, and so forth, then these requirements need to be laid out
in terms of the supporting technology.

Client/server systems are at the top end of the scale—such applications are
essentially built up of two or more layers. There is traditionally a server-based
system that carries out much of the central processing; such as database access,
peripheral sharing, user access management, and so forth.

The user interface is then split over several workstations that form the client
side of the system, where each has specific local tasks that it needs to carry out in
order to succeed in whatever role it has been assigned.

Security

Security is a big issue for multiuser networked applications, and this is most ap-
parent in those applications that are distributed over large geographical areas using
Internet technology. They are open to abuse from both the inside and outside—
hackers in the first instance, disgruntled employees in the second.

While the latter is, and will hopefully remain, rare, hacking as a profession is on
the increase, and both the client and application designers need to make sure that
they have covered all the important security loopholes that might exist in the sys-
tem design.

118

Corporate Software Project Management

Of course, where it will be more difficult to locate and fix security concerns is
in the operating system itself, and if this is a key sticking point for the system under
development, then the advice is usually to seek the help of a company specializing
in the operating system for which the system is being deployed.

Having said that, LAN applications can usually safely use the security mecha-
nisms of the underlying operating system to manage the relationship between the
client and the server, or between clients in a peer-to-peer environment.

One of the key security issues is whether to allow users to define their own pass-
words, use system assigned passwords, or use a hardware token. The first option is
the easiest—the system allows the users to choose their own password, but manages
the changing of that password and applies some simple rules to determine the suit-
ability of that password.

These can range from simple tests on the length of the password—insisting that
it is no shorter than six characters is a common one—right up to stringent tests that
make sure that the password consists of letters, numbers, and special characters,
and that there are no adjacent letters that could form a word from a list stored by
the server.

The second option uses a random, system-specified password that is commu-
nicated to the users such that, once changed, they will need to use it the next time
they attempt to gain access to the system. Of course, the drawback here is that the
user will probably write it down, since it will have been chosen in such a way as to
be difficult to guess, and hence, remember.

Finally, the system could use a challenge-response hardware token system,
where the user accesses the token with a four-digit PIN and enters a specific chain
of digits generated by the server. The token (resembling a pocket calculator) then
responds with a string of digits to be returned to the server.

Assuming that the relationship between the two sets of digits is acceptable, the
user is permitted access to the system. This option requires the most sophistication,
and is the most expensive.

The client needs to carefully evaluate how much security is appropriate, and
detail it as part of the Requirements Specification, so that the developer can then
decide on the most robust and efficient design, and estimate cost accordingly.

Media Requirements

The purpose of the Media Requirements Specification is twofold: on the one hand,
it is needed to try to estimate the amount of temporary storage that will be needed,
either at the server, or on each client, but on the other hand, we also need to spec-
ify what kind of permanent storage solution is required.

Requirements Specification 119

In this case, permanent storage will probably refer to backups of the system,
taking the data away from the running environment and storing it safely on more
permanent media such as a tape, CD, or DVD.

Which of these is used will depend on:

B Quantity of data to be archived
® Archival frequency and timing
m Existing technology

Different solutions will be required for different environments. A deep space
mission, for example, will need to take backups onto rewriteable media, such as
magnetic tapes, since burning a CD will waste valuable resources, and the craft will
not be able to take enough for the entire mission.

Rewritable DVDs, however, would probably provide a good solution, being
robust, compact, and reusable, but their data capacity tends to be lower than
magnetic tape. Then again, magnetic tape could be affected by electromagnetic
pulses, which abound in deep space.

These are the kinds of client-specific questions that need to be asked, and which
the developer, in all probability, will not have the specialist knowledge of the client’s
problem domain available to him if the questions were to arise during the design
phase. Hence, the time to tackle the issues is during the specification phase, when
the clients are at their most involved with the project.

PROGRAM DEFINITION LANGUAGE

Rather than relying on natural language to describe the Functional Requirements of
a system, some software engineers prefer to use a Program Definition Language,
or PDL. It should be mentioned that this might sound as if we are prematurely
attempting to address the design and implementation of the end system, but that a
PDL is only capable of describing the effects of a system, not how it is to achieve it.

When to Use a PDL

A PDL should only be used under certain circumstances, and such use is con-
strained by the readership of the Requirements Specification document. While it is
true that the PDL defines the system in a way that should be unambiguous to the
reader, it is equally true that only clients possessing a certain level of technical un-
derstanding will be able to read a PDL and thus confirm its veracity.

120 Corporate Software Project Management

A PDL representation of a system is very useful in cases where the system needs
to interact with another one that already has a set of rules governing the informa-
tion and processing that it offers. In such cases, modeling the interface between the
two systems using a PDL will ensure that the two systems are compatible at the Re-
quirements stage.

Other systems that will benefit from a PDL include those with a high content
of user interaction or logic processing, and real-time systems and mission-critical
applications.

What Is a PDL?

Formally speaking, a PDL is a limited collection of constructs and features that can
be used to describe the elements of a system in such a way that the logic and data
are presented in an unambiguous manner.

These constraints stem from the fact that a PDL is usually based on a real
programming language, and is thus provable. Indeed, if the PDL is an actual
programming language, it will have tools that can be used to validate the specifica-
tion built using it.

Choosing a PDL that is appropriate for the system being specified is a difficult
proposition. If the final system is to be highly interactive, then a different kind of
PDL should be used from a system that has very little interaction, but a great deal
of internal logic and processing.

The PDL needs also to comply with any standards that the target organization
has put in place for the control of code and documents, and needs to be an effec-
tive communication tool with respect to the client.

Typically, at the specification stage, the PDL needs only be effective in manag-
ing and validating the functional requirements of the system—describing the
externally visible effects and elements of the proposed system, and therefore a
limited logic and data system is all that will be required.

The PDL tools will then be able to verify that the requirements have been
correctly formed, but it will not be able to indicate whether anything has been left
out, only that what is present is consistent.

What a PDL Is Not

A PDL is not designed to replace the actual programming of the system, which
needs to follow correct system definition. Merely describing the functional re-
quirements with a PDL will not be sufficient to target the resulting package for the
correct environment, taking into account all the nonfunctional requirements as per
the software design phase.

Requirements Specification 121

Besides the fact that to use the PDL as the implementation of the functional
requirements will effectively skip a stage in the software development life cycle,
there are other reasons why a PDL description of the system should not replace the
design and implementation of the system.

For example, while we noted that the client in receipt of the PDL description of
the system should be technically competent, this does not necessarily mean that
they will be able to read code written in a traditional programming language.

Thus, the PDL needs to be easier to read than, C code, for example; however,
unambiguous enough that systems can be described in such a way that leaves no
doubt as to the functionality that they are supposed to offer.

If a real programming language is used, then it should be able to be compiled,
or at least tested to ensure that it is without error. In other words, it would be a
good approach to choose a close to natural language programming language (such
as Ada) that has tools to support it.

Such languages do not usually benefit from the extensive support that lan-
guages such as C, C++, Java, and so forth, have built up over the years. This lack of
support can mean that the language is not compiled but interpreted, which makes
it cumbersome for the development of stand-alone applications, and introduces an
additional layer of dependencies to the system—something else that needs to be
tested.

Examples of PDLs

While technically, a PDL can be created from any programming language, some
variants lend themselves to being adapted in this way more than others do. We
mentioned previously that Ada is a useful starting point, as are languages such as
Moldula-3, Pascal, and those that tend to use a syntax that is closer to natural
language than languages based on C.

The first step in choosing a PDL is to isolate whether the system being specified
is inherently object oriented at its base. This has no bearing on whether Object-
Oriented design and programming principles will be applied in building the sys-
tem, but rather whether the real-world system lends itself to being described in an
object-oriented fashion.

Ada, Modula-3, and Eiffel are all object-oriented languages that can be used as
a starting point for creating a PDL, and all are supported by compilers, interpreters,
and other tools that are moderately mature, and hence cost effective and stable.

If, for example, we want to specify that part of the functionality of the system
deals with an interface to an address book, we can use an Ada package to create an
address book consisting of a series of objects, of which one might be an address
record, described thus:

122

Corporate Software Project Management

type AddressEntry is record
StreetNumber : Natural := 0;
StreetName : String := “7;
City : String := “7;
State : USState := “XX”;

end record;

The preceding example uses a type definition, usstate, which illustrates one
of the reasons why a PDL is a good specification method, since we can use it to
discretely and completely specify a set of data in a way that will mean that it can be
validated whenever it appears, against our definition:

type USState is (“AK”, “AZ” .. “XX”);

Note that I have not included all the U.S. States in the preceding example, for
the sake of brevity, and that the special value “xx» has been included as a default
value. We can construct a similar record in Modula-3:

TYPE AddressgEntry = RECORD
StreetNumber : INTEGER;
StreetName : ARRAY [0..999] OF CHAR;
City : ARRAY [0..50] OF CHAR;
State : USState;

END

The type definition for usstate can be defined using Modula-3 as:
TYPE USState = { AK, AZ, .. XX }:

One of the differences between the representations is that, having defined our
type in Modula-3, we can then perform assignments as:

Some_state = USState.FL;

This makes validation easier than with the Ada equivalent, which uses a string
representation. It can also be easier to understand for the specification of complex
systems.

We can then move on from specifying the data to specifying how that data is to
represent the parts of the system identified in the system model.

Requirements Specification 123

VALIDATING THE SYSTEM

Once the Requirements Specification has been created, it needs to be validated. All
parts of the Specification are subject to validation, no matter how they are repre-
sented, or what they are supposed to represent.

Somerville identifies a series of four steps needed when validating require-
ments, which we can group into:

Needs
Consistency
Completeness
Achievability

S R S

For each of the two areas of the Specification, we must ensure that the users’
needs have been met, that the specifications are consistent with respect to them-
selves, that they are complete, and that they can actually be realized.

The whole ethos of this book has been geared to ensuring that the client (and
by implication, the user) is involved to such a level that the validation should
confirm that the needs have been met. The use of a PDL for the Functional
Requirements Specification will probably help to ensure that the specification is
consistent, but cannot help with validating the completeness.

Finally, the achievability of the specification—in other words, whether it can
actually be turned into a design that can then be implemented as an actual system—
needs to be addressed. This is an aspect where the developers can find themselves
promising something more than the current state of the art, or available budget,
can provide, so care must be taken to be objective.

However, it is acceptable to try to predict the evolution of the state of technol-
ogy in certain, fast-moving technological environments.

Functional Requirements

The one aspect of the Functional Requirements that ought to be easy to validate is
the consistency. Luckily, in many cases, and in most where a PDL is used, this
should be the case. After all, part of the reason for using a PDL is so the system
model can be verified against itself.

However, addressing user needs (offering all the functions that they require),
checking for completeness (for all the defined functions, are they completely spec-
ified), and ensuring that the system can be achieved are less straightforward, even
for functional requirements.

124

Corporate Software Project Management

Checking that the proposed system offers all the functionality that the user
requires, rendering it useful and less prone to being put to one side after delivery as
being incomplete, is a manual task. The client must read the specifications, under-
stand them, and match them against the real-world problem they are trying to
solve.

This means that the users must be involved, and therefore the document has
to be watered down for presentation to them, since in most cases it will be too
technical in its available state. This also introduces a layer of uncertainty, since the
Specifications will have been interpreted by the client before presentation to the
user, and therefore questions or comments that the users might have could be re-
lating to non-existent problems raised by a misinterpretation of the Specification
document.

However, it is a necessary part of the validation phase, since we must be certain
that we have captured all the requirements during the Definition phase (described
in Chapter 6, “Requirements Definition”), and accurately specified them in an un-
ambiguous manner. It will be a time-consuming and relatively expensive process,
but one that will save unnecessary intervention later in the development process.

Once we are sure that the Requirements represent the users’ needs, we can
then look at the consistency of the statements contained within the document. Ifa
PDL has not been used, then this is another manual task that has to be performed
to check that there are no conflicting statements or definitions.

If the Specification is consistent, we can proceed to validate the completeness
with reference to the user needs. This validation should be performed by the system
designers, who should try to ensure that, taking into account the user needs, the
requirements of the system have been properly addressed, including those that
have not actually been voiced by the client but are a consequence of another
requirement.

Finally, care must be taken to make sure that the functions are achievable with
the current state of the art, or whether new advances in technology will be required
to support the functions that have been isolated. These advances should be antici-
pated, or the scope of the project reduced to avoid failing this validation.

Nonfunctional Requirements

Testing nonfunctional requirements against user needs is reasonably straightfor-
ward—especially where system constraints are concerned. After all, if the system
needs to fit into 512 kilobytes of memory, because that is the amount available on
the target device, then it is easy to express and validate. If at any time the memory
requirements are exceeded, as a result of adding together all the space required by
the data types and representation laid out in the Functional Requirements, then this
is a clear indication that the user needs have not been met.

Requirements Specification 125

Furthermore, it may transpire that the required functionality cannot be deliv-
ered in such a manner as to fit into 512 kilobytes of memory, as described by the
system. At this point, there are two options: redevelop the user platform, or alter
the scope of the system.

It is far cheaper to find this kind of constraint violation during the Require-
ments Specification stage than at any other stage during the project life cycle. As
this simple example shows, validating the nonfunctional requirements can also be
an effective cross-check against the functional requirements and a way of ensuring
that the user needs have been addressed properly.

Again, though, only dialog with the client and users will enable the developer
to be sure that the description of the nonfunctional requirements is complete.
There may be pieces missing that are vital to the achievability of the system, but are
overlooked during the first iteration of the Requirements Specification document.

Care also needs to be taken to ensure that the nonfunctional requirements can
be validated; that is, that the language used to express them provides benchmarks
against which the result can be measured. In a sense, they then become as testable
as the actual program code.

For example, rather than discussing aspects of the system in vague terms such
as “easy to use” and “efficiently,” “effective,” “high capacity” and so forth, exact
numerical thresholds below which it would not be allowable to exceed must be
placed on the requirements.

Technical nonfunctional requirements, such as those relating to performance
and capacity, are easy, as we saw previously, to quantify. Human or user require-
ments are less easy to address. If we are discussing a user interface for data entry, we
might want to express the fact that:

“Minimal training should be required to effectively input information.”

This cannot be tested because it puts no limits on what might constitute
minimal training, or what is considered effective. Putting to one side the fact that
the effectiveness might depend on the user, we might rephrase the preceding state-
ment as:

“After 15 minutes of formal introduction to each data entry screen, a user of
average competence should be able to input 10 records per hour, with a 99.8%
accuracy rate.”

The reader will note that in the preceding statement, we introduced another
vague concept (average competence), which serves to illustrate the fact that it will

126 Corporate Software Project Management

never be entirely possible to encapsulate the nonfunctional requirements. Since
they serve as a part of the contract in many cases, it might be wise to try to narrow
down the definition of competence so that it can be measured.

SUMMARY

While many texts on the subject put Requirements Specification and Functional
Specification under the same heading, we have chosen to split them into two chap-
ters in this book since there are aspects that have different audiences.

Part of the problem is that the Requirements Specification needs to be able to be
understood and interpreted by a nontechnical audience, the client, and will proba-
bly form part of the contract. As such, it might be a better approach to place the
Functional Specifications in a separate document that is aimed at the designers of the
system, who should be technically competent to read a highly abstract document.

We also covered interfacing to other systems, whether they are systems that
need to offer services to the end system (such as databases or web servers) or exist-
ing systems with which it will be necessary to dialog in order to provide the func-
tionality that the client requires.

We also covered PDLs as an effective mechanism for specifying requirements,
and while this approach encroaches on a Functional Specification, the next chapter
should serve to indicate where the two documents differ.

Finally, the importance of validating the specification was discussed, which is a
concept that is also applicable to many other aspects of software engineering. As
long as we validate each phase of the cycle, we can be sure that the result will be of
an acceptable level of quality.

= Functional Specification

In This Chapter

Introduction

Process Descriptions

Data Dictionary

Nonsystem Functional Specifications
From Requirements to Specification
Summary

INTRODUCTION

While the Requirements documentation is clearly aimed at establishing an under-
standing as to the purpose of the system between client and developer, the Func-
tional Specification is aimed squarely at the development team. It should be a
reduction of the Requirements documentation to technical terms, encompassing
enough detail as to leave no doubt as to what purpose the system is supposed to
serve, such that the end product matches the client’s expectations.

In essence, the Functional Specification boils down to defining the data that
will represent various areas of the system, and the operations that need to take
place on that data for it to result in the system that satisfies the requirements laid
out as the contract between the client and developer.

127

128

Corporate Software Project Management

It should be a balance between data models, process diagrams, and natural
language annotations, but is not a system design; there should still be nothing that
indicates how the data becomes transformed by the operations laid out in the doc-
ument, merely that a transformation takes place.

The Functional Specification also provides a description of the system that can
be used by a third party should they need to reuse parts of the system, or commu-
nicate with the system from the outside, without having to dig through the source
code or design documents.

Since the aim of the Functional Specification is to define what the system does,
and not how it is to be done, it is an ideal document for sharing with other devel-
opers who might want to take advantage of the features that it offers, or as a start-
ing point for the development of other systems to perform the same task, but with
different implementations.

This last is especially applicable to hard real-time systems in which there is
much at stake, such as those systems controlling aircraft, or managing the workings
of a stock exchange. When these are developed, it may be appropriate (as in the case
of the U.S. Space Shuttle System) to develop the software several different times, to
the same specification, but using different design and development teams.

The three pieces of software are then run in parallel, and each decision is mon-
itored by a fourth system that is charged with deciding on what action to take in the
event the result of the three decisions is different depending on which system has
produced it. Without a sound Functional Specification, this approach would not
be possible, and so it has become an important part of any software development
paradigm.

PROCESS DESCRIPTIONS

The Functional Specification needs to offer a description of what functions the
system is to provide, and how these functions interact to provide processes that
operate on the various pieces of data that exist in the system.

We have already dealt with how we arrive at a suitable definition for the system,
via the Requirements Definition and Requirements Specification, but these did
not narrow down the concepts to concrete functions that can be designed and
implemented.

Process Diagrams

One of the best ways to describe how processes interact is by using process dia-
grams. These are distinct from the data flow diagrams that we have already met, as

Functional Specification 129

they give a step-by-step specification of what a single process needs to achieve.
They may, however, need to show the movement of data, but this is not their pri-
mary function.

Flow diagrams are among the best kind of descriptive diagrams that can be
used in the visual description of a process. They should remain easy to follow, ab-
sorb, and validate, with the help of use cases. Therefore, before we go any further,
we should indicate what each Process Diagram entry should contain:

The Process Diagram

A reference to Data Entities and Processes used
Use Cases

Test and Validation results

For example, in an accounting package, we might have a process that is needed
to calculate the amount of tax to be charged on a specific item. This tax will change
depending on what kind of product is being sold, and so we need to perform a few
steps, as shown in Figure 8.1.

Get Product Type

i‘ Item ;

Y

Get Tax Level

Y

Calculate Tax

ﬁ

FIGURE 8.1 Tax calculation process diagram.

In addition to the process diagram, we will need to refer to the Data Entities
and Process Descriptions so that the reader can cross-check that there is indeed a
data structure that holds the required information, and a process that can look it up
for us.

Then, we need to present some Use Cases that will show how we expect the
process to be used, and how it should react in various possible situations. These can

130 Corporate Software Project Management

be used to validate the process, using test data that should be constructed specially
for the purpose, and used in hand execution of the diagram that accompanies it.

This is distinct from the validation process, which tests the identified boundary
cases to check that the behavior is consistent with the requirements of the cus-
tomer, and that the failure of the process is handled correctly. Boundary cases, as we
will discuss later, refer to test data that tests cases that are valid, but only just, as well
as those cases that are on the invalid side of the boundary that represents acceptable
use.

Function Definitions

The Function Definitions part of the Functional Specifications is a list of functions
that will need to be developed in order for the software to deliver its intended
result. The Function Definitions are both a link between the Process Diagrams
and the data dictionary, and the link between the Requirements and the Software
Design.

Thus, the Function Definitions need to show:

The name of the function

The process to which it belongs
The operation that it will perform
The data on which it will operate

The Function Definitions are as close to the software design as it is possible to
get, without actually attempting to prescribe the way that the software will be im-
plemented; they still need to concentrate on the “what,” and not the “how.”

However, some specific software applications will require that specific calcula-
tions be performed, or some very detailed process be spelled out step by step, and
this can be seen as encroaching on the “how” of what the system is supposed to
achieve. In such cases, it is permissible, but has to be justifiable. It is not acceptable
for those involved in creating the Functional Specification to try to dictate tech-
nology or implementation issues without a direct requirement link given by the
client.

DATA DICTIONARY

A Data Dictionary contains specifications for all the data that needs to be passed
around the system, and is a reference document that reduces the data models and
associated textual descriptions to a list of data objects and subtypes that need to be
represented in the system design.

Functional Specification 131

The Dictionary should consist of several sections:

m Conventions
m References
B Data Entity Descriptions

The Conventions section of the document should outline any specific con-
ventions that are used in the document, such as acronyms used for data type
expression, such as “an” used to represent data that can be alphanumeric. Other
conventions might include those relating to compound fields, such as variable-
length fields with a length indicator, and nonstandard data types.

In addition, system specific conventions such as character set representation
(ASCII, ANSI, EBCDIC, etc.) and any other items that form part of the nonfunc-
tional specifications but have an effect on the definition of the data types that will
be used to represent information in the system.

The Conventions part of the document should be held somewhere centrally, in
template format, so that it can either be reused directly in the Dictionary under
construction, or referred to in the References part of the document. This References
section needs to specify where the readers can find additional information that will
help them in understanding the Data Entity Descriptions, which will make up a
large part of the final Dictionary.

Data Entity Description Format

As with all documentation, it is important to establish a standard format and apply
it to each project. The reasons for this are that, if the specifications for the object,
system, or part of the system are to be reused, it will be much easier for other
developers to decide whether it fulfills their needs, as compared with other reusable
artifacts if all the documentation is standardized.

Key Elements
As a minimum, each data entity needs to be defined in terms of:

Name

Data length and type
Description of use
Allowed values
References

132

Corporate Software Project Management

The name should be the agreed system name for the data entity, and may or
may not bear resemblance to the eventual data type name that is used when the
specified entity is designed and implemented. It does not, therefore, need to adhere
to any specific programming language conventions regarding allowed characters
(such as spaces and numbers), and can be as long and as descriptive as required.

As with the name, the data type description can be programming language in-
dependent, and should indicate the nature of the data that is designed to be stored
in the data entity, using any acronyms and specific data types that have been intro-
duced in the conventions section of the Dictionary document.

Once the name and type of data has been specified, a description of what the
entity is to be used for should follow. It should be a plain language description that
conveys the circumstances of use and nature of the data, and any restrictions on
what information can be placed in the entity.

This last is distinct from the type of data—it should be obvious that alpha-
numeric data is not appropriate for storage in an entity that has a data type of
either alpha or numeric only—the restrictions that we refer to here reflect values
that have been reserved or are simply not logical; a subformat for the data (such as
a postal code format) is one example.

The last part of the strict data definition is a list of allowed values, if appropri-
ate, and the circumstances under which they may be used, as well as a default value
for cases where a function has rendered the contents of the entity as either un-
defined or unusable. This can happen in data entry software where the user has
neglected to offer a required value, and the system chooses to insert something in
the entity that can be recognized as nonstandard data.

The allowed values also give clues, beyond the data type itself, for the testing
team, as to what kind of tests they should carry out in terms of valid, invalid, and
out-of-format data that can be thrown at the system in an attempt to force it to
display undesirable behavior, or checks that need to be done to be sure that the
system has processed the data properly, and according to the Process Description.

Finally, each entry should contain a list of references that will help the reader to
connect the data entity with other parts of the Data Model or Dictionary. If the en-
tity is a small part of a larger object, such as the street name in an address entity,
then this should be indicated in the references.

In some cases, it might make more sense, when dealing with many multipart
data entities, to take one of several approaches. The first is to divide the Dictionary
entries into those that consist of compound entities, and a second that contains the
primitives that are used by the compound entities.

This introduces an implied hierarchy, which might begin with very simple data
types (characters, numbers, etc.), builds up to more complex ones such as strings,

Functional Specification 133

and then finally to the useable system data entities, such as names, addresses, vehi-
cle types, and so forth.

However, one might take the approach that the primitives (strings, characters,
etc.) be defined in the Conventions part of the Dictionary, and then the entire en-
tity described in the Dictionary proper.

There are also a number of possibilities in between, and whichever one is
chosen will depend on the nature of the system, part of system, or object under
specification. Assuming that one is attempting, following the paradigms laid out in
this book, to establish some kind of corporate repository of specifications, designs,
and implemented objects, then different objects will probably require slightly dif-
ferent specification formats, especially in the area of the Data Dictionary.

Example

The following is an example taken from the definition of data types used in an ac-
counting package:

Name: Product Name
Type: as25
Description:

Contains the name of a valid product, as defined by the user. Products
can be added at the user’s discretion.

Allowed Values:

Any alphabetical character, or the special character “space”.
References:

See Process Diagrams 1.5, 2.5, and 5.3

We might then go on to define a product entry:

Name: Product Entry
Type: Record (Product Name, Product Type, Price, Stock, Tax Rate)
Description:

Contains all the details relating to a specific product, as defined by the
user. Records are indexed on a combination of their Product Name and
Product Type.

Allowed Values:
Any combination of values allowed in the specific subtypes. Product

Name and Product Type may not be empty. Price may only be zero in
specific cases.

134

Corporate Software Project Management

References:
See Data Entries Product Name, Product Type, Price, Stock, Tax Rate
See Process Diagrams 1.6, 2.6, and 5.4

An alternative specification might be to use a predefined compound type to
represent the same entity (Product Entry) but without the need to define subtypes
such as the Name, Type, Price, Stock, and Tax Rate. This alternative approach
might yield an entry like:

Name: Product Entry
Type: TLV
Description:
This entity contains TLV entries representing product information:

Tag Length Value

N 25 Name of Product (as25)
T 25 Product Type (as25)

p 8 Price (n8)

S 12 Available Stock (n12)

X 4 Tax Rate (n4)

Data may be populated by the user via an appropriate interface (see Ref-
erences) and records are indexed on N25 and T25.

Allowed Values:

N25 Any alpha character, plus space, may not be empty
T25 Any alpha character, plus space, may not be empty
P8 Signed value, implied decimal point at two places (105 = 1.05)
S§12 Unsigned value, no decimal point
X4 Unsigned value, implied decimal point at two places
(1250 = 12.50)

This alternative representation may be found by some to be less easy to read,
but somehow more detailed and formal than the previous examples. It is largely up
to the corporate style of the organization planning to use this technique as to which
specific form to follow.

Functional Specification 135

Notation Standards

There are many different industry standards for data type notation, largely the
result of work done by the International Standards Office (ISO) and the American
National Standards Institute (ANSI). The former is generally responsible for
industry as a whole, while ANSI standards tend to be more or less restricted to
computer communications.

Nonetheless, different industries will also have found different ways to stan-
dardize the information that they want to have represented, and the ways in which
that information is gathered, processed, and stored—such as the Motion Pictures
Expert Group (responsible for formats such as MPEG and MP3), the Joint Photo-
graphic Expert Group (JPEG image format), and individual companies such as
CompuServe (GIF images) and Adobe (Portable Document Format, PDF).

Since, in the computer industry as a whole, we are largely concerned with the
translation of analog data into digital data, it makes sense to have a raft of standards
for dealing with the more complex forms of compressed and uncompressed data.

For internal use, however, there is a need to standardize notation within an
organization so that each engineer shares the same representation for major prim-
itive data types. This has very little to do with the way in which the data entities
might be implemented or stored, but has to do with the way in which the type of
data that they need to contain is specified. We concentrate on the “what” and not
the “how,” except in certain circumstances.

One of those circumstances is in the sharing of data, or the transmission of data
from one system, or area of a system to another, where one cannot control the im-
plementation of the system with which one is communicating. In such cases, we
need to describe an external format that needs to adhere to shared specifications.

Example

In the financial industry, there is a standard for the exchange of messages that pro-
vide information relating to financial transactions between two institutions. Each of
the major institutions uses the specifications, provided by ISO, as a base from
which they can build their own messaging systems.

The ISO standards define each message as consisting of a series of fields, and
each field has a specific format. It is largely up to the institution using the ISO
Specifications as to how strictly they adhere to these definitions. By and large, how-
ever, there are a number of conventions that they do respect.

One of these is the way in which variable-length fields are dealt with; using a
length indicator, which can be encoded in a variety of ways, to communicate the

136

Corporate Software Project Management

length of the data following. We might choose to implement a data representation
that looks something like:

LL + an

This tells us that the field is variable length, has a two-byte length indicator,
followed by alphanumeric data. We would, of course, need to define LL and an in
the Conventions part of the document. The length indicator can be encoded in a
number of different ways:

Numeric Bytes 00-99 100 items
Hexadecimal ASCII Coded 00—FF 255 items
Hexadecimal Bytes 00:00-FF:FF 65,535 items

Since this is rather ambiguous, it is a good idea to choose two of the preceding
as standard ways of encoding data, and give them different notational standards:

LL Numeric Bytes 0-99 100 items
L2 Hexadecimal Bytes 00:00-FF:FF 65,535 items

It will not usually make sense to use the second variation, since this can be rep-
resented as:

L1 Hexadecimal Byte 00-FF 255 items

These come into their own when we begin to build more complex fields, such
as those containing variable amounts of variable-length data. ISO has chosen to call
these TLV fields, which stands for Tag Length Value.

The standard itself leaves the actual implementation wide open, so that orga-
nizations can specify their own meaning for the three components. Thus, we might
decide that a TLV item be defined as:

an2 + L1 + <value>

Following our notation, this means that each item has an alphanumeric tag,
2-bytes wide, followed by a hexadecimal length indicator allowing a length of up to
256 bytes, with an unspecified value as the final component.

Functional Specification 137

This is then used to specify individual tags, such as:
cC 02 A

This means that the tag “CC” allows data of two bytes, which must be alpha-
betical, capital letters only. It is a possible definition for an ISO country code tag:

UsS USA GB Great Britain
AU Australia SA South Africa
etc...

One final point to note is that while the TLV field is variable length, individual
tags cannot be—they are fixed in length, and therefore some standards relating to
padding out shorter values need to be implemented.

This example was included to show the various pitfalls that may be encountered
when one is attempting to set down notational standards, and is not an endorsement
of the solutions presented for dealing with communication of variable-length data
between two parties.

NONSYSTEM FUNCTIONAL SPECIFICATIONS

When the Functional Specification is mentioned, people invariably think of the
technical aspects of the system. This is no different when we consider Nonsystem
Functional Specifications; automatically, people start imagining items such as the
systems that it will have to interface with, the hardware it will need to run on, and
so forth.

These are undeniably an important part, as are measurements relating to pro-
cessing power, performance, and capacity of the system, but equally important are
the nontechnical aspects such as operational concerns, contractual obligations, and
documentation specifications.

When we define the Functional Specifications, we are often talking about a
system, and not simply a piece of software that may very well only be a part of the
overall system being put into place. The NASA Space Shuttle System has a set of
specifications that cover everything from the way the heat resistant tiles are con-
structed to the garments that the astronauts wear and the software controlling the
craft.

138 Corporate Software Project Management

While it is clear that this book is aimed at software construction, we need to
always be aware that the software has to fit into a larger system. We saw this in
Chapter 6, “Requirements Definition,” when we tried to break down the system for
the Requirements Definition.

The heat resistance of space shuttle craft tiles may not be of direct importance
to the software controlling the craft during flight, but the fact that there is an upper
limit to the temperature that they can withstand, and that the flight control soft-
ware might be able to adjust the flight path such that it is not reached, is important,
and has an effect on the way the system should react, and therefore needs to appear
in the nonsystem functional specifications.

Technical Specifications

In Table 7.2, we saw how the Nonfunctional Requirements Definition translated
into a Nonfunctional Requirements Specification, and we mentioned that the
Functional Specification should take this one step further, by elaborating on the Re-
quirements in specifying exactly what functionality, external to the system, needed
to be implemented to support the system. This is what the Nonsystem Functional
Technical Specifications are.

Different systems will require different topics to be addressed, and the reader
will likely find topics that we have not covered here which they would need to ad-
dress. There is also a fine line between this part of the Functional Specifications and
the Nonfunctional Specifications defined in the previous chapter.

To reiterate, this part of the Functional Specifications need only refer to those
functions that are offered by systems outside of the system under development, but
which it needs to make use of in order to operate correctly. The classic example is
the target platform; it consists of a nonfunctional part, and a functional one—there
may be functions offered by the platform that the system needs to use.

System Capacity and Performance

While this might be covered in the Nonfunctional Requirements Specification, giv-
ing guidelines on minimal capacity overall, there may also be specific functions that
need specific system capacities and performance to function correctly.

We could state, for example, in the Requirements Definition, that the system
should be able to be run on a standard office PC, and in the Requirements Speci-
fication, agree that this be equivalent to a machine capable of running a specific
operating system.

In the Functional Specifications, we might find that we need to narrow this
down further to state that a specific function should execute in such a manner that
it is completed within a specific time frame with reference to the power of the un-
derlying system.

Functional Specification 139

External Systems Communication

There will be times when the system needs to communicate to other systems, be
they databases, networks, printers, and other peripherals, or something entirely
different, and the precise way in which such communications should be carried out
needs to be defined in the Functional Specifications.

The Data Dictionary will probably contain references to data entities that can
be used in such cases to either represent the result of such an interaction, or the data
that needs to be passed to the external system to initiate the interaction.

In the Nonsystem Functional Specifications, these definitions need to be ex-
panded into a functional overview of the way in which the interaction will take
place. It should look at the external systems as black boxes that fall into one of three
categories:

B Accept information from the system (input only)
® Transform information from the system (input and output)
B Produce data for use by the system (output only)

The external systems that are specified will look upon the system under speci-
fication in the same way—as an input, input/output, or output entity—usually
following a relationship that complements the behavior of each system. In other
words, a system producing data and passing it to another system that has defined
a relationship as being “input only” is unlikely to return transformed data to the
external system.

These relationships, along with the type of data that is to be shared, make up an
important part of the Nonsystem Functional Specifications. Without them, the sys-
tem will not be able to communicate with any other external systems. This might
be appropriate, but in most cases, it will not be.

One final note is that this section of the document specifies features for use by
other parts of the system under specification. In other words, there should be noth-
ing in the document that is not required by another part of the system. A network
interface specification, for example, is not required if the system has a network
connection, but never uses it to connect to another system.

However, there may be a function specified that implicates a peripheral such as
a printer that will have a specific communication interface that will need to be
specified in the nonfunctional specifications.

Nontechnical Specifications

Everything that does not implicate the direct use of IT equipment, but offers a
service or function of use to the system or to those using it, is a nontechnical
requirement, and needs a nontechnical specification.

140

Corporate Software Project Management

This covers a wide-ranging collection of topics, which we have chosen to sepa-
rate into three key areas:

B Operational Concerns
®m Contractual Obligations
B Documentation

Since this book tries to offer as many guidelines for as many different kinds of
systems as possible, it is inevitable that we also touch on specifications that are
designed for use by third-party developers who want to implement the system
themselves, but be able to interact with other implementations of the same system.

This is also implied by the way in which the software engineering problem has
been approached in this book; reuse and rapid application development from ob-
jects glued together with logic requires that each entity that is developed is, in a
sense, initially over-specified.

Indeed, it will need to be, in the first instance, because while it may remain a
small and inconsequential part of the system, in the future it may be extended to
cover more areas of functionality. Hence, the formal corporation-wide methodology
has to be used even for simple objects, which will lead, in some cases, to superfluous
specifications being written.

It is better to be in this position, however, than the other, in which the system
has not been sufficiently well specified, and therefore it becomes harder and more
expensive to locate and fix errors, and renders reuse of the objects that make up the
system all but impossible.

Operational Concerns

Around the system, there will be processes that involve the running of the system
in a nontechnical way. We have mentioned that systems do not usually exist in
a vacuum. There will be other systems with which they need to interact, and
these systems might be technical in nature (other computers, networks, etc.) or
nontechnical.

Some of the nontechnical operational concerns will be dictated by the en-
vironment in which the system is running. There will probably be a number of
rules and regulations that govern the systems under the jurisdiction of the system
operator, such as access timetables, scheduled backups, installation and change
management procedures, and so forth.

The remainder of the nontechnical operational concerns will relate to the way
in which the client wants the system be operated, either with reference to any func-
tions that need to support the operation of the system, or with reference to the
environment in which it is designed to run.

Functional Specification 141

This last is particularly important in cases where the client is purchasing the
system from a developer, but also outsourcing the operation of the system to a third
party who is related to the other two by contract only. Thus, in such cases, the
Functional Specifications serve to indicate what is expected of the application op-
erator and the developer.

There are many situations in which this might be of interest, but by far the most
common will be in systems that are created for the Internet. It is often the case that
the systems are specified by the developer and the client, and then handed over to
an Internet service provider (ISP), be it a World Wide Web host or some kind of
shared server park.

In such cases, the host may have a number of systems to look after, each of
which will run either on a dedicated system or alongside other systems. To be able
to offer the best service possible, the host will need to know what is expected of
the system, and of their own systems, and the Functional Specification is where this
information will be listed.

Contractual Obligations

Contractual Obligations need only be listed if they have a direct effect on the func-
tionality of the system. Those pieces of the contract relating to the payment for
work done by the developer, including the Functional Specifications itself, warranty
and maintenance thereof, are not necessarily going to be included in the Functional
Specification.

However, if the system being specified is an attempt to provide a global um-
brella for the operation of a collection of, separately developed, software applica-
tions, such as a collection of intercommunicating financial institutions, then there
will be certain obligations that they will have toward each other, and these will
need to be listed in the Functional Specifications.

Such obligations will have an effect on the smooth running of the system as a
whole, since if one party fails to fulfill them, the entire operation might become
jeopardized.

There might also be contracts that restrict the use of certain components or
third-party services that need to be taken into account because they have an impact
on the functionality offered by those external components. In such cases, it must be
clearly stated, within the Specifications, what those restrictions might be.

While these items might not be immediately relevant, they need to be borne in
mind for the overall duration of the project, which will include future modifica-
tions, extensions, or cases in which the contractual obligations toward third parties
might become relevant to the functionality being offered.

142

Corporate Software Project Management

Documentation

Finally, all the documentation that the developer is supposed to deliver, under the
terms and conditions of the contract agreed before the contract was awarded to the
developer, needs to be listed and specified in as much detail as possible. Here again,
though, it is only required to specify those pieces of documentation that have a
direct consequence for the functionality of the system. For example:

B Installation of the System and Third-Party Components
B Programmer Interface

Pieces such as the User Guide are probably not relevant for detailed specifica-
tion in this document. Besides simply listing the documents to be delivered as part
of the system, the client and developer should also agree to a Specification that cov-
ers the way in which the information is to be presented.

This can include a specific format, and be as detailed as appropriate. It will
probably not be necessary to specify details such as the font and font size to be used,
unless the client is a governmental organization that has its own set of standards
that must be followed.

What can be quite important is the format in which the documentation should
be delivered—such as a plain-text file, a word processed document (and if so,
which word processor) or a portable, but closed, format such as PDF from Adobe,
which can only be edited with specialist tools, and can be locked by the developer.

FROM REQUIREMENTS TO SPECIFICATION

In terms of the functionality of the system, the Functional Specification can be seen
as the end of a process that takes several stages and iterations to complete, but
delivers a document that is as close to the actual design and implementation as it is
possible to get before plunging into the development process itself.

The process is governed by measured progress through the following phases,
each of which has success measured by the generation of a suitable document, as
described in previous chapters of this book.

Requirements Analysis: This process needs to establish exactly what the
client needs the system to be able to do, and within what infrastructure and
environment it has to operate.

Requirements Definition: Having analyzed the problem, and appropriate
prerequisites, the Requirements Definition puts this information into very

Functional Specification 143

clear language that includes the precise limits that define the boundaries of the
system.

Requirements Specification: ~The final part of the Requirements Engineering
process is to create a document that formalizes and quantifies the require-
ments. Note that these three have domains that overlap, and in some cases,
only a Requirements Specification will be needed, depending on the exact na-
ture of the system.

Functional Specification: The Functional Specification takes the Require-
ments Specification and breaks down the problem domain into chunks that
can be logically grouped together to provide the expected functionality of the
system, by description of their interfaces, both to each other and the outside
world.

Design: At the design stage, the “what” of the system is being translated into
“how”; we know, in intimate detail, the functions that the system has to fulfill,
but it is only at the design stage that we begin to try to define how it is to per-
form those functions.

Once the Design has been created, the product can be implemented, tested, and

delivered; which represents the culmination of the entire software engineering
process.

SUMMARY

By now, the reader should have a clearer idea as to why we have chosen to present
the Functional Specification as a separate document rather than merely grouping it
together, or using the term interchangeably with the Requirements Specification.

There is nothing to prevent the reader from making the decision to produce a
single Requirements Specification document, with the Functional Specification as
a section within it, although it might become slightly unwieldy. In addition, there
might be sections that have been placed in the Functional Specification that the
reader would rather include in other documents.

It is hoped that the format presented here is flexible enough to allow the read-
ers a certain amount of freedom of choice regarding which sections belong in which
document that they intend to provide as part of a contractual understanding.

There is also a sense that to include the Functional Specification as part of the
documents that are bound under contract, and thus form the basis of an under-
standing that can be broken before the contract is signed, leaves the developer at a
disadvantage.

144

Corporate Software Project Management

In other words, the development of the framework governing the agreement
represents a large amount of work for which there may not be any compensation,
and so the developer might prefer not to carry it out until the contract has been
signed and part of the payment made, in part to finance the creation of an agreeable
Functional Specification.

It is, nonetheless a very important piece of work, which provides the bridge
between the client and the developer. This bridge needs to cover everything that
the system is supposed to do in such a way that the design that is created from it
represents how the system is supposed to provide those functions.

= The Object-Oriented
Paradigm

In This Chapter

Introduction

Choosing a Paradigm
Object-Oriented Design
Object-Oriented Programming
Languages

Object Testing

Summary

INTRODUCTION

So far, we have discussed an organizational framework for software development,
and a robust system by which we can be sure that the client’s actual requirements
can be translated into a set of documents that enable them to be correctly commu-
nicated to the designers. What we have not touched upon is how the system is sup-
posed to satisfy those requirements.

There are several ways to approach the question of designing a system to satisfy
a set of requirements, each with its own merits. We have chosen to concentrate on
the Object-Oriented (OO) paradigm for the purpose of this book, with reference to
other paradigms where appropriate.

145

146

Corporate Software Project Management

The reason we have picked the object-oriented analysis and design process is
that it has become one of the best supported in software engineering circles, by
virtue of the fact that it reflects the way in which we naturally think about the real
world that we are trying to model.

CHOOSING A PARADIGM

When trying to choose a paradigm with which to design and implement the soft-
ware, it is important to realize that this will naturally be a decision process that
needs to take into account many different factors:

Expertise of development staff

Problem domain

Legacy support

The programming language tools currently in place

These are mentioned in order of relative importance. It is more important to
pick a paradigm that the development team will be comfortable with than one that
most accurately fits the problem domain. Likewise, support for legacy toolkits,
libraries, or hardware needs to be considered before attempting to rewrite the en-
tire system in a cutting-edge language that requires a completely new set of tools, or
attempting to make do with existing tools, when the problem domain is crying out
for a specific paradigm to be used.

We also need to be aware of what the various paradigms are. We assume that
the reader is at least partially familiar with the various software development life
cycle processes, and that this book has tried to present a process that is based on the
classic “Waterfall model,” but with elements of prototyping and object reuse built
into it.

With such a process, which tries to encompass the needs for documentation,
progress, quality, and reliability, choosing a development paradigm to fit is always
going to be difficult. There are essentially three ways to approach the problem:

®m Design by Data
B Design by Process
B Modeling

That is, we can choose to create a system in which the data is accurately mod-
eled, and build it around the manipulation of that data, or we can design the system

The Object-Oriented Paradigm 147

around the processes that need to take place to satisfy the problem presented by the
client. A final option is a combination, in which the system is viewed as a model of
a real-world process, containing objects that interact with each other—it is this
option that we have chosen to elaborate in this chapter.

However, since the OO paradigm is the natural progression from Data and
Process based design, we will first look at these predecessors, as they both share
techniques that are useful in performing Object-Oriented analysis and design.

Data Structure Diagrams

If one is going to use a paradigm that is data centric, then some form of diagram-
ming will be required almost immediately. It is far easier to draw a description of
the data than it is to write about it. This is because the human mind needs to be able
to abstract the real-world representation and come up with something that repre-
sents the data without actually being the data.

In Figure 9.1, for example, we have a diagram that shows that a piece of data
is made up of three subpieces. It could be an Address Record, made up of a name,
address, and telephone number, with each Address Record having exactly one
Name, Address, and Telephone part.

FIGURE 9.1 Data structure diagram.

Of course, each of these parts is also going to have subpieces, and at some
point, we need to be able to express the possibility that a number of such subpieces

148

Corporate Software Project Management

are associated with a particular part of the data system. Therefore, the notation has
been augmented with a number of symbols that are designed to indicate cardinal-
ity in the relationships.

Figure 9.2 shows the various flavors of cardinality that have been introduced.
With these, we can specify, for example, that a car has four doors, without the need
for four boxes hanging off the car, each representing a door. Of course, we will
probably want three boxes—front doors, rear doors, and trunk—but the idea of
cardinality remains.

2
One to Zero to One to
many many <two>

FIGURE 9.2 Cardinality notation.

Breaking down the information that we wish to include in the system is not as
easy as it may first seem, and has a lot to do with the desired granularity. This word
will come back time and time again, and represents the perceived level of detail that
a representation manages.

For example, we might wish to define data structures representing chairs in our
system. If all the chairs are the same, then we need only represent the standard
generic chair, possibly allowing an attribute to identify the color of the chair, but
otherwise ignoring the possibility that other chairs exist.

However, the moment that we need to start customizing the chair further—
allowing a swivel base on wheels rather than just four legs—we need to introduce
another layer of abstraction; we have increased the granularity of the chair defini-
tion by allowing the possibility of altering the appearance of the generic chair.

Selecting the right level of detail for the abstraction of the system that is to be
modeled is one of the aspects of data-driven designs that is shared with all other

The Object-Oriented Paradigm 149

paradigms for representing systems. It will often prove to be one of the most diffi-
cult steps in the design process.

Process-Oriented Design

The companion to the data structure design paradigm, and often considered a log-
ical consequence of it is the process-oriented paradigm in which it is considered
that control is passed from one subsystem to another, often coupled with the ex-
change of data. This last, however, is not compulsory, since it is quite possible that
designs exist in which each subsystem processes information in isolation, and does
not directly pass it to other subsystems, despite the fact that each subsystem may
share the information that is contained within the system.

For the purpose of this discussion, we shall assume, however, that the flow of
control passes from one process to another via the transfer of information. This
does mean, however, that each process needs to be in a position to operate on a
piece of data, which may be an artificial constraint for designing systems that do not
actually revolve around information. These are rare enough as to be ignored.

Objects and Communication

Between the two extremes of data-oriented and process-oriented design lies a
paradigm that combines both philosophies, treating the system as a collection of
communicating objects, data, and process combined. The result is a system that is
broken down in more or less the same way as the real world—with each object hav-
ing both attributes and methods designed to manipulate those attributes.

The principle behind OO design is that some of these methods are exposed,
and others are not. Exposing a method indicates that the other objects can com-
municate with the object exposing the method by invoking it to render a service as
required.

Some terminology is unique to the world of Object-Oriented Analysis and
Design, which we will look at presently, but there are some underlying principles
that are best to discuss before we look in detail at the OO design process.

Class: A description of a component of the system.
Instance: An incarnation of an object class.

Properties/Attributes: Specific information defining the appearance of an
object.

Methods: Processes defined to perform operations on the data, or access it.

150 Corporate Software Project Management

Therefore, each object is self-contained, is responsible for its own data, and ex-
poses specific methods that allow other objects to set, retrieve, and access the data,
as well as a set of internal methods required for its own management, and some that
require it to perform certain functions. If the reader takes some time to look
around, they will see that this is entirely in the nature of the real world.

Objects perform functions that have a real world effect, but it is not necessary
to know anything about them, other than how to press the right buttons. Pro-
gramming with the use of an object repository adheres to much the same princi-
ples, which is what makes the Object-Oriented methodology so useful to us in the
creation of both small- and large-scale software projects.

OBJECT-ORIENTED DESIGN

Thus, we come to a description of the principles behind the Object-Oriented De-
sign methodology itself.

Encapsulation

This is the underlying principle by which all software created with the OO para-
digm needs to adhere. In brief, encapsulation means that each object hides as much
from the outside world as possible, principally the data that describes it, and the in-
ternal processes that enable it to perform the functions for which it is designed.

The advantage of encapsulation is that programmers wishing to use the object
in the future need only know what they need to know in order to use the object, not
how it achieves the purpose for which it was created. For example, a file object will
probably expose pieces of information via access methods such as its name and size,
and data can be passed to it, and retrieved from it using other methods, but a pro-
grammer wishing to use the object need not know where or how the data is stored.

Thus, the object can be used for storing data on any media, without changing
the primary access methods, and without any impact on the rest of the system, sim-
ply by changing the underlying implementation. Not only does this mean that the
system can potentially support different kinds of media, but that, by adding to the
object, it can be reused in other systems such as embedded MP3 player software
that needs to access other types of media, such as memory sticks.

It is important, when designing the objects that are required in the system to
look at those pieces of information that need to be hidden, and those that are
required to be exposed, either directly or via a data access method. There are

The Object-Oriented Paradigm 151

advantages and disadvantages associated with each technique; usually it is best to
follow the principle that all data should be accessed by reference, and not directly.
We shall see why when we come to discuss Object-Oriented programming.

Defining the Objects

When preparing a system design using the OO paradigm, the first task that needs
to be done is breaking the entire system down into manageable chunks, or objects,
of which each fulfills a specific part of the functionality that the system is supposed
to offer.

Some of these objects will be parallel implementations of real-world objects,
such as objects to control external peripherals such as printers, or virtual objects,
such as files, which are abstractions of real-world objects—such as paper docu-
ments and filing cabinets.

The principle of abstraction is as much a general software design principle as it
is an underlying cornerstone of OO design and programming, It can be an advan-
tage to take this to its logical conclusion for certain systems, and try to create object
definitions that mimic the various interactions that would be required in the real
world to achieve the same effect manually.

Broadly speaking, three types of systems will need to be defined:

B Those that replace existing manual procedures
B Those that address entirely new problems
® Those that are a consequence of advances in work practices

To design the first type of system, we need only to create a design that is an ab-
straction of the existing manual system, with objects that more or less correspond
to those that already exist. The second kind of system is a consequence of the exis-
tence of computers, and includes entertainment software, and applications that
would not exist were it not for the creation of computers and other machinery in
the first place—such as fractals.

The final broad category includes systems that are alterations of existing ones
that result from changes in how tasks are performed in the workplace, and may or
may not have a real-world parallel, and, as in the previous category description, it
might prove useful to try to imagine how the real-world solution might be arranged
in order to create a workable abstract design.

This might prove to be a good approach because of the fact that the OO para-
digm attempts to model the real world, and it is sometimes easier to try to think
how the same effect might be achieved in the real world and then model the result.

152 Corporate Software Project Management

Granularity

So far, we have spoken about objects in a very vague way, without actually going
into any detail as to exactly what constitutes an object. The reason is that this will
depend on the chosen granularity of each object that is required in the system.

In the previous section, we looked at modeling peripherals such as printers. We
might decide that our system can simply contain a printer object, which we can
hand virtual documents in the hope that real documents will come out of a printer
connected to the system in some way.

Of course, if we have asked a team to create a printer object, or have found one
in the object repository that fits the requirements that we have in our design, then
the original developer will have looked at the printer object as a system all on its
own, potentially consisting of many different objects, either as abstractions (print
device, paper feeder, etc.) or as models of the entire printer.

The developers will have chosen an approach that fits their own view of the
system—perhaps it is required as a tool to monitor a printer, and as such will need
to have objects such as print heads, paper rollers, and so forth. However, they might
simply have wanted a generic abstraction of the printer, in which it only needs to be
able to inform the system whether a job has printed, whether there is any ink left,
and the status of the paper, in which case the object will consist of entirely abstract
subobjects.

All of these discussions relate to the granularity of the system. There may even
be several designs, each breaking the system down into smaller and smaller chunks,
as the granularity increases. Choosing the right point to stop breaking down the ob-
jects into smaller and smaller systems is an important facet to bear in mind, because
if it is forgotten, the resulting system will be overcomplicated and impossible to
realize, or not provide enough control.

Aggregation

This concept of breaking down the system in various different ways depending on
the desired level of detail, or granularity, is coupled with one of two profound tech-
niques that we associated with OO design—aggregation (the other being inheri-
tance, which we will come to later). These two concepts are to do with the logical
relationship between objects in the system model.

Objects have several different levels of relationship in OO methodologies. The
two main views are at the instance level and class level. The instance level relation-
ship between objects is defined by their interaction, while the class level relationship
is governed by their design time properties of aggregation or inheritance.

The Object-Oriented Paradigm 153

Of course, there is always the third possibility—that two objects have no rela-
tionship whatsoever, they merely coexist, offering distinct, unrelated, but impor-
tant services to the system as a whole.

Traditional aggregation represents a sibling relationship in which the objects
share some aspect of behavior or attributes. In this context, we will also add the re-
lationship of sameness with respect to the hierarchical level at which they exist, and
we will call this new relationship contextual aggregation, since it relates to the rela-
tive context of the objects with respect to either their parent or the system as a
whole.

Two objects may be considered to be in contextual aggregation if they provide
services to a greater system at the same level, without a direct parent that uses
services from each. If this is the case, then the objects can be said to be in direct
aggregation, although they may not, at this point, actually share information or
behavior. This last form of aggregation we will call, simply, aggregation, which is
the traditional definition.

Inheritance

The twin to aggregation is inheritance, and this applies exclusively to the design
time view of the system, since in the actual instance view the relationship informa-
tion encoded within the inheritance tree becomes redundant as actual instances of
the inherited objects are instantiated. The reasoning behind this will become clearer
as we progress.

The idea behind inheritance is that it creates a network of super- and sub-
classes that have the capability to share both properties and behavior, overriding
them as necessary to make classes that differ in detail, but are largely the same in
substance.

The typical textbook attempt to define inheritance invites the reader to imag-
ine different species of animals, and the ways in which they are subdivided and how
similar or dissimilar members of the same branch can be.

For example, suppose that we create a class Quadruped, which we intend to be
the starting point for an entire family of beasts, ranging from horses to elephants,
cats, dogs, and mice. The Quadruped class, then, might specify that members will
have four legs and a head that should be on the end of a neck of varying length, plus
a variable-length tail.

Then, we might create a subclass, Elephant, which inherits from the Quadruped
class, but adds a trunk (possibly as a directly aggregated class Nose as part of Head),
specifies a neck of short length, a rudimentary tail, and gives further elaboration on
the style of leg.

154

Corporate Software Project Management

We can also create a contextually aggregated class, with relation to Elephant,
Horse, which also inherits from Quadruped, and modifies it according to examples
of the mammal horse. This can go on for each possible variation of Quadruped,
almost ad infinitum.

The point is that inheritance allows us to create object classes of similar
appearance, all stemming from one parent that groups together their commonali-
ties, which saves a lot of work. There are two caveats, however.

The first is knowing when a child has become so different from the parent that
it merits its own class entirely, and the second is being able to group together
enough common points between objects that are required in the system to make
the creation of a class worthwhile. However, bear both in mind, and the OO design
paradigm becomes a useful approach to system design.

Diagramming and Notation

All of the preceding is useless without a good way to get it down on paper, largely
because even the simplest system is going to quickly become too complex to hold
in one’s mind. Therefore, we need some form of notation with which we can cre-
ate diagrams to show the objects in the system, their relationship, and where they
have enough common points to be able to create a network of classes that can be
used to define them.

There have been many, many attempts to create a single notation for the de-
scription of OO designs, with key work being done by Booch, Rumbaugh, and
Jackson in working out methodologies and diagrammatic representations of them.
There is even a Unified Modeling Language (UML) that tries to capture the essence
of all available paradigms in one graphically rich system.

While this is admirable, and very useful in the design of large, complex, scien-
tific systems, it does not scale very well, and so we are going to keep matters very
simple. Our proposed diagrammatic form will consist of:

Class description diagrams
Class networks

Class interaction diagrams
Object interaction diagrams
Method definitions

We also need to bear in mind that, since these diagrams are annotated with
text, there will be times where a specific property needs to be looked up in the Data
Dictionary that forms part of the Functional Specification. We make no provision
here for the representation of these properties, beyond that given previously in the
Data Structure Diagrams section of this chapter.

The Object-Oriented Paradigm 155

Figure 9.3 shows a basic class description diagram, and an example of its use.

Class Name File

Name
Size
Creation Date & Time
Methods Accessed Date & Time
Modified Date & Time

Properties

Open
Close
Read
Write

FIGURE 9.3 Class description diagram.

The emphasis, as with any system for diagrammatic representation, is that it
needs to be simple enough to create easily with standard office tools, since we want
it to be able to scale down in keeping with the aims of this book to serve both com-
mercial software houses and those who find themselves doing development as part
of their everyday job. Hence, the simplistic nature of Figure 9.3, created with Mi-
crosoft Word.

Sometimes referred to as a type hierarchy, a class network shows the relation-
ship between different classes in the system design. In fact, a class network is more
than a type hierarchy, since it shows the aggregations and direct inheritance paths
between objects in the system. We are grouping this information in a single dia-
gram, again to respect the aims of this book. Hence, we arrive at a notation such as
that in Figure 9.4, again created with standard office tools.

While class network diagrams show how classes are related in terms of their
inheritance and aggregation paths, we also need some way of showing the other
relationships that are possible, such as the has a relationship—as opposed to the
is a relationship—supported by the class network diagram.

156

Corporate Software Project Management

GUI Object
Position
Width
Height
Button
Title Text
OnClick
Radio Button Push Button
Status Status
OnClick OnClick

FIGURE 9.4 Class network diagram.

We have two ways of doing this.We can group object names together and en-
close them in a bow that denotes the grouping into a superclass or self-contained
system, as in Figure 9.5, or we can create a tree that shows how the classes are re-
lated as in Figure 9.6.

Figure 9.5 has the disadvantage that it requires many different levels of dia-
gram, resulting in many cross-referenced diagrams that may span many pages. Fig-
ure 9.6 dispenses with this by creating a single tree for each level of granularity that
the system design requires.

The reader should note that not every possible object or design level interaction
is shown in Figures 9.5 and 9.6, just enough to give an idea of how the two differ-
ent diagramming styles work in practice. In addition, the cardinality of relation-
ships has not been shown in Figure 9.6, where we could usefully implement a
system similar to that discussed earlier in the chapter to show that, for example, an
Inventory System contains many delivery records, but that each delivery may only
be destined for a single address.

The Object-Oriented Paradigm 157

Inventory System

l Address ‘ ‘ Product |

[Order I l Delivery I

FIGURE 9.5 Class grouping.

l Inventory System ‘

Invoice | | Delivery | | Order | | Payment
[3

I Address I | Product I

FIGURE 9.6 Class tree.

There is another kind of class interaction that we have mentioned before—the
object-level interaction—the various things that can happen when the system and
its objects are instantiated for the first time. Figure 9.7 shows an object interaction
diagram.

The various interactions depicted in Figure 9.7 are labeled with method names
that need to be taken from the final kind of diagrams: Method Definitions. These
are merely pieces of documentation that show the same level of definition as in the
Functional Specification, and indicate input, output data, and interaction with pri-
vate methods encapsulated by the class. A Method Definition need be no more
complex than:

Class Name.Method
Uses : <properties from class definition>
Returns : <if anything>
Input : <external data>
Description : <functionality offered>

158 Corporate Software Project Management

Object A Object C

a0
a0

Method A.1 Method C.1

Object B Method D.1 Object D

-
-

FIGURE 9.7 Object interaction diagram.

Therefore, a basic Web page counter might have a method increment:

WebPageCounter.increment
Uses: counter_value
Returns: new_counter_value
Input: nothing

Description: increments counter_value, stores result in
new_counter_value

The basic format can, of course, be refined by using a pseudo-programming
language in the Description part of the definition.

OBJECT-ORIENTED PROGRAMMING

One key advantage of using the OO paradigm is that the result of the design process
is conceptually closer to the actual programming than with other paradigms. The
move from design to implementation requires less of a change in mindset, thus
mistakes are less likely to be made in the programming phase of the project.

The Object-Oriented Paradigm 159

LANGUAGES

A variety of different languages can be used to implement an object-oriented design,
some that were designed from the ground up to be OO in nature, and others that are
the result of trying to shoehorn OO style into a procedural language.

C++ is the most popular of the OO languages, although others may not be far
behind by the time you read this. Part of the reason why is that C++ has been
around a long time, evolving as it did out of the C programming language during
the years from 1979 to 1983. At that time, it was called C with Classes, which should
give some clues as to what the basic difference between C and C++ is; there is a full
class interface, including inheritance, aggregation, and encapsulation.

class cWebCounter

{
private:

int nCurrentValue;

public:
cWebCounter() { this->nCurrentValue = 0; }

int GetCurrentValue()
{ return this-=>nCurrentValue; }

void SetValue(int nValue)
{ this->nCurrentvalue = nValue; }

int Increment() { return this->nCurrentValue++; }

b

Anything inside the private section of the class is hidden from view, and the
only methods that can be invoked are those in the public section. The cwebCounter
method is special in that it is invoked when the object is instantiated. A sister func-
tion, not shown here, which would be called ~cwebCounter, handles the cleanup of
the object when it is destroyed.

Java was created by engineers at the hardware and systems manufacturer, Sun,
to be a simple version of C++, but with full object orientation, and the benefits of
being as architecture neutral as possible while still offering advanced features such
as multithreading,

160 Corporate Software Project Management

Whereas C++ is effectively C with the class keyword added (in 1983, that is;
since then many more features have been added), Java was created as an object-
oriented language from the ground up. Having said that, it does share many key-
words and principles with C++, making the transition from one to the other fairly
painless for most C++ programmers.

Here is our cWebCounter class rewritten in Java:

public class jWebCounter

{

int nCurrentValue;
public jWebCounter() { this.nCurrentValue = 0; }

public int GetCurrentValue()
{ return nCurrentValue; }

public SetValue(int nValue)
{ nCurrentValue = nValue; }

public int Increment() { return nCurrentValue++; }

};

The reader should agree that this is very C++ in its approach. Where Java dif-
fers is that everything is an object, and it is impossible to write procedural code. If
one wants to write a program in the traditional sense, that starts at line 1 and runs
until line 100, it is necessary to bundle up lines 1 to 100 and put them in a public
class constructor.

Objects vs. Modules

Any reader who has had the pleasure of studying different types of programming
languages will be aware that there is a branch of the family tree that contains lan-
guages such as Object Pascal™, the language of choice for the Borland Delphi de-
velopment environment, and its relations Modula-2 and Modula-3, the brain
children to some extent of Niklaus Wirth.

Such languages are, like C++ and Java, procedural in nature, but with exten-
sions that allow a certain level of packaging beyond the familiar, rudimentary,
facilities offered by other procedural languages such as BASIC. Let us start at the be-
ginning, and look at how a language such as BASIC separates code segments:

PROCEDURE: A named piece of code that can be called, with execution
restarting on the line following the procedure call.

The Object-Oriented Paradigm 161

GOSUB: Causes execution to continue at a named line number, returns once
the code block has been executed.

GOTO: Causes execution to jump to a named line number, with no return.

These keywords can be seen as a first attempt to create software that is slightly
easier to manage than having one big block of procedural code that must execute
from start to end to achieve the correct result. However, we can see the intrinsic
problems. The GOTO statement, for example, sends execution off to a specific line
number, thereby giving no clue in the code as to what the destination block of code
actually does.

This is solved to a certain extent by use of the PROCEDURE keyword, which
is essentially a named GOSUB. Even there, however, there are problems in that
it merely packages locally; it is no use for creating software that follows object-
oriented principles since all the code will be self-referential, or as one of my Uni-
versity lecturers put it—spaghetti code, jumping all over the place.

One side effect of spaghetti code is that it restricts the size and complexity of
software, since it is not possible to talk in terms of specific objects having responsi-
bilities without knowing how they work inside. By a similar token, it was not a
problem at the time that languages such as BASIC existed, since there were not
enough programmers that large teams would be used to work on a product, and the
target systems were not powerful enough to do anything much more complex than
could be imagined by a single programmer.

Since then, the rules have changed. Hardware allows for larger, more complex
software to be created, which also means that larger and larger teams are needed to
actually create it. By default, this means that different teams will have different re-
sponsibilities, and it is a good idea if they can all work on their own pieces of code
(their objects) without disturbing the rest of the application.

Modula-2 and Pascal dealt with this by allowing multiple files to contribute to
the final program, and containing pieces of code in MODULEs. Without going into
too much detail, a MODULE is like a class in that it is a self-contained piece of code
that can be developed in isolation, but which other pieces of code can know how to
interface with without knowing how it provides the services it is defined to.

A MODULE, however, is not a class. There is little idea of encapsulation, it is
more or less transparent, and instances of modules cannot be created, in the same
way that several instances of a given C++ or Java class can exist by virtue of the fact
that a class is just a description, and not an actual implementation of a living object.

Modula-3 retains the procedural and textual niceties of Modula-2, and adds a
layer of functionality called the GENERIC MODULE that is a nod toward a more
object-oriented programming language. It will, however, probably never compete
with C++ or Java, anywhere other than the classroom, where it remains an excel-
lent teaching language.

162 Corporate Software Project Management

OBJECT TESTING

One of the key advantages of using the OO paradigm is that it makes testing a
much easier proposition. Since each object is self-contained, and links itself into
the system by exposing various interfaces, once it is tested, we can be sure that it will
behave in a predictable and acceptable manner whatever the situation.

This being the case, we may have much more confidence in a system that com-
prises a number of completely tested, interacting objects. However, we must also be
sure that we have tested the objects in a way that ensures that they are completely
exercised, and react correctly in all possible situations.

Interfaces

Whichever language or implementation is used, all objects will have a common set
of exposed methods, which can be grouped under several different headings:

m Construction and Destruction
® Input and Output
B Action/Reaction

These exposed methods are easily tested, and we will refer to them here as in-
terface methods, or interfaces for short. The first set deals with creating an instance
of the object and setting up some basic features, such as any internal variables that
can be accessed using the second set of interfaces, which deals with setting and
obtaining values for internal (private) class members.

The final set of interfaces provides the basis for communication between
objects, and causes the object to perform a specific set of actions, either intrinsically
(without stimuli beyond the invocation of the method itself) or reactively, using
additional data passed in through parameters.

Such interfaces can be tested by passing a variety of information to them in a
way that is designed to exercise the storage and retrieval functionality of the object.
This is, of course, particularly of interest to those classes that represent some kind
of data storage, such as a string. We could define a string class that looked some-
thing like the following:

class CMyString

{
private : // Internal data representation
long 1Length;
char * szData;

The Object-Oriented Paradigm 163

public: // Interface code
CMyString();
// Constructor #1-make an empty string

CMyString(long length);
/] Constructor #2-make a string of length

CMyString(char * data);
// Constructor #3-build from a constant

~CMyString();
// Destructor—called when instance is deleted

char * GetString();
// Should return ->szData or NULL

long GetStringLength();
[/ Should return ->lLength, 0 or -1, depending

long SetString(char * data);
// Put new data in

long ResizeString(long new_length);
// Extend/reduce to new_length
b

The interface members in the public section of the class definition make it
reasonably obvious how we could test the implementation. Since we can know the
values that we put into the system, we can verify them against the values that we
retrieve, using the relevant interface member function. Should an error occur, or
the data that is retrieved differ from that which we supplied, then we know there is
a problem with the implementation.

We can test on each of the three levels that we looked at previously—at the con-
struction level, at the “get and set” level, and finally, at the interaction level. Each
level has a slightly different kind of effect on the internal data structures, and mov-
ing from one phase to another ensures that, once the final area of functionality has
been verified, we can say that the object has been fully tested.

Therefore, the first level of testing will involve creating and destroying an in-
stance of the object, in as many ways as possible. For a class that handles memory
blocks in some way, as the cMyString class in the previous code sample does, it is
important to test all the core values to verify that the object can correctly handle
large and small strings.

164

Corporate Software Project Management

We then need to verify that the data access interface members work correctly.
We do this by initializing the object with a given set of values, then retrieving them
to verify that the correct values have been set, before altering them in some way,
and testing for effect.

Finally, we have to test any functions that have an indirect effect on the data
stored inside the object, and then check that the correct behavior is exhibited by
retrieving the data. The first two areas of testing are reasonably easy to test, since we
can do a direct comparison on the data that has been fed into the object, as well as
that which we have retrieved. The following code sample shows how the first two
areas can be tested, by using a simple test case of a standard string for the cMyString
class

#define STRING_30 “a test string of 30 characters”
#define STRING_30_LENGTH 30

// Test string initialized with no data
CMyString * oString = new CMyString();
oString->SetString (STRING_30_LENGTH);

if (oString->GetStringLength() != STRING_30_LENGTH)
// Report error

oString->SetString (STRING_30);

if (strcmp(oString->GetString(), STRING_30) != 0)
// Report error

delete o0String;
// Test string initialized with a length

CMyString * oString =
new CMyString(STRING_30_LENGTH);

oString->SetString (STRING_30);

if (oString->GetStringLength() != STRING_30_LENGTH)
// Report error

The Object-Oriented Paradigm 165

if (strcmp(oString->GetString(), STRING_30) != 0)
// Report error

delete oString;
// This is NOT AN EXHAUSTIVE LIST OF TEST CASES

As you can see, although the idea of testing objects using their interfaces is not a
difficult concept, it can become quite involved. The third area of testing is slightly
different, as it requires the developer to think up test cases that adequately manifest
themselves through changes to the underlying data such that it can be retrieved in
order to verify that the correct change has indeed taken place.

We can consider object testing as being on the same level as unit testing, since
once the object is fully tested, it can be handed over for integration, either to a mod-
ule or to the creation of the final system, depending on the facilities that it offers.

SUMMARY

It should be reasonably obvious that this chapter has been more about showing
how the OO paradigm stands far above the others in terms of fitness for use as a
means to develop complex software systems. It is also scalable such that even a
reasonably small system can benefit from OO principles to yield a better quality
product.

We have also shown how the points that make the OO paradigm so desirable
can be best exploited to improve the quality of the end system. Essentially, if each
system is made up of objects, we can take advantage of:

Separate development teams

Reusable source code

Ease of testing

Conceptually closer to real-world thought process

These four advantages alone make enough of a case for using the OO paradigm
wherever possible.

I 0 = Reusable Code Guidelines

In This Chapter

Introduction

Reuse as a Policy

System Granularity

The Open Source Revolution
Summary

INTRODUCTION

We have been using the Object-Oriented (OO) paradigm as a basis for establishing
good analysis, design, and development practices, but the true benefits will only be
realized if guidelines are set out for code reuse. OO design is built upon principles
that facilitate code reuse, but it is not automatic; simply applying the principles will
not lead to code that is reusable by default.

The benefits of reusable code are clear—objects that are created to solve a par-
ticular problem can be used again whenever the same problem needs to be solved
in future projects. The chances of this happening are quite high, since development
tends to happen within specific niches of the market as the company builds up ex-
pertise in a given market area.

167

168 Corporate Software Project Management

In this chapter, we will examine the problem from the ground up, using the
established organizational model to facilitate good object-oriented design leading
to high-quality reusable code. These objects and components that result from code
reuse can also be sold as products in their own right; and of course the reverse is
also true—good quality components and objects can be brought in to facilitate
development of a particular product.

In fact, it is quite feasible to create a product that is entirely a result of gluing high-
quality reused components together, which is another way in which software devel-
opment is different from any other industry. Code components do not wear out, are
cheap (free) to duplicate, and can be combined almost effortlessly together—as long
as the initial design is correct, of course.

REUSE AS A POLICY

To make use of the advantages of object reuse, it is necessary to identify the process
as part of official company policy. That is to say, the system architects, designers,
and programmers all need to approach their tasks with the view that the code they
develop may be reused at some point in the future, and should therefore adhere to
specific principles. Anything that the company produces in the process of creating
software can be reused; from design and documentation to the actual code itself.
The reuse process itself should always be based on the decision process to cre-
ate new code when nothing else exists that can be reused. This means that writing
new code becomes a last resort, having already followed through the process of:

® Finding existing code
B Adapting code that represents a close match to the requirements
m Establishing no prior technology in existence

Following these priorities will have two effects. The first is that less code will
be written, less mistakes made, and the overall quality of code in the code base will
improve. The second is that time to develop will be reduced, manifesting itself in a
direct increase in efficiency.

Documentation
The key to successful object reuse is having a supporting framework that standard-

izes the identification and description of objects. This serves two goals:

m Ease of object creation and maintenance
B Ease of object location and use

Reusable Code Guidelines 169

Essentially, by accurately defining the information that must be present to lodge
an object in the library, it will be easier to find and reuse, and will follow strict guide-
lines for design and development as laid out in the supporting documentation.

Of course, the source code itself is also regarded as documentation—being
plain text it is also possible to index the source code in such a way as to provide a
clue as to what functionality the source provides. The clues will be given by func-
tion and variable names, as well as the (hopefully standardized) comments that are
included in the code that detail what each function is supposed to do.

Object Description Document

Each object needs to be accompanied by some form of documentation that includes
information about what the object is supposed to offer as features, or services. In this
case, when we refer to “object” we are using it as a basket term to cover:

® Internally created source code objects
B Open Source acquired source code
B Third-party maintained source code

We are not using it to cover those pieces of code that are closed source, bina-
ries that have been acquired as part of the Component Gallery. These will follow a
slightly different pattern of reuse, as we cover later in this chapter.

The Object Description Document is used as a way to identify the key services
that the object offers, in terms of mapping inputs to outputs (data or actions, in
both cases), and identifies it in terms of source code language, operating system,
and any additional constraints that might be relevant.

It can be partially derived from the design or specification documents that led to
its creation, and as such, it is possible that the Librarian or a staff technical writer will
be able to produce these documents. It is important that they all follow the same
kind of layout, and that this layout is well published throughout the organization.

Of course the Librarian function may not be an existing staff position, but, as
we discussed in Chapter 1, “The Liaison Center,” an amalgamation of a general
agreement to manage code in a certain way, backed up by sufficient tools to make
the process workable and efficient will naturally result in a set of documents that are
proof of the procedure.

Furthermore, the documents need to be searchable, and refer to the real loca-
tion of the source code, since they will probably not be stored in the same place.
There will probably be a need to add some kind of access point that extends beyond
the simple operating system. One of the most effective ways of doing this might
be to convert all the documents to a read-only format (such as Adobe PDF), and

170

Corporate Software Project Management

create a mini Web site that provides a search function and a modicum of organiza-
tional logic behind the storage of the documentation.

Using Web technologies will mean that the front end (user interface) can be
easily created and maintained, and that users do not have to wade through direc-
tories on unrelated files just to find the folder that contains the documents they
were looking for.

Extending this to store everything in a backend database is probably only rele-
vant if the object collection is destined to grow to a substantial size. At this point,
the database should be created with a form that follows the document headings and
information. It will lead to a faster search of object information, and ultimately a
much easier Web programming task, at the expense of introducing another piece of
third-party software into the chain.

This third-party software will need maintaining, monitoring, and possibly
training before it can be used, but the end result might just be worth the additional
effort, depending on the goals of the organization in question.

The Object Description Document (or Table) should be split into three sec-
tions. The first should cover general identification, such as project type (Graphics,
System, Database, World Wide Web, etc.), language, and operating system.

The second section defines the input to output mapping, either data or actions,
along with a description of purpose. It is essentially comprised of free text areas that
allow the technical writer to reduce the specification or design of the object to a de-
scription that will allow a third party to decide whether the object is going to satisfy
their requirements.

The final section comprises keywords that underline the technologies used and
the key areas of functionality. For example, we might have a sorting object, capable
of sorting integer values. The general identification section might look like:

Project Type: System

Language: C++

Operating System: Independent
Object Type: Library

The descriptive text might then read:

Input: Array of integers, with size information
Output: Sorted array, replacing original

Description: Sorts the array using one of a selection of algorithms

Reusable Code Guidelines 171

The keywords for this object might be:
Keywords: integer sort, bubble sort, quick sort, divide and conquer

Implemented as a Web solution, the users might be confronted with a Web
page that allowed them to select the operating system and language, for example,
and some keywords to define what it was they were looking for. Matches should
then be returned from the system to allow the users to select the code that most
suits their needs. A good example of this can be seen on the Source Forge Web site
(www.sf.net).

While this might force programmers to properly think through their solution
prior to its creation, and as part of the coding process, most programmers tend to
think in terms of writing, testing, and rewriting their code to match the function-
ality required.

In such cases, it is perfectly possible that the documentation referred to here
can be extracted from the comments that are present in the code, which removes
the manual procedure to create a document that covers the salient points, and
replaces it with an automatic function based on the extraction of commented
information.

For this to be a workable solution, however, it is necessary to entirely stan-
dardize the commenting process such that they become a partial replacement for
the documentation. However, it should be pointed out that the emphasis on pro-
ducing the documents does help to ensure that the process is being followed
correctly, which will usually lead to an increase in quality.

Source Code Documentation

We mentioned that the source code is in itself documentation. A simple text search
of all files with a given extension denoting their programming language would
probably be enough to give someone with a considerable amount of time to find
the exact routine that suits their needs. It is, however, not very efficient.

However, we can make source code much easier to search by introducing very
simple concepts, such as tags. For example, the keywords section from the previous
object documentation example:

Keywords: integer sort, bubble sort, quick sort, divide and conquer

This gives us some clues as to what the functions inside the object might offer.
Suppose that we want to create a string storing library, and, knowing that one does
not exist, but not wishing to reinvent the wheel, we decide to look for a sorting
library, and reuse some of its code.

172

Corporate Software Project Management

Now, this means that we need to access the object at a different level, because
we want to look at individual functions. The code may not be part of an actual
sorting library; it may be an offshoot of another library offering a different service,
coupled with which, we might also like some additional string handling functions.

When the author of the integer-sorting library created the source code, he
might have used simple tagging, such as:

// Input: array of integers
/] Purpose: sort

When we want to find a function that handles arrays of integers, we can then
look for a text string “// Input: array of integers”. The “//” is the C language way of
specifying a comment line, one that will be ignored by the compiler. We are using
it in a very specific way, to denote the start of a tag line, and we have established a
standard for specifying a tag:

/I <tag>: value

It is important to note that there is a single space between the // and the tag, and
that there is no space between the tag and the :, and one space between the : and the
value. These are important because they allow a simple text search to pick up the
unique tags without requiring us to implement specific logic that can read (parse)
the C code file.

The set of tags that is permitted needs to be specified, as does the range of
possible values for each tag. These need to be controlled such that, if a programmer
introduces a new value for a tag, or wants to introduce a new tag, the new proper-
ties are added to the document that covers such matters, and the change is passed
on to the users of the system.

In this way, we can be sure that the set of properties remains as rich as possible,
and that everyone knows what it is. This is necessary so that they can use the most
appropriate information for their source code, when creating it and when they
want to search for it.

Process Documentation

There also needs to be a policy document that describes how the objects can be
located, how they are to be obtained and used, and what the feedback procedure is
for returning errors to the original authors, or fixed errors back to the code base to
enrich the object repository.

Reusable Code Guidelines 173

We will cover exactly what these two entail in the next two sections, but it is im-
portant to note that part of the overall documentation has to cover how the entire
system is to be used. It avoids staff members accessing the object repository in an
inappropriate fashion—either intentionally or through laziness or negligence.

There should be a channel through which all communication passes, to the
effect that, whatever change management system is being used, the process by
which the code is obtained, once the relevant object has been identified, does not
conflict with it. After all, the object repository is a service that should be easy to use,
and yet be subject to guidelines that will ensure that its integrity remains intact.

Searching and Using

Once the source code has been located, it can be used. There are a variety of ways
in which a specific object might be used, depending on the kind of object that has
been located. For example, if it is just source code, designed to be integrated with
another project, then it must be extracted as source, melded with the existing code,
and recompiled.

However, if it is a library, then there is every possibility that it can just be lifted
and used—especially if it is a run-time library (such as Windows DLLs or Linux
shared object libraries)—in which case, there is very little intervention required.

Source Code

Requests to reuse source code need to result in a set of actions that ensure that its
integrity is retained, on the one hand, and that any changes that are introduced
from other sources, as a result of feedback, are offered to the users of that source
code.

This is a nontrivial exercise, and will require source code control tools and
techniques that are beyond the scope of this discussion. We do touch upon it briefly
in other chapters, but you should note that expert consultation will be required to
ensure that the correct solution is used.

The theory is that the source code needs first to be lodged in the repository, and
it then becomes stable, as a release. If the code is not fully tested, contains errors, or
does not fulfill criteria laid down by the policies of the object repository, it should
not be included, or offered for use.

Upon use, the source code takes on a new lease on life within someone else’s
project, but the original code remains in the repository. This is effectively a branch
of the code base, which is dealt with by most source code control systems in a man-
ner that is efficient and traceable, which is important.

Remembering that the source code is either a stand-alone object, which is de-
signed to be reused in its entirety, or a piece of fully tested source code that is not

174

Corporate Software Project Management

an object but a collection of functions or routines designed to perform specific
tasks, then there may come a time when the code has been extended beyond its
original scope. The other alternative is that the code has been fixed as a result of
locating an error that was not previously found.

In either case, the source code must be combined with the old copy, in order
that the changes become part of the object repository. Again, this should be han-
dled transparently by the source code control system. What is important is that
every user of the code, for projects that are in development, or maintenance, is
informed that the object has been changed, since they may want to incorporate
those changes in their own project.

It is up to the organization whether they adopt a strict single copy policy for
reused source code. If they do, then they must be aware that there might be reper-
cussions and conflicts when two projects need the same source code at the same
time.

Libraries

The alternative to source code is to insist that all objects are made available as
libraries, be they statically linked (at compile time) or dynamically (at run time).
This removes any complex source code management problems of having multiple
copies of the code floating around, since only the object or executable code is made
available to the project teams who want to use it.

Subsequently, the source code control task, which is the responsibility of the
Librarian, is much simplified, but at the expense of slightly reduced reuse flexibil-
ity. The advantages are numerous, and using pure libraries may even contribute to
higher quality software, since the feedback, reporting, and adapting procedure will
follow formal change control lines.

Otherwise, the process is essentially the same as for source code. The users
search through the repository, and, finding a suitable candidate, locate the library.
They should register the fact that the library is being reused with the Librarian so
that they can be kept appraised of any changes to the code that might be to their
advantage.

The big difference is that this is where the user’s obligations end—the library
is out in the wild, but since they cannot change it, it will never return to the repos-
itory. There is no need for it to. If the users find a problem or want to change the
object, then they need to go through a separate procedure, which we discuss in the
Feedback section later in the chapter.

There is one further caveat—platform. Unless the developer of the object goes
to lengths to make sure that it is available in a number of different platform flavors,
then only the platform for which it was compiled will be able to support it. Since we

Reusable Code Guidelines 175

are not allowing the user access to the source code, except under certain circum-
stances, there is nothing that can be done about this, except request a version that
is targeted for a different operating system.

There is a line of thought that states, in no uncertain terms, that nonportable,
or platform-dependent, code is not good quality code. However, in many cases,
there will be code, particularly that which deals with the operating system, GUI, or
devices that will be inherently nonportable.

This problem only evaporates if the target platform is always one for which a
virtual machine is always available, such as is the case with Java applications. If this
cannot be relied on, a certain amount of code will be produced that is platform
dependent. The effect of this can be mitigated by attempting to keep it as separate as
possible from the main code base that performs the core functionality of the product.

Tools

Finally, the repository may contain a number of specific tools and utilities that are
designed for reuse. These will follow much the same pattern of reuse as libraries, in
that they cannot be changed, except under specific circumstances, detailed later in
this chapter, but differ in that they do not become part of the new project, but are
additions to it.

Feedback

Part of the point of actually having an object repository is being able to feed changes
back into it that will enrich the collection, and to ensure that there are always ob-
jects available that can be used in a variety of different situations.

On the one hand, there is the addition of new code, be it new objects, or
changes to existing ones, and on the other, corrections to improve the quality of the
objects offered to the project teams.

To achieve this Utopian view of the object repository, it is necessary to formal-
ize the feedback procedures so that the Librarian (be it automated or manual) has
an easier task in managing updates, removals, and the communication of feedback
issues to all parties concerned.

The way in which this is done will change depending on the type of object that
is being reused, and the Librarian philosophy. A purely automated system in which
the source code management tool is fully integrated with the software development
infrastructure could feasibly enforce commenting upon updates, and circulate the
information accordingly.

However, if we discuss it as a manual process within the course of this book, it
becomes clearer as to what function is being fulfilled, as well as offering a manual

176

Corporate Software Project Management

solution for those organizations where an investment in tools and training represents
more of an outlay than designating responsibility to an individual or collectively.

Source Code

We mentioned that one of the problems with allowing direct object reuse at the
source code level was that it became more difficult to deal with issues surrounding
source code control. The problem is that if we release the source code, the user may
change it, and want to return that change back to the repository, leaving the Librar-
ian with the unenviable task of trying to establish what has changed, and how to
write it up so that everyone can take advantage of the new features.

This can be automated to a certain extent by the source code control system;
however, it will not be intelligent enough to identify the nature of the change, only
that a change has taken place. Commenting in the code will help to establish exactly
what the purpose behind the changes was, but this may not be adequate.

Consequently, any source code reuse scheme needs to have a feedback proce-
dure that clearly identifies the changes that have been made, and the reason behind
them, as well as information regarding testing and verification procedures that have
been followed. Without these, it will quickly become very difficult to manage the
change process, and the entire repository might be at risk.

It might be a more sensible approach to disallow source code changes unless
they have first been agreed to by the Librarian. Essentially, this will mean that only
source code that has had its design accepted will be allowed into the repository. If
a change needs to be made, whether it is to correct an error or as part of the evolu-
tion of the object, then that must first be agreed to before the new code is admitted.

In an automated environment that should be within reach of even small devel-
opment centers, using a set of tools that can perform the source code management,
and feature and error tracking in conjunction with the Liaison Center concept can
replace the Librarian and Source Code Manager completely.

This does not change the aim of the preceding discussion—being able to accu-
rately track and manage the source code and quality thereof—but it should make
the process more manageable. At the end of the day, however, the quality of the
code and its general fitness for use will usually be enhanced by the manual applica-
tion of standards by a member of staff.

Libraries and Tools

Restricting the object repository to libraries is possibly one compromise that will
benefit small- to medium-sized organizations. The model is different in that each
object becomes a self-contained library—either of functions or a single, useable,
object—with the only possible way to change it being via a formal change request.

Reusable Code Guidelines 177

This approach benefits in all areas. It helps to promote the idea of a customer-
oriented environment, which is key in software quality control, as we will see later,
and provides an audit trail that can be followed to keep track of issues surrounding
the quality of delivered objects.

It does lack flexibility, and can be less efficient than direct source code sharing,
but in cases where a good balance between quality, flexibility, and efficiency is
required, it does present something of a balanced approach.

The key is in providing feedback via Change Request or Problem Report mech-
anisms. On the one hand, requesting that a change be made to extend the func-
tionality offered, and on the other, reporting an error in the hope that it will be
repaired in a timely manner.

The latter will need to have severities attached to it such that the more severe
errors that are preventing progress in a given project are corrected as fast as possi-
ble. There is also the possibility that if the original programmer is no longer re-
sponsible for that object, that the source code correction can be performed by the
requester—however, this will mean that the source code control system has to be
aware of what is going on.

In fact, it will be a far simpler approach than direct source code sharing, as only
one person will be able to check out the code for changing, and it will usually not
branch into another code base. When direct source code sharing is permitted, there
is always the danger that the object becomes extended beyond its original scope,
and needs to be broken up after the fact.

Any tools that have been created will follow the same pattern of feedback as
libraries, in that they become internal products that can be shared and maintained
by a team of programmers, who will usually accept change requests and problem
reports for as long as they are working on the tools.

At a certain point, however, they will move on to other projects, and the code
will become part of the general repository. It then becomes the responsibility of the
organization to make the decision as to whether the requester can then change the
code, or whether a dedicated team of code maintenance specialists will be required.

This is a specialist position and requires that the staff are able to quickly read
other people’s code, assimilate the changes needed, and make them accurately.
Many programmers will point out that this is usually quite a difficult task.

SYSTEM GRANULARITY

We have spoken a few times in this chapter about policy decisions that the organi-
zation needs to make to ensure that the processes that are put in place to promote

178 Corporate Software Project Management

object reuse work in a manner that is in keeping with both the nature of the projects
that the organization carries out and the guiding philosophy of that organization.

One of these policy decisions is linked to the construction of the repository and
the kind of artifacts that will be stored there. System granularity is a term that we
have used a few times and essentially points to the programming style and nature
of the projects that the organization carries out.

A fine-grained system will consist of many pieces of borrowed source code,
usually individual functions, and possibly objects, either contained within source
code blocks or precompiled libraries. A coarse-grained system will generally consist
of larger units that are glued together by small chunks of logic. The object reposi-
tory can also consist of fine-grained system components, coarse-grained ones, or a
mixture thereof.

Fine-Grained Repository Artifacts

The finest grain of repository artifact is offered by using code reuse at the source
level—we can effectively share code right down to the function level. This implies that
we can reuse individual functions that may or may not be part of specific objects.

In theory, we could even reuse smaller units, such as individual code blocks, but
this is probably not appropriate within the context of software engineering. The
smallest unit that should be reused in most cases, using the Object-Oriented (OO)
paradigm for design and implementation, is an object definition: in C++, a class; in
Modula-3, a module; a Java class, or an Eiffel package, to give a few specific examples.

In very specific system cases, we might choose to reuse functions, but this will
violate some of the principles of OO design and programming, although we can
minimize this by using the functions within objects when we come to glue the sys-
tem together.

The disadvantage of using a fine-grained repository down to the individual
function level is also that it becomes much more difficult to extract the functions
and feed them back into the repository should they become enhanced or corrected.
It also becomes more difficult to know whether it is the functions that are at fault,
or the code that is holding them together.

In the end, if fine-grained repository artifacts are to be used, then it is best to do
so at a level that provides the eventual user with a set of interfaces and a level of ab-
straction that encapsulates the actual processing in a reusable package.

If the piece of code that is being reused can be treated as a black box, it becomes
much easier to debug, enhance, and feed back into the repository once it has been
changed, and all of these are important when trying to practice efficient object
reuse.

Reusable Code Guidelines 179

Coarse-Grained Repository Artifacts

At the other end of the scale, we have the possibility to only reuse objects at the
highest level of abstraction. This means directly executable code in the form of
statically linked libraries that are built into the executable at compile time, dynam-
ically linked libraries that can be accessed by the software during run time, or exe-
cutable software applications that are standalone pieces of code in themselves.

This last is usually applicable in an environment where most of the processing
is done in an offline, or noninteractive fashion. In this case, we mean noninterac-
tive in the sense that, at the operating system level, there is no direct user interac-
tion between a constantly running application and the operating system.

The most common example that comes to mind is the Web interface offered by
most server packages that allows packages to be executed at the request of the indi-
vidual browsing the site. In such cases, some of the pages will be, at least partially,
the result of a piece of software that is executed, and returns HTML or equivalently
formatted information that can be displayed by the browser.

The same can also be applied to systems that use back office processes such as
large databases, where the database software becomes a very coarse-grained
reusable system component that can be interacted with only via its APL. The oper-
ating system would also fall into this category, although it would overlap with the
concept of libraries, since most platforms allow software to interact only via dy-
namically or statically linked libraries.

Coarse-grained object reuse is important because it offers the most elegant so-
lution to the concept of integrating the OO paradigm with the idea of maintaining
a repository of reusable artifacts. It may not always be practical, however, since if
the organization is involved in development projects on a variety of platforms,
there may be a necessity to support a number of different library formats.

Using the next level down—object code in a standard format—will get around
this problem, while keeping the obvious advantages of programming language
transparency and total encapsulation of internal data and processing. The objects in
a coarse-grained repository can be treated as opaque boxes—we feed them data,
and we receive responses, but beyond that, we do not know how they do what they
do.

A further advantage is that there is a very much reduced dependency on new
code in a project that has been constructed entirely of coarse-grained components.
Of course, the components have to exist, and so it is only when the organization be-
comes more mature that the benefits will truly be reaped.

Object Reuse vs. Component Galleries

The other side of the repository is the Component Gallery. This is a coarse-grained
solution, since it will contain only licensed pieces of code such as full libraries,

180 Corporate Software Project Management

tools, and back office style executables that the organization has the right to redis-
tribute. The components are usually acquired as commercial offerings or through
a system of procurement in cases where no obvious solution exists on the market.

They are different from artifacts in the Object Repository in that the organiza-
tion probably has very little control over their evolution. There may be new features
being added by the original authors of the components, and there may be a mech-
anism in place whereby the organization can report errors and request solutions to
those errors, but overall, the process will not be controlled by them.

If the source code to a specific component has been licensed by the organiza-
tion, it is a wiser move to include the component as part of the Object Repository,
and effectively take control of the source for future iterations. However, this may
mean that the code base becomes branched, and it might prove difficult to intro-
duce changes into the code base that are recommended by the original authors.

Whether source code becomes part of the Object Repository will probably be
dictated by the agreement that the organization has with the authors of the code. If
there is no contract that specifies that the code base will be maintained, then there
is probably no need to try to ensure that changes can be merged into it.

THE OPEN SOURCE REVOLUTION

Although a good source for reused code is the organization itself, and components
can be purchased from commercial sources, there is an alternative: Open Source.
Using Open Source code enables a fledgling organization to obtain a large amount
of royalty-free, reusable source code without expending large amounts of resources.

The arguments for obtaining code in this way are the same as for reuse in gen-
eral; there is little point in reinventing the wheel, if someone else has already created
the code, and is willing to share it for the good of the community, then it is obvi-
ous that a software engineering company using it will have a clear advantage in the
marketplace.

However, as we will see, a number of caveats govern the acceptable use of this,
otherwise free, code, which relate to a reasonably complex web of licensing agree-
ments, each with diverse consequences for those wanting to make use of code cov-
ered by licensing.

Open Source Code

The Open Source movement comprises a collection of talented programmers who
release source code into the community in the hope that it will be used, extended,

Reusable Code Guidelines 181

and handed back to that community. The Linux operating system is a classic
example of an Open Source project in which the operating system was put together
as an alternative to standard Minix and Unix systems and released to the general
public.

Not only was the executable software released, but the source code to the entire
project was released under a special license that enabled people to copy it, modify
it, and use it in any way that they saw fit—except selling it.

The result was that support for Linux grew beyond the initial hardware config-
uration for which it was created, and continues to be extended as new pieces of
hardware appear on the market. If a Linux user has an esoteric piece of hardware
that he wants to use with the operating system, then he must either find someone
with the same hardware to create a driver for it, or do it himself.

Finding Open Source Code

Open Source code can be found in a number of places. At the time of writing, the
key proponents of Open Source are the Source Forge project and the Open Source
Development Network. Both of these organizations serve as a distribution point for
code, but the Source Forge Web site also provides Open Source projects with Web
hosting, change management, and virtual communication tools.

License Types

There are a number of licensing issues related to the use of Open Source code,
which stem from the initial intentions of the Free Software Foundation, who are the
driving force behind the Open Source movement. In fact, one needs to understand
that they are using the term “Free” in a way that is not limited to monetary
implications.

Free in this case does not mean that the user need not pay for the use of the
source code, but that the distribution model is also free, as in freedom. Part of that
freedom is in the protection of the original author of the code, such that subsequent
authors can be, by accepting the license agreement and using the code, bound to the
same principles under which the code was licensed in the first place.

This is not the place for a detailed discussion of the various license types that
are available under the Free Software Foundation Open Source licensing scheme,
but it is worth noting that there are some very broad categories into which the most
common of these licenses fall.

The three most common licenses that are used in Open Source circles are:

® Public Domain
®m GNUGPL
m GNULGPL

182

Corporate Software Project Management

Public Domain licensing is the least restrictive, the GPL is one of the most, with
LGPL lying somewhere in between. The licenses were created so that authors of
software packages, tools, or source code could take advantage of standard, Open
Source documentation that meant that they could be protected while not needing
to retain an army of lawyers.

Since the actual text of the licenses is Open Source, people can use it in their
agreements of use for their software, in the knowledge that it has been well thought
out. Unfortunately, since it is the product of legal professionals, it can also become
reasonably difficult to understand, which is why most of the licenses come with
a statement of general principles at the start, from which we derive the following
discussions.

Public Domain

Anything that is placed in the Public Domain is free for anyone to use, reuse,
change, or distribute as they wish, if the original authors are acknowledged. In fact,
most authors leave this at the discretion of the subsequent users of their precious
code. Effectively, they are sharing the fruits of their labors with the world at large,
without hope of remuneration or recognition.

The code can be integrated with other packages, sold, reworked and sold, or
simply used as is. The license does not restrict use in any way, and is therefore one
of the most open of the Open Source licenses.

GNU General Public License

The GPL is perhaps the most widely used of all the Open Source licenses, and is the
license that covers distributions of code such as Linux, and most of the GNU tools,
which includes compilers and operating system tools for Linux and most main-
stream operating systems.

The GPL also happens to be one of the most restrictive of the licenses, which,
if it is applied to the fullest extent effectively prohibits the person using the code
that is protected by the GPL from using it directly for commercial gain, without en-
suring that the resulting product is bound by the same terms—in other words, if
the product contains code covered by the GPL, then it should also be covered by the
terms of the GPL, and not a more restrictive license.

If we take the most famous example—the Linux operating system—we can see
that this is perhaps, while restrictive, not as restrictive as we might at first think. In
fact, a number of companies are currently making money from the distribution of
Linux. They are not selling the operating system itself, and the license that accom-
panies it usually states that the operating system component can be redistributed by
the purchasers as they see fit.

Reusable Code Guidelines 183

What these companies are selling is the repackaging of Linux, including tools
for its installation and tools to help the user after installation, and documentation,
not the operating system itself. The only reason this is permitted under the terms of
the license is that the derived works and original code are freely distributable.

More than this, the source code to the entire project has to be available to the
end user, either distributed as part of the package, or upon application or down-
load, in cases where the source code contains some GPL portions. Ifit does not, and
merely sits on top of the GPL code (such as an installation routine created from
scratch for Linux), then the source does not need to be released.

What is not acceptable is to sell the package, which includes GPL covered code,
and then close the code so that nobody has access to it, as is the case in traditional
software distribution models. It is this that makes the GPL a little too restrictive for
outright commercial exploitation, under certain circumstances.

The GPL is worded such that it prevents exclusive use and commercial advan-
tage, as it states in the Open Source Initiative Web site FAQ:

“What you can’t do is stop someone else from selling your code as well. That just
says that you need to add extra value to your code, by offering service, or printed
documentation, or a convenient medium, or a certification mark testifying to its
quality.”

—Extract from www.opensource.org/advocacy/faq.php

It also means that the software should be passed on to a third party (via sale or
gift) under the same terms that the original author extended in the first place. Thus,
depending on the exact mix of components, and whether the work was entirely de-
rived from the original, it may mean that all the source code of the new work must
be made available to the general public for a period of at least three years.

GNU Lesser (Library) General Public License

Perhaps in recognition of this need to be able to commercialize Open Source code,
the LGPL provides a way in which the original author can distribute code freely,
while protecting the users from having to disclose their own, proprietary develop-
ments. It was specifically designed to allow this by only being applicable to the code
that it covers.

Unlike the GPL, which also covers derived code, the LGPL enables developers
to use the protected code to their advantage. However, as long as it remains un-
changed, and is not used as a base for building proprietary code, the product can be
sold, distributed, and fully exploited.

184 Corporate Software Project Management

Thus, the code that is protected by the LGPL needs to remain a self-contained
opaque library, or at the very least, a compiled-in component that remains un-
changed during development. This puts it clearly in the case of being part of the
Component Gallery, while the source code might become available.

Depending on the wishes of the author, the exact interpretation of the LGPL
that is covering the code, it will probably not be appropriate to try to place that
source code in the Object Repository, since it cannot be owned by the organiza-
tion—only “borrowed.”

The Open Source Advantage

The key to understanding the driving force behind Open Source is to treat the
arrangement as a way of sharing the fruits of the labor of the entire programming
community, for the good of the community. In other words, if you take a product,
and make something from it, then perhaps you should extend the possibility for
others to do the same with your work.

Using Open Source code may seem slightly cuambersome and more than a lit-
tle restrictive at times, but it comes with a clear set of advantages that are illustrated
by the flagship “product,” Linux. In a nutshell, Open Source works because the
people who use the code are the authors, or are technically competent to assume
responsibility for part of the functionality.

This means that as soon as they isolate a need to extend the operating system,
such as the support for a new or exotic piece of hardware, they are usually capable of
changing the source code themselves so that this new feature is included. They must
then, under the terms of the license, make this customization available to all, which
makes sure that the benefits of their work are felt by the entire user community.

In the case of Linux, it is clear that this will lead to an incredibly rich variety of
drivers for all manner of esoteric devices and file formats. For example, there are
readers and writers for closed binary file formats such as PostScript or Adobe PDF
documents, not to mention support for the most cutting-edge graphics and sound
cards.

Using the Open Source initiative, the user base for a given piece of software will
also grow more than if the software had to be purchased outright as a commercial
offering. This leads to wider exposure for the component, and the possibility that
the errors will be located and fixed in certain circumstances. This is only made
possible by the fact that the source code is made available to the end users, should
they wish to read it.

The effect on the industry is that, as long as the licenses are respected, and the
Open Source ethics applied, the code sharing that goes on between licensees and the
authors of the software can result in a useful dialog that is beneficial to all parties.

Reusable Code Guidelines 185

In the end, the company may just end up charging the client for the installation of
an Open Source solution, rather than having to create the solution from scratch.

Therefore, there is a clear competitive advantage for those who are in a position
to level the power of the Open Source model. While they may, on the one hand, try
to be incredibly protective about the product or service they are offering, it cannot
be denied that a company that has the experience and knowledge to offer cus-
tomization, installation, and documentation of an existing product can do so at a
cost far less than having to build a new product to solve the problem presented to
them by the client.

As long as the client has no issue with the use of well-supported and docu-
mented Open Source solutions, there is no reason why this should not become part
of the organization’s approach to software engineering on a corporate scale.

Open Source Ethics

Besides the licenses, the Open Source initiative is also governed by a set of unwrit-
ten ethics. They started with the story of stone soup, as told by a company of the
same name. The tale is of a man who finds himself in a village, hungry, with noth-
ing but a cooking pot and some water. So, he sets to locating some fairly sizeable
stones, and commences to boil them.

A passing villager looks on, and asks the man what he is doing. The man replies
that he is making stone soup, and it tastes very good, but would be so much better
if it were to have some onions in it. Grudgingly, the villager agrees to provide some
onions, in return for some of this amazing stone soup.

Other villagers pass by, each wondering what the man is doing, and each time
they get the same answer—the man is making stone soup, and it is the best he has
ever tasted, but would be so much better if he could just add some cabbages, toma-
toes, and, finally potatoes to the mix.

Once the vegetable (stone) soup is ready, he sits down with the villagers and
they eat the wonderful soup together, everyone benefiting from the resources of
each other. The message is clear, and it is one of the underlying principles of Open
Source.

The licenses were also created with the same philosophy—that, in using them,
it is the prerogative to give something back whenever possible. This could be com-
ments for making the code better, features to be added, or corrections to errors.

SUMMARY

This chapter aimed to give the reader an insight into how code can be reused in a
manner that is efficient and practical. The level to which it is implemented will, as

186

Corporate Software Project Management

always, depend on the resources available to the target organization. It is, however,
always wise to try to plan larger than is currently needed, in the assumption that the
company will grow, rather than standing still.

It also pays to adopt a consistent approach to code sharing, either a fine grained
or coarse grained solution, but trying not to mix the two. This may not always be
possible, but as a general rule, it will depend on the kind of projects that the com-
pany is embarking on.

If they tend to be highly specialized, technical projects, then a finer grained so-
lution may be required, since the proportion of code that can be shared between
projects will be lower than if the company is working in a standardized field, such
as web development.

Finally, it also pays not to write of Open Source solutions due to the licensing,
as so many companies seem to do. It is worth taking the time to examine the mar-
ketplace and see what free and open solutions are available, and establish a para-
digm for their reuse that benefits the company but does not infringe on either the
ethics or the licensing agreement that the company enters into upon their use.

I I : The Object and
Component Archive

In This Chapter

Introduction

Creating an Object Repository
Making Source Code Searchable
Documenting Objects

The Component Gallery
Summary

INTRODUCTION

In the previous chapter, we looked at ways in which code reuse can be practiced
within the confines of our organizational model laid out in Part I of this book.
However, the guidelines on their own offer little practical advice on how to provide
for the efficient storage and retrieval of the objects and components that are created
as a by-product of performing various software development projects.

This chapter looks at creating an organization-wide Object Repository, and the
techniques described could be applied to almost any kind of documentation stor-
age. Indeed, many of the technologies that are currently used in large-scale docu-
mentation storage and retrieval projects can be applied to the storage and retrieval
of source code. The key is in how the code is described and indexed within the
repository.

187

Corporate Software Project Management

Again, the material presented here works best with the Object Oriented para-
digm that we have used as our basis for software design and development, but we
can also use it with other paradigms too, as long as they result in neat little packages
of code that can be used as stand-alone objects, and are not required to be used
within the context of a larger system.

Therefore, while code objects are probably directly usable if they are the result
of an object-oriented coding approach, only full components will be usable if they
are a result of other paradigms. By full components, we mean libraries as well as
self-contained controls such as those used by the Visual Basic and Visual C++ pro-
gramming environments.

It is also important that a specific member of the organization takes responsi-
bility for the management of the object and component archive. This will include
procuring tools, establishing guidelines for their use, and training those involved in
code creation in the processes required to ensure that the archive is correctly pop-
ulated with high-quality snippets. This person is also known as the Librarian from
Part I of this book.

CREATING AN OBJECT REPOSITORY

Tools

An Object Repository should try to satisfy several goals:

Store source code

Provide an indexing system for source code retrieval
Have an integrated backup facility

Support versioning

Beyond these four basic facilities, there should also be sufficient documentation
in the repository’s use, along with any conventions that are necessary to satisfy the
general working practices of the organization that also have an effect on the effi-
cient use of the Object Repository.

First, it is always a good idea to use a versioning system, such as CVS (or the emerg-
ing SVN), SCCS, or Visual SourceSafe as a mechanism for source code storage,
retrieval, and comparison. For those not familiar with the concept of source code
control, here follows a short description of what it is supposed to achieve.

In any software project, the code will be in a constant state of flux. Even once
the project itself is complete, and the final product is in the marketplace or installed

The Object and Component Archive 189

at the client’s site, the code that makes up the application will probably continue to
change. Errors will be found, and subsequently fixed, new features will be added,
and the code base will change.

In a project that is not explicitly keyed toward the consumer market, in which
the code that is written is done so entirely on spec for a single client, effective source
code control can be seen, in the beginning, as an option, and so no great investment
in tools is made. It is often seen as adequate to maintain a list of changes in a
spreadsheet, which is then stored along with the project files on a server.

This is not a good approach to change management in a software engineering
environment, but is acceptable for managing change for extremely small pieces of
larger systems. By acceptable, we mean that there will be cases in which it is neces-
sary to use something, there are not adequate funds or expertise to use another
method, and most people will be able to use a spreadsheet. This might not be the
case for a specialized piece of software, which may require a certain level of invest-
ment to arrive at the same level of functionality.

A spreadsheet works as a way of collecting information, providing a structured
way of doing so, along with simple information extraction, sorting, and delivery. As
such, it is useful, but it cannot perform tasks beyond those that the users do them-
selves. Better tools exist that offer more functionality and require less user interac-
tion, and unless there are simply no funds available, it is a good idea to use them
from the start.

As always, putting tools to work after the fact, once the information has been
input and stored somewhere else, will cost more than implementing the better sys-
tem in the first place. The danger is that this cost becomes prohibitive, too, and so
the move from one system to the other is never performed. At some point, the old
system will be proven inadequate, usually at the expense of a contract or project.

Those projects that are designed to create a piece of software seen as the first in
a line of such products—such as office automation tools—usually make use of
effective tools from the outset. The implication is that, when creating a single prod-
uct for a client, once the project is finished there is no need to retain the code
within a source code control system, unlike evolving products.

However, when the source code is part of a wider Object Repository, where it
may be a part of multiple projects, some kind of source code control becomes
strongly advisable, particularly within our paradigm of object reuse. In essence, a
source code control tool automates a number of tasks, including:

Change tracking
Patch generation
Version management

Change rollback

190

Corporate Software Project Management

Source code control systems all work in roughly the same manner; that is, a set
of underlying features describes the technology. How the technology is implemented,
and the exact mix of features that are available will change from package to package.

The basic principle of a simple single-user source code control system is that
pieces of code are checked in and out of storage space on a centrally managed
server. If a piece of code is checked in, it is safe from editing. If it is checked out,
then it can be modified, usually by only one person at a time, until such a time that
it is checked back in again.

Code that is checked out, therefore, may not be modified by any other party
until it has been returned to the control system. The checking in of a piece of mod-
ified code is where the magic starts. The source code control system compares the
checked-out version with the previously checked-in version, and makes a note of
the actual changes that have been made, by whom, and when.

The systems generally allow comments to be added to each check-in operation,
so that an accurate history of the entire source code tree is maintained.

Once the principle is understood, it is an easy step to imagine cases where the
same piece of code could be checked out to multiple individuals. As long as they are
all working toward the same goal, and do not attempt to work on exactly the same
lines that their fellow programmers are, it is an easy enough task for the system to
merge the code together upon checking back in.

There are also more complex features such as splitting the tree such that new
branches of code can be started, and take advantage of changes in other branches as
appropriate. Branching and remerging code in this way is very complex, and is best
described in the documentation that accompanies the source code control system
that the target organization chooses to implement.

Recent tools such as Subversion (SVN) add the ability to have more than one
copy of the source code checked out at a particular time, but these rely on the pos-
sibility to retain a working copy so that changes can be detected automatically, and
updates applied as required.

Allowing this to take place will inevitably lead to cases where two programmers
have been working on the same file, and on the same area of that file, such that the
source code control system (SVN, for example) can no longer actually decide which
version is correct.

At this point, it will usually point to a conflict, and expect the user performing
the update (or committing the changes) to choose between two versions of source
code. In theory, and especially within the paradigm that we are using in the context
of this book, this should never happen.

The Object and Component Archive 191

It usually happens when a programmer finds an error in work done by another
programmer, and adjusts it. The original programmer might have spotted the error
and fixed it, at which point the source code control system will find two conflicting
changes.

What should have happened is that the programmer finding the error should
have checked with the original author that the problem has been located and will be
fixed. At which point, the original author of the code should fix the error, and
check his code back in before the code is changed further.

One other use for the version control part of the source code control package
is in creating patch files. A patch file is a list of changes that, when applied to a piece
of code (either source or real application executable code) can change it such that
it is brought up to date.

One of the reasons for doing this is to avoid having to ship the entire package
every time a change is made; just the patch executable needs to be shipped. The
executable contains the data that needs to be applied to the existing version to
upgrade it, and usually a few routines that verify that the patch is being applied to
the correct version of the code, and that it has been correctly applied once the
patching routine has finished.

Another reason for using patching is that it reduces the time needed to down-
load a new version of the software, which becomes important in companies using a
repository where changed objects could be used in a variety of different applications,
each with different user bases. It is much more convenient for the users to download
patches than for the company to have to ship new versions of the software.

There are some small points to bear in mind when choosing and using the
source code control system, however. First, it will only ever work if there is one
source code tree on one server. This introduces a central point of failure. If the
server malfunctions for some reason, or the hard drive fails, the results could be
catastrophic. Hence the need for a robust backup system based on file copy and
archival.

Second, versioning and change management work best when the files are rea-
sonably short; that is, when a single file concentrates on a single subject, be it a piece
of text or the source code for an object. The problem is that when files contain
many different subjects, the possibility that they will need to be changed in multi-
ple places at the same time increases exponentially. The result is that checking in
and out becomes a lengthy procedure since each change needs to be analyzed and
documented.

A side effect of this is that the more complex an object implementation be-
comes, and the more useful it is, the more individuals will want to make use of
the code. Subsequently, the likelihood that this individual will want to add to the
object, upon finding that it needs to be refined for his particular application, also
increases.

192

Corporate Software Project Management

This can be the beginning of a cycle in which the code is permanently checked
out, and if left to spiral unchecked will lead to deadlock situations in which nobody
is able to update the code, even if an error is found. This is detrimental to both the
quality of the code and the efficiency of the development cycle, which are both
issues that the Object-Oriented paradigm and object archive are supposed to help
solve.

Even if an advanced multiuser solution is in place, there is the possibility that
multiple conflicting updates can cause problems, but respecting the guidelines
within this book should be enough to solve these and any deadlock situations
pointed out in the preceding paragraph.

The solution to this problem is to either take advantage of the source code
control system’s branching capabilities, or encourage object subclassing (inheri-
tance) as laid out in Chapter 9, “The Object-Oriented Paradigm,” and Chapter 12,
“Coding and Language Choice.” If strict subclassing guidelines are adhered to, a
single object will have a reasonably small number of new features, thus reducing
the chances that the same object will need to be checked out by two individuals
simultaneously.

Finally, the overall success of the source code control system will be based on
the willingness of staff to participate in the corporate source code control philoso-
phy. This means that each member of staff has to be aware of the consequences of
not checking in and out source code in a consistent manner.

It is expected that the specific standards and guidelines relating to source code
control are stated as part of the document set discussed in Chapter 2, “Standards
and Guidelines.” This ensures that both the target organization thinks through the
issue properly, and that the staff have an easy-to-follow set of rules by which they
should work, and whose performance can be measured against.

Implementing Tools

There is a balance to be struck between automated source code management and
source code management that is based on using software application tools aug-
mented by human intervention. The two extremes are easy to appreciate:

B Manual system using a spreadsheet and human librarian
® Fully automated system with little or no human interaction

The issue is that the former is expensive to maintain, but cheap to set up, while
the latter is cheap to maintain but relatively expensive to set up. The reality is that,
whatever system is put into place will need to be maintained by a human, usually
the person who set it up.

The Object and Component Archive 193

Therefore, the practice we favor is a semi-automated tool that is capable of
helping the human librarian to manage and control the evolving software reposi-
tory, but will defer to that human rather than trying to provide a fully automated
repository in its own right.

The justification for this is that we are adopting a specific paradigm for the cre-
ation of software in which we place emphasis on the procedures and processes that
rely reasonably heavily on human interaction through a central point. We are also
trying to establish an environment in which it is possible to cross-pollinate multi-
ple projects while at the same time promoting high-quality software development.

For these reasons, we advocate partnership between the librarian and the
source code control system that is used to manage the repository. This is distinct
from the source code control system that is used to manage the code in individual
projects, which can be more automated since the librarian will only be involved
with the finished product.

Indeed, it is likely that there will be two separate systems in place—one for the
software engineering in the large, and the other for the micromanagement of indi-
vidual software projects. Essentially, inside each team we are relaxing the control
slightly to allow them to concentrate on the programming and engineering rather
than the source code control, while ensuring that the librarian can concentrate on
the big picture, rather than being called in to help with code management on indi-
vidual projects.

Directory Structure

Unless the repository system put in place is capable of identifying and linking indi-
vidual files, a search of the available objects will eventually lead the programmer to
alocation in which he will expect to find the code and documentation for the object
he wants to make use of.

Part of being able to find this information is knowing where to look, and a good
directory structure that has been properly identified and documented will make
this easier. It also provides a clear standard so that programmers do not have to
define their own structures, leading to a much cleaner file system structure.

There is also an advantage when working with source code control systems—
versioning and backup. This is particularly the case if a semi-automated or manual
backup system is in place. For example, in the case of a semi-automated system, the
software will need to be told where the information that needs to be backed up is
stored, and in the case of a manual system, the user will have to search through the
structure looking for files to back up.

194

Corporate Software Project Management

These essential chores are much easier to manage if the basic directory struc-
ture is standardized across all objects stored in the repository. For individual
objects, four basic directories will be required:

Source code
Object code
Executable code
Documentation

Depending on the version control philosophy of the organization, this tree
might be replicated for different versions of the object, or version-specific directo-
ries might instead be introduced underneath each of the preceding subdirectories.

The two possibilities are shown in Figure 11.1, which illustrates how different
they can be. Which one is chosen will depend on the versioning practices. In gen-
eral, if there are going to be many minor versions during the lifespan of the source
code, then the structure by version will be more appropriate.

=l |) CObject
= I) CObject = IC) Documentation
Biowv vl
() Documentation o) v2
() Executable Code =) Executable Code
) Object Code v
) Source Code) ve
=3) ve = |) Object Code
() Documentation v
() Executable Code o v2
() Object Code = | Source Code
) Source Code vl
) v2
Structure by Version Structure by Artifact

FIGURE 11.1 Different directory structures for the Object Repository.

However, if the emphasis is on the artifact types, and maintaining cross-version
congruence, then the structure organized primarily by artifact may prove more
useful and easy to implement, navigate, and understand.

The Object and Component Archive 195

Closed Systems and Proprietary Interfaces

It is tempting to look around the marketplace and find a supplier willing to sell an
all-in-one solution that can appear to solve all your problems. One probably exists.
However, closed binary systems have one devastatingly simple but somehow quite
frightening drawback: if the recovery system fails for some reason, there is no way
of getting the data back—it might be lost forever.

This is why programs like Visual SourceSafe® only tweak existing files. They do
not rush off and encase your entire source code tree in some kind of proprietary file
structure; they use what is already there and augment it in an intelligent way.

Visual SourceSafe, for example, manages several aspects of the file attributes to
ensure that the source code tree is properly maintained. When a user checks out a
file, the copy held by the VSS system is made read-only. At the file system level, this
means that the specific attribute that informs the operating system that the file
should not be changed (usually called the read-only flag) is set.

Consequently, neither the operating system nor the VSS system is able to
change the file. Of course, an advanced user could change the attributes such that
the file could be written to as well as read from, which would render the entire
process useless. This is another reason why guidelines need to be put in place so that
users know how the system is to be used.

When the file in question is checked back in again, two things happen. First, it
is compared to the existing version, the changes noted, and the new file copied onto
the old one. The read-only flag remains checked, but the VSS system identifies the
file as checked in, so that it can be checked back out again by another user as
required.

Second, the archive attribute is set—this means that a program scanning the
directory tree can identify those files that have changed. This is important for a
backup system since it means that a differential backup can be taken because the
program can identify files that need to be backed up.

Following this mode of operation, it would seem that the most effective backup
tool is one that copies the files one by one to an external device. It is simply an
automated bulk file copy tool, and many free/shareware and commercial ones exist.

There might also be a temptation to design your own Object Repository man-
agement system, and this approach appeals usually to the technically minded rather
than anyone else. If this path is chosen, several consequences need to be borne in
mind.

First, to be effective, the Object Repository needs to be in place from the out-
set, which means that the first project for the company is to create the Object
Repository Management software. This may consume valuable programmer hours
at a time when the company is at its most vulnerable—at the beginning.

196 Corporate Software Project Management

Second, there is the issue of closed binary systems with proprietary file formats
and user interfaces. If it all goes horribly wrong, the company will only have itself
to blame, and potentially be considerably out of pocket.

It is considerably more efficient to use existing tools, often provided by the
operating system, to manage the Object Repository. These might include bulk file
copy to external media using the built-in directory copying mechanism of the
underlying operating system, coupled with a plain-text file management system for
backing up.

If compression is required, judicious use of an industry-standard program such
as WinZip can be effective, and at least it has the advantage of being well sup-
ported. Otherwise, an effective backup system simply relies on knowing what has
been copied, when, and to where. As we mentioned, a plain-text file can hold this
information adequately. The only real area where it is vital that some kind of closed
system be used for managing the Object Repository is in determining and noting
changes to code when it is checked in to the system (overwriting an earlier version
of itself), and being able to search all the contents in an efficient manner.

Even here, however, it is important that the actual sources remain unaltered,
and that any changes that are identified are stored in a plain-text file so that they can
be re-applied to a backed-up version of the source code if that becomes necessary.
Following these simple guidelines will ensure that the most vital part of the com-
pany’s assets—the source code—remains adequately protected and manageable.

MAKING SOURCE CODE SEARCHABLE

Source code is not known for being self-documenting. As such, unlike text, search-
ing for a specific piece of code is unlikely to yield a useful result unless steps are
taken to ensure that the code is embedded with pieces of information and text that
enable the user to search for meaningful items within the source code files.

Filenames and Comments

The first level at which information can be embedded is in the filenames that are to
be used in creating the object that is to form part of the archive. If, for example, we
are creating a set of sorting routines, we might place the code in files with mean-
ingful names such as:

® Quicksort.h
m Bubblesort.h
m Sieve.h

The Object and Component Archive 197

These days, when filenames can extend to 256 characters and beyond, there is
no excuse for not using filenames that describe both the contents of the file and the
project to which it belongs. The organization can find their own particular way of
elaborating filenames such that their contents can be easily discerned from the file-
name alone. However, some part needs to accurately reflect what the source code
contained within is supposed to implement.

The same goes for the directory (folder) structure within which the object,
which is likely someone else’s entire project, is contained. As we discussed previ-
ously, it is not advisable to put all the code in a single file. The principles of object-
oriented design lead to subclassing objects into new implementations that inherit
the capabilities of the parent, while adding new functionality and overriding some
existing features. Accurate file naming will provide a first clue as to whether the
code is of use in a given situation.

If we look back to our example of a sorting library that is designed to be reused,
we will note that we have said nothing about the data that is being sorted in the file-
names. Of course, we could create a set of files such as:

m C_String_Quick_Sort_Array.h
m C_Integer_Quick_Sort_Linked_List.h

These names reflect exactly what the routines contained inside them are capable
of sorting, but they quickly become cumbersome. Taking the naming convention to
such a conclusion is probably not the most efficient way to solve the problem. The
more typing one expects the programmer to do, and the more elements there are in
the filename, the more likely it is that errors will creep in at the programming level.

They may not be errors that impact the eventual correctness of the code; after
all, the compiler will likely catch the error long before a working program can be
built. However, typing errors waste expensive programmer hours, so reducing the
amount of typing required is always a good course to follow. There is a balance to
be found, as in so many areas of software engineering, between information trans-
feral and ease of use.

Filenaming conventions need to allow for the most information to be relayed
to the reader, while keeping the filename itself to a reasonable length. Ways to
ensure this include specifying a set of accepted abbreviations that can be used in
naming files and are well documented and understood by programmers.

We can actually help find relevant areas of source code by inserting plain text in
the form of comments within the source code. Rather than creating a long and com-
plex filename, we should rather insert comments that elaborate on the filename.

198 Corporate Software Project Management

Again, we have given many indications as to how the organization can approach
the problem of determining the exact comment guidelines to impose upon their
programmers, but there are several key areas that need to be addressed to make the
code easily searchable:

Input data/type
Output data/type
Process

Result

By way of example, if we want to create a series of bubble sort functions for
reuse, which are capable of sorting different kinds of data, we might store them in
a single file (say, C_Bubble_Sort.h), and then have a piece of comment preamble
before each function that details what each function is designed to do:

// Bubble Sort for Integer Arrays

// Input Data : an integer array, the size of array
// Output Data : the integer array, sorted (none)

/| Process : sort the array

/] Result : true if sorted, false if an error occurs

Another use for comments is to determine where the code comes from origi-
nally. This is useful because if a fellow programmer happens upon the use of a
function that he was not previously aware of, he can then locate the specific object
in the repository by following the commented reference in the source code that he
is examining.

Variable, Object, and Class Names

This should be obvious—using obscure naming conventions for objects, classes,
and variables will cause the source code to be unreadable to the point of obfusca-
tion. However, having an actual convention will mean that searching for specific
types of data will be much easier. One such convention, known as Hungarian No-
tation, is common in Microsoft platform programming circles, and works on the
principle of prefixing variable names with specific sequences of lowercase charac-
ters, depending on their type:

sz: Null terminated string.
nand 1: Integer and long integer.
fand d: Floating-point and double-precision floating-point.

The Object and Component Archive 199

One reason not to use a system of type prefixes is that, in an object-oriented
programming model, we no longer need to know what the type of specific objects
is, only the various operations that we can perform on them.

There are some exceptions for C and C++ programmers in being able to de-
termine between different kinds of objects:

s: For structure definitions.

¢: For class definitions.

This can be retained, as well as the prefix “0”. This can be taken to refer to an
object of any type, usually initialized using the new keyword. It should usually refer
to an instance of either a class or struct object.

Notations like Hungarian Notation are so automatic to some programmers
that it will waste many resources if they suddenly have to start using another con-
vention for type and variable naming. It sounds trivial, but these are the kinds of
things that are usually overlooked by nonprogrammers that have a profound effect
on the efficiency and effectiveness of the programming team.

However, problems can arise when using a notation that tries to tie meaning to
the variable names. This is most common when a programmer changes the type of
data stored in a variable, but then neglects to change the name of every instance of
the variable, leading to two issues:

B The code may no longer compile (having not changed all the names).
®m The variable name, left as it is, no longer reflects the data.

Due to this, conventions like Hungarian Notation, which try to augment the
variable name with additional information, are falling out of favor. Modern pro-
gramming techniques shy away from this practice in the belief that the variable
name should not need to convey information beyond the kind of information it
contains.

In the object-oriented world, this is entirely in keeping with the way in which
software is being created. In fact, since the only interfaces between two objects are
well defined in a compact description of the interfaces, it is unnecessary to provide
embellishments to the names.

Having argued against the use of Hungarian Notation, we should also look at
some alternatives, or rather, some conventions that make sense in programming
terms. Two of them have been mentioned, but are entirely specific to C and C++;
that is, the introduction of a prefix that is used to determine a Class or Structure.

There are other conventions, which are sensible and entirely language inde-
pendent, such as always using descriptive names for variables:

200

Corporate Software Project Management

ArrayOfPoints: Rather than ptArray.

While the actual type of a variable may not be important, we should ensure that
each variable is named according to its data content. For example, we should make dis-
tinctions between numbers, arrays of numbers, characters, and arrays of characters.

However, some variable names are so obvious that it can be argued that a strict
naming policy is unnecessary. Consider, for example:

DateOfBirth: Obviously contains a date.
IsEmpty: Reasonably obviously contains TRUE or FALSE.

In the final analysis, we can say that a standard should be adopted, but that the
coding style, commenting practices, and language choice may make specific deci-
sions regarding type demarcation obsolete.

Constants

The same rules for choosing a convention for naming constant values apply as for
types and variables. Not the detail—Hungarian Notation actually makes very little
sense when defining a constant by virtue of the fact that it should be obvious from
the name what the data itself represents. A constant named P1, for example, is
unlikely to be a string.

It is up to the development team to decide what kind of standards they are
going to apply when choosing a scheme for naming constants. For example, Win-
dows programmers use a system whereby prefixes are used to identify exactly what
the constant is to be used for.

ioc_: A dialog box control.
IDM_: A menu option.
IDE_: An edit box.

10B_: A button.

At the very least, constants should be in capital letters to set them apart from
regular variables.

DOCUMENTING OBJECTS

Besides the actual source code, there should also be a series of supporting docu-
ments that detail the design, implementation, limitations, and instructions for

The Object and Component Archive 201

compilation and use of the code that resides in the Object Repository. In Figure
11.1, we specified a directory named “Documentation” for this purpose.

What follows is a skeleton format that covers the material that is relevant to the
purpose of the Object Repository. Of course, organizations implementing this kind
of storage and retrieval model are free to choose their own document formats, but
these should give a good starting point.

Programmers’ Guide

While it should be obvious from the object’s source code, laced with comments as
it is, how the object is to be used, there should also be a specific guide to help pro-
grammers implement a solution using the object in question.

The Guide can be split into three areas: Information, Usage, and Verification.
In the Information Section, we need to be able to specify information that describes
the object.

Object Type

This is language dependent, but reusable objects should fall into one of two cate-
gories—object code or source code. Anything outside of these (executables, dynamic
link libraries) can be considered components, and not objects, and placed in the
Component Gallery.

Source Code

This part of the Information Section lists the source code files that make up the
object, whether it is a piece of reusable source code (Class, Package, Module, etc.)
or compiled object code.

Required Libraries

Following the Source Code, we need to know whether the object has a relation with
other libraries before it can be used. For example, if it relies on specific platform-
dependent libraries, such as operating system specific facility libraries (network,
screen, device), then they should be listed here, even if they are not required in
order to compile the source code itself.

Resource Dependencies

The last part of the Information Section should list any nonsource code files, such
as graphical images, sound files, text files, and so forth that are required by the
object.

Next, in the Usage Section, we are informing the third-party programmer what
pieces of code are designed for reuse, what their names are, and how they operate.

202

Corporate Software Project Management

For each object (C++ Class, Eiffel Package, Modula-3 Module), we need to have the
following:

Exported Functions: Those functions accessible by external code objects.
Exported Class Definitions: Specific objects that can be accessed externally.
Theory of Operation: Typical use cases.

These three sections should give programmers enough information to know
whether the code object is fit for the use they have in mind, or whether it can be
adapted to fit their specific needs.

Finally, the Verification section lists how the code has been tested, under what
conditions, and any exceptions that were found but not repaired. Exceptions that
exist and would affect the use to which the object needs to be put should be fixed
by the programmer wanting to employ the object. In this way, the entire Repository
is in a constant state of improvement.

For each object that we have defined the Exported Functions, Class Definitions
and a Theory of Operation, we support it with:

Test Cases: Showing specific usage in action (including boundary cases).
Test Results: Proving that the object is for use.
Open Issues: Showing areas needing development.

The resulting document, comprising the Information, Usage, and Verification
Sections, can then be released into the field along with the source code or object
library to which it refers. It should be in a format that can be searched by an auto-
mated indexing system, as we pointed out in the first part of this chapter, Creating
an Object Repository.

Design Documents

While we have not explicitly dealt with the design documentation in the skeleton
document structures, they should also be placed in the Documentation directory
belonging to the object in question. The areas that can be considered for inclusion
are:

Requirements Definition: The purpose of the Requirements Definition here
is similar to that which we introduced in some detail in Chapter 6, “Require-
ments Definition,” namely to inform the reader of the purpose behind creating
the object.

The Object and Component Archive ~ 203

Functional Specifications: Again, we already looked at Functional Specifica-
tions in some detail in Chapter 8, “Functional Specification,” and this reduced
version exists simply to state what the object can do, which solves the problems
presented in the reduced Requirements Definition.

Augmented Design: The Augmented Design is a very loose description of
how the facilities described in the Functional Specification, which satisfy
the Requirements Definition, have been implemented. It should include
pseudocode in cases where an advanced proprietary algorithm has been created
to solve the problems presented.

Certain aspects need not be described, where they fall within the general science
(e.g., linked list, stacks, file storage, etc.), except where they deviate significantly
from the current state of the art.

The idea is that these informal design documents represent a work in progress—
that is, the design might have to be changed depending on the future evolution of the
object with regard to new functionality to be added or errors to be corrected.

However, there will come a time when the current version of the object should
be left in a static state, and a new object be created, which might depend on the
existing object, to service any new functions that come to light. For example, an
object that represents a printing device might be extended to cover plotting devices
as well. Equally plausible is a scenario that involves creating an object that derives
some of its functionality from the original printer object, but specifically encapsu-
lates the functional description of a plotter.

A natural extension of this decision process is to separate objects when they
become too unwieldy. It is a policy decision that of the two paths to take, depend-
ing on individual circumstances, it may be easier to restrict the functional areas of
objects from the outset rather than try to carve them up at an arbitrary point.

Therefore, to bubble sort a list of integer values, we might come up with the
following outline design documents:

Requirements Definition
To sort a list of integer values.
Functional Specification
Supported functions:
Create a list
Add items to the list
Sort the list
Retrieve items from the list

204

Corporate Software Project Management

Supported data types:
Integers
The list should be able to contain a maximum of 100 integers.
Augmented Design
The data shall be stored in an array, 100 elements in size.
Sorting mechanism: bubble sort.
Algorithm:

while (no more swaps needed)
if element, > elementn., swap element,, elementn_,

There is no need to describe the mechanisms for inserting and removing data
from the array, since that is part of the standard science associated with program-
ming in general.

THE COMPONENT GALLERY

The principle difference between the Object Repository (OR) and the Component
Gallery (CG) is that the OR allows programmers to make use of source code, while
the CG merely contains a set of libraries that are only available in object code format.

These might be commercially obtained; a number of companies specialize in
the production of components for a variety of applications that can be purchased
and plugged into applications. Some basic components might include graphing,
Internet facilities, reporting, and encryption.

Directory Structure

We can follow a similar directory layout as that which we saw in Figure 11.1, but
with the source and object code trees removed. As can be seen in Figure 11.2, we are
left with a slightly simpler layout to follow.

This being the case, the librarian might decide that it is not necessary to follow
the same layout as was chosen for the Object Repository. For example, if the Struc-
ture by Version had previously been chosen for the Object Repository, then the
librarian might opt for the Structure by Artifact for the Component Gallery to keep
artifact types together.

The Object and Component Archive 205

= () Component =) Component

= v = I_) Documentation
) Documentation) vl
() Executable Code Ve

B vz =l |[[2) Executable Code
() Documentation v
() Executable Code) v

Structure by Version Structure by Artifact

FIGURE 11.2 Different directory structures for the Component Gallery.

Documentation

In a similar way that we defined documentation for storing the Object Repository,
we also should define documentation for the Component Gallery so that individ-
ual components are easy to find, and their purpose and use well defined.

Object Type
This should state whether the object is an executable, a dynamically linkable library
(DLL) (Dynamic Link Library in the Microsoft Windows operating system), or
some other form of entity, such as a plug-in or applet. The key distinctions are that
an executable is often a stand-alone tool built with a specific purpose in mind,
whereas a DLL is an operating system-specific extension to applications containing
code that can be called from any application managed by the operating system.
Plug-ins and applets require specific support within the application, such as a
set of functions, usually provided by the component manufacturer, designed to be
included in a project that needs to read and execute the plug-in or applet. These are
usually application specific, although the widespread adoption of Java has meant
that some operating systems are capable of executing Java applets as if they were
native applications.

Required Libraries

This part of the document needs to detail any specific third-party libraries that
need to be present in the target system using the application, or the system used to
build the application. These might include operating system-specific functions,
such as those parts of the operating system deemed optional.

206

Corporate Software Project Management

Theory of Operation

This part of the document gives an overview of the problem that the component is
designed to solve, or the way in which the tool is to be used to achieve the desired
results.

It can be either aimed at the end user, being the developer wanting to use the
tool, or a set of guidelines designed for a programmer to read that dictates the way
in which the component is to be integrated into a larger system.

Command-Line Options

In the case of command-line tools that are stand-alone executables, there may be a

part of the document designed to inform the end user about the use of any specific

command-line options designed to change the way in which the tool operates.
This section is optional.

Test Cases

Independent of any tests carried out by the original developer of the component,
there should also be a collection of test case descriptions and results carried out by
the users of the component.

These tests are necessary because they will be performed at the same level of
rigor as the rest of the system that is being developed, and the objects that are being
implemented in order to create that system. Thus, by including the component in
the gallery, the other members of the organization can be sure that it has been sub-
jected to the same level of quality assurance as any other pieces of code they might
choose to use.

It is also useful in determining any limits on the operation of the tool, or use of
the component that the original developer had not envisaged simply by virtue of the
fact that every user will require the system to operate in a slightly different fashion.

Most of these we covered previously in the Object Repository part of this chap-
ter, but the slightly different usage leads to some notes to make. First, only objects
that are directly useable should exist in the Component Gallery, which usually
means executables (tools) or libraries (and resources).

Second, in the case where the object is an executable, the user needs to be in-
formed as to how the command is invoked, what parameters can be fed to it on the
command line, and whether it returns a value upon completion.

It would also be a good idea, in the Theory of Operation, to note any run-time
effects that the executable might have on the operating environment, such as mem-
ory or disk usage, and a list of error conditions, how they are arrived at, and how to
test for them.

Finally, independent tests must be carried out that validate the fitness for use of
the component, exactly as if it were something created internally. After all, it will

The Object and Component Archive 207

probably find its way into the production cycle of other projects that will rely on the
component behaving in a correct manner.

In the case of purchased components, a single document, provided by the de-
veloper, might cover all the appropriate topics, but might not follow the guidelines
set out previously. It then becomes a policy decision as to whether the information
needs to be extracted and inserted in documents that follow the same skeleton for-
mat as components developed internally.

Searchable Executable Code

There is also a mechanism by which programmers can render their source code
more easily searchable, such as being careful to choose variable and function names
that accurately match the purpose of the code snippets to which they refer.

The usual rules for variable naming should apply to those pieces of code that
are supposed to be searchable. Comments, naturally, will probably be compiled out
of the final fragment, so it is really up to the programmers to ensure that those
pieces of information that might help a plain-text indexing system are embedded in
the actual source code.

Some tricks include defining constant strings that contain comment-like state-
ments, which will be compiled and placed in the resulting code as plain-text strings.
In fact, hackers often use this kind of searching mechanism to try to locate pieces
of code that offer security features such as checksums and time-limiting execution.

It is, therefore, a technique that cuts both ways. By making the code searchable,
one might also be making it prone to being hacked, since the final version will also
contain those pieces of code that appear in the components being reused.

As a final note, it should be pointed out that this is very much a last resort, and
only to be used if the source code is not intended to be made available, or is not
available. The best way to make sure that a component is findable is to derive a
description from the source code and add that to the repository of searchable
documentation.

Even in cases where a closed binary library is being used, there will be (have to
be) a definition of how the library can be interfaced with, and it is this that can be
used to derive a description that can provide a searchable version of the component
in question.

SUMMARY

This chapter covered effective storage, backup, and management of components
that might be used in software projects. We listed the types of supporting docu-
mentation, ways in which the directories might be laid out, and provided some
pointers as to how the entire tree should be backed up.

208

Corporate Software Project Management

System managers, of both mainframe and desktop machines, will have their
own ideas about how to copy entire directory trees of information onto archival
material. From the Unix tar utility to third-party solutions such as PKZip, there are
many different ways to achieve the same result.

We said very little, however, about how the visual front end should be achieved.
This will vary with the kind of system that is available at the time of implementing
the first archival solution. It is recommended that the entire archive have, as a min-
imum, a network of HTML (Web) pages that can be used to guide the user.

Therefore, for each area of the archive there should be an index page that pro-
vides a link into the actual directory where the resource is located. There are a few
things to bear in mind:

B Links should always point to the most recent version.
B Some files will not display correctly in a Web browser.

The clear advantages of using such a front end are that the resulting network of
Web pages is searchable using standard tools (such as those from search engine
manufacturers such as Google), and they can be edited using standard tools such as
Microsoft Word.

There are even some specific CGI scripts that can be used to provide a user-
friendly change management system (such as that on display at SourceForge.net)
that includes provision for releasing updates, searching through information, and
archival and source code indexing.

One other aspect that we neglected is the effect that the object and component
archive has on quality assurance. Many projects have encountered problems be-
cause some form of synchronization issues had been introduced between different
binary versions.

For this reason, it is usually beneficial to always begin a test cycle from a virgin
build, created in an environment other than that used by the development team.
Within the confines of the object and component archive paradigm, this may not
be possible, unless all the components used are Open Source.

In addition, if fully tested components and objects are being used, it is unnec-
essary and inefficient to perform a complete build. After all, they have been reused
from a point of view that they are perfect, or at least that their defects are well
known and publicized through the object and component archive system.

|2 L Coding and Language
Choice

In This Chapter

Introduction

Language Layers

Specific Languages

Choosing the Glue

Comparison of Modern Languages
Summary

INTRODUCTION

Before actually starting any programming, it is important to establish what the mix
of programming languages used is going to be. Some projects, if they are merely
gluing together sets of previously written objects and components, can be devel-
oped entirely using a high-level language that may not necessarily be compiled—it
could even be an interpreted language, either Web-based, such as PHP or ASP, or
one of a variety of interpreted client side languages such as Tcl/Tk.

This chapter describes the different layers of a given system and how these
layers will reflect in the programming language used to develop the system. While
systems can be built using a single language, in many cases it will be beneficial to se-
lect languages that are most appropriate, for performance reasons in highly graph-
ical systems, for example.

209

210

Corporate Software Project Management

The language need not even be one that already exists. Some applications need
to be extendible by the client to reflect their changing operating environment. Fi-
nancial messaging systems, for example, tend to be reasonably fluid, sometimes
changing as much as twice per year. In such systems, being able to add features to
the protocol used for messaging is often scripted with a protocol definition lan-
guage that is peculiar to the system in place.

This means that the developer does not necessarily need to be involved for
many of the changes in the system that are prescribed by a change in the messaging
protocol. Other applications, such as those in the graphical processing industry,
also use scripted plug-ins for special effects either on moving or static images.

If a variety of languages is to be used, it is also probable that a single language
will be chosen as the glue to stick all the various other pieces together to create the
final product. Choosing this glue language is very important, since it must be flex-
ible, easy to write, and offer enough power to combine the other components.

It is assumed that the actual hard logic and heavy processing of the system is
not performed in the glue language, but in specific components that have been de-
signed and implemented to solve specific problems within the final system.

LANGUAGE LAYERS

There are several layers of computer language, and the key to understanding how
software engineering and programming work together is to look at the entire con-
cept as if it were an onion. In the center of the onion, we have the central process-
ing unit of the computer, surrounded by whatever hardware it needs internally
that will enable it to successfully perform the tasks for which it has been designed.

Around that core, we have a set of instructions that are understood by the com-
puter, but not by anyone else. In fact, some engineers can write code that is directly
executable by the computer, but this is increasingly rare as machines become more
and more sophisticated and the number of instructions that they understand
expands.

From this machine code, out to the edge of the onion, there is a process of
abstraction, which means that the languages become less and less related to the
machine and more human oriented, on top of which are layers that translate from
the human oriented to the machine oriented (such as Java) in an attempt to remain
platform independent.

This is necessary because not all machines speak the same language, so we
either need to convert our high-level language into the flavor that they are expect-
ing, so that it can be executed (compiling), or we need to write and compile an

Coding and Language Choice 211

application that can translate, at run time, the language into actions on behalf of the
processor (interpreting).

Clearly, there will be performance implications for using machine languages,
compiled languages, or scripted languages, and this section of the chapter will
attempt to divide all the possibilities into three distinct areas.

Machine Languages

The most efficient programs can usually be created in machine code. By efficient we
usually mean fastest to run. The reason for this is that humans are actually quite
good at refining code such that it is arranged in the most effective way for a ma-
chine to translate into actions.

One of the best ways to achieve a trade-off between the advantages in execution
speed and development time is by compiling the code first into something that the
machine can understand and then refining it so that it is even more efficient. Except
in very specialist cases, compilers are actually getting consistent and effective
enough that this is usually not necessary.

The areas in which an advantage can usually be gained are in driver and high-
end graphics development, or areas in which speed is vital. There may also be cases
where no compiler exists for the hardware because it is proprietary or not widely
used. In these cases, it can be more efficient just to write a compiler.

Writing in machine code is very inefficient in terms of coding time. The lan-
guages tend to be very complex, and built up of many different specific keywords
and concepts that are not easily understood. Above all, it simply takes a lot of time
to write code this way, and modern computer languages are far more efficient.

Assembly Language

Directly above pure machine code is assembly language, and it is this that is most
commonly used by those who need to be able to control the executable code that is
used to create the application. Assembly language differs from machine code in one
respect—it can be edited as words on the screen, while machine code has to be
edited at the byte level.

The assembler performs two tasks—it takes the assembly language and con-
verts it into the specific byte code that the processor understands, and it prepares an
executable file that follows the specific format of the underlying operating system.

In most, although not all, programming paradigms, the operating system runs
the executable. Some of the code may be directly executable by the processor,
for the sake of efficiency, but the operating system actually prepares the memory,
loads the software, and manages the allocation of resources, before helping it when
it decides to terminate.

212

Corporate Software Project Management

Generally, this task is performed by the linker in the last step in the compilation
cycle. The input to the process is the assembly language (or object code) for all
elements of the system, including any libraries and subsidiary modules that contain
code that is needed for the system to run.

Operating System Concerns

There are as many different formats for the executable file as there are operating
systems, which means that writing code in assembly language is very system spe-
cific. In fact, it is fair to say that code written in assembly language will be almost
impossible to port across platforms, even if they represent two operating systems
from the same family.

This means that they are not appropriate for use in an object-sharing software
engineering paradigm. There is less and less need, except for specialist applications,
to use assembly language, but in some environments, such as embedded systems,
video game and simulation, and hard real-time systems, it becomes inevitable.

There is, however, one final advantage: by using machine code, it is not actu-
ally necessary to have an operating system at all. In fact, if the program is capable
of managing its own resource allocation, and does not need to rely on any specific
services that might be offered by the operating system, then it may be able to run on
its own, which can be an advantage for certain projects.

Compiled Languages

The next level of abstraction away from the machine is in using a compiled lan-
guage—typically, these are plain-text editable files or possibly some form of fourth-
generation language that is based on diagrams. They are hence much easier to
understand than assembly language that makes writing code more efficient.

However, depending on the compiler, the language construction may not lead
to particularly efficient code. It is fair to say that the more abstract the language
becomes, and the more innovative it is, the less efficient will be the compilation.
Thus, a new language based on a very abstract concept using near natural language
ideas and terms will compile to less efficient code than a language such as C, which
is close to its origins and is supported by tools that have been in existence for about
30 years.

Most projects will use compiled languages as the core. They are easy to port, as
long as the toolset that supports them supports the target environment, and pro-
vide an interface between the developer and the system that is easy to absorb, while
still retaining concepts that make them efficient to compile.

Coding and Language Choice 213

The nature of the support and organization of compiled languages also means
that they are perfect for use in code-sharing initiatives, such as the Object Reposi-
tory concept that we introduce in this book as one of the pillars of software engi-
neering on a corporate level.

Byte Code and Virtual Machines

Some compiled languages, such as Java, do not compile to native code. That is to
say, they are reduced to code that will not run on the platform as it is, but must be
interpreted by a special kind of processing application called a virtual machine
(VM). The key principle behind this approach is to allow the same executable to
run on any platform for which there is a VM available.

Some people might put these languages in the same basket as scripted or inter-
preted languages; others will place them in the compiled languages basket. In prin-
ciple they lie somewhere in between. They are, however, particularly suited to the
object-sharing ideology, since as long as the operating system contains the correct
VM, they can be used, without even being recompiled, over and over again.

Interpreted Languages

The last type of language that we will consider is a family known as interpreted
languages, which includes all those that need a run-time portion in order to execute
them, such as application enabling languages, and those that are not compiled but
attached to a front end that interprets them.

These are different from approaches such as Java that use a VM, because the
compiled version of Java is a more efficient rendition than the language was
originally. This may not be the case for interpreted languages that suffer from the
additional problem that the application that launches the program may also not be
efficiently written.

In the worst case, it could also be a byte code compiled application, requiring
a VM, in which case the code has to be interpreted twice before it is actually turned
into an effect or action.

Interpreted languages in wide use include JavaScript, and many Web languages
such as Perl, Active Server Pages, and PHP. They provide an easy way to develop
very powerful cross-platform solutions, which is, of course, the goal of using an in-
terpreted language.

Security and Performance

There are two big disadvantages with using interpreted languages, and it depends
on the exact way in which they are used as to whether either presents a problem.

214

Corporate Software Project Management

The first is that because they are essentially plain-text files, they are not secured in
any way. It is true that it is possible to reverse engineer a piece of compiled code to
get back to something that resembles a programming language, but it is unlikely to
yield anything usable due to the vagaries of the compilation process itself.

However, when an interpreted language is used, the code is available for all to
see if it is, for example, embedded in a Web page or handed over as part of the de-
liverables in a scriptable system. If the script is running on a Web server, with only
the end result being handed to the browser client, then only a concerted attempt
to download it will actually give access to it, and it is unlikely that this will prove
possible.

Performance is an issue that will affect every platform, but to what extent it
does, may not matter. For example, it is unlikely that Internet users will notice a
difference between the reaction time of a scripted and nonscripted environment.
They will experience a bit of lag on the line anyway, which will mask the execution
speed differences.

However, on a local system, the user may well be aware of a difference in reac-
tion speed between two systems, and if the environment requires high perfor-
mance, there is a distinct possibility that an interpreted language will not provide
enough performance to satisfy.

Scripting Engines

To get around these two issues, and in an attempt to retain the ease of use of an
interpreted high-level language over a traditional programming language, the
developer can choose to use a commercial scripting engine. This is somewhat like
a byte code interpreter, except that no compilation takes place, except just before
the script is intended to be used.

Internal Compiler

Inside the developed and distributed application is a compiler that turns the high-
level scripting language into executable actions, and then executes these actions—
it is a halfway point between a strict byte code interpreter and a real programming
language.

There is also the possibility that, rather than containing a compiler inside the
application itself, the languages are turned into byte code that is then distributed by
the company as part of the application. Hence, they will be able to extend the func-
tionality of the system without changing the core source code, but the client will not
be able to have access to these customizations.

Coding and Language Choice 215

Therefore, the use of a scripting engine provides extensibility, security, and
better performance than an interpreted language. It can also mean that a program-
mer is not required to produce a customized version of the application for other
clients, which is something that fits nicely with the reuse model and traditional
commercial frameworks.

SPECIFIC LANGUAGES

Of course, in any system there will be the possibility that it needs to make use of
some specific languages that deal with issues such as document creation, data ma-
nipulation, and so forth. In fact, most of the communication to external services
(such as databases) will rely on a language that needs to be integrated with the end
system.

This can be done on an ad-hoc basis, at run time, or designed into the system
and compiled as if it was any other programming language. The only requirement
is that the manufacturer of the third-party tool or service gives programmers some
way to interact with the application via a connection to it.

There is also a variety of languages that are concerned with the presentation
and communication of information. Consider the file format that provides data
exchange between applications such as word processors—this can be considered a
language of its own, albeit proprietary.

Some languages, such as PostScript, are designed to aid in communication of
the document to printers, and these are languages that began as proprietary cre-
ations that have moved into the mainstream. There are also some libraries available
that can be used to display PostScript documents.

Therefore, while the specific languages themselves are probably not appropri-
ate for use in the Object Repository, it is probably worth building up some areas of
the Component Gallery to contain libraries that can handle some of the more com-
mon types of specific language, which we have split into three groups:

B Document Definition Languages
B Data Management Systems
® Communication Languages

In addition, there is also a whole host of specific protocols that are not lan-
guages, but dialogs that enable certain technologies. For example, TCP/IP is a
protocol designed to be used in Internet communications, but is not rich enough

216

Corporate Software Project Management

to be considered a language in its own right. It does, however, provide a sound base
for the transmission of HTTP requests, which could be considered a very basic
language, and on top of that HTML, which is used to define Web pages and is
certainly worthy of the title language.

Document Definition Languages

The purpose of document definition languages is to provide a portable way to dis-
play information that can be reused across multiple platforms and devices, usually
giving an effect that is constant across those devices.

The definition language will be reusable, as a definition of a way in which the
data is to be represented, but it is unlikely that the scripts themselves will be rele-
vant in different situations. There will be, of course, exceptions to this rule, such as
where legal pro forma or accounting packages can reuse text and layout, but these
must always be augmented with user data.

It is more likely that the library that is capable of producing the actual end re-
sult, using the definition language as a kind of instruction set, will be the portion of
the system that is reused, and as such, it will form part of the Component Gallery,
or the Object Repository, if the source code is available.

Examples of Document Definition Languages include HTML (for hypertext
Web documents), PDF (the standard for portable document exchange originally
created by Adobe), and PostScript (for printing and raster display).

Data Management Systems

Data Management Systems have an interface language, usually a variant of the pop-
ular Standard Query Language (SQL). The purpose of this language is to manage
the data that is contained inside the database system. This includes aspects such as
table creation, data insertion and removal, and basic retrieval tasks.

Unlike Document Definition Languages, then, they become based on a dialog
between two systems—there is a request, and usually a response. The Document
Definition Languages, however, are entirely one way—the system merely uses them
to create a document that is then validated by the users when they try to read it on
another system or using another application.

The difference is that the successful implementation of the interface language
can be directly assessed without the need to look to a third application. The lan-
guage is again a template, a way in which the programmer can seek to define the
queries that the database system is to execute, but they contain more than just a
write-only document, and will actually cause actions to take place that have poten-
tially far-reaching consequences.

Coding and Language Choice 217

Here again, it is unlikely, except in rare circumstances, that the scripts them-
selves will be reused. They will be created by the application during run time, and
will only have relevance to that particular application.

Therefore, the library provides the interface to the external database system
that is inherently reusable, and that will, again, be a part of the Object Repository
or Component Gallery.

Communication Languages

Finally, we have the set of languages that we have chosen to call Communication
Languages, and this is the most varied group. On the one hand, there are the raw
communication enabling protocols that allow a dialog between the requester and
the server, such as HTTP.

HTTP allows the Web browser to request various bits of information about an
artifact, as well as setting up a dialog that ends in the requester receiving that arti-
fact (or a copy of it) via a network connection. Such protocol implementations are
usually accessible via a standard library that is available with most development
environments.

Indeed, it is possible that the development language being used will attempt to
shield the programmer from needing to understand the underlying HTTP protocol
itself, by encapsulating the behavior in an object that is capable of providing a
buffer between the technical side and the logical side. This object forms the reusable
part of the system, or language, not the protocol.

Then there are languages that are designed to convey information in a structured
manner. The leading light in this field is a language known as XML (eXtensible
Markup Language) that contains in its definition the possibility for the user to extend
the definition of the language. Thus, it is possible for the application to extend the way
in which the language is used by defining new pieces using a mechanism that the lan-
guage defines.

This makes it a very powerful tool when information needs to be transmitted
in a way that should not necessarily be tied to a specific collection of data. As such,
it will usually be the library that facilitates the parsing and use of XML that is
reused, rather than any XML “documents.”

However, unlike some of the other specific languages that we have seen, it is
possible that the XML documents will be able to be reused within an application;
that is, although the definition remains static, so does the use, it is only the data that
changes, and so a company can, in a sense, adopt a particular XML document to
ease the transmission of information between applications.

218

Corporate Software Project Management

CHOOSING THE GLUE

Once the most appropriate objects have been chosen, in some cases providing
support for scripting or definition languages and in others simply offering a service
that is required by the system, then a language has to be chosen that will tie them
all together.

It is highly unlikely that the objects will be capable of conversing with each
other in a way that is conducive to achieving the desired result without some kind
of enabling technology that holds them together. This enabling technology will also
probably need to contain a minimum of logic as well, either to process or cause the
processing of the input and output data exchanged between objects.

We call this the glue code, since its purpose is to hold the system together in a
coherent manner. The more glue code that is used, and the less “real” code, the
better. The reason is that we assume that the Object Reuse paradigm has led to a
rich collection of well-tried and tested stable objects, which can all be connected
together via glue code that serves no purpose other than to link the pieces of com-
mon logic together and drive information from one to the other.

In reality, of course, this will be more complicated, and it is likely that at least
some of the glue code will provide some form of service that is so specific that to
create an object from it would not be appropriate.

Compiled Glue

The most common way to glue the objects together is by using a compiled lan-
guage, and for this to work, several criteria need to be satisfied, depending on the
kinds of objects and components being integrated.

For example, if the system consists of a number of objects for which the source
code is available, then it may be a simple matter of including the source files in the
project and compiling the whole collection together as one big application. This is
the most likely approach in cases where the reused components are individual func-
tions or complete objects, such as Java or C++ classes.

It may be preferable to compile the objects separately, however, and export a
suitable interface that can be accessed at compile time from the glue code, and the
object code linked into the project at a later stage in the compile process. This helps
to keep the objects isolated from the main code base.

This option is most appropriate if the Reuse paradigm extends to libraries or
components for which the source code is not immediately available. This also im-
plies that a well-documented API 5 application programming interface is available,
as well as a suitable method for linking, either dynamically at run time or statically
at compile time.

Coding and Language Choice 219

One example of glue code is in examining a regular Windows application writ-
ten in the C programming language. Microsoft provides many different libraries for
manipulating the Windows user interface, and they can be statically or dynamically
linked into via an API that is available in a variety of language flavors, thanks to the
development community at large.

The amount of glue code required to write a Windows application that does
nothing is around 100 lines. Compared with a command-line interface program,
this seems like a lot, but one of the advantages of the Windows programming par-
adigm is that there are many features built in to the interface.

For example, to create a full text editor, with file handling, would not require
much more than 150 lines of code. The actual edit window, as in the Notepad
application, is provided by Windows itself, as a single control, requiring a few lines
of code to implement. Clearly, this is vastly different from the command-line
equivalent, and serves as a good example of code reuse.

Scripted Glue

In a programming environment such as the one used to control the back end of
Web applications, it is more likely that the glue will be scripted. This essentially
means that the individual objects that are used to provide services are executable,
or completely self-contained scripts, and the glue merely passes information from
one piece to another.

This requires that the executables are command-line entities, and that they can
be communicated with before, during, and after execution. Of course, this does not
necessarily hold for all scripted or executable objects held together in this way, but
if interaction is required, then it needs to be catered for.

Again using the Web application development environment as an example, a
specific language (such as HTML) may be needed to be used as glue code. The
project may consist of nothing more than implementing a Web-enabled feature
such as a bulletin board application, with an HTML front end. In this case, the only
programming that is required is in manipulating the bulletin board with a set of
HTML pages.

COMPARISON OF MODERN LANGUAGES

When deciding which language is appropriate for each project, it is necessary to ask
a few important questions to narrow the field. We need to arrive at a solution in

220 Corporate Software Project Management

which the language chosen is the most appropriate for the tasks at hand—some lan-
guages offer advantages in terms of tool support, and others offer advantages in that
they can create applications rapidly.

Expertise

Key in choosing a language is considering what market expertise is available to ex-
ploit a given language. It is very difficult for programmers who have been trained
in one language, and have become proficient at it, to drastically change their out-
look to program in a different one.

If the two languages are the same in terms of programming paradigm, it will be
easier for a programmer to switch allegiances in this way, but it is still wise, at least
in the beginning, to use a programming language that is well established in the mar-
ketplace and for which adequate staff will be available.

There will, of course, be cases where the application domain is so specialized
that a specific set of languages, scripting languages, or tools are vital to the devel-
opment of the projects in question; in which case, there may not be expertise read-
ily available, so it will be necessary to train new recruits.

Should this be the case, there is another debate—whether to employ recent
talented graduates or older hands who have more experience. This debate will
probably come down to a compromise solution where a mixture of experienced
and inexperienced staff will be chosen in an attempt to weigh the cost of experience
against the gamble of providing internal training.

Support

Similar to selecting a language that has professionals ready to exploit it, the lan-
guage also needs to enjoy enough support that there are tools, components, source
code, and APIs available for it. If, for example, the company is going to be devel-
oping video games for a specific games console, they need to select a language that
enjoys support for the creation of software for that console.

Support for tools includes compilers or interpreters, resource editors, suffi-
ciently advanced editing and code management tools and environments (at the
programmer’s workbench level), and any specific editors that will be required for
the target environment. For example, resource editors for Windows applications
need to be accompanied by resource compilers that can bind the resulting file to the
application so that the resources (bitmaps, dialog box definitions, menus, etc.) are
available to the application at run time.

Early adopters of a given language will find that they become instrumental in
providing the toolset for the rest of the community, and will probably enjoy a lot of

Coding and Language Choice 221

support from that community. This may mean that it becomes a more investment-
effective way to run a software development initiative, since many of the tools and
utilities will be available for a more reasonable price, or even for free.

However, this might turn out to be a false economy, since experience will not
be available in the general market nor will the tools be stable, which is why, at the
time of writing, most software development organizations use one of a reasonably
small collection of well-established languages for development purposes.

Frameworks and Environments

Choosing the language will also be based on the availability of application develop-
ment frameworks that match the target platform. This is in an attempt to remove
much of the more mundane programming chores away from the programmer and
into libraries that support features that are common across applications within that
domain.

This includes, for example, frameworks such as MFC, that originally started out
as a way in which Microsoft provided a set of rich classes for containing applica-
tions, and offered many standard features such as printing, a multiple document
interface, and standard dialog boxes.

More specific application domains will likely have their own solutions to these
kinds of problems, such as development efforts for specific hardware that should
take advantage of the possibility to reuse code that is provided by the manufacturer,
rather than constantly trying to reinvent the wheel.

In other words, it is of no use to try to take advantage of the cutting-edge facil-
ities provided by a new fourth-generation language if that language is not sup-
ported within the target application domain. Unless the features of the language are
vital to the application under development, it is best to use well-established lan-
guages and environments that are well understood in conjunction with the target
platform and problem domain.

Portability

If the resulting code needs to be portable across multiple platforms, the language
choice becomes slightly clearer. If, for example, the application domain can rely on
the presence of a Java Virtual Machine (JVM) on every platform that it is supposed
to run on, then clearly the language of choice will be Java, compiling to byte code.

By a similar token, a decision can be made to use an interpreted language that
can be run on any platform for which an interpreter exists. This might be a com-
mercially available interpreter, or one that comes with the development environ-
ment and contains a redistributable portion that can be given to clients.

222

Corporate Software Project Management

However, seemingly portable solutions are occasionally not. For example, it is
well known that operating systems are not binary compatible. Even though a
Windows environment might look a little like an Apple MacOS environment,
programs written for one cannot run on the other unless they are redeveloped.

This means that you need to consider portability at the application binary level
(compile once, run many), and need to be aware that some development environ-
ments are not even source compatible (compile many). This is because the pro-
gramming paradigm for each platform is very different, and the way in which the
application interacts with the user and the operating system changes for every plat-
form—from Windows to MacOS, Linux to XBOX, they are all different and share
almost nothing in the way they must be programmed for.

Performance

The final deciding factor that will help in selecting the language is performance. By
this, we mean performance in the run-time environment and performance in terms
of the efficiency of development. A language such as Visual Basic is very easy to use,
and highly efficient in terms of developing applications in a way that is logical, well
supported, and requires very little direct development effort.

However, the resulting applications have a tendency to perform less well than
those written with other languages such as Java or C++. Part of the problem is that
the compiler model from VB to executable code means that the result is not very
efficient, and part is due to the fact that it is a proprietary language and therefore
cannot take advantage of wider analysis that might lead to improvements.

This will also affect the decision to use a scripted or interpreted solution in
cases where performance is a deciding factor, and one that might not be solved
by simply forcing the program to run on a more powerful variant of the target
platform.

The result will be a trade-off between available experience, performance, and
efficiency, providing that the decision is not effectively taken out of the hands of the
developer due to other constraints imposed by the application problem domain or
the client.

SUMMARY

In this chapter, we tried to touch on the issues surrounding how a development
language, or mix of languages, can be chosen to best serve the project team. In
doing so, we also explored many of the different paradigms that are available to

Coding and Language Choice 223

choose from, from the point of view of a project manager. Programmers will real-
ize that the view offered is somewhat generalized, and will have a better insight into
the problems facing them.

In the end, the technical programming team will have to have the final word,
except in cases where the client has expressed a clear preference for a certain solu-
tion that should be adopted. The programmers have to work to realize the project,
and they should be able to choose the tools that are most appropriate for the job.

This is not to say that there is no merit in selecting or just evaluating emerging
technologies, since the whole field is moving at a such a fast pace that there will
always be a new solution just around the corner that can be exploited. However,
care needs to be taken when doing so since it will increase the risk associated with
the project, possibly to a level that is not acceptable or compatible with the end goal
of customer satisfaction.

I 3 : The First Prototype

In This Chapter

Introduction

Designing the Prototype

The Prototype as a Skeleton
Prototype Layers

The Demonstration
Assimilating Client Feedback
Recording

Summary

INTRODUCTION

A prototype may the first time that the client is invited to look at something more
substantial than a paper-based approximation as to what the final product will look
like. As such, it is vital both as a first impression of the usability of the system and
providing clues as to whether the developer actually understood what functional-
ity the client wanted, and whether the client has accurately expressed what problem
they needed to solve.

This chapter describes how the prototype should be designed, since it is as
much a part of the final delivery as the actual product, and how to choose the kind
of prototype to produce. This can be as simple as a self-contained product that is
built using a rapid application development tool but lacks the complex internal
functionality that will be present in the final product.

225

226

Corporate Software Project Management

This prototype could also serve as a skeleton into which the code that actually
provides the required functionality can be placed.

The other end of the spectrum is a prototype that is a full implementation of
the final product, but is developed using tools that result in a package that does not
exhibit the performance required in the production environment.

Part of the reason behind creating a prototype is to offer the client the possi-
bility to alter pieces of the application before it is finalized—either because their re-
quirements have changed or because the developer has misunderstood the purpose
of some or all of the application. It also gives both parties a convenient way to mea-
sure progress, especially if an approach is taken whereby the prototype evolves from
an initial skeleton to the final product, or is a full-featured application in its own
right.

DESIGNING THE PROTOTYPE

The prototype needs to be designed in the same way as any other software compo-
nent, always ensuring that guidelines are followed regarding the documentation
and design processes. There is a balance to be struck between having a demonstra-
tion model up and running as quickly as possible, yet implementing enough func-
tionality that the client can be confident that the project is proceeding in the right
direction.

Design Criteria

Before the design can be created, it is necessary to know what the client expects
from it—are they looking for proof of concept, or are they more concerned that the
user interface makes the software easy to use?

The criteria that need to be examined are:

® Nonfunctional constraints (performance, platform, etc.)
B Timescale (does the client expect fast results)
m Simulation of external interfaces (other systems, databases, etc.)

Essentially, the design needs to be able to address the functionality of the pro-
totype at a level that the client recognizes as being representative of the potential of
the end product. To this end, they need to be aware that the closer the prototype
gets to being a working application, the more resources the creation of the proto-
type will consume.

The First Prototype 227

There are two reasons for designing prototypes that are full systems that show
all the expected features of the final product. The first is in cases where the entire
system is so complex that there is a real advantage to be gained from producing a
quick, low-performance version that proves that the developer is capable of deliv-
ering the core functionality of the system.

The second reason is when creating a system that has real-time dependencies
that affect the safety of the operation of the system—in particular, those systems that
are designed to carry people, or whose malfunction will lead to the injury, death, or
environmental damage. A simulated system can be created as a prototype that helps
to ensure that the design and operating assumptions were correct and that the
system has been correctly thought out.

In both cases, all the externally influencing devices or operating conditions will
need to be simulated. This can lead to a deadlock situation in which it is necessary
to design, prove, and build simulations of the externally influencing factors to the
same high quality as the final product.

In a sense, it is possible to go too far, and spend more time proving that the
original design, as implemented in the prototype (simulation), is correct than ac-
tually developing the final system. The time may not be wasted, however, and it will
certainly speed up the development of the final product if all the design and imple-
mentation issues have been solved in the process of creating the prototype.

Some situations may call for a third option, in which the user interface and
nonoperational functionality—such as data entry, menu systems, and warning,
error, and status messages—is created as a prototype, and the actual functionality
simulated in a separate project before combining the two to create the final product.

It will be a collaborative effort to design the approach that should be taken to
create the prototype, based on input from the experts in their respective fields. The
clients will offer their experience and financial constraints, while the developers will
offer their knowledge of the construction of computer software.

Between the two parties, they need to reach a conclusion as to what the associ-
ated risks are for each of the three prototyping approaches presented previously, if
any, and any practical concerns regarding scheduling and finance that either side
might have.

Documentation
It is important that the documentation created that provides the design for the

prototype falls into one of the following categories:

B Reused documentation (from the project design documents)
® Reusable documentation (to be fed into the main development cycle)

228

Corporate Software Project Management

If the documentation that is produced serves only to support the prototype,
then this could be seen as a questionable use of resources. The purpose behind cre-
ating a prototype is to address any issues that might arise as a result of implement-
ing the design of the product.

Therefore, the prototype must, at the very least, provide proof that a concept
works and how it might be implemented. In turn, this means that the work done as
part of creating the prototype should be work that would otherwise have needed to
be done in creating the product itself.

Thus, any documentation that is needed to create the prototype is also needed
to create the final product. Two documents will need to be fed into the prototype
phase, at a minimum:

B Requirements Definition
B Functional Specification

This last could be the Requirements Specification if the prototype is designed
to feed itself into the Functional Specification and design for the final product.

To a certain extent, the documentation may also remain internal—that is, the
client should be able to look at the prototype as a replacement for a formal design
document that they should sign off as being a fair representation of the final prod-
uct they want.

In such cases, it should be noted that, from the outset, the client is willing to
accept a prototype in lieu of formal design documentation. It does not, however,
replace the design documents that need to be created so that the programmers can
build on the foundation provided by the prototype.

Indeed, they will need to have such documentation in place before they can
begin to build the final product, and, if the prototype is acting as a kind of place-
holder for that functionality, it may be required even before work on the initial pro-
totype is begun.

THE PROTOTYPE AS A SKELETON

As we have seen, there are different ways in which we can view a prototype. Besides
the third option of simulating a system prior to developing the solution for use in
the real world, prototypes can be looked at in one of two ways—either as stand-
alone products that serve a specific purpose, such as proof of concept, or as the start
of the full product, a skeleton into which functionality can be dropped.

The First Prototype 229

Games, for example, can be created without artwork in order to test the game
mechanics and principles, to get the balance just right before the actual product is
created. Office software can be constructed around a series of logically arranged
menu options and dialog boxes.

Implementing Skeleton Prototypes

If the main reason behind creating the prototype is as a skeleton form of the final
product, a few points need to be taken into consideration. For example, the non-
functional requirements of the original design (such as operating environment)
need to be respected at the earliest stages of the project.

These might have an effect on the decision whether to proceed with the proto-
type as a skeleton, and the way in which the prototype is developed. They may
influence areas such as programming language choice and platform, which will
have an effect on the ease with which the prototype is to be created.

If a language such as Visual Basic is used to build the prototype, it will be some-
thing that is quick and easy to create, but since VB is not known for its high per-
formance, then if there is a nonfunctional requirement that dictates that the system
performance approaches real-time criteria, VB would probably not be a good
choice of programming language.

However, high-performance languages such as C++ and assembler bring an
overhead in development time that will mean that the prototype will not be avail-
able with the same immediacy as if a simpler language such as VB were to be used.

PROTOTYPE LAYERS

The previous two sections raised two important questions:

® How much functionality should be designed into the prototype?
® Should the prototype be the first step in a final product?

To answer these two questions it may be beneficial to think of the prototype in
layers, or phases. Each can be as functionally complete as necessary to give an ac-
curate view of the potential of the end product. If every layer of the prototype is
complete, then the product can be said to be complete.

However, for reasons of stability, future expansion, and pure performance, the
completed prototype may fall short of the nonfunctional requirements that the
client has, and therefore a full product may need to be redeveloped, using the pro-
totype as a living design.

230

Corporate Software Project Management

The Interface

The first layer is that which is seen by the user—the interface. The interface can take
a variety of different forms, depending on the product type. For example, should
the product be an application, the interface is likely to be either a command line or
a graphical user interface of some description.

However, should the end result be a library or component that is destined for
inclusion in other projects, then it may have another kind of interface, such as an
exported function that can be called to provide a service. Windows common dia-
log boxes (such as the File Open dialog box) are examples of this kind of interface,
and are the reason why most applications have a similar look and feel.

GUI Interfaces

No matter what operating system is being used, GUIs usually follow a set pattern
of features, which can be seen in Figures 13.1 (Windows), 13.2 (Menus), and 13.3
(Dialog boxes).

I Title Text Here -0l x

Help

FIGURE 13.1 Windows.

It is quite possible to have a working application, which has all of the features
in Figures 13.1 through 13.3, but without actually doing anything beyond support-
ing the interaction between the user and the application. A Visual Basic application
of this kind can literally be created in a matter of hours (or minutes for a very small
application).

This means that it might actually take longer to document the prototype than
to create it, but so long as the documentation is reused, or can be reused, this is of
little consequence.

The First Prototype 231

= e o e BEES
el

About WinSkel. .,

FIGURE 13.2 Menus.

I Title Text Here

WinSkel

www.lecky-thompson.net
[c) Guy W. Lecky-Thompson, 2003

[oK |

FIGURE 13.3 Dialog boxes.

Command-Line Interfaces

In the same way that the GUI indicates to the end user the possibilities of the ap-
plication, the command-line options give clues as to what the application does, and
its capabilities. Thus, the first step in creating a command-line driven prototype is
to isolate the command-line options that will be required in the final product.

232

Corporate Software Project Management

Figure 13.4 shows a typical splash screen, which shows how a specific command-
line application is designed to be used.

134
sometool.exe loptions)

tion or s the first variation) t option two
ows usage information (this screen) h starts help s
etc

FIGURE 13.4 Application usage splash screen.

This is slightly different from the way in which such programs are usually con-
structed, which tends toward the “build and add” approach. However, in the con-
text of software engineering, it can be argued that it is necessary to know exactly
what the application can and cannot do before actual construction begins.

Hence, the command-line prototype will be able to demonstrate the capacity to
process all the arguments on the command line before they are actually imple-
mented, as opposed to creating a piece of functionality within the system and then
attaching a command-line option to activate it, as can be the case in less well man-
aged development processes.

Exported Functions

End products that either exist to be used as libraries to be imported into other
products (language-specific object code or language-independent libraries) or as
components (dynamic link libraries) to be used inside a larger system will only have
an interface that is accessible by a programmer.

The exception to this is when the resulting component can be imported into
other systems by an end user. Web-based projects are among those where the client
might be requiring development of a component that is designed to be imported
into another third-party tool by the end user.

The First Prototype 233

In such cases, only the callable functions need to be exposed in the prototype—
they will probably be filled with code that is designed to return a result that is of the
kind that will be expected in the future, but without performing any real processing.

The Logic

The next layer down from the interface is the code that is designed to fulfill the
requirements laid out by the client. In other words, it is where the bulk of the
processing will be done.

Some projects will require that the logic is implemented in the prototype, by
way of a proof of concept or proof of understanding. Other projects will require
that there is just enough logical code behind the interface to illustrate that the
interface is adequate for the purpose for which it has been designed.

Should the client require that more logic is implemented than this, it is im-
portant that the designers and programmers are aware that the code they write is
potentially marked for reuse and thus must adhere to the standard practices of the
organization laid down for code production.

External Dependencies

Finally, all applications need to be able to interface with other systems—whether
peripherals, an operating system, or third-party device or network. These should be
simulated for the purpose of the prototype except in cases where the product exists
solely to provide an interface to such a device.

This also allows a limited amount of testing to be performed, especially in cases
where the hardware to which the system has to interface is not yet available, or is
very costly. However, there is a danger that the simulated hardware itself becomes
a project in its own right.

The final point about simulating the interface to an external resource is that it
enables the system to be built up much faster, and in a more controlled manner
than if the connection to the resource needs to be made immediately.

THE DEMONSTRATION

Prototypes usually result in a demonstration stage of some description. That is, the
prototype is delivered in person and demonstrated to the client. At the end of the
demonstration, the client should be able to make a decision as to whether the de-
veloper has fully understood the complexities of their project, and hence be allowed
to proceed and develop the rest of the system.

234

Corporate Software Project Management

Active Prototypes

An active prototype is one that can be altered during the presentation process. In
other words, the client can instruct the developer to alter the prototype such that it
more closely resembles the look, feel, or logic of the model that they hold in their
mind’s eye.

This is a very useful technique, as it increases the extent to which the client
is involved in the project and provides an easy way to change the way in which the
developer has understood the client’s requirements.

However useful it may be, realizing it requires that a development environment
for the prototype be:

® Physically transportable (probably on a laptop)
® Easy to use/fast to implement changes
B Visual/Scripted

It is no use trying to provide an active prototype that is written in an obscure
programming language, needs a mainframe to compile it, and takes half an hour of
programming effort to change one aspect of the user interface.

The key to the technique is being able to involve the client, probably to the
extent that they are allowed to change bits and pieces, understand the nature of the
change, and see the results immediately.

For these reasons, it is usually reserved for the user interface aspects of a system,
or the scripted behavior of prototypes that are a dry run for the final product and
will need to be redeveloped in a higher performance language due to nonfunc-
tional constraints.

ASSIMILATING CLIENT FEEDBACK

Prototype deliveries are usually accompanied by a contractual payment. The con-
tract might state, for example, that 25 percent of the final agreed sum is to be paid
upon acceptance of the prototype.

Passive Prototypes

If an active prototype is one that can be easily changed during the demonstration
process, a passive one is the opposite. It is a prototype that has been built as a
demonstration, in order to demonstrate understanding, but has not been created
with the possibility for easy adjustment to measure.

The First Prototype 235

This may be because it has been built with the same tools as those that will
be used to create the final product, and as such, it is simply not efficient to correct
errors in an interactive way. The most likely reason for this is that there is a non-
functional requirement that prohibits the use of a rapid application development
system (RAD) such as Visual Basic or C++ Builder.

Of course, it may also be because the investment would have been too great to
create such a prototype, and so it has been thrown together using office tools for
creating presentations, and graphic tools that provide the facade of an application,
without any programming having taken place.

Whatever the reason, a passive prototype can only be changed outside the
demonstration phase itself. As such, we would like to be able to reduce the number
of iterations that need to be gone through before the final prototype is accepted,
and the contractual payment made.

Pre-Delivery Conferencing

It is a good idea, if practicable, to try to let the client get their hands on a pre-
delivery prototype, perhaps in a video conference or over a dial-up connection.
This will allow them to identify major inaccuracies before the final delivery of the
prototype.

It is important when using a passive prototyping strategy to involve the user in
an off-line manner as quickly as possible. This will reduce the resource impact of
producing an erroneous model.

This is a direct consequence of needing to develop a prototype that cannot be
easily altered, due to the inherent complexity of the development environment or
just because it is created with a simple, yet time-intensive tool.

Less good than an interactive pre-delivery session is the provision of screen
shots and supporting documentation. It is unlikely, however, that a client will ac-
cept delivery of a prototype consisting only of documentation, since the idea is to
also provide some kind of proof of progress.

Limited Redelivery

At the other end of the miniature life cycle that makes up the prototyping phase of
the project is the delivery, and subsequent redelivery. Although we have tried, by
using pre-delivery conferencing, to limit the number of errors that are present in
the prototype that is delivered, it would be unrealistic to assume that only a single
delivery need take place.

Therefore, a second delivery must be budgeted for, with the implication that if
more than two deliveries are needed, there is a vital flaw in the understanding

236

Corporate Software Project Management

between the client and developer that needs to be addressed before any further
work is carried out.

It is easy to get into a behavioral loop whereby the client is constantly reevalu-
ating the prototype such that the developer feels that they will never be able to pro-
duce something that is acceptable. This is bad for the client-developer relationship,
and is one of the key reasons why the principle of limited redelivery needs to be
adhered to.

This may also be due to the client not fully understanding the role of the pro-
totype in the development process. It is not supposed to be correct in every aspect,
but needs to be sufficient evidence of understanding that the project can go for-
ward, not hold up the subsequent phases because it is not exactly as the client
intended for the final product.

RECORDING

Of course, the best note taker in the world will sometimes miss vital pieces of
information, which is why it is often a good idea to record the demonstration meet-
ing in its entirety, preferably using a video camera.

Simply recording the sound is usually not good enough, except as a memory
jogger, since it is difficult to make the link between the spoken word and the image
on the screen that represents the prototyped software.

The impact, however, of this is limited if the prototype is an entirely passive,
noninteractive deliverable, such as a PowerPoint® presentation.

SUMMARY

This chapter concentrated on producing a piece of code that allows the client to be
able to gauge the effectiveness of the developer, while at the same time requiring
only a minimum of resource investment. The key aims of a prototype are:

B Proof of understanding
m Client involvement in development process
m Easy to validate system

The First Prototype 237

To satisfy these, we need an environment that:

m s rapidly understood, flexible
® Includes visual programming/scripting
B Requires low system overhead

If we manage all of these issues, then a well-designed prototype, achieving the
correct level of detail, will become a vital part of the development process.

14 5 Adding Functionality

In This Chapter

Introduction

The Building Blocks Approach

OO Development Revisited

Unit Testing

Of Menus, Glue, and Simulating External Dependencies
Summary

INTRODUCTION

Since we are advocating an object-oriented approach, and one that begins with a
prototype, adding functionality over a period of time by gluing in separate objects
and components, we should also give guidelines as to how this functionality should
be built in. It is not as straightforward as one might at first imagine, since each
module needs to be created separately and then passed to a team responsible for
integrating them into the final product.

This team will likely consist of programmers, testers, and scripters, all of whom
expect a certain level of quality to be adhered to before the modules are submitted
for inclusion within the final product. Not only does the functionality handed over
to them need to be complete, and tested, but also well documented so that those

239

240

Corporate Software Project Management

who are using the modules do not need to dig down into the source code to find out
how they are to be used.

In fact, the most efficient approach might be to actually retrieve the modules
explicitly from the object and component archive that we described in Chapter 11,
“The Object and Component Archive”; in this way, we can be sure that the code has
been defined, implemented, and tested within the stringent quality guidelines laid
out by following the practices described in this book.

To recap on the engineering process that we have thus far advocated, the fol-
lowing steps are usually followed to turn the design into a product:

Create prototype.

Iteratively add functionality.

Test entire product against agreed standards.
Deliver finished product.

S

In the previous chapter, we discussed the first of these phases, and in Chapter
5, “Testing,” we covered testing, and the processes that govern it are also discussed
in Chapter 17, “Testing Procedures.” The next chapter deals with delivery of the
product. Thus, it is the second step that we will be covering here.

THE BUILDING BLOCKS APPROACH

One methodology for creating the logic that will make up a large part of the end
product is to connect a series of blocks together. These blocks represent pieces of
functionality that fall into one of the following categories:

B Ready for use
B To be extended/adapted for use
B Must be created specially

Those blocks that are ready for use in the project, or that have to be extended
in order to be used in the current project, represent reused objects that exist in the
Object Repository. Those that need to be created specially for the project should
eventually find their way into the repository for use in other projects.

There should be nothing substantial being developed that neither comes from
the repository nor finds a place in it. Each piece of functionality needs to be created
as a reusable object, or block, which could be woven into a future product.

Adding Functionality 241

Therefore, in following the building blocks methodology we are ensuring that
we enrich the collection of blocks that we have available as projects are completed.
This also means that the resulting code is more reliable since it has been tested in a
wide variety of situations. It is complementary to the whole ethos of reuse, and
object management.

Naturally, there are issues to address, such as the level of granularity we want to
be applied in the repository, which will have an effect on the size of each block. Ifa
product is created using many large blocks, each with functionality that is not used,
we have probably chosen a granularity that is too large.

The real problem is deciding whether an object should be cut up into pieces, or
whether two objects should be fused together to increase or reduce their function-
ality being offered. It is quite possible to maintain an Object Repository in which
each object is reduced to its smallest possible size, but the result is that so much
code is needed to glue the blocks together that the glue code itself becomes a source
of quality defects.

One of the guiding principles of the building blocks approach is that we want
to minimize the amount of new development that must be performed to create the
product. The more new code we create, the more chances there are that the project
will not be completed within the required timescale, or that errors will creep in and
reduce the quality of the end product.

Sourcing Blocks

There should be only two sources for the blocks—the Object Repository or the
Component Gallery. This implies a number of important points, the first being that
if the code does not exist, and needs to be created, then it cannot be used until it has
been incorporated in the Object Repository, or purchased and placed in the Com-
ponent Gallery.

The next important point is that programmers working on the project exist to
take blocks and connect them together to produce the final product. They should
not be writing code that has any substantial logic to it. This is not to say that they
would not find themselves building such code on behalf of another project, but
rather that they should not be doing so for their own project, except under certain
circumstances.

In essence, this also means that the job of project programmers becomes one of
research and incorporation, rather than creation. If the block they require does not
exist in the Object Repository, and they cannot find an appropriate piece of code in
the Component Gallery, they have two choices.

242

Corporate Software Project Management

They can either schedule the development of such a block (object) via the Liai-
son Center, or look for an Open Source component that can be incorporated into
the Object Repository. They might find themselves developing the object, or they
might equally find that there is some spare capacity elsewhere that can be taken up
by developing the functionality for them. It is also possible that the creation of the
object will be outsourced to another organization entirely.

The defining boundaries of each block will be specified by the design of the
system under creation, and the philosophy by which the Object Repository has
been created. Blocks may well come in different shapes and sizes, each offering
functionality that can be reused, and sometimes, like a farmer building a wall, it will
be a case of choosing the right block for the purpose.

While the building block methodology might seem like a long-winded approach
to writing software, one has to measure it against the gains in quality. It is worth the
investment in time that will be required to find and integrate an object, rather than
trying to develop it from scratch.

Part of the reason is that programmers often find that, once they have begun
development of a specific object, there are issues that need to be addressed that they
had not thought of, which they discover as a result of actually doing the work.

Therefore, in developing an object from scratch, programmers may well find
that they had underestimated the problem, and that it will take longer than they
had first anticipated. More complexity means more code, which also means more
room for error, and before long, it becomes clear that, had the reusable object been
found, it would have been more sensible to use it rather than to code the object
from scratch.

Cross Coding

Part of the success of the methodology is reliant on the principle that each block is
well defined, implemented, and tested. If the object that is required lies outside the
scope of common knowledge, it must be developed internally or outsourced.

The two solutions are, to all intents and purposes, identical in approach, if not
in cost—it will probably cost more to outsource the object development, both in
time and money, than developing it internally, but the way in which it must be
created will not differ.

Cross coding is a term that describes the fact that the team developing the solu-
tion is not the same as the team creating the various parts that make up that solu-
tion. Part of the principle is that in developing in this way, a third party is required
to understand the problem, and create and test a solution, based on knowledge
passed on to them by the project team.

Adding Functionality 243

This is identical to the approach that the client is taking with the developer—
they also have to communicate their wishes to a third party to obtain a solution that
caters to their specific needs and that can be verified with reference to an agreed set
of criteria.

Therefore, it is one of those cases where an internal client is involved; the rela-
tionship management is identical, and is still performed through the Liaison Center
and other channels that have been set up for those purposes.

Of course, we expect that there will be aspects that are carried out more effi-
ciently, since it is a dialog between two technical parties. However, since a certain
amount of nontechnical requirements will also be discussed, the hurdles and goals
may well be very similar to those that govern the overall client-developer relationship.

The term cross coding refers to the fact that programming teams will find them-
selves working for each other on projects with which they may not be familiar, as if
they were outsourced developers. Ideally, the team requiring the development work
should not be aware of who is providing the code—an internal or external source.

In this way, it is hoped that adherence to strict guidelines and quality controls
that need to be in place to govern the relationship between client and developer will
yield higher quality code than if the project team were to develop their own code,
and simply insert it all into the Object Repository at the end of the development
cycle.

By using a different paradigm, the code will be placed in the repository before
use, thus effectively ensuring that all code used by the project team is of the same
quality. The added impetus for project teams involved in creating the code is that
they may very well end up reusing the object themselves in the future and should
therefore be extra vigilant in making certain that it is of sufficient quality that they
themselves would choose it for use in their own projects.

Iterative Development

We mentioned that each object that is to be used in the project should be developed
as if it were a little project in itself. In essence, this means that the specification,
design, implementation, testing, and delivery phases all need to be respected, as do
the corporate guidelines with respect to documentation, coding style, and quality
assurance.

It is acceptable for each of these objects to be treated as little Waterfall model
software engineering projects, with all the restrictions that this, more traditional,
approach might entail. We can reduce it to the minimal approach in Figure 14.1.

Of the five steps in Figure 14.1, two of them require interaction with the proj-
ect team, so it is, in practice, unlikely that we will be able to maintain the kind of
separation that is possible when the two parties do not share an organizational
relationship.

244

Corporate Software Project Management

Specification | > P_I[:;?‘::t
‘ Fy
Design

Development

Y

v

v

Testing

L Delivery To Repository

FIGURE 14.1 Object development process.

Nonetheless, this should not change the fact that the project team requesting
the object development is a client, and should be treated in the same way as any ex-
ternal client. After all, the net effect will be that the code is delivered to an external
client, and so the same level of care needs to be taken over its development.

Strictly speaking, this communication should take place through the Liaison
Center, but, depending on the size of the target organization, this may not be en-
tirely practical. Larger organizations, with many teams and a variety of projects
under development at a given time, may find that it is a workable approach, which
should yield higher quality results.

The Design and Implement stages can be performed in isolation; that is, there
is no need to report back to the client every step of the way (in this case, we are re-
ferring to the “internal” client). However, the object needs to be tested in accor-
dance with the requirements of the client, so they will need to be involved at the
Testing stage.

The last stage requires that the tested object is released into the repository,
where it can be used by any other project team. This stage, at the very least, should
be performed with the Liaison Center so that the relevant librarian and repository
management tasks can be performed to maintain the high levels of quality through-
out the organization.

Adding Functionality =~ 245

00 DEVELOPMENT REVISITED

Even though we have done our best to separate the roles of object developers and
project team developers, it is inevitable that a slightly different approach needs to
be taken when creating objects for use in a larger product. This applies to internal
clients as it does to locating third-party objects that might need to be adapted be-
fore they can be placed in the Object Repository.

Specification

The objects that are being implemented during the process of fleshing out the pro-
totype so that it offers the desired functionality are simple enough that they can be
referred to in terms of a mapping of inputs onto outputs. In some cases, it may
be enough to specify the inputs and outputs without describing the mapping in
specific detail.

The documentation that is created when the specifications are written can then
be reused later when an object description is needed so that future projects might
take advantage of the specific features being offered by it.

It may also be the case that all that the system developers have in hand when
they implement the object (or reuse the object) is this specification, so it needs to
define exactly what the object is supposed to do.

We should reiterate that the point at which we begin to perform this kind of
task is the point at which we have broken down the entire system into easy to im-
plement units. Thus, there should be no need for any detailed design guide to the
object because it must be at a reasonably low level of granularity.

However, that is not to say that an object will have only one mapping of inputs
to outputs, and we need to bear in mind that additional state information might be
needed in the specification of the object. At this point, it begins to resemble more
than just a simple case of mapping inputs to outputs, but at the lowest level of gran-
ularity, this is what we are trying to achieve.

The end result might then be that we have a series of functions (or methods in
OO parlance) that are all defined as a set of inputs mapping to outputs. The output
can be information returned to the requesting object, a change of state of the object
under specification, or a mixture of the two.

There might also be some private object functions that will need to be specified
to make sure that the implementation team knows exactly what the object needs to
do. The team responsible for this implementation might not even be members of
the original project team, so it is wise to be as explicit as possible.

If the rapid application paradigm requires it, there is the possibility that known
mappings can be used, and hard coded. These kinds of placeholder functions will

246

Testing

Corporate Software Project Management

always map a given set of good known values onto a subset of values, and the result
is that the object can only exist in a limited number of states.

Assuming that all the states of all the objects contained within the system can
be proven compatible, for the limited number of cases that the slowly evolving
system is supposed to be able to deal with, then this may prove enough of a demon-
stration for the development to be completed.

If a more iterative approach is being used, each function will gradually become
enriched, with new features added to it as required until the system is in a state
in which it can be delivered. The paradigm that we have chosen in this book is
flexible enough to accommodate almost any approach to fleshing out the proto-
type, as we concentrate more on the process than the actual practice of building
software.

Part of the reason why we break the system down in this way, under the OO para-
digm, is that it makes it much easier when it comes to testing. Since we have a dis-
crete set of inputs that can be mapped onto a discrete set of outputs, it becomes easy
to predict what an individual object will do in a given situation.

We need only know the inputs, outputs, and internal state to know how it will
perform when something, either expected or not, happens in the system. Since we
know what each individual object is capable of, and the way it works, it also
becomes easier to be able to know how the entire system will react when it is put
together.

This is one part of the way in which we try to reduce the problems that are
associated with what we have previously termed the intangible nature of software. It
becomes very difficult after a given number of collisions of balls on a table to pre-
dict where they will all end up, and software as a collection of objects has something
of the same nature, which is why we concentrate on testing everything at least twice.

Since we have specified what the objects are supposed to do in terms of a set of
inputs mapping to a set of outputs, the actual testing process, as we shall see, be-
comes rather easy and well defined, at least at the object level. However, as we start
to put the system together, it becomes very difficult to be able to say, without build-
ing a simulation of the system, whether it will react in the right way.

This is the point at which we realize that we need to be able to rely on the fact
that the individual objects have been well tested; otherwise, we will not be able to
effectively locate the source of the problem. Therefore, good specifications and
good testing will help to drastically reduce the possibility of finding errors in the
final system, and reduce the time taken to locate the source of the error and, even-
tually, fix it.

Adding Functionality 247

UNIT TESTING

While we have covered the subject of testing, or at least the mechanics of it, before,
now we should look at it in terms of the current discussion—adding functionality
to an existing framework by the integration of objects. There are two kinds of ob-
jects that will need to be integrated—those we have written, or had written as part
of the current project, and those that we have acquired as a result of a search of the
Object Repository or Component Gallery.

We need to test in phases, starting with the smallest unit and gradually adding
objects and the code that glues them together until we have adequately tested an en-
tire functional area. At this point, that piece of functionality, perhaps linked to a
menu or other user interface artifact, can pass into system integration and integra-
tion testing.

It is vital that the processes that we are about to define are linked in with the
solution that the organization has chosen for managing the problem report and
change request cycle so that, in the event of an error being located, the problem can
travel down the return path and the solution be fed back into the development
process.

Functions

The smallest unit to be tested is the function. This may be a standalone function or
part of a library of functions that provide a specific set of services, or it may be a
function developed as an extension to, or simply part of, an object that we would
like to use in the system.

As we have discussed, functions need to be well specified, in terms of a discrete
set of inputs mapping to a discrete set of outputs. Only then can we begin to test the
function in an efficient way. The specification can either be a separate document or
it can be derived from the source code. The latter has advantages in that it enables
the documentation to be kept with the code in an easy manner, but depending on
the implementation of the Object Repository, a separate document might be more
appropriate.

The first step is to create a test data set, as outlined in previous chapters, based
on the mappings from input to output. Since we have defined a discrete set of map-
pings, it should be quite easy to create at least a general set, if not specific use-case
style examples.

With our test data in hand, we can then proceed to test the mappings by feed-
ing in inputs and looking at the outputs. At the very least we should perform Weak
Testing, if the function is an extension, but preferably adopt a Strong Testing

248

Objects

Corporate Software Project Management

approach, the difference being that Strong Testing is designed to verify exception
cases in addition to use-case style tests. These are examined in detail in Chapter 17,
“Testing Procedures.”

The findings need to be reported, either back to the team responsible for the
implementation should the results not be satisfactory or forward to the project
manager so that the next phase can be considered, should they be acceptable. The
project manager could also intervene to accept slightly less than perfect results if
he decides that the impact of the failed tests will not affect the use of the object in
the resulting system.

There is no need to test reused code, however, since we assume that it has been
tested as part of the introduction cycle into the Object Repository or Component
Gallery. The use of the object may be slightly different, and the results of the previ-
ous testing process need to be examined, but we need to be able to have faith that
the code that is returned from the Object Repository or Component Gallery is fault
free.

This approach will save time in the development process, as long as the para-
digm has been followed properly and no corners have been cut. This means that
the entire organization needs to be appraised of the importance of good quality
development.

The next level up from a function is an object, which can be seen as a collection of
interactive methods, both private and public, coupled with the internal state of the
object to which we might not be privy. Unit testing objects is a precursor to bind-
ing them together into functional areas for further testing.

Again we need to verify that the behavior is correct, based on the specifications
that are available for that object. It is on the basis of the specifications that we have
created, had created, or chose to reuse the object that is being examined. Therefore,
any testing that is performed, be it to validate an extension to the object or to test
previously untested behavior, will be on the basis of the specifications.

To do this we need to construct a set of meaningful test data, which could be
based on previous, historical testing sessions, or it could be real use-case style test
data that we have put together based on the anticipated way in which the object will
be used within the system.

Here again, we should mention that it may not be necessary to actually test ob-
jects that come from the Object Repository or Component Gallery, if we have not
altered them in any way since they were previously examined.

Again, this is a way of making the whole development cycle more efficient, but
it does mean that we need to be able to rely on the quality of the objects, based on

Adding Functionality 249

the implementation of a correct paradigm for the creation and control of the
processes surrounding their creation.

Ifa problem is uncovered in the additional functionality that we have added for
this project, the code needs to be returned to the team responsible. If a problem is
located that is the combination of a function that was already existing, plus one that
has been added, then the specifications and testing data need to be examined in an
attempt to find the true cause of the problem—it could be the specification, design,
or implementation. It is for this reason that we insist on the functional units being
as small (in terms of implemented logic) as possible; it makes predicting their be-
havior in a group much easier.

Functional Areas

The final part of Unit Testing is to test interacting objects in a specific functional
area, which could be linked to a user action or a system request. It is not likely that,
in the system, something occurs that is not the result of an action or external stim-
ulus, and so breaking down the system into functional areas, which we first did in
the Definition and Specification processes, should be reasonably easy.

At this point, all objects in the system will need to be tested to ensure that they
operate together in a correct manner. The code that connects the objects together
should be simple enough as to not require extensive testing; the main reason for
performing functional area testing is to be sure that all the objects can work to-
gether in a way that is conducive to providing the required functionality.

If an error is located in the code, the code needs to follow the return path back
through object testing to functional testing in an attempt to understand what map-
ping from input to output failed. There is also the possibility that the internal states
of the objects are not correct with respect to their specifications.

The test data that is used to test this part of the Unit Testing is based on an
analysis of the problem domain. That is to say that the test data needs to reflect as
many anticipated interactions as possible.

Once this phase is complete, the functional area has been tested, with respect to
the objects that are present in it, and it can be passed over to System Integration,
where it will become part of the larger system, by connecting it to the other func-
tional areas, perhaps by using further glue code, logic, or based on user interface
artifacts, such as menus or dialog boxes.

Until the system integration phase, the functional areas, and the objects that
exist within them, are isolated from each other and the rest of the system, and it is
not until we pass into Integration Testing that we will know whether the system

250

Corporate Software Project Management

actually works. However, there is no reason to assume, considering the care that has
been taken to match the specifications with the behavior, that this should not be the
case.

OF MENUS, GLUE, AND SIMULATING EXTERNAL DEPENDENCIES

The final step in adding the functionality that makes up the system is to collect all
the functional areas together and prepare the entire system. It is the point at which
we have the interface, the objects in the functional areas, and we need to connect all
the different pieces of the system together.

It is essentially equivalent to System Integration, and ends with Integration
Testing, after which point we can say that the system is ready for final delivery, and
Acceptance Testing if required.

The whole philosophy, when followed, results in higher quality software, and
fault-free software. There is a subtle difference between these two in that high-
quality software may meet the requirements of the end user without being entirely
fault free, although we would hope that fault-free software would also be consid-
ered high quality.

The User Interface

The prototype sets the pace for the look and feel, and during the integration
process, it is the starting point for building in the logic that fills the gap between the
actions of the user and behavior of the system. The functional areas that are linked
to the interface might work in isolation, but it is only when the system becomes
connected together properly that any potential conflicts between functional areas
will be noted.

The various dialog boxes and menus will already be in place, as well as any
other user interface elements that will be specific to the project. If the system does
not have a graphical front end, if it is a collection of command-line tools, for ex-
ample, then the interface needs to be tested on this basis rather than trying to invent
any other kind of testing process, or leaving it out entirely.

The client must accept the Ul before final delivery, and preferably before the
prototype moves into the system integration phase. This is so the functional areas
can be examined properly in a way that makes them at once easier to analyze and
test, and so the client can validate that they have been well understood—they will
find it easier to do this if they have something to relate to.

Adding Functionality =~ 251

Glue Code

Anything that offers no immediate logic can be considered glue code. It binds the
user interface to the dialog boxes and the objects that actually implement the logical
areas of the system to provide the functionality that the client originally requested.

Essentially, it is used to communicate results of objects’ actions to other objects,
and actions from the user interface or system to the objects by functional area. It is
used in the preparation of the units to be tested and in actually connecting the other
parts of the system together.

The general rule to apply is that one should try to use as simple coding as pos-
sible to reduce the likelihood of errors creeping in that are not part of the func-
tionality of the system. The reason behind this is that the glue code is likely to be the
least tested of all the different areas of development and design.

The aim is that glue code must be subjected to as little testing as possible due
to the inevitable time constraints that start to play at the end of a project. We should
not forget that the process of putting all the elements together is the last time that
we can correct errors before the client appraises the product.

However, we should have tested the glue code by functional area to be sure that
the conduit is working correctly, and tested it with relation to the user interface.
What we have not spoken about yet is how it is tested with relation to the system or
other pieces of hardware or software with which it needs to interact.

External Dependencies

Any specialist hardware or software not available at the time of creation needs to be
simulated, and this will include the operating system, peripherals, or software ap-
plications such as backend processing databases. On the one hand, we cannot wait
until they are available to begin the testing or integration process, but on the other,
there will be possible problems that stem from using inadequate simulations.

These will most likely be problems relating to not having tested the simulation
properly, it being another piece of software that makes up the system. Even if it is
not delivered as part of the system, it is still something that creates dependencies
within the system.

Of course, as the organizations become more expert in their field they will
build up collections of simulated entities in the same way as they build up an Object
Repository or Component Gallery, and they may also be able to acquire simulated
entities through other means.

There is an inherent trade-off between simulating an external system, which
requires that software is created to do so, and waiting for the real devices or appli-
cations to become available. Introducing another dependency that has the same

252

Corporate Software Project Management

complications as the actual system itself is not without risk, since it requires that an
entire development process is started for the purpose.

However, it can be hard to test a system without access to either simulated
units, or real units that provide the correct behavior, so in some cases it might be
necessary to perform the additional work to ensure that the system will correctly in-
tegrate with the user’s environment.

The problem can be partially solved by using strict Object-Oriented style input
to output mapping and Specification and Unit testing techniques that we have de-
scribed previously. This will rely on there being adequately expressed specifications
that are also correct and define the way in which the external components have
been implemented and the behavior that is expected from them.

SUMMARY

This chapter took us on a brief journey through a part of the software engineering
process that is worthy of a book of its own. It is impossible to describe the many dif-
ferent programming approaches that exist within the programming community,
and the various safeguards that individual organizations have put in place to ensure
that the development process is adequately applied.

In fact, all we did here is suggest a framework that is compatible with the way
in which we expressed the processes should work to try to promote a continuously
improving collection of objects to minimize the appearance of faults within systems
that are created.

The reader is encouraged to find a way in which the programming itself, and
the process of creating glue code to hold all the elements together, can be per-
formed in a fashion that is in tune with the corporate entity, and understood by the
programmers who will actually be developing the code.

There are more and more paradigms to choose from, some that are cutting
edge, and only now receiving acclaim, such as Extreme Programming, and time-
tested ones that use simpler processes for the conversion of complex requirements
into well-constructed code. The choice of languages used and the tools available to
manage the development process will also play a part.

The discussion we had here should be compatible with all paradigms and tools
for developing software, and was written in a way to describe the processes and not
the implementation of them at the ground level, which is a guiding principle of the
discussions led by the book.

&
15 = Delivery

In This Chapter

Introduction

Preparing the Application
Supporting Documentation
Additional Customization
Training

Summary

INTRODUCTION

Finally, the product will be complete, or at least development will be stopped and
the product handed over to the client. It is always desirable to deliver a complete
product, but it is also a fact of development life that most projects are delivered
lacking certain functionality that was in the initial design as they run over budget
and are delivered late.

Of course, if every piece of advice in this book is followed, there is no reason
why the situation should not improve over time, as the object and component
archive becomes populated with high-quality reusable components. In fact, the
Utopia that is object-oriented development, combined with efficient code reuse,
should eventually result in products that are delivered on time, within budget, and
with all the functionality that the client originally intended.

253

254

Corporate Software Project Management

Therefore, the final phase in the project will be the delivery of the product to
the client, and hopefully payment of any outstanding monies to the developer by
way of confirmation that the contract has been upheld by the developer.

The package needs to consist of tangible and intangible deliverables:

Documentation

The application

Proof of conformance

Installation and customization training

Each of these is discussed in detail in this chapter, with the aim being that every
project follows the same cycle, which serves to concrete the procedures so that with
each iteration, they become more efficient and yield ever-higher quality results.

PREPARING THE APPLICATION

The relief that the project has come to a successful conclusion (after all, the appli-
cation has been tested) often leads to the misguided conclusion that all that remains
is to copy it onto a CD (or diskette), send it off by recorded delivery to the client,
and await payment.

The reason is that the actual delivery is seen not as the culmination of the effort
of the entire project, but a step that is necessary afterward in order to get paid. This
attitude changes from the consumer industry to the on-spec industry that we have
looked at here.

Those working in the consumer industry understand that the delivery and
preparation of the delivery are as important as the design and development of the
application. If it is not performed well, the chances of selling enough copies to have
made the development cycle worthwhile are slim.

There is no reason why on-spec projects should not follow the same process in
the preparation of the release as commercial projects; after all, the satisfaction of the
client is at stake.

The delivery media should match the target platform, and size of deliverables. This
is obvious, and like so many other aspects can be overlooked. It should never be as-
sumed that the client has more than the usual array of hardware at their fingertips.
If in doubt, it is always worth asking.

Delivery 255

There is nothing worse than preparing a DVD-only release, simply to find that
the client does not have a DVD drive in their computer to read the disc. By a simi-
lar token, if the product must span multiple pieces of media, then a double-check
to ensure that they have all been created correctly should be part of the pre-delivery
checklist.

Installation Routine

The deliverable should be self-installing. While it is true that almost everybody has
a piece of decompression software on their systems, it should never be assumed that
the one that the developer uses is the same as that which the client has available.

Consequently, the developer should provide either an uncompressed deliver-
able or, at the very least, an application as part of the delivery that is able to unpack
the contents of the delivery media automatically.

There are software products in the marketplace that can be used to create user-
friendly installation and uninstallation scripts that should be used to automate the
installation process as much as possible. Even if the product is designed to be in-
stalled by a field engineer or developer representative, it should be packaged such
that the installation process is painless.

The reasons for this are first that there is every possibility that the client will
have to reinstall the product at some point in time, and they probably do not want
to have to call the developer when it happens.

Second, there is nothing worse for the image of the company than an in-
stallation that fails, even though it is being performed by a professional. Using a
commercial tool to create the installation package minimizes the chance of a failed
installation, since the tool can automatically detect dependencies and install
appropriate add-ons.

Modern operating systems, including Windows, Linux, and many of the estab-
lished Unix-based operating systems, have their own installation routine manage-
ment software packages that form part of the operating system deliverables and can
be used to package the installation for the product being delivered.

Assuming that a suitable tool can be found to interface with the operating-
system-provided installation management application, it is always best to use it, as
it will guarantee that the end user has it installed and is able to make full use of the
delivered package.

Pre-Delivery Testing

To perform this testing properly requires a clean machine that has been installed as
close to an out-of-the-box specification as possible. This means that the operating
system must be installed on a system that has had its hard drive reformatted.

256

Corporate Software Project Management

Then, the package needs to be installed, and with any luck, as long as the oper-
ating system is the same, or earlier than that on which the package is designed to
operate, the test installation should reveal any flaws in the installation process.

This is important because the systems used to develop the product will have a
very different profile from those that exist in the field. They will have all manner of
tools and libraries installed that may be required by the product, but may not be
part of the underlying operating system.

If there are such instances of third-party libraries or tools that are not present
on the target system, but are required for the operation of the product, the devel-
oper is responsible for acquiring the permission of the original developer to redis-
tribute these parts.

For example, libraries that offer certain additional functionality and are deliv-
ered as part of a compiler toolkit or development environment are probably freely
redistributable. They should be listed as such in the accompanying documentation,
under the title “Redistributables.”

The developer may choose to make this a policy decision, such as requiring all
software to be statically linked, whereby these libraries are incorporated with the
final product. This means that, for each piece of software that needs the libraries,
the code will be duplicated, since the libraries will form a part of every delivered
product.

However, it gets around the issue of needing to get redistributable permission,
and avoids version conflicts with existing systems.

One final point to add to the pre-delivery checklist is to test all the links to help
files—both those that are context sensitive and those that are accessed from the
menus. It is one of those aspects of the system delivery that tends to be overlooked,
until the user requires the help file and finds that it has not been shipped with the
application software.

Delivery Overview

Each piece of deliverable needs to be listed in an overview document to ensure that
the client is able to verify that they have received a complete package. This includes:

B System Requirements
B Media Contents
+ Application Code
+ Third-Party Components
* Permissions for use of third-party redistributables, where appropriate

Delivery 257

B Documentation
+ Installation Guide
+ User Guide
+ Miscellaneous Documentation
®m Hardware
B Passwords/Usernames
® Invoice

There should also be a cover letter, which is a polite way of introducing the
package and lists the physical contents. The entire package should be delivered in
some form of folder or binder that is designed to keep the media and associated
documentation together, as well as any hardware other than large peripherals.

This hardware, as listed in the Delivery Overview, can be anything ranging
from a copy protection device (or dongle), to large pieces of specialized equipment
necessary to provide the functionality required by the client.

Security Mechanisms

Traditionally, copy protection has been used as a way of ensuring that heavily cus-
tomized software applications or commercial systems cannot be illegally copied
and used on a platform other than the one for which it was originally licensed.

In other words, if the client purchases five licenses, then they are allowed to
install the software on five machines, and there needs to be a mechanism in place
to ensure that this is the case.

The industry standard way of doing this for expensive, noncommercial but
otherwise at-risk software has been through the deployment of copy protection
devices known as hardware keys, or dongles. Without the dongle, the software will
not run.

Software that is not at risk is that which has been developed for hardware that
the average client has only one, or a limited number, of. For example, the manu-
facturer of missile guidance systems is probably not too worried about the impli-
cations of fraudulent use, whereas a company marketing a customizable, scripted
accounting system that runs on standard hardware probably will be.

For use with PCs, there are two main devices:

m USB
m Parallel (printer port)

258

Corporate Software Project Management

Essentially, the procedure is simple: if the dongle is not there, the software will
not run. There are several key things than need to be checked, which may have an
effect on the type of copy protection used:

® The target system may not support the connection required.
B The target system may employ another, noncompatible scheme.
m The target system may not be supported by the dongle manufacturer.

Finally, the developer needs to make sure that the required libraries, if any are
needed to use the dongle, are delivered to the client, along with any activation
codes, and a separate installation procedure to ensure that the software, once in-
stalled, can be used.

SUPPORTING DOCUMENTATION

In the previous section, we mentioned that some documentation plays a vital part
of the delivery:

B Installation Guide
B User Guide
m Miscellaneous Documentation

These three areas of documentation are vital, since without them, the client will
be potentially unable to use the product. Additionally, having these documents
prepared and shipped will help with knowledge retention on both the client and de-
veloper sides.

Installation Guide

The aim of the Installation Guide is to take an inexperienced user through all the
various steps that need to be taken to install the software, while also enabling more
technically competent users to perform the installation without making any incor-
rect assumptions.

This might need some explanation. The issue is that technically competent
users, when faced with an installation guide aimed at a reasonably inexperienced
user, will tend to skip parts that seem familiar, assuming that the software installs
in the same fashion as other pieces they may have installed in the past. In doing so,
they might miss important information.

Delivery 259

Therefore, the developer needs also to provide a Quick Start Guide specifically
aimed at these types of users. The full list, therefore, might look something like this:

Pre-Installation Checklist
Quick Start Guide
Step-by-Step Guide
Security Device Installation
Troubleshooting

The Pre-Installation Checklist ensures that the users verify that all the media,
hardware, and associated pieces of documentation are available before they begin
the installation process, as well as checking that their target system meets the min-
imum requirements for installation and use of the software package.

We have already dealt with the difference between the Quick Start Guide
(experienced user) and Step-by-Step Guide (novice user), but there should also be
a reference in both of these to the next item—Security Device (copy protection
dongle) Installation. Usually, this has to be carried out prior to installing the main
software package. The installation guide provided by the manufacturer of the don-
gle should be used.

Finally, the Troubleshooting Guide needs to provide answers to any questions
that might be raised during the installation process. As a minimum, all error mes-
sages need to be documented here, along with details of how they can be resolved,
if resolution is possible.

User Guide

The User Guide is an important piece of documentation, and should be written by
a technical writer, analyzed by a member of the nonprogramming team, and
handed over to the client with the expectation that there will be pieces missing.

A User Guide is never complete, by virtue of the fact that it is almost impossi-
ble to plan for every contingency. There will be an almost infinite number of pos-
sible installation circumstances, and users can sometimes try to perform operations
that were not foreseen by the developers of the system.

There will also be things that happen during the normal operation of the soft-
ware that cannot be foreseen, such as system crashes, resource crises, and so forth.
The User Guide can only deal with the normal operating conditions, and those
exception cases that are known ahead of time and planned for. Anything else will
result in a call to the help desk.

260

Corporate Software Project Management

Theory of Operation

This part of the User Guide should aim at giving an overview of the entire system
and the problems that it is designed to solve or features that it offers to the user.
This overview should then be broken down by subject area in order to detail all pos-
sible options available to the user.

It is reasonably easy to prepare a skeleton document for those applications that
have a graphical user interface by simply ensuring that there is a section for every
menu item and dialog box that the application developers have created.

This information should also appear in the design documentation, which will
enable the technical writers to begin developing the outline before the application
is fully developed.

Command-line utilities can be examined in the same manner, but with each
possible command-line option being examined, as well as their interdependencies.
There should also, for command-line utilities with more than three options, be a
series of tables that detail the various allowed combinations of command-line
options and flags.

Any additional text or binary files that are used as input to the system (be it a
command line or GUI application) also need to be detailed in this part of the User
Guide, with the detailed file format as part of an appendix.

Task-by-Task

This part of the guide deals with the same subject matter as the theory of operation,
but from a task-oriented point of view rather than an examination of every possi-
ble menu option, dialog box, or command-line option. Of course, there will also be
references to those pieces of the interface that have been detailed in the Theory of
Operation.

It is important that the Task-by-Task Guide is aimed at a novice user, since it
is probably going to form part of any on-the-job training that the client embarks on
as an alternative to formal training plans offered by the developer.

Troubleshooting

Like the Installation Troubleshooting Guide, the starting point for this should be a
list of all the possible application error messages, and an explanation of:

B Why they have occurred
B What the user should do immediately
® Whether the user can perform remedial action

Delivery 261

It is reasonably easy to know what application defined error messages exist, but
probably more difficult to anticipate the equivalent for operating system generated
messages that result from use of the application. Nonetheless, any that cropped up
during system testing should be noted in the Troubleshooting Guide.

There needs also to be a section dedicated to resolving issues that are found by
virtue of the fact that an expected external operation did not occur. This applies to
things like interaction with peripherals not being handled correctly, loss of data,
and so forth.

Of course, once the product is used in the field (assuming that it is not a one-
off), users will feed back problems that can be included in the Troubleshooting
Guide released with future versions.

Problem Report Procedure

Rather than leaving it up to the user’s imagination as to how a problem with the
software should be reported, it is best to detail exactly how it should be done as part
of the supplied documentation. The procedure and supporting documentation
used should reflect the standards used by the developer across all projects.

What follows here are simply suggestions as to what kind of procedure could be
adopted and what documentation should be created to support it. It is important
to note that the person reporting the problem might be the end user, and not the
client; in such cases, the user may not be able to distinguish a real problem from an
issue that arises due to improper use of the software application.

Therefore, it would be useful to include a preparatory note that informs users
that they should only initiate a Problem Report if they are experiencing improper
behavior of the system that cannot be explained by consulting the User Guide.

Forms

In order to provide support for structured reporting, it is necessary to provide the
user with a set of forms that can be used when informing the developer of a sus-
pected problem. The information that should be included could be:

Scale of Problem
Operational Area

Menu Option/Dialog Box
Sequence of events
Hardware Platform
Software Version

262

Corporate Software Project Management

In addition, there should be a paragraph explaining the various ways in which
the form can be submitted: e-mail, fax, regular mail, and so forth. This may be
linked to other items such as the Scale of Problem.

Scale of Problem
This can be categorized in a variety of ways; for example:

® Blocking
® Nonblocking
m Cosmetic

These three key problem definitions essentially mean that the problem is pre-
venting use, or it will prevent use at some point in the future, or is something that
should be fixed because, while the application still works, the user interface does
not match the actual behavior of the system.

Operational Area/Menu Option/Sequence of Events

This can be arrived at by essentially asking the user to repeat the sequence of events
that led to the problem, in the hope that:

®m [tis not repeatable, and probably a result of user error, or
m [tisa real problem, and can be repeated by the developer

Asking the users to provide the exact sequence of events, along with the menu
options clicked and the data entered into any dialog boxes or at any other prompts
(command-line systems) ensures that they think about the steps they have taken. In
doing so, they might just find that they are doing something wrong.

The worst kind of fault is one that cannot be repeated by the developer, or even
consistently by the user. If the system works at least some of the time, it will give the
user some breathing space to try to resolve the error in partnership with the devel-
oper before it becomes a blocking problem.

Platform Information

The software and hardware platform needs to be specified, along with the version
of the system being used. It might be beneficial for the developer to include a self-
documenting menu option that automatically generates a report that can be for-
warded to the developer.

Delivery 263

Common information might be:

Operating System

Hardware manufacturer

Processor speed/Amount of memory/Free disk space
Software major/minor version

There may be other pieces of information, such as those relating to any device
drivers or additional hardware that the developer might require. These should also
be explicitly listed on the form.

Response Time

The response time will vary depending on the severity of the problem, and com-
plexity of the solution. What is important is that the client is aware of and accepts
the response times that the developer indicates, and that the developer actually
respects the response times that they communicated to the client.

There should be an initial response confirming that the problem can be re-
peated, and that the technical team will look into it. This needs to be followed up
by a report as to what the developer intends to do about the problem.

An interim solution (or workaround) should be offered at this stage for block-
ing problems, since without it the client can no longer continue working. This
should be communicated within a reasonable amount of time. Exactly what is
meant by reasonable will depend on the industry—nuclear power stations and other
real-time systems probably work to a slightly different set of rules regarding
urgency than small businesses using a simple accounting package.

The final solution should then be identified, and an appropriate plan for
developing, testing, and delivering the solution worked out internally and then
presented to the client.

There may be cases where the client claims a problem has been found, but the
developer finds that it is due to a misinterpretation, ambiguity, or incorrect state-
ment in the specifications or design of the product. In such cases, the client may be
asked to intervene in the cost of the solution; however, third-party arbitration with
respect to the legally binding contract will probably be needed to arrive at a mutu-
ally beneficial agreement.

ADDITIONAL CUSTOMIZATION

In the life span of the development of a product, there may be cause for the client
to request that additional features be added to the system. It may also be the case

264 Corporate Software Project Management

that there are aspects of the system that can only be determined once it is installed
at the client’s site.

User Customization

This is an optional part of the User Guide that is only required if the product is de-
signed to be customized by the end user, either immediately or at some point in the
future that is not defined when the product is delivered.

It should clearly indicate which parts of the system can be user customized, and
which parts cannot, as well as give an indication of the level of support that the user
can expect once the product has been customized.

It may well be that the developer decides to give no free support whatsoever for
those parts that have been or can be customized, including the possibility that if the
user changes a piece of the system such that it causes another, noncustomizable part
to behave in a fashion that is detrimental to the entire system, then the developer is
no longer responsible for the damage.

Change Request Procedure

In the same way that a procedure needs to be defined to deal with cases where a
problem is located in the system, there should also be a specific procedure that deals
with developing new features or changing existing ones.

In this case, the procedure becomes similar to that which was used for the ini-
tial product development:

Client requests change.
Specification developed.
Change implemented.
New product is tested.
Product is delivered.
Client validates change.
Client pays developer.

NN

The difference between this and the problem-reporting procedure is that the
client is much more involved, since they will be paying for the change. A stage will
need to be inserted in the preceding list, in which the developer and client decide
on a price for the implementation of the change with respect to the complexity and
the added complexity it brings to the entire system.

There is a difference from the original development cycle too, in that the client
is potentially much more involved with the creation of the change specifications and
the testing of the new functionality than they were with the original development.

Delivery 265

One reason for this is that they have experience using the system, and this will
leak over into their willingness to try to help the developer create a better product,
or at least one that more closely matches their needs.

This will not be the case for products that are aimed at the commercial mar-
ketplace, where suggestions made by users for new features are usually welcomed,
but unless a special relationship between the user and the developer exists, this is
the beginning and end of their involvement in the process.

Effect on Maintenance

For those projects that are produced on spec—that is, specifically for a single client,
or are extensions of off-the-shelf products—any changes will have an impact on the
annual maintenance cost of the system.

This is because the complexity of the system will change as a result of intro-
ducing new functionality or changing existing functionality. The extent of this im-
pact needs to be assessed, and a formula applied that brings the maintenance cost
in line with this impact, based on the likelihood of an increase in required support
resources stemming from the changes.

Since maintenance costs are usually worked out as a percentage of the initial con-
tract value of developing the system, any increase can be represented as an indexed
value that is derived from the complexity change, with the initial index set at 1.

Any future maintenance contract costs can then be recalculated with respect to
the initial value of the system.

TRAINING

It is usual for the developer to provide some form of initial training before the client
is able to fully realize the potential of the system that has been created for them.
This is especially important in cases where the product is the result of the cus-
tomization of an existing off-the-shelf commercial product.

This is due to the fact that, while the client may well have specified the features
that they require in the end product, some of those may exist in the base product
and therefore not appear exactly the same as those specified by the client. Thus,
some training will be needed to help the user to become familiar with the product.

One final reason for offering good training is that knowledge is imparted from
the developer to the client such that they can more easily help themselves, thus
reducing the impact on help-desk resources in the future.

The best way to provide training to the client is by arriving on-site and per-
forming the training in the operating environment. It will likely be a better use of

266

Corporate Software Project Management

resources, for simple economic reasons: it is more efficient for the trainer to travel
to the user and train 10 users than for 10 users to travel for training to the devel-
oper’s site.

Manuals should be produced that can be referred to when new staff members
arrive, or when it becomes clear that the competence of existing, trained staff needs
to be updated. They might also need to receive additional training if the core prod-
uct or the customization changes.

Training Staff to Train Others

For this reason, it might be a good idea to always maintain contact with a single
member of the client’s team who is responsible for ensuring that the staff using the
system remain competent to do so.

In addition, it might be beneficial to train a single staff member as if he will
be giving training sessions in the future. In this way, he will be competent to give
sessions on behalf of the developer, to new staff members, for example.

Finally, it might also reduce the impact on developer resources when the sys-
tem is changed, since the staff trainer could amend the training package, indicating
where new parts have been added and existing parts changed. With this informa-
tion, he should be able to update the user base, without the developer becoming in-
volved in additional training sessions.

SUMMARY

Delivery of the system is more than simply turning up at the client’s door, wearing
a suit and tie, and proffering a CD containing the application. It is a process that re-
quires thorough planning and execution, and extends into what could be termed as
the official maintenance period of the product development life cycle.

Usually a warranty period is specified, which gives the developer and client the
chance to see how the product works in the field (like an extended piece of testing)
before it passes into the phase covered by any maintenance contracts.

The two parts of the delivery can be viewed as:

® Physical Delivery
m Service Delivery

where the Service Delivery includes any on-site training and the warranty period
covering the software itself.

Delivery 267

Phased deliveries are also possible, where the client takes possession of a little
piece of the system at a time, and can gain experience with it as the project pro-
gresses. This will save time at the end of the project, but is quite resource intensive,
since each phase needs to be determined in advance, and then treated like a minia-
ture delivery.

However, in cases where the system is an off-the-shelf one, with customizations
made on behalf of the users, to their specifications, the phased delivery approach
can be very useful in reducing the overall impact on the client in terms of resource
management.

Whether the final product is designed to be sold to consumers, or whether it is
a piece of programming that has been created solely with a particular client in
mind, testing the delivery remains one aspect that can be overlooked. There are
actually services available that will take the deliverable, install it on a variety of
machines, and report the success of installation and removal under a variety of
different circumstances.

The same service providers who provide these kinds of services will probably
also be able to provide third-party user testing. While both of these services will
demand a certain fee, it is probably worth the investment to make sure that the
product delivered will actually work under most conditions.

For consumer packages, this can be considered part of the standard software
development cycle, and needs to be budgeted for accordingly.

Part

III . Principles of Software
Quality Control

the “fitness for use” paradigm explored in the first two parts, and details
how to deal with potential and real quality lapses.

Chapter 16, “Promoting Corporate Quality,” indicates the various pointers
that clients should be given in order to illustrate that the company embraces qual-
ity from start to end, and how to back it up with actions.

Chapter 17, “Testing Procedures,” describes how testing and quality are re-
lated, and the ways in which certain processes can be put into place that ensure that
the product is tested in a way that promotes quality, rather than as a simple con-
tractual obligation.

A vital part of ensuring that quality is maintained is by establishing an efficient
system whereby those responsible parties can be alerted that quality has not been
achieved in their area. Chapter 18, “Feedback Techniques,” deals with how com-
munication lines can be set up so that any potential or actual quality deficiencies
can be quickly addressed with minimal impact to the product and client.

In Chapter 19, “Client Satisfaction,” we look at how the client can remain sat-
isfied, even while a project seems to be failing, and what to do to ensure that they
remain satisfied, if not with the specific product, then with the organization as a
whole.

The final part of this book equates software quality with end-user satisfaction,

269

IG = Promoting Corporate
Quality

In This Chapter

Introduction
Projecting Quality
Managing Quality
Documenting Quality
Summary

INTRODUCTION

When two providers are placed side by side, it is likely that the prospective client
will gauge price and quality to ascertain which of the two offers the best ratio and
is most likely to deliver a satisfactory end product within the specified time and
budget presented by the client. Bearing in mind, as always, that the client under-
stands that the chances of actually receiving a product that is exactly what they
envisaged, within the time frame that they specified, and without overstepping the
budgetary constraints that they put in place, are relatively slim.

It is important that the organization projects good quality, has well-documented
quality control processes and procedures, and can back them up by actually carry-
ing out these processes and procedures from the very beginning of their relation-
ship with the client.

27

272

Corporate Software Project Management

This chapter considers several areas:

m Communicating quality
B Managing quality
® Documenting quality

Each area contributes to the overall demonstration of quality to the client, and
ensures that the quality is not merely documented but actually applied to the proj-
ects undertaken. Demonstrable quality will give an edge over the competition, and
may even justify a higher price simply by virtue of being able to guarantee that the
end result will be more reliable, deliver more functionality, and is more likely to be
delivered on time and within the client’s budget.

It is an unfortunate fact of the software development industry that many, many
projects fall short of the client’s expectations. The end result is either incomplete,
inaccurately rendered, or takes longer and is more expensive to create than the
client was initially led to believe.

Those software development companies that actually manage to deliver a prod-
uct within the specified time, to specifications that were well understood by all
parties, and is fault-free and reasonably inside the budgetary constraints will clearly
have an advantage when it comes to competing for future projects.

This book aims at trying to achieve this Utopia by reducing reliance on logic
programming, by reuse of well-tested components, and above all, by ensuring that
the steps leading up to the design of the end product lead to documentation that
reflects the product that the client actually needs.

There are various definitions of quality, but the one that stands out above the
rest is that the product be fit for the use for which it was intended. This should be
the guiding principle when trying to establish whether a product is “quality.”

PROJECTING QUALITY

Corporate quality is dependent on everyone involved with carrying out tasks for the
organization having pride in the services they are offering. It is a culture, not a
directive; something that is important for management to understand from the
beginning.

Employees cannot be ordered to carry out work that is of the highest possible
quality; they need to want to do so because to do otherwise would lead to a result
with which they would not be proud to have been involved.

Promoting Corporate Quality 273

Once the corporate quality culture is in place, it will show in everything that the
organization does, from the first meeting with the client, to the delivery of the
product, and in every piece of communication in between. As soon as there is a
chink in the quality chain, it will show, and rather than projecting a high-quality
image toward the client, they will be aware that there is a quality gap.

However, protecting the quality image to the extent that the client is not in-
formed when there has been an error, or when the quality assurance might have
failed, is not wise. Indeed, it is possible for the client to remain convinced that the
organization follows practices of the highest quality, even while the project might
appear to be failing; clients will appreciate honesty above all.

Communicating Quality

It is important not to confuse quality with image. Maintaining the corporate image
means wearing a suit to the initial meeting with the client, if that is the image the
company wants to project, or a more relaxed mode of dress, if the company takes a
more relaxed approach to interpersonal relations.

In both cases, quality can still be communicated, since it is not really about the
way people dress, but the way in which they present themselves in other ways.
Quality is about having reliable processes to deal with every aspect of the software
production process, with all employees confident that they deliver the highest
quality service in their own specialization and contribute to the overall quality of
the organization.

To be more precise, quality relies on having processes that govern the actions
of the project members in everything they do. These processes must be predeter-
mined, and deliver results that can be measured against the expected outcome of
the process in question, with failures addressed in an appropriate manner.

Of course, the processes can be flexible, but they cannot be changed while they
are being used. They cannot be adapted as a result of a failing, for example, while
being followed.

Part of being able to communicate quality to the client is being able to demon-
strate that these processes are in place, are being followed, and the results are being
verified.

However, unless the client is informed that the various quality control proce-
dures are in place, they will not know, and so the issue of quality control should be
brought to the forefront of discussions from the very start. Leaving discussions of
quality, quality assurance, and control until the discussion of the development
process itself indicates that the organization might not have a quality culture, just
a set of controls for the development process.

274

Corporate Software Project Management

While this is better than having no controls at all, the software engineering par-
adigms presented in this book require that each stage of the process is governed by
quality management. This requires having a process and expected result for that
process for every stage of the software engineering cycle, from bid to maintenance.

Documentation

If each member of the organization is required to document his own quality level,
there will be two side effects. The first is that there will be proof that the process has
been followed, and that the results have been favorable. This is important, as pro-
jecting quality toward clients means that they have the right to ask for proof that the
processes the developer claims to follow are indeed being followed.

The second side effect is that the employee is forced to be aware of what it
means to follow practices that yield high-quality results, and what it takes to pro-
duce such results. If employees have also had a hand in creating the process, and set
the levels by which their performance will be measured, they will have more faith
in the process and hence are more likely to succeed.

The primary reason behind ensuring that documentation exists for each
process and that the quality of each process is measured at regular intervals is so
that everyone is aware of the standards to which the delivery of services is being
held.

Documentation is also a tool for managing and communicating that level of
quality. Even if the quality levels are lower than one might want, or expect, as long
as they are constantly improving and can be proven to be so, clients can have a cer-
tain level of confidence that the organization will deliver on their promises.

Rewarding Quality

It is quite common for clients to offer bonuses for early completion of a project,
and in some cases, this will mean that the savings made in time will be lost in pay-
ing these bonuses. Such bonuses have proven, in the past, to be a good motivator
on a project-by-project basis.

However, they will not work over a long period. Management training courses
are fond of pointing out that raising an employee’s salary by a certain amount as a
reward for good work has an effect that will likely wear off before the end of the sec-
ond quarter of the year. Short of constantly raising salaries, it is not generally a good
tool for ensuring productivity or quality.

However, providing other benefits, such as a company car, have a much longer
lasting effect. In the case of a company car, every time the employee uses it, he will
be reminded of his employer’s generosity—especially if the employee has a certain
amount of discretion in using it for private purposes.

Promoting Corporate Quality 275

Achieving high-quality results must be rewarded, not simply because that is
what employees expect, but because if it is unexpected it is all the more pleasing. It
should never become the norm, but if employees are aware that achieving a certain
level of quality has a significant effect on the organization, they should be rewarded
accordingly.

MANAGING QUALITY

Part of being sure that quality plays a role in the corporate culture is being able to
effectively manage it. Managing quality requires that the quality assurance process
itself is monitored, to the extent that it is governed by a process of its own, with its
own set of benchmarks for success or failure.

This might seem a little extravagant, but there is a very real necessity to apply
the same quality assurance mechanisms to the quality assurance process as is used
to ensure that other processes are capable of delivering results of a certain quality.

To manage quality, we need to know several things:

® The process
® The benchmarks against which results of the process can be measured
B The current state of affairs

Each process needs a description, a set of stages with definite outcomes. For
each stage there needs to be a set of metrics that govern the quality of the stage—
this is distinct from the outcome, which we hope always to be favorable, but a
process conducted at the highest level of quality may still fail (the bid process that
results in the client choosing another supplier, for example).

We also need to be able to measure, at a given moment in time, where we are
with respect to the quality plan. This is the stage at which management of the qual-
ity assurance process is the most crucial, and requires that a formal review take
place.

Quality Reviews

The quality review is a step in the quality assurance process by which it is possible
to assess the current state of affairs, and decide on corrective action if necessary. It
has, itself, a series of steps, each of which must be carried out before the review can
take place.

276

Corporate Software Project Management

1. Preparatory phase: Collecting documents, selective reviewers.
2. Review phase: The meeting itself.
3. Action phase: The actions decided in the meeting are carried out.

This last phase will very likely extend into the start of the next phase of the proj-
ect, being a part of the quality management process that will take shape over time.
The preparatory phase involves setting up the review meeting and making sure that
all the necessary information has been collected.

The review meeting needs to involve management, technical staff, human re-
sources personnel, and project team members. The actual makeup of the review
board will differ depending on the nature of the material being discussed in the
review.

For example, if it is a technical review of a product design, there will likely be
an emphasis on technical staff, and hence reviewed by a technically competent
panel; possibly even members of other project teams, essentially the peers of those
being reviewed. We will come to this approach later when we look at Quality
Circles.

Deciding when to carry out quality reviews is also an important part of man-
aging the quality process. Too many, and the project staff will feel that they spend
most of their time sitting in review meetings; too few, and management will feel
that they do not have a clear picture of the progress being made.

Reviews can also happen at different levels. Middle management, for example,
might be content to know when each of the major phases is successfully negotiated:

Tender and contract awarded
Specification and design completed
Development and testing completed
Product accepted and paid for

If the software development process also includes staged delivery, such as a pro-
totype, followed by deliveries offering increasing levels of functionality, the number
of major phases might increase. A level of management above—at the department
head and board level—might only require knowing when contracts are awarded
and the ratio of failed projects to contracts won.

In the other direction, lower management and team leaders will need to carry
out reviews more often, but usually as part of a more general review process. This
means that the quality review meeting, while primarily aimed at measuring the
success of the process against known benchmarks, will also serve to measure actual
project progress as well.

Promoting Corporate Quality 277

This is not to say that it replaces project progress meetings, but that each proj-
ect progress meeting will need to have a topic on the agenda relating to quality, and
that an additional meeting will need to take place at the end of each phase that is
dedicated to quality matters.

Quality Checklists

To measure the actual quality, we need to be able to break down the project status
into a series of points with discrete answers. For example, there was a checklist
when delivering a chapter of this book:

Spell check performed?

Verified format against guidelines?
Proofread?

Figures and tables included?

For each item, a certain level of quality has to be reached before the chapter can
be delivered. Therefore, for example, the spell check must be performed, and all
errors accounted for. Spell checkers, for example, tend to complain at source code,
but these errors can be ignored. Therefore, while the spell check may fail, if it does
so for an acceptable reason, we can proceed to the next item.

The document has to follow the guidelines, and, unlike a spell check, all viola-
tions have to be addressed by corrective measures. Proofreading will throw up some
items that need to be corrected and others that can remain, so this is a point on the
checklist that can “fail” but with qualifications. The same goes for the inclusion of
figures and tables.

For software projects, it is impossible to give a standard checklist, but for an in-
dividual piece of code, the programmer might have something akin to the following:

Are all designed functions implemented?

Have all functions been tested with the standard test harness?
Is the comment/code ratio acceptable?

Does the code compile without errors or warnings?

Has all temporary code been removed?

This checklist addresses issues relating to how the code has been written, how
it performs with respect to known outcomes, and how well it satisfies the key points
of software quality. It also serves as a way to measure progress, since the program-
mer is required to disclose how many functions have been implemented and
whether they have been tested.

278

Corporate Software Project Management

Total Quality Management

Part of the solution in adopting quality as a corporate culture is to follow a method-
ology that supports, and even promotes, quality awareness within the organization.
Total Quality Management (TQM) addresses every aspect of quality and quality
control, and seeks to provide the impetus that is required to ensure that the princi-
ples discussed in this chapter are applied throughout the organization.

Not surprisingly, the TQM approach began in Japan, where a tradition of honor
and pride has been present in industry since the very beginning. In the West, it only
began to become popular in the 1980s, 30 years after its conception in Japan. The
difference in culture between Japan and the West means that companies find it dif-
ficult to implement TQM. John Stark Associates (www.johnstark.com) have identi-
fied that surveys by consulting firms indicate that the figure can be as low as 20
percent of organizations finding that they are able to implement TQM successfully.

TQM is, therefore, a cultural approach to quality in an organization, and,
rather than being a dictum that is handed down from management also introduces
the concepts at the product development and customer interface. This suits
our approach to software engineering very well, as we can clearly identify the
customer-facing part—the Liaison Center—and those who are involved in prod-
uct development.

It is also a paradigm that fits with the general principles of software engineer-
ing, offering an emphasis on fast response times, with actions being carried out
based on reliable research, and a sense of improvement, both in terms of quality
and the quality process itself.

Something novel in TQM that needs to be applied to software engineering is
that it is an approach driven entirely by the fact that it is oriented toward the cus-
tomer. This is something that is reasonably novel in software engineering circles,
not because companies do not want to please the customer, but because they did
not have enough control over the processes involved to make communication be-
tween the company and the customer practical.

The introduction of a Liaison Center should go some way to address this, and
provides a good starting point for TQM, which follows a client-first approach. This
extends to every part of the relationship between the client and the organization.
Traditional software engineering companies have assumed that it is sufficient to try
to produce a product that matches the specifications, and that will make for a qual-
ity result. The TQM approach recognizes that this is only part of the solution, and
that the customer-first approach needs to apply to every step of the process, as sup-
ported by the reporting lines in the Liaison Center discussed previously.

Promoting Corporate Quality 279

Another aspect of TQM that applies to this discussion is the dedication to im-
provement. If an organization is producing a product, this is an obvious path to
higher quality, but a software engineering organization does not do this, and so the
approach to take is slightly different.

In fact, the emphasis is on getting the design phase right, and before it, the re-
quirements phase. “Continuous improvement” is a phrase that comes to light quite
often in TQM discussions, and in this case, it needs to be applied to the process by
which the product is created, since improving the product itself over time is not a
viable option. The customer is not going to wait for several iterations until the pro-
grammers get it right, unless the rapid prototyping development paradigm is being
used.

Even so, there will be a limit to the number of perfection iterations that the de-
veloper will be permitted by the customer to go through before they show dissatis-
faction with the process. This will not yield a high-quality result.

Coupled with this is the notion of fast response—being able to react swiftly to
the needs of the customer, or being able to repair a defect, should it arise, with a
speed that ensures that the customer remains satisfied. We have pointed out in the
course of our discussions about quality that a high-quality result does not neces-
sarily mean that the software is perfect the first time around, but that the issues are
addressed in a timely manner.

This is entirely in keeping with the TQM approach, and implies that a high-
quality result can be achieved even if the product itself could be considered to be
failing some of its own quality checks.

TQM must be seen as a driving force, and not just something that needs to be
tolerated and reported on to keep management happy. It also needs constant drive
so that it does not become forgotten once the novelty has worn off. The way to do
this is to match the TQM implementation with the culture of the company, and to
involve the employees with rewards and encouragement to ensure that the TQM
mandate is carried through.

Quality Circles

Part of the TQM approach can be linked to a mechanism known as Quality Circles
(QC), in which a small group of employees (never more than 12) meet together on
aregular basis and discuss issues relating to quality. The meeting must be voluntary
and not dictated by management, although a close eye will need to be kept on the
scheduling of the meetings to try to spot trends and possible problems.

Part of the reason why the regularity of QC meetings will change from one set
of employees to another is that there may not be sufficient impetus, or problems for

280

Corporate Software Project Management

them to meet. Put another way, if a meeting is to be held, but nobody has any issues
to discuss, and the meeting is voluntary, then there is no reason to hold it.

Of course, this can be mistaken for either an unwillingness of the employees
concerned to participate in the TQM scheme, or a sign that everything is as high in
quality as it can be. The latter is easy to test for, and the former will prove more
problematic, which is why we discuss the concept of documenting the quality
process here.

The one thing that QC encourages is a change in attitude, and not just on the
part of the management, but also the culture of the company as a whole. The em-
ployees participate through QC, which will encourage them to adopt an attitude of
responsibility toward quality, and its improvement.

To adopt QC within a company that both embraces TQM and has followed the
advice given in earlier parts of this book relating to the establishment of a Liaison
Center, the company will need to superimpose a QC framework onto the organi-
zational matrix.

The key QC roles are:

Steering
Coordination
Facilitation
Lead

The Steering function happens in high management, and will plan and direct
the TQM program, as well as review the results passed up by the Coordination and
Facilitation functions, which should be carried out by middle management, and
will monitor the results of the QC scheme, based on reports from the Leaders of
each QC.

Within each QC are a Lead function and a Participation function. Employees
with no other role in quality control are the circle members, of which one needs to
take the Lead role in reporting to the next level up.

Of course, the Coordination, Facilitation, and Steering functions will be carried
out by more senior personnel, but this does not preclude them from also being QC
members at their own level in the hierarchy. TQM and QC are, after all, part of the
company culture.

DOCUMENTING QUALITY

One important part of being able to control the quality of the processes that are
in place to ensure that the job is done properly—within the constraints of time,

Promoting Corporate Quality 281

budget, and functionality—is having clearly documented procedures. This applies
equally to the actual procedures used to create the software as to the procedures
used to monitor the quality level and record defects.

The documentation serves two important purposes. The first is so that the
quality assurance team can be sure that they have performed the correct steps in
measuring the quality level, and resolved any issues in a way that is consistent with
the processes that have been put in place to control it.

This in itself is important because it ensures that in rectifying a quality defect,
another is not introduced in the system as a consequence of its resolution. This is
linked to the second purpose of maintaining quality documentation—the audit
trail.

If the developer wants to have the quality control processes that it uses, and the
processes for software creation itself, validated by an external organization, then
they need to be able to prove that the processes and their control have been cor-
rectly implemented. The only economical way to do this is to have the documents
audited by a competent third party who will be able to validate that it is the case.

Process Description Documents

The first step in ensuring that the correct processes are followed and that each stage
can be validated is to document them. Each process description document consists
of a series of steps with verifiable conclusions that can be applied in every situation.
If one has to create a set of process descriptions for each project, then this will un-
necessarily waste resources.

However, it is perfectly acceptable, indeed likely, that for each type of product
that is created there will be a different set of process descriptions. After all, design-
ing and creating software will be different depending on the platform, interaction
with other systems, and style of software. By style, we mean one, or a combination

of:

B Single user
B Multiuser
B Real time
® Embedded

» Interactive
» Multimedia
« Internet

282

Corporate Software Project Management

These are the broad brushstrokes that we use to paint a picture of a piece of
software—everyone knows that a single-user real-time interactive multimedia
application is a game, and that the combination of skills and processes required to
make it will be very different from a single-user Internet application, which might
be, for example, a Web browser or FTP client.

Each of the styles needs, potentially, to have a process description made for it
that can be integrated with other process descriptions to produce a guiding de-
scription of all the processes that need to take place to produce the product. Of
course, this list, and hence this exercise, is not complete, but serves to illustrate that
determining how something is to be made is a difficult proposition, but is also vital
in being able to control and monitor that process.

Benchmark Reporting

The only way in which the processes that are described in the process documenta-
tion can be controlled is by measuring their success and comparing it against pre-
vious iterations of the same process. In this way, we can know if the quality is
improving or getting substantially worse.

By way of a simple example, let us look at service-level agreements. A service-
level agreement is a contract between a supplier and their customer that states that,
over a given period of time, a certain metric has to be within a threshold of a value.
Therefore, if the supplier is an Internet service provider (ISP), they might have a
Service Level Agreement (SLA) with each client that states that their access will be
available 95 percent of the time.

If the clients are home users, this will be acceptable, but if the user is a corpo-
rate client who requires the network being supplied to be available to generate rev-
enue, then 95 percent is not going to be an acceptable availability rate.

Therefore, they might want to increase the SLA level, but to do so, they should
not immediately boost it up to 100 percent, because the supplier will simply shrug,
say that it cannot be done, and try to get out of the contract. Instead, they should
benchmark actual performance, and offer an incentive to increase the SLA level by
an appropriate amount.

This appropriate amount needs to be chosen so that it represents a substantially
valuable increase from the point of view of the client, but the supplier is convinced
that with a little work, they can achieve this new level of availability. This might be
an extra 0.5 percent or an extra 0.1 percent. Either way, it should be agreed, and re-
ported upon regularly, and when the new level is achieved, both parties can agree
to raise it further.

Promoting Corporate Quality 283

This approach, which we call Benchmark Reporting, can also be applied in
software quality management. We expect that there will be errors in products, but
we can also expect that the number of reported errors per thousand lines of code
(for example) can be reduced over time. It may never be zero, but at least we will
be able to state a figure, know what the benchmark should be, and try to monitor
our progress.

The key is to choose appropriate benchmark values that can be linked to the
process that we have documented. Once we know what it is we want to measure, we
can then benchmark the current state of affairs. Having done that, we can try to es-
tablish what level of that benchmark would represent an increase in quality, and try
to put measures in place to achieve it.

Badges

We spoke earlier in the chapter about the possibility of having a qualified third
party audit the quality assurance process and the processes used to create the end
product, and the accepted industry standard for doing this was the ISO 9000 series
of process quality control.

The International Standards Organization (ISO) has a whole set of quality
guidelines that monitor the documented processes in many industries, from man-
ufacturing to service industries, and taking IT in its stride. The standards are de-
signed to be applicable across industries so they can be applied using the established
process controls without changing them for each industry.

In this way, those implementing the ISO 9000 series can benefit from a set of
standards that are exactly that—standard. Of course, there are guidelines that help
each industry to implement the series in their own way, and plenty of advice on
hand to help implement the controls that they prescribe. The certification process
is expensive, but gives the right to display a specific badge that is taken by some as
a seal of approval of the processes, if not the quality of the end product.

To be sure that the end product is of a sufficiently high quality, it needs to be
looked at from the point of view of a third party. This third party should usually
be the provider of the hardware on which the software is to run, or the operating
system manufacturer.

If a company has received, for example, the “Designed for Windows XP”
badge, we can be sure that the quality control processes that Microsoft has put in
place have been applied, and that the product line is ready for that specific operat-
ing system and is guaranteed to deliver an experience that puts both companies in
the best possible light.

284

Corporate Software Project Management

Other industries have similar schemes. The video game console manufacturer
Nintendo is renowned for the strictness of its quality control procedures, which
means that any cartridge used in, say, its Game Boy range that has not been offi-
cially sanctioned by Nintendo effectively voids the warranty of the system. To add
to that, only those that have been through the Nintendo quality control system may
use the Nintendo badge on the packaging.

The theory is that without the badge, the consumer will not purchase the game.
A similar theory pervades in the IT industry, especially among consulting firms. If
they have not been certified for the processes they use, or the software, operating
systems, or hardware that they profess to be proficient in, they may not be deemed
worthy of using as a supplier.

Finally, training certificates are also a form of badge. Employees can be trained
in a variety of different techniques and technologies, from programs such as the
Microsoft Certified Solution Developer to hardware certifications from companies
such as Cisco, IBM, and so forth.

Companies that can boast a large number of certified specialists will some-
times be given more leniency in their pricing than those that do not. This premium
should compensate for the additional expense of training the employees so that
they carry the certification.

SUMMARY

It is important to note that if an organization wants to compare favorably with the
competition, it needs to be able to project an image of quality; and the only way to
do this is to ensure that the whole organization has embraced the quality mantra.

Part of the problem is convincing people to have pride in their work so that
they perpetuate the quality rather than stand in the way of it. Not caring either way
will effectively mean that they are preventing maintenance and improvement of
quality levels, so it is not an option.

The result is that processes and procedures can be put into place that yield
evidence that high-quality standards have been respected, and thus the organiza-
tion can apply for and hopefully win the right to display a badge that alerts the
world to the fact that the company cares enough about the quality of their work to
have the processes certified.

This does not necessarily mean that the software that is a result of the applica-
tion of the certified processes will be of higher quality because of it. In fact, badges
like the ISO 9000 series only show a commitment to using a high-quality process—
it is the process itself and the quality controls that have been put in place that are
being certified, not the software.

Promoting Corporate Quality 285

To be able to project an image of quality that holds within the IT industry it is
therefore necessary to gain specific certification badges within those niches that the
company operates. Therefore, if the company produces software primarily for the
Microsoft platform, then they should ensure that their engineers are appropriately
certified—the team leaders, if not all the project team members.

Involving the staff in the quality management of the company, which requires
that they have pride in their work, will be much easier if they feel like they are
achieving something as a result of their hard work—something for themselves—
and training to receive awards and certifications both helps the employee and the
quality level of the company. The bonus is that the employee will feel involved.

This involvement is a prerequisite for the application of systems such as TQM
and Quality Circles, both of which require the active participation of all employees,
and are also sanctioned for ISO certification. As long as no other process certifica-
tions exist that are applicable on a worldwide basis, these should become the lynch-
pin of any company’s quality plan—whether they plan to certify or not.

All of this costs money, and while we can note that those companies that invest
in quality certification and quality control may command higher prices on the open
market than those that do not, it may not be necessary for niche players to certify
their processes, instead ensuring that the technical certifications required to service
the industry are obtained.

I1 . Testing Procedures

In This Chapter

Introduction

Consequences of Weak Testing
Weak vs. Strong Testing
Testing Implies Quality
System Dependencies

Testing vs. Certification
Summary

INTRODUCTION

Testing is an integral part of ensuring that product quality is as high as it possibly
can be. If the end product is poor, the faith in the developer that has been built up
over the entire project can easily be destroyed if it is proven in their acceptance of
the product that it has not been sufficiently tested.

In the preceding chapter, we looked at how corporate quality can be used in
effectively negotiating and winning projects from other developers. Just talking
about it is not good enough, however, and this chapter lays out ways in which test-
ing can play a part in delivering on these promises.

287

288

Corporate Software Project Management

Definitions of testing vary, as do definitions of quality; it is often best to look at
testing as a mechanism by which it is possible to evaluate the product based on the
satisfaction of two criteria:

® Robustness
m Correctness

The first of these is designed to ascertain whether the system is capable of
reacting sensibly when encountering input data or operations that do not match a
pre-selected set of operational conditions or fall within a set of predefined parame-
ters. What amounts to a sensible reaction depends on the system, and one of the key
definitions of system quality as “fitness for use.”

This is linked to the correctness of the system, which determines whether the
observed reactions are in tune with the requirements of the system as defined by the
customer. For example, if the software is supposed to be monitoring a spacecraft,
and it encounters a set of input conditions that seem to be at odds with the expected
conditions, a sensible reaction will differ from a similar problem encountered by a
less critical system.

Besides breaking down testing into these two areas, we can also layer testing
over the traditional software development life cycle:

Unit testing
System testing
Integration testing
Acceptance testing

Unit testing takes place during development of each individual object; system
testing is performed when these objects are glued together to create a part of the
final system. Integration testing is used to ensure that the complete system per-
forms correctly in its target environment, and Acceptance testing proves to the cus-
tomer that the entire system satisfies the requirements captured in the opening
phases of the project.

CONSEQUENCES OF WEAK TESTING

Two types of system test can be performed, which we will call weak and strong tests.
A weak test is one that tests general cases in an attempt to show that the system

Testing Procedures 289

works correctly in a vast majority of normal operating conditions. A strong test is
one that ensures that the system is robust and can perform correctly in exception
cases and in regular operations.

Weak Testing

Most of the testing that takes place during the development life cycle of the prod-
uct will be weak testing. This is because there is simply not time to actually run
through every single possible combination of data inputs and simulated operating
conditions and verify that the results are correct.

This does not mean that a product that has been testing using weak testing
methods is necessarily a lower quality product than one that has been subjected to
strong tests designed to test cases that might not even logically be able to happen in
the production environment. It does mean, however, that there is a higher possi-
bility of an exception being caused that could lead to undesirable behavior, and that
the developer needs to take the time to check that the anticipated impact risk is
below an acceptable threshold.

Testing Process

To carry out weak testing, we need to be able to identify what constitutes normal
operating conditions for the software product. This should be done with the client
and can be based on simulated production data or live data that will be fed into the
system to exercise it under a variety of different conditions.

The process is very simple:

1. Identify test data and cases.
2. Agree on expected results.
3. Test and report.

By agreeing on the expected results with the client, we introduce a separate
process by which we can verify that the client and developer both have the same
view of how the software is supposed to operate with reference to the problem that
it is designed to solve.

Each of the test cases is then populated with a variety of data that has been
agreed to provide an adequate representation of normal operating circumstances,
including some exception cases that can occur during the system’s interaction with
regular users and other systems.

These test cases are then executed against the system, and the behavior
recorded alongside other vital pieces of information such as time and date, as well

290

Corporate Software Project Management

as a reference to any screen shots or logs that can help the developer retrace the ac-
tions in the event of an error.

It is important that every test carried out is recorded. For example, during test-
ing it is possible that a specific error occurs during the unrecorded execution of a
test case, only to not occur when the tester decides to log a run that should, to all
intents and purposes, be the same.

The developer will therefore find it very difficult to track down the origin of the
problem, since they will have to work back from the only logged run, which turned
out fine, without knowing whether there was actually an error or whether the tester
misremembered the fact that an error occurred.

Once all the results are collected, they need to be reported to the client, who will
then decide whether they are prepared to accept the product into the next stage of
development, which could be either Integration or Acceptance testing.

It is the client’s prerogative to decide whether any failed test cases have an
impact that constitutes a high risk to their business, and therefore prevents the
product from being prepared for release.

Data Sets and Scenarios

A Scenario is a set of operations that are designed to mimic behavior of the system
in a production environment, and can produce results that are predictable and re-
peatable. Test Data refers to the information that is needed by the operations in
order to provide information to the system for testing certain combinations of
likely production data.

Of course, we can also use the Test Data and Scenarios to test exception cases as
well, and a Scenario can be executed with more than one set of Test Data, depend-
ing on what we are trying to achieve. By and large, however, the idea is to gather in-
formation that can be used to validate a system for behavior that has already been
tested to ensure that it is robust and correct.

When to Use Weak Testing

Weak testing is typically used in regression tests and integration tests. Acceptance
testing can be seen as a form of weak testing, especially when it occurs later in the
product life cycle; for example, to verify the correct operation of a change that has
been implemented in a stable release of the software at the request of the client.

System and Integration Testing

The first time in the software development life cycle that we can envisage using
weak testing is once the entire system has been unit tested and is ready to be put to-
gether and tested as a system.

Testing Procedures 291

It is a way of proving to the client that the system works as required, with ref-
erence to specific cases with which they will be familiar, rather then asking them to
look at the unit testing results that suffer from being all-inclusive and hard to read.

The client may not realize that the combination of two unit tests that pass in-
dicates that a specific feature of the system works as planned. However, a test case
that touches all the various unit-tested functions and produces a result that they can
associate with one or more of their requirements is far more useful to them.

Of course, these tests will still occur in isolation. It will be the system on its own
that is tested, in an environment that is different from the end production envi-
ronment. The next time weak testing is used is when the system needs to pass
through integration testing, where it will be tested with the same set of test data and
scenarios, and the results compared with the previous run during system testing.

Should an error be found, it is clear that it is in the way in which the system in-
tegrates to the production environment, hence highlighting a problem in:

The Nonfunctional Requirements/Specifications
The Design (interface and system borders)

The Implementation

The Test Cases

Under different circumstances, the impact of finding an error that results from a
misunderstanding of the way in which the existing environment and the new one
should integrate will vary from severe to “show stopping”; a “show stopper” being an
error from which it is not possible to recover without calling a halt to the proceedings.

Regression Testing

During a regression test, we want to be sure that the system, as implemented, and
probably as it is operating in the real world, will continue to operate in the same
fashion under similar circumstances. It applies only to those areas of functionality
that have not been altered between the full system test, release to the client, and the
implementation of some new functionality. It can only test what has already been
tested, and hopefully give the same results.

It is helpful to obtain some live data to perform regression testing, and to be
able to compare the results of certain scenarios as laid out in the previous section.
The live data should be easy to come by since it is assumed that the system that
needs to be regression tested is actually in operation at the time the tests needs to
be carried out.

Using live data will help to ensure that the weak testing is not hampered by lack
of test cases; after all, we are only checking the software at a high level to see if the

292

Corporate Software Project Management

functionality that was offered before is still being offered. Since weak testing is not
designed to verify that the inner workings are still 100 percent in line with expecta-
tions, a regression test without live data may work during testing and then imme-
diately fail for some reason the moment it enters the production environment.

If an error is found during regression testing, the consequences can be very
serious, since it can highlight that the change that has prompted the regression test,
and that was not supposed to alter the existing behavior of the system, has. In turn,
this means that the real source of the error is in one of the following:

The original Functional Specification
The original Design

The original Implementation

The original Test Cases

If the error is in the Test Cases or the Functional Specification, it will possibly
prove equally expensive to fix. The supporting argument for this is that if the error
is found to be in the Functional Specifications, they must be altered. In turn, the
Design may also need to be changed, as well as the Implementation.

Then, the new software needs to be Regression and Acceptance tested. All of
this will take many resources and be relatively expensive. If the Test Cases were the
source of the error, and the software worked correctly under them, then exactly the
same procedure needs to be gone through, with the new Test Cases in mind, because
the original software was flawed anyway, or it would have failed in the testing phase.

Changing just the Design or Implementation will be considerably less expen-
sive, although still more expensive than if the problem had been caught during Unit
Testing or even earlier.

Acceptance Testing of New Features

For those parts that cannot be regression tested, it is assumed that new features have
been added and need to be tested within the system. Of course, in line with the gen-
eral theory of testing as a method to validate the software, the new features will
already have passed through the unit-testing phase, and so will already have been
validated using strong testing, as will the remainder of the system that has not
changed.

The purpose of the Acceptance test is to be able to verify that the new features
have been correctly implemented with reference to the rest of the system, and to be
able to prove this to the client’s satisfaction. There are several stages:

Testing Procedures 293

1. Decide on test data.
2. Set scenarios and expected results.
3. Perform and report.

The first two will need to be performed in conjunction with the client, prior to
developing the new features. This is so that there is some kind of basic usage infor-
mation that can be handed to the developers so that their unit testing will be more
realistic. This is necessary because they will possibly not have been involved with
the process that led to the development of the functions, and may not have been
part of the original project team, and so may not have the required background.

In fact, since all communication will have been done via the Liaison Center, all
information will be available to all parties, and this should not, therefore, present a
problem. However, it is always a good idea to ensure that the developers of new
functions have as much information as possible before they do their unit tests
because it will save time in the end.

Next, using the test data information that has been agreed with the client but
might not represent a complete set with respect to the actual tests that will take
place, the test planners should construct a set of scenarios and expected results, in
exactly the same way that was done for the initial system testing.

Then, these need to be discussed with the client to be sure that the expected re-
sults match the results that the functionality is supposed to include in the product.
This is also a good way to validate that the correct change has been communicated
to the developer, and that everyone agrees on the required behavior.

Finally, the tests need to be executed, and any deviation from the expected re-
sults noted and discussed with the client to see what the expected impact is. Should
the impact represent an acceptable deviation, then this is noted and the software is
released. If not, the source of the error must be found, which could be in a number
of places:

The change specification
The change design

The change implementation
The original product

Since the purpose of testing is to highlight errors in any of the preceding cases,
it is safe to assume that errors will be found that fall into any of the categories. It is
also safe to assume that an error that is found during acceptance testing of the soft-
ware, but is a consequence of the specification, design, or implementation of the
original product will, on occasion, prove impossible to fix.

294

Corporate Software Project Management

When we say “impossible,” we mean “impossible within the resource con-
straints of the project.” The argument is that since the error was found after imple-
mentation of the change, then since the specification and design of the change will
have been performed with respect to the existing documents, the existing specifi-
cation or design is at fault. Hence, it will prove very expensive to repair.

We can take it as a given that, under the circumstances, the requirements of the
client have changed, since this is the reason for the change in the first place. Hence,
we also have to alter the Requirements Definition and Specification document at
the start of the process. This means that if we only find the error at the other end of
the software change life cycle, it would almost certainly prove less expensive to cre-
ate a workaround than to fix the error.

WEAK VS. STRONG TESTING

Weak testing is designed to ensure that the system can be validated with respect to
normal operating conditions, as a way of demonstrating competence toward the
client. Strong testing is a mechanism by which every possible aspect of the com-
ponent under test is validated against a set of test data that is designed to take the
system to its limits and see how it reacts. A well-designed system will have a con-
tingency mode for dealing with possible errors and exceptions, and strong testing
should catch individual instances but will not be able to identify system behavior
defects.

The exception is when strong testing is carried out on a system that is in its
Integration or System test phase. This is normally not practical, since the weight of
test data and scenarios that is required means that it becomes an expensive pro-
cedure. However, in certain critical systems it is necessary to ensure that, at the very
least, any possible operation that can be carried out by the user is catered for.

Imagine, for example, that we have a data entry subsystem that forms part of a
larger application. If that component allows entry by the user of up to 100 charac-
ters of any in a specific range—for example, “A” to “Z” and the space character—
then when we perform weak testing on the interface we might generate a set of 10
names and use them as the Test Data on the assumption that the keyboard to which
the system is attached does not permit the user to enter any other characters.

However, when we perform strong testing of the component, we should ensure
that we validate all cases, which means lengths and characters that are outside the
ranges with which the system is expected to deal. We do this because, at some
point, a new keyboard might be installed, and we want the component to be able to
react in a logical way to changes that affect the way in which it operates.

Testing Procedures 295

When to Use Strong Testing

strong testing has a specific place in the software development life cycle—during
the unit test phase and object test phase. In fact, we should use it for any testing that
does not involve the system as a whole. We can never be sure what data will be fed
into a component from any other component, but we must be sure that whatever
happens, it is dealt with in a way that is logical and does not damage the rest of the
system.

If the reader thinks back to Chapter 5, “Testing,” we divided the entire testing
philosophy into five separate phases: Unit, Module, System, Integration, and
Acceptance Testing, each with its own set of test data designed to emphasize a func-
tional area of the system. These were Memory, Data Type, Argument (or Parame-
ter), and Logic. Table 5.1 shows the explicit relationships between these nine
elements; phases on the one hand, and testing philosophy on the other.

We can further categorize the five testing types according to the nature of the
testing that will take place—either strong or weak. Earlier, we noted that weak test-
ing should be used in System, Integration, Acceptance, and Regression Testing,
which is a special case that is generally only required after delivery and is dealt with
as a separate project for the purposes of this book. It is worth pointing out that
Chapter 5 tends to deal with the project in focus, and leaves out the discussion of
regression testing, which we are now picking up.

strong testing, therefore, has its place in Unit, Module, and to some extent, Sys-
tem Testing, where we devise test cases to validate the Memory, Data Type,
Argument, and Logic handling of the piece of the system we are implementing.
There is, therefore, an overlap between Strong and weak testing in the area of
System Testing. It is up to the project team to decide whether the product will
require that the entire system is subjected to strong testing (rare), or whether we
will limit this more rigorous approach to interconnected system parts only.

The Testing Chain

One might be tempted to insist that weak testing has no place in the Software
Development Life Cycle, and that all elements must be tested as rigorously as pos-
sible at all stages, including the full system test. This approach will cause resource
problems in the real world, where there is never going to be enough time to do
everything. This is the guiding philosophy behind the testing procedures that we are
proposing in this chapter—all the points that we made in Chapter 5 about devising
test cases and so forth are valid for both Strong and weak testing, but the data sets
will be more extensive when strong testing is performed.

296

Corporate Software Project Management

That being said, the fact that we concentrate on Argument and Logic tests dur-
ing the strong testing phases Module and System Testing indicates that we are not
testing our components in isolation. In fact, we are ensuring that they will interact
correctly with the rest of the system, and in doing so we also ensure that the risk of
the entire system developing a fault due to inappropriate data entering the loop is
minimized.

Hence, there is really no need to perform strong testing on the entire system, if
we can be sure that the Unit, Module, and limited System Testing have all been per-
formed according to the guidelines for quality control that the organization has es-
tablished. There is a slight caveat, and that is where the testing (in an outsourced
project, for example) is out of the control of the organization in question. In such
cases, a special form of strong testing, known as Certification, needs to take place,
and we cover this in a later section.

The Testing Chain ensures that each piece of the system that maps input data
onto output data performs according to the logic defined in the Functional Speci-
fications, and hence that when the entire system is put together, it will perform as
expected.

In Figure 17.1, we have selected a part of a system that contains logic that maps
some inputs onto two sets of outputs, via four functions, numbered 1, 2, 3, and 5.
It is assumed that functions 4 and 6 provide some other service to the system as a
whole, and fall outside the Limited System Boundary that we have determined is
the part of the system on which we want to concentrate.

Function 1 Function 3 Output
Input
ﬁ Maps to Function 2 Maps to Function 4
Function 5 Function 2
Qutput

Maps to Function & Maps to Function
3and5

Limited System Boundary

FIGURE 17.1 Test network.

Testing Procedures 297

Each of the functions will have been subjected to:

B Unit Testing
m Module Testing

Hence, we know that they behave in a manner that is both correct and robust;
that is, they can correctly map their inputs to their outputs, and do not generate
data that cannot be treated by the system, nor do they fail should they receive such
data.

From a Test Network such as that in Figure 17.1, we can then construct a series
of Test Chains:

® Input — Function 1 — Function 2 — Function 5 — Output #1
B Input — Function 1 — Function 2 — Function 3 — Output #2

We are therefore able to test that the Input maps correctly onto Outputs #1 and
#2, using the Functional Specifications of the system as a guide. We can also verify
robustness by varying the Input within the confines of a test data set that we have
constructed for the purpose.

Since we have already been through strong testing phases for the individual
functions, we can limit these cases to normal data and borderline cases, and still be
sure that the system will function correctly under extreme cases.

The Testing Chain also ensures that one can pick up any part of the system and
test it thoroughly and efficiently. Most of all, though, it also allows us to construct
super chains, where the individually tested Limited Systems are chained together to
create the final system. We can rely on the Testing Chain to deal with the robust-
ness while the final system tests can deal with the behavior of the system as a whole.

TESTING IMPLIES QUALITY

We test so that we can be sure that the system works as intended when everything
is running according to the expected behavior of the entire system and the envi-
ronment into which it is placed. We also test so that we can be sure that the system
is not going to fail completely if something unexpected occurs.

One of the common myths associated with quality and software engineering
is that a quality product is one that has been tested thoroughly. As we shall see,
quality relates to testing in several different ways. For example, a product that has
been extensively tested using strong testing may well be robust, but there is no

298

Corporate Software Project Management

guarantee of correctness of behavior if there has been a misunderstanding in the
fundamental way in which it operates.

On the other hand, it is difficult, if not impossible, to create a product that is of
high quality without performing any testing, and all high-quality products will have
been tested extensively. Subsequent iterations of the product, should it be subject
to changing requirements down the line, will be much easier to implement if the
whole quality matrix has been filled. If the product has not been properly tested, it
may be difficult to be sure that the changes will not cause unexpected behavior in
the modified system.

Correctness

A product can be said to be correct if it behaves within the constraints laid out in
its design with reference to the expected conditions under which it will be operat-
ing. This means that a correct piece of software can still fail to satisfy the client, but
it will have been verified to be correct with respect to the design. If the design is
flawed, then even a correct product will not be of high quality.

However, if the product is not correct, it will stand very little chance of being
acceptable to the client; it will not be of sufficient quality. Validating correctness re-
quires that each of the design areas can be verified with reference to a set of test
cases and data.

Correctness is established by using weak testing, since we do not need to cover
every possible combination of data and operation. However, in the process of
validating the correctness of the software product against the design, we may well
find that we have been able to cover as many cases and combinations as will occur
in the normal operating environment.

Of course, it is not only the software itself that can be tested for correctness. In
fact, the Design should also be tested for correctness against the Specifications.
How this is performed will depend on the format that has been chosen for the De-
sign, but will probably have to be performed manually.

If we go back still further, we can actually test the Specifications against the Re-
quirements too, but at this stage, we are going to be performing a set of tests that
are qualitative rather than quantitative. By this we mean that, before the system be-
comes concrete it is impossible to get empirical proof that it is operating according
to the definition to which we are trying to compare it.

Qualitative evaluations of the correctness of the system tend to take longer to
perform, and yield results that might be accurate but are not proof that the system
will work. They will only prove that the author of the document has understood the
principles well enough to commit them to paper. The evaluation of whether this is
the case will need to be performed by the client by open discussion.

Testing Procedures 299

Robustness

The principle of testing for robustness is to be sure that the system is solid, and that
unexpected events or input data will not cause it to perform in a way that is unac-
ceptable. The definition of unacceptable behavior will differ from system to system;
in some cases, what constitutes acceptable behavior in one case will not be accept-
able in another.

In fact, dealing with exception cases is an example of a testing topic that can fall
either into correctness or robustness. If there is a specifically defined mode of be-
havior that is designed to deal with exception cases, then this falls into the category
of validating the system for correctness of behavior.

If the system has no mechanism for dealing with exception cases of a certain
kind, this can be classified as testing for robustness. In other words, in the absence
of specific error handling routines that provide behavior that indicates that an error
has occurred, we need to at least be sure that the system will continue to operate,
even if it does not inform the user or client system that it has failed.

The worst case is one where the system simply ignores the data and continues
to operate without treating it as best it can. This will usually have the effect of
snowballing until a part of the system makes a decision that will cause the process
to terminate. As long as nothing occurs that might damage the integrity of the
system, and any associated data, this behavior is acceptable, and the system can be
said to be robust.

However, should the system fail—that is, cause damage to its integrity, termi-
nate processing completely, or fail to produce the required result—then the system
is not robust, and this will need to be addressed. Whether this requires that a part
of the system is redeveloped, or part of the specifications altered, or simply a note
made in the User Guide is a question that only the client can answer with any
degree of certainty.

Correct Behavior and Fitness for Use

We noted earlier that a failure in either Correctness or Robustness does not neces-
sarily imply a product that is not of the quality expected by the client. While it is
true that it can be said to be of a lower quality than if the errors did not exist, part
of the formal definition of quality includes a phrase such as “fitness for use for a
given purpose.”

In fact, this is often part of the standard disclaimer that can be found attached
to the license of commercially available software; except that in such cases, it is usu-
ally in the negative—no provision is made for the guarantee that the product is fit
for a given use or purpose.

300

Corporate Software Project Management

When software is being created specifically for a client, we need to be able to
claim that the result will be fit for the use for which it was intended, and this is part
of the reasoning behind trying to ensure that everyone has understood, via the Re-
quirements Definition, Specification, and subsequent Functional Specification,
what the delivered system is supposed to be fit to do.

Thus, fitness for use is a contractual obligation. If the product cannot be used,
then the developer will not be paid, or at least, they will not be paid beyond the
money that they will already have asked for by way of advance.

Should the system violate some of the criteria set aside to determine if it is cor-
rect, it is up to the client to decide whether it is still fit to be used. We would like the
system to be 100-percent correct, as would the client, but everybody understands
that, due to the nature of software, this may not be possible. In such cases, there
needs to be a mechanism to accept the software “as is,” on the assumption that it is
fit for use.

Determining Fitness for Use

While, to a certain extent, Correctness and Robustness are both empirically testable
in that they rely on sets of test data that may input data or behavior onto output
data or behavior, Fitness for Use is a different prospect altogether. It is a good idea
to decide what constitutes Fitness for Use as part of the Acceptance Testing cycle.

The danger is, in deciding on the Fitness for Use conditions earlier in the SDLC,
that the developer will look on that as the real test, and not the actual Correctness
and Robustness test data sets. Thus, while the product will be Fit for Use, it may not
be of the highest quality possible.

To establish what might be constituted as adequate tests for Fitness for Use, we
need to look at the functional areas of the product and decide whether it delivers on
them in a way that satisfies the client. This often makes it look like a second-best
option, a fallback position in case the software does not function correctly, but this
is not the way in which it should be viewed. The test for Fitness for Use must be
carried out regardless of whether the system has been deigned Correct and Robust,
or not, because it is the only way that the client can be sure that it is applicable in
solving the problem they identified.

SYSTEM DEPENDENCIES

In our previous discussion of Test Chains, we noted that Limited System testing is
based on mapping a series of inputs onto outputs, assuming that the same has been

Testing Procedures 301

done for all the components in the chain, and measuring the result against known,
or predetermined, result sets. The system as a whole can be viewed in the same way.

Many of these inputs and outputs, with reference to the system as a whole, will
be linked to dependencies on other systems. As such, poor overall system quality
can sometimes be a consequence of other system or peripheral failures. This is a
sign that those systems or peripherals have not been tested according to the same
principles to which the system under development has been subject.

Worse still, they have deficiencies that were not foreseen by the development
team, and therefore only found during the testing phase. Usually, when this occurs,
we decide that the system must be redeveloped. At the very least, the failing com-
ponent needs to be examined to ensure that the changes that need to be made to
correct the problem are correctly passed back to the specifications of the system.

In our discussions about software development in this book, we have often
concluded that if this needs to be done at such a late stage, it will probably cost too
much to go through all the various processes, and therefore the error will be logged,
but left unrepaired.

However, we need to have a mechanism by which we can deal with this when
it happens in the domain of a system dependency, because it is not part of the
system being developed, and although the same rule holds true—it will be more
expensive to fix at this stage than if it was found in the opening phases of develop-
ment—the chances are that a system dependency failing will produce a net result
that violates our Fitness for Use principles.

Prevention and Cure

Of course, the best way to deal with possible quality degradation as a result of sys-
tem dependency flaws is to isolate problems as soon as possible. System dependen-
cies can be broken down into several categories, and testing procedures need to be
established that can deal with each of the categories effectively. These categories are:

Internal tools/drivers/components
Third-party Open Source components
Third-party Closed Source components
External hardware devices

External software systems

The way in which problems stem from dependencies on the preceding system
types varies by category. In each case, however, the goals are the same: to identify
errors or failings, correct them if possible, sandbox them if not, and protect the
system against such errors as may affect Fitness for Use.

302

Corporate Software Project Management

Internal Tools, Drivers, and Components

This category of System Dependencies relates to anything that has been developed
to provide extended functionality beyond the scope of the Functional Specifications
to achieve one or more of the Requirements Definitions but that does not form a
part of the system being tested.

It also applies to those specific pieces of code, such as device drivers and
libraries of additional functionality, that are required by the system, have not been
developed as part of the system, but for which the developer has a case history.

This applies to pieces of reused code, taken from the Object Repository,
whether they have been extended or not, other code that has been developed for
other projects but has a relevancy to this project under scrutiny, and specific drivers
that are needed because there is a specific piece of hardware that has no standard
drivers available.

Since the code comes from within the developer’s team of software engineers,
it is easy to be sure that the code on which the system is dependent has been tested.
It is also easy to know to what extent and success the code has been tested. The
decision can then be made as to how to proceed.

If there are no defects, and the code has been tested extensively enough that the
developer is sure that there will be no defects when it is integrated with the system
being developed, then all is well, and the components can be used. Should they sub-
sequently fail, they have to be treated as little projects of their own that have defects
that need to be addressed in isolation. This minimizes the overall impact on the
system, made possible by a combination of strong and weak testing within the
testing philosophy, and by relying on Testing Chains to reduce the necessity to
constantly re-test objects unnecessarily.

If previous testing has not been sufficient to make a decision as to whether the
components are fit for use, the developer needs to do several things. The first item
on the list is to find the responsible engineers and remind them of the importance
of strong testing in Unit and Module test phases.

The second is to complete the remaining tests, which will ensure that there is a
complete test case history for the components under scrutiny. Once this has been
performed, the developer should be in a position to decide whether these com-
ponents are fit for use. If they are, they can be used, with the caveats mentioned pre-
viously relating to any subsequent defects.

If, in either case, the components are deemed to be of insufficient quality for
inclusion in the project, the developer has either to address the defects, create a
component that is more Robust, Correct, or both. It can then be passed back into
the Object Repository with the knowledge that the collection has become of higher
quality.

Testing Procedures 303

Finally, there is the possibility that the developer decides that the components
are beyond redemption. In this case, they will develop a new component, and re-
turn it, tested, to the Object Repository, again knowing that the overall quality has
increased and the range of available components has also improved.

Third-Party Open Source Components

These components are pieces of code that have been assimilated into the Object
Repository or Component Gallery, and are Open Source. The exact meaning of
Open Source is discussed in Chapters 11, 12, and 14, where we look at the imple-
mentation side of software engineering. Assuming that the contractual obligations
for the code remain fulfilled, the organization is free to use, develop, and maintain
the Open Source components, and this includes multiple reuse across projects.

Subsequently, we can deal with them in the same way as with the Internal
Tools, Drivers, and Components listed previously. There might be additional feed-
back requirements, depending on the nature of the Open Source license (GPL,
LGPL, Public Domain, etc.) under which the code was released. These extend to
ensuring that any improvements are handed back to the community such that they
can enrich their own collection.

Third-Party Closed Source Components

Of course, there will also be occasions where the Component Gallery contains
libraries, tools, or drivers that are Closed Source. In other words, the source code
is not available to the developer; all they have are the rights to use the object or
executable code.

Should this not be the case—if the developer has purchased the rights to the
source code as well—then they can be treated in the same manner as Open Source
components, as detailed earlier.

In other cases, while the components can be tested, they cannot be altered
should a defect make itself known. Remembering that we are dealing with actual
defects, and not just cases where the functionality does not meet our requirements,
we need to ensure that the noncompliance is noted in the Component Gallery as a
first priority.

This will usually cause a chain of events in which the Liaison Center, along with
the Librarian or whomever is nominally in charge of the Component Gallery, in-
forms the original developer, and follows up any solutions that they offer. Should
the original developer offer a workaround prior to adjusting the code, this needs to
be communicated to the engineer who brought up the defect in the first place.

304 Corporate Software Project Management

Next, there is a decision to be made. If the component is the only one of its kind
(specialist applications and hardware devices, for example), it is likely that the de-
veloper will continue to use it regardless of its specific defects. This is based on the
assumption that the code is fit for use, with caveats.

The developer will need to try to sandbox the component so that the defective
behavior either goes unnoticed to the system being developed, or an appropriate
behavioral model is adopted. Sandboxing usually demands that some code be writ-
ten that forms a buffer between the component and the system under development.

Should there be other options, the developer will need to evaluate them, and
see whether they should be used in place of the defective component. If they need
to be acquired from an external source, the efficiency and cost effectiveness of
doing so needs to be evaluated alongside. The developer needs to bear in mind that
in testing the new component, additional defects might be found.

External Devices or Systems

Much of what we have so far said is applicable to those external systems or devices
upon which the software system under development needs to rely. However, test-
ing them should begin much earlier in the SDLC than for other components, since
they are likely to be part of the Requirements Specification, especially in cases where
the system needs to interface with nonstandard or exotic hardware and software
systems.

Consequently, it is more likely that the developer will choose to sandbox the
components directly, by placing some code between the misbehaving device or
system and the system under development such that the effects are minimized.

TESTING VS. CERTIFICATION

The final topic in the discussion of Testing Procedures and how they relate to over-
all software quality control is a little different from the others. In fact, Certification
is used in cases where we do not know exactly what testing might have been done—
it is a service that is in place to ensure Correctness and Robustness, usually applied
to outsourced projects or independently developed systems conforming to a set of
specifications.

To perform Certification of a system, we must:

® Have a set of Functional Specifications
B Determine sets of Test Cases for Robustness
B Identify Scenario-based Test Cases to verify Correctness

Testing Procedures 305

It is also usual that Certification is applied in cases where we own the Func-
tional Specifications, have given over the development of the system to a third
party, and have trusted them to perform the testing part. Upon delivery of the final
software, we must then Certify that it conforms to the Specifications.

In the context of a software engineering house, this may not seem relevant,
until one remembers that we could choose to outsource component development
to ease the burden of delivery to the client. In such cases, Certification becomes a
viable way to verify that the delivered product conforms to the Functional Specifi-
cations and will perform under exception conditions.

Why Certification?

Certification is distinct from testing in that it simply looks at the system as a black
box into which we can feed information, and from which we expect some kind of
behavior. While we use Certification to validate certain border exception cases with
regard to logic, we will only test for robustness at a data validation level.

In other words, while we will try to ensure that the system does not produce
data that is inconsistent with the environment in which it is operating, and does not
fail when confronted with data that it was not expecting, we will not try to trick the
system by exposing defects in its logic except when those cases might arise under
normal operating circumstances.

The other side to Certification is that, unlike testing, it is assumed that only one
set of tests should need to be executed. In other words, we test to expose defects in
the system or component, but Certification exists to ensure that the testing has been
performed correctly, and we do not expect to find any defects remaining.

Taking this one step further, we can also state that if Certification fails, it is
most likely to be due to a misunderstanding with respect to the Functional Specifi-
cations, rather than insufficient testing. We would hope that the developer had
placed sufficient emphasis on the development and testing process that this would
be the case.

Certification Test Cases

Looking again at Table 5.1, note that Certification is not covered by the various
phases and test types mentioned in it. Certification is, in fact, rather a mixture of
Data Type and Logic validation. Therefore, we want to test for robustness and
correctness, but in a way that does not preclude any knowledge of the workings of
the system.

In the same way that the Definition and Specification of the system make little
or no reference to how the system should be implemented, the Certification of the

306

Corporate Software Project Management

system should verify that it operates correctly in a similar manner. Therefore, only
the user interface that is exposed by the system may be used to introduce data into
the system, which effectively reduces the amount of Robustness validation we can
do.

Therefore, in designing the Certification Test Cases, we need to be aware that
we are only able to test the Robustness of the system by testing the Correctness. By
way of example, we could design a system that needs to receive a number via the
graphical user interface.

If the system has been created in such a way that the data entry field will only
accept numerical data, then we are confronted with two issues:

B We cannot test alphabetical data with the system.
B We do not need to test data entry beyond simple, reasonable test cases.

From a testing point of view, this is not acceptable, except (again with reference
to Table 5.1) when performing Acceptance or Integration Testing. In fact, Certifi-
cation replaces Acceptance Testing in an SDLC that has been outsourced.

SUMMARY

In this chapter, we looked at the various testing types that have to be put into place,
and presented loose descriptions of the kinds of procedures that need to be imple-
mented, but without giving precise instructions. The reason why we were a little
vague about exactly how testing procedures should be implemented is that they are
dependent on the organization’s way of working.

However, there is merit in providing a series of steps that need to be followed:

1. Create test cases.
2. Execute test cases.
3. Report results.

Exactly what has to be done in each phase depends on whether we are per-
forming strong testing, weak testing, or Certification. Chapter 5 provides informa-
tion on how to create the test cases and report on the results; the discussions here
relate to when and why the testing needs to take place.

In line with the continuing emphasis on reuse and component-ware, we should
also note that each product that is created should be tested with the emphasis on

Testing Procedures 307

testing new code from a virgin build, and basing the test conclusions as far as pos-
sible on the results of tests applied to those components that are being reused.

Where this might become more difficult to justify is where a component is
being used for a purpose for which it was not originally intended. In such cases, any
new code must be tested from a virgin build—it assumes that changes have been
made and that the sources are available.

18 : Feedback Techniques

In This Chapter

Introduction

Reporting Line

Central Communication—The Liaison Center Revisited
Supporting the Reporting Process

Summary

INTRODUCTION

Part of ensuring that high quality is delivered at each stage of the product develop-
ment life cycle is being able to ascertain where lower than expected quality has
been delivered, and being in a position to put into effect changes that result in an
increase in quality. Feedback is important in being able to identify and act on cases
of lesser quality, and there are specific ways in which this can be achieved.

Not only should we work toward being able to identify actual deficiencies, but
also cases where quality may potentially be lower than the client has come to expect.
Quality risk assessment is a reasonably new concept in software engineering, if only
because it costs money to perform but does not actually bring any income on its
own.

309

310

Corporate Software Project Management

Risk assessment in general works on the basis of fear of failure, estimating the
costs associated with a particular part of the system failing, and assuming that, at
some point, it will fail. Quality risk assessment works on the basis that in order to
achieve a higher level of quality, we need to invest in avoiding cases where we are
unable to gauge the likely level of quality that will be delivered.

This chapter deals with the various forms of communication that need to be
built up in order to be in a position to determine what the quality outcome of a par-
ticular exercise is likely to be, as well as using models to try to anticipate failures in
the quality process so they can be avoided—at a cost.

REPORTING LINE

Testing usually occurs at the end of the Software Development Life Cycle, either of
the system as a whole or of the component that is under test. Table 5.1 indicates the
various phases in which testing takes place—each phase has its own area of
responsibility regarding what needs to be tested and to what extent.

If a defect is found, the consequence is that the nature of the defect needs to
follow the reporting line back to the design phase (in extreme cases) so it can be
corrected in the most efficient manner. This means that we need to know which
member of the team was responsible for the design and development of the com-
ponent so that he can be the one to repair the defect.

The assumption is that the problem is found in a timely fashion, and that the
member of staff responsible for the defect is both still working in the organization and
on the same project, although not necessarily on the same component. The chances
of this being the case decrease the further into the SDLC the software progresses.

Documenting the Reporting Line

Depending on the size of the organization and of the project, the team responsible
for ushering each piece through the SDLC will be different at each point. That is to
say, the staff doing the Acceptance Testing may not have access to the source code
written by the original developers. The staff performing a Module test might not be
the same developers as those who created the units that they are gluing together,
and so on.

In addition, those responsible for the Specifications might not be the same as
those who have found the error. It may be the case that the component needs to be
passed back to the Definition stage, in which case there needs to be some way to en-
sure that the team can be assembled to repair the defect in question.

Feedback Techniques 311

Of course, this is entirely dependent on the seriousness of the problem, and the
point during the SDLC at which the defect was found. Each component needs to
have a textual definition that accompanies the source code, then the executable or
library code, from Specification through to Acceptance.

There should only ever be one copy of this document in circulation, and it
provides the reference to the entire Reporting Line. At a minimum, it needs to list
the names of the staff who worked on the component, in the following areas:

Specification
Design
Implementation
Integration

In addition, each entry needs to have a testing reference. We have not dealt with
explicit references before in our discussions of testing, but it is the Reporting Line
document that needs to contain the explicit reference to the documents that de-
scribe the tests that took place, and who signed off the results.

Each testing section needs to refer to the standard tests that were performed, if
any, and the specific tests that were performed to ascertain that the logic had been
correctly implemented with reference to the Specifications and Design. For exam-
ple, the organization should have a standard set of tests to deal with validation of
common data types:

B Integer and floating-point numbers
B Strings
B Memory blocks and pointers

These will be used in the Unit Tests and possibly Module Tests to ensure that
the interfaces to the functions have been correctly implemented. By the time we are
ready to run System and Integration Tests, we will be using scenarios designed to
validate the operation of the system using test data created especially for it.

All of the tests need to be referenced in the Reporting Line document, with the
intention that exactly what has and has not been tested is entirely transparent. This
should be seen as an effort to help in resolving the problem as quickly as possible,
when it occurs, rather than an attempt to point the finger at specific staff members
when they accidentally neglect to either test or report effectively. The concept of the
Reporting Line needs to be integrated with the Quality Assurance philosophy of the
organization. For example, in the opening chapter in this discussion on Quality

312 Corporate Software Project Management

Control, we spoke about Quality Circles and Total Quality Management as a way
of trying to gain some level of measuring and controlling quality in the processes
used.

Thus, the Reporting Line document might become a part of the Quality Circle
discussion (a voluntary meeting), and will certainly be part of the whole Total
Quality Management cycle. Since the idea is to instill corporate pride in the level of
quality delivered, it is clear that far from being a document that the staff will be
afraid of, it is in fact a document that is there to help them, and they should feel
proud about being a part of it.

The Reporting Line Document

While we discussed the minimum structure of this document earlier, each section
will contain slightly different information depending in which stage of the SDLC it
was reported. The information will also reference other documents that are used in
each of the SDLC phases. It is almost a nominative summary of the entire process
from conception through to delivery that monitors the progress of the software or
software component until it is fit for use.

In fact, there will be many Reporting Line Documents, some of which will only
come into being as a result of a specific decision. For example, during the Func-
tional Specification phase of the SDLC, a number of individual functions will be
isolated. Using the Object-Oriented Design paradigm, these will then be turned
into objects ready for implementation.

Since each object is isolated for the development process, ready to be glued to-
gether during integration (whether it be a object created specifically for this project,
or something from the Component Gallery or Object Repository), a number of Re-
porting Line Documents will have to be created to follow these objects through to
System Integration, where the results will be merged back into one document.

Thus, for a given project, the documentation collection will look something
like Figure 18.1, where some Reporting Line Documents will have a lifespan that
ends with the successful testing of the respective components, but are referenced in
the final Reporting Line Document.

Therefore, following Figure 18.1, the original Specification becomes the subject
for the Analysis, which leads to a number of documents, each referring to a specific
function in the design. These then become multipart documents, each referring to
a specific component that makes up the functional area to which it refers. Once
tested, they leave the Implementation Phase to be merged back into a single, mul-
tipart document that provides the final summation of the Reporting Line.

Feedback Techniques 313

10

/

Creaticné Review | Analysis i Design EVerification Development } Testing Assembly Testing

Iy Ly Ly
/

LJLJ LY

Specification Design Implementation Integration

FIGURE 18.1 Following the Reporting Line Documents.

It is subsequently possible to go back through the documents and find out who
was responsible for which part of the error that is under analysis at any given time.
There should be references in the source code to the Reporting Line Document so
that it becomes a simple matter to follow the chain back to the initial Specification.

Specification

The Reporting Line Document for this phase needs to show the team responsible
for the creation of the Specification, and what sources have made up the document
(Requirements Specification and/or Definition). There also needs to be a reference
to any Quality Circle meetings that discussed the Specification, and a reference to
the sign-off document that the client should have submitted.

The sign-off document, possibly part of the contract, is proof that the clients
have reviewed the Specification, possibly in conjunction with the project team, and
agrees that it provides the functionality they require to solve the business problem
they have isolated.

Design

While the Reporting Line Document starts as a single document, it is necessary to
create several to follow the different functional areas of the project. This is because
there will probably be multiple teams, and to avoid problems with updating docu-
ments and central storage it makes more sense to spawn several documents than to
create a single multipart document that everyone might need to update.

314

Corporate Software Project Management

During the design Verification stage, each of the documents needs to reference
the specific sign-off documents and the kinds of verification that took place. For
more information about this aspect, the readers should turn their attention to
Chapters 8, 9, and 10, where details are given about proving designs based on
specifications.

Implementation

Between the Design and Implementation phases, the Reporting Line Documents
that have been created to monitor the progress of the individual functional areas
become multipart documents, with one part per functional object. They can be
grouped in this way because the team that handles the objects for one functional
area remains the same.

In cases where there are multiple teams handling a single functional area, or
where an object in that functional area is being handled by another team, it is ac-
ceptable to create another Reporting Line Document, as long as references to it exist
in the parent, and the parent does not continue to receive entries for that object.

During testing, it is important that the test documents and test team are refer-
enced explicitly, as well as the results. The Reporting Line for each of the objects is
now complete, and only the references to these documents will remain beyond the
end of the Implementation Phase.

Integration

Finally, the multipart documents that make up the entire Reporting Line reference
for the project need to be collated, referenced, and placed in a single, multipart
document. Then, references are made to the documentation that specifies how the
objects are to be glued together, and the team responsible.

Finally, the testing team and results need to be noted for each of the separate
test items that were prepared to ensure that the Reporting Line can be completed,
as it was in the Implementation phase.

The result is a document that contains many references to previous documents,
and a brief overview of the development history. This ensures that, when an error
is found, we can trace the origin of the code and every staff member who has been
involved with it.

Again, this is not so much to assign blame, but more to try to ensure that the
solution is found as efficiently as possible.

CENTRAL COMMUNICATION~THE LIAISON CENTER REVISITED

It is not possible to maintain efficient communication of feedback documentation
without a central point of contact, and the Liaison Center provides that central

Feedback Techniques 315

point. The issue is that there are a large number of documents that need to be
maintained and exchanged, and if we allow a network of documentation relation-
ships to build up, there will be cases where a specific set of documents can no
longer be found.

The Liaison Center is also important in managing the overall corporate quality
ethic, and as a central point in managing relations between projects, teams, and
clients. Not to mention the role that it will play in setting up various meetings and
reviews to measure the success of the organization in delivering on their promises.

It is also a good idea that the Liaison Center carries out specific reviews of qual-
ity issues because they can be seen as a disinterested third party. This is only possi-
ble in organizations that have the resources to ensure that the Liaison Center does
not comprise staff who also have a role in other areas of the company.

Quality Management

Before we look at how we can measure and monitor the evolution of quality met-
rics, we need to explain why it is important. More importantly, we need to look at
why, in the context of Software Engineering, it is a good idea to be able to measure
quality empirically, and what we can do with that information.

Part of the problem is that computer applications, as we previously mentioned,
are not like other products. They are intangible, and the only way in which we can
be sure that they have been correctly put together is through their use. They are also
transient—they can be changed much more easily than other, concrete products.

This leads to two important facts of software engineering. One, a change is
easy to make, but often far reaching—it is quite possible to fix one aspect only to
break another—and the result of the change is not always immediately apparent.
Two, a piece of software might almost work, even when there are aspects that are
clearly broken, and still be fit for the use for which it was intended, even when the
defects are more than just superficial.

The Liaison Center is the point at which all the quality lines converge. Conse-
quently, it is also responsible for handling Change Management, Total Quality
Management, and Quality Circles. After all, it is in touch, or should be, with all of
the different departments and teams within the organization, whether it is a small
development house with 10 people, or a 1,000-strong industrial software develop-
ment company.

Change Management

One of the principle ways in which we can measure the success of a product is
through monitoring the Change Management. For example, we might have an un-
usually high number of Problem Reports that are passed from the System Test

316

Corporate Software Project Management

team back, via the Liaison Center, to the Development team. This might, depend-
ing on other metrics that we will discuss later, indicate a problem with the way in
which the development has been done by that team that will have repercussions
when the product hits the field.

However, Change Requests passed back from the client to the Liaison Center,
during the Acceptance Test process, might indicate that there are problems with the
initial understanding of the client’s request. This also has to be dealt with in a cer-
tain manner, taking into account other metrics.

Change Management is typically one of the areas of software engineering that
is the cause of many quality problems. The fact is that if the development teams are
allowed to run their own change management procedures, this will eventually have
a negative impact on the quality of the product. The way to avoid this is to have the
Change Management process managed centrally.

Total Quality Management

The Liaison Center also fits into the TQM paradigm perfectly, since the emphasis
of TQM is on a customer-driven approach to providing goods or services. In this
case, the Liaison Center treats everyone as either a client or a supplier, whether in-
ternal or external, which is perfectly in keeping with the TQM mindset.

To embrace TQM, we need to be sure that we can generate actions that are
geared toward improving the quality of the organization’s processes and products.
To do this, we need to base our evaluations on factual information, which in turn
implies that only a single central point of contact will have access to all the relevant
information.

By establishing contact between customers and suppliers via the Liaison Cen-
ter, we can also be sure that any defects that occur in the process are dealt with
before the baton is passed to the next stage in the SDLC. This is important because,
as we have noted many times, the cost of repairing a defect increases rapidly if we
need to take it back more than one stage in the process. This would not serve TQM,
and so we would rather pass all communication through the Liaison Center and
deal with defects as they are located.

Quality Circles

Finally, the Liaison Center is implicated in Quality Circle administration, moni-
toring, and even as a participant. Since the Liaison Center will probably provide the
information to the nominal leader of each QC initiative, it makes sense that they
should be on hand to monitor how this information is being used, so that they can
improve their own processes.

Feedback Techniques 317

Of course, the question then becomes—who is monitoring the Liaison Center?
The answer is that TQM and QC philosophies dictate that this should not be nec-
essary since we are embracing a quality culture.

The real answer is that the management team, also in tune with the TQM
mindset, is responsible for making sure that quality is a top-down affair, and that
each level below them manages its own quality appropriately.

Hence, the Liaison Center will conduct its own QC, and the results of this
should be passed up to management so they can verify that the culture has taken
root in a manner of which they approve.

Quality Measurement

It is not possible to engage in Quality Management, as we detailed previously,
without some way of measuring progress. In Chapter 16, “Promoting Corporate
Quality,” we stated that part of the overall philosophy that needs to drive a corpo-
rate quality program is in improving, little by little, until a certain goal is reached.

Measurement fulfills two roles. On the one hand, it allows us to see the current
state of play, and how we can improve it in the future. On the other, it provides us
with a way to monitor how the quality improvement process is developing over
time, which may offer clues as to how it can be better implemented to achieve more
rapid change.

Measuring Quality

To accurately measure quality, with a view to actually verifying that the situation is
improving, it is necessary to try to establish indexes that reflect the nature of the
defects. In fact, it is very difficult to measure good quality, and the usual way to do
s0 is to reverse the measurement process and measure the lack of defects.

This needs to be done in such a way that there are metrics for every stage of the
SDLC, based on the four principle areas that we have established for quality con-
trol—Specification, Design, Implementation, and Integration. The reader will note
that there is a phase, Definition, before Specification, which could be implicated in
any defects found in the four principle stages.

However, the Definition phase is so subjective that it does not necessarily make
sense to try to measure the defect rate that it might have. Such a rate might only
indicate that the company has a history of attracting clients that are singularly
incapable of communicating their wishes. If one is being fussy, then we could add
that a high-quality team would be able to extract this information easily, and that
the inability of the team to do so is a measure of that team’s quality.

318

Corporate Software Project Management

The problem is that the team does not possess the skills to extract the informa-
tion, in which case only a team change will yield better quality, and that it is diffi-
cult to measure success based on qualitative information. The only metric that
makes sense is to measure the time spent in Definition against the perceived com-
plexity of the project, but even that will be subjective.

It is better to create a Quality Circle that reviews the result of each project with
reference to the expected level of quality set out by the responsible manager. They
will need to give a statement that indicates their satisfaction level, and have it re-
viewed during a Quality Circle meeting.

If we assume that the correct way to measure quality is by metrics that use
defect removal information as a base, then we will end up with a series of metrics
that give values indicating the number of defects per any one of a number of
different measurements.

There is only one slight problem with using defect removal as the base mea-
surement: it may be possible that not all the defects are found. We therefore need
to try to establish what a defect is in the first place. If it is found in Unit Testing, is
it a defect, or is it assumed that there will be defects when the code is initially tested?

Does a defect only become a defect if it is found during System or Acceptance
Testing? Is every single item that needs to be corrected a defect, or is it only a defect
when there is a palpable deviation from the Functional Specifications or Require-
ments Specification? Even worse—what happens if it is a defect that comes about
because the Functional Specification is wrong, but is only found after the product
has been handed over—should it not get more weight because it takes more re-
sources to repair?

Answering these questions is very organization specific, and will depend on so
many different factors that it becomes impossible to give a solid set of instructions.
What we can do is give some examples, along with the justification for them, and
let the readers implement their own sets of controls accordingly.

The first piece of advice is to use the Reporting Line as a way to establish a met-
ric. We can therefore start our defect measurement at the first verification phase—
Design Verification—and simply count the number of times that a specific team
has had their Reporting Line followed back to the Design Analysis phase.

This needs to be coupled with the number of times that the Analysis has been
returned via the Reporting Line to the Specification stage. This will enable us to de-
termine whether the Design team or the Specification team made the error. Of
course, they might be the same, in which case it is not necessary to try to pigeonhole
a single team.

The problem might also be with the process that has led to the creation of the
Specification or Design, rather than the team; all the metric can do is point to cases

Feedback Techniques 319

where there has been a defect of some kind, and measure it. Interpretation is cov-
ered as a separate topic—Monitoring Quality—Ilater in this chapter.

Therefore, the Design Correctness Metric is the number of times that the De-
sign Verification has failed, divided by the number of times that it has been re-
turned to the Specification phase—one Reporting Line Hop (RLH). A value of 1.0
will indicate that each time an error has been found it has been due to an error in
the Specification. More than 1.0 indicates that there are potentially more instances
where the defects are a result of the Design process rather than the Specification
process.

If the Design Correctness Metric (DCM) is less than 1.0, this will indicate that
there are serious problems in the Specification process because it means that, per
Design Verification Failure (DVF) there is more than one RLH. Since there is only
one possible RLH, it indicates that the Specification team is having problems cor-
recting the defects reported to them.

The next possible defect measurement point is at the Testing stage of the Im-
plementation phase of the project. Here, multiple possible metrics can be taken,
starting with many based on the number of lines of code. The simplest is to mea-
sure Test Case Failures (TCF) per thousand lines of code (KLOC).

We have to assume that the Test Cases are not themselves at fault, and correct
them if they are. We can also create a metric, the Test Case Correction Ratio, which
calculates the number of times the Test Cases need to be changed with respect to
the Specifications. The TCEF figure needs to be adjusted to remove the cases where
the Test Case is at fault.

In addition, we also need to establish whether we want to apply the metric
against the entire code base, or just against a single functional area, or object. The
rule of thumb needs to be that we measure against code that we have created, in a
small enough area of functionality that makes sense given the team composition.

The Test Case Failure Ratio (TCFR) is a metric that has no good or bad value,
as opposed to the DCM. We can only measure a change in the TCFR to know
whether we are improving. To arrive at a value that has an intrinsic meaning, we
need to measure it against the RLH; the number of hops that the error has to do be-
fore the actual source is found.

So, the Test Case Failure Metric (TCFM) can be expressed as the number of
TCFs divided by the number of RLHs that these have yielded. There is a maximum
of two possible hops: back to the Design phase, and again to the Specification phase.

A value of 1.0 implies that, on average, the defects that are located are the result
of an error in the Design process. A value that drops below 0.5 indicates that, again
on average, the defects are a result of errors in the Specification phase.

320

Corporate Software Project Management

On the other side, a value greater than 1.0 shows that there are more defects
found than are returned to previous phases, and that the errors must therefore lie,
on average, in the Implementation process itself.

The final point inside the four-phase model that we have chosen to use for
quality measurements is the Testing stage of the Integration phase. We shall call
each of the defects that are found as a result of Integration Testing by a slightly dif-
ferent name—System Failure—to differentiate the metric from the others.

A System Failure can be due to a number of different factors. It could be a re-
sult of a component failing that has been bought or acquired, the result of a com-
ponent developed specifically for this project, or a result of the Assembly process
itself.

Therefore, in an attempt to keep the approach reasonably simple, we will have
two metrics—the SFM (System Failure Metric) and SF3M (System Failure per 3rd
Party Component). The first is calculated using the familiar method of dividing it
by the number of RLHs that each failure causes.

A value of 1.0 will imply that, in general, the defects found are returned to the
Implementation phase. A value of 0.5 indicates that most defects are a result of the
Design phase, and a value of 0.33 shows that the Specification phase caused most
of the defects.

Values greater than 1.0 show that the defects are a result of the Assembly
process itself, as most of the defects result in no RLHs.

It is worth mentioning at this point that many organizations will choose to
skew these metrics based on the relative expense that fixing the defects incurs with
respect to the number of RLHs that each requires. The thinking behind this is that
it becomes difficult to tell whether there are problems when a single value is con-
sidered. The effect of multiple hops might become averaged out, and therefore we
have two options:

® Make each hop exponentially more “expensive”
B Define metrics by hop type

Whether the former or latter is chosen will be a matter of personal choice of the
organization implementing the metrics. The second will lead to the need to moni-
tor four separate numbers in the Integration phase, three in the Implementation
phase, and two in the Design and Specification phases, since one metric will need
to be recorded for each hop type (return to Implementation, return to Design, or
return to Specification/Definition).

Feedback Techniques 321

Monitoring Quality

With the sets of metrics in hand, it is necessary to constantly monitor them for
changes that will indicate whether there are problems that need to be addressed,
and whether the general situation, by project or as a whole, is improving,.

Moreover, we also need to be able to monitor the metrics by team, staff mem-
ber, project, and globally. This is only possible if we have an established central
point of contact with the responsibility for measuring and monitoring the metrics
and their evolution. This central point is the Liaison Center.

Without involving the Liaison Center, it is impossible to accurately measure or
monitor the quality of the company. For example, it may be necessary to spot
trends that seem to follow a specific staff member as he changes development
teams. In such a case, we can only be alerted to this if the Liaison Center has seen
all the relevant documentation.

This emphasizes everything that we previously highlighted about the Liaison
Center—it needs to be the only point of contact, and all handover, documentation,
and result logging needs to happen through it. By doing so, while it may seem te-
dious at times, we can be sure that we always have a correct view of the quality and
process status of the organization.

SUPPORTING THE REPORTING PROCESS

All of what we’ve discussed previously is impossible without clear guidelines as to
how the information is to be passed back to the Liaison Center, and what they have
to do with it once it gets there. With the advent of tools such as electronic mail, this
has become much more streamlined and efficient.

Indeed, it is likely that the Liaison Center will use an integrated tool that will
enable them to be involved in a way that does not impede progress within the
project’s lifespan. For example, if every piece of documentation had to be for-
warded to the Liaison Center, logged, and forwarded to the intended recipient for
action, as the previous discussion implies, then it would not be a very efficient way
to approach software development.

Instead, some form of solution needs to be put into place that allows the
Liaison Center to monitor the progress of documents through the system. We have
already dealt with a large amount of theory and practical advice regarding how the
key documents that are used to create the end product, as well as the product itself,
are managed via the Liaison Center, but there is one piece missing.

322

Corporate Software Project Management

Reporting problems and changes are the kinds of activities that require a much
faster response time than would be possible if every document had to go via the
Liaison Center. In fact, we need to put some mechanism in place whereby we can
forward the document to the intended end recipient while keeping the Liaison
Center informed.

Electronic mail can provide this functionality, but it also creates several copies
of the same document, which defeats the object of the exercise. Therefore, we have
to implement a solution to ensure that there is a single copy of the document, and
that its status can be monitored as it goes through the various stages—from open
to fixed, tested, and eventually closed.

External Documentation

In support of the preceding discussion, we also need some way to introduce the in-
formation that is required into the system from the outside. The outside, in this
case, can be an internal or external client. This will be important in two main areas:

Change Requests and Problem Reports.

Change Requests

A change request is raised when the functional area that has been tested is identi-
fied to not satisfy the original intentions of the client. This can be a result of insuf-
ficient or incorrect Specification or Design, or that the intentions of the client have
changed over time. It is also possible that it is the result of a failure in the Require-
ments Analysis, but a deviation of this kind should not actually make it to the stage
at which the formal Change Request document is required.

Each Change Request needs to contain a section with the project number (or
other identification), client raising the change, and the stage at which the change
was identified in the SDLC.

It is also important that there is a way to identify whether the Change is a result
of a change in the requirements of the client, or a correction of a misunderstand-
ing, miscommunication, or erroneous design.

This can be called the identification section of the document and exists so that
the Liaison Center can monitor the various quality metrics linked to them, without
reading beyond the header. The next section of the document will then contain the
details of the change, which is technical in nature and intended for the Design
team.

Once entered into the system, the document is stored, and only the user inter-
face to the problem management system should allow access to it. This system
needs also to be able to monitor the progress of the change through development
and testing and into integration and finally acceptance.

Feedback Techniques 323

Problem Reports

Where a Change Request can be raised when the software performs correctly, but
does not satisfy the client’s intentions, a Problem Report indicates that an area of
functionality contains errors. There is sometimes some confusion about whether an
item is an error or a change, and that decision is usually left to common sense.
The Problem Report format and processing is the same as the Change Request,
except that we also need a section that specifies the severity of the problem, and the
point at which it was identified in the project’s SDLC, and project identification.

Motivation via Improvement

Part of TQM is to provide for continuous improvement. This can also serve as a
good motivator—employees like to see their boss happy, and continuing to deliver
quality will help to motivate the entire team.

However, the constant badgering of employees in an attempt to persuade them
to deliver above expectation levels of quality can also lead to a de-motivating envi-
ronment, so we need to be sure that they feel that they can achieve their targets,
which is not going to be the case if the bar is set so high that they feel overburdened.

Case Study: Service Level Agreements

To illustrate this, let us look at a subject that should be familiar to most readers—
Service Level Agreements (SLAs). For those who have not met these before, an SLA
is a contract that details how a metric is to be measured, along with the expected
value that the client wants the supplier to be able to deliver.

A telecommunications company, for example, may offer an SLA to their clients
that states that they will be available 95 percent of a six-week sliding window period.
It might then stipulate that this is calculated as being available between the hours of
2 AM. and midnight, and that the two remaining hours lie outside the availability
window. Six weeks might then be defined as 6 x 7 (42) days, with a total of 42 x 22
(924) hours.

The client might then find that one hour per day without service is too high,
and they would rather have an SLA of 98.5 percent or higher. Assuming that the
service provider is willing to adjust the SLA and try to reach it, with possible penal-
ties if they do not, or bonuses if they do, the client could simply set the SLA to 98.5
percent and wait for it to be reached.

However, the chances of this happening are very slim. It could be that 3.5 per-
cent is too much of a change, and that the service provider cannot come up with a
business case to invest in the changes required to improve by this much. It is there-
fore a much better approach to set a modest target, and then increase it from time
to time.

324

Corporate Software Project Management

In this way, the service provider sees a constant improvement, which makes
them happy. The client is also happy, and seeing this, the service provider will be
more eager to try to do better and better. Accompanying this, they see that each
modest increase in the SLA is cost effective, and have no trouble building a business
case for it. Everyone is happy.

This is the approach that needs to be taken when the Liaison Center or TQM
representatives find that a metric is unacceptable. Rather than setting an unrealis-
tic target straight away, it is much better and more in tune with TQM to encourage
constant improvement.

SUMMARY

This chapter was dedicated to seeing how we can feed information back from the
various processes in the SDLC, which can help us to improve quality. We looked at
processes, techniques, and documentation to allow us to do this, the end goal being
to use the feedback to improve the product and the quality.

Improving the product is a short-term goal and means that we try to make sure
we fix all the errors, implement any changes that the client imposes on us, and en-
sure that the entire project remains on time and within budget.

The improvement of process and product quality is a long-term goal that can
only be met if the whole organization pulls together, and will need to rely on hav-
ing metrics available that can tell us if the quality is improving and the current qual-
ity state of play.

It is also good to know who is responsible for particularly good or bad areas of
quality—so that they can be offered bonuses or carrots. It is not a good policy to try
to use a stick to persuade employees to deliver better quality results, as they may
react in the opposite manner.

The better approach is to try to instill a quality culture from the start, using
facts gleaned from constant quality management to illustrate areas where quality
levels are good, and where they are bad. This should be backed up by rewards,
which are one of the best kinds of feedback—either anticipated or given after the
fact in recognition of high-quality levels that have been achieved.

19 .'. Client Satisfaction

In This Chapter

Introduction

Testing for Client Satisfaction
Planning for Failure

Managing Client Dissatisfaction
Summary

INTRODUCTION

The goal of quality control is to ensure that the client is satisfied with both the ser-
vice that the company has delivered and the final product. Both components are
equally important, since a poorly delivered product can result in the client not
using some of the functionality simply because they have no idea how it is to be
used, and forming a negative opinion of the developer; they may assume that the
functionality they asked for is not there.

However, even if the final product contains failures and discrepancies, the
client may still be satisfied with the end result if it solves the business problem that
they set out when defining the requirements for the system. We could even go so far
as to say that a quality product does not necessarily need to be perfect in all respects,
as long as what is delivered results in customer satisfaction.

325

326 Corporate Software Project Management

Of course, this will not always be the case; there will be instances where the cus-
tomer is not satisfied with the service or product, and steps will need to be taken to
address the issues that result from the negative experiences that the client has with
the developer.

Before we can actually take any steps, we need to know whether the client is
satisfied, which is not always as easy as simply asking them. The questions need to
be couched in language that is carefully worded to avoid any misunderstandings or
ambiguity, so that the client does not feel the need to be unnecessarily harsh or
careful in what they say.

On the one hand, if they are encouraged to vent their displeasure, there is the
risk that the meeting in which this takes place results in such a conflict that the proj-
ect is abandoned. On the other hand, if the clients are reluctant to show their true
feelings with regard to the developer, they may end up accepting faults in the prod-
uct that lower the quality and will simply not ask the developer for services in the
future.

We have split the discussion into sections dealing with how to tell if the client
has had a satisfactory experience, how to ensure that, should the worst happen,
there are procedures in place to ensure that these do not have an adverse impact on
overall quality, and how to deal with clients who feel they have received a less than
satisfactory service.

TESTING FOR CLIENT SATISFACTION

In principle, testing for client satisfaction is an ongoing underlying process that
should not begin and end with the delivery of the project. The most common error
made in software engineering project management is to use a project debriefing ses-
sion both internally and with the client as a way to measure client satisfaction.

This is only half of the solution; it is also a good idea to consider client satis-
faction at the outset of the project, too. In this way, the client’s expectations can be
gauged, potentially even before any contracts are rewarded.

The goal in applying the principle of continuous client satisfaction assessment
is to be able to react in a timely and accurate manner, using facts as the main basis.
This continuous cycle of improvement is part of the goals of Total Quality Man-
agement (TQM), and forms at least some of the basis for ISO 9000 qualification,
which concentrates on project management excellence.

Besides a pure customer-facing approach to determining whether the client has
been satisfied with the experience, we also would like to test that the product has
achieved a high-quality status. This requires that we are in tune with the manage-
ment, analysis, and technical sides of the project, as we will see.

Client Satisfaction 327

These two aims—collect data to control response to client satisfaction, and
correctly identifying the key areas of software quality—work in harmony to ensure
that the primary goal of customer satisfaction is met; this could even mean that the
client satisfaction issue provides limited compensation for problems experienced
during the project cycle.

Pre- and Post-Project Surveys

One of the best ways to establish client satisfaction and to show the client that qual-
ity is important to the organization is by performing a survey. It does not have to
be a long-winded affair, and the shorter and to the point it is increases the chance
that the client will take time with it.

Essentially, the pre-project survey is aimed at finding out what the client’s con-
cerns are, and the post-project survey measures the success of the organization in
providing an adequate response to those concerns.

In this way, and with interaction between the clients, project management, and
project team along the way, we can establish a continuous assessment cycle of client
satisfaction that will feed into the TQM and Quality Circle approach that we dis-
cussed in previous chapters.

Pre-Project Survey

The key to a successful Pre-Project Survey is that it enables clients to put their key
areas of concern forward to the organization prior to starting any form of analysis
or design. In fact, it might be beneficial to see what the client’s expectations or
concerns are in the key areas before actually tendering a bid, to avoid any problems
further down the line. Key areas include:

Cost

Schedule and Slippage
Responsiveness

Value Matrix

The first item is fairly self-explanatory; it relates entirely to the overall price of
the project and perceived cost. Most clients will have only a vague idea about how
much something costs to create, and are very price sensitive. They will also tend to
be wary of pricing that is too aggressive. It is, therefore, important to establish what
they perceive as a reasonable cost for services rendered.

Schedule and Slippage relate to the importance that the client puts on staying
within the time budget, with respect to the other areas of the project. For example,

328

Corporate Software Project Management

they may express a preference to narrow the scope of the project to avoid overrun-
ning the schedule, but on the assumption that this will bring the overall cost down.

The third item, Responsiveness, is designed to indicate how clients expect to be
dealt with when a problem occurs from their side. Most will want their e-mails or
calls to be dealt with as a matter of urgency. However, they might be aware that this
is not always possible, and attach less importance to this area than others—such as
remaining within the time budget.

The final item is shared with the Post-Project survey and attempts to create a
way of measuring the key factors of price, schedule, quality, and budgetary concerns
in an attempt to see where the client attaches the most value. This is then compared
with the result of the Post-Project survey to see whether the promise has been deliv-
ered on, and provides part of the answer as to whether the client is satisfied.

Post-Project Survey

After the project has been completed, a similar process to the Pre-Project Survey
needs to be gone through in an attempt to establish whether the client has been
satisfied with respect to the project and the opinions that they voiced in the Pre-
Project Survey. On the one hand, the Post-Project Survey is a chance for the client
to air their views, and point to possible flaws in the quality process; on the other, it
is a way to measure changes in their point of view between the start and end of the
project.

In particular, the Value Matrix might have changed: the client might, at the end
of a project, be putting a different value on, for example, price, than before. If they
have increased the price quotient, this may point to defects in the quality—the per-
ceived value of what they received was less than they had intended.

Knowing why the factors causing the Value Matrix have changed is instru-
mental in being able to assess both the client’s satisfaction and the internal
processes. To do this, it will be helpful to plot the results on a graph. If we perform
the Pre-Project Survey, and find that, on a scale of one to five (with one being the
least important) the client rates the following as:

Price 4 Somewhat important
Schedule 5 Very important
Quality 3 Neutral

Budget 5 Very important

This tells us that Budget and Schedule are the most important factors, with
Price not being as important, and Quality being neutral (expecting satisfactory

Client Satisfaction 329

quality). Generally, speaking, at the outset, Quality will be 3, 4, or 5—no clients will

expect, or be looking for, poor quality results.

Once the work has been done, we then perform the Post-Project Survey, and
find that, using the same scale, but with a different meaning attached:

Price 5 Excellent

Schedule 1 Unsatisfactory
Quality 4 Good

Budget 2 Below expectations

This tells us that at least, for the work done, the price was competitive. How-
ever, the schedule was not respected, and the end cost was higher than was bud-
geted, but quality was above the initial expectations. To get a value index, we then

multiply the achieved levels by their importance:

Price 5 x4 =
Schedule 1 X5 =
Quality 4 x 3 =
Budget 2 x5 -

Adding the results together, we

highest quality.

The Goal of Software Engineering: Quality Products

20
5

12
10

(max. 20)
(max. 25)
(max. 15)
(

max. 25)

arrive at the figure 47, of a maximum 85,
calculated by multiplying the maximum possible score by the weighing factor. The
client, in this case, receives an index of 55 percent, which equates to 2.76 on the
scale of one to five that we have been using. They are not quite satisfied, and it needs
to be established as to why that might be.

Part of the problem is usually related to cost and budgets. There are many rea-
sons why the project may run over budget—if it is attractively priced, but runs over
the initial expected estimates in terms of time and ancillary costs, then the budget
will be exceeded, and the total cost might actually be more than a competitor. This
will cause angst on the part of the client, and rightly so, even if the product is of the

The previous section dealt with measuring the client’s satisfaction with the product
or project that is delivered. It gave pointers as to how to find out what the problems
were, and evaluate the reasons behind them.

330

Corporate Software Project Management

However, in pursuit of quality, which is part of the goal of software engineer-
ing, we need to be able to actually try to avoid the problems happening in the first
place, and control their effect as we move through the project lifecycle. This re-
quires a three-pronged approach—Management, Analysis, and Technical—each of
which has a big part to play in the production of quality work.

Management

It is the role of the management team to evaluate the performance of a project,
before, during, and after the project has been concluded. Management is split into
three levels of responsibility: the team manager, the account manager, and the
responsible manager. These may or may not map onto individual posts within the
target organization, but their areas of responsibility must be dealt with by a mem-
ber of staff.

The team manager needs to be able to gauge the way in which the team works
together, and be able to pass information to the account manager as to whether
there might be trouble in the near future. This will allow the account manager to be
prepared.

The account manager is responsible for being the customer-facing contact,
which is the role fulfilled by the Liaison Center in the first instance, but which will
be passed on to the account manager as the project becomes established. The role
is part project management, and part customer management at an abstract level.

The account manger is also responsible for keeping a close eye on the delivered
quality of all projects under his control, with a duty to alert the responsible man-
ager, who is overseeing the Total Quality Management (TQM) implementation for
those areas under his control.

Abstract Analysis

To be in a position where high-quality results can be delivered on a consistent
basis, analysis of the problem domain and associated areas in which quality could
be compromised needs to be performed regularly.

The members of the team who understand the related business issues are best
placed to do this, and will be able to relate the project and the surrounding con-
straints to the quality plan in a way that will enable those monitoring the continu-
ing quality to control it.

Control of the quality in areas where analysis has shown the potential for a
quality hotspot includes easy fixes such as moving more resources onto the prob-
lem, to hard decisions such as passing a functional area back to the Analysis stage
in an attempt to achieve a better understanding of it, usually as a result of failures
during one of the engineering processes (functional/integration testing).

Client Satisfaction 331

Technical Matters

Finally, it should always be a point of the management to ensure that staff are assigned
who have the right skills to fulfill the tasks assigned to them. Learning on the job is not
an option in the pursuit of quality excellence, although a certain amount of research
around a subject that the staff member is already familiar with is acceptable.

There is also a responsibility to recognize where a staff member appears not to
have been correctly assigned, and to change the makeup of the team to combat pos-
sible future problems in delivering high quality as a result of a skill mismatch.

Of course, in the event of a skill shortage, there may have to be a period in
which new staff are hired, but this is usually a long process, and care needs to be
taken to ensure that all the skills are available, or that they can be acquired in time
to avoid problems during the development life cycle.

PLANNING FOR FAILURE

There are many reasons why a project can appear to be running into problems
regarding client satisfaction, but one of the main reasons is that either the
organization over-promised or under-delivered on their promises. Both of these
cases are avoidable, but if either should occur, things can be done to make sure that
their effect is limited.

One of the key ways in which projects can build in plans for dealing with client
satisfaction failure, as well as project failure, revolves around analyzing each project
as it takes place and trying to identify problems that were encountered and how
they were resolved, or what the effect of not resolving them was.

This will enable the company to build up a number of reccommendations aimed
at avoiding the recurrence of these problems, with a view to trying to ensure that
they are solved ahead of time. There are three principal areas in which it is wise to
try to plan for possible client satisfaction failure:

B Poor Quality Requirements Capture
® Poor Quality Implementation
B Lack of Testing and/or Quality Control Procedures

These are the areas that are most likely to cause problems both in terms of
client satisfaction and in the satisfactory completion of the project. They are also
the most difficult to get right, for a variety of different reasons.

332

Corporate Software Project Management

Poor Quality Requirements Capture

This is a part of the cycle made difficult by the fact that the developer needs to in-
terface with the client in an attempt to gain an understanding of the requirements
of the system that will help to solve the problem they have identified. It requires
that the developer try to understand the business problems, as well as deciphering
the client’s expression of what they say they want into what they actually need.

If the project fails to accurately capture the requirements at the outset, this will
lead to problems that will reverberate through the rest of the project cycle and will
likely result in a product that may be of high inherent quality but will not be an
appropriate solution to the client’s business or technical problems.

Avoiding Client Satisfaction Issues

Before we look at what to do if we fail to perform this part of the project correctly,
it is worth taking the time to see how we can plan to avoid the problems. The first
issue is when the requirements capture seems to take so long that the client
becomes concerned as to the effect of such a lengthy process on the end cost of the
entire project.

Simple explanation of the paradigm and processes will help to alleviate this
issue—the client needs to be able to understand that time spent in the requirements
capture will not so much save time in the long run as prevent future issues adding
even more time to the end of the project. In earlier chapters, we discussed how find-
ing a technical error late in the project life cycle can lead to expensive solutions, or
the entire project has to be respecified, redesigned, reimplemented, and then rein-
tegrated and tested.

The same logic can be applied to an error that stems from a misunderstanding
in the requirements capture process where the client fails to convey their wishes in
a way that can be understood easily by the developer. Since client satisfaction within
the TQM philosophy is the number-one priority, the onus is on the developer to
make sure they tease the information out of the client by rephrasing and following
the logic to a variety of conclusions with which the client may or may not agree.

There may also be some frustration on the part of the client when the developer
consistently fails to understand the business issues and requirements that the client
is trying to explain. This can happen when the developer has moved into an area
that is outside their usual knowledge domain, and can be irritating for the client
when it becomes obvious that the developer is consistently misunderstanding them.

To resolve this, the client needs to be made aware of the developer’s business
area and expertise, and the importance of diagramming and process flow. Those

Client Satisfaction 333

involved in developing software will usually react better to a well-constructed
diagram than an explanation of the business flow that is being solved.

It is also important to try to preempt this kind of problem by copious research
into the business concerns shared by organizations in the client’s area of business.
This research will need to be presented to the team in charge of the requirements
capture process in order that they understand, when going into the first meeting,
what problems traditionally face businesses in the same position as the client.

Resolving Client Satisfaction Issues

It is almost inevitable that at least part of the requirements capture will fail, so we
need a plan for when this occurs so we can limit the effect of this process failure.
Communication will be the key to ensuring that client satisfaction remains high
while there may be an area of the project that is suffering mild or severe process fail-
ures that need to be called to their attention.

Upon hearing that there is a problem, or when they notice it themselves, the
client is likely to become less satisfied. They need to be aware that they should not
keep this dissatisfaction to themselves, nor should they be encouraged to voice
their dissatisfaction in an uncontrolled manner.

Instead, they should be encountered on their own territory, and given the
chance to explain the nature of their dissatisfaction in a neutral and controlled
manner. This means that a representative who is not connected with the project
needs to visit the client in order to establish the nature of the concern.

It helps both sides that the representative is neutral since the client will react in
a less emotional manner, and the representative will not feel that he or his team is
to blame. Nonetheless, since we have established a Total Quality approach, it is a
matter of pride to each individual that quality issues are tackled in a satisfactory
manner, and thus that person will not be disinterested, merely emotionally neutral.

The Liaison Center will likely be the best place to find such an individual, but
this requires that the organization has implemented a sufficiently wide resource
base to service this part of the company. In a situation where a small- to medium-
sized enterprise is implementing these guidelines, it may not be appropriate, and a
neutral third party may not be available to negotiate the resolution.

In such cases, the first contact should be impersonal—via a feedback question-
naire and questionnaire reply. This shows that the developer has taken the client’s
problem seriously, and that they are willing to make an attempt to resolve it to
everyone’s satisfaction, but attempts to defuse any emotional outbursts by using a
nonpersonal method of communication.

The reason why we put so much emphasis on trying to find a neutral solution
is that, on the one hand, we do not have time to allow a cooling-off period of

334

Corporate Software Project Management

several days (or weeks), so we need to act fast. On the other hand, a face-to-face
meeting will likely cause tension, which will impede the flow of information. The
only way to resolve an issue where the client is not satisfied with the requirements
capture process is in the exchange of information between the two parties, and any
emotional involvement will impede this process.

Poor Quality Implementation

Once the requirements have been agreed, the development constraints defined,
and the design built, the next critical area is the implementation of the software,
and possibly hardware, solution. In fact, the implementation can be seen as a mix-
ture of the design and programming components, and it is important that the
requirements be converted accurately into a design that is then well implemented
for the quality of the solution to be satisfactory.

We covered instances where we deal with errors detected by the client and pos-
sibly the developer in previous chapters, but in terms of client satisfaction, there
may be cases where the simple solution of returning the erroneous piece back to the
Design or even Specification stage is not a good solution.

Possible Quality Issues

Typically, as long as the design and development match the specification, and as
long as the specification is an accurate representation of the requirements, which
have been correctly captured, the only quality issues will be based on the user in-
terface or interaction with external systems and processes.

Frequently, for example, the developer will believe to have found a more effi-
cient way of doing a subsidiary task, which is brought about by a seemingly incon-
sequential change in the system behavior—such as altering the format of a
report—without really thinking about whether it will prove more efficient once the
client has had to modify (again) their way of working.

The system itself will often prove to be enough of a change for the client to deal
with, without the developer trying to make the whole process as efficient as possi-
ble. Part of the problem is that solving issues of efficiency is part of the character of
good software engineers, and it is almost impossible to turn it off.

Another classic example is where the organization of the user interface follows
the logical progression of events in the client’s processing structure but seems to
group items illogically from the point of view of the system design. This may cause
items to be moved around, causing the client to become disoriented when trying to
evaluate whether the product meets their expectations.

Client Satisfaction 335

Dealing with Quality Defects

Many issues based on the implementation, assuming that they are not errors re-
sulting from poor coding or an integral misunderstanding as to the nature of the
problem and solution, can be solved by simply applying rigorous processes. This
will, at least, lead to the client getting what they want, even if it does not solve their
business problems.

This means that there will be cases where the client gets exactly what they asked
for, but not really what they needed. Dealing with these kinds of quality defects is a
very difficult process for most organizations, and can even lead to cases where the
project is never completed, as the client moves back to their existing system, since
it has become clear that their problems cannot be solved by the implementation of
a piece of computer software.

Should this be the case, the first thing the developer has to be sure of is that they
get a second chance, and the way to do that is to persuade the client to reduce the
scope of the project, and hence the price, to a point at which the change becomes
easier for everyone to cope with. It can be a choice between this and losing the proj-
ect altogether.

A phased implementation, with clear delivery points, and a plan that gives the
client the option to bow out when they feel that they can extend the functionality
of the new systems is also a possible compromise, and at least if some of the project
can be completed to their satisfaction, then quality can be said to have been
achieved.

Lack of Testing and Quality Control Procedures

Clearly, it will be impossible to deliver a high-quality product if testing and quality
control procedures are not followed, or do not exist. However, as in the require-
ments capture phase, there can be occasions where the client becomes anxious that
perhaps things are taking a little too long to conclude, and that the developer might
somehow be trying to gain additional monetary reward by prolonging the end of
the project with unnecessary testing.

Addressing Concerns

Again, communication and explanation will be the key to addressing any concerns
that the client might have in these areas. Simulations showing why the testing is
being performed in such a manner can help the client to understand the knife edge
that is constantly being walked between functionality and defects.

Most clients will be unaware of the inherent danger that is brought about by the
intangible nature of software, and will assume that, like building a car, if one vital

336 Corporate Software Project Management

part does not work, the whole engine will cease to function properly. Software,
however, can work perfectly some of the time, and imperfectly some of the time,
with no apparent reason, just because a single piece has not been tested under all
possible conditions.

However, the client might also find that, in the later stages of the project, not
enough testing has been performed, since it will appear that less is taking place due
to the nature of the development paradigm being used. The reader will remember
that, in the final stages of the project, the amount of testing is much reduced both
in scope and in depth.

This is a result of good testing having taken place when the individual units of
code were put together, and the theory needs to be explained to the client, with
evidence to show that the defect rate, as measured, is comparable to other para-
digms. This last is a difficult claim to prove, unless the organization, or client, has
prior experience.

One final point to note is that everything will be made much easier if the
organization adopts an open policy toward quality control and quality control pro-
cedures—sharing the result of quality control, showing that the Quality Circle
meetings have generated real actions to address issues is all part of the client man-
agement brief.

It will also help if the interface to the quality control processes is the Liaison
Center, or a third party, and not the development team responsible for creating the
solution. In this way, the client will be sure that the control has been performed in
a manner that is as neutral as possible.

MANAGING CLIENT DISSATISFACTION

The reason why we want to manage dissatisfaction is to gain repeat business and
maintain the organization’s reputation. One project that does not go according to
plan will not necessarily mean the end of the relationship between the client and the
developer, if that relationship is correctly managed, and any quality issues dealt
with in a way that leaves the client satisfied that the developer has taken their con-
cerns on board.

Dealing with the issues that we have discussed can often be followed back to
two areas where a long-term solution can be used to address these issues:

® Better understanding of the problem domain
B Improving specification and specification review procedures

Client Satisfaction 337

A long-term solution is necessary to avoid the same problems coming up in
future projects, and these two areas are the only ones that cannot be solved by
other means—design and programming problems can be dealt with by engaging
staff or deploying better environments, and testing can be improved by application
of a strict process and rigorous and robust methodologies.

In fact, any issues that are essentially technical in nature can be dealt with using
technical solutions, but people- or information-based problems require a different
approach, and it is this approach that will help to make the difference between
a company with high customer satisfaction and one with fair to low customer
satisfaction.

The Problem Domain

If the developer seeks to have a long-term relationship with the client, and they
have not properly understood the problem domain, they will find it difficult to cap-
ture requirements or suggest solutions in that problem domain.

However, this issue is easily solved. Rather than relying on experience built up
over a period of time to lead to a gradual increase in knowledge of the problem
domain, all the developer has to do is recognize that there are things that they do
not know, and find out how to fill the gaps in their knowledge.

Often, though, organizations are unwilling to expend resources, including
financial outlay, to acquire knowledge that they feel they ought already to have, and
should be easy to acquire if it turns out that they do not.

Research
It is worth investing in some research of the problem domain, including:

History

Existing solutions (if any)
New developments
Standards
Clients/Competitors

This research is necessary because there may be things that the client leaves out
in their own description of the problem domain, because they assume it to be com-
mon knowledge. In the same way, the client will probably not understand fully the
organization’s common knowledge in technical areas, which leads to issues when
the developer realizes that something they forgot to highlight was not a part of the
client’s knowledge base. The developers will also have gaps in their knowledge base.

338

Corporate Software Project Management

Good research, performed by the Liaison Center staff, or possibly the Librarian,
or even a third party will help to build up the essential knowledge that will help in
cementing a long-term relationship. It will also help in suggesting solutions that
might not have occurred to other developers in the same area, or raise questions
that the client had not thought to answer.

It will also help to build up a common culture between the two parties, as they
will both be aware of the problems facing those involved in the client’s business,
and will both follow the movements within that business—project team members
will probably start to show an interest in news of such movements, since they have
enough background to appreciate them.

This kind of “culture matching” will also serve to build up a rapport that will
extend into the inevitable business meals that will surround the project, which will
help in the communication in off-the-record situations that might be of use in the
project environment. It therefore serves a useful social purpose as well as a purely
professional one, which creates a relationship that is far more whole than if it were
based purely on the meeting room relationships that build up during the project’s
life cycle.

Knowledge Sharing

As mentioned previously, information needs to flow both ways, and while it is not
possible to tell a client that they should research software engineering methods and
practices, much can be done to make sure that the combined knowledge of all par-
ties is made use of.

This kind of knowledge sharing will help to create a synergy that will benefit
future projects, the emphasis being that it is never too late to try to understand why
the client has become dissatisfied, but probably too late to repair the damage done.
[t is vital, then, that the knowledge sharing be performed before, during, and after
the project has completed.

This sharing can quite often be completed by simply offering information
about an aspect of one’s own domain, and asking how that is dealt with in another.
Areas that are perfect for this are quality and process control. Almost every indus-
try has issues regarding these two points, and if a client expresses dissatisfaction
with the way in which something has been done, it is quite often a good idea to try
to see if they have a better solution.

This will not extend to technical issues, but might be applicable to:

m Process flows (or data flows)
B Processing logic
B Testing and Quality control

Client Satisfaction 339

One thing that knowledge sharing is not is an invitation for open criticism, this
being entirely counterproductive. It is an invitation to try to ensure that both par-
ties can come to an agreement that will benefit them both.

Poor Quality Specifications

One area in which clients are justified in expressing dissatisfaction that should be
dealt with immediately is in the specifications of the system—either the require-
ment specifications or the functional specifications—since these are the documents
upon which the majority of the agreement for the creation of the solution is based.

On the one hand, the developer might have missed something that is not spot-
ted by the client because there is insufficient information for them to make a judg-
ment, and on the other, there might not be enough information to prove to the
client that the developer knows what they are doing, which will inevitably lead to
tension and uncertainty between the two parties.

Specification Content

Some of the classic complaints revolve around the fact that the specifications are
very wordy and not easy to understand. To try to assuage the client, it is vital that
diagrams be used whenever possible, and words used when a diagram is impossible.
This may make for a long document, but it will be easier to understand, and help
the client to be satisfied that the right system is being made, not just that the system
is being made right.

Even where there are plenty of diagrams, clients do not like the overuse of tech-
nical words, and removing them upon request is one way of dealing with the issue.
Adding a glossary of terms is also a good idea, as this will help in knowledge shar-
ing, making the client feel more involved with project and more confident about
the way it is going.

Finally, the longer a document is, the more a client will become dissatisfied at
having to re-read it to verify that everything is as it should be. Therefore, including
summaries, process flows, and diagrams representing the proposed solution is also
a very good idea; again, it is all related to the notion of information sharing.

Review Procedures

Part of the reason why we try to make the documents as accessible as possible to the
client is that low client involvement leads to client dissatisfaction. Helping the client
to become more involved is the first step in restoring their confidence and chang-
ing the dissatisfaction into a reaction that is, at the very least, neutral. A higher
client involvement during the review process will achieve this.

340

Corporate Software Project Management

This means that the client must be allowed to sign off on as much as possible—
which will require that they review, if not all the documents, then the procedures
that have been put into place to allow the review to take place. This aspect forms
part of the openness regarding quality control, and is aimed at making sure the
client is happy with the way in which their money is being spent.

Finally, the lack of a third-party review process will also cause a client to be
wary, and hence dissatisfied with the review process itself. Putting a third-party re-
view process into place is not easy, however, and requires resources. The client may
offer to be that reviewer, and they should be involved, but they will quickly find that
they are not qualified to comment on the actual content of what is being reviewed.

Client Education

While we have dealt with the concept of information and knowledge sharing, there
may be times when the client will not even possess basic diagramming skills. There-
fore, there may be a need to insist that they follow some kind of education to en-
sure that they are equipped to be as involved as they should be in the project.

They will, of course, spend quite a lot of time learning on the job, as it were, and
building up knowledge simply by the necessity of actually having to deal with the
various aspects of the software engineering process on a regular basis.

The emphasis should be on future projects, and the fact that the client is build-
ing up knowledge that they will use again and again. The value-added concept can
help to increase client satisfaction to the point that they will feel they have received
real value for their money.

The investment by the organization in all of these initiatives is really not that
great, either, especially when it is realized that, in line with the reuse policy and par-
adigms that we have discussed throughout the book, any training, documentation,
or changes that are made are all reusable—nothing is wasted—and it all contributes
to raising the delivered quality and thus increasing client satisfaction.

SUMMARY

As we have seen in this chapter, Total Quality Management is rooted in the notion
that client satisfaction is the end goal in quality management. Once this is under-
stood, it becomes clear that the way to achieve quality excellence is in recognition
that clients exist in every relation between all parties involved in the Software En-
gineering Life Cycle.

Client Satisfaction 341

Bearing this in mind, all of what we’ve discussed here can also be applied to re-
lationships between the departments and teams responsible for delivering solu-
tions to each other, and between the client and the developer. The application of
the same policies and procedures internally and externally is part of the key to
achieving quality excellence.

Issues need to be solved by a combination of communication and education,
and this knowledge needs to flow both ways. This is as true for internal relation-
ships as external ones. The members of staff who have communication issues, and
it is likely that there will be some, need to be trained to be better communicators,
since without effective communication it becomes impossible to solve the issues
and achieve client satisfaction.

The application of these principles will result in a constant improvement of the
processes and procedures that govern the software engineering tasks, which is part
of the goal of managing quality under the various ISO certifications that can be ob-
tained for organizations that have achieved process control and quality excellence.

Finally, involving the client in the TQM and Quality Circle processes will help
to build confidence and satisfaction, and their feedback might also lead to useful
insights into the way in which the organization has implemented their quality
controls. This will be especially relevant when a client has attained ISO quality
certification.

Appendix

. Implementation Strategies
and Guidelines

INTRODUCTION

This appendix attempts to pull together the threads of discussion that have been
created through this book to try to present solutions for implementing the princi-
ples that we have discussed in different corporate environments. It would be im-
possible to actually give details of how the various mechanisms work in every
situation, so we have concentrated on three explicit areas:

B Startup companies
B Small to medium companies
B Large organizations

Some aspects of the book remain constant across all three types of company,
such as those that relate to documentation standards and the various nonmovable
elements of software engineering. These elements are also the pieces that are well
understood, and covered in this book from a unique angle, but which have been
used by organizations involved in software engineering for some time.

There are, however, some novel areas:

The Liaison Center concept

Emphasis on process and standards

Code reuse and storage to facilitate minimum programming
Quality Assurance through a service-oriented approach

Since these aspects may not have been dealt with in similar works, some read-
ers may have difficulty mapping them onto their own organization. Therefore, this
appendix should help them understand how to convert the theory into practice to
improve software development practices and quality in their own organizations.

343

344

Corporate Software Project Management

We start with a discussion of the way in which the principles can be loosely ap-
plied given differing corporate environments, essentially giving three core strategies
that are then expanded in separate discussions based around the key areas of the
book:

B The Liaison Center
® Development and Testing
® Quality Assurance

By gaining control of these three pillars, and respecting the standard best prac-
tices that are already prevalent in the industry, a solid foundation for software en-
gineering can be maintained. Like all businesses, it is a case of setting up the system,
and then making sure that it is constantly improved upon to maintain a consis-
tently high level of confidence and quality.

CORPORATE ENVIRONMENTS

The first section of this appendix is aimed at offering a comparison of three kinds
of environment, and the way in which the approach will be different in the way that
software engineering is set up, managed, and maintained. It is a case of looking at
areas that are often neglected and how this can be addressed given the resources of
the organization.

We will look at the three categories that have been chosen (Startup, Small,
Mature) and put software engineering into each context in turn. It is hoped that the
readers will be able to begin to form a strategy for their own organization by draw-
ing on the descriptions of these three key organizational environments.

Of course, it is never as simple as following a set of rules, even if those rules
make perfect sense, since every organization will be constrained by resources and,
at the root, expense. The time at which it is easiest and least costly to implement
strategies and systems that are designed to enhance the software engineering
process is at the start of the company’s life—retrofitting is always much more
costly.

However, there will be readers who want the benefit of the various techniques
and concepts that have been presented in this book, but are arriving later in the
game than others, and will need to try to re-engineer the software development
effort to reflect the change in emphasis that this will require.

Bearing this in mind, we have adopted, as far as possible, a low-impact approach
to implementing these new features, to the extent that we advocate a plan of con-

Implementation Strategies and Guidelines 345

tinuous improvement, rather than an explosion of effort in an attempt to feel the
benefits immediately.

The “Big Bang” approach is almost never the best way to achieve something in
the IT world, since it can cause too much upset in the short term. Changing atti-
tudes, and the way in which people relate to each other and their work, can only
take place over a long period of time. In some cases, a complete change will never
be possible, except by a change of personnel.

Startup

We define a startup company as one that has not yet completed a formal project for
an external client, or a department that is being formed within an existing organi-
zation. The two will find themselves in a similar position, except that the latter may
have more resources available in the immediate future to address the various issues
that will arise as the various processes, procedures, and roles are put into place.

We assume that the team that is being put together, or is already in place, has
completed a single, possible, informal project, and that they are already working
together in defined roles. Should this not be the case, readers are invited to imag-
ine the team that they had in mind, and recruit according to the new roles that that
team now has to be able to fulfill.

The first, and perhaps the most obvious area in which startup software devel-
opment efforts make mistakes is in under-resourcing the acquisition of tools that
support the development process. This includes tools for maintaining source code
and change control, testing and debugging, and more esoteric tools for team and
process management.

The typical reason for this is that the staff involved are more concerned with the
development environment, and competition for financial resources often puts
these ahead of the concerns of the design, testing, and code management roles,
which can be placed in the same basket with a lesser importance.

It is much easier, and cheaper, to put a change management system in place
from the outset, even if the price seems large for the amount of code that will be
placed under it; always remembering that the price includes purchase cost, training,
and hardware. Most systems will function best in isolation, running on their own
server: division of equipment is usually the best approach to avoid dependencies on
a single device.

This is also one of the classic mistakes made by smaller companies: lacking
large resources, they often try to get by with a minimum of hardware—and it is
worth pointing out that machines used for development will need to be fairly
resilient. Compiling, running, and debugging take their toll on hard drives, some-
times causing them to fail at inopportune moments.

346

Small

Corporate Software Project Management

Therefore, having a good backup system is also key, and again, startup com-
panies or departments just getting under way can also leave this out of the infra-
structure, usually relying on the existing system or general IT solution to provide
the facility. This is acceptable, but only if the existing solution follows the guidelines
for resilience and dependability that we looked at in Part II of this book.

One of the key questions that the reader will have, when looking to implement
the principles from this book in a startup environment, is likely to revolve around
staffing. On the face of it, it would seem that setting up a Liaison Center, an Object
Library, Source Code management systems, a research team, Quality Circles, and
embracing the Total Quality Management principle will require many staff that
cannot be justified by a company that has, potentially, less than 10 staff members.

The solution is to use role sharing, and we cover this later in greater detail in
this appendix when we turn our attention to each of the three pillars in turn—the
Liaison Center, Development and Testing, and Quality Assurance.

It is important to note that when we are applying the Liaison Center philoso-
phy in a very small organization, it is used as a framework, and not as an actual
staffed office. This differs from small and medium organizations, where it becomes
an actual physical office in its own right, and then in larger organizations where it
becomes a department with interdepartmental links in the same manner as any
other department.

There will also be an impact in the way in which quality is managed, not to
mention how the various coordinating roles are split among the staff members. It
is quite likely that project management becomes a function of team members, and
that contract negotiation is handled by the most senior member of the personnel.

The next kind of organization that we will be looking at is a small or medium-sized
company or department, probably on its second or third project, and moving
toward a philosophy in which development, previously performed in an ad-hoc
manner, needs to be formalized in order to make efficient use of limited resources.

It can also be the case that the company is performing limited restructuring due
to problems that have occurred with clients in an attempt to continue operations
without undue pressure on the business situation. In such cases, it is not wise to
look upon the adoption of the principles outlined in this book as being capable of
saving the situation, but they will enable the company to at least make great strides
toward a situation in which the company can assure clients of better service in the
future.

Implementation Strategies and Guidelines 347

Since the development team is assumed to have been in place for some time,
having completed at least one or more projects of a reasonable size and for exter-
nal clients (where external is another organization or a department within a larger
organization), there will be conflicts when change becomes necessary.

In many cases, staff members will have to take on additional responsibilities,
and whether these are accepted will depend on how they are presented. For some,
it will be sufficient to use the change in role as an excuse to push them up another
rung on the promotion ladder; for others, it may seem as if they are being burdened
with extra tasks that they might not have time to service.

In such cases, the Liaison Center begins to take on a more important role, and
as such needs to be accommodated appropriately. This will require some full-time
staff being assigned to new responsibilities, as the Liaison Center will become
a staffed communication point designed to facilitate the implementation of the
various aspects recommended in this book.

Moreover, it will assume responsibility, at least in the beginning, for setting up
appropriate organization and infrastructure frameworks to facilitate code sharing,
and management, problem resolution, and much of the client-facing administra-
tive work, as well as maintaining the quality plan.

These changes and new services will take time to implement, and the Liaison
Center needs to have a checklist of areas that need attention, in a prioritized fash-
ion. Therefore, if the company has a problem with an external client, such as a fail-
ing implementation project, and there is a reorganization internally in an attempt
to resolve this problem, the emphasis will be on damage limitation and setting up
communication channels and code management infrastructure.

If the company is restructuring prior to commencing a contract, the emphasis
will be different—possibly on setting up new systems with a mind to establishing
a code repository, for example. The different perspective is given by the fact that
in the first case, the company was trying to get out of a tight position, and in the
second, it is in preparation to get into a long-term relationship with a new (or
existing) client.

We have to assume that there will be less emphasis on resource limitations
than in a startup situation, although the reverse could be true; a startup might
secure financing not available to a failing small company. Nonetheless, the issues
that face them will be similar in terms of those areas that might suffer from lack of
investment.

However, with a company that is already established, there is the additional
burden of introducing change, including changes to job descriptions and existing
process flows that might not be accepted by some members of staff. It might be a
good approach to perform some of the tasks with an external company to reduce

348 Corporate Software Project Management

internal conflicts, although this can lead to problems if an external company is di-
rectly involved in giving orders to staff members.

Mature

The third and final type of corporate environment that we have identified for analy-
sis is the mature organization. Typically, these are large companies with a tradition
in IT and possibly even software development, trying to lever that experience with
a new paradigm to increase efficiency and quality.

The company may, or may not, be required to do this because they have prob-
lems that need addressing. Either way, it is expected that they are prepared to put
investment forward and try to establish the best framework possible, and look at
quality first and expense last. This might seem unrealistic, since almost every com-
pany needs to watch the cost of new initiatives closely, but there will be cases where
investment in the future wins over any arguments relating to overstretching the
budget.

Nonetheless, it will be a long-term plan that is able to establish the kinds of
processes and principles that we have covered in this book. Although there is always
a temptation to do everything at once, while the money is there, this will usually
result in an incomplete, or, in the worst case, an invalid implementation that can do
more harm than good.

The issue is that a company might authorize spending on a specific area, only
to withdraw it when the situation improves. Usually, this then becomes a pattern of
investment when problems occur, and then not investing when the problems are
solved, only to find that other problems occur.

It will probably be much easier to secure a finance plan that covers a period
between three and five years, depending on the size of the organization, in which to
implement the key structures that this book has described in some detail:

The Liaison Center

The Object Repository/Component Archive

Quality Circles

Total Quality Management (and relevant ISO Certification)
Code Reuse and Prototyping approach to implementation

This represents a major undertaking for an organization that has many source
code artifacts, multiple projects and teams, and separate divisions dealing with
contracts, support, and customer care. Consequently, the Liaison Center becomes
another department or division that interfaces in an opaque way with the other de-
partments in the same organization.

Implementation Strategies and Guidelines 349

In fact, the Liaison Center becomes a way to coordinate all the phases necessary
to install the correct procedures and artifacts, including systems and processes, and
is, in this case as close to the description in Chapter 1, “The Liaison Center,” as one
is likely to be able to get.

Getting there, however, will take a long time if there is a fractured code data-
base, with no control over the way in which the code has been changed, integrated,
and tested. In such cases, which should be rare, it will be best to start over with a
new department, and merge the existing development department with it, using the
Liaison Center as a coordination point.

This approach will naturally lead to the internal/external client relationship
management that is part of the key to both the success of the code reuse and qual-
ity management paradigms that play a central theme in this book. Of course, it all
hinges on the Liaison Center and how well it is able to integrate with the rest of the
organization.

THE LIAISON CENTER

As the first pillar of the approach to software engineering that this book describes,
the Liaison Center always plays a pivotal role in establishing adequate communica-
tion and managing the administrative side of the software development process.
This section of the appendix looks at how the Liaison Center is set up and operates
given the different organizational environments that we introduced earlier.

One thing is obvious: different organizations, with different management struc-
tures, will implement the Liaison Center in different ways. In fact, as we will see, the
Liaison Center concept starts out as a framework in a startup-sized company with
team sizes below 10, becomes a role-shared but managed office in small to medium-
sized organizations, to a full department in larger organizations where there may be
hundreds of development, testing, and design staff involved in projects.

Startup

When establishing a startup company (or an extension of a company with between
5 and 20 employees on the design, development, and test staff), the Liaison Center
acts as an all-embracing philosophy rather than an organizational unit.

Each employee is likely to have a role to play in the Liaison Center, which can
be seen as defining the communication between the client, the technical staff, and
the design and specifications teams and developers. It is likely that the staff are
already role sharing to some extent: some of those performing design or specifica-
tion duties may also be implementing the solution.

350

Corporate Software Project Management

If the company is a pure startup, it will be necessary to try to estimate the
staffing levels required, and adding the Liaison Center responsibilities to the job de-
scriptions will probably lead to the expansion of the staffing levels. In an existing
environment, employing additional staff may become necessary, even it if is only as
a consequence of promoting existing staff into positions that take on some level of
Liaison Center responsibility.

The impact of this can be seen in Figure A.1, where the Liaison Center covers
the topmost part of the hierarchy. It is assumed that there are three principle roles
within the organization: specification (and by inference, requirements analysis),
development (design and implementation), and testing.

Liaison Center Framework
Contract /
Marketing

FIGURE A.1 Hypothetical startup organizational diagram.

Each of these roles has a person tasked with overseeing the projects, who com-
municate with each other as if each was the client of the other. On matters where
the external client is implicated, this communication happens through the person
responsible for contract and marketing operations. This may be the owner of the
company, or the head of the fledgling development department within a larger
organization.

The division of labor for the areas in which the Liaison Center is active should
be done in a way that respects the capacities of individuals. For example, it is prob-
ably not a wise idea to make a member of the secretarial staff responsible for main-
taining the Object and Component Archive.

Small

Implementation Strategies and Guidelines 351

The chief responsibility of the nominal “Head” of the organization diagram in
Figure A.1 is therefore in maintaining contact with the client, as well as the work
revolving around the contracts and limited marketing that ensures that the customer-
facing aspect of the company is maintained.

Then, the Specification team becomes responsible, under the Liaison Center
framework and in addition to their usual tasks, for the standards and guidelines for
documentation that the company has to follow. This will also include the main-
tenance and operation of any tools procured for this purpose.

By the same token, the Development team then becomes responsible for Code
Reuse, under the guidelines agreed with the Specification team. They are also re-
sponsible for ensuring that the Code Library (Objects and Components) is kept up
to date, and that all coding guidelines are followed.

Finally, the Testing department takes additional responsibility for quality
assurance, and the maintenance of the quality plan. Each member of staff should
ideally also participate in Quality Circles, set up and maintained by the Testing
department who then report back to the nominal “Head” for corrective action
where necessary.

Within a development department that has already been established, or a small
software house delivering its third project, the role of the Liaison Center as an office
changes slightly from that which we examined previously. In fact, it begins to
become more concrete, but still more of a concept to follow than a department of
its own.

In Figure A.2, we show a depiction of a minimal Liaison Center office, with
four key areas of responsibility, some of which may be shared roles. For example,
the Liaison Manager should be a role that is distinct from any other responsibility
since he will provide a communication point between the rest of the organization.

By a similar token, the Standards Officer should probably be a nonshared role,
although this is very much up to the person implementing the scheme. The reason
for keeping it separate is that there will likely be an administrative or secretarial
component that might be seen as too junior for a technical team member (such as
a technical writer or system architect).

Unlike Figure A.1, Figure A.2 is not a hierarchical diagram; that is, it is not to
be taken that the Liaison Manager is in some way senior (although he may be) to a
manager of one of the Development teams. There may also be a nominal Head of
Development, not shown in this diagram, who may also have one of the Liaison
Center roles under his responsibility.

352

Corporate Software Project Management

Liaison Center Office
Liaison
Manager

Standards e Quality

Requirements Specification Development | | Development | | Development Testing
Team Team Team Team Team Team

FIGURE A.2 Hypothetical minimal Liaison Center office.

The diagram shows instead a flow of information and shared or collective re-
sponsibility, where everyone is working toward a common goal. The fact that the
hierarchy might look completely different in a traditional organizational chart does
not mean that the Liaison Center has to be restricted by such an approach.

Additional staff members, such as developers, testers, and technical writers
who make up the various teams are not shown in the diagram for the sake of
brevity. They may also share some roles with the four key Liaison Center areas that
are shown in the gray box.

The Standards Officer deals with every aspect of the documentation archive, as
well as establishing, with the help of the Librarian and Quality Officer, standards for
writing, coding, and reporting, and technical issues such as backup, restore, and
change management standards.

The Librarian has the task of making sure that the Object Repository and Com-
ponent Archive are kept up to date and that code reuse is held at a maximum, as
well as making sure that the change management, backup, and restore processes
and procedures are all operating to the guidelines set out by the Standards Officer.

The Quality Officer is responsible for making sure that the quality plan is main-
tained, and that participation in quality programs such as Quality Circles is kept
within tolerable limits. They will also audit and control the various metrics used by
the organization to measure customer satisfaction and functional quality.

The Liaison Manager has the task to make sure that all this is being done, and
that the customer-facing part of the company is held to the highest possible

Large

Implementation Strategies and Guidelines 353

standards. He is also the nominal head of the Liaison Center and is responsible for
ensuring that the principles under which it is set up are adhered to.

By the time the organization reaches a certain size, it no longer makes sense to try
to farm out collective responsibility for the general operation of the Liaison Center.
In fact, once the organization has more than three project teams with different
clients, it is time to start thinking about setting up a proper communication point
for all the various parties involved.

Since this is the ideal that we already discussed in Chapter 1, there is not very
much left to add, except that the department needs to cover the functional areas of
Standards and Guidelines, Information Storage and Retrieval (including Code,
Specifications, Contracts, etc.), and Quality—not to mention its own secretarial
team to handle direct communication with clients.

The key to operating a successful Liaison Center is in being sure that there is an
interface to each area outside their level, and the possibility to bridge levels of com-
petence where necessary. Therefore, there needs to be the possibility to communi-
cate on a technical level with the IT department and development teams, and a way
to ensure that there is correct communication toward the client in a way that they
will understand.

Process and communication standards are the way this can be achieved, and it
is up to the Liaison Center Manager to make sure that appropriate guidelines in
place and their use is monitored and controlled. This will likely fall to the Quality
department of the Liaison Center, which will need to be responsible for ensuring
that a high level of quality is present in everything the organization does.

Tool-Based Alternatives

Since a small organization might not have the same resources available to establish
a costly Liaison Center, replete with four or five staff (the company itself may only
have five employees), certain tools can be used to augment or replace certain func-
tions. This is also possible in cases where a large organization is not carrying out
software development as part of their core business, or where management is some-
how skeptical with regard to the benefit of establishing a new cost center.

For example, the Liaison Center can be reduced to a virtual framework where
tasks are fulfilled by individuals under the auspices of the Liaison Center without
there actually being a department or office holding that name. This is akin to the
approach to Quality Circles taken in many companies where the function is fulfilled

354

Corporate Software Project Management

by individuals as part of their existing job, rather than nominating an individual
whose primary role in the organization is as a quality coordinator.

Therefore, the Librarian function could be replaced by a suitable source code
management tool, and a set of guidelines that every team leader would follow to
perform the Librarian function as a shared, or collective, responsibility.

Similarly, the Standards Officer could easily be replaced by the collective respon-
sibility of account or project managers to enforce the standards and guidelines laid
out by the company, store them in a suitable document management and retrieval
framework, and keep them updated with reference to their personal experiences.

The Quality Officer, as we have mentioned, is one of the easiest functions to
perform as a shared responsibility, but it does require that a certain quality culture
be built up within the organization.

The one function that should be considered as a noncollective responsibility is
the Liaison Center Manager. While this can be carried out by a member of the
organization whose primary role is not necessarily as Liaison Center Manager,
it cannot be split across multiple persons, as this would defeat the object of the
Liaison Center.

If these practices are put into place, the Liaison Center becomes more of a
guiding philosophy, or process management tool, than an actual piece of the orga-
nization. It also enables it to be effective as a cost saver, if not an actual revenue gen-
erator, rather than an additional cost center.

DEVELOPMENT AND TESTING

Startup

The second pillar that we will look at is that of development and testing, which will
likely form the core of the companies” operations. In this section, we look at how
the development environment is built up with respect to the principles of code
reuse and change management that we have covered in Chapters 9 through 15. This
will differ from situation to situation, and again we have chosen our three phases of
corporate organization to look at how implementing the principles will probably
take shape in the real world.

We will also be looking at the role of testing, and how it should be coordinated
depending on the size and maturity of the target organization. Like the Liaison
Center, testing is a function that begins as a collective responsibility, but quickly
becomes a necessary part of the organizational structure as a whole.

If a company or department has not yet performed an external software develop-
ment project, it is in the best possible position to set up the various pieces of infra-

Implementation Strategies and Guidelines 355

structure that make up the Development and Code Library environments. This is
because there is no retrofitting required—since there is no, or very little, code that
needs to be integrated with the new system.

The core components of that system will be:

Change Management tools

Document Storage, Indexing and Retrieval
Development and Test tools

Backup and Restore tools

These are all vital to the correct operation of the Code Reuse paradigm that we
have used as a basis for the discussion of software development in this book. They
need to support the concept of pure object orientation, and need to be integrated
with each other to a certain extent.

However, good process documentation and macro-style automation can help
to achieve this where resources are limited, and the company has to rely on sepa-
rate, Open Source solutions to perform the tasks.

In fact, it is perfectly possible to set up the compiler and development envi-
ronment, a good change management system, and rudimentary documentation
management system without spending any money on purchasing software applica-
tions, as long as there are no specialist or esoteric requirements.

The only resource that will be in short supply is time, which will cost money,
but the savings are great in the long run. This is obvious from the discussion of ob-
ject reuse and component archival in Chapters 9, 10, and 11. It is, however, quite
impossible to reap the benefits of a good Object-Oriented paradigm if it is not
backed up by solid systems for information storage and retrieval.

Over time, the company will be inserting source code into the system, and
using it as a base for future developments, which is the key to making this process
work. It is also a very good start to try to find as many standard routines and code
snippets as possible when looking at a new implementation, and taking the time to
ensure that they are present for object reuse at a later date.

Put another way, when starting out, it is better to spend the time building up a
well-researched and stocked Object Repository. Often, it is also far cheaper to buy
in and glue together pieces of code that do what is required rather than trying to de-
velop the entire application from scratch.

Taking this approach to software development from the very beginning will
mean that the repository grows over time, is complete and well documented, and
that the end result should be code and applications delivered that are of a far higher
quality than if each application was built from scratch.

356

Small

Corporate Software Project Management

On top of which, each component that goes into the repository will have been
adequately tested within the guidelines agreed between members of the Liaison
Center. It is, however, the responsibility of developers to make sure that unit test-
ing has been done and that they do not introduce, into the repository, an item that
has not been adequately tested.

The Testing department shown in Figure A.1 embodies the functionality re-
quired to perform the final validation of the system before it is shipped. This is the
point at which the collective responsibility becomes the responsibility of a single de-
partment, but since the roles are probably shared with the developers, the aura of
collective responsibility will continue.

Small companies that are already established and are trying to use the reuse para-
digm presented in this book as a way to get more out of their development re-
sources while also planning for the future will find that it is an expensive but
ultimately profitable task.

In fact, it is likely that simply picking up the existing code base and trying to
shoehorn it into a well-defined system of processes and application software will
prove counterproductive.

A better approach, but one that will meet resistance due to being resource in-
tensive, is to reverse engineer existing code, and repackage it as neat little objects,
which are then inserted into the repository as if they had been acquired externally.
This will cause some level of reengineering, and will probably lead to almost all the
code that has been written to date to be respecified, redesigned, and reimplemented
to make sure that the right foundation is made for future object reuse.

The effort will be well worth it, but unless the company has prepared for this
kind of approach in advance, it will probably also be too expensive. There is a com-
promise, which involves putting the systems and procedures into place, but only
using them for future projects.

The catch is that, in order to benefit, the existing code has to be integrated at
the same time. Therefore, the process becomes one of:

1. Deciding the nature of the component required.
2. Looking for it in the repository, then in the code base, then elsewhere.
3. Using, updating, and placing it (back) into the repository.

In this way, we satisfy the requirements of being able to populate the repository
with existing code, while also writing as little code as possible. The key is in step 2

Large

Implementation Strategies and Guidelines 357

where we look in the code for an object or snippet that contains the required func-
tionality, and remove it if it exists, with a view to placing it into the repository as a
new object.

However, should we not find an appropriate piece of code, we then need to
look at large for existing modules that perform the task we have in mind. Only as a
last resort do we write the code ourselves. The time spent in research is assumed to
balance the time that would have been spent in development and testing.

The issue arises when we need to ensure that the existing application that we
are poaching code from remains operable. In such cases, we need to perform an
additional step to reintegrate the new functionality with the application such that
it functions in the same way as before.

As we mentioned at the start of this section, it is a long process that is difficult
to put into place once the software development environment has been in place for
some time; of course, if the application is a throwaway, then the issue of retaining
a functional application after the fact is less important, and we can archive it as is
in case it is needed at some point in the future.

This is also the point in an organization’s development efforts where testing
becomes more of a specialist department role. Individual developers will still be
responsible for making sure their code works as advertised, but a department that
takes overall responsibility for testing activities will be needed simply due to the
volume of code that is expected to be connected together.

Since it is generally agreed that the complexity of the testing role will increase
with a larger number of projects that may be diverse and probably sharing compo-
nents, having a dedicated testing team, as shown in Figure A.2, and reporting
through the Liaison Center, is probably the best way to ensure a consistently high
level of quality.

As the reader might have guessed, at the point where the organization can be con-
sidered large, there is no possibility to try to reverse engineer the entire code base
to fit into a new code management paradigm.

If we assume that the development department has organically grown to a
point at which it is necessary to try to formalize code reuse, but is well supported in
terms of tools and change management, then we have only to deal with the issue of
the Object Repository or Component Archive.

This is a fair assumption because it is unlikely that a company that has managed
to deliver good-quality software on a consistent basis does not have the tools in
place to guarantee this to their clients. Hence, we can be almost certain that the

358 Corporate Software Project Management

organization is merely trying to capitalize on this and operate in a way that is more
efficient and even higher quality.

Therefore, the best approach will probably be similar to that for Small compa-
nies—to try and regroup functionality on an as-needed basis under the newly cre-
ated library. Of course, the Librarian could also work his way through the existing
code base and try to create packaged components out of the various pieces that
have been written, and place them in the Component Gallery for future use.

This approach will probably work better for larger organizations because it is
assumed that a certain level of reuse already exists, where development teams are in
constant, informal, communication, and it is merely a case of formalizing these
channels.

As far as testing is concerned, the emphasis has to move toward a strategy for
testing and test management with respect to the new paradigm for object reuse.
That is, the programmers will need to be aware that all the code they write will be
inserted into the repository, and therefore they should make sure that it has been
thoroughly tested before they do so.

QUALITY ASSURANCE

Finally, we need to say a few words about how the third pillar, which is also roughly
equivalent to the third part of the book, is implemented in our three categories of
organization. Quality Assurance is more than just testing—testing is merely a mea-
surable indicator of success of a technical implementation.

Quality Assurance is a multidiscipline task that stems from the principle that
the client comes first. In fact, the emphasis of this book has been on creating
software engineering departments and organizations that treat the way software is
created as a process that delivers a service, rather than a project.

If we look at the Open Source environment, we see that the actual application
software is usually available for download. The collection of applications, from
operating systems to word processors, development environments to Web servers,
is vast, and covers almost every aspect of information technology.

They cannot be sold. In fact, as we saw in our discussion of the various Open
Source licensing restrictions, it is often illegal to try to sell them. However, the
delivery of a service that has an Open Source product at the core is perfectly
acceptable.

Cases in point include SuSE and other distributors of the Linux operating
system, as well as the numerous consultants who regularly use Open Source appli-
cations to help them deliver their own service.

Implementation Strategies and Guidelines 359

This is a trend that this book capitalizes on, by emphasizing process and con-
struction from existing parts over programming from the ground up. Hence, it
becomes about delivering a service, not creating a product. The product is the ser-
vice, and is bound by quality assurance rules that have been in operation for many
years.

Startup

In terms of the startup, formal quality assurance measures are often overlooked due
to the compact nature of the environment. It seems to make little sense to speak of
Quality Circles in a context where the whole organization could probably be rep-
resented by a single circle.

However, the formal procedures are still valid. Staff meetings can become part
Quality Circle, and the guiding philosophies of Total Quality Management remain
the same—in fact, it should be far easier to monitor the quality plan in a smaller
organization.

Client satisfaction still needs to be measured, even if it is only to be sure that
they are happy with the work, and will consider hiring the organization again in the
future.

Of course, contacts within this context will be less formal than in a large orga-
nization servicing large projects for similarly sized external companies. However, it
is worth putting in the extra effort to obtain ISO Quality Certifications, as it will
stand the company in good stead for bidding on future contracts.

Small

As a small company, it becomes more vital to try to gauge how it is performing in
terms of service to the client and internal quality control than to attempt to gain
official certification. It is assumed that there has been at least one satisfied cus-
tomer, and if the reengineering of the processes involved is a result of dissatisfac-
tion, it is probably not the best time to start a process that will not address this issue.

In the spirit of client-first quality assurance, it is this that must be addressed,
and to do so will require that the clients are invited to air their views in a frank man-
ner. We dealt with the processes and procedures in Chapters 18 and 19, and will not
reproduce them here, but it is clear that if setting up a dedicated quality program is
in reaction to client dissatisfaction, then the cause needs to be found.

However, if the company is simply trying to instill internal confidence in the
quality of the service they deliver, or as a general quality improvement measure,
they can take time to ensure that the infrastructure is in place prior to trying to eval-
uate the current position and how it can be improved.

360 Corporate Software Project Management

It is sensible to try to obtain outside help when attempting to redress issues of
process quality in the first instance, since those working closely within the organi-
zation will not tend to be objective enough to do the task justice.

Large

A large organization needs to approach the Quality Assurance issue with reference
to existing structures that are in place. Reusing experience from other divisions is
vital in trying to establish a strategy that will deliver consistent results; this will save
a lot of time in trying to find the best way to implement the key principles of Qual-
ity Circles and Total Quality Management.

Moreover, these will not work in their entirety unless the entire organization is
involved. This means that, more than ever, if a company tries to put these princi-
ples into operation once the organization has reached a certain size, the financial re-
sources required will be prohibitive unless an approach is adopted that brings the
measures in over a fairly long period of time.

It is suggested that the first facet to be put into place is a system of scoring cus-
tomer satisfaction and noting those areas where there are deficiencies. This will
allow the responsible person to put measures into place, such as Quality Circles in
areas that are underperforming, while drawing on any informal measures that
might be present in areas that are performing well, or at least better.

Eventually, with the right level of employee participation, it should be possible
to engineer Total Quality Management without an explicit top-down directive,
which is the worst way to try to instill this kind of support. If people are being
forced to do something, they are much less likely to want to do so than if it is a re-
sult of pride in their work or even peer pressure.

SUMMARY

In the final analysis, it is clear that attempting to implement the various pillars and
principles is no easy task if no groundwork has been done. The simplest solution is
quite often just to try to start again, without any attempt to directly integrate the ex-
isting situation.

However, at some point, the employees at least are going to have to be inte-
grated, even if their work is not, and therefore their support has to be solicited. This
will mean that at least one member of the staff has to become a convert, and try to
make sure that the rest of the organization follows suit.

This will be easier to manage with 10 employees than with 50 or even 100. At
the end of the day, though, those who do not become part of the dream will have a

Implementation Strategies and Guidelines 361

negative impact on the overall success of the organization trying to adopt these
measures.

There will also be cases where the mantra of trying to treat the delivery of soft-
ware comprising objects connected by very simple logic under the auspices of treat-
ing the whole operation as a service to a client will not work. In such cases, although
the general principles of the Liaison Center and Object Repository can be respected,
it will be difficult to divorce the procedure from one in which a product is being
created.

This will not impact the way in which the client is treated, but may mean that
there is more scope for lower than anticipated quality levels due to an increased re-
liance on nonstandard parts. The trick is to try to ensure that the risk of this be-
coming a problem is minimized—the role of the Software Development Manager.

Appendix

B " About the CD-ROM

a set of skeleton documents referred to in the book, as well as some useful
software applications, and links to useful Web pages. Most of the content is
available from the “index.html” file available in the root of the CD-ROM.

The CD-ROM included with Corporate Software Project Management includes

CD-ROM FOLDERS

Applications: Contains sample applications that have been referred to in the
book, as well as some which the author believes to be of use in planning and
executing software development projects.

The commercial applications “MindJet MindManager X5” and “RSM” are trial
versions, limited to 21 days and 10 files, respectively.

Images: Contains all the images in the book by chapter. These are not avail-
able from the root “index.html” file.

SkeletonDocuments: Contains a set of templates, in rich text format, which
can be used as skeleton documents for starting up new projects.

OVERALL SYSTEM REQUIREMENTS

Windows NT, Windows 2000 Professional Edition, or Windows XP
A Web browser

Pentium IV Processor or greater

CD-ROM drive

Hard drive

128 MBs of RAM, minimum 512 recommended

363

364

Corporate Software Project Management

Other software packages may have requirements which differ from those above, but
in no case should they exceed the recommended hardware specifications.

MindJet MindManager X5 (http://www.mindjet.com)
To install, run the SETUP.EXE application in the Applications/Mind]Jet folder.

Additional System Requirements

® Windows NT" 4.0 SP6/2000/XP Professional, Home or Tablet PC Edition
B MB disk space
B x600 resolution or higher, 16-bit / 65Kcolors or higher

OpenWorkBench (openworkbench.org)

To install, run the owb.1.rc3.exe application in the Applications/OpenWorkBench
folder.

RSM (mSquaredTechnologies.com)
To install, extract the rsm.zip file located in the Applications/RSM folder.

Subversion (subversion.tigris.org)

Installation instructions are contained within the README.txt file located in the
svn-win32-1.0.5.zip archive in the Applications/Subversion folder.

WinCVS (www.wincvs.org)

To install, execute the SETUP.EXE application contained in the WinCvs13b17-
2.zip archive file.

EEE

Index

A
acceptance testing
of new features, 292-293
user, 73
Access databases, 46
account manager, 330

accounting system, viewpoint structure for (fig.), 51

accuracy vs. client satisfaction, 147
acronyms and documentation standards, 24
Action Diagrams, 53
active prototypes, 234
Ada programming languages, 121
Administration Guide, 98
agenda style, 26
aggregation in object-oriented design, 152-153
analyses
included in Functional Specification, 142-143
product quality, 330
viewpoint, 50
API Reference guide, 98
APIs (Application Programming Interfaces), 113
applications
coding language and performance, 222
copy protection of, 257
multiuser networked, security, 117-118
preparing for delivery, 254-258
rapid development systems, 235
Windows written in C, 219
arguments, test data for validation, 82-83
arrays, 86-87
artifacts, structuring source code by type of, 194
assemblers described, 211
assembly language, 211-215
attributes, data- vs. process-oriented design,
149-150
auditing quality assurance process, 283

augmented waterfall process model, 63-68
automating testing procedures, 78—81

B
badges (product labels), 283-284
BASIC programming language, 160
benchmarking, 275, 282-283
beta versions, 21
BIOS disk space and drive information, 87-88
black box testing, 88
block separators in code, 33
book, this
CD-ROM, about, 363-364
management, quality, and client relation focus,
Xxii
Part I, the product mix, 1-2
Part I1, principles of corporate software engi-
neering, 89-90
Part I1I, principles of software quality control,
269
Borland Delphi development environment, 160
boundary, system, 98-99
byte code, 211-214

C

C programming language
test harness written in, 79-81
Windows applications in, 219
and writing PDL, 121

C++ programming language
classes, 218
as object-oriented language, 159-160
prototyping with, 229

capacity
multi-user levels, 116-117
system, and performance, 138

365

366 Index

capturing requirements, 95-98, 331-335
cardinality notation, 147-149
CD-ROM, about book’s, 363-364
CDs
and database performance, 116
as delivery media, 254
as permanent storage, 119
central storage, 113
certification
testing, 88
training, 284
vs. testing, 304-306
Change History subsection, structured documents,
16
change request procedures, 177, 264-265, 322
change tracking, management, 189-190, 315-316
chapter summaries
coding and language choice, 222-223
corporate quality, 284
delivery, 266-267
feedback techniques, 324
first prototype, 236-237
Functional Specification, 143-144
functionality, adding to prototype, 252
implementation strategies, guidelines, 360-361
Liaison Center, 18
object and component archive, 207-208
object-oriented programming, 165
product development, 69
Requirements Definition document, 104
requirements specification, 126
reusable code, 185-186
specifications, 57
standards and guidelines, 36-37
testing, 88, 306-307
testing procedures, 306-307
character data, scalar variable limits, 84-86
checklists, quality, 277
Chicago Manual of Style, 23
choosing appropriate prototyping paradigm, 61
class network diagram (fig.), 156
classes
in C++, 159-160
class tree (fig.), 157
and compiled ‘glue’ languages, 218
data- vs. process-oriented design, 149-150
diagramming, inheritance in, 153-158

modules and, 161
names, making searchable, 198-199
client satisfaction, 326-336
client/server systems and network protocols,
117-118
clients
communication, and Liaison Center, 6-7
educating the, 340
feedback from prototype, 234-236
and project teams, 5-6
role in developing specifications, 4041
code
See also coding
comments in, 32
glue, 251
portability of, 221-222
searchable executable, 207
specifications. See specifications
Code Complete (Microsoft Press), 31
coding
and cross coding, 242-243
‘implement and fix” approach, 60
standards, 31-34
testing for errors, 249
collecting data, standards, 34-35
command-line
interface, designing prototype, 231-232
options, documenting in Programmer’s Guide,
205
communication
with clients, employees, 6-7, 10-11
of corporate quality, 272-275
documents and templates, 35-36
external systems, 139
languages, 215
Liaison Center functions, 4-5, 314-321
companies, implementation strategies and guide-
lines, 343-360
competence
and quality excellence, 331
technical, and specifications development, 45
compiled languages, 212-213
compilers, internal, 214
completion, maintenance phase of projects, 27
Compliance sheets for test result documentation,
77-78
component galleries vs. object reuse, 179-180

Index 367

Component Gallery (GC) standards documentation, 20
designing, documenting, 204-207 storage, and system model, 100-101
Librarian, role of, 352 structure diagrams, 147-149
sourcing blocks, 241-242 types, 82-86, 133-134

constants, naming conventions, 200 Data Dictionary, 130-137, 139

contracts data-flow diagrams, 54
Contractual Obligations, in Functional Specifica- Data Management Systems, 216

tion, 141-142 databases
maintenance, 31 definition in specifications, 46
managing, Liaison Center task, 9-10 project, 8-9

conventions requirements, in specifications, 94, 109, 113-115
See also standards search capacities for, 114
in Data Dictionary, 131 dates, data testing of, 83-84
filenaming, 197 debugging, 87-88
time, date, 20-21 decomposition, functional, 53-54

copy protection of product, 257 defining

corporate quality objects in object-oriented design, 151
documenting, 280-284 requirements, 29-30
managing, 275-284 standards for documentation, 20-26
projecting, promoting, 271-275 definitions and specifications, 110-112

corporate software engineering principles, 89-90 delivery

correctness, testing, 298, 319 customization, 263-265

costs media, 254-255
fault elimination, 56 overview, 256-257
Liaison Center benefits, 13 package preparation, 253-254
Open Source software, 180-181 phase, development process, 67-68
surveying for client satisfaction, 327 supporting documentation, 258-263

counting code lines, 34 training component, 265-266

countries, ISO tags, 137 demonstration stage, prototyping, 233-234

cross coding, 242-243 dependencies

cross-platform solutions, 213 external, simulating, 251-252

currency, and documentation standards, 23-24 and prototyping, 227, 233

customer objects, data design diagram (fig.), 53 resource, documenting, 201-202

customization of product, 263-265 system, testing, 300-304

CVS versioning system, 188 design

cycles documents, in repository, 202-203
software development. See Software Develop- object-oriented, 150-158

ment Life Cycle phase, validating, 66-67
test (fig.), 76 process-oriented, 149
turning into product, step in, 240

D Design Correctness Metric (DCM), 319

data designing
assembling test, 248 Component Gallery, 204-207
collection standards, 34-35 data modeling, 51-52
design diagrams, 51-52 product development, 66
entities, in Data Dictionary, 131-133, 139 prototype, 226-228

modeling, 51-52 user interface, 4748

368 Index

Development and Testing process, 67
diagrams
class description (fig.), 155
data design, 51-52
data-flow, 54
data structure (fig.), 147
flow, 129
object interaction, 157-158
in object-oriented design, 154-158
process, 128-130
and specifications, 48-54
tabular collection, 99
dialog boxes, prototyping, 230-231
document definition languages, 216
documentation
for Component Gallery, 205-207
design, 202-203
and document information systems, 16-18
in Functional Specification, 142
layout and structure, 15-16
Liaison Center task, 11-12
and project phases, 26-31
prototype, 227-228, 236-237
Reporting Line, 312-313
Requirements Definition document, 91-94,
97-98
reuse policy, 168-173
Software Requirements document, 103-104
specification terminology, 4647
supporting delivery, 254, 258-263
of test results, 77-78
writing style, 23
documenting
objects for Object Repository, 200-204
quality, 280-284
reporting line, 310-314
dongles, 257
double contingency, building into projects, 28
drivers, system dependencies, 302
DVDs
and database performance, 116
delivery, 254-255
as permanent storage, 119
dynamic memory, testing, 87

E
e-mail addresses, 22
education, client, 340

Eiffel programming language, 121
employees, communication with, 10-11
encapsulation in object-oriented design, 150-151
end users
role in developing specifications, 43—44
services, defining for requirements capture, 96
and user interface design, 4748
errors
costs of fault elimination, 55-57
in prototype code, 249
testing scenarios, 291-294
ethics of using Open Source code, 185
executable code, searchable, 207
execution phase of projects, 27, 29-30
expertise
and choice of coding language, 220
of development staff, and documentation stan-
dards, 146
exploratory programming process model, 62
exported functions, 232
external
clients and project teams, 5-6
dependencies, 233, 251-252
systems communication, 139

F
feedback
and reusable code, objects, 175-176
techniques, 309-324
fields, variable-length, 135-137
file compression, 196
filenames and searchable code, 196-197
finding Open Source code, 181
fine-grained repository artifacts, 178
fitness for use, determining, 300
floating-points
data storage type, 84
numbers, testing, 311
flow diagrams, 129
formal translation process model, 62
formats, standard notation, 135
forms for problem reports, 261-262
frameworks for software development, 221
Function Definitions, 130
functional decomposition, 53-54
functional definitions, specifications, 29-30,
110-112
functional requirements, 101, 123

Functional Requirements Specification, 93, 109,
110-111
Functional Specification, 127-130, 142-143
functionality, adding to prototype, 239-245
functions
exported, in prototype, 232-233
iterative development of, 246
limiting size of code, 33-34

G
glossary, contents of, managing, 102
Glossary section of structured document, 16
glue code, 251
GNU General Public License (GPL), 182-184
GOSUB, GOTO statements, 161
grammar and documentation standards, 22-23
granularity, system, 152-153, 177-180
graphics artists and documentation standards, 21
graphs. See diagrams
gray box testing, 88
GUI (graphical user interface)

designing prototype, 230-231

testing, 81
guidelines. See standards

H
handover phase of projects, 27
hardware
keys (dongles), 257
in requirements specification, 94, 109
target platforms, 112-113
HTML (Hypertext Markup Language), 216, 219
HTTP requests, 216-217
Hungarian notation, 199

1
implementing
Liaison Center, 12—-14
quality, and client dissatisfaction, 331-335
solutions in corporate environments, 343—-360
industry standards and software development, 14-15
information management and document informa-
tion systems, 16-18
infrastructure, IT, 13
inheritance in object-oriented design, 153-154
input/output (I/O) interface testing, 162-165
Installation Guide, 258-259
installation routine, 255

Index 369

instances, data- vs. process-oriented design, 149-150
integers
data storage type, 84
testing data types, 311
integration testing, 73, 290-291
interfaces
designing prototype, 230
GUI (graphical user interface), 81, 230-231
programmer, 142
system, 99
testing, 162-165
internal clients and project teams, 5-6
internal compiler, 214
International Standards Office (ISO) standards,
135-137, 283, 326
Internet Service Providers (ISPs), 140-141
Internet, the
operational concerns, 140-141
protocols, 117-118
research and documentation on, 17
internetworking and mass storage requirements,
109-110, 115-119
interpreted languages, 213-214
interviewing for requirements capture, 95
invoice objects, designing, 52
ISO standards, 135-137, 283, 326
ISPs (Internet Service Providers), 140-141
IT (information technology) infrastructure, 13
iterative development, 243-244

J
Java

classes, 218

as object-oriented language, 159-160
Java Virtual Machine (JVM), 221
JavaScript, 213
John Stark Associates, 278

K
keyboard viewpoint tabular collection diagram (fig.),
100
keywords
class, in C++, 160
and code comments, 32
documenting source code, 171
PROCEDURE (C++), 161
knowledge management, Liaison Center task, 9
knowledge sharing, 338-339

370 Index

L
LAN/WAN vs. Internet-oriented multiuser systems,
117
languages
natural vs. formal language, 92, 107-108
for object-oriented design, 159
Program Definition Language (PDL), 108
programming. See programming languages
large companies
corporate environment of, 348-349
development and testing in, 357-358
Liaison Center role in, 353
quality assurance at, 359-360
layers
of programming languages, 210-215
prototype, 229-233
legacy support and development paradigms, 146
LGPL (GNU Lesser General Public License), 183-184
Liaison Center
central communication responsibilities, 314-316
described, role of, 3-6
implementation strategies, guidelines, 349-354
implementing, 12-14
key tasks, personnel, 6-12
supporting media, 14-18
and Total Quality Management (TQM), 278
Librarian, role of, 352
libraries
as delivery ‘redistributables,’ 256
managing code from, 174-175
programmer interface, 232-233
in Programmer’s Guide, 201, 205
restricting object repository to, 176-177
licensing, Open Source code, 181-184
Linux
Open Source advantage, 184-185
quality assurance and, 358
Linux Journal Web site, 32
logic
prototype implementation, 233
validation test data, 8283

M
M Squared Technologies, 32, 34
machines languages, 210-211

maintenance contracts, 31, 98, 265
management
of changes, 315-316
Liaison Center, relationship to, 12
role in developing specifications, 4243
team, account, 330
Total Quality Management (TQM), 278-279
managing
client dissatisfaction, 336-340
corporate quality, 275-280
mature companies. See large companies
measurements, and documentation standards, 21,
317-320
media for delivered application, 254-255
Media Requirements specification, 118-119
meetings
minutes, agenda style, 25-26
quality review, 276
memory
allocation test data, 82—83
arrays described, 86
blocks, testing, 311
data storage and debugging, 87-88
and memory corruption, 86-87
system model and data storage, 100-101
menus
adding functionality, 250
prototyping, 230-231
methods
data- vs. process-oriented design, 149-150
diagramming, 154—158
exposed, testing, 162-165
MEC framework, 221
Microsoft Exchange, 113
MindJet MindManager, installing, 364
minuting style, 25-26
modeling data, 51-52
Modula-2, 3, 160
Modula-e programming language, 121
modules
vs. classes, 161
vs. objects in object-oriented design, 160-161
testing, 73-74
money values and documentation, 23-24
monitoring quality, 321

N
natural vs. formal language, 92, 107-108
network protocol and requirements specification,

117
networking and internetworking, 109-110
networks, test (fig.), 296-297
Nintendo, 284
nonfunctional

requirements specification, 93, 101-102, 109,

111-112

restraints, and prototype, 226-227
nonsystem functional specifications, 127-142
notation

cardinality (fig.), 148

in Functional Specification, 135

Hungarian, 199

in object-oriented design, 154-158

in specification diagrams, 48-49

o
Object Description Document, 169-171
object interaction diagrams, 157-158
object-oriented (0OO)
approach to building functionality, 239-240
design, 150-158
functionality and implementation, 245-246
paradigm, 145-146
programming, 158
programming languages, 121
Object Pascal, 160
Object Repository
creating, 188-196
introduction to, 187-188
Librarian, role of, 352
sourcing blocks, 241-242
Object reuse process model, 62
object types
documenting for Component Gallery, 205-207
in Programmer’s Guide, 201
objects
and communication in development paradigms,
149-150
defining in object-oriented design, 151
development process, 240-244
encapsulation, 150-151
interaction diagrams, 154-158
making searchable, 198-199

Index 371

reuse, vs. component galleries, 179-180
reusing, 168-177
specifications and testing, 245-246
testing, 162-165
vs. modules in object-oriented design, 160-161
Open Source
approach to software creation, 32, 180185
environment, and quality assurance, 358-360
reusing source code, 169
third-party components, 303-304
Open Source Initiative, 183—184
OpenWorkBench, installing, 364
operating platforms
and choice of coding language, 212
and installation routines, 255
and requirements capture, 95
and specifications, 46
operational concerns, 140-141
Oracle, 46
organizations, implementation strategies, guidelines,
343-360

P
package preparation, installation routine, 255-256
paradigms
choosing for software development, 146-150
object-oriented, 145-146
Object Reuse, 218
software development, 59-60
TQM, 316
parallel ports, 257-258
passive prototypes, 234-235
patching code, 191
PDL (Program Definition Language), 108, 119-122
peer review of specifications, 45
performance
and choice of coding language, 222
execution speed vs. development time, 211
and interpreted languages, 213-214
and requirements specification, 114-115
and system capacity, 138
personnel
Liaison Center’s, 10-13
technical staff, and developing specifications, 42
phases
planning, of projects, 27, 28-29
of projects, 27-31

372 Index

of software development, 54-57
platforms
problem reporting, 262-263
and specifications, 46
system requirements for CD-ROM, 363-364
target, 112-113
pointers, testing, 311
policies
code and object reuse, 168-177
restricting library use, 178
portability of code, 221-222
ports, parallel and USB, 257-258
PostScript, 215
printers as supporting service, 97
problem
area, designing, 49-50
domain, 146, 337-339
problems, reporting, 261-263, 323
Problem Reports, 177
procedural languages, 160-161
procedures, testing, 72-77
process
description documents, 281-282
descriptions in Functional Specification, 128-130
diagrams, 128-130
documentation of, 172-173
object development (fig.), 244
Reporting Line documents (fig.), 313
reuse, 168-177
weak testing, 289
process flow diagrams, 53
process-oriented design, 149
product badges (labels), 283-284
product development
delivery. See delivery
introduction, choosing a paradigm, 59-60
quality as goal, 329-331
steps from design to product, 240
Product Development Mix, 6
Program Definition Language (PDL), 108, 119-122
program testing, types of, 73-77
programmer interface, 142
programmers
coding standards, 31-34
Guide, contents of, 201-202
relationship to clients, 5-6
and testing, 72

programming
object-oriented, 158
process models, 62

programming languages
C programming language. See C programming

language

choosing among, 209-210, 218-219
communication languages, 215
compiled languages, 212-213
for creating PDLs, 121
and development paradigms, 146
interpreted languages, 213-214
layers and types, 210-215
machines languages, 211-215
scripting languages, 214-215
specific, 215-216

project database, Liaison Center maintenance of, 8-9

projects
coding standards, 31-34
data collection standards, 34-35
defining standards, 20-26
development phases, 54—57
documentation phases, 26-31
fitness for use, determining, 300
iterative development, 243-244
prototyping. See prototyping
teams, 239-240, 245
timing, phases of, 54-57
tracking with versioning systems, 188-192
properties, data- vs. process-oriented design,
149-150
proposal phase of projects, 27-28
protocols
network, and requirements specification, 117
TCP/IP, 215-216
prototyping
adding functionality, 239-245
demonstration, recording, 233-236
designing prototype, 225-228
process model, 62
prototype skeleton, layers, 228-233
Public Domain licensing, 181-182

Q

quality
See also corporate quality

assurance, 358-360

and customer satisfaction, 325

documenting, 280-284

and feedback techniques, 309

managing, 275-280

measuring, 317-320

monitoring, 321

testing and, 297-300

Total Quality Management (TQM), 278-279
Quality Circles (QC), 279-280, 316-317
Quality Officer, 352, 354
Quick Start Guide, 258-259

R
rapid application development (RAD) system, 235
real-time systems
and Functional Specification, 128
and operating environment, 96
‘redistributables,” 256
regression testing, 291-292
reporting
benchmark, 282-283
line and feedback, 310-314
Problem Reports, 177
of problems by users, 261-263
process, Liaison Center support, 321-322
templates for, 35-36
test results, 77-78
Reporting Line, 310-314, 319
repository. See Object Repository
Request for Proposals (RfPs), 28, 72
requirements
analysis phase, 95
capture, 95-98, 331-335
defining and documenting, 29-30
multi-user, 116-117
relationship to specifications, 142-143
Requirements Definition document, 91-94, 108, 228
requirements specification
introduction to, 107-108
program definition language, 119-122
and Requirements Definition document, 93-94,
104, 108
skeleton document structure, 108119
validating the system, 123-126
resource
dependencies, documenting, 201-202
editors, compilers, 220

Index

management, Liaison Center task, 7-8
response time to user problems, 263
responsiveness, surveying for client satisfaction,

327-328
reusing code

guidelines generally, 168-169

and Object reuse process model, 62

planning product development, 60
reviews

peer, of specifications, 45

quality, 275-277
risk assessment, 309-310
robustness, testing for, 288, 299
RSM (mSquaredTechnologies), 32, 364

S
satisfaction, client
planning for failure, managing expectations,
331-340
testing for, 326-331
scalar variables, limits of, 84-86
SCCS versioning system, 188
scheduling, 7, 327
scripted programming languages, 219
scripting
data testing, 81
languages, 214-215
SDLC. See Software Development Life Cycle
searchable executable code, 207
searching
database records, 114
source code, 173-174, 196-200
security
in delivered package, 257
and interpreted languages, 213-214
multiuser networked applications, 117-118
Service Delivery, 266
service level agreements, 282, 323
small companies
corporate environment of, 346-348
development and testing in, 356-357
Liaison Center role in, 351-353
quality assurance at, 359-360
software development
frameworks and environments, 221
paradigms for, choosing, 146-150
quality, managing and documenting, 275-284

373

374 Index

Software Development Life Cycle (SDLC)
described, 3—4
models and paradigms, 62—68
specifications, 39
testing in, 295
software engineering
principles of corporate, 89-90
quality products as goal, 329-331
software projects. See projects
Software Requirements document, 103104
solutions, proprietary, 195
sorting routines for source code management,
196-197
source code
control issues, 176
control systems, 188-192
directory in repository, 194
documentation, 171-172
implementing management system for, 192-196
making searchable, 196-200
Open Source, 180-181
open source-acquired, 169
in Programmer’s Guide, 201
specifications
See also specific specification
common mistakes in, 4448
described, 39-40
diagrams and, 48-54
Media Requirements, 118-119
nontechnical, 139-140
parties involved, 4044
poor quality, 339-340
and product development, 65
prototyping and testing, 245-246
relationship with definitions, 110-112
requirements, 107-126
Requirements Definition vs., 93-94
terminology, 46-47
testing, 72-73
speed, and database performance, 114-115
spell checking, 22-23, 277
Spiral process model, 62, 68
splash screens, 232
SQL (Structured Query Language) database require-
ments, 113
staff. See personnel

Standard Query Language (SQL), 216
standards
conventions. See conventions
data collection, 34-35
defining, 20-26
introduction to, 19-20
1SO, 135-137
notational, in Functional Specification, 135
reporting templates, 35-36
Standards Officer, 352
startup companies
corporate environment of, 345-346
development and testing in, 354-356
Liaison Center role in, 349-351
quality assurance at, 359
storage
central, 113
mass, and requirements specifications, 109-110
permanent, 118-119
string handling, 80
structured documents, layout and sections of,
15-16
Structured Query Language. See SQL
structures
data structure diagrams, 147-149
operating, 18
style
meeting minutes, 25-26
writing standards, 23
Style Guide, 23, 35
Subversion (SVN), 190, 364
surveying for client satisfaction, 327-329
SuSE (Linux distributor), 358
system
boundary described, 98-99
dependencies, preventing, curing, 301
granularity, 177-180
layers, and programming languages, 209-215
overview of in User Guide, 260
requirements for CD-ROM, 363-364
testing. See testing
user customization, 264
validating the, 123-126
System Failure Metric (SFM), 320
System model, 99-101
systems information management, 16—18

T
Table of Contents section of structured document,
16
tabular collection diagrams, 99
target platforms, 112-113
Task-by-Task Guide, 260
tasks of Liaison Center, 6-10
TCP/IP protocol and specific languages, 215-216
teams
involved during SDLC, 3—4
makeup and coordination, 8
managing, 330
project, 239-240, 245
in small companies, 346-348
in startup companies, 345-346
testing and development, 310
technical specifications in Functional Specification,
138
technical writers’ role in specifications development,
14
templates, reporting, 35-36
terminology
glossary, and requirements specification, 102
specifications, 4647
Test Case Failure Ratio (TCFR), 319
test cases
certification, 305-306
documenting, 206
test data
scalar, 84-86
and scenarios, 290
testing
for client satisfaction, 326-331
documenting results, 77-78
GUI (graphical user interface), 81
introduction to, 71-72
memory storage/retrieval, 86-87
nonfunctional requirements against user needs,
124-126
objects, 162-165
pre-delivery, 255-256
procedures, 72-77, 287-288
programs, 78-81
prototype units, 247-249
and quality, 297-300
and quality control procedures, 335-336

Index

regression, 291-292
strong, 294-297
system dependencies, 300-304
test data types, analysis, 78-87
user interface, 250
vs. certification, 304-306
weak, consequences of, 288-294
weak vs. strong, 294-297
third-party
components, 142
maintained source code, 169
open source. See Open Source
time
and database performance speed, 114-115
response, to problems, 263
standards, documentation, 20-21
timing of software development phases, 54-57
tools
-based alternative to Liaison Center, 353-354
internal, as system dependencies, 302
source code control systems, 188-192
Total Quality Management (TQM), 278-279,
316-317, 326, 327
training
client education, 340
as part of delivery, 265-266
and requirements specification, 125
troubleshooting
debugging, 87-88
client satisfaction issues, 333
section in User Guide, 260-261
type hierarchy in network diagramming, 155

)
Unified Modeling Language (UML), 154
unit testing, 73-75, 288
USB ports, 257-258
use cases in process diagram, 129
User Guide, 30-31, 97, 259-261
user interface

designing, 47-48

testing, 81

testing functionality of, 250
usernames, standards, 22
users

acceptance testing, 73

375

376 Index

end, and specifications development, 43—44
multi-user requirements, 116-117
reporting problems, 261-263

Vv
validating

the system, 123-126

use cases, 129-130
Value Matrix, and client satisfaction, 327-329
values

and documentation standards, 23-24

test case, 87
variable-length fields, 135-137
variables, making searchable, 198-199
Verification return path, Waterfall process model, 64
versions

defining standards, 21

structuring source code by, 194

using versioning systems, 188-192
videotaping prototype demonstration, 236
viewpoints

and problem area design, 49-51

in tabular collection diagrams, 99
virtual machines (VM)

and coding, 213

Java Virtual Machine (JVM), 221

Visual Basic (VB) for prototyping, 229
Visual SourceSafe (VSS), 188, 195

w
Waterfall process model, 62-68, 146
Web sites
Linux Journal, 32
Open Source Initiative FAQ, 183
white box testing, 88
WinCvs, installing, 364
WinRunner (Microsoft), 81
WinZip file compression, 196
Wirth, Niklaus, 160
Word, user interface, 47
WordPerfect, 47
working data, 100-101
World Wide Web. See Internet, the
writers, technical, and specifications development, 44
writing
notations in specifications, 48—49
style, and documentation standards, 23

X
XML (eXtensible Markup Language) documents, 217

	softpro_1845_5264059.jpg
	Corporate Software Engineering.pdf

